WorldWideScience

Sample records for cortical networks subserving

  1. Cross-language differences in the brain network subserving intelligible speech.

    Science.gov (United States)

    Ge, Jianqiao; Peng, Gang; Lyu, Bingjiang; Wang, Yi; Zhuo, Yan; Niu, Zhendong; Tan, Li Hai; Leff, Alexander P; Gao, Jia-Hong

    2015-03-10

    How is language processed in the brain by native speakers of different languages? Is there one brain system for all languages or are different languages subserved by different brain systems? The first view emphasizes commonality, whereas the second emphasizes specificity. We investigated the cortical dynamics involved in processing two very diverse languages: a tonal language (Chinese) and a nontonal language (English). We used functional MRI and dynamic causal modeling analysis to compute and compare brain network models exhaustively with all possible connections among nodes of language regions in temporal and frontal cortex and found that the information flow from the posterior to anterior portions of the temporal cortex was commonly shared by Chinese and English speakers during speech comprehension, whereas the inferior frontal gyrus received neural signals from the left posterior portion of the temporal cortex in English speakers and from the bilateral anterior portion of the temporal cortex in Chinese speakers. Our results revealed that, although speech processing is largely carried out in the common left hemisphere classical language areas (Broca's and Wernicke's areas) and anterior temporal cortex, speech comprehension across different language groups depends on how these brain regions interact with each other. Moreover, the right anterior temporal cortex, which is crucial for tone processing, is equally important as its left homolog, the left anterior temporal cortex, in modulating the cortical dynamics in tone language comprehension. The current study pinpoints the importance of the bilateral anterior temporal cortex in language comprehension that is downplayed or even ignored by popular contemporary models of speech comprehension.

  2. Dismissing Attachment Characteristics Dynamically Modulate Brain Networks Subserving Social Aversion

    Science.gov (United States)

    Krause, Anna Linda; Borchardt, Viola; Li, Meng; van Tol, Marie-José; Demenescu, Liliana Ramona; Strauss, Bernhard; Kirchmann, Helmut; Buchheim, Anna; Metzger, Coraline D.; Nolte, Tobias; Walter, Martin

    2016-01-01

    Attachment patterns influence actions, thoughts and feeling through a person’s “inner working model”. Speech charged with attachment-dependent content was proposed to modulate the activation of cognitive-emotional schemata in listeners. We performed a 7 Tesla rest-task-rest functional magnetic resonance imaging (fMRI)-experiment, presenting auditory narratives prototypical of dismissing attachment representations to investigate their effect on 23 healthy males. We then examined effects of participants’ attachment style and childhood trauma on brain state changes using seed-based functional connectivity (FC) analyses, and finally tested whether subjective differences in responsivity to narratives could be predicted by baseline network states. In comparison to a baseline state, we observed increased FC in a previously described “social aversion network” including dorsal anterior cingulated cortex (dACC) and left anterior middle temporal gyrus (aMTG) specifically after exposure to insecure-dismissing attachment narratives. Increased dACC-seeded FC within the social aversion network was positively related to the participants’ avoidant attachment style and presence of a history of childhood trauma. Anxious attachment style on the other hand was positively correlated with FC between the dACC and a region outside of the “social aversion network”, namely the dorsolateral prefrontal cortex, which suggests decreased network segregation as a function of anxious attachment. Finally, the extent of subjective experience of friendliness towards the dismissing narrative was predicted by low baseline FC-values between hippocampus and inferior parietal lobule (IPL). Taken together, our study demonstrates an activation of networks related to social aversion in terms of increased connectivity after listening to insecure-dismissing attachment narratives. A causal interrelation of brain state changes and subsequent changes in social reactivity was further supported by

  3. Dismissing attachment characteristics dynamically modulate brain networks subserving social aversion.

    Directory of Open Access Journals (Sweden)

    Anna Linda eKrause

    2016-03-01

    Full Text Available Attachment patterns influence actions, thoughts and feeling through a person’s ‘Inner Working Model’. Speech charged with attachment-dependent content was proposed to modulate the activation of cognitive-emotional schemata in listeners. We performed a 7 Tesla rest-task-rest fMRI-experiment, presenting auditory narratives prototypical of dismissing attachment representations to investigate their effect on 23 healthy males. We then examined effects of participants’ attachment style and childhood trauma on brain state changes using seed-based functional connectivity (FC analyses, and finally tested whether subjective differences in responsivity to narratives could be predicted by baseline network states. In comparison to a baseline state, we observed increased FC in a previously described ‘social aversion network’ including dorsal anterior cingulated cortex (dACC and left anterior middle temporal gyrus (aMTG specifically after exposure to insecure-dismissing attachment narratives. Increased dACC-seeded FC within the social aversion network was positively related to the participants’ avoidant attachment style and presence of a history of childhood trauma. Anxious attachment style on the other hand was positively correlated with FC between the dACC and a region outside of the ‘social aversion network’, namely the dorsolateral prefrontal cortex, which suggests decreased network segregation as a function of anxious attachment. Finally, the extent of subjective experience of friendliness towards the dismissing narrative was predicted by low baseline FC-values between hippocampus and inferior parietal lobule. Taken together, our study demonstrates an activation of networks related to social aversion in terms of increased connectivity after listening to insecure-dismissing attachment narratives. A causal interrelation of brain state changes and subsequent changes in social reactivity was further supported by our observation of direct

  4. Breakdown in the brain network subserving moral judgment in criminal psychopathy

    Science.gov (United States)

    Batalla, Iolanda; Contreras-Rodríguez, Oren; Harrison, Ben J.; Pera, Vanessa; Hernández-Ribas, Rosa; Real, Eva; Bosa, Laura; Soriano-Mas, Carles; Deus, Joan; López-Solà, Marina; Pifarré, Josep; Menchón, José M.; Cardoner, Narcís

    2012-01-01

    Neuroimaging research has demonstrated the involvement of a well-defined brain network in the mediation of moral judgment in normal population, and has suggested the inappropriate network use in criminal psychopathy. We used functional magnetic resonance imaging (fMRI) to prove that alterations in the brain network subserving moral judgment in criminal psychopaths are not limited to the inadequate network use during moral judgment, but that a primary network breakdown would exist with dysfunctional alterations outside moral dilemma situations. A total of 22 criminal psychopathic men and 22 control subjects were assessed and fMRI maps were generated to identify (i) brain response to moral dilemmas, (ii) task-induced deactivation of the network during a conventional cognitive task and (iii) the strength of functional connectivity within the network during resting-state. The obtained functional brain maps indeed confirmed that the network subserving moral judgment is underactive in psychopathic individuals during moral dilemma situations, but the data also provided evidence of a baseline network alteration outside moral contexts with a functional disconnection between emotional and cognitive elements that jointly construct moral judgment. The finding may have significant social implications if considering psychopathic behavior to be a result of a primary breakdown in basic brain systems. PMID:22037688

  5. Computational connectionism within neurons: A model of cytoskeletal automata subserving neural networks

    Science.gov (United States)

    Rasmussen, Steen; Karampurwala, Hasnain; Vaidyanath, Rajesh; Jensen, Klaus S.; Hameroff, Stuart

    1990-06-01

    “Neural network” models of brain function assume neurons and their synaptic connections to be the fundamental units of information processing, somewhat like switches within computers. However, neurons and synapses are extremely complex and resemble entire computers rather than switches. The interiors of the neurons (and other eucaryotic cells) are now known to contain highly ordered parallel networks of filamentous protein polymers collectively termed the cytoskeleton. Originally assumed to provide merely structural “bone-like” support, cytoskeletal structures such as microtubules are now recognized to organize cell interiors dynamically. The cytoskeleton is the internal communication network for the eucaryotic cell, both by means of simple transport and by means of coordinating extremely complicated events like cell division, growth and differentiation. The cytoskeleton may therefore be viewed as the cell's “nervous system”. Consequently the neuronal cytoskeleton may be involved in molecular level information processing which subserves higher, collective neuronal functions ultimately relating to cognition. Numerous models of information processing within the cytoskeleton (in particular, microtubules) have been proposed. We have utilized cellular automata as a means to model and demonstrate the potential for information processing in cytoskeletal microtubules. In this paper, we extend previous work and simulate associative learning in a cytoskeletal network as well as assembly and disassembly of microtubules. We also discuss possible relevance and implications of cytoskeletal information processing to cognition.

  6. Dissociation of glutamate and cortical thickness is restricted to regions subserving trait but not state markers in major depressive disorder

    NARCIS (Netherlands)

    Li, Meng; Metzger, Coraline D.; Li, Wenjing; Safron, Adam; van Tol, Marie-Jose; Lord, Anton; Krause, Anna Linda; Borchardt, Viola; Dou, Weiqiang; Genz, Axel; Heinze, Hans-Jochen; He, Huiguang; Walter, Martin

    2014-01-01

    Background: The anterior cingulate cortex (ACC) plays an important role in the neuropathology of major depressive disorder (MDD). So far, the effect of local cortical alteration on metabolites in multiple subdivisions of ACC has not been studied. We aimed to investigate structural and biochemical ch

  7. Breakdown in the brain network subserving moral judgment in criminal psychopathy

    National Research Council Canada - National Science Library

    Pujol, Jesus; Batalla, Iolanda; Contreras-Rodríguez, Oren; Harrison, Ben J; Pera, Vanessa; Hernández-Ribas, Rosa; Real, Eva; Bosa, Laura; Soriano-Mas, Carles; Deus, Joan; López-Solà, Marina; Pifarré, Josep; Menchón, José M; Cardoner, Narcís

    2012-01-01

    Neuroimaging research has demonstrated the involvement of a well-defined brain network in the mediation of moral judgment in normal population, and has suggested the inappropriate network use in criminal psychopathy...

  8. Face activated neurodynamic cortical networks.

    Science.gov (United States)

    Susac, Ana; Ilmoniemi, Risto J; Ranken, Doug; Supek, Selma

    2011-05-01

    Previous neuroimaging studies have shown that complex visual stimuli, such as faces, activate multiple brain regions, yet little is known on the dynamics and complexity of the activated cortical networks during the entire measurable evoked response. In this study, we used simulated and face-evoked empirical MEG data from an oddball study to investigate the feasibility of accurate, efficient, and reliable spatio-temporal tracking of cortical pathways over prolonged time intervals. We applied a data-driven, semiautomated approach to spatio-temporal source localization with no prior assumptions on active cortical regions to explore non-invasively face-processing dynamics and their modulation by task. Simulations demonstrated that the use of multi-start downhill simplex and data-driven selections of time intervals submitted to the Calibrated Start Spatio-Temporal (CSST) algorithm resulted in improved accuracy of the source localization and the estimation of the onset of their activity. Locations and dynamics of the identified sources indicated a distributed cortical network involved in face processing whose complexity was task dependent. This MEG study provided the first non-invasive demonstration, agreeing with intracranial recordings, of an early onset of the activity in the fusiform face gyrus (FFG), and that frontal activation preceded parietal for responses elicited by target faces.

  9. Mean field methods for cortical network dynamics

    DEFF Research Database (Denmark)

    Hertz, J.; Lerchner, Alexander; Ahmadi, M.

    2004-01-01

    We review the use of mean field theory for describing the dynamics of dense, randomly connected cortical circuits. For a simple network of excitatory and inhibitory leaky integrate- and-fire neurons, we can show how the firing irregularity, as measured by the Fano factor, increases with the stren...... cortex. Finally, an extension of the model to describe an orientation hypercolumn provides understanding of how cortical interactions sharpen orientation tuning, in a way that is consistent with observed firing statistics...

  10. The ontogeny of the cortical language network.

    Science.gov (United States)

    Skeide, Michael A; Friederici, Angela D

    2016-05-01

    Language-processing functions follow heterogeneous developmental trajectories. The human embryo can already distinguish vowels in utero, but grammatical complexity is usually not fully mastered until at least 7 years of age. Examining the current literature, we propose that the ontogeny of the cortical language network can be roughly subdivided into two main developmental stages. In the first stage extending over the first 3 years of life, the infant rapidly acquires bottom-up processing capacities, which are primarily implemented bilaterally in the temporal cortices. In the second stage continuing into adolescence, top-down processes emerge gradually with the increasing functional selectivity and structural connectivity of the left inferior frontal cortex.

  11. Mean field methods for cortical network dynamics

    DEFF Research Database (Denmark)

    Hertz, J.; Lerchner, Alexander; Ahmadi, M.

    2004-01-01

    We review the use of mean field theory for describing the dynamics of dense, randomly connected cortical circuits. For a simple network of excitatory and inhibitory leaky integrate- and-fire neurons, we can show how the firing irregularity, as measured by the Fano factor, increases...... with the strength of the synapses in the network and with the value to which the membrane potential is reset after a spike. Generalizing the model to include conductance-based synapses gives insight into the connection between the firing statistics and the high- conductance state observed experimentally in visual...

  12. Modelling Human Cortical Network in Real Brain Space

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qing-Bai; FENG Hong-Bo; TANG Yi-Yuan

    2007-01-01

    Highly specific structural organization is of great significance in the topology of cortical networks.We introduce a human cortical network model.taking the specific cortical structure into account,in which nodes are brain sites placed in the actual positions of cerebral cortex and the establishment of edges depends on the spatial path length rather than the linear distance.The resulting network exhibits the essential features of cortical connectivity,properties of small-world networks and multiple clusters structure.Additionally.assortative mixing is also found in this roodel.All of these findings may be attributed to the spedtic cortical architecture.

  13. Serotonin modulation of cortical neurons and networks

    Directory of Open Access Journals (Sweden)

    Pau eCelada

    2013-04-01

    Full Text Available The serotonergic pathways originating in the dorsal and median raphe nuclei (DR and MnR, respectively are critically involved in cortical function. Serotonin (5-HT, acting on postsynaptic and presynaptic receptors, is involved in cognition, mood, impulse control and motor functions by 1 modulating the activity of different neuronal types, and 2 varying the release of other neurotransmitters, such as glutamate, GABA, acetylcholine and dopamine. Also, 5-HT seems to play an important role in cortical development. Of all cortical regions, the frontal lobe is the area most enriched in serotonergic axons and 5-HT receptors. 5-HT and selective receptor agonists modulate the excitability of cortical neurons and their discharge rate through the activation of several receptor subtypes, of which the 5-HT1A, 5-HT1B, 5-HT2A and 5-HT3 subtypes play a major role. Little is known, however, on the role of other excitatory receptors moderately expressed in cortical areas, such as 5-HT2C, 5-HT4, 5-HT6 and 5-HT7. In vitro and in vivo studies suggest that 5-HT1A and 5-HT2A receptors are key players and exert opposite effects on the activity of pyramidal neurons in the medial prefrontal cortex (mPFC. The activation of 5-HT1A receptors in mPFC hyperpolarizes pyramidal neurons whereas that of 5-HT2A receptors results in neuronal depolarization, reduction of the afterhyperpolarization and increase of excitatory postsynaptic currents (EPSCs and of discharge rate. 5-HT can also stimulate excitatory (5-HT2A and 5-HT3 and inhibitory (5-HT1A receptors in GABA interneurons to modulate synaptic GABA inputs onto pyramidal neurons. Likewise, the pharmacological manipulation of various 5-HT receptors alters oscillatory activity in PFC, suggesting that 5-HT is also involved in the control of cortical network activity. A better understanding of the actions of 5-HT in PFC may help to develop treatments for mood and cognitive disorders associated with an abnormal function of the

  14. Characterization of Early Cortical Neural Network ...

    Science.gov (United States)

    We examined the development of neural network activity using microelectrode array (MEA) recordings made in multi-well MEA plates (mwMEAs) over the first 12 days in vitro (DIV). In primary cortical cultures made from postnatal rats, action potential spiking activity was essentially absent on DIV 2 and developed rapidly between DIV 5 and 12. Spiking activity was primarily sporadic and unorganized at early DIV, and became progressively more organized with time in culture, with bursting parameters, synchrony and network bursting increasing between DIV 5 and 12. We selected 12 features to describe network activity and principal components analysis using these features demonstrated a general segregation of data by age at both the well and plate levels. Using a combination of random forest classifiers and Support Vector Machines, we demonstrated that 4 features (CV of within burst ISI, CV of IBI, network spike rate and burst rate) were sufficient to predict the age (either DIV 5, 7, 9 or 12) of each well recording with >65% accuracy. When restricting the classification problem to a binary decision, we found that classification improved dramatically, e.g. 95% accuracy for discriminating DIV 5 vs DIV 12 wells. Further, we present a novel resampling approach to determine the number of wells that might be needed for conducting comparisons of different treatments using mwMEA plates. Overall, these results demonstrate that network development on mwMEA plates is similar to

  15. The cortical and sub-cortical network of sensory evoked response in healthy subjects.

    Science.gov (United States)

    Muthuraman, M; Hellriegel, H; Groppa, S; Deuschl, G; Raethjen, J

    2013-01-01

    The aim of this study was to find the cortical and sub-cortical network responsible for the sensory evoked coherence in healthy subjects during electrical stimulation of right median nerve at wrist. The multitaper method was used to estimate the power and coherence spectrum followed by the source analysis method dynamic imaging of coherent sources (DICS) to find the highest coherent source for the basic frequency 3 Hz and the complete cortical and sub-cortical network responsible for the sensory evoked coherence in healthy subjects. The highest coherent source for the basic frequency was in the posterior parietal cortex for all the subjects. The cortical and sub-cortical network comprised of the primary sensory motor cortex (SI), secondary sensory motor cortex (SII), frontal cortex and medial pulvinar nucleus in the thalamus. The cortical and sub-cortical network responsible for the sensory evoked coherence was found successfully with a 64-channel EEG system. The sensory evoked coherence is involved with a thalamo-cortical network in healthy subjects.

  16. Cortical Network for Reading Linear Words in an Alphasyllabary

    Science.gov (United States)

    Das, Tanusree; Bapi, Raju S.; Padakannaya, Prakash; Singh, Nandini C.

    2011-01-01

    Functional imaging studies have established cortical networks for reading alphabetic, syllabic and logographic scripts. There is little information about the different cortical areas that participate in reading an alphasyllabary. We use functional brain imaging to study the reading network for Devanagari, an alphasyllabary. Similar to syllabic…

  17. Magnetoencephalography from signals to dynamic cortical networks

    CERN Document Server

    Aine, Cheryl

    2014-01-01

    "Magnetoencephalography (MEG) provides a time-accurate view into human brain function. The concerted action of neurons generates minute magnetic fields that can be detected---totally noninvasively---by sensitive multichannel magnetometers. The obtained millisecond accuracycomplements information obtained by other modern brain-imaging tools. Accurate timing is quintessential in normal brain function, often distorted in brain disorders. The noninvasiveness and time-sensitivityof MEG are great assets to developmental studies, as well. This multiauthored book covers an ambitiously wide range of MEG research from introductory to advanced level, from sensors to signals, and from focal sources to the dynamics of cortical networks. Written by active practioners of this multidisciplinary field, the book contains tutorials for newcomers and chapters of new challenging methods and emerging technologies to advanced MEG users. The reader will obtain a firm grasp of the possibilities of MEG in the study of audition, vision...

  18. Spatial learning and action planning in a prefrontal cortical network model.

    Science.gov (United States)

    Martinet, Louis-Emmanuel; Sheynikhovich, Denis; Benchenane, Karim; Arleo, Angelo

    2011-05-01

    The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive "insight" capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates.

  19. Spatial learning and action planning in a prefrontal cortical network model.

    Directory of Open Access Journals (Sweden)

    Louis-Emmanuel Martinet

    2011-05-01

    Full Text Available The interplay between hippocampus and prefrontal cortex (PFC is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive "insight" capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates.

  20. Negative Correlations in Visual Cortical Networks

    National Research Council Canada - National Science Library

    Chelaru, Mircea I; Dragoi, Valentin

    2016-01-01

    .... Whereas positive noise correlations have been extensively studied using experimental and theoretical tools, the functional role of negative correlations in cortical circuits has remained elusive...

  1. Cortical network reorganization guided by sensory input features.

    Science.gov (United States)

    Kilgard, Michael P; Pandya, Pritesh K; Engineer, Navzer D; Moucha, Raluca

    2002-12-01

    Sensory experience alters the functional organization of cortical networks. Previous studies using behavioral training motivated by aversive or rewarding stimuli have demonstrated that cortical plasticity is specific to salient inputs in the sensory environment. Sensory experience associated with electrical activation of the basal forebrain (BasF) generates similar input specific plasticity. By directly engaging plasticity mechanisms and avoiding extensive behavioral training, BasF stimulation makes it possible to efficiently explore how specific sensory features contribute to cortical plasticity. This review summarizes our observations that cortical networks employ a variety of strategies to improve the representation of the sensory environment. Different combinations of receptive-field, temporal, and spectrotemporal plasticity were generated in primary auditory cortex neurons depending on the pitch, modulation rate, and order of sounds paired with BasF stimulation. Simple tones led to map expansion, while modulated tones altered the maximum cortical following rate. Exposure to complex acoustic sequences led to the development of combination-sensitive responses. This remodeling of cortical response characteristics may reflect changes in intrinsic cellular mechanisms, synaptic efficacy, and local neuronal connectivity. The intricate relationship between the pattern of sensory activation and cortical plasticity suggests that network-level rules alter the functional organization of the cortex to generate the most behaviorally useful representation of the sensory environment.

  2. Assessing cortical network properties using TMS-EEG.

    Science.gov (United States)

    Rogasch, Nigel C; Fitzgerald, Paul B

    2013-07-01

    The past decade has seen significant developments in the concurrent use of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to directly assess cortical network properties such as excitability and connectivity in humans. New hardware solutions, improved EEG amplifier technology, and advanced data processing techniques have allowed substantial reduction of the TMS-induced artifact, which had previously rendered concurrent TMS-EEG impossible. Various physiological artifacts resulting from TMS have also been identified, and methods are being developed to either minimize or remove these sources of artifact. With these developments, TMS-EEG has unlocked regions of the cortex to researchers that were previously inaccessible to TMS. By recording the TMS-evoked response directly from the cortex, TMS-EEG provides information on the excitability, effective connectivity, and oscillatory tuning of a given cortical area, removing the need to infer such measurements from indirect measures. In the following review, we investigate the different online and offline methods for reducing artifacts in TMS-EEG recordings and the physiological information contained within the TMS-evoked cortical response. We then address the use of TMS-EEG to assess different cortical mechanisms such as cortical inhibition and neural plasticity, before briefly reviewing studies that have utilized TMS-EEG to explore cortical network properties at rest and during different functional brain states.

  3. Locus coeruleus stimulation recruits a broad cortical neuronal network and increases cortical perfusion.

    Science.gov (United States)

    Toussay, Xavier; Basu, Kaustuv; Lacoste, Baptiste; Hamel, Edith

    2013-02-20

    The locus coeruleus (LC), the main source of brain noradrenalin (NA), modulates cortical activity, cerebral blood flow (CBF), glucose metabolism, and blood-brain barrier permeability. However, the role of the LC-NA system in the regulation of cortical CBF has remained elusive. This rat study shows that similar proportions (∼20%) of cortical pyramidal cells and GABA interneurons are contacted by LC-NA afferents on their cell soma or proximal dendrites. LC stimulation induced ipsilateral activation (c-Fos upregulation) of pyramidal cells and of a larger proportion (>36%) of interneurons that colocalize parvalbumin, somatostatin, or nitric oxide synthase compared with pyramidal cells expressing cyclooxygenase-2 (22%, p interneurons (16%, p BK, -52%, p < 0.05), and inward-rectifier (Kir, -40%, p < 0.05) K+ channels primarily impaired the hyperemic response. The data demonstrate that LC stimulation recruits a broad network of cortical excitatory and inhibitory neurons resulting in increased cortical activity and that K+ fluxes and EET signaling mediate a large part of the hemodynamic response.

  4. Simulation of Robustness against Lesions of Cortical Networks

    CERN Document Server

    Kaiser, Marcus; Andras, Peter; Young, Malcolm P

    2008-01-01

    Structure entails function and thus a structural description of the brain will help to understand its function and may provide insights into many properties of brain systems, from their robustness and recovery from damage, to their dynamics and even their evolution. Advances in the analysis of complex networks provide useful new approaches to understanding structural and functional properties of brain networks. Structural properties of networks recently described allow their characterization as small-world, random (exponential) and scale-free. They complement the set of other properties that have been explored in the context of brain connectivity, such as topology, hodology, clustering, and hierarchical organization. Here we apply new network analysis methods to cortical inter-areal connectivity networks for the cat and macaque brains. We compare these corticocortical fibre networks to benchmark rewired, small-world, scale-free and random networks, using two analysis strategies, in which we measure the effect...

  5. Qualia could arise from information processing in local cortical networks

    Directory of Open Access Journals (Sweden)

    Roger D Orpwood

    2013-03-01

    Full Text Available Re-entrant feedback, either within sensory cortex or arising from prefrontal areas, has been strongly linked to the emergence of consciousness, both in theoretical and experimental work. This idea, together with evidence for local micro-consciousness, suggests the generation of qualia could in some way result from local network activity under re-entrant activation. This paper explores the possibility by examining the processing of information by local cortical networks. It highlights the difference between the information structure (how the information is physically embodied, and the information message (what the information is about. It focuses on the network’s ability to recognise information structures amongst its inputs under conditions of extensive local feedback, and to then assign information messages to those structures. It is shown that if the re-entrant feedback enables the network to achieve an attractor state, then the message assigned in any given pass of information through the network is a representation of the message assigned in the previous pass-through of information. Based on this ability the paper argues that as information is repeatedly cycled through the network, the information message that is assigned evolves from a recognition of what the input structure is, to what it is like, to how it appears, to how it seems. It could enable individual networks to be the site of qualia generation. The paper goes on to show networks in cortical layers 2/3 and 5a have the connectivity required for the behaviour proposed, and reviews some evidence for a link between such local cortical cyclic activity and conscious percepts. It concludes with some predictions based on the theory discussed.

  6. Stable propagation of synchronous spiking in cortical neural networks

    Science.gov (United States)

    Diesmann, Markus; Gewaltig, Marc-Oliver; Aertsen, Ad

    1999-12-01

    The classical view of neural coding has emphasized the importance of information carried by the rate at which neurons discharge action potentials. More recent proposals that information may be carried by precise spike timing have been challenged by the assumption that these neurons operate in a noisy fashion-presumably reflecting fluctuations in synaptic input-and, thus, incapable of transmitting signals with millisecond fidelity. Here we show that precisely synchronized action potentials can propagate within a model of cortical network activity that recapitulates many of the features of biological systems. An attractor, yielding a stable spiking precision in the (sub)millisecond range, governs the dynamics of synchronization. Our results indicate that a combinatorial neural code, based on rapid associations of groups of neurons co-ordinating their activity at the single spike level, is possible within a cortical-like network.

  7. Spike phase synchronization in multiplex cortical neural networks

    Science.gov (United States)

    Jalili, Mahdi

    2017-01-01

    In this paper we study synchronizability of two multiplex cortical networks: whole-cortex of hermaphrodite C. elegans and posterior cortex in male C. elegans. These networks are composed of two connection layers: network of chemical synapses and the one formed by gap junctions. This work studies the contribution of each layer on the phase synchronization of non-identical spiking Hindmarsh-Rose neurons. The network of male C. elegans shows higher phase synchronization than its randomized version, while it is not the case for hermaphrodite type. The random networks in each layer are constructed such that the nodes have the same degree as the original network, thus providing an unbiased comparison. In male C. elegans, although the gap junction network is sparser than the chemical network, it shows higher contribution in the synchronization phenomenon. This is not the case in hermaphrodite type, which is mainly due to significant less density of gap junction layer (0.013) as compared to chemical layer (0.028). Also, the gap junction network in this type has stronger community structure than the chemical network, and this is another driving factor for its weaker synchronizability.

  8. Functional Cortical Network in Alpha Band Correlates with Social Bargaining

    Science.gov (United States)

    Billeke, Pablo; Zamorano, Francisco; Chavez, Mario; Cosmelli, Diego; Aboitiz, Francisco

    2014-01-01

    Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals’ alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts. PMID:25286240

  9. Network bursts in cortical neuronal cultures: 'noise - versus pacemaker'- driven neural network simulations

    NARCIS (Netherlands)

    Gritsun, T.; Stegenga, J.; le Feber, Jakob; Rutten, Wim

    2009-01-01

    In this paper we address the issue of spontaneous bursting activity in cortical neuronal cultures and explain what might cause this collective behavior using computer simulations of two different neural network models. While the common approach to acivate a passive network is done by introducing

  10. Euchromatin histone methyltransferase 1 regulates cortical neuronal network development

    Science.gov (United States)

    Bart Martens, Marijn; Frega, Monica; Classen, Jessica; Epping, Lisa; Bijvank, Elske; Benevento, Marco; van Bokhoven, Hans; Tiesinga, Paul; Schubert, Dirk; Nadif Kasri, Nael

    2016-01-01

    Heterozygous mutations or deletions in the human Euchromatin histone methyltransferase 1 (EHMT1) gene cause Kleefstra syndrome, a neurodevelopmental disorder that is characterized by autistic-like features and severe intellectual disability (ID). Neurodevelopmental disorders including ID and autism may be related to deficits in activity-dependent wiring of brain circuits during development. Although Kleefstra syndrome has been associated with dendritic and synaptic defects in mice and Drosophila, little is known about the role of EHMT1 in the development of cortical neuronal networks. Here we used micro-electrode arrays and whole-cell patch-clamp recordings to investigate the impact of EHMT1 deficiency at the network and single cell level. We show that EHMT1 deficiency impaired neural network activity during the transition from uncorrelated background action potential firing to synchronized network bursting. Spontaneous bursting and excitatory synaptic currents were transiently reduced, whereas miniature excitatory postsynaptic currents were not affected. Finally, we show that loss of function of EHMT1 ultimately resulted in less regular network bursting patterns later in development. These data suggest that the developmental impairments observed in EHMT1-deficient networks may result in a temporal misalignment between activity-dependent developmental processes thereby contributing to the pathophysiology of Kleefstra syndrome. PMID:27767173

  11. Taming desynchronized bursting with delays in the Macaque cortical network

    Institute of Scientific and Technical Information of China (English)

    Wang Qing-Yun; Murks Aleksandra; Perc Matja(z); Lu Qi-Shao

    2011-01-01

    Inhibitory coupled bursting Hindmarsh-Rose neurons are considered as constitutive units of the Macaque cortical network. In the absence of information transmission delay the bursting activity is desynchronized, giving rise to spatiotemporally disordered dynamics. This paper shows that the introduction of finite delays can lead to the synchroization of bursting and thus to the emergence of coherent propagating fronts of excitation in the space-time domain.Moreover, it shows that the type of synchronous bursting is uniquely determined by the delay length, with the transitions from one type to the other occurring in a step-like manner depending on the delay. Interestingly, as the delay is tuned close to the transition points, the synchronization deteriorates, which implies the coexistence of different bursting attractors. These phenomena can be observed be different but fixed coupling strengths, thus indicating a new role for information transmission delays in realistic neuronal networks.

  12. Columnar architecture improves noise robustness in a model cortical network.

    Directory of Open Access Journals (Sweden)

    Paul C Bush

    Full Text Available Cortical columnar architecture was discovered decades ago yet there is no agreed upon explanation for its function. Indeed, some have suggested that it has no function, it is simply an epiphenomenon of developmental processes. To investigate this problem we have constructed a computer model of one square millimeter of layer 2/3 of the primary visual cortex (V1 of the cat. Model cells are connected according to data from recent paired cell studies, in particular the connection probability between pyramidal cells is inversely proportional both to the distance separating the cells and to the distance between the preferred parameters (features of the cells. We find that these constraints, together with a columnar architecture, produce more tightly clustered populations of cells when compared to the random architecture seen in, for example, rodents. This causes the columnar network to converge more quickly and accurately on the pattern representing a particular stimulus in the presence of noise, suggesting that columnar connectivity functions to improve pattern recognition in cortical circuits. The model also suggests that synaptic failure, a phenomenon exhibited by weak synapses, may conserve metabolic resources by reducing transmitter release at these connections that do not contribute to network function.

  13. Population spikes in cortical networks during different functional states.

    Directory of Open Access Journals (Sweden)

    Shirley eMark

    2012-07-01

    Full Text Available Brain computational challenges vary between behavioral states. Engaged animals react according to incoming sensory information, while in relaxed and sleeping states consolidation of the learned information is believed to take place. Different states are characterized by different forms of cortical activity. We study a possible neuronal mechanism for generating these diverse dynamics and suggest their possible functional significance. Previous studies demonstrated that brief synchronized increase in a neural firing (Population Spikes can be generated in homogenous recurrent neural networks with short-term synaptic depression. Here we consider more realistic networks with clustered architecture. We show that the level of synchronization in neural activity can be controlled smoothly by network parameters. The network shifts from asynchronous activity to a regime in which clusters synchronized separately, then, the synchronization between the clusters increases gradually to fully synchronized state. We examine the effects of different synchrony levels on the transmission of information by the network. We find that the regime of intermediate synchronization is preferential for the flow of information between sparsely connected areas. Based on these results, we suggest that the regime of intermediate synchronization corresponds to engaged behavioral state of the animal, while global synchronization is exhibited during relaxed and sleeping states.

  14. Modeling of cortical signals using echo state networks

    Science.gov (United States)

    Zhou, Hanying; Wang, Yongji; Huang, Jiangshuai

    2009-10-01

    Diverse modeling frameworks have been utilized with the ultimate goal of translating brain cortical signals into prediction of visible behavior. The inputs to these models are usually multidimensional neural recordings collected from relevant regions of a monkey's brain while the outputs are the associated behavior which is typically the 2-D or 3-D hand position of a primate. Here our task is to set up a proper model in order to figure out the move trajectories by input the neural signals which are simultaneously collected in the experiment. In this paper, we propose to use Echo State Networks (ESN) to map the neural firing activities into hand positions. ESN is a newly developed recurrent neural network(RNN) model. Besides its dynamic property and short term memory just as other recurrent neural networks have, it has a special echo state property which endows it with the ability to model nonlinear dynamic systems powerfully. What distinguished it from transitional recurrent neural networks most significantly is its special learning method. In this paper we train this net with a refined version of its typical training method and get a better model.

  15. Processing of Feature Selectivity in Cortical Networks with Specific Connectivity.

    Directory of Open Access Journals (Sweden)

    Sadra Sadeh

    Full Text Available Although non-specific at the onset of eye opening, networks in rodent visual cortex attain a non-random structure after eye opening, with a specific bias for connections between neurons of similar preferred orientations. As orientation selectivity is already present at eye opening, it remains unclear how this specificity in network wiring contributes to feature selectivity. Using large-scale inhibition-dominated spiking networks as a model, we show that feature-specific connectivity leads to a linear amplification of feedforward tuning, consistent with recent electrophysiological single-neuron recordings in rodent neocortex. Our results show that optimal amplification is achieved at an intermediate regime of specific connectivity. In this configuration a moderate increase of pairwise correlations is observed, consistent with recent experimental findings. Furthermore, we observed that feature-specific connectivity leads to the emergence of orientation-selective reverberating activity, and entails pattern completion in network responses. Our theoretical analysis provides a mechanistic understanding of subnetworks' responses to visual stimuli, and casts light on the regime of operation of sensory cortices in the presence of specific connectivity.

  16. Order-based representation in random networks of cortical neurons.

    Directory of Open Access Journals (Sweden)

    Goded Shahaf

    2008-11-01

    Full Text Available The wide range of time scales involved in neural excitability and synaptic transmission might lead to ongoing change in the temporal structure of responses to recurring stimulus presentations on a trial-to-trial basis. This is probably the most severe biophysical constraint on putative time-based primitives of stimulus representation in neuronal networks. Here we show that in spontaneously developing large-scale random networks of cortical neurons in vitro the order in which neurons are recruited following each stimulus is a naturally emerging representation primitive that is invariant to significant temporal changes in spike times. With a relatively small number of randomly sampled neurons, the information about stimulus position is fully retrievable from the recruitment order. The effective connectivity that makes order-based representation invariant to time warping is characterized by the existence of stations through which activity is required to pass in order to propagate further into the network. This study uncovers a simple invariant in a noisy biological network in vitro; its applicability under in vivo constraints remains to be seen.

  17. Short-term memory in networks of dissociated cortical neurons.

    Science.gov (United States)

    Dranias, Mark R; Ju, Han; Rajaram, Ezhilarasan; VanDongen, Antonius M J

    2013-01-30

    Short-term memory refers to the ability to store small amounts of stimulus-specific information for a short period of time. It is supported by both fading and hidden memory processes. Fading memory relies on recurrent activity patterns in a neuronal network, whereas hidden memory is encoded using synaptic mechanisms, such as facilitation, which persist even when neurons fall silent. We have used a novel computational and optogenetic approach to investigate whether these same memory processes hypothesized to support pattern recognition and short-term memory in vivo, exist in vitro. Electrophysiological activity was recorded from primary cultures of dissociated rat cortical neurons plated on multielectrode arrays. Cultures were transfected with ChannelRhodopsin-2 and optically stimulated using random dot stimuli. The pattern of neuronal activity resulting from this stimulation was analyzed using classification algorithms that enabled the identification of stimulus-specific memories. Fading memories for different stimuli, encoded in ongoing neural activity, persisted and could be distinguished from each other for as long as 1 s after stimulation was terminated. Hidden memories were detected by altered responses of neurons to additional stimulation, and this effect persisted longer than 1 s. Interestingly, network bursts seem to eliminate hidden memories. These results are similar to those that have been reported from similar experiments in vivo and demonstrate that mechanisms of information processing and short-term memory can be studied using cultured neuronal networks, thereby setting the stage for therapeutic applications using this platform.

  18. Low and High-Frequency Field Potentials of Cortical Networks ...

    Science.gov (United States)

    Neural networks grown on microelectrode arrays (MEAs) have become an important, high content in vitro assay for assessing neuronal function. MEA experiments typically examine high- frequency (HF) (>200 Hz) spikes, and bursts which can be used to discriminate between different pharmacological agents/chemicals. However, normal brain activity is additionally composed of integrated low-frequency (0.5-100 Hz) field potentials (LFPs) which are filtered out of MEA recordings. The objective of this study was to characterize the relationship between HF and LFP neural network signals, and to assess the relative sensitivity of LFPs to selected neurotoxicants. Rat primary cortical cultures were grown on glass, single-well MEA chips. Spontaneous activity was sampled at 25 kHz and recorded (5 min) (Multi-Channel Systems) from mature networks (14 days in vitro). HF (spike, mean firing rate, MFR) and LF (power spectrum, amplitude) components were extracted from each network and served as its baseline (BL). Next, each chip was treated with either 1) a positive control, bicuculline (BIC, 25μM) or domoic acid (DA, 0.3μM), 2) or a negative control, acetaminophen (ACE, 100μM) or glyphosate (GLY, 100μM), 3) a solvent control (H2O or DMSO:EtOH), or 4) a neurotoxicant, (carbaryl, CAR 5, 30μM ; lindane, LIN 1, 10μM; permethrin, PERM 25, 50μM; triadimefon, TRI 5, 65μM). Post treatment, 5 mins of spontaneous activity was recorded and analyzed. As expected posit

  19. Predictors of coupling between structural and functional cortical networks in normal aging.

    Science.gov (United States)

    Romero-Garcia, Rafael; Atienza, Mercedes; Cantero, Jose L

    2014-06-01

    Understanding how the mammalian neocortex creates cognition largely depends on knowledge about large-scale cortical organization. Accumulated evidence has illuminated cortical substrates of cognition across the lifespan, but how topological properties of cortical networks support structure-function relationships in normal aging remains an open question. Here we investigate the role of connections (i.e., short/long and direct/indirect) and node properties (i.e., centrality and modularity) in predicting functional-structural connectivity coupling in healthy elderly subjects. Connectivity networks were derived from correlations of cortical thickness and cortical glucose consumption in resting state. Local-direct connections (i.e., nodes separated by less than 30 mm) and node modularity (i.e., a set of nodes highly interconnected within a topological community and sparsely interconnected with nodes from other modules) in the functional network were identified as the main determinants of coupling between cortical networks, suggesting that the structural network in aging is mainly constrained by functional topological properties involved in the segregation of information, likely due to aging-related deficits in functional integration. This hypothesis is supported by an enhanced connectivity between cortical regions of different resting-state networks involved in sensorimotor and memory functions in detrimental to associations between fronto-parietal regions supporting executive processes. Taken collectively, these findings open new avenues to identify aging-related failures in the anatomo-functional organization of the neocortical mantle, and might contribute to early detection of prevalent neurodegenerative conditions occurring in the late life.

  20. Effective Suppression of Pathological Synchronization in Cortical Networks by Highly Heterogeneous Distribution of Inhibitory Connections

    Science.gov (United States)

    Kada, Hisashi; Teramae, Jun-Nosuke; Tokuda, Isao T.

    2016-01-01

    Even without external random input, cortical networks in vivo sustain asynchronous irregular firing with low firing rate. In addition to detailed balance between excitatory and inhibitory activities, recent theoretical studies have revealed that another feature commonly observed in cortical networks, i.e., long-tailed distribution of excitatory synapses implying coexistence of many weak and a few extremely strong excitatory synapses, plays an essential role in realizing the self-sustained activity in recurrent networks of biologically plausible spiking neurons. The previous studies, however, have not considered highly non-random features of the synaptic connectivity, namely, bidirectional connections between cortical neurons are more common than expected by chance and strengths of synapses are positively correlated between pre- and postsynaptic neurons. The positive correlation of synaptic connections may destabilize asynchronous activity of networks with the long-tailed synaptic distribution and induce pathological synchronized firing among neurons. It remains unclear how the cortical network avoids such pathological synchronization. Here, we demonstrate that introduction of the correlated connections indeed gives rise to synchronized firings in a cortical network model with the long-tailed distribution. By using a simplified feed-forward network model of spiking neurons, we clarify the underlying mechanism of the synchronization. We then show that the synchronization can be efficiently suppressed by highly heterogeneous distribution, typically a lognormal distribution, of inhibitory-to-excitatory connection strengths in a recurrent network model of cortical neurons. PMID:27803659

  1. Cortical network dynamics with time delays reveals functional connectivity in the resting brain.

    NARCIS (Netherlands)

    Ghosh, A.; Rho, Y.; McIntosh, A.R.; Kotter, R.; Jirsa, V.K.

    2008-01-01

    In absence of all goal-directed behavior, a characteristic network of cortical regions involving prefrontal and cingulate cortices consistently shows temporally coherent fluctuations. The origin of these fluctuations is unknown, but has been hypothesized to be of stochastic nature. In the present pa

  2. Neural synchrony in cortical networks: history, concept and current status

    Directory of Open Access Journals (Sweden)

    Peter Uhlhaas

    2009-07-01

    Full Text Available Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies.

  3. Cortical network dysfunction caused by a subtle defect of myelination

    Science.gov (United States)

    Poggi, Giulia; Boretius, Susann; Möbius, Wiebke; Moschny, Nicole; Baudewig, Jürgen; Ruhwedel, Torben; Hassouna, Imam; Wieser, Georg L.; Werner, Hauke B.; Goebbels, Sandra

    2016-01-01

    Subtle white matter abnormalities have emerged as a hallmark of brain alterations in magnetic resonance imaging or upon autopsy of mentally ill subjects. However, it is unknown whether such reduction of white matter and myelin contributes to any disease‐relevant phenotype or simply constitutes an epiphenomenon, possibly even treatment‐related. Here, we have re‐analyzed Mbp heterozygous mice, the unaffected parental strain of shiverer, a classical neurological mutant. Between 2 and 20 months of age, Mbp+/‐ versus Mbp+/+ littermates were deeply phenotyped by combining extensive behavioral/cognitive testing with MRI, 1H‐MR spectroscopy, electron microscopy, and molecular techniques. Surprisingly, Mbp‐dependent myelination was significantly reduced in the prefrontal cortex. We also noticed a mild but progressive hypomyelination of the prefrontal corpus callosum and low‐grade inflammation. While most behavioral functions were preserved, Mbp+/‐ mice exhibited defects of sensorimotor gating, as evidenced by reduced prepulse‐inhibition, and a late‐onset catatonia phenotype. Thus, subtle but primary abnormalities of CNS myelin can be the cause of a persistent cortical network dysfunction including catatonia, features typical of neuropsychiatric conditions. GLIA 2016;64:2025–2040 PMID:27470661

  4. Predicting the connectivity of primate cortical networks from topological and spatial node properties

    Directory of Open Access Journals (Sweden)

    Kaiser Marcus

    2007-03-01

    Full Text Available Abstract Background The organization of the connectivity between mammalian cortical areas has become a major subject of study, because of its important role in scaffolding the macroscopic aspects of animal behavior and intelligence. In this study we present a computational reconstruction approach to the problem of network organization, by considering the topological and spatial features of each area in the primate cerebral cortex as subsidy for the reconstruction of the global cortical network connectivity. Starting with all areas being disconnected, pairs of areas with similar sets of features are linked together, in an attempt to recover the original network structure. Results Inferring primate cortical connectivity from the properties of the nodes, remarkably good reconstructions of the global network organization could be obtained, with the topological features allowing slightly superior accuracy to the spatial ones. Analogous reconstruction attempts for the C. elegans neuronal network resulted in substantially poorer recovery, indicating that cortical area interconnections are relatively stronger related to the considered topological and spatial properties than neuronal projections in the nematode. Conclusion The close relationship between area-based features and global connectivity may hint on developmental rules and constraints for cortical networks. Particularly, differences between the predictions from topological and spatial properties, together with the poorer recovery resulting from spatial properties, indicate that the organization of cortical networks is not entirely determined by spatial constraints.

  5. Convergence and divergence are mostly reciprocated properties of the connections in the network of cortical areas.

    Science.gov (United States)

    Négyessy, László; Nepusz, Tamás; Zalányi, László; Bazsó, Fülöp

    2008-10-22

    Cognition is based on the integrated functioning of hierarchically organized cortical processing streams in a manner yet to be clarified. Because integration fundamentally depends on convergence and the complementary notion of divergence of the neuronal connections, we analysed integration by measuring the degree of convergence/divergence through the connections in the network of cortical areas. By introducing a new index, we explored the complementary convergent and divergent nature of connectional reciprocity and delineated the backward and forward cortical sub-networks for the first time. Integrative properties of the areas defined by the degree of convergence/divergence through their afferents and efferents exhibited distinctive characteristics at different levels of the cortical hierarchy. Areas previously identified as hubs exhibit information bottleneck properties. Cortical networks largely deviate from random graphs where convergence and divergence are balanced at low reciprocity level. In the cortex, which is dominated by reciprocal connections, balance appears only by further increasing the number of reciprocal connections. The results point to the decisive role of the optimal number and placement of reciprocal connections in large-scale cortical integration. Our findings also facilitate understanding of the functional interactions between the cortical areas and the information flow or its equivalents in highly recurrent natural and artificial networks.

  6. Altered brain structural networks in attention deficit/hyperactivity disorder children revealed by cortical thickness.

    Science.gov (United States)

    Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue

    2017-01-18

    This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.

  7. Cortical Network Dynamics of Perceptual Decision-Making in the Human Brain

    Directory of Open Access Journals (Sweden)

    Markus eSiegel

    2011-02-01

    Full Text Available Goal-directed behavior requires the flexible transformation of sensory evidence about our environment into motor actions. Studies of perceptual decision-making have shown that this transformation is distributed across several widely separated brain regions. Yet, little is known about how decision-making emerges from the dynamic interactions among these regions. Here, we review a series of studies, in which we characterized the cortical network interactions underlying a perceptual decision process in the human brain. We used magnetoencephalography (MEG to measure the large-scale cortical population dynamics underlying each of the sub-processes involved in this decision: the encoding of sensory evidence and action plan, the mapping between the two, and the attentional selection of task-relevant evidence. We found that these sub-processes are mediated by neuronal oscillations within specific frequency ranges. Localized gamma-band oscillations in sensory and motor cortices reflect the encoding of the sensory evidence and motor plan. Large-scale oscillations across widespread cortical networks mediate the integrative processes connecting these local networks: Gamma- and beta-band oscillations across frontal, parietal and sensory cortices serve the selection of relevant sensory evidence and its flexible mapping onto action plans. In sum, our results suggest that perceptual decisions are mediated by oscillatory interactions within overlapping local and large-scale cortical networks.

  8. Slow dynamics and high variability in balanced cortical networks with clustered connections.

    Science.gov (United States)

    Litwin-Kumar, Ashok; Doiron, Brent

    2012-11-01

    Anatomical studies demonstrate that excitatory connections in cortex are not uniformly distributed across a network but instead exhibit clustering into groups of highly connected neurons. The implications of clustering for cortical activity are unclear. We studied the effect of clustered excitatory connections on the dynamics of neuronal networks that exhibited high spike time variability owing to a balance between excitation and inhibition. Even modest clustering substantially changed the behavior of these networks, introducing slow dynamics during which clusters of neurons transiently increased or decreased their firing rate. Consequently, neurons exhibited both fast spiking variability and slow firing rate fluctuations. A simplified model shows how stimuli bias networks toward particular activity states, thereby reducing firing rate variability as observed experimentally in many cortical areas. Our model thus relates cortical architecture to the reported variability in spontaneous and evoked spiking activity.

  9. The maturation of cortical sleep rhythms and networks over early development.

    Science.gov (United States)

    Chu, C J; Leahy, J; Pathmanathan, J; Kramer, M A; Cash, S S

    2014-07-01

    Although neuronal activity drives all aspects of cortical development, how human brain rhythms spontaneously mature remains an active area of research. We sought to systematically evaluate the emergence of human brain rhythms and functional cortical networks over early development. We examined cortical rhythms and coupling patterns from birth through adolescence in a large cohort of healthy children (n=384) using scalp electroencephalogram (EEG) in the sleep state. We found that the emergence of brain rhythms follows a stereotyped sequence over early development. In general, higher frequencies increase in prominence with striking regional specificity throughout development. The coordination of these rhythmic activities across brain regions follows a general pattern of maturation in which broadly distributed networks of low-frequency oscillations increase in density while networks of high frequency oscillations become sparser and more highly clustered. Our results indicate that a predictable program directs the development of key rhythmic components and physiological brain networks over early development. This work expands our knowledge of normal cortical development. The stereotyped neurophysiological processes observed at the level of rhythms and networks may provide a scaffolding to support critical periods of cognitive growth. Furthermore, these conserved patterns could provide a sensitive biomarker for cortical health across development. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Targeted enhancement of cortical-hippocampal brain networks and associative memory.

    Science.gov (United States)

    Wang, Jane X; Rogers, Lynn M; Gross, Evan Z; Ryals, Anthony J; Dokucu, Mehmet E; Brandstatt, Kelly L; Hermiller, Molly S; Voss, Joel L

    2014-08-29

    The influential notion that the hippocampus supports associative memory by interacting with functionally distinct and distributed brain regions has not been directly tested in humans. We therefore used targeted noninvasive electromagnetic stimulation to modulate human cortical-hippocampal networks and tested effects of this manipulation on memory. Multiple-session stimulation increased functional connectivity among distributed cortical-hippocampal network regions and concomitantly improved associative memory performance. These alterations involved localized long-term plasticity because increases were highly selective to the targeted brain regions, and enhancements of connectivity and associative memory persisted for ~24 hours after stimulation. Targeted cortical-hippocampal networks can thus be enhanced noninvasively, demonstrating their role in associative memory.

  11. Task-dependent modulation of functional connectivity between hand motor cortices and neuronal networks underlying language and music: a transcranial magnetic stimulation study in humans.

    Science.gov (United States)

    Sparing, R; Meister, I G; Wienemann, M; Buelte, D; Staedtgen, M; Boroojerdi, B

    2007-01-01

    Although language functions are, in general, attributed to the left hemisphere, it is still a matter of debate to what extent the cognitive functions underlying the processing of music are lateralized in the human brain. To investigate hemispheric specialization we evaluated the effect of different overt musical and linguistic tasks on the excitability of both left and right hand motor cortices using transcranial magnetic stimulation (TMS). Task-dependent changes of the size of the TMS-elicited motor evoked potentials were recorded in 12 right-handed, musically naive subjects during and after overt speech, singing and humming, i.e. the production of melody without word articulation. The articulation of meaningless syllables served as control condition. We found reciprocal lateralized effects of overt speech and musical tasks on motor cortex excitability. During overt speech, the corticospinal projection of the left (i.e. dominant) hemisphere to the right hand was facilitated. In contrast, excitability of the right motor cortex increased during both overt singing and humming, whereas no effect was observed on the left hemisphere. Although the traditional concept of hemispheric lateralization of music has been challenged by recent neuroimaging studies, our findings demonstrate that right-hemisphere preponderance of music is nevertheless present. We discuss our results in terms of the recent concepts on evolution of language and gesture, which hypothesize that cerebral networks mediating hand movement and those subserving language processing are functionally linked. TMS may constitute a useful tool to further investigate the relationship between cortical representations of motor functions, music and language using comparative approaches.

  12. Altered resting-state functional connectivity in cortical networks in psychopathy.

    Science.gov (United States)

    Philippi, Carissa L; Pujara, Maia S; Motzkin, Julian C; Newman, Joseph; Kiehl, Kent A; Koenigs, Michael

    2015-04-15

    Psychopathy is a personality disorder characterized by callous antisocial behavior and criminal recidivism. Here we examine whether psychopathy is associated with alterations in functional connectivity in three large-scale cortical networks. Using fMRI in 142 adult male prison inmates, we computed resting-state functional connectivity using seeds from the default mode network, frontoparietal network, and cingulo-opercular network. To determine the specificity of our findings to these cortical networks, we also calculated functional connectivity using seeds from two comparison primary sensory networks: visual and auditory networks. Regression analyses related network connectivity to overall psychopathy scores and to subscores for the "factors" and "facets" of psychopathy: Factor 1, interpersonal/affective traits; Factor 2, lifestyle/antisocial traits; Facet 1, interpersonal; Facet 2, affective; Facet 3, lifestyle; Facet 4, antisocial. Overall psychopathy severity was associated with reduced functional connectivity between lateral parietal cortex and dorsal anterior cingulate cortex. The two factor scores exhibited contrasting relationships with functional connectivity: Factor 1 scores were associated with reduced functional connectivity in the three cortical networks, whereas Factor 2 scores were associated with heightened connectivity in the same networks. This dissociation was evident particularly in the functional connectivity between anterior insula and dorsal anterior cingulate cortex. The facet scores also demonstrated distinct patterns of connectivity. We found no associations between psychopathy scores and functional connectivity within visual or auditory networks. These findings provide novel evidence on the neural correlates of psychopathy and suggest that connectivity between cortical association hubs, such as the dorsal anterior cingulate cortex, may be a neurobiological marker of the disorder.

  13. Graph properties of synchronized cortical networks during visual working memory maintenance.

    Science.gov (United States)

    Palva, Satu; Monto, Simo; Palva, J Matias

    2010-02-15

    Oscillatory synchronization facilitates communication in neuronal networks and is intimately associated with human cognition. Neuronal activity in the human brain can be non-invasively imaged with magneto- (MEG) and electroencephalography (EEG), but the large-scale structure of synchronized cortical networks supporting cognitive processing has remained uncharacterized. We combined simultaneous MEG and EEG (MEEG) recordings with minimum-norm-estimate-based inverse modeling to investigate the structure of oscillatory phase synchronized networks that were active during visual working memory (VWM) maintenance. Inter-areal phase-synchrony was quantified as a function of time and frequency by single-trial phase-difference estimates of cortical patches covering the entire cortical surfaces. The resulting networks were characterized with a number of network metrics that were then compared between delta/theta- (3-6 Hz), alpha- (7-13 Hz), beta- (16-25 Hz), and gamma- (30-80 Hz) frequency bands. We found several salient differences between frequency bands. Alpha- and beta-band networks were more clustered and small-world like but had smaller global efficiency than the networks in the delta/theta and gamma bands. Alpha- and beta-band networks also had truncated-power-law degree distributions and high k-core numbers. The data converge on showing that during the VWM-retention period, human cortical alpha- and beta-band networks have a memory-load dependent, scale-free small-world structure with densely connected core-like structures. These data further show that synchronized dynamic networks underlying a specific cognitive state can exhibit distinct frequency-dependent network structures that could support distinct functional roles.

  14. Tetanic stimulation of cortical networks induces parallel memory

    NARCIS (Netherlands)

    Veenendaal, van Tamar; Witteveen, Tim; Feber, le Joost; Akay, M

    2013-01-01

    The mechanisms behind memory have been studied mainly in artificial neural networks. Several mechanisms have been proposed, but it remains unclear yet if and how these findings can be translated to biological networks. Here we unravel part of the mechanism by showing that cultured neuronal networks

  15. Modulation of Cortical-subcortical Networks in Parkinson’s Disease by Applied Field Effects

    Directory of Open Access Journals (Sweden)

    Christopher William Hess

    2013-09-01

    Full Text Available Studies suggest that endogenous field effects may play a role in neuronal oscillations and communication. Non-invasive transcranial electrical stimulation with low-intensity currents can also have direct effects on the underlying cortex as well as distant network effects. While Parkinson's disease (PD is amenable to invasive neuromodulation in the basal ganglia by deep brain stimulation, techniques of non-invasive neuromodulation like transcranial direct current stimulation (tDCS and transcranial alternating current stimulation (tACS are being investigated as possible therapies. tDCS and tACS have the potential to influence the abnormal cortical-subcortical network activity that occurs in PD through sub-threshold changes in cortical excitability or through entrainment or disruption of ongoing rhythmic cortical activity. This may allow for the targeting of specific features of the disease involving abnormal oscillatory activity, as well as the enhancement of potential cortical compensation for basal ganglia dysfunction and modulation of cortical plasticity in neurorehabilitation. However, little is currently known about how cortical stimulation will affect subcortical structures, the size of any effect, and the factors of stimulation that will influence these effects.

  16. The unimodal distribution of sub-threshold, ongoing activity in cortical networks

    Directory of Open Access Journals (Sweden)

    Anat eYaron-Jakoubovitch

    2013-07-01

    Full Text Available The characterization of the subthreshold, ongoing-activity in cortical neurons has been the focus of numerous studies. This activity, described as spontaneous slow waves in membrane potential, has been observed in a span of species in diverse cortical and subcortical areas. We here characterized membrane potential fluctuations in motor and the frontal association cortices cortical neurons of ketamine-xylazine anesthetized rats. We recorded from 95 neurons from a range of cortical depths to unravel the network and cellular mechanisms that shape the subthreshold ongoing spontaneous activity of these neurons. We define a unitary event that generates the sub-threshold ongoing activity: Giant Synaptic Potentials (GSPs. These events have a duration of 87 ± 50 ms and an amplitude of 19 ± 6.4 mV. They occur at a frequency of 3.7 ± 0.8 Hz and involve an increase in conductance change of 22 ± 21%. GSPs are mainly due to excitatory activity that occurs throughout all cortical layers, unaffected by the intrinsic properties of the cells. Indeed, blocking the GABAA receptors, a procedure that had a profound effect on cortical activity, did not alter these unitary events. We propose that this unitary event is composed of individual, excitatory synaptic potentials that appear at different levels of synchrony and that the level of synchrony determines the shape of the subthreshold activity.

  17. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI.

    Science.gov (United States)

    He, Yong; Chen, Zhang J; Evans, Alan C

    2007-10-01

    An important issue in neuroscience is the characterization for the underlying architectures of complex brain networks. However, little is known about the network of anatomical connections in the human brain. Here, we investigated large-scale anatomical connection patterns of the human cerebral cortex using cortical thickness measurements from magnetic resonance images. Two areas were considered anatomically connected if they showed statistically significant correlations in cortical thickness and we constructed the network of such connections using 124 brains from the International Consortium for Brain Mapping database. Significant short- and long-range connections were found in both intra- and interhemispheric regions, many of which were consistent with known neuroanatomical pathways measured by human diffusion imaging. More importantly, we showed that the human brain anatomical network had robust small-world properties with cohesive neighborhoods and short mean distances between regions that were insensitive to the selection of correlation thresholds. Additionally, we also found that this network and the probability of finding a connection between 2 regions for a given anatomical distance had both exponentially truncated power-law distributions. Our results demonstrated the basic organizational principles for the anatomical network in the human brain compatible with previous functional networks studies, which provides important implications of how functional brain states originate from their structural underpinnings. To our knowledge, this study provides the first report of small-world properties and degree distribution of anatomical networks in the human brain using cortical thickness measurements.

  18. Molecular Correlates of Cortical Network Modulation by Long-Term Sensory Experience in the Adult Rat Barrel Cortex

    Science.gov (United States)

    Vallès, Astrid; Granic, Ivica; De Weerd, Peter; Martens, Gerard J. M.

    2014-01-01

    Modulation of cortical network connectivity is crucial for an adaptive response to experience. In the rat barrel cortex, long-term sensory stimulation induces cortical network modifications and neuronal response changes of which the molecular basis is unknown. Here, we show that long-term somatosensory stimulation by enriched environment…

  19. Reconstitution of cortical actin networks within water-in-oil emulsions.

    Science.gov (United States)

    Abu Shah, Enas; Malik-Garbi, Maya; Keren, Kinneret

    2015-01-01

    We describe the reconstitution of dynamic cortical actin networks within cell-like compartments. The approach is based on encapsulation of Xenopus egg extract within water-in-oil emulsions. The growth of cortical actin networks is catalyzed by an amphiphilic actin nucleation-promoting factor that localizes to the water/oil interface. We first describe the preparation of cell-free Xenopus egg extract that provides all the soluble components of the actin machinery. We then describe the preparation of the amphiphilic, fluorescent actin nucleation-promoting factor that directs actin polymerization to the interface. Finally, we describe the steps required for assembly of dynamic actin cortices within water-in-oil emulsions, including the emulsification process and the sample preparation procedures. We provide recommendations for handling sensitive system components and discuss potential uses of this reconstitution approach for cytoskeletal research. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Holistic atlases of functional networks and interactions reveal reciprocal organizational architecture of cortical function.

    Science.gov (United States)

    Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Zhang, Shu; Zhao, Shijie; Chen, Hanbo; Zhang, Tuo; Hu, Xintao; Han, Junwei; Ye, Jieping; Guo, Lei; Liu, Tianming

    2015-04-01

    For decades, it has been largely unknown to what extent multiple functional networks spatially overlap/interact with each other and jointly realize the total cortical function. Here, by developing novel sparse representation of whole-brain fMRI signals and by using the recently publicly released large-scale Human Connectome Project high-quality fMRI data, we show that a number of reproducible and robust functional networks, including both task-evoked and resting state networks, are simultaneously distributed in distant neuroanatomic areas and substantially spatially overlapping with each other, thus forming an initial collection of holistic atlases of functional networks and interactions (HAFNIs). More interestingly, the HAFNIs revealed two distinct patterns of highly overlapped regions and highly specialized regions and exhibited that these two patterns of areas are reciprocally localized, revealing a novel organizational principle of cortical function.

  1. Cortical Thinning in Network-Associated Regions in Cognitively Normal and Below-Normal Range Schizophrenia

    Science.gov (United States)

    Pinnock, Farena; Parlar, Melissa; Hawco, Colin; Hanford, Lindsay; Hall, Geoffrey B.

    2017-01-01

    This study assessed whether cortical thickness across the brain and regionally in terms of the default mode, salience, and central executive networks differentiates schizophrenia patients and healthy controls with normal range or below-normal range cognitive performance. Cognitive normality was defined using the MATRICS Consensus Cognitive Battery (MCCB) composite score (T = 50 ± 10) and structural magnetic resonance imaging was used to generate cortical thickness data. Whole brain analysis revealed that cognitively normal range controls (n = 39) had greater cortical thickness than both cognitively normal (n = 17) and below-normal range (n = 49) patients. Cognitively normal controls also demonstrated greater thickness than patients in regions associated with the default mode and salience, but not central executive networks. No differences on any thickness measure were found between cognitively normal range and below-normal range controls (n = 24) or between cognitively normal and below-normal range patients. In addition, structural covariance between network regions was high and similar across subgroups. Positive and negative symptom severity did not correlate with thickness values. Cortical thinning across the brain and regionally in relation to the default and salience networks may index shared aspects of the psychotic psychopathology that defines schizophrenia with no relation to cognitive impairment.

  2. Age- and gender-related differences in the cortical anatomical network.

    Science.gov (United States)

    Gong, Gaolang; Rosa-Neto, Pedro; Carbonell, Felix; Chen, Zhang J; He, Yong; Evans, Alan C

    2009-12-16

    Neuroanatomical differences attributable to aging and gender have been well documented, and these differences may be associated with differences in behaviors and cognitive performance. However, little is known about the dynamic organization of anatomical connectivity within the cerebral cortex, which may underlie population differences in brain function. In this study, we investigated age and sex effects on the anatomical connectivity patterns of 95 normal subjects ranging in age from 19 to 85 years. Using the connectivity probability derived from diffusion magnetic resonance imaging tractography, we characterized the cerebral cortex as a weighted network of connected regions. This approach captures the underlying organization of anatomical connectivity for each subject at a regional level. Advanced graph theoretical analysis revealed that the resulting cortical networks exhibited "small-world" character (i.e., efficient information transfer both at local and global scale). In particular, the precuneus and posterior cingulate gyrus were consistently observed as centrally connected regions, independent of age and sex. Additional analysis revealed a reduction in overall cortical connectivity with age. There were also changes in the underlying network organization that resulted in decreased local efficiency, and also a shift of regional efficiency from the parietal and occipital to frontal and temporal neocortex in older brains. In addition, women showed greater overall cortical connectivity and the underlying organization of their cortical networks was more efficient, both locally and globally. There were also distributed regional differences in efficiency between sexes. Our results provide new insights into the substrates that underlie behavioral and cognitive differences in aging and sex.

  3. Characterization of Early Cortical Neural Network Development in Multiwell Microelectrode Array Plates

    Science.gov (United States)

    We examined the development of neural network activity using microelectrode array (MEA) recordings made in multi-well MEA plates (mwMEAs) over the first 12 days in vitro (DIV). In primary cortical cultures made from postnatal rats, action potential spiking activity was essentiall...

  4. Characterization of Early Cortical Neural Network Development in Multiwell Microelectrode Array Plates

    Science.gov (United States)

    We examined the development of neural network activity using microelectrode array (MEA) recordings made in multi-well MEA plates (mwMEAs) over the first 12 days in vitro (DIV). In primary cortical cultures made from postnatal rats, action potential spiking activity was essentiall...

  5. Cortical Thinning in Network-Associated Regions in Cognitively Normal and Below-Normal Range Schizophrenia

    Directory of Open Access Journals (Sweden)

    R. Walter Heinrichs

    2017-01-01

    Full Text Available This study assessed whether cortical thickness across the brain and regionally in terms of the default mode, salience, and central executive networks differentiates schizophrenia patients and healthy controls with normal range or below-normal range cognitive performance. Cognitive normality was defined using the MATRICS Consensus Cognitive Battery (MCCB composite score (T=50 ± 10 and structural magnetic resonance imaging was used to generate cortical thickness data. Whole brain analysis revealed that cognitively normal range controls (n=39 had greater cortical thickness than both cognitively normal (n=17 and below-normal range (n=49 patients. Cognitively normal controls also demonstrated greater thickness than patients in regions associated with the default mode and salience, but not central executive networks. No differences on any thickness measure were found between cognitively normal range and below-normal range controls (n=24 or between cognitively normal and below-normal range patients. In addition, structural covariance between network regions was high and similar across subgroups. Positive and negative symptom severity did not correlate with thickness values. Cortical thinning across the brain and regionally in relation to the default and salience networks may index shared aspects of the psychotic psychopathology that defines schizophrenia with no relation to cognitive impairment.

  6. Frontotemporal dementia and language networks: cortical thickness reduction is driven by dyslexia susceptibility genes

    Science.gov (United States)

    Paternicó, Donata; Manes, Marta; Premi, Enrico; Cosseddu, Maura; Gazzina, Stefano; Alberici, Antonella; Archetti, Silvana; Bonomi, Elisa; Cotelli, Maria Sofia; Cotelli, Maria; Turla, Marinella; Micheli, Anna; Gasparotti, Roberto; Padovani, Alessandro; Borroni, Barbara

    2016-01-01

    Variations within genes associated with dyslexia result in a language network vulnerability, and in patients with Frontotemporal Dementia (FTD), language disturbances represent a disease core feature. Here we explored whether variations within three related-dyslexia genes, namely KIAA0319, DCDC2, and CNTNAP, might affect cortical thickness measures in FTD patients. 112 FTD patients underwent clinical and neuropsychological examination, genetic analyses and brain Magnetic Resonance Imaging (MRI). KIAA0319 rs17243157 G/A, DCDC2 rs793842 A/G and CNTNAP2 rs17236239 A/G genetic variations were assessed. Cortical thickness was analysed by Freesurfer. Patients carrying KIAA0319 A*(AG or AA) carriers showed greater cortical thickness atrophy in the left fusiform and inferior temporal gyri, compared to KIAA0319 GG (p ≤ 0.001). Patients carrying CNTNAP2 G*(GA or GG) showed reduced cortical thickness in the left insula thenCNTNAP2 AA carriers (p≤0.001). When patients with both at-risk polymorphisms were considered (KIAA0319 A* and CNTNAP2 G*), greater and addictive cortical thickness atrophy of the left insula and the inferior temporal gyrus was demonstrated (p ≤ 0.001). No significant effect of DCDC2 was found. In FTD, variations of KIAA0319 and CNTNAP2 genes were related to cortical thickness abnormalities in those brain areas involved in language abilities. These findings shed light on genetic predisposition in defining phenotypic variability in FTD. PMID:27484312

  7. The left inferior fronto-occipital fasciculus subserves language semantics: a multilevel lesion study.

    Science.gov (United States)

    Almairac, Fabien; Herbet, Guillaume; Moritz-Gasser, Sylvie; de Champfleur, Nicolas Menjot; Duffau, Hugues

    2015-07-01

    Consequential works in cognitive neuroscience have led to the formulation of an interactive dual-stream model of language processing: the dorsal stream may process the phonological aspects of language, whereas the ventral stream may process the semantic aspects of language. While it is well-accepted that the dorsal route is subserved by the arcuate fasciculus, the structural connectivity of the semantic ventral stream is a matter of dispute. Here we designed a longitudinal study to gain new insights into this central but controversial question. Thirty-one patients harboring a left diffuse low-grade glioma—a rare neurological condition that infiltrates preferentially white matter associative pathways—were assessed with a prototypical task of language (i.e. verbal fluency) before and after surgery. All were operated under local anesthesia with a cortical and subcortical brain mapping—enabling to identify and preserve eloquent structures for language. We performed voxel-based lesion-symptom (VLSM) analyses on pre- and postoperative behavioral data. Preoperatively, we found a significant relationship between semantic fluency scores and the white matter fibers shaping the ventro-lateral connectivity (P semantic fluency scores and the infiltration volumes in this fasciculus (r = -0.4, P = 0.029). Postoperatively, VLSM analyses were inconclusive. Taken as a whole and when combined with the literature data, our findings strengthen the view that the IFOF plays an essential role in semantic processing and may subserve the direct ventral pathway of language.

  8. Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents.

    Science.gov (United States)

    Navas-Sánchez, Francisco J; Carmona, Susana; Alemán-Gómez, Yasser; Sánchez-González, Javier; Guzmán-de-Villoria, Juan; Franco, Carolina; Robles, Olalla; Arango, Celso; Desco, Manuel

    2016-05-01

    Math-gifted subjects are characterized by above-age performance in intelligence tests, exceptional creativity, and high task commitment. Neuroimaging studies reveal enhanced functional brain organization and white matter microstructure in the frontoparietal executive network of math-gifted individuals. However, the cortical morphometry of these subjects remains largely unknown. The main goal of this study was to compare the cortical morphometry of math-gifted adolescents with that of an age- and IQ-matched control group. We used surface-based methods to perform a vertex-wise analysis of cortical thickness and surface area. Our results show that math-gifted adolescents present a thinner cortex and a larger surface area in key regions of the frontoparietal and default mode networks, which are involved in executive processing and creative thinking, respectively. The combination of reduced cortical thickness and larger surface area suggests above-age neural maturation of these networks in math-gifted individuals. Hum Brain Mapp 37:1893-1902, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. The thalamo-cortical complex network correlates of chronic pain

    Science.gov (United States)

    Zippo, Antonio G.; Valente, Maurizio; Caramenti, Gian Carlo; Biella, Gabriele E. M.

    2016-01-01

    Chronic pain (CP) is a condition with a large repertory of clinical signs and symptoms with diverse expressions. Though widely analyzed, an appraisal at the level of single neuron and neuronal networks in CP is however missing. The present research proposes an empirical and theoretic framework which identifies a complex network correlate nested in the somatosensory thalamocortical (TC) circuit in diverse CP models. In vivo simultaneous extracellular neuronal electrophysiological high-density recordings have been performed from the TC circuit in rats. Wide functional network statistics neatly discriminated CP from control animals identifying collective dynamical traits. In particular, a collapsed functional connectivity and an altered modular architecture of the thalamocortical circuit have been evidenced. These results envisage CP as a functional connectivity disorder and give the clue for unveiling innovative therapeutic strategies. PMID:27734895

  10. Spatiotemporal memory is an intrinsic property of networks of dissociated cortical neurons.

    Science.gov (United States)

    Ju, Han; Dranias, Mark R; Banumurthy, Gokulakrishna; VanDongen, Antonius M J

    2015-03-04

    The ability to process complex spatiotemporal information is a fundamental process underlying the behavior of all higher organisms. However, how the brain processes information in the temporal domain remains incompletely understood. We have explored the spatiotemporal information-processing capability of networks formed from dissociated rat E18 cortical neurons growing in culture. By combining optogenetics with microelectrode array recording, we show that these randomly organized cortical microcircuits are able to process complex spatiotemporal information, allowing the identification of a large number of temporal sequences and classification of musical styles. These experiments uncovered spatiotemporal memory processes lasting several seconds. Neural network simulations indicated that both short-term synaptic plasticity and recurrent connections are required for the emergence of this capability. Interestingly, NMDA receptor function is not a requisite for these short-term spatiotemporal memory processes. Indeed, blocking the NMDA receptor with the antagonist APV significantly improved the temporal processing ability of the networks, by reducing spontaneously occurring network bursts. These highly synchronized events have disastrous effects on spatiotemporal information processing, by transiently erasing short-term memory. These results show that the ability to process and integrate complex spatiotemporal information is an intrinsic property of generic cortical networks that does not require specifically designed circuits. Copyright © 2015 the authors 0270-6474/15/354040-12$15.00/0.

  11. Rational Design of Transcranial Current Stimulation (TCS through Mechanistic Insights into Cortical Network Dynamics

    Directory of Open Access Journals (Sweden)

    Flavio eFrohlich

    2013-11-01

    Full Text Available Transcranial current stimulation (TCS is a promising method of non-invasive brain stimulation to modulate cortical network dynamics. Preliminary studies have demonstrated the ability of TCS to enhance cognition and reduce symptoms in both neurological and psychiatric illnesses. Despite the encouraging results of these studies, the mechanisms by which TCS and endogenous network dynamics interact remain poorly understood. Here, we propose that the development of the next generation of TCS paradigms with increased efficacy requires such mechanistic understanding of how weak electric fields imposed by TCS interact with the nonlinear dynamics of large-scale cortical networks. We highlight key recent advances in the study of the interaction dynamics between TCS and cortical network activity. In particular, we demonstrate the opportunities provided by an interdisciplinary approach that bridges neurobiology and electrical engineering. We discuss the use of (1 hybrid biological-electronic experimental approaches to disentangle feedback interactions, (2 large-scale computer simulations for the study of weak global perturbations imposed by TCS, and (3 optogenetic manipulations informed by dynamics systems theory to probe network dynamics. Together, we here provide the foundation for the use of rational design for the development of the next generation of TCS neurotherapeutics.

  12. Relations between the geometry of cortical gyrification and white-matter network architecture.

    Science.gov (United States)

    Henderson, James A; Robinson, Peter A

    2014-03-01

    A geometrically based network model of cortico-cortical white-matter connectivity is used in combination with diffusion spectrum MRI (DSI) data to show that white-matter cortical network architecture is founded on a homogeneous, isotropic geometric connection principle. No other special information about single connections or groups of connections is required to generate networks very similar to experimental ones. This model provides excellent agreement with experimental DSI frequency distributions of network measures-degree, clustering coefficient, path length, and betweenness centrality. In the model, these distributions are a result of geometrically induced spatial variations in the values of these measures with deep nodes having more hublike properties than superficial nodes. This leads to experimentally testable predictions of corresponding variations in real cortexes. The convoluted geometry of the cortex is also found to introduce weak modularity, similar to the lobe structure of the cortex, with the boundaries between modules having hublike properties. These findings mean that some putative discoveries regarding the structure of white-matter cortical networks are simply artifacts and/or consequences of geometry. This model may help provide insight into diseases associated with differences in gyrification as well as evolutionary development of the cortex.

  13. Cortical EEG oscillations and network connectivity as efficacy indices for assessing drugs with cognition enhancing potential.

    Science.gov (United States)

    Ahnaou, A; Huysmans, H; Jacobs, T; Drinkenburg, W H I M

    2014-11-01

    Synchronization of electroencephalographic (EEG) oscillations represents a core mechanism for cortical and subcortical networks, and disturbance in neural synchrony underlies cognitive processing deficits in neurological and neuropsychiatric disorders. Here, we investigated the effects of cognition enhancers (donepezil, rivastigmine, tacrine, galantamine and memantine), which are approved for symptomatic treatment of dementia, on EEG oscillations and network connectivity in conscious rats chronically instrumented with epidural electrodes in different cortical areas. Next, EEG network indices of cognitive impairments with the muscarinic receptor antagonist scopolamine were modeled. Lastly, we examined the efficacy of cognition enhancers to normalize those aberrant oscillations. Cognition enhancers elicited systematic ("fingerprint") enhancement of cortical slow theta (4.5-6 Hz) and gamma (30.5-50 Hz) oscillations correlated with lower activity levels. Principal component analysis (PCA) revealed a compact cluster that corresponds to shared underlying mechanisms as compared to different drug classes. Functional network connectivity revealed consistent elevated coherent slow theta activity in parieto-occipital and between interhemispheric cortical areas. In rats instrumented with depth hippocampal CA1-CA3 electrodes, donepezil elicited similar oscillatory and coherent activities in cortico-hippocampal networks. When combined with scopolamine, the cognition enhancers attenuated the leftward shift in coherent slow delta activity. Such a consistent shift in EEG coherence into slow oscillations associated with altered slow theta and gamma oscillations may underlie cognitive deficits in scopolamine-treated animals, whereas enhanced coherent slow theta and gamma activity may be a relevant mechanism by which cognition enhancers exert their beneficial effect on plasticity and cognitive processes. The findings underscore that PCA and network connectivity are valuable tools to

  14. The causal inference of cortical neural networks during music improvisations.

    Science.gov (United States)

    Wan, Xiaogeng; Crüts, Björn; Jensen, Henrik Jeldtoft

    2014-01-01

    We present an EEG study of two music improvisation experiments. Professional musicians with high level of improvisation skills were asked to perform music either according to notes (composed music) or in improvisation. Each piece of music was performed in two different modes: strict mode and "let-go" mode. Synchronized EEG data was measured from both musicians and listeners. We used one of the most reliable causality measures: conditional Mutual Information from Mixed Embedding (MIME), to analyze directed correlations between different EEG channels, which was combined with network theory to construct both intra-brain and cross-brain networks. Differences were identified in intra-brain neural networks between composed music and improvisation and between strict mode and "let-go" mode. Particular brain regions such as frontal, parietal and temporal regions were found to play a key role in differentiating the brain activities between different playing conditions. By comparing the level of degree centralities in intra-brain neural networks, we found a difference between the response of musicians and the listeners when comparing the different playing conditions.

  15. The causal inference of cortical neural networks during music improvisations.

    Directory of Open Access Journals (Sweden)

    Xiaogeng Wan

    Full Text Available We present an EEG study of two music improvisation experiments. Professional musicians with high level of improvisation skills were asked to perform music either according to notes (composed music or in improvisation. Each piece of music was performed in two different modes: strict mode and "let-go" mode. Synchronized EEG data was measured from both musicians and listeners. We used one of the most reliable causality measures: conditional Mutual Information from Mixed Embedding (MIME, to analyze directed correlations between different EEG channels, which was combined with network theory to construct both intra-brain and cross-brain networks. Differences were identified in intra-brain neural networks between composed music and improvisation and between strict mode and "let-go" mode. Particular brain regions such as frontal, parietal and temporal regions were found to play a key role in differentiating the brain activities between different playing conditions. By comparing the level of degree centralities in intra-brain neural networks, we found a difference between the response of musicians and the listeners when comparing the different playing conditions.

  16. High-conductance states in a mean-field cortical network model

    DEFF Research Database (Denmark)

    Lerchner, Alexander; Ahmadi, Mandana; Hertz, John

    2004-01-01

    cortical network model with random connectivity and conductance-based synapses. We employ mean-field theory with correctly colored noise to describe temporal correlations in the neuronal activity. Our results illuminate the connection between two independent experimental findings: high-conductance states......Measured responses from visual cortical neurons show that spike times tend to be correlated rather than exactly Poisson distributed. Fano factors vary and are usually greater than 1, indicating a tendency toward spikes being clustered. We show that this behavior emerges naturally in a balanced...... of cortical neurons in their natural environment, and variable non-Poissonian spike statistics with Fano factors greater than 1. (C) 2004 Elsevier B.V. All rights reserved....

  17. The Impact of Structural Heterogeneity on Excitation-Inhibition Balance in Cortical Networks.

    Science.gov (United States)

    Landau, Itamar D; Egger, Robert; Dercksen, Vincent J; Oberlaender, Marcel; Sompolinsky, Haim

    2016-12-07

    Models of cortical dynamics often assume a homogeneous connectivity structure. However, we show that heterogeneous input connectivity can prevent the dynamic balance between excitation and inhibition, a hallmark of cortical dynamics, and yield unrealistically sparse and temporally regular firing. Anatomically based estimates of the connectivity of layer 4 (L4) rat barrel cortex and numerical simulations of this circuit indicate that the local network possesses substantial heterogeneity in input connectivity, sufficient to disrupt excitation-inhibition balance. We show that homeostatic plasticity in inhibitory synapses can align the functional connectivity to compensate for structural heterogeneity. Alternatively, spike-frequency adaptation can give rise to a novel state in which local firing rates adjust dynamically so that adaptation currents and synaptic inputs are balanced. This theory is supported by simulations of L4 barrel cortex during spontaneous and stimulus-evoked conditions. Our study shows how synaptic and cellular mechanisms yield fluctuation-driven dynamics despite structural heterogeneity in cortical circuits.

  18. Beyond Scale-Free Small-World Networks: Cortical Columns for Quick Brains

    Science.gov (United States)

    Stoop, Ralph; Saase, Victor; Wagner, Clemens; Stoop, Britta; Stoop, Ruedi

    2013-03-01

    We study to what extent cortical columns with their particular wiring boost neural computation. Upon a vast survey of columnar networks performing various real-world cognitive tasks, we detect no signs of enhancement. It is on a mesoscopic—intercolumnar—scale that the existence of columns, largely irrespective of their inner organization, enhances the speed of information transfer and minimizes the total wiring length required to bind distributed columnar computations towards spatiotemporally coherent results. We suggest that brain efficiency may be related to a doubly fractal connectivity law, resulting in networks with efficiency properties beyond those by scale-free networks.

  19. Cultured networks of excitatory projection neurons and inhibitory interneurons for studying human cortical neurotoxicity.

    Science.gov (United States)

    Xu, Jin-Chong; Fan, Jing; Wang, Xueqing; Eacker, Stephen M; Kam, Tae-In; Chen, Li; Yin, Xiling; Zhu, Juehua; Chi, Zhikai; Jiang, Haisong; Chen, Rong; Dawson, Ted M; Dawson, Valina L

    2016-04-06

    Translating neuroprotective treatments from discovery in cell and animal models to the clinic has proven challenging. To reduce the gap between basic studies of neurotoxicity and neuroprotection and clinically relevant therapies, we developed a human cortical neuron culture system from human embryonic stem cells or human inducible pluripotent stem cells that generated both excitatory and inhibitory neuronal networks resembling the composition of the human cortex. This methodology used timed administration of retinoic acid to FOXG1(+) neural precursor cells leading to differentiation of neuronal populations representative of the six cortical layers with both excitatory and inhibitory neuronal networks that were functional and homeostatically stable. In human cortical neuronal cultures, excitotoxicity or ischemia due to oxygen and glucose deprivation led to cell death that was dependent on N-methyl-D-aspartate (NMDA) receptors, nitric oxide (NO), and poly(ADP-ribose) polymerase (PARP) (a cell death pathway called parthanatos that is distinct from apoptosis, necroptosis, and other forms of cell death). Neuronal cell death was attenuated by PARP inhibitors that are currently in clinical trials for cancer treatment. This culture system provides a new platform for the study of human cortical neurotoxicity and suggests that PARP inhibitors may be useful for ameliorating excitotoxic and ischemic cell death in human neurons.

  20. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates.

    Science.gov (United States)

    Laramée, Marie-Eve; Boire, Denis

    2014-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.

  1. The Cortical Network for Braille Writing in the Blind.

    Science.gov (United States)

    Likova, Lora T; Tyler, Christopher W; Cacciamani, Laura; Mineff, Kristyo; Nicholas, Spero

    2016-01-01

    Fundamental forms of high-order cognition, such as reading and writing, are usually studied in the context of one modality - vision. People without sight, however, use the kinesthetic-based Braille writing, and haptic-based Braille reading. We asked whether the cognitive and motor control mechanisms underlying writing and reading are modality-specific or supramodal. While a number of previous functional Magnetic Resonance Imaging (fMRI) studies have investigated the brain network for Braille reading in the blind, such studies on Braille writing are lacking. Consequently, no comparative network analysis of Braille writing vs. reading exists. Here, we report the first study of Braille writing, and a comparison of the brain organization for Braille writing vs Braille reading. FMRI was conducted in a Siemens 3T Trio scanner. Our custom MRI-compatible drawing/writing lectern was further modified to provide for Braille reading and writing. Each of five paragraphs of novel Braille text describing objects, faces and navigation sequences was read, then reproduced twice by Braille writing from memory, then read a second time. During Braille reading, the haptic-sensing of the Braille letters strongly activated not only the early visual area V1 and V2, but some highly specialized areas, such as the classical visual grapheme area and the Exner motor grapheme area. Braille-writing-from-memory, engaged a significantly more extensive network in dorsal motor, somatosensory/kinesthetic, dorsal parietal and prefrontal cortex. However, in contrast to the largely extended V1 activation in drawing-from-memory in the blind after training (Likova, 2012), Braille writing from memory generated focal activation restricted to the most foveal part of V1, presumably reflecting topographically the focal demands of such a "pin-pricking" task.

  2. Characterization of Cortical Networks and Corticocortical Functional Connectivity Mediating Arbitrary Visuomotor Mapping.

    Science.gov (United States)

    Brovelli, Andrea; Chicharro, Daniel; Badier, Jean-Michel; Wang, Huifang; Jirsa, Viktor

    2015-09-16

    Adaptive behaviors are built on the arbitrary linkage of sensory inputs to actions and goals. Although the sensorimotor and associative frontostriatal circuits are known to mediate arbitrary visuomotor mappings, the underlying corticocortico dynamics remain elusive. Here, we take a novel approach exploiting gamma-band neural activity to study the human cortical networks and corticocortical functional connectivity mediating arbitrary visuomotor mapping. Single-trial gamma-power time courses were estimated for all Brodmann areas by combing magnetoencephalographic and MRI data with spectral analysis and beam-forming techniques. Linear correlation and Granger causality analyses were performed to investigate functional connectivity between cortical regions. The performance of visuomotor associations was characterized by an increase in gamma-power and functional connectivity over the sensorimotor and frontoparietal network, in addition to medial prefrontal areas. The superior parietal area played a driving role in the network, exerting Granger causality on the dorsal premotor area. Premotor areas acted as relay from parietal to medial prefrontal cortices, which played a receiving role in the network. Link community analysis further revealed that visuomotor mappings reflect the coordination of multiple subnetworks with strong overlap over motor and frontoparietal areas. We put forward an associative account of the underlying cognitive processes and corticocortical functional connectivity. Overall, our approach and results provide novel perspectives toward a better understanding of how distributed brain activity coordinates adaptive behaviors. In everyday life, most of our behaviors are based on the arbitrary linkage of sensory information to actions and goals, such as stopping at a red traffic light. Despite their automaticity, such behaviors rely on the activity of a large brain network and elusive interareal functional connectivity. We take a novel approach exploiting

  3. Math anxiety: Brain cortical network changes in anticipation of doing mathematics.

    Science.gov (United States)

    Klados, Manousos A; Pandria, Niki; Micheloyannis, Sifis; Margulies, Daniel; Bamidis, Panagiotis D

    2017-05-05

    Following our previous work regarding the involvement of math anxiety (MA) in math-oriented tasks, this study tries to explore the differences in the cerebral networks' topology between self-reported low math-anxious (LMA) and high math-anxious (HMA) individuals, during the anticipation phase prior to a mathematical related experiment. For this reason, multichannel EEG recordings were adopted, while the solution of the inverse problem was applied in a generic head model, in order to obtain the cortical signals. The cortical networks have been computed for each band separately, using the magnitude square coherence metric. The main graph theoretical parameters, showed differences in segregation and integration in almost all EEG bands of the HMAs in comparison to LMAs, indicative of a great influence of the anticipatory anxiety prior to mathematical performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Dismissing Attachment Characteristics Dynamically Modulate Brain Networks Subserving Social Aversion

    NARCIS (Netherlands)

    Krause, Anna Linda; Borchardt, Viola; Li, Meng; van Tol, Marie-José; Demenescu, L.R.; Strauss, Bernhard; Kirchmann, Helmut; Buchheim, Anna; Metzger, Coraline D; Nolte, Tobias; Walter, Martin

    2016-01-01

    Attachment patterns influence actions, thoughts and feeling through a person's "inner working model". Speech charged with attachment-dependent content was proposed to modulate the activation of cognitive-emotional schemata in listeners. We performed a 7 Tesla rest-task-rest functional magnetic reson

  5. Cross-correlations in high-conductance states of a model cortical network

    DEFF Research Database (Denmark)

    Hertz, John

    2010-01-01

    (dansk abstrakt findes ikke) Neuronal firing correlations are studied using simulations of a simple network model for a cortical column in a high-conductance state with dynamically balanced excitation and inhibition.  Although correlations between individual pairs of neurons exhibit considerable...... heterogeneity, population averages show systematic behavior. When the network is in a stationary state, the average correlations are generically small: correlation coefficients are of order 1/N, where N is the number of neurons in the network. However, when the input to the network varies strongly in time, much...... larger values are found. In this situation, the network is out of balance, and the synaptic conductance is low, at times when the strongest firing occurs.  However, examination of the correlation functions of synaptic currents reveals that after these bursts, balance is restored within a few ms...

  6. Mathematically gifted adolescents mobilize enhanced workspace configuration of theta cortical network during deductive reasoning.

    Science.gov (United States)

    Zhang, L; Gan, J Q; Wang, H

    2015-03-19

    Previous studies have established the importance of the fronto-parietal brain network in the information processing of reasoning. At the level of cortical source analysis, this eletroencepalogram (EEG) study investigates the functional reorganization of the theta-band (4-8Hz) neurocognitive network of mathematically gifted adolescents during deductive reasoning. Depending on the dense increase of long-range phase synchronizations in the reasoning process, math-gifted adolescents show more significant adaptive reorganization and enhanced "workspace" configuration in the theta network as compared with average-ability control subjects. The salient areas are mainly located in the anterior cortical vertices of the fronto-parietal network. Further correlation analyses have shown that the enhanced workspace configuration with respect to the global topological metrics of the theta network in math-gifted subjects is correlated with the intensive frontal midline theta (fm theta) response that is related to strong neural effort for cognitive events. These results suggest that by investing more cognitive resources math-gifted adolescents temporally mobilize an enhanced task-related global neuronal workspace, which is manifested as a highly integrated fronto-parietal information processing network during the reasoning process.

  7. Altered modular organization of structural cortical networks in children with autism.

    Directory of Open Access Journals (Sweden)

    Feng Shi

    Full Text Available Autism is a complex developmental disability that characterized by deficits in social interaction, language skills, repetitive stereotyped behaviors and restricted interests. Although great heterogeneity exists, previous findings suggest that autism has atypical brain connectivity patterns and disrupted small-world network properties. However, the organizational alterations in the autistic brain network are still poorly understood. We explored possible organizational alterations of 49 autistic children and 51 typically developing controls, by investigating their brain network metrics that are constructed upon cortical thickness correlations. Three modules were identified in controls, including cortical regions associated with brain functions of executive strategic, spatial/auditory/visual, and self-reference/episodic memory. There are also three modules found in autistic children with similar patterns. Compared with controls, autism demonstrates significantly reduced gross network modularity, and a larger number of inter-module connections. However, the autistic brain network demonstrates increased intra- and inter-module connectivity in brain regions including middle frontal gyrus, inferior parietal gyrus, and cingulate, suggesting one underlying compensatory mechanism associated with brain functions of self-reference and episodic memory. Results also show that there is increased correlation strength between regions inside frontal lobe, as well as impaired correlation strength between frontotemporal and frontoparietal regions. This alteration of correlation strength may contribute to the organization alteration of network structures in autistic brains.

  8. Cortical Network Models of Firing Rates in the Resting and Active States Predict BOLD Responses.

    Directory of Open Access Journals (Sweden)

    Maxwell R Bennett

    Full Text Available Measurements of blood oxygenation level dependent (BOLD signals have produced some surprising observations. One is that their amplitude is proportional to the entire activity in a region of interest and not just the fluctuations in this activity. Another is that during sleep and anesthesia the average BOLD correlations between regions of interest decline as the activity declines. Mechanistic explanations of these phenomena are described here using a cortical network model consisting of modules with excitatory and inhibitory neurons, taken as regions of cortical interest, each receiving excitatory inputs from outside the network, taken as subcortical driving inputs in addition to extrinsic (intermodular connections, such as provided by associational fibers. The model shows that the standard deviation of the firing rate is proportional to the mean frequency of the firing when the extrinsic connections are decreased, so that the mean BOLD signal is proportional to both as is observed experimentally. The model also shows that if these extrinsic connections are decreased or the frequency of firing reaching the network from the subcortical driving inputs is decreased, or both decline, there is a decrease in the mean firing rate in the modules accompanied by decreases in the mean BOLD correlations between the modules, consistent with the observed changes during NREM sleep and under anesthesia. Finally, the model explains why a transient increase in the BOLD signal in a cortical area, due to a transient subcortical input, gives rises to responses throughout the cortex as observed, with these responses mediated by the extrinsic (intermodular connections.

  9. Increased cortical thickness in a frontoparietal network in social anxiety disorder.

    Science.gov (United States)

    Brühl, Annette Beatrix; Hänggi, Jürgen; Baur, Volker; Rufer, Michael; Delsignore, Aba; Weidt, Steffi; Jäncke, Lutz; Herwig, Uwe

    2014-07-01

    Social anxiety disorder (SAD) is the second leading anxiety disorder. On the functional neurobiological level, specific brain regions involved in the processing of anxiety-laden stimuli and in emotion regulation have been shown to be hyperactive and hyper-responsive in SAD such as amygdala, insula and orbito- and prefrontal cortex. On the level of brain structure, prior studies on anatomical differences in SAD resulted in mixed and partially contradictory findings. Based on previous functional and anatomical models of SAD, this study examined cortical thickness in structural magnetic resonance imaging data of 46 patients with SAD without comorbidities (except for depressed episode in one patient) compared with 46 matched healthy controls in a region of interest-analysis and in whole-brain. In a theory-driven ROI-analysis, cortical thickness was increased in SAD in left insula, right anterior cingulate and right temporal pole. Furthermore, the whole-brain analysis revealed increased thickness in right dorsolateral prefrontal and right parietal cortex. This study detected no regions of decreased cortical thickness or brain volume in SAD. From the perspective of brain networks, these findings are in line with prior functional differences in salience networks and frontoparietal networks associated with executive-controlling and attentional functions.

  10. Cortical Network Models of Firing Rates in the Resting and Active States Predict BOLD Responses.

    Science.gov (United States)

    Bennett, Maxwell R; Farnell, Les; Gibson, William G; Lagopoulos, Jim

    2015-01-01

    Measurements of blood oxygenation level dependent (BOLD) signals have produced some surprising observations. One is that their amplitude is proportional to the entire activity in a region of interest and not just the fluctuations in this activity. Another is that during sleep and anesthesia the average BOLD correlations between regions of interest decline as the activity declines. Mechanistic explanations of these phenomena are described here using a cortical network model consisting of modules with excitatory and inhibitory neurons, taken as regions of cortical interest, each receiving excitatory inputs from outside the network, taken as subcortical driving inputs in addition to extrinsic (intermodular) connections, such as provided by associational fibers. The model shows that the standard deviation of the firing rate is proportional to the mean frequency of the firing when the extrinsic connections are decreased, so that the mean BOLD signal is proportional to both as is observed experimentally. The model also shows that if these extrinsic connections are decreased or the frequency of firing reaching the network from the subcortical driving inputs is decreased, or both decline, there is a decrease in the mean firing rate in the modules accompanied by decreases in the mean BOLD correlations between the modules, consistent with the observed changes during NREM sleep and under anesthesia. Finally, the model explains why a transient increase in the BOLD signal in a cortical area, due to a transient subcortical input, gives rises to responses throughout the cortex as observed, with these responses mediated by the extrinsic (intermodular) connections.

  11. Cortical spiking network interfaced with virtual musculoskeletal arm and robotic arm

    Directory of Open Access Journals (Sweden)

    Salvador eDura-Bernal

    2015-11-01

    Full Text Available Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm.This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuro-prosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility

  12. Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm.

    Science.gov (United States)

    Dura-Bernal, Salvador; Zhou, Xianlian; Neymotin, Samuel A; Przekwas, Andrzej; Francis, Joseph T; Lytton, William W

    2015-01-01

    Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of

  13. Bayesian network classifiers for categorizing cortical GABAergic interneurons.

    Science.gov (United States)

    Mihaljević, Bojan; Benavides-Piccione, Ruth; Bielza, Concha; DeFelipe, Javier; Larrañaga, Pedro

    2015-04-01

    An accepted classification of GABAergic interneurons of the cerebral cortex is a major goal in neuroscience. A recently proposed taxonomy based on patterns of axonal arborization promises to be a pragmatic method for achieving this goal. It involves characterizing interneurons according to five axonal arborization features, called F1-F5, and classifying them into a set of predefined types, most of which are established in the literature. Unfortunately, there is little consensus among expert neuroscientists regarding the morphological definitions of some of the proposed types. While supervised classifiers were able to categorize the interneurons in accordance with experts' assignments, their accuracy was limited because they were trained with disputed labels. Thus, here we automatically classify interneuron subsets with different label reliability thresholds (i.e., such that every cell's label is backed by at least a certain (threshold) number of experts). We quantify the cells with parameters of axonal and dendritic morphologies and, in order to predict the type, also with axonal features F1-F4 provided by the experts. Using Bayesian network classifiers, we accurately characterize and classify the interneurons and identify useful predictor variables. In particular, we discriminate among reliable examples of common basket, horse-tail, large basket, and Martinotti cells with up to 89.52% accuracy, and single out the number of branches at 180 μm from the soma, the convex hull 2D area, and the axonal features F1-F4 as especially useful predictors for distinguishing among these types. These results open up new possibilities for an objective and pragmatic classification of interneurons.

  14. The Age of Cortical Neural Networks Affects Their Interactions with Magnetic Nanoparticles.

    Science.gov (United States)

    Tay, Andy; Kunze, Anja; Jun, Dukwoo; Hoek, Eric; Di Carlo, Dino

    2016-07-01

    Despite increasing use of nanotechnology in neuroscience, the characterization of interactions between magnetic nanoparticles (MNPs) and primary cortical neural networks remains underdeveloped. In particular, how the age of primary neural networks affects MNP uptake and endocytosis is critical when considering MNP-based therapies for age-related diseases. Here, primary cortical neural networks are cultured up to 4 weeks and with CCL11/eotaxin, an age-inducing chemokine, to create aged neural networks. As the neural networks are aged, their association with membrane-bound starch-coated ferromagnetic nanoparticles (fMNPs) increases while their endocytic mechanisms are impaired, resulting in reduced internalization of chitosan-coated fMNPs. The age of the neurons also negates the neuroprotective effects of chitosan coatings on fMNPs, attributing to decreased intracellular trafficking and increased colocalization of MNPs with lysosomes. These findings demonstrate the importance of age and developmental stage of primary neural cells when developing in vitro models for fMNP therapeutics targeting age-related diseases.

  15. Increased cortical-limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Peng Fang

    Full Text Available Magnetic resonance imaging studies have reported significant functional and structural differences between depressed patients and controls. Little attention has been given, however, to the abnormalities in anatomical connectivity in depressed patients. In the present study, we aim to investigate the alterations in connectivity of whole-brain anatomical networks in those suffering from major depression by using machine learning approaches. Brain anatomical networks were extracted from diffusion magnetic resonance images obtained from both 22 first-episode, treatment-naive adults with major depressive disorder and 26 matched healthy controls. Using machine learning approaches, we differentiated depressed patients from healthy controls based on their whole-brain anatomical connectivity patterns and identified the most discriminating features that represent between-group differences. Classification results showed that 91.7% (patients=86.4%, controls=96.2%; permutation test, p<0.0001 of subjects were correctly classified via leave-one-out cross-validation. Moreover, the strengths of all the most discriminating connections were increased in depressed patients relative to the controls, and these connections were primarily located within the cortical-limbic network, especially the frontal-limbic network. These results not only provide initial steps toward the development of neurobiological diagnostic markers for major depressive disorder, but also suggest that abnormal cortical-limbic anatomical networks may contribute to the anatomical basis of emotional dysregulation and cognitive impairments associated with this disease.

  16. Activity Changes Induced by Spatio-Temporally Correlated Stimuli in Cultured Cortical Networks

    Science.gov (United States)

    Takayama, Yuzo; Moriguchi, Hiroyuki; Jimbo, Yasuhiko

    Activity-dependent plasticity probably plays a key role in learning and memory in biological information processing systems. Though long-term potentiation and depression have been extensively studied in the filed of neuroscience, little is known on the mechanisms for integrating these modifications on network-wide activity changes. In this report, we studied effects of spatio-temporally correlated stimuli on the neuronal network activity. Rat cortical neurons were cultured on substrates with 64 embedded micro-electrodes and the evoked responses were extracellularly recorded and analyzed. We compared spatio-temporal patterns of the responses between before and after repetitive application of correlated stimuli. After the correlated stimuli, the networks showed significantly different responses from those in the initial states. The modified activity reflected structures of the repeatedly applied correlated stimuli. The results suggested that spatiotemporally correlated inputs systematically induced modification of synaptic strengths in neuronal networks, which could serve as an underlying mechanism of associative memory.

  17. Self-organized criticality in cortical assemblies occurs in concurrent scale-free and small-world networks.

    Science.gov (United States)

    Massobrio, Paolo; Pasquale, Valentina; Martinoia, Sergio

    2015-06-01

    The spontaneous activity of cortical networks is characterized by the emergence of different dynamic states. Although several attempts were accomplished to understand the origin of these dynamics, the underlying factors continue to be elusive. In this work, we specifically investigated the interplay between network topology and spontaneous dynamics within the framework of self-organized criticality (SOC). The obtained results support the hypothesis that the emergence of critical states occurs in specific complex network topologies. By combining multi-electrode recordings of spontaneous activity of in vitro cortical assemblies with theoretical models, we demonstrate that different 'connectivity rules' drive the network towards different dynamic states. In particular, scale-free architectures with different degree of small-worldness account better for the variability observed in experimental data, giving rise to different dynamic states. Moreover, in relationship with the balance between excitation and inhibition and percentage of inhibitory hubs, the simulated cortical networks fall in a critical regime.

  18. A GPU-accelerated cortical neural network model for visually guided robot navigation.

    Science.gov (United States)

    Beyeler, Michael; Oros, Nicolas; Dutt, Nikil; Krichmar, Jeffrey L

    2015-12-01

    Humans and other terrestrial animals use vision to traverse novel cluttered environments with apparent ease. On one hand, although much is known about the behavioral dynamics of steering in humans, it remains unclear how relevant perceptual variables might be represented in the brain. On the other hand, although a wealth of data exists about the neural circuitry that is concerned with the perception of self-motion variables such as the current direction of travel, little research has been devoted to investigating how this neural circuitry may relate to active steering control. Here we present a cortical neural network model for visually guided navigation that has been embodied on a physical robot exploring a real-world environment. The model includes a rate based motion energy model for area V1, and a spiking neural network model for cortical area MT. The model generates a cortical representation of optic flow, determines the position of objects based on motion discontinuities, and combines these signals with the representation of a goal location to produce motor commands that successfully steer the robot around obstacles toward the goal. The model produces robot trajectories that closely match human behavioral data. This study demonstrates how neural signals in a model of cortical area MT might provide sufficient motion information to steer a physical robot on human-like paths around obstacles in a real-world environment, and exemplifies the importance of embodiment, as behavior is deeply coupled not only with the underlying model of brain function, but also with the anatomical constraints of the physical body it controls.

  19. Early magnetic resonance detection of cortical necrosis and acute network injury associated with neonatal and infantile cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Okabe, Tetsuhiko; Aida, Noriko; Nozawa, Kumiko [Kanagawa Children' s Medical Center, Department of Radiology, Yokohama (Japan); Niwa, Tetsu [Kanagawa Children' s Medical Center, Department of Radiology, Yokohama (Japan); Tokai University School of Medicine, Department of Radiology, Isehara (Japan); Shibasaki, Jun [Kanagawa Children' s Medical Center, Department of Neonatology, Yokohama (Japan); Osaka, Hitoshi [Kanagawa Children' s Medical Center, Department of Neurology, Yokohama (Japan)

    2014-05-15

    Knowledge of MRI findings in pediatric cerebral infarction is limited. To determine whether cortical necrosis and network injury appear in the acute phase in post-stroke children and to identify anatomical location of acute network injury and the ages at which these phenomena are seen. Images from 12 children (age range: 0-9 years; neonates [<1 month], n=5; infants [1 month-12 months], n=3; others [≥1 year], n=4) with acute middle cerebral artery (MCA) cortical infarction were retrospectively analyzed. Cortical necrosis was defined as hyperintense cortical lesions on T1-weighted imaging that lacked evidence of hemorrhage. Acute network injury was defined as hyperintense lesions on diffusion-weighted imaging that were not in the MCA territory and had fiber connections with the affected cerebral cortex. MRI was performed within the first week after disease onset. Cortical necrosis was only found in three neonates. Acute network injury was seen in the corticospinal tract (CST), thalamus and corpus callosum. Acute network injury along the CST was found in five neonates and one 7-month-old infant. Acute network injury was evident in the thalamus of four neonates and two infants (ages 4 and 7 months) and in the corpus callosum of five neonates and two infants (ages 4 and 7 months). The entire thalamus was involved in three children when infarction of MCA was complete. In acute MCA cortical infarction, MRI findings indicating cortical necrosis or acute network injury was frequently found in neonates and early infants. Response to injury in a developing brain may be faster than that in a mature one. (orig.)

  20. Cortical information flow in Parkinson's disease: a composite network/field model

    Directory of Open Access Journals (Sweden)

    Cliff C. Kerr

    2013-04-01

    Full Text Available The basal ganglia play a crucial role in the execution of movements, as demonstrated by the severe motor deficits that accompany Parkinson's disease (PD. Since motor commands originate in the cortex, an important question is how the basal ganglia influence cortical information flow, and how this influence becomes pathological in PD. To explore this, we developed a composite neuronal network/neural field model. The network model consisted of 4950 spiking neurons, divided into 15 excitatory and inhibitory cell populations in the thalamus and cortex. The field model consisted of the cortex, thalamus, striatum, subthalamic nucleus, and globus pallidus. Both models have been separately validated in previous work. Three field models were used: one with basal ganglia parameters based on data from healthy individuals, one based on data from individuals with PD, and one purely thalamocortical model. Spikes generated by these field models were then used to drive the network model. Compared to the network driven by the healthy model, the PD-driven network had lower firing rates, a shift in spectral power towards lower frequencies, and higher probability of bursting; each of these findings is consistent with empirical data on PD. In the healthy model, we found strong Granger causality in the beta and low gamma bands between cortical layers, but this was largely absent in the PD model. In particular, the reduction in Granger causality from the main "input" layer of the cortex (layer 4 to the main "output" layer (layer 5 was pronounced. This may account for symptoms of PD that seem to reflect deficits in information flow, such as bradykinesia. In general, these results demonstrate that the brain's large-scale oscillatory environment, represented here by the field model, strongly influences the information processing that occurs within its subnetworks. Hence, it may be preferable to drive spiking network models with physiologically realistic inputs rather than

  1. Differential motor and prefrontal cerebello-cortical network development: Evidence from multimodal neuroimaging.

    Science.gov (United States)

    Bernard, Jessica A; Orr, Joseph M; Mittal, Vijay A

    2016-01-01

    While our understanding of cerebellar structural development through adolescence and young adulthood has expanded, we still lack knowledge of the developmental patterns of cerebellar networks during this critical portion of the lifespan. Volume in lateral posterior cerebellar regions associated with cognition and the prefrontal cortex develops more slowly, reaching their peak volume in adulthood, particularly as compared to motor Lobule V. We predicted that resting state functional connectivity of the lateral posterior regions would show a similar pattern of development during adolescence and young adulthood. That is, we expected to see changes over time in Crus I and Crus II connectivity with the cortex, but no changes in Lobule V connectivity. Additionally, we were interested in how structural connectivity changes in cerebello-thalamo-cortical white matter are related to changes in functional connectivity. A sample of 23 individuals between 12 and 21years old underwent neuroimaging scans at baseline and 12months later. Functional networks of Crus I and Crus II showed significant connectivity decreases over 12months, though there were no differences in Lobule V. Furthermore, these functional connectivity changes were correlated with increases in white matter structural integrity in the corresponding cerebello-thalamo-cortical white matter tract. We suggest that these functional network changes are due to both later pruning in the prefrontal cortex as well as further development of the white matter tracts linking these brain regions.

  2. Differences in human cortical gene expression match the temporal properties of large-scale functional networks.

    Directory of Open Access Journals (Sweden)

    Claudia Cioli

    Full Text Available We explore the relationships between the cortex functional organization and genetic expression (as provided by the Allen Human Brain Atlas. Previous work suggests that functional cortical networks (resting state and task based are organized as two large networks (differentiated by their preferred information processing mode shaped like two rings. The first ring--Visual-Sensorimotor-Auditory (VSA--comprises visual, auditory, somatosensory, and motor cortices that process real time world interactions. The second ring--Parieto-Temporo-Frontal (PTF--comprises parietal, temporal, and frontal regions with networks dedicated to cognitive functions, emotions, biological needs, and internally driven rhythms. We found--with correspondence analysis--that the patterns of expression of the 938 genes most differentially expressed across the cortex organized the cortex into two sets of regions that match the two rings. We confirmed this result using discriminant correspondence analysis by showing that the genetic profiles of cortical regions can reliably predict to what ring these regions belong. We found that several of the proteins--coded by genes that most differentiate the rings--were involved in neuronal information processing such as ionic channels and neurotransmitter release. The systematic study of families of genes revealed specific proteins within families preferentially expressed in each ring. The results showed strong congruence between the preferential expression of subsets of genes, temporal properties of the proteins they code, and the preferred processing modes of the rings. Ionic channels and release-related proteins more expressed in the VSA ring favor temporal precision of fast evoked neural transmission (Sodium channels SCNA1, SCNB1 potassium channel KCNA1, calcium channel CACNA2D2, Synaptotagmin SYT2, Complexin CPLX1, Synaptobrevin VAMP1. Conversely, genes expressed in the PTF ring favor slower, sustained, or rhythmic activation (Sodium

  3. LFP spectral peaks in V1 cortex: network resonance and cortico-cortical feedback.

    Science.gov (United States)

    Kang, Kukjin; Shelley, Michael; Henrie, James Andrew; Shapley, Robert

    2010-12-01

    This paper is about how cortical recurrent interactions in primary visual cortex (V1) together with feedback from extrastriate cortex can account for spectral peaks in the V1 local field potential (LFP). Recent studies showed that visual stimulation enhances the γ-band (25-90 Hz) of the LFP power spectrum in macaque V1. The height and location of the γ-band peak in the LFP spectrum were correlated with visual stimulus size. Extensive spatial summation, possibly mediated by feedback connections from extrastriate cortex and long-range horizontal connections in V1, must play a crucial role in the size dependence of the LFP. To analyze stimulus-effects on the LFP of V1 cortex, we propose a network model for the visual cortex that includes two populations of V1 neurons, excitatory and inhibitory, and also includes feedback to V1 from extrastriate cortex. The neural network model for V1 was a resonant system. The model's resonance frequency (ResF) was in the γ-band and varied up or down in frequency depending on cortical feedback. The model's ResF shifted downward with stimulus size, as in the real cortex, because increased size recruited more activity in extrastriate cortex and V1 thereby causing stronger feedback. The model needed to have strong local recurrent inhibition within V1 to obtain ResFs that agree with cortical data. Network resonance as a consequence of recurrent excitation and inhibition appears to be a likely explanation for γ-band peaks in the LFP power spectrum of the primary visual cortex.

  4. Role of altered cerebello-thalamo-cortical network in the neurobiology of essential tremor

    Energy Technology Data Exchange (ETDEWEB)

    Lenka, Abhishek; Bhalsing, Ketaki Swapnil; Jhunjhunwala, Ketan [National Institute of Mental Health and Neurosciences, Department of Neurology, Bangalore, Karnataka (India); National Institute of Mental Health and Neurosciences, Department of Clinical Neurosciences, Bangalore, Karnataka (India); Panda, Rajanikant; Saini, Jitender; Bharath, Rose Dawn [National Institute of Mental Health and Neurosciences, Department of Neuroimaging and Interventional Radiology, Bangalore, Karnataka (India); Naduthota, Rajini M.; Yadav, Ravi; Pal, Pramod Kumar [National Institute of Mental Health and Neurosciences, Department of Neurology, Bangalore, Karnataka (India)

    2017-02-15

    Essential tremor (ET) is the most common movement disorder among adults. Although ET has been recognized as a mono-symptomatic benign illness, reports of non-motor symptoms and non-tremor motor symptoms have increased its clinical heterogeneity. The neural correlates of ET are not clearly understood. The aim of this study was to understand the neurobiology of ET using resting state fMRI. Resting state functional MR images of 30 patients with ET and 30 age- and gender-matched healthy controls were obtained. The functional connectivity of the two groups was compared using whole-brain seed-to-voxel-based analysis. The ET group had decreased connectivity of several cortical regions especially of the primary motor cortex and the primary somatosensory cortex with several right cerebellar lobules compared to the controls. The thalamus on both hemispheres had increased connectivity with multiple posterior cerebellar lobules and vermis. Connectivity of several right cerebellar seeds with the cortical and thalamic seeds had significant correlation with an overall score of Fahn-Tolosa-Marin tremor rating scale (FTM-TRS) as well as the subscores for head tremor and limb tremor. Seed-to-voxel resting state connectivity analysis revealed significant alterations in the cerebello-thalamo-cortical network in patients with ET. These alterations correlated with the overall FTM scores as well as the subscores for limb tremor and head tremor in patients with ET. These results further support the previous evidence of cerebellar pathology in ET. (orig.)

  5. Effects of Small-World Rewiring Probability and Noisy Synaptic Conductivity on Slow Waves: Cortical Network.

    Science.gov (United States)

    Tekin, Ramazan; Tagluk, Mehmet Emin

    2017-03-01

    Physiological rhythms play a critical role in the functional development of living beings. Many biological functions are executed with an interaction of rhythms produced by internal characteristics of scores of cells. While synchronized oscillations may be associated with normal brain functions, anomalies in these oscillations may cause or relate the emergence of some neurological or neuropsychological pathologies. This study was designed to investigate the effects of topological structure and synaptic conductivity noise on the spatial synchronization and temporal rhythmicity of the waves generated by cells in the network. Because of holding the ability of clustering and randomizing with change of parameters, small-world (SW) network topology was chosen. The oscillatory activity of network was tried out by manipulating an insulated SW, cortical network model whose morphology is very close to real world. According to the obtained results, it was observed that at the optimal probabilistic rates of conductivity noise and rewiring of SW, powerful synchronized oscillatory small waves are generated in relation to the internal dynamics of cells, which are in line with the network's input. These two parameters were observed to be quite effective on the excitation-inhibition balance of the network. Accordingly, it may be suggested that the topological dynamics of SW and noisy synaptic conductivity may be associated with the normal and abnormal development of neurobiological structure.

  6. Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions.

    Science.gov (United States)

    Johnson, P B; Ferraina, S; Bianchi, L; Caminiti, R

    1996-01-01

    The functional and structural properties of the dorsolateral frontal lobe and posterior parietal proximal arm representations were studied in macaque monkeys. Physiological mapping of primary motor (MI), dorsal premotor (PMd), and posterior parietal (area 5) cortices was performed in behaving monkeys trained in an instructed-delay reaching task. The parietofrontal corticocortical connectivities of these same areas were subsequently examined anatomically by means of retrograde tracing techniques. Signal-, set-, movement-, and position-related directional neuronal activities were distributed nonuniformly within the task-related areas in both frontal and parietal cortices. Within the frontal lobe, moving caudally from PMd to the MI, the activity that signals for the visuo-spatial events leading to target localization decreased, while the activity more directly linked to movement generation increased. Physiological recordings in the superior parietal lobule revealed a gradient-like distribution of functional properties similar to that observed in the frontal lobe. Signal- and set-related activities were encountered more frequently in the intermediate and ventral part of the medial bank of the intraparietal sulcus (IPS), in area MIP. Movement-and position-related activities were distributed more uniformly within the superior parietal lobule (SPL), in both dorsal area 5 and in MIP. Frontal and parietal regions sharing similar functional properties were preferentially connected through their association pathways. As a result of this study, area MIP, and possibly areas MDP and 7m as well, emerge as the parietal nodes by which visual information may be relayed to the frontal lobe arm region. These parietal and frontal areas, along with their association connections, represent a potential cortical network for visual reaching. The architecture of this network is ideal for coding reaching as the result of a combination between visual and somatic information.

  7. Statistical Analysis of Tract-Tracing Experiments Demonstrates a Dense, Complex Cortical Network in the Mouse.

    Science.gov (United States)

    Ypma, Rolf J F; Bullmore, Edward T

    2016-09-01

    Anatomical tract tracing methods are the gold standard for estimating the weight of axonal connectivity between a pair of pre-defined brain regions. Large studies, comprising hundreds of experiments, have become feasible by automated methods. However, this comes at the cost of positive-mean noise making it difficult to detect weak connections, which are of particular interest as recent high resolution tract-tracing studies of the macaque have identified many more weak connections, adding up to greater connection density of cortical networks, than previously recognized. We propose a statistical framework that estimates connectivity weights and credibility intervals from multiple tract-tracing experiments. We model the observed signal as a log-normal distribution generated by a combination of tracer fluorescence and positive-mean noise, also accounting for injections into multiple regions. Using anterograde viral tract-tracing data provided by the Allen Institute for Brain Sciences, we estimate the connection density of the mouse intra-hemispheric cortical network to be 73% (95% credibility interval (CI): 71%, 75%); higher than previous estimates (40%). Inter-hemispheric density was estimated to be 59% (95% CI: 54%, 62%). The weakest estimable connections (about 6 orders of magnitude weaker than the strongest connections) are likely to represent only one or a few axons. These extremely weak connections are topologically more random and longer distance than the strongest connections, which are topologically more clustered and shorter distance (spatially clustered). Weak links do not substantially contribute to the global topology of a weighted brain graph, but incrementally increased topological integration of a binary graph. The topology of weak anatomical connections in the mouse brain, rigorously estimable down to the biological limit of a single axon between cortical areas in these data, suggests that they might confer functional advantages for integrative

  8. Histological analysis of the alterations on cortical bone channels network after radiotherapy: A rabbit study.

    Science.gov (United States)

    Rabelo, Gustavo Davi; Beletti, Marcelo Emílio; Dechichi, Paula

    2010-10-01

    The aim of this study was to evaluate the effects of radiotherapy in cortical bone channels network. Fourteen rabbits were divided in two groups and test group received single dose of 15 Gy cobalt-60 radiation in tibia, bilaterally. The animals were sacrificed and a segment of tibia was removed and histologically processed. Histological images were taken and had their bone channels segmented and called regions of interest (ROI). Images were analyzed through developed algorithms using the SCILAB mathematical environment, getting percentage of bone matrix, ROI areas, ROI perimeters, their standard deviations and Lacunarity. The osteocytes and empty lacunae were also counted. Data were evaluated using Kolmogorov-Smirnov, Mann Whitney, and Student's t test (P lacunarity were found between groups. In conclusion, the radiotherapy causes reduction of bone matrix and modifies the morphology of bone channels network. © 2010 Wiley-Liss, Inc.

  9. On visual hallucinations and cortical networks: a trans-diagnostic review.

    Science.gov (United States)

    Carter, Rowena; Ffytche, Dominic H

    2015-07-01

    Our current clinical approach to visual hallucinations is largely derived from work carried out by Georges de Morsier in the 1930s. Now, almost a century after his influential papers, we have the research tools to further explore the ideas he put forward. In this review, we address de Morsier's proposal that visual hallucinations in all clinical conditions have a similar neurological mechanism by comparing structural imaging studies of susceptibility to visual hallucinations in Parkinson's disease, Alzheimer's disease, Dementia with Lewy bodies and schizophrenia. Systematic review of the literature was undertaken using PubMed searches. A total of 18 studies across conditions were identified reporting grey matter differences between patients with and without visual hallucinations. Grey matter changes were categorised into brain regions relevant to current theories of visual hallucinations. The distribution of cortical atrophy supports de Morsier's premise that visual hallucinations are invariably linked to aberrant activity within visual thalamo-cortical networks. Further work is required to determine by what mechanism these networks become predisposed to spontaneous activation, and whether the frontal lobe and hippocampal changes identified are present in all conditions. The findings have implications for the development of effective treatments for visual hallucinations.

  10. Geometric-attributes-based segmentation of cortical bone slides using optimized neural networks.

    Science.gov (United States)

    Hage, Ilige S; Hamade, Ramsey F

    2016-05-01

    In cortical bone, solid (lamellar and interstitial) matrix occupies space left over by porous microfeatures such as Haversian canals, lacunae, and canaliculi-containing clusters. In this work, pulse-coupled neural networks (PCNN) were used to automatically distinguish the microfeatures present in histology slides of cortical bone. The networks' parameters were optimized using particle swarm optimization (PSO). When forming the fitness functions for the PSO, we considered the microfeatures' geometric attributes-namely, their size (based on measures of elliptical perimeter or area), shape (based on measures of compactness or the ratio of minor axis length to major axis length), and a two-way combination of these two geometric attributes. This hybrid PCNN-PSO method was further enhanced for pulse evaluation by combination with yet another method, adaptive threshold (AT), where the PCNN algorithm is repeated until the best threshold is found corresponding to the maximum variance between two segmented regions. Together, this framework of using PCNN-PSO-AT constitutes, we believe, a novel framework in biomedical imaging. Using this framework and extracting microfeatures from only one training image, we successfully extracted microfeatures from other test images. The high fidelity of all resultant segments was established using quantitative metrics such as precision, specificity, and Dice indices.

  11. Situating the default-mode network along a principal gradient of macroscale cortical organization.

    Science.gov (United States)

    Margulies, Daniel S; Ghosh, Satrajit S; Goulas, Alexandros; Falkiewicz, Marcel; Huntenburg, Julia M; Langs, Georg; Bezgin, Gleb; Eickhoff, Simon B; Castellanos, F Xavier; Petrides, Michael; Jefferies, Elizabeth; Smallwood, Jonathan

    2016-11-01

    Understanding how the structure of cognition arises from the topographical organization of the cortex is a primary goal in neuroscience. Previous work has described local functional gradients extending from perceptual and motor regions to cortical areas representing more abstract functions, but an overarching framework for the association between structure and function is still lacking. Here, we show that the principal gradient revealed by the decomposition of connectivity data in humans and the macaque monkey is anchored by, at one end, regions serving primary sensory/motor functions and at the other end, transmodal regions that, in humans, are known as the default-mode network (DMN). These DMN regions exhibit the greatest geodesic distance along the cortical surface-and are precisely equidistant-from primary sensory/motor morphological landmarks. The principal gradient also provides an organizing spatial framework for multiple large-scale networks and characterizes a spectrum from unimodal to heteromodal activity in a functional metaanalysis. Together, these observations provide a characterization of the topographical organization of cortex and indicate that the role of the DMN in cognition might arise from its position at one extreme of a hierarchy, allowing it to process transmodal information that is unrelated to immediate sensory input.

  12. Auditory cortical delta-entrainment interacts with oscillatory power in multiple fronto-parietal networks.

    Science.gov (United States)

    Keitel, Anne; Ince, Robin A A; Gross, Joachim; Kayser, Christoph

    2017-02-15

    The timing of slow auditory cortical activity aligns to the rhythmic fluctuations in speech. This entrainment is considered to be a marker of the prosodic and syllabic encoding of speech, and has been shown to correlate with intelligibility. Yet, whether and how auditory cortical entrainment is influenced by the activity in other speech-relevant areas remains unknown. Using source-localized MEG data, we quantified the dependency of auditory entrainment on the state of oscillatory activity in fronto-parietal regions. We found that delta band entrainment interacted with the oscillatory activity in three distinct networks. First, entrainment in the left anterior superior temporal gyrus (STG) was modulated by beta power in orbitofrontal areas, possibly reflecting predictive top-down modulations of auditory encoding. Second, entrainment in the left Heschl's Gyrus and anterior STG was dependent on alpha power in central areas, in line with the importance of motor structures for phonological analysis. And third, entrainment in the right posterior STG modulated theta power in parietal areas, consistent with the engagement of semantic memory. These results illustrate the topographical network interactions of auditory delta entrainment and reveal distinct cross-frequency mechanisms by which entrainment can interact with different cognitive processes underlying speech perception.

  13. Neural network models for spatial data mining, map production, and cortical direction selectivity

    Science.gov (United States)

    Parsons, Olga

    A family of ARTMAP neural networks for incremental supervised learning has been developed over the last decade. The Sensor Exploitation Group of MIT Lincoln Laboratory (LL) has incorporated an early version of this network as the recognition engine of a hierarchical system for fusion and data mining of multiple registered geospatial images. The LL system has been successfully fielded, but it is limited to target vs. non-target identifications and does not produce whole maps. This dissertation expands the capabilities of the LL system so that it learns to identify arbitrarily many target classes at once and can thus produce a whole map. This new spatial data mining system is designed particularly to cope with the highly skewed class distributions of typical mapping problems. Specification of a consistent procedure and a benchmark testbed has permitted the evaluation of candidate recognition networks as well as pre- and post-processing and feature extraction options. The resulting default ARTMAP network and mapping methodology set a standard for a variety of related mapping problems and application domains. The second part of the dissertation investigates the development of cortical direction selectivity. The possible role of visual experience and oculomotor behavior in the maturation of cells in the primary visual cortex is studied. The responses of neurons in the thalamus and cortex of the cat are modeled when natural scenes are scanned by several types of eye movements. Inspired by the Hebbian-like synaptic plasticity, which is based upon correlations between cell activations, the second-order statistical structure of thalamo-cortical activity is examined. In the simulations, patterns of neural activity that lead to a correct refinement of cell responses are observed during visual fixation, when small ocular movements occur, but are not observed in the presence of large saccades. Simulations also replicate experiments in which kittens are reared under stroboscopic

  14. Pragmatics in action: indirect requests engage theory of mind areas and the cortical motor network.

    Science.gov (United States)

    van Ackeren, Markus J; Casasanto, Daniel; Bekkering, Harold; Hagoort, Peter; Rueschemeyer, Shirley-Ann

    2012-11-01

    Research from the past decade has shown that understanding the meaning of words and utterances (i.e., abstracted symbols) engages the same systems we used to perceive and interact with the physical world in a content-specific manner. For example, understanding the word "grasp" elicits activation in the cortical motor network, that is, part of the neural substrate involved in planned and executing a grasping action. In the embodied literature, cortical motor activation during language comprehension is thought to reflect motor simulation underlying conceptual knowledge [note that outside the embodied framework, other explanations for the link between action and language are offered, e.g., Mahon, B. Z., & Caramazza, A. A critical look at the embodied cognition hypothesis and a new proposal for grouding conceptual content. Journal of Physiology, 102, 59-70, 2008; Hagoort, P. On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences, 9, 416-423, 2005]. Previous research has supported the view that the coupling between language and action is flexible, and reading an action-related word form is not sufficient for cortical motor activation [Van Dam, W. O., van Dijk, M., Bekkering, H., & Rueschemeyer, S.-A. Flexibility in embodied lexical-semantic representations. Human Brain Mapping, doi: 10.1002/hbm.21365, 2011]. The current study goes one step further by addressing the necessity of action-related word forms for motor activation during language comprehension. Subjects listened to indirect requests (IRs) for action during an fMRI session. IRs for action are speech acts in which access to an action concept is required, although it is not explicitly encoded in the language. For example, the utterance "It is hot here!" in a room with a window is likely to be interpreted as a request to open the window. However, the same utterance in a desert will be interpreted as a statement. The results indicate (1) that comprehension of IR sentences activates cortical

  15. Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses.

    Science.gov (United States)

    Arnsten, Amy F T; Wang, Min J; Paspalas, Constantinos D

    2012-10-04

    This review describes unique neuromodulatory influences on working memory prefrontal cortical (PFC) circuits that coordinate cognitive strength with arousal state. Working memory arises from recurrent excitation within layer III PFC pyramidal cell NMDA circuits, which are afflicted in aging and schizophrenia. Neuromodulators rapidly and flexibly alter the efficacy of these synaptic connections, while leaving the synaptic architecture unchanged, a process called dynamic network connectivity (DNC). Increases in calcium-cAMP signaling open ion channels in long, thin spines, gating network connections. Inhibition of calcium-cAMP signaling by stimulating α2A-adrenoceptors on spines strengthens synaptic efficacy and increases network firing, whereas optimal stimulation of dopamine D1 receptors sculpts network inputs to refine mental representation. Generalized increases in calcium-cAMP signaling during fatigue or stress disengage dlPFC recurrent circuits, reduce firing and impair top-down cognition. Impaired DNC regulation contributes to age-related cognitive decline, while genetic insults to DNC proteins are commonly linked to schizophrenia.

  16. Early-life exposure to caffeine affects the construction and activity of cortical networks in mice.

    Science.gov (United States)

    Fazeli, Walid; Zappettini, Stefania; Marguet, Stephan Lawrence; Grendel, Jasper; Esclapez, Monique; Bernard, Christophe; Isbrandt, Dirk

    2017-09-01

    The consumption of psychoactive drugs during pregnancy can have deleterious effects on newborns. It remains unclear whether early-life exposure to caffeine, the most widely consumed psychoactive substance, alters brain development. We hypothesized that maternal caffeine ingestion during pregnancy and the early postnatal period in mice affects the construction and activity of cortical networks in offspring. To test this hypothesis, we focused on primary visual cortex (V1) as a model neocortical region. In a study design mimicking the daily consumption of approximately three cups of coffee during pregnancy in humans, caffeine was added to the drinking water of female mice and their offspring were compared to control offspring. Caffeine altered the construction of GABAergic neuronal networks in V1, as reflected by a reduced number of somatostatin-containing GABA neurons at postnatal days 6-7, with the remaining ones showing poorly developed dendritic arbors. These findings were accompanied by increased synaptic activity in vitro and elevated network activity in vivo in V1. Similarly, in vivo hippocampal network activity was altered from the neonatal period until adulthood. Finally, caffeine-exposed offspring showed increased seizure susceptibility in a hyperthermia-induced seizure model. In summary, our results indicate detrimental effects of developmental caffeine exposure on mouse brain development. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A cortical attractor network with Martinotti cells driven by facilitating synapses.

    Directory of Open Access Journals (Sweden)

    Pradeep Krishnamurthy

    Full Text Available The population of pyramidal cells significantly outnumbers the inhibitory interneurons in the neocortex, while at the same time the diversity of interneuron types is much more pronounced. One acknowledged key role of inhibition is to control the rate and patterning of pyramidal cell firing via negative feedback, but most likely the diversity of inhibitory pathways is matched by a corresponding diversity of functional roles. An important distinguishing feature of cortical interneurons is the variability of the short-term plasticity properties of synapses received from pyramidal cells. The Martinotti cell type has recently come under scrutiny due to the distinctly facilitating nature of the synapses they receive from pyramidal cells. This distinguishes these neurons from basket cells and other inhibitory interneurons typically targeted by depressing synapses. A key aspect of the work reported here has been to pinpoint the role of this variability. We first set out to reproduce quantitatively based on in vitro data the di-synaptic inhibitory microcircuit connecting two pyramidal cells via one or a few Martinotti cells. In a second step, we embedded this microcircuit in a previously developed attractor memory network model of neocortical layers 2/3. This model network demonstrated that basket cells with their characteristic depressing synapses are the first to discharge when the network enters an attractor state and that Martinotti cells respond with a delay, thereby shifting the excitation-inhibition balance and acting to terminate the attractor state. A parameter sensitivity analysis suggested that Martinotti cells might, in fact, play a dominant role in setting the attractor dwell time and thus cortical speed of processing, with cellular adaptation and synaptic depression having a less prominent role than previously thought.

  18. Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality.

    Science.gov (United States)

    Vukelić, Mathias; Gharabaghi, Alireza

    2015-05-01

    Neurofeedback of self-regulated brain activity in circumscribed cortical regions is used as a novel strategy to facilitate functional restoration following stroke. Basic knowledge about its impact on motor system oscillations and functional connectivity is however scarce. Specifically, a direct comparison between different feedback modalities and their neural signatures is missing. We assessed a neurofeedback training intervention of modulating β-activity in circumscribed sensorimotor regions by kinesthetic motor imagery (MI). Right-handed healthy participants received two different feedback modalities contingent to their MI-associated brain activity in a cross-over design: (I) visual feedback with a brain-computer interface (BCI) and (II) proprioceptive feedback with a brain-robot interface (BRI) orthosis attached to the right hand. High-density electroencephalography was used to examine the reactivity of the cortical motor system during the training session of each task by studying both local oscillatory power entrainment and distributed functional connectivity. Both feedback modalities activated a distributed functional connectivity network of coherent oscillations. A significantly higher skill and lower variability of self-controlled sensorimotor β-band modulation could, however, be achieved in the BRI condition. This gain in controlling regional motor oscillations was accompanied by functional coupling of remote β-band and θ-band activity in bilateral fronto-central regions and left parieto-occipital regions, respectively. The functional coupling of coherent θ-band oscillations correlated moreover with the skill of regional β-modulation thus revealing a motor learning related network. Our findings indicate that proprioceptive feedback is more suitable than visual feedback to entrain the motor network architecture during the interplay between motor imagery and feedback processing thus resulting in better volitional control of regional brain activity.

  19. Abnormal dopaminergic modulation of striato-cortical networks underlies levodopa-induced dyskinesias in humans.

    Science.gov (United States)

    Herz, Damian M; Haagensen, Brian N; Christensen, Mark S; Madsen, Kristoffer H; Rowe, James B; Løkkegaard, Annemette; Siebner, Hartwig R

    2015-06-01

    Dopaminergic signalling in the striatum contributes to reinforcement of actions and motivational enhancement of motor vigour. Parkinson's disease leads to progressive dopaminergic denervation of the striatum, impairing the function of cortico-basal ganglia networks. While levodopa therapy alleviates basal ganglia dysfunction in Parkinson's disease, it often elicits involuntary movements, referred to as levodopa-induced peak-of-dose dyskinesias. Here, we used a novel pharmacodynamic neuroimaging approach to identify the changes in cortico-basal ganglia connectivity that herald the emergence of levodopa-induced dyskinesias. Twenty-six patients with Parkinson's disease (age range: 51-84 years; 11 females) received a single dose of levodopa and then performed a task in which they had to produce or suppress a movement in response to visual cues. Task-related activity was continuously mapped with functional magnetic resonance imaging. Dynamic causal modelling was applied to assess levodopa-induced modulation of effective connectivity between the pre-supplementary motor area, primary motor cortex and putamen when patients suppressed a motor response. Bayesian model selection revealed that patients who later developed levodopa-induced dyskinesias, but not patients without dyskinesias, showed a linear increase in connectivity between the putamen and primary motor cortex after levodopa intake during movement suppression. Individual dyskinesia severity was predicted by levodopa-induced modulation of striato-cortical feedback connections from putamen to the pre-supplementary motor area (Pcorrected = 0.020) and primary motor cortex (Pcorrected = 0.044), but not feed-forward connections from the cortex to the putamen. Our results identify for the first time, aberrant dopaminergic modulation of striatal-cortical connectivity as a neural signature of levodopa-induced dyskinesias in humans. We argue that excessive striato-cortical connectivity in response to levodopa produces an

  20. Use of cortical neuronal networks for in vitro material biocompatibility testing.

    Science.gov (United States)

    Charkhkar, Hamid; Frewin, Christopher; Nezafati, Maysam; Knaack, Gretchen L; Peixoto, Nathalia; Saddow, Stephen E; Pancrazio, Joseph J

    2014-03-15

    Neural interfaces aim to restore neurological function lost during disease or injury. Novel implantable neural interfaces increasingly capitalize on novel materials to achieve microscale coupling with the nervous system. Like any biomedical device, neural interfaces should consist of materials that exhibit biocompatibility in accordance with the international standard ISO10993-5, which describes in vitro testing involving fibroblasts where cytotoxicity serves as the main endpoint. In the present study, we examine the utility of living neuronal networks as functional assays for in vitro material biocompatibility, particularly for materials that comprise implantable neural interfaces. Embryonic mouse cortical tissue was cultured to form functional networks where spontaneous action potentials, or spikes, can be monitored non-invasively using a substrate-integrated microelectrode array. Taking advantage of such a platform, we exposed established positive and negative control materials to the neuronal networks in a consistent method with ISO 10993-5 guidance. Exposure to the negative controls, gold and polyethylene, did not significantly change the neuronal activity whereas the positive controls, copper and polyvinyl chloride (PVC), resulted in reduction of network spike rate. We also compared the functional assay with an established cytotoxicity measure using L929 fibroblast cells. Our findings indicate that neuronal networks exhibit enhanced sensitivity to positive control materials. In addition, we assessed functional neurotoxicity of tungsten, a common microelectrode material, and two conducting polymer formulations that have been used to modify microelectrode properties for in vivo recording and stimulation. These data suggest that cultured neuronal networks are a useful platform for evaluating the functional toxicity of materials intended for implantation in the nervous system.

  1. Analytical characterization of spontaneous firing in networks of developing rat cultured cortical neurons

    Science.gov (United States)

    Tateno, Takashi; Kawana, Akio; Jimbo, Yasuhiko

    2002-05-01

    We have used a multiunit electrode array in extracellular recording to investigate changes in the firing patterns in networks of developing rat cortical neurons. The spontaneous activity of continual asynchronous firing or the alternation of asynchronous spikes and synchronous bursts changed over time so that activity in the later stages consisted exclusively of synchronized bursts. The spontaneous coordinated activity in bursts produced a variability in interburst interval (IBI) sequences that is referred to as ``form.'' The stochastic and nonlinear dynamical analysis of IBI sequences revealed that these sequences reflected a largely random process and that the form for relatively immature neurons was largely oscillatory while the form for the more mature neurons was Poisson-like. The observed IBI sequences thus showed changes in form associated with both the intrinsic properties of the developing cells and the neural response to correlated synaptic inputs due to interaction between the developing neural circuits.

  2. Impairment of GABA transporter GAT-1 terminates cortical recurrent network activity via enhanced phasic inhibition

    Directory of Open Access Journals (Sweden)

    Daniel Simon Razik

    2013-09-01

    Full Text Available In the central nervous system, GABA transporters (GATs very efficiently clear synaptically released GABA from the extracellular space, and thus exert a tight control on GABAergic inhibition. In neocortex, GABAergic inhibition is heavily recruited during recurrent phases of spontaneous action potential activity which alternate with neuronally quiet periods. Therefore, such activity should be quite sensitive to minute alterations of GAT function. Here, we explored the effects of a gradual impairment of GAT-1 and GAT-2/3 on spontaneous recurrent network activity – termed network bursts and silent periods – in organotypic slice cultures of rat neocortex. The GAT-1 specific antagonist NO-711 depressed activity already at nanomolar concentrations (IC50 for depression of spontaneous multiunit firing rate of 42 nM, reaching a level of 80% at 500-1000 nM. By contrast, the GAT-2/3 preferring antagonist SNAP-5114 had weaker and less consistent effects. Several lines of evidence pointed towards an enhancement of phasic GABAergic inhibition as the dominant activity-depressing mechanism: network bursts were drastically shortened, phasic GABAergic currents decayed slower, and neuronal excitability during ongoing activity was diminished. In silent periods, NO-711 had little effect on neuronal excitability or membrane resistance, quite in contrast to the effects of muscimol, a GABA mimetic which activates GABAA receptors tonically. Our results suggest that an enhancement of phasic GABAergic inhibition efficiently curtails cortical recurrent activity and may mediate antiepileptic effects of therapeutically relevant concentrations of GAT-1 antagonists.

  3. A time and place for language comprehension : mapping the N400 and the P600 to a minimal cortical network

    NARCIS (Netherlands)

    Brouwer, Harm; Hoeks, John C. J.

    2013-01-01

    We propose a new functional-anatomical mapping of the N400 and the P600 to a minimal cortical network for language comprehension. Our work is an example of a recent research strategy in cognitive neuroscience, where researchers attempt to align data regarding the nature and time-course of cognitive

  4. Abnormal cortical-basal ganglia network in amyotrophic lateral sclerosis: A voxel-wise network efficiency analysis.

    Science.gov (United States)

    Xu, Jinping; Li, Hong; Li, Chong; Yao, Jen-Chih; Hu, Jun; Wang, Jian; Hu, Qingmao; Zhang, Yuanchao; Zhang, Jiuquan

    2017-08-30

    Evidence suggests that dysfunctional cortical-basal ganglia (CBG) network plays important roles in the motor symptoms in amyotrophic lateral sclerosis (ALS). However, little effort has been made to investigate the functional abnormalities of CBG network in ALS. Here, we constructed voxel-wise CBG networks using the resting-state fMRI data of 20 patients with ALS and 21 normal controls, and characterized the differences of their efficiency parameters between the two groups. Compared to normal controls, patients with ALS exhibited decreased nodal efficiency in the right thalamus (THA), the left caudate (CAU) and the right precentral gyrus (preCG), and increased nodal efficiency in the left preCG. In the patient group, we observed a significant negative correlation between the nodal efficiency of the right preCG and disease progression rate. These results demonstrate that both ineffective information transfer and compensatory mechanisms are involved in the pathophysiological mechanism underlying the motor dysfunctions in patients with ALS. In summary, the present study provides a novel perspective on pathophysiological explanation for the motor symptoms in patients with ALS. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The encoding/retrieval flip: interactions between memory performance and memory stage and relationship to intrinsic cortical networks.

    Science.gov (United States)

    Huijbers, Willem; Schultz, Aaron P; Vannini, Patrizia; McLaren, Donald G; Wigman, Sarah E; Ward, Andrew M; Hedden, Trey; Sperling, Reisa A

    2013-07-01

    fMRI studies have linked the posteromedial cortex to episodic learning (encoding) and remembering (retrieval) processes. The posteromedial cortex is considered part of the default network and tends to deactivate during encoding but activate during retrieval, a pattern known as the encoding/retrieval flip. Yet, the exact relationship between the neural correlates of memory performance (hit/miss) and memory stage (encoding/retrieval) and the extent of overlap with intrinsic cortical networks remains to be elucidated. Using task-based fMRI, we isolated the pattern of activity associated with memory performance, memory stage, and the interaction between both. Using resting-state fMRI, we identified which intrinsic large-scale functional networks overlapped with regions showing task-induced effects. Our results demonstrated an effect of successful memory performance in regions associated with the control network and an effect of unsuccessful memory performance in the ventral attention network. We found an effect of memory retrieval in brain regions that span the default and control networks. Finally, we found an interaction between memory performance and memory stage in brain regions associated with the default network, including the posteromedial cortex, posterior parietal cortex, and parahippocampal cortex. We discuss these findings in relation to the encoding/retrieval flip. In general, the findings demonstrate that task-induced effects cut across intrinsic cortical networks. Furthermore, regions within the default network display functional dissociations, and this may have implications for the neural underpinnings of age-related memory disorders.

  6. Network-state modulation of power-law frequency-scaling in visual cortical neurons.

    Science.gov (United States)

    El Boustani, Sami; Marre, Olivier; Béhuret, Sébastien; Baudot, Pierre; Yger, Pierre; Bal, Thierry; Destexhe, Alain; Frégnac, Yves

    2009-09-01

    Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of V(m) activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the V(m) reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the "effective" connectivity responsible for the dynamical signature of the population signals measured

  7. Network-state modulation of power-law frequency-scaling in visual cortical neurons.

    Directory of Open Access Journals (Sweden)

    Sami El Boustani

    2009-09-01

    Full Text Available Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of V(m activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the V(m reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the "effective" connectivity responsible for the dynamical signature of the population

  8. Spiking in auditory cortex following thalamic stimulation is dominated by cortical network activity

    Directory of Open Access Journals (Sweden)

    Bryan M Krause

    2014-09-01

    Full Text Available The state of the sensory cortical network can have a profound impact on neural responses and perception. In rodent auditory cortex, sensory responses are reported to occur in the context of network events, similar to brief UP states, that produce 'packets' of spikes and are associated with synchronized synaptic input (Bathellier et al., 2012; Hromadka et al., 2013; Luczak et al., 2013. However, traditional models based on data from visual and somatosensory cortex predict that ascending sensory thalamocortical (TC pathways sequentially activate cells in layers 4 (L4, L2/3 and L5. The relationship between these two spatio-temporal activity patterns is unclear. Here, we used calcium imaging and electrophysiological recordings in murine auditory TC brain slices to investigate the laminar response pattern to stimulation of TC afferents. We show that although monosynaptically driven spiking in response to TC afferents occurs, the vast majority of spikes fired following TC stimulation occurs during brief UP states and outside the context of the L4>L2/3>L5 activation sequence. Specifically, monosynaptic subthreshold TC responses with similar latencies were observed throughout layers 2 - 6, presumably via synapses onto dendritic processes located in L3 & L4. However, monosynaptic spiking was rare, and occurred primarily in L4 and L5 non-pyramidal cells. By contrast, during brief, TC-induced UP states, spiking was dense and occurred primarily in pyramidal cells. These network events always involved infragranular layers, whereas involvement of supragranular layers was variable. During UP states, spike latencies were comparable between infragranular and supragranular cells. These data are consistent with a model in which activation of auditory cortex, especially supragranular layers, depends on internally generated network events that represent a nonlinear amplification process, are initiated by infragranular cells and tightly regulated by feed

  9. A time-frequency analysis of the dynamics of cortical networks of sleep spindles from MEG-EEG recordings

    Directory of Open Access Journals (Sweden)

    Younes eZerouali

    2014-10-01

    Full Text Available Sleep spindles are a hallmark of NREM sleep. They result from a widespread thalamo-cortical loop and involve synchronous cortical networks that are still poorly understood. We investigated whether brain activity during spindles can be characterized by specific patterns of functional connectivity among cortical generators. For that purpose, we developed a wavelet-based approach aimed at imaging the synchronous oscillatory cortical networks from simultaneous MEG-EEG recordings. First, we detected spindles on the EEG and extracted the corresponding frequency-locked MEG activity under the form of an analytic ridge signal in the time-frequency plane (Zerouali et al., 2013. Secondly, we performed source reconstruction of the ridge signal within the Maximum Entropy on the Mean framework (Amblard et al., 2004, yielding a robust estimate of the cortical sources producing observed oscillations. Lastly, we quantified functional connectivity among cortical sources using phase-locking values. The main innovations of this methodology are 1 to reveal the dynamic behavior of functional networks resolved in the time-frequency plane and 2 to characterize functional connectivity among MEG sources through phase interactions. We showed, for the first time, that the switch from fast to slow oscillatory mode during sleep spindles is required for the emergence of specific patterns of connectivity. Moreover, we show that earlier synchrony during spindles was associated with mainly intra-hemispheric connectivity whereas later synchrony was associated with global long-range connectivity. We propose that our methodology can be a valuable tool for studying the connectivity underlying neural processes involving sleep spindles, such as memory, plasticity or aging.

  10. A time-frequency analysis of the dynamics of cortical networks of sleep spindles from MEG-EEG recordings.

    Science.gov (United States)

    Zerouali, Younes; Lina, Jean-Marc; Sekerovic, Zoran; Godbout, Jonathan; Dube, Jonathan; Jolicoeur, Pierre; Carrier, Julie

    2014-01-01

    Sleep spindles are a hallmark of NREM sleep. They result from a widespread thalamo-cortical loop and involve synchronous cortical networks that are still poorly understood. We investigated whether brain activity during spindles can be characterized by specific patterns of functional connectivity among cortical generators. For that purpose, we developed a wavelet-based approach aimed at imaging the synchronous oscillatory cortical networks from simultaneous MEG-EEG recordings. First, we detected spindles on the EEG and extracted the corresponding frequency-locked MEG activity under the form of an analytic ridge signal in the time-frequency plane (Zerouali et al., 2013). Secondly, we performed source reconstruction of the ridge signal within the Maximum Entropy on the Mean framework (Amblard et al., 2004), yielding a robust estimate of the cortical sources producing observed oscillations. Lastly, we quantified functional connectivity among cortical sources using phase-locking values. The main innovations of this methodology are (1) to reveal the dynamic behavior of functional networks resolved in the time-frequency plane and (2) to characterize functional connectivity among MEG sources through phase interactions. We showed, for the first time, that the switch from fast to slow oscillatory mode during sleep spindles is required for the emergence of specific patterns of connectivity. Moreover, we show that earlier synchrony during spindles was associated with mainly intra-hemispheric connectivity whereas later synchrony was associated with global long-range connectivity. We propose that our methodology can be a valuable tool for studying the connectivity underlying neural processes involving sleep spindles, such as memory, plasticity or aging.

  11. Untangling perceptual memory: hysteresis and adaptation map into separate cortical networks.

    Science.gov (United States)

    Schwiedrzik, Caspar M; Ruff, Christian C; Lazar, Andreea; Leitner, Frauke C; Singer, Wolf; Melloni, Lucia

    2014-05-01

    Perception is an active inferential process in which prior knowledge is combined with sensory input, the result of which determines the contents of awareness. Accordingly, previous experience is known to help the brain "decide" what to perceive. However, a critical aspect that has not been addressed is that previous experience can exert 2 opposing effects on perception: An attractive effect, sensitizing the brain to perceive the same again (hysteresis), or a repulsive effect, making it more likely to perceive something else (adaptation). We used functional magnetic resonance imaging and modeling to elucidate how the brain entertains these 2 opposing processes, and what determines the direction of such experience-dependent perceptual effects. We found that although affecting our perception concurrently, hysteresis and adaptation map into distinct cortical networks: a widespread network of higher-order visual and fronto-parietal areas was involved in perceptual stabilization, while adaptation was confined to early visual areas. This areal and hierarchical segregation may explain how the brain maintains the balance between exploiting redundancies and staying sensitive to new information. We provide a Bayesian model that accounts for the coexistence of hysteresis and adaptation by separating their causes into 2 distinct terms: Hysteresis alters the prior, whereas adaptation changes the sensory evidence (the likelihood function).

  12. The slow oscillation in cortical and thalamic networks: mechanisms and functions

    Directory of Open Access Journals (Sweden)

    Garrett T. Neske

    2016-01-01

    Full Text Available During even the most quiescent behavioral periods, the cortex and thalamus express rich spontaneous activity in the form of slow (<1 Hz, synchronous network state transitions. Throughout this so-called slow oscillation, cortical and thalamic neurons fluctuate between periods of intense synaptic activity (Up states and almost complete silence (Down states. The two decades since the original characterization of the slow oscillation in the cortex and thalamus have seen considerable advances in deciphering the cellular and network mechanisms associated with this pervasive phenomenon. There are, nevertheless, many questions regarding the slow oscillation that await more thorough illumination, particularly the mechanisms by which Up states initiate and terminate, the functional role of the rhythmic activity cycles in unconscious or minimally conscious states, and the precise relation between Up states and the activated states associated with waking behavior. Given the substantial advances in multineuronal recording and imaging methods in both in vivo and in vitro preparations, the time is ripe to take stock of our current understanding of the slow oscillation and pave the way for future investigations of its mechanisms and functions. My aim in this Review is to provide a comprehensive account of the mechanisms and functions of the slow oscillation, and to suggest avenues for further exploration.

  13. Experimental and Computational Studies of Cortical Neural Network Properties Through Signal Processing

    Science.gov (United States)

    Clawson, Wesley Patrick

    Previous studies, both theoretical and experimental, of network level dynamics in the cerebral cortex show evidence for a statistical phenomenon called criticality; a phenomenon originally studied in the context of phase transitions in physical systems and that is associated with favorable information processing in the context of the brain. The focus of this thesis is to expand upon past results with new experimentation and modeling to show a relationship between criticality and the ability to detect and discriminate sensory input. A line of theoretical work predicts maximal sensory discrimination as a functional benefit of criticality, which can then be characterized using mutual information between sensory input, visual stimulus, and neural response,. The primary finding of our experiments in the visual cortex in turtles and neuronal network modeling confirms this theoretical prediction. We show that sensory discrimination is maximized when visual cortex operates near criticality. In addition to presenting this primary finding in detail, this thesis will also address our preliminary results on change-point-detection in experimentally measured cortical dynamics.

  14. Optimal sensorimotor integration in recurrent cortical networks: a neural implementation of Kalman filters.

    Science.gov (United States)

    Denève, Sophie; Duhamel, Jean-René; Pouget, Alexandre

    2007-05-23

    Several behavioral experiments suggest that the nervous system uses an internal model of the dynamics of the body to implement a close approximation to a Kalman filter. This filter can be used to perform a variety of tasks nearly optimally, such as predicting the sensory consequence of motor action, integrating sensory and body posture signals, and computing motor commands. We propose that the neural implementation of this Kalman filter involves recurrent basis function networks with attractor dynamics, a kind of architecture that can be readily mapped onto cortical circuits. In such networks, the tuning curves to variables such as arm velocity are remarkably noninvariant in the sense that the amplitude and width of the tuning curves of a given neuron can vary greatly depending on other variables such as the position of the arm or the reliability of the sensory feedback. This property could explain some puzzling properties of tuning curves in the motor and premotor cortex, and it leads to several new predictions.

  15. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method

    CERN Document Server

    Barkaoui, Abdelwahed; Tarek, Merzouki; Hambli, Ridha; Ali, Mkaddem

    2014-01-01

    The complexity and heterogeneity of bone tissue require a multiscale modelling to understand its mechanical behaviour and its remodelling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network computation and homogenisation equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained neural network simulation. Finite element (FE) calculation is performed at nanoscopic levels to provide a database to train an in-house neural network program; (iii) in steps 2 to 10 from fibril to continuum cortical bone tissue, homogenisation equations are used to perform the computation at the higher s...

  16. Integrated mechanisms of anticipation and rate-of-change computations in cortical circuits.

    Science.gov (United States)

    Puccini, Gabriel D; Sanchez-Vives, Maria V; Compte, Albert

    2007-05-01

    Local neocortical circuits are characterized by stereotypical physiological and structural features that subserve generic computational operations. These basic computations of the cortical microcircuit emerge through the interplay of neuronal connectivity, cellular intrinsic properties, and synaptic plasticity dynamics. How these interacting mechanisms generate specific computational operations in the cortical circuit remains largely unknown. Here, we identify the neurophysiological basis of both the rate of change and anticipation computations on synaptic inputs in a cortical circuit. Through biophysically realistic computer simulations and neuronal recordings, we show that the rate-of-change computation is operated robustly in cortical networks through the combination of two ubiquitous brain mechanisms: short-term synaptic depression and spike-frequency adaptation. We then show how this rate-of-change circuit can be embedded in a convergently connected network to anticipate temporally incoming synaptic inputs, in quantitative agreement with experimental findings on anticipatory responses to moving stimuli in the primary visual cortex. Given the robustness of the mechanism and the widespread nature of the physiological machinery involved, we suggest that rate-of-change computation and temporal anticipation are principal, hard-wired functions of neural information processing in the cortical microcircuit.

  17. Integrated mechanisms of anticipation and rate-of-change computations in cortical circuits.

    Directory of Open Access Journals (Sweden)

    Gabriel D Puccini

    2007-05-01

    Full Text Available Local neocortical circuits are characterized by stereotypical physiological and structural features that subserve generic computational operations. These basic computations of the cortical microcircuit emerge through the interplay of neuronal connectivity, cellular intrinsic properties, and synaptic plasticity dynamics. How these interacting mechanisms generate specific computational operations in the cortical circuit remains largely unknown. Here, we identify the neurophysiological basis of both the rate of change and anticipation computations on synaptic inputs in a cortical circuit. Through biophysically realistic computer simulations and neuronal recordings, we show that the rate-of-change computation is operated robustly in cortical networks through the combination of two ubiquitous brain mechanisms: short-term synaptic depression and spike-frequency adaptation. We then show how this rate-of-change circuit can be embedded in a convergently connected network to anticipate temporally incoming synaptic inputs, in quantitative agreement with experimental findings on anticipatory responses to moving stimuli in the primary visual cortex. Given the robustness of the mechanism and the widespread nature of the physiological machinery involved, we suggest that rate-of-change computation and temporal anticipation are principal, hard-wired functions of neural information processing in the cortical microcircuit.

  18. Visual cortical mechanisms of perceptual grouping: interacting layers, networks, columns, and maps.

    Science.gov (United States)

    Ross, W D; Grossberg, S; Mingolla, E

    2000-07-01

    The visual cortex has a laminar organization whose circuits form functional columns in cortical maps. How this laminar architecture supports visual percepts is not well understood. A neural model proposes how the laminar circuits of V1 and V2 generate perceptual groupings that maintain sensitivity to the contrasts and spatial organization of scenic cues. The model can decisively choose which groupings cohere and survive, even while balanced excitatory and inhibitory interactions preserve contrast-sensitive measures of local boundary likelihood or strength. In the model, excitatory inputs from lateral geniculate nucleus (LGN) activate layers 4 and 6 of V1. Layer 6 activates an on-center off-surround network of inputs to layer 4. Together these layer 4 inputs preserve analog sensitivity to LGN input contrasts. Layer 4 cells excite pyramidal cells in layer 2/3, which activate monosynaptic long-range horizontal excitatory connections between layer 2/3 pyramidal cells, and short-range disynaptic inhibitory connections mediated by smooth stellate cells. These interactions support inward perceptual grouping between two or more boundary inducers, but not outward grouping from a single inducer. These boundary signals feed back to layer 4 via the layer 6-to-4 on-center off-surround network. This folded feedback joins cells in different layers into functional columns while selecting winning groupings. Layer 6 in V1 also sends top-down signals to LGN using an on-center off-surround network, which suppresses LGN cells that do not receive feedback, while selecting, enhancing, and synchronizing activity of those that do. The model is used to simulate psychophysical and neurophysiological data about perceptual grouping, including various Gestalt grouping laws.

  19. Structural alteration of the dorsal visual network in DLB patients with visual hallucinations: a cortical thickness MRI study.

    Science.gov (United States)

    Delli Pizzi, Stefano; Franciotti, Raffaella; Tartaro, Armando; Caulo, Massimo; Thomas, Astrid; Onofrj, Marco; Bonanni, Laura

    2014-01-01

    Visual hallucinations (VH) represent one of the core features in discriminating dementia with Lewy bodies (DLB) from Alzheimer's Disease (AD). Previous studies reported that in DLB patients functional alterations of the parieto-occipital regions were correlated with the presence of VH. The aim of our study was to assess whether morphological changes in specific cortical regions of DLB could be related to the presence and severity of VH. We performed a cortical thickness analysis on magnetic resonance imaging data in a cohort including 18 DLB patients, 15 AD patients and 14 healthy control subjects. Relatively to DLB group, correlation analysis between the cortical thickness and the Neuropsychiatric Inventory (NPI) hallucination item scores was also performed. Cortical thickness was reduced bilaterally in DLB compared to controls in the pericalcarine and lingual gyri, cuneus, precuneus, superior parietal gyrus. Cortical thinning was found bilaterally in AD compared to controls in temporal cortex including the superior and middle temporal gyrus, part of inferior temporal cortex, temporal pole and insula. Inferior parietal and supramarginal gyri were also affected bilaterally in AD as compared to controls. The comparison between DLB and AD evidenced cortical thinning in DLB group in the right posterior regions including superior parietal gyrus, precuneus, cuneus, pericalcarine and lingual gyri. Furthermore, the correlation analysis between cortical thickness and NPI hallucination item scores showed that the structural alteration in the dorsal visual regions including superior parietal gyrus and precuneus closely correlated with the occurrence and severity of VH. We suggest that structural changes in key regions of the dorsal visual network may play a crucial role in the physiopathology of VH in DLB patients.

  20. Structural alteration of the dorsal visual network in DLB patients with visual hallucinations: a cortical thickness MRI study.

    Directory of Open Access Journals (Sweden)

    Stefano Delli Pizzi

    Full Text Available Visual hallucinations (VH represent one of the core features in discriminating dementia with Lewy bodies (DLB from Alzheimer's Disease (AD. Previous studies reported that in DLB patients functional alterations of the parieto-occipital regions were correlated with the presence of VH. The aim of our study was to assess whether morphological changes in specific cortical regions of DLB could be related to the presence and severity of VH. We performed a cortical thickness analysis on magnetic resonance imaging data in a cohort including 18 DLB patients, 15 AD patients and 14 healthy control subjects. Relatively to DLB group, correlation analysis between the cortical thickness and the Neuropsychiatric Inventory (NPI hallucination item scores was also performed. Cortical thickness was reduced bilaterally in DLB compared to controls in the pericalcarine and lingual gyri, cuneus, precuneus, superior parietal gyrus. Cortical thinning was found bilaterally in AD compared to controls in temporal cortex including the superior and middle temporal gyrus, part of inferior temporal cortex, temporal pole and insula. Inferior parietal and supramarginal gyri were also affected bilaterally in AD as compared to controls. The comparison between DLB and AD evidenced cortical thinning in DLB group in the right posterior regions including superior parietal gyrus, precuneus, cuneus, pericalcarine and lingual gyri. Furthermore, the correlation analysis between cortical thickness and NPI hallucination item scores showed that the structural alteration in the dorsal visual regions including superior parietal gyrus and precuneus closely correlated with the occurrence and severity of VH. We suggest that structural changes in key regions of the dorsal visual network may play a crucial role in the physiopathology of VH in DLB patients.

  1. Spatial Embedding and Wiring Cost Constrain the Functional Layout of the Cortical Network of Rodents and Primates.

    Science.gov (United States)

    Horvát, Szabolcs; Gămănuț, Răzvan; Ercsey-Ravasz, Mária; Magrou, Loïc; Gămănuț, Bianca; Van Essen, David C; Burkhalter, Andreas; Knoblauch, Kenneth; Toroczkai, Zoltán; Kennedy, Henry

    2016-07-01

    Mammals show a wide range of brain sizes, reflecting adaptation to diverse habitats. Comparing interareal cortical networks across brains of different sizes and mammalian orders provides robust information on evolutionarily preserved features and species-specific processing modalities. However, these networks are spatially embedded, directed, and weighted, making comparisons challenging. Using tract tracing data from macaque and mouse, we show the existence of a general organizational principle based on an exponential distance rule (EDR) and cortical geometry, enabling network comparisons within the same model framework. These comparisons reveal the existence of network invariants between mouse and macaque, exemplified in graph motif profiles and connection similarity indices, but also significant differences, such as fractionally smaller and much weaker long-distance connections in the macaque than in mouse. The latter lends credence to the prediction that long-distance cortico-cortical connections could be very weak in the much-expanded human cortex, implying an increased susceptibility to disconnection syndromes such as Alzheimer disease and schizophrenia. Finally, our data from tracer experiments involving only gray matter connections in the primary visual areas of both species show that an EDR holds at local scales as well (within 1.5 mm), supporting the hypothesis that it is a universally valid property across all scales and, possibly, across the mammalian class.

  2. Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states.

    Science.gov (United States)

    Lecrux, C; Hamel, E

    2016-10-05

    Brain imaging techniques that use vascular signals to map changes in neuronal activity, such as blood oxygenation level-dependent functional magnetic resonance imaging, rely on the spatial and temporal coupling between changes in neurophysiology and haemodynamics, known as 'neurovascular coupling (NVC)'. Accordingly, NVC responses, mapped by changes in brain haemodynamics, have been validated for different stimuli under physiological conditions. In the cerebral cortex, the networks of excitatory pyramidal cells and inhibitory interneurons generating the changes in neural activity and the key mediators that signal to the vascular unit have been identified for some incoming afferent pathways. The neural circuits recruited by whisker glutamatergic-, basal forebrain cholinergic- or locus coeruleus noradrenergic pathway stimulation were found to be highly specific and discriminative, particularly when comparing the two modulatory systems to the sensory response. However, it is largely unknown whether or not NVC is still reliable when brain states are altered or in disease conditions. This lack of knowledge is surprising since brain imaging is broadly used in humans and, ultimately, in conditions that deviate from baseline brain function. Using the whisker-to-barrel pathway as a model of NVC, we can interrogate the reliability of NVC under enhanced cholinergic or noradrenergic modulation of cortical circuits that alters brain states.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  3. Self-sustained firing activities of the cortical network with plastic rules in weak AC electrical fields

    Institute of Scientific and Technical Information of China (English)

    Qin Ying-Mei; Wang Jiang; Men Cong; Zhao Jia; Wei Xi-Le; Deng Bin

    2012-01-01

    Both external and endogenous electrical fields widely exist in the environment of cortical neurons.The effects of a weak alternating current (AC) field on a neural network model with synaptic plasticity are studied.It is found that self-sustained rhythmic firing patterns,which are closely correlated with the cognitive functions,are significantly modified due to the self-organizing of the network in the weak AC field.The activities of the neural networks are affected by the synaptic connection strength,the external stimuli,and so on.In the presence of learning rules,the synaptic connections can be modulated by the external stimuli,which will further enhance the sensitivity of the network to the external signal.The properties of the external AC stimuli can serve as control parameters in modulating the evolution of the neural network.

  4. Prefrontal cortical network activity: Opposite effects of psychedelic hallucinogens and D1/D5 dopamine receptor activation.

    Science.gov (United States)

    Lambe, E K; Aghajanian, G K

    2007-03-30

    The fine-tuning of network activity provides a modulating influence on how information is processed and interpreted in the brain. Here, we use brain slices of rat prefrontal cortex to study how recurrent network activity is affected by neuromodulators known to alter normal cortical function. We previously determined that glutamate spillover and stimulation of extrasynaptic N-methyl-d-aspartic acid (NMDA) receptors are required to support hallucinogen-induced cortical network activity. Since microdialysis studies suggest that psychedelic hallucinogens and dopamine D1/D5 receptor agonists have opposite effects on extracellular glutamate in prefrontal cortex, we hypothesized that these two families of psychoactive drugs would have opposite effects on cortical network activity. We found that network activity can be enhanced by 2,5-dimethoxy-4-iodoamphetamine (DOI) (a psychedelic hallucinogen that is a partial agonist of 5-HT(2A/2C) receptors) and suppressed by the selective D1/D5 agonist SKF 38393. This suppression could be mimicked by direct activation of adenylyl cyclase with forskolin or by addition of a cAMP analog. These findings are consistent with previous work showing that activation of adenylyl cyclase can upregulate neuronal glutamate transporters, thereby decreasing synaptic spillover of glutamate. Consistent with this hypothesis, a low concentration of the glutamate transporter inhibitor threo-beta-benzoylaspartic acid (TBOA) restored electrically-evoked recurrent activity in the presence of a selective D1/D5 agonist, whereas recurrent activity in the presence of a low level of the GABA(A) antagonist bicuculline was not resistant to suppression by the D1/D5 agonist. The tempering of network UP states by D1/D5 receptor activation may have implications for the proposed use of D1/D5 agonists in the treatment of schizophrenia.

  5. Cortical Amyloid Beta in Cognitively Normal Elderly Adults is Associated with Decreased Network Efficiency within the Cerebro-Cerebellar System.

    Science.gov (United States)

    Steininger, Stefanie C; Liu, Xinyang; Gietl, Anton; Wyss, Michael; Schreiner, Simon; Gruber, Esmeralda; Treyer, Valerie; Kälin, Andrea; Leh, Sandra; Buck, Alfred; Nitsch, Roger M; Prüssmann, Klaas P; Hock, Christoph; Unschuld, Paul G

    2014-01-01

    Deposition of cortical amyloid beta (Aβ) is a correlate of aging and a risk factor for Alzheimer disease (AD). While several higher order cognitive processes involve functional interactions between cortex and cerebellum, this study aims to investigate effects of cortical Aβ deposition on coupling within the cerebro-cerebellar system. We included 15 healthy elderly subjects with normal cognitive performance as assessed by neuropsychological testing. Cortical Aβ was quantified using (11)carbon-labeled Pittsburgh compound B positron-emission-tomography late frame signals. Volumes of brain structures were assessed by applying an automated parcelation algorithm to three dimensional magnetization-prepared rapid gradient-echo T1-weighted images. Basal functional network activity within the cerebro-cerebellar system was assessed using blood-oxygen-level dependent resting state functional magnetic resonance imaging at the high field strength of 7 T for measuring coupling between cerebellar seeds and cerebral gray matter. A bivariate regression approach was applied for identification of brain regions with significant effects of individual cortical Aβ load on coupling. Consistent with earlier reports, a significant degree of positive and negative coupling could be observed between cerebellar seeds and cerebral voxels. Significant positive effects of cortical Aβ load on cerebro-cerebellar coupling resulted for cerebral brain regions located in inferior temporal lobe, prefrontal cortex, hippocampus, parahippocampal gyrus, and thalamus. Our findings indicate that brain amyloidosis in cognitively normal elderly subjects is associated with decreased network efficiency within the cerebro-cerebellar system. While the identified cerebral regions are consistent with established patterns of increased sensitivity for Aβ-associated neurodegeneration, additional studies are needed to elucidate the relationship between dysfunction of the cerebro-cerebellar system and risk for AD.

  6. Causal hierarchy within the thalamo-cortical network in spike and wave discharges.

    Directory of Open Access Journals (Sweden)

    Anna E Vaudano

    Full Text Available BACKGROUND: Generalised spike wave (GSW discharges are the electroencephalographic (EEG hallmark of absence seizures, clinically characterised by a transitory interruption of ongoing activities and impaired consciousness, occurring during states of reduced awareness. Several theories have been proposed to explain the pathophysiology of GSW discharges and the role of thalamus and cortex as generators. In this work we extend the existing theories by hypothesizing a role for the precuneus, a brain region neglected in previous works on GSW generation but already known to be linked to consciousness and awareness. We analysed fMRI data using dynamic causal modelling (DCM to investigate the effective connectivity between precuneus, thalamus and prefrontal cortex in patients with GSW discharges. METHODOLOGY AND PRINCIPAL FINDINGS: We analysed fMRI data from seven patients affected by Idiopathic Generalized Epilepsy (IGE with frequent GSW discharges and significant GSW-correlated haemodynamic signal changes in the thalamus, the prefrontal cortex and the precuneus. Using DCM we assessed their effective connectivity, i.e. which region drives another region. Three dynamic causal models were constructed: GSW was modelled as autonomous input to the thalamus (model A, ventromedial prefrontal cortex (model B, and precuneus (model C. Bayesian model comparison revealed Model C (GSW as autonomous input to precuneus, to be the best in 5 patients while model A prevailed in two cases. At the group level model C dominated and at the population-level the p value of model C was approximately 1. CONCLUSION: Our results provide strong evidence that activity in the precuneus gates GSW discharges in the thalamo-(fronto cortical network. This study is the first demonstration of a causal link between haemodynamic changes in the precuneus -- an index of awareness -- and the occurrence of pathological discharges in epilepsy.

  7. Abnormal activation of the motor cortical network in idiopathic scoliosis demonstrated by functional MRI.

    Science.gov (United States)

    Domenech, Julio; García-Martí, G; Martí-Bonmatí, L; Barrios, C; Tormos, J M; Pascual-Leone, A

    2011-07-01

    The aetiology of idiopathic scoliosis (IS) remains unknown, but there is growing support for the possibility of an underlying neurological disorder. Functional magnetic resonance imaging (fMRI) can characterize the abnormal activation of the sensorimotor brain network in movement disorders and could provide further insights into the neuropathogenesis of IS. Twenty subjects were included in the study; 10 adolescents with IS (mean age of 15.2, 8 girls and 2 boys) and 10 age-matched healthy controls. The average Cobb angle of the primary curve in the IS patients was 35° (range 27°-55°). All participants underwent a block-design fMRI experiment in a 1.5-Tesla MRI scanner to explore cortical activation following a simple motor task. Rest periods alternated with activation periods during which participants were required to open and close their hand at an internally paced rate of approximately 1 Hz. Data were analyzed with Statistical Parametric Mapping (SPM5) including age, sex and laterality as nuisance variables to minimise the presence of bias in the results. Compared to controls, IS patients showed significant increases in blood oxygenation level dependent (BOLD) activity in contralateral supplementary motor area when performing the motor task with either hand. No significant differences were observed when testing between groups in the functional activation in the primary motor cortex, premotor cortex and somatosensory cortex. Additionally, the IS group showed a greater interhemispheric asymmetry index than the control group (0.30 vs. 0.13, p motor areas during movement execution in patients with IS. These findings support the hypothesis that a sensorimotor integration disorder underlies the pathogenesis of IS.

  8. Increased interictal cerebral glucose metabolism in a cortical-subcortical network in drug naive patients with cryptogenic temporal lobe epilepsy.

    Science.gov (United States)

    Franceschi, M; Lucignani, G; Del Sole, A; Grana, C; Bressi, S; Minicucci, F; Messa, C; Canevini, M P; Fazio, F

    1995-01-01

    Positron emission tomography with [18F]-2-fluoro-2-deoxy-D-glucose ([18F]FDG) has been used to assess the pattern of cerebral metabolism in different types of epilepsies. However, PET with [18F]FDG has never been used to evaluate drug naive patients with cryptogenic temporal lobe epilepsy, in whom the mechanism of origin and diffusion of the epileptic discharge may differ from that underlying other epilepsies. In a group of patients with cryptogenic temporal lobe epilepsy, never treated with antiepileptic drugs, evidence has been found of significant interictal glucose hypermetabolism in a bilateral neural network including the temporal lobes, thalami, basal ganglia, and cingular cortices. The metabolism in these areas and frontal lateral cortex enables the correct classification of all patients with temporal lobe epilepsy and controls by discriminant function analysis. Other cortical areas--namely, frontal basal and lateral, temporal mesial, and cerebellar cortices--had bilateral increases of glucose metabolism ranging from 10 to 15% of normal controls, although lacking stringent statistical significance. This metabolic pattern could represent a pathophysiological state of hyperactivity predisposing to epileptic discharge generation or diffusion, or else a network of inhibitory circuits activated to prevent the diffusion of the epileptic discharge. PMID:7561924

  9. Regional vulnerability of longitudinal cortical association connectivity: Associated with structural network topology alterations in preterm children with cerebral palsy.

    Science.gov (United States)

    Ceschin, Rafael; Lee, Vince K; Schmithorst, Vince; Panigrahy, Ashok

    2015-01-01

    Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL), are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI) studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4) and 75 healthy controls (mean age 5.7 ± 3.4). Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS) and voxel-based morphometry (VBM) demonstrating diffusely reduced fractional anisotropy (FA) reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1) reduced regional posterior-anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation) correlated with reduced posterior-anterior gradient of intra-regional (nodal efficiency) metrics with relative sparing of frontal and temporal regions; and (2) reduced regional FA within frontal-thalamic-striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract) correlated with

  10. Bicycling and walking are associated with different cortical oscillatory dynamics

    Directory of Open Access Journals (Sweden)

    Lena eStorzer

    2016-02-01

    Full Text Available Although bicycling and walking involve similar complex coordinated movements, surprisingly Parkinson’s patients with freezing of gait typically remain able to bicycle despite severe difficulties walking. This observation suggests functional differences in the motor networks subserving bicycling and walking. However, a direct comparison of brain activity related to bicycling and walking has never been performed, neither in healthy participants nor in patients. Such a comparison could potentially help elucidating the cortical involvement in motor control and the mechanisms through which bicycling ability may be preserved in patients with freezing of gait. The aim of this study was to contrast the cortical oscillatory dynamics involved in bicycling and walking in healthy participants.To this end, EEG and EMG data of 14 healthy participants were analyzed, who cycled on a stationary bicycle at a slow cadence of 40 revolutions per minute (rpm and walked at 40 strides per minute (spm, respectively.Relative to walking, bicycling was associated with a stronger power decrease in the high beta band (23-35 Hz during movement initiation and execution, followed by a stronger beta power increase after movement termination. Walking, on the other hand, was characterized by a stronger and persisting alpha power (8-12 Hz decrease. Both bicycling and walking exhibited movement cycle-dependent power modulation in the 24-40 Hz range that was correlated with EMG activity. This modulation was significantly stronger in walking.The present findings reveal differential cortical oscillatory dynamics in motor control for two types of complex coordinated motor behavior, i.e., bicycling and walking. Bicycling was associated with a stronger sustained cortical activation as indicated by the stronger high beta power decrease during movement execution and less cortical motor control within the movement cycle. We speculate this to be due to the more continuous nature of

  11. A new bio-inspired stimulator to suppress hyper-synchronized neural firing in a cortical network.

    Science.gov (United States)

    Amiri, Masoud; Amiri, Mahmood; Nazari, Soheila; Faez, Karim

    2016-12-07

    Hyper-synchronous neural oscillations are the character of several neurological diseases such as epilepsy. On the other hand, glial cells and particularly astrocytes can influence neural synchronization. Therefore, based on the recent researches, a new bio-inspired stimulator is proposed which basically is a dynamical model of the astrocyte biophysical model. The performance of the new stimulator is investigated on a large-scale, cortical network. Both excitatory and inhibitory synapses are also considered in the simulated spiking neural network. The simulation results show that the new stimulator has a good performance and is able to reduce recurrent abnormal excitability which in turn avoids the hyper-synchronous neural firing in the spiking neural network. In this way, the proposed stimulator has a demand controlled characteristic and is a good candidate for deep brain stimulation (DBS) technique to successfully suppress the neural hyper-synchronization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Dysfunction and dysconnection in cortical-striatal networks during sustained attention: Genetic risk for schizophrenia or bipolar disorder and its impact on brain network function

    Directory of Open Access Journals (Sweden)

    Vaibhav A. Diwadkar

    2014-05-01

    Full Text Available Abnormalities in the brain’s attention network may represent early identifiable neurobiological impairments in individuals at increased risk for schizophrenia or bipolar disorder. Here we provide evidence of dysfunctional regional and network function in adolescents at higher genetic risk for schizophrenia or bipolar disorder (henceforth HGR. During fMRI, participants engaged in a sustained attention task with variable demands. The task alternated between attention (120 s, visual control (passive viewing; 120 s and rest (20 s epochs. Low and high demand attention conditions were created using the rapid presentation of 2- or 3-digit numbers. Subjects were required to detect repeated presentation of numbers. We demonstrate that the recruitment of cortical and striatal regions are disordered in HGR: Relative to typical controls (TC, HGR showed lower recruitment of the dorsal prefrontal cortex, but higher recruitment of the superior parietal cortex. This imbalance was more dramatic in the basal ganglia. There, a group by task demand interaction was observed, such that increased attention demand led to increased engagement in TC, but disengagement in HGR. These activation studies were complemented by network analyses using Dynamic Causal Modeling. Competing model architectures were assessed across a network of cortical-striatal regions, distinguished at a second level using random effects Bayesian model selection. In the winning architecture, HGR were characterized by significant reductions in coupling across both frontal-striatal and frontal-parietal pathways. The effective connectivity analyses indicate emergent network dysconnection, consistent with findings in patients with schizophrenia. Emergent patterns of regional dysfunction and disconnection in cortical-striatal pathways may provide functional biological signatures in the adolescent risk state for psychiatric illness.

  13. Self-organized two-state membrane potential transitions in a network of realistically modeled cortical neurons.

    Science.gov (United States)

    Kang, Siu; Kitano, Katsunori; Fukai, Tomoki

    2004-04-01

    Recent studies have revealed that in vivo cortical neurons show spontaneous transitions between two subthreshold levels of the membrane potentials, 'up' and 'down' states. The neural mechanism of generating those spontaneous states transitions, however, remains unclear. Recent electrophysiological studies have suggested that those state transitions may occur through activation of a hyperpolarization-activated cation current (H-current), possibly by inhibitory synaptic inputs. Here, we demonstrate that two-state membrane potential fluctuations similar to those exhibited by in vivo neurons can be generated through a spike-timing-dependent self-organizing process in a network of inhibitory neurons and excitatory neurons expressing the H-current.

  14. Human cortical control of hand movements: parietofrontal networks for reaching, grasping, and pointing.

    Science.gov (United States)

    Filimon, Flavia

    2010-08-01

    In primates, control of the limb depends on many cortical areas. Whereas specialized parietofrontal circuits have been proposed for different movements in macaques, functional neuroimaging in humans has revealed widespread, overlapping activations for hand and eye movements and for movements such as reaching and grasping. This review examines the involvement of frontal and parietal areas in hand and arm movements in humans as revealed with functional neuroimaging. The degree of functional specialization, possible homologies with macaque cortical regions, and differences between frontal and posterior parietal areas are discussed, as well as a possible organization of hand movements with respect to different spatial reference frames. The available evidence supports a cortical organization along gradients of sensory (visual to somatosensory) and effector (eye to hand) preferences.

  15. The influence of ion concentrations on the dynamic behavior of the Hodgkin-Huxley model-based cortical network.

    Science.gov (United States)

    Tagluk, M Emin; Tekin, Ramazan

    2014-08-01

    Action potentials (APs) in the form of very short pulses arise when the cell is excited by any internal or external stimulus exceeding the critical threshold of the membrane. During AP generation, the membrane potential completes its natural cycle through typical phases that can be formatted by ion channels, gates and ion concentrations, as well as the synaptic excitation rate. On the basis of the Hodgkin-Huxley cell model, a cortical network consistent with the real anatomic structure is realized with randomly interrelated small population of neurons to simulate a cerebral cortex segment. Using this model, we investigated the effects of Na(+) and K(+) ion concentrations on the outcome of this network in terms of regularity, phase locking, and synchronization. The results suggested that Na(+) concentration does slightly affect the amplitude but not considerably affects the other parameters specified by depolarization and repolarization. K(+) concentration significantly influences the form, regularity, and synchrony of the network-generated APs. No previous study dealing directly with the effects of both Na(+) and K(+) ion concentrations on regularity and synchronization of the simulated cortical network-generated APs, allowing for the comparison of results obtained using our methods, was encountered in the literature. The results, however, were consistent with those obtained through studies concerning resonance and synchronization from another perspective and with the information revealed through physiological and pharmacological experiments concerning changing ion concentrations or blocking ion channels. Our results demonstrated that the regularity and reliability of brain functions have a strong relationship with cellular ion concentrations, and suggested the management of the dynamic behavior of the cellular network with ion concentrations.

  16. The cortical cytoskeletal network and cell-wall dynamics in the unicellular charophycean green alga Penium margaritaceum.

    Science.gov (United States)

    Ochs, Julie; LaRue, Therese; Tinaz, Berke; Yongue, Camille; Domozych, David S

    2014-10-01

    Penium margaritaceum is a unicellular charophycean green alga with a unique bi-directional polar expansion mechanism that occurs at the central isthmus zone prior to cell division. This entails the focused deposition of cell-wall polymers coordinated by the activities of components of the endomembrane system and cytoskeletal networks. The goal of this study was to elucidate the structural organization of the cortical cytoskeletal network during the cell cycle and identify its specific functional roles during key cell-wall developmental events: pre-division expansion and cell division. Microtubules and actin filaments were labelled during various cell cycle phases with an anti-tubulin antibody and rhodamine phalloidin, respectively. Chemically induced disruption of the cytoskeleton was used to elucidate specific functional roles of microtubules and actin during cell expansion and division. Correlation of cytoskeletal dynamics with cell-wall development included live cell labelling with wall polymer-specific antibodies and electron microscopy. The cortical cytoplasm of Penium is highlighted by a band of microtubules found at the cell isthmus, i.e. the site of pre-division wall expansion. This band, along with an associated, transient band of actin filaments, probably acts to direct the deposition of new wall material and to mark the plane of the future cell division. Two additional bands of microtubules, which we identify as satellite bands, arise from the isthmus microtubular band at the onset of expansion and displace toward the poles during expansion, ultimately marking the isthmus of future daughter cells. Treatment with microtubule and actin perturbation agents reversibly stops cell division. The cortical cytoplasm of Penium contains distinct bands of microtubules and actin filaments that persist through the cell cycle. One of these bands, termed the isthmus microtubule band, or IMB, marks the site of both pre-division wall expansion and the zone where a cross

  17. The location of the paths subserving micturition: studies in patients with cervical myelopathy.

    Science.gov (United States)

    Sakakibara, R; Hattori, T; Tojo, M; Yamanishi, T; Yasuda, K; Hirayama, K

    1995-11-06

    Urodynamic studies and neurological examinations were performed on 128 patients with cervical myelopathies including 82 with spondylitic myelopathy and 46 with ossification of the posterior longitudinal ligament (OPLL), investigating the location of the paths subserving micturition in the spinal cord. Accurate history taking revealed micturitional symptoms in 95 patients, including irritative symptoms in 61 and obstructive symptoms in 71. Urinary incontinence was noted in 25 and residual urine of over 100 ml or retention was found in 22. Neurological examination revealed disturbed deep sensation in 55, disturbed superficial sensation in 63 and pyramidal signs (weakness, hyperreflexia of legs and Babinski sign) in 96 patients. Urodynamic studies revealed uninhibited contraction in 61 and detrusor-sphincter dyssynergia in 22 patients. Bladder capacity was smaller in patients with Babinski sign (P tabes dorsalis, it is concluded that the pathway subserving detrusor function seems to be located mainly in the lateral column of the spinal cord. The descending pathway subserving coordination of bladder and urethral sphincter seems to be located mainly in the lateral column, and its ascending pathway seems to be located in the dorsal column. The path subserving urinary sensation seems to be located mainly in the dorsal column of the spinal cord.

  18. On the neural mechanisms subserving consciousness and attention

    Directory of Open Access Journals (Sweden)

    Catherine eTallon-Baudry

    2012-01-01

    Full Text Available Consciousness, as described in the experimental literature, is a multi-faceted phenomenon, that impinges on other well-studied concepts such as attention and control. Do consciousness and attention refer to different aspects of the same core phenomenon, or do they correspond to distinct functions? One possibility to address this question is to examine the neural mechanisms underlying consciousness and attention. If consciousness and attention pertain to the same concept, they should rely on shared neural mechanisms. Conversely, if their underlying mechanisms are distinct, then consciousness and attention should be considered as distinct entities. This paper therefore reviews neurophysiological facts arguing in favor or against a tight relationship between consciousness and attention. Three neural mechanisms that have been associated with both attention and consciousness are examined (neural amplification, involvement of the fronto-parietal network, and oscillatory synchrony, to conclude that the commonalities between attention and consciousness at the neural level may have been overestimated. Last but not least, experiments in which both attention and consciousness were probed at the neural level point toward a dissociation between the two concepts. It therefore appears from this review that consciousness and attention rely on distinct neural properties, although they can interact at the behavioral level. It is proposed that a "cumulative influence model", in which attention and consciousness correspond to distinct neural mechanisms feeding a single decisional process leading to behavior, fits best with available neural and behavioral data. In this view, consciousness should not be considered as a top-level executive function but should rather be defined by its experiential properties.

  19. Temporal Genetic Modifications after Controlled Cortical Impact—Understanding Traumatic Brain Injury through a Systematic Network Approach

    Directory of Open Access Journals (Sweden)

    Yung-Hao Wong

    2016-02-01

    Full Text Available Traumatic brain injury (TBI is a primary injury caused by external physical force and also a secondary injury caused by biological processes such as metabolic, cellular, and other molecular events that eventually lead to brain cell death, tissue and nerve damage, and atrophy. It is a common disease process (as opposed to an event that causes disabilities and high death rates. In order to treat all the repercussions of this injury, treatment becomes increasingly complex and difficult throughout the evolution of a TBI. Using high-throughput microarray data, we developed a systems biology approach to explore potential molecular mechanisms at four time points post-TBI (4, 8, 24, and 72 h, using a controlled cortical impact (CCI model. We identified 27, 50, 48, and 59 significant proteins as network biomarkers at these four time points, respectively. We present their network structures to illustrate the protein–protein interactions (PPIs. We also identified UBC (Ubiquitin C, SUMO1, CDKN1A (cyclindependent kinase inhibitor 1A, and MYC as the core network biomarkers at the four time points, respectively. Using the functional analytical tool MetaCore™, we explored regulatory mechanisms and biological processes and conducted a statistical analysis of the four networks. The analytical results support some recent findings regarding TBI and provide additional guidance and directions for future research.

  20. The statistics of repeating patterns of cortical activity can be reproduced by a model network of stochastic binary neurons.

    Science.gov (United States)

    Roxin, Alex; Hakim, Vincent; Brunel, Nicolas

    2008-10-15

    Calcium imaging of the spontaneous activity in cortical slices has revealed repeating spatiotemporal patterns of transitions between so-called down states and up states (Ikegaya et al., 2004). Here we fit a model network of stochastic binary neurons to data from these experiments, and in doing so reproduce the distributions of such patterns. We use two versions of this model: (1) an unconnected network in which neurons are activated as independent Poisson processes; and (2) a network with an interaction matrix, estimated from the data, representing effective interactions between the neurons. The unconnected model (model 1) is sufficient to account for the statistics of repeating patterns in 11 of the 15 datasets studied. Model 2, with interactions between neurons, is required to account for pattern statistics of the remaining four. Three of these four datasets are the ones that contain the largest number of transitions, suggesting that long datasets are in general necessary to render interactions statistically visible. We then study the topology of the matrix of interactions estimated for these four datasets. For three of the four datasets, we find sparse matrices with long-tailed degree distributions and an overrepresentation of certain network motifs. The remaining dataset exhibits a strongly interconnected, spatially localized subgroup of neurons. In all cases, we find that interactions between neurons facilitate the generation of long patterns that do not repeat exactly.

  1. Anatomical coupling among distributed cortical regions in youth varies as a function of individual differences in vocabulary abilities.

    Science.gov (United States)

    Lee, Nancy Raitano; Raznahan, Armin; Wallace, Gregory L; Alexander-Bloch, Aaron; Clasen, Liv S; Lerch, Jason P; Giedd, Jay N

    2014-05-01

    Patient lesion and functional magnetic resonance imaging (fMRI) studies have provided convincing evidence that a distributed brain network subserves word knowledge. However, little is known about the structural correlates of this network within the context of typical development and whether anatomical coupling in linguistically relevant regions of cortex varies as a function of vocabulary skill. Here we investigate the association between vocabulary and anatomical coupling in 235 typically developing youth (ages 6-19 years) using structural MRI. The study's primary aim was to evaluate whether higher vocabulary performance was associated with greater vertex-level cortical thickness covariation in distributed regions of cortex known to be associated with word knowledge. Results indicate that better vocabulary skills are associated with greater anatomical coupling in several linguistically relevant regions of cortex, including the left inferior parietal (temporal-parietal junction), inferior temporal, middle frontal, and superior frontal gyri and the right inferior frontal and precentral gyri. Furthermore, in high vocabulary scorers, stronger coupling is found among these regions. Thus, complementing patient and fMRI studies, this is the first investigation to highlight the relevance of anatomical covariance within the cortex to vocabulary skills in typically developing youth, further elucidating the distributed nature of neural systems subserving word knowledge.

  2. A Possible Role of Prolonged Whirling Episodes on Structural Plasticity of the Cortical Networks and Altered Vertigo Perception: The Cortex of Sufi Whirling Dervishes

    Science.gov (United States)

    Cakmak, Yusuf O.; Ekinci, Gazanfer; Heinecke, Armin; Çavdar, Safiye

    2017-01-01

    Although minutes of a spinning episode may induce vertigo in the healthy human, as a result of a possible perceptional plasticity, Sufi Whirling Dervishes (SWDs) can spin continuously for an hour without a vertigo perception.This unique long term vestibular system stimulation presents a potential human model to clarify the cortical networks underlying the resistance against vertigo. This study, therefore, aimed to investigate the potential structural cortical plasticity in SWDs. Magnetic resonance imaging (MRI) of 10 SWDs and 10 controls were obtained, using a 3T scanner. Cortical thickness in the whole cortex was calculated. Results demonstrated significantly thinner cortical areas for SWD subjects compared with the control group in the hubs of the default mode network (DMN), as well as in the motion perception and discrimination areas including the right dorsolateral prefrontal cortex (DLPFC), the right lingual gyrus and the left visual area 5 (V5)/middle temporal (MT) and the left fusiform gyrus. In conclusion, this is the first report that warrants the potential relationship of the motion/body perception related cortical networks and the prolonged term of whirling ability without vertigo or dizziness. PMID:28167905

  3. Analysis of Amygdalar-Cortical Network Covariance During Pre- versus Post-menopausal Estrogen Levels: Potential Relevance to Resting State Networks, Mood, and Cognition

    Science.gov (United States)

    Ottowitz, William E.; Derro, David; Dougherty, Darin D.; Lindquist, Martin A.; Fischman, Alan J.; Hall, Janet E.

    2014-01-01

    Objectives 1.) Expand the scope of neuroendocrine applications of functional neuroimaging techniques. 2.) Compare the covariance of amygdalar activity with that of the rest of the brain during pre- and post-menopausal levels of estrogen (E2). Based on the distribution of cortical E2 receptors and the neocortical regions where E2 has been shown to preferentially accumulate, we predict that E2 infusion will increase covariance of amygdalar activity with that of the temporal and frontal cortices. Design This basic physiology study employed a within-subject design. All participants were post-menopausal women (n =7). Analysis of covariance between whole brain and amygdalar regional cerebral glucose consumption (CMRglc) was conducted in a voxel-wise manner by means of the basic regression option in SPM2 and was applied to FDG-PET scans acquired at baseline and after a 24 hour graded E2 infusion. Setting an academic medical center; Massachusetts General Hospital, Boston, Massachusetts. Results E2 levels (mean ± sem) were significantly greater at 24 hours (257.9 pg/mL ± 29.7) than at 0 hours (28.1 pg/mL ± 3.4). Right amygdalar CMRglc showed a significant covariance with activity of three different regions of the temporal cortex during E2 infusion, but none at baseline. In addition, right amygdalar CMRglc covaried with that of the right medial and superior frontal gyri only during E2 infusion. Conclusions In addition to suggesting changes in amygdalar-cortical network connectivity as a result of short-term E2 exposure, these analyses provide evidence that basic neuroendocrine research may benefit from further use of FDG-PET and other functional neuroimaging modalities for network level analyses. PMID:18766152

  4. The functional roles of alpha-band phase synchronization in local and large-scale cortical networks

    Directory of Open Access Journals (Sweden)

    Satu ePalva

    2011-09-01

    Full Text Available Alpha-frequency band (8-14 Hz oscillations are among the most salient phenomena in human electroencephalography (EEG recordings and yet their functional roles have remained unclear. Much of research on alpha oscillations in human EEG has focused on peri-stimulus amplitude dynamics, which phenomenologically support an idea of alpha oscillations being negatively correlated with local cortical excitability and having a role in the suppression of task-irrelevant neuronal processing. This kind of an inhibitory role for alpha oscillations is also supported by several functional magnetic resonance imaging (fMRI and trans-cranial magnetic stimulation (TMS studies. Nevertheless, investigations of local and inter-areal alpha phase dynamics suggest that the alpha-frequency band rhythmicity may play a role also in active task-relevant neuronal processing. These data imply that inter-areal alpha phase synchronization could support attentional, executive, and contextual functions. In this review, we outline evidence supporting different views on the roles of alpha oscillations in cortical networks and unresolved issues that should be addressed to resolve or reconcile these apparently contrasting hypotheses.

  5. Odor recognition and segmentation by coupled olfactory bulb and cortical networks

    CERN Document Server

    Li, Z; Li, Zhaoping; Hertz, John

    1999-01-01

    We present a model of a coupled system of the olfactory bulb and cortex. Odor inputs to the epithelium are transformed to oscillatory bulbar activities. The cortex recognizes the odor by resonating to the bulbar oscillating pattern when the amplitude and phase patterns from the bulb match an odor memory stored in the intracortical synapses. We assume a cortical structure which transforms the odor information in the oscillatory pattern to a slow DC feedback signal to the bulb. This feedback suppresses the bulbar response to the pre-existing odor, allowing subsequent odor objects to be segmented out for recognition.

  6. Enriched encoding: reward motivation organizes cortical networks for hippocampal detection of unexpected events.

    Science.gov (United States)

    Murty, Vishnu P; Adcock, R Alison

    2014-08-01

    Learning how to obtain rewards requires learning about their contexts and likely causes. How do long-term memory mechanisms balance the need to represent potential determinants of reward outcomes with the computational burden of an over-inclusive memory? One solution would be to enhance memory for salient events that occur during reward anticipation, because all such events are potential determinants of reward. We tested whether reward motivation enhances encoding of salient events like expectancy violations. During functional magnetic resonance imaging, participants performed a reaction-time task in which goal-irrelevant expectancy violations were encountered during states of high- or low-reward motivation. Motivation amplified hippocampal activation to and declarative memory for expectancy violations. Connectivity of the ventral tegmental area (VTA) with medial prefrontal, ventrolateral prefrontal, and visual cortices preceded and predicted this increase in hippocampal sensitivity. These findings elucidate a novel mechanism whereby reward motivation can enhance hippocampus-dependent memory: anticipatory VTA-cortical-hippocampal interactions. Further, the findings integrate literatures on dopaminergic neuromodulation of prefrontal function and hippocampus-dependent memory. We conclude that during reward motivation, VTA modulation induces distributed neural changes that amplify hippocampal signals and records of expectancy violations to improve predictions-a potentially unique contribution of the hippocampus to reward learning.

  7. Prediction of the main cortical areas and connections involved in the tactile function of the visual cortex by network analysis.

    Science.gov (United States)

    Négyessy, László; Nepusz, Tamás; Kocsis, László; Bazsó, Fülöp

    2006-04-01

    We explored the cortical pathways from the primary somatosensory cortex to the primary visual cortex (V1) by analysing connectional data in the macaque monkey using graph-theoretical tools. Cluster analysis revealed the close relationship of the dorsal visual stream and the sensorimotor cortex. It was shown that prefrontal area 46 and parietal areas VIP and 7a occupy a central position between the different clusters in the visuo-tactile network. Among these structures all the shortest paths from primary somatosensory cortex (3a, 1 and 2) to V1 pass through VIP and then reach V1 via MT, V3 and PO. Comparison of the input and output fields suggested a larger specificity for the 3a/1-VIP-MT/V3-V1 pathways among the alternative routes. A reinforcement learning algorithm was used to evaluate the importance of the aforementioned pathways. The results suggest a higher role for V3 in relaying more direct sensorimotor information to V1. Analysing cliques, which identify areas with the strongest coupling in the network, supported the role of VIP, MT and V3 in visuo-tactile integration. These findings indicate that areas 3a, 1, VIP, MT and V3 play a major role in shaping the tactile information reaching V1 in both sighted and blind subjects. Our observations greatly support the findings of the experimental studies and provide a deeper insight into the network architecture underlying visuo-tactile integration in the primate cerebral cortex.

  8. Self-sustained asynchronous irregular states and Up-Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons.

    Science.gov (United States)

    Destexhe, Alain

    2009-12-01

    Randomly-connected networks of integrate-and-fire (IF) neurons are known to display asynchronous irregular (AI) activity states, which resemble the discharge activity recorded in the cerebral cortex of awake animals. However, it is not clear whether such activity states are specific to simple IF models, or if they also exist in networks where neurons are endowed with complex intrinsic properties similar to electrophysiological measurements. Here, we investigate the occurrence of AI states in networks of nonlinear IF neurons, such as the adaptive exponential IF (Brette-Gerstner-Izhikevich) model. This model can display intrinsic properties such as low-threshold spike (LTS), regular spiking (RS) or fast-spiking (FS). We successively investigate the oscillatory and AI dynamics of thalamic, cortical and thalamocortical networks using such models. AI states can be found in each case, sometimes with surprisingly small network size of the order of a few tens of neurons. We show that the presence of LTS neurons in cortex or in thalamus, explains the robust emergence of AI states for relatively small network sizes. Finally, we investigate the role of spike-frequency adaptation (SFA). In cortical networks with strong SFA in RS cells, the AI state is transient, but when SFA is reduced, AI states can be self-sustained for long times. In thalamocortical networks, AI states are found when the cortex is itself in an AI state, but with strong SFA, the thalamocortical network displays Up and Down state transitions, similar to intracellular recordings during slow-wave sleep or anesthesia. Self-sustained Up and Down states could also be generated by two-layer cortical networks with LTS cells. These models suggest that intrinsic properties such as adaptation and low-threshold bursting activity are crucial for the genesis and control of AI states in thalamocortical networks.

  9. Abnormal dopaminergic modulation of striato-cortical networks underlies levodopa-induced dyskinesias in humans

    DEFF Research Database (Denmark)

    Herz, Damian M.; Haagensen, Brian N.; Christensen, Mark S.

    2015-01-01

    Dopaminergic signalling in the striatum contributes to reinforcement of actions and motivational enhancement of motor vigour. Parkinson's disease leads to progressive dopaminergic denervation of the striatum, impairing the function of cortico-basal ganglia networks. While levodopa therapy...

  10. Low and High-Frequency Field Potentials of Cortical Networks Exhibit Distinct Responses to Chemicals

    Science.gov (United States)

    Neural networks grown on microelectrode arrays (MEAs) have become an important, high content in vitro assay for assessing neuronal function. MEA experiments typically examine high- frequency (HF) (>200 Hz) spikes, and bursts which can be used to discriminate between differ...

  11. Field-programmable gate array implementation of a probabilistic neural network for motor cortical decoding in rats.

    Science.gov (United States)

    Zhou, Fan; Liu, Jun; Yu, Yi; Tian, Xiang; Liu, Hui; Hao, Yaoyao; Zhang, Shaomin; Chen, Weidong; Dai, Jianhua; Zheng, Xiaoxiang

    2010-01-15

    A practical brain-machine interface (BMI) requires real-time decoding algorithms to be realised in a portable device rather than a personal computer. In this article, a field-programmable gate array (FPGA) implementation of a probabilistic neural network (PNN) is proposed and developed to decode motor cortical ensemble recordings in rats performing a lever-pressing task for water rewards. A chronic 16-channel microelectrode array was implanted into the primary motor cortex of the rat to record neural activity, and the pressure signal of the lever were recorded simultaneously. To decode the pressure value from neural activity, both Matlab-based and FPGA-based mapping algorithms using a PNN were implemented and evaluated. In the FPGA architecture, training data of the network were stored in random access memory (RAM) blocks and multiply-add operations were realised by on-chip DSP48E slices. In the approximation of the activation function, a Taylor series and a look-up table (LUT) are used to achieve an accurate approximation. The results of FPGA implementation are as accurate as the realisation of Matlab, but the running speed is 37.9 times faster. This novel and feasible method indicates that the performance of current FPGAs is competent for portable BMI applications.

  12. Computational model of thalamo-cortical networks: dynamical control of alpha rhythms in relation to focal attention.

    Science.gov (United States)

    Suffczynski, P; Kalitzin, S; Pfurtscheller, G; Lopes da Silva, F H

    2001-12-01

    EEG/MEG rhythmic activities such as alpha rhythms, of the visual or of the somato-sensory cortex, are commonly modulated as subjects perform certain tasks or react to specific stimuli. In general, these activities change depending on extrinsic or intrinsic events. A decrease of the amplitude of alpha rhythmic activity occurring after a given event, which manifests as a decrease of a spectral peak, is called event-related desynchronization (ERD), whereas the inverse is called event-related synchronization (ERS), since it is assumed that the power of a spectral peak is related to the degree of synchrony of the underlying oscillating neuronal populations. An intriguing observation in this respect [Pfurtscheller and Neuper, Neurosci. Lett. 174 (1994) 93-96] was that ERD of alpha rhythms recorded over the central areas was accompanied by ERS, within the same frequency band, recorded over neighboring areas. In case the event was a hand movement, ERD was recorded over the scalp overlying the hand cortical area, whereas ERS was concomitantly recorded over the midline, whereas if the movement was of the foot the opposite was found. We called this phenomenon 'focal ERD/surround ERS'. The question of how this phenomenon may be generated was approached by means of a computational model of thalamo-cortical networks, that incorporates basic properties of neurons and synaptic interactions. These simulation studies revealed that this antagonistic ERD/ERS phenomenon depends on the functional interaction between the populations of thalamo-cortical cells (TCR) and reticular nucleus cells (RE) and on how this interaction is modulated by cholinergic inputs. An essential feature of this interaction is the existence of cross-talk between different sectors of RE that correspond to distinct sensory modules (e.g. hand, foot). These observations led us to formulate the hypothesis that this basic neurophysiological mechanism can account for the general observation that enhanced attention

  13. Enriched Encoding: Reward Motivation Organizes Cortical Networks for Hippocampal Detection of Unexpected Events

    Science.gov (United States)

    Murty, Vishnu P.; Adcock, R. Alison

    2014-01-01

    Learning how to obtain rewards requires learning about their contexts and likely causes. How do long-term memory mechanisms balance the need to represent potential determinants of reward outcomes with the computational burden of an over-inclusive memory? One solution would be to enhance memory for salient events that occur during reward anticipation, because all such events are potential determinants of reward. We tested whether reward motivation enhances encoding of salient events like expectancy violations. During functional magnetic resonance imaging, participants performed a reaction-time task in which goal-irrelevant expectancy violations were encountered during states of high- or low-reward motivation. Motivation amplified hippocampal activation to and declarative memory for expectancy violations. Connectivity of the ventral tegmental area (VTA) with medial prefrontal, ventrolateral prefrontal, and visual cortices preceded and predicted this increase in hippocampal sensitivity. These findings elucidate a novel mechanism whereby reward motivation can enhance hippocampus-dependent memory: anticipatory VTA-cortical–hippocampal interactions. Further, the findings integrate literatures on dopaminergic neuromodulation of prefrontal function and hippocampus-dependent memory. We conclude that during reward motivation, VTA modulation induces distributed neural changes that amplify hippocampal signals and records of expectancy violations to improve predictions—a potentially unique contribution of the hippocampus to reward learning. PMID:23529005

  14. Contrasting activity profile of two distributed cortical networks as a function of attentional demands.

    Science.gov (United States)

    Popa, Daniela; Popescu, Andrei T; Paré, Denis

    2009-01-28

    Recent human functional MRI (fMRI) studies have revealed that two widely distributed groups of cortical areas display inverse changes in activity when attentional demands increase, with one group showing higher (task-on) and the second lower (task-off) blood oxygen level-dependent (BOLD) signals. Moreover, task-on and task-off regions also exhibit slow (cat homologues of task-on and task-off regions. In all states of vigilance, LFP power was lower in task-off than task-on regions with no difference in firing rates. Both sets of regions displayed slow (0.5-0.15 Hz) cyclical modulations in LFP power in all frequency bands but with large and variable phase differences such that task-on and task-off regions were often anticorrelated. Inversely correlated LFP power fluctuations were state-dependent in that they were much more frequent in waking and paradoxical sleep than in slow-wave sleep. Moreover, consistent with fMRI findings, when attentional demands increased, LFP power in task-on and task-off regions changed in opposite directions, further augmenting and decreasing, respectively. At odds with previous fMRI studies, however, the decreased LFP power in task-off regions was associated with increased firing rates, suggesting that the engagement of task-off regions might not be reduced but in fact enhanced during attention.

  15. The brain's router: a cortical network model of serial processing in the primate brain.

    Science.gov (United States)

    Zylberberg, Ariel; Fernández Slezak, Diego; Roelfsema, Pieter R; Dehaene, Stanislas; Sigman, Mariano

    2010-04-29

    The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100-500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a "router" network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates.

  16. Repeated Stimulation of Cultured Networks of Rat Cortical Neurons Induces Parallel Memory Traces

    Science.gov (United States)

    le Feber, Joost; Witteveen, Tim; van Veenendaal, Tamar M.; Dijkstra, Jelle

    2015-01-01

    During systems consolidation, memories are spontaneously replayed favoring information transfer from hippocampus to neocortex. However, at present no empirically supported mechanism to accomplish a transfer of memory from hippocampal to extra-hippocampal sites has been offered. We used cultured neuronal networks on multielectrode arrays and…

  17. Task complexity and location specific changes of cortical thickness in executive and salience networks after working memory training

    Science.gov (United States)

    Metzler-Baddeley, Claudia; Caeyenberghs, Karen; Foley, Sonya; Jones, Derek K.

    2016-01-01

    Novel activities and experiences shape the brain's structure and organisation and, hence, our behaviour. However, evidence from structural plasticity studies remains mixed and the neural correlates of learning and practice are still poorly understood. We conducted a robustly designed study into grey matter plasticity following 2 months of working memory training. We generated a priori hypotheses regarding the location of plastic effects across three cognitive control networks (executive, anterior salience and basal ganglia networks), and compared the effects of adaptive training (n = 20) with a well-matched active control group (n = 20) which differed in training complexity and included extensive cognitive assessment before and after the training. Adaptive training relative to control activities resulted in a complex pattern of subtle and localised structural changes: Training was associated with increases in cortical thickness in right-lateralised executive regions, notably the right caudal middle frontal cortex, as well as increases in the volume of the left pallidum. In addition the training group showed reductions of thickness in the right insula, which were correlated with training-induced improvements in backward digit span performance. Unexpectedly, control activities were associated with reductions in thickness in the right pars triangularis. These results suggest that the direction of activity-induced plastic changes depend on the level of training complexity as well as brain location. These observations are consistent with the view that the brain responds dynamically to environmental demands by focusing resources on task relevant networks and eliminating irrelevant processing for the purpose of energy reduction. PMID:26806288

  18. Segmentation of nanotomographic cortical bone images for quantitative characterization of the osteoctyte lacuno-canalicular network

    Energy Technology Data Exchange (ETDEWEB)

    Ciani, A.; Kewish, C. M. [Synchrotron Soleil, L’Orme des Merisiers, 91192 Saint-Aubin (France); Guizar-Sicairos, M.; Diaz, A.; Holler, M. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Pallu, S.; Achiou, Z.; Jennane, R.; Toumi, H.; Lespessailles, E. [Univ Orléans, I3MTO, Ea 4708, 45000 Orléans (France)

    2016-01-28

    A newly developed data processing method able to characterize the osteocytes lacuno-canalicular network (LCN) is presented. Osteocytes are the most abundant cells in the bone, living in spaces called lacunae embedded inside the bone matrix and connected to each other with an extensive network of canals that allows for the exchange of nutrients and for mechanotransduction functions. The geometrical three-dimensional (3D) architecture is increasingly thought to be related to the macroscopic strength or failure of the bone and it is becoming the focus for investigating widely spread diseases such as osteoporosis. To obtain 3D LCN images non-destructively has been out of reach until recently, since tens-of-nanometers scale resolution is required. Ptychographic tomography was validated for bone imaging in [1], showing clearly the LCN. The method presented here was applied to 3D ptychographic tomographic images in order to extract morphological and geometrical parameters of the lacuno-canalicular structures.

  19. Improved dimensionally-reduced visual cortical network using stochastic noise modeling.

    Science.gov (United States)

    Tao, Louis; Praissman, Jeremy; Sornborger, Andrew T

    2012-04-01

    In this paper, we extend our framework for constructing low-dimensional dynamical system models of large-scale neuronal networks of mammalian primary visual cortex. Our dimensional reduction procedure consists of performing a suitable linear change of variables and then systematically truncating the new set of equations. The extended framework includes modeling the effect of neglected modes as a stochastic process. By parametrizing and including stochasticity in one of two ways we show that we can improve the systems-level characterization of our dimensionally reduced neuronal network model. We examined orientation selectivity maps calculated from the firing rate distribution of large-scale simulations and stochastic dimensionally reduced models and found that by using stochastic processes to model the neglected modes, we were able to better reproduce the mean and variance of firing rates in the original large-scale simulations while still accurately predicting the orientation preference distribution.

  20. Modulation of cortical-subcortical networks in Parkinson’s disease by applied field effects

    OpenAIRE

    Christopher William Hess

    2013-01-01

    Studies suggest that endogenous field effects may play a role in neuronal oscillations and communication. Non-invasive transcranial electrical stimulation with low-intensity currents can also have direct effects on the underlying cortex as well as distant network effects. While Parkinson’s disease (PD) is amenable to invasive neuromodulation in the basal ganglia by deep brain stimulation (DBS), techniques of non-invasive neuromodulation like transcranial direct current stimulation (tDCS) and ...

  1. From working memory to epilepsy: Dynamics of facilitation and inhibition in a cortical network

    Science.gov (United States)

    Verduzco-Flores, Sergio; Ermentrout, Bard; Bodner, Mark

    2009-03-01

    Persistent states are believed to be the correlate for short-term or working memory. Using a previously derived model for working memory, we show that disruption of the lateral inhibition can lead to a variety of pathological states. These states are analogs of reflex or pattern-sensitive epilepsy. Simulations, numerical bifurcation analysis, and fast-slow decomposition are used to explore the dynamics of this network.

  2. Motor Cortical Networks for Skilled Movements Have Dynamic Properties That Are Related to Accurate Reaching

    Directory of Open Access Journals (Sweden)

    David F. Putrino

    2011-01-01

    Full Text Available Neurons in the Primary Motor Cortex (MI are known to form functional ensembles with one another in order to produce voluntary movement. Neural network changes during skill learning are thought to be involved in improved fluency and accuracy of motor tasks. Unforced errors during skilled tasks provide an avenue to study network connections related to motor learning. In order to investigate network activity in MI, microwires were implanted in the MI of cats trained to perform a reaching task. Spike trains from eight groups of simultaneously recorded cells (95 neurons in total were acquired. A point process generalized linear model (GLM was developed to assess simultaneously recorded cells for functional connectivity during reaching attempts where unforced errors or no errors were made. Whilst the same groups of neurons were often functionally connected regardless of trial success, functional connectivity between neurons was significantly different at fine time scales when the outcome of task performance changed. Furthermore, connections were shown to be significantly more robust across multiple latencies during successful trials of task performance. The results of this study indicate that reach-related neurons in MI form dynamic spiking dependencies whose temporal features are highly sensitive to unforced movement errors.

  3. Relating Cortical Atrophy in Temporal Lobe Epilepsy with Graph Diffusion-Based Network Models

    Science.gov (United States)

    Abdelnour, Farras; Mueller, Susanne; Raj, Ashish

    2015-01-01

    Mesial temporal lobe epilepsy (TLE) is characterized by stereotyped origination and spread pattern of epileptogenic activity, which is reflected in stereotyped topographic distribution of neuronal atrophy on magnetic resonance imaging (MRI). Both epileptogenic activity and atrophy spread appear to follow white matter connections. We model the networked spread of activity and atrophy in TLE from first principles via two simple first order network diffusion models. Atrophy distribution is modeled as a simple consequence of the propagation of epileptogenic activity in one model, and as a progressive degenerative process in the other. We show that the network models closely reproduce the regional volumetric gray matter atrophy distribution of two epilepsy cohorts: 29 TLE subjects with medial temporal sclerosis (TLE-MTS), and 50 TLE subjects with normal appearance on MRI (TLE-no). Statistical validation at the group level suggests high correlation with measured atrophy (R = 0.586 for TLE-MTS, R = 0.283 for TLE-no). We conclude that atrophy spread model out-performs the hyperactivity spread model. These results pave the way for future clinical application of the proposed model on individual patients, including estimating future spread of atrophy, identification of seizure onset zones and surgical planning. PMID:26513579

  4. Relating Cortical Atrophy in Temporal Lobe Epilepsy with Graph Diffusion-Based Network Models.

    Science.gov (United States)

    Abdelnour, Farras; Mueller, Susanne; Raj, Ashish

    2015-10-01

    Mesial temporal lobe epilepsy (TLE) is characterized by stereotyped origination and spread pattern of epileptogenic activity, which is reflected in stereotyped topographic distribution of neuronal atrophy on magnetic resonance imaging (MRI). Both epileptogenic activity and atrophy spread appear to follow white matter connections. We model the networked spread of activity and atrophy in TLE from first principles via two simple first order network diffusion models. Atrophy distribution is modeled as a simple consequence of the propagation of epileptogenic activity in one model, and as a progressive degenerative process in the other. We show that the network models closely reproduce the regional volumetric gray matter atrophy distribution of two epilepsy cohorts: 29 TLE subjects with medial temporal sclerosis (TLE-MTS), and 50 TLE subjects with normal appearance on MRI (TLE-no). Statistical validation at the group level suggests high correlation with measured atrophy (R = 0.586 for TLE-MTS, R = 0.283 for TLE-no). We conclude that atrophy spread model out-performs the hyperactivity spread model. These results pave the way for future clinical application of the proposed model on individual patients, including estimating future spread of atrophy, identification of seizure onset zones and surgical planning.

  5. Neural representations and the cortical body matrix: implications for sports medicine and future directions.

    Science.gov (United States)

    Wallwork, Sarah B; Bellan, Valeria; Catley, Mark J; Moseley, G Lorimer

    2016-08-01

    Neural representations, or neurotags, refer to the idea that networks of brain cells, distributed across multiple brain areas, work in synergy to produce outputs. The brain can be considered then, a complex array of neurotags, each influencing and being influenced by each other. The output of some neurotags act on other systems, for example, movement, or on consciousness, for example, pain. This concept of neurotags has sparked a new body of research into pain and rehabilitation. We draw on this research and the concept of a cortical body matrix-a network of representations that subserves the regulation and protection of the body and the space around it-to suggest important implications for rehabilitation of sports injury and for sports performance. Protective behaviours associated with pain have been reinterpreted in light of these conceptual models. With a particular focus on rehabilitation of the injured athlete, this review presents the theoretical underpinnings of the cortical body matrix and its application within the sporting context. Therapeutic approaches based on these ideas are discussed and the efficacy of the most tested approaches is addressed. By integrating current thought in pain and cognitive neuroscience related to sports rehabilitation, recommendations for clinical practice and future research are suggested.

  6. A chronometric functional sub-network in the thalamo-cortical system regulates the flow of neural information necessary for conscious cognitive processes.

    Science.gov (United States)

    León-Domínguez, Umberto; Vela-Bueno, Antonio; Froufé-Torres, Manuel; León-Carrión, Jose

    2013-06-01

    The thalamo-cortical system has been defined as a neural network associated with consciousness. While there seems to be wide agreement that the thalamo-cortical system directly intervenes in vigilance and arousal, a divergence of opinion persists regarding its intervention in the control of other cognitive processes necessary for consciousness. In the present manuscript, we provide a review of recent scientific findings on the thalamo-cortical system and its role in the control and regulation of the flow of neural information necessary for conscious cognitive processes. We suggest that the axis formed by the medial prefrontal cortex and different thalamic nuclei (reticular nucleus, intralaminar nucleus, and midline nucleus), represents a core component for consciousness. This axis regulates different cerebral structures which allow basic cognitive processes like attention, arousal and memory to emerge. In order to produce a synchronized coherent response, neural communication between cerebral structures must have exact timing (chronometry). Thus, a chronometric functional sub-network within the thalamo-cortical system keeps us in an optimal and continuous functional state, allowing high-order cognitive processes, essential to awareness and qualia, to take place.

  7. Orchestration of presto and largo synchrony in up-down activity of cortical networks

    Directory of Open Access Journals (Sweden)

    Francesca Gullo

    2010-04-01

    Full Text Available It has been demonstrated using single-cell and multiunit electrophysiology in layer III entorhinal cortex and disinhibited hippocampal CA3 slices that the balancing of the up-down activity is characterized by both GABAA and GABAB mechanisms. Here we report novel results obtained using multi-electrode array (MEA, 60 electrodes simultaneous recordings from reverberating postnatal neocortical networks containing 19.2±1.4% GABAergic neurons, typical of intact tissue. We observed that in each spontaneous active-state the total number of spikes in identified clusters of excitatory and inhibitory neurons is almost equal, thus suggesting a balanced average activity. Interestingly, in the active-state, the early phase is sustained by only 10 % of the total spikes and the firing rate follows a sigmoidal regenerative mode up to peak at 35 ms with the number of excitatory spikes greater than inhibitory, therefore indicating an early unbalance. Concentration-response pharmacology of up- and down-state lifetimes in clusters of excitatory (n=1067 and inhibitory (n=305 cells suggests that, besides the GABAA and GABAB mechanisms, others such as GAT-1-mediated uptake, Ih, INaP and IM ion channel activity, robustly govern both up- and down-activity. Some drugs resulted to affect up- and/or down-states with different IC50s, providing evidence that various mechanisms are involved. These results should reinforce not only the role of synchrony in CNS networks, but also the recognized analogies between the Hodgkin-Huxley action potential and the population bursts as basic mechanisms for originating membrane excitability and CNS network synchronization, respectively.

  8. Cortical reorganisation of cerebral networks after childhood stroke: impact on outcome.

    Science.gov (United States)

    Kornfeld, Salome; Delgado Rodríguez, Juan Antonio; Everts, Regula; Kaelin-Lang, Alain; Wiest, Roland; Weisstanner, Christian; Mordasini, Pasquale; Steinlin, Maja; Grunt, Sebastian

    2015-06-10

    Recovery after arterial ischaemic stroke is known to largely depend on the plastic properties of the brain. The present study examines changes in the network topography of the developing brain after stroke. Effects of brain damage are best assessed by examining entire networks rather than single sites of structural lesions. Relating these changes to post-stroke neuropsychological variables and motor abilities will improve understanding of functional plasticity after stroke. Inclusion of healthy controls will provide additional insight into children's normal brain development. Resting state functional magnetic resonance imaging is a valid approach to topographically investigate the reorganisation of functional networks after a brain lesion. Transcranial magnetic stimulation provides complementary output information. This study will investigate functional reorganisation after paediatric arterial ischaemic stroke by means of resting state functional magnetic resonance imaging and transcranial magnetic stimulation in a cross-sectional plus longitudinal study design. The general aim of this study is to better understand neuroplasticity of the developing brain after stroke in order to develop more efficacious therapy and to improve the post-stroke functional outcome. The cross-sectional part of the study will investigate the functional cerebral networks of 35 children with chronic arterial ischaemic stroke (time of the lesion >2 years). In the longitudinal part, 15 children with acute arterial ischaemic stroke (shortly after the acute phase of the stroke) will be included and investigations will be performed 3 times within the subsequent 9 months. We will also recruit 50 healthy controls, matched for age and sex. The neuroimaging and neurophysiological data will be correlated with neuropsychological and neurological variables. This study is the first to combine resting state functional magnetic resonance imaging and transcranial magnetic stimulation in a paediatric

  9. Aberrant development and plasticity of excitatory visual cortical networks in the absence of cpg15.

    Science.gov (United States)

    Picard, Nathalie; Leslie, Jennifer H; Trowbridge, Sara K; Subramanian, Jaichandar; Nedivi, Elly; Fagiolini, Michela

    2014-03-05

    During development, experience plays a crucial role in sculpting neuronal connections. Patterned neural activity guides formation of functional neural circuits through the selective stabilization of some synapses and the pruning of others. Activity-regulated factors are fundamental to this process, but their roles in synapse stabilization and maturation is still poorly understood. CPG15, encoded by the activity-regulated gene candidate plasticity gene 15, is a small, glycosylphosphatidylinositol (GPI)-linked, extracellular protein that promotes synapse stabilization. Here we show that global knock-out of cpg15 results in abnormal postnatal development of the excitatory network in visual cortex and an associated disruption in development of visual receptive field properties. In addition, whereas repeated stimulation induced potentiation and depression in wild-type mice, the depression was slower in cpg15 knock-out mice, suggesting impairment in short-term depression-like mechanisms. These findings establish the requirement for cpg15 in activity-dependent development of the visual system and demonstrate the importance of timely excitatory network development for normal visual function.

  10. Selective theta-synchronization of choice-relevant information subserves goal-directed behavior

    Directory of Open Access Journals (Sweden)

    Thilo eWomelsdorf

    2010-11-01

    Full Text Available Theta activity reflects a state of rhythmic modulation of excitability at the level of single neuron membranes, within local neuronal groups and between distant nodes of a neuronal network. A wealth of evidence has shown that during theta states distant neuronal groups synchronize, forming networks of spatially confined neuronal clusters at specific time periods during task performance. Here, we show that a functional commonality of networks engaging in theta rhythmic states is that they emerge around decision points, reflecting rhythmic synchronization of choice-relevant information. Decision points characterize a point in time shortly before a subject chooses to select one action over another, i.e. when automatic behavior is terminated and the organism reactivates multiple sources of information to evaluate the evidence for available choices. As such, decision processes require the coordinated retrieval of choice-relevant information including (i the retrieval of stimulus evaluations (stim.-reward associations and reward expectancies about future outcomes, (ii the retrieval of past and prospective memories (e.g. stim.-stim. associations, (iii the reactivation of contextual task rule representations (e.g. stim.-response mappings, along with (iv an ongoing assessment of sensory evidence. An increasing number of studies reveal that retrieval of these multiple types of information proceeds within few theta cycles through synchronized spiking activity across limbic, striatal and cortical processing nodes. The outlined evidence suggests that evolving spatially and temporally specific theta synchronization could serve as the critical correlate underlying the selection of a choice during goal-directed behavior.

  11. Disparity between dorsal and ventral networks in patients with obsessive-compulsive disorder: Evidence revealed by graph theoretical analysis based on cortical thickness from MRI

    Directory of Open Access Journals (Sweden)

    Seung-Goo eKim

    2013-07-01

    Full Text Available As one of the most widely accepted neuroanatomical models on OCD, it has been hypothesized that imbalance between an excitatory direct (ventral pathway and an inhibitory indirect (dorsal pathway in cortico-striato-thalamic circuit underlies the emergence of OCD. Here we examine the structural network in drug-free patients with OCD in terms of graph theoretical measures for the first time. We used a measure called efficiency which quantifies how a node transfers information efficiently. To construct brain networks, cortical thickness was automatically estimated using T1-weighted magnetic resonance imaging. We found that the network of the OCD patients was as efficient as that of healthy controls so that the both networks were in the small-world regime. More importantly, however, disparity between the dorsal and the ventral networks in the OCD patients was found, suggesting a positive evidence to the imbalance theory on the underlying pathophysiology of OCD.

  12. Evaluation of the performance of information theory-based methods and cross-correlation to estimate the functional connectivity in cortical networks.

    Directory of Open Access Journals (Sweden)

    Matteo Garofalo

    Full Text Available Functional connectivity of in vitro neuronal networks was estimated by applying different statistical algorithms on data collected by Micro-Electrode Arrays (MEAs. First we tested these "connectivity methods" on neuronal network models at an increasing level of complexity and evaluated the performance in terms of ROC (Receiver Operating Characteristic and PPC (Positive Precision Curve, a new defined complementary method specifically developed for functional links identification. Then, the algorithms better estimated the actual connectivity of the network models, were used to extract functional connectivity from cultured cortical networks coupled to MEAs. Among the proposed approaches, Transfer Entropy and Joint-Entropy showed the best results suggesting those methods as good candidates to extract functional links in actual neuronal networks from multi-site recordings.

  13. Evaluation of the Performance of Information Theory-Based Methods and Cross-Correlation to Estimate the Functional Connectivity in Cortical Networks

    Science.gov (United States)

    Garofalo, Matteo; Nieus, Thierry; Massobrio, Paolo; Martinoia, Sergio

    2009-01-01

    Functional connectivity of in vitro neuronal networks was estimated by applying different statistical algorithms on data collected by Micro-Electrode Arrays (MEAs). First we tested these “connectivity methods” on neuronal network models at an increasing level of complexity and evaluated the performance in terms of ROC (Receiver Operating Characteristic) and PPC (Positive Precision Curve), a new defined complementary method specifically developed for functional links identification. Then, the algorithms better estimated the actual connectivity of the network models, were used to extract functional connectivity from cultured cortical networks coupled to MEAs. Among the proposed approaches, Transfer Entropy and Joint-Entropy showed the best results suggesting those methods as good candidates to extract functional links in actual neuronal networks from multi-site recordings. PMID:19652720

  14. Abnormal dopaminergic modulation of striato-cortical networks underlies levodopa-induced dyskinesias in humans

    DEFF Research Database (Denmark)

    Herz, Damian M.; Haagensen, Brian N.; Christensen, Mark S.

    2015-01-01

    Dopaminergic signalling in the striatum contributes to reinforcement of actions and motivational enhancement of motor vigour. Parkinson's disease leads to progressive dopaminergic denervation of the striatum, impairing the function of cortico-basal ganglia networks. While levodopa therapy...... of levodopa-induced dyskinesias. Twenty-six patients with Parkinson's disease (age range: 51–84 years; 11 females) received a single dose of levodopa and then performed a task in which they had to produce or suppress a movement in response to visual cues. Task-related activity was continuously mapped...... later developed levodopa-induced dyskinesias, but not patients without dyskinesias, showed a linear increase in connectivity between the putamen and primary motor cortex after levodopa intake during movement suppression. Individual dyskinesia severity was predicted by levodopa-induced modulation...

  15. The cortical acto-myosin network: from diffusion barrier to functional gateway in the transport of neurosecretory vesicles to the plasma membrane

    Directory of Open Access Journals (Sweden)

    Andreas ePapadopulos

    2013-10-01

    Full Text Available Dysregulation of regulated exocytosis is linked to an array of pathological conditions, including neurodegenerative disorders, asthma and diabetes. Understanding the molecular mechanisms underpinning neuroexocytosis including the processes that allow neurosecretory vesicles to access and fuse with the plasma membrane and to recycle post-fusion, is therefore critical to the design of future therapeutic drugs that will efficiently tackle these diseases. Despite considerable efforts to determine the principles of vesicular fusion, the mechanisms controlling the approach of vesicles to the plasma membrane in order to undergo tethering, docking, priming, and fusion remain poorly understood. All these steps involve the cortical actin network, a dense mesh of actin filaments localized beneath the plasma membrane. Recent work overturned the long-held belief that the cortical actin network only plays a passive constraining role in neuroexocytosis functioning as a physical barrier that partly breaks down upon entry of Ca2+ to allow secretory vesicles to reach the plasma membrane. A multitude of new roles for the cortical actin network in regulated exocytosis have now emerged and point to highly dynamic novel functions of key myosin molecular motors. Myosins are not only believed to help bring about dynamic changes in the actin cytoskeleton, tethering and guiding vesicles to their fusion sites, but they also regulate the size and duration of the fusion pore, thereby directly contributing to the release of neurotransmitters and hormones.Here we discuss the functions of the cortical actin network, myosins and their effectors in controlling the processes that lead to tethering, directed transport, docking, and fusion of exocytotic vesicles in regulated exocytosis.

  16. Influence of Slow Oscillation on Hippocampal Activity and Ripples Through Cortico-Hippocampal Synaptic Interactions, Analyzed by a Cortical-CA3-CA1 Network Model

    Directory of Open Access Journals (Sweden)

    Jiannis eTaxidis

    2013-02-01

    Full Text Available Hippocampal sharp wave-ripple complexes (SWRs involve the synchronous discharge of thousands of cells throughout the CA3-CA1-subiculum-entorhinal cortex axis. Their strong transient output affects cortical targets, rendering SWRs a possible means for memory transfer from the hippocampus to the neocortex for long-term storage. Neurophysiological observations of hippocampal activity modulation by the cortical slow oscillation (SO during deep sleep and anesthesia, and correlations between ripples and UP states, support the role of SWRs in memory consolidation through a cortico-hippocampal feedback loop. We couple a cortical network exhibiting SO with a hippocampal CA3-CA1 computational network model exhibiting SWRs, in order to model such cortico-hippocampal correlations and uncover important parameters and coupling mechanisms controlling them. The cortical oscillatory output entrains the CA3 network via connections representing the mossy fiber input, and the CA1 network via the temporoammonic pathway. The spiking activity in CA3 and CA1 is shown to depend on the excitation-to-inhibition ratio, induced by combining the two hippocampal inputs, with mossy fiber input controlling the UP-state correlation of CA3 population bursts and corresponding SWRs, whereas the temporoammonic input affects the overall CA1 spiking activity. Ripple characteristics and pyramidal spiking participation to SWRs are shaped by the strength of the Schaffer collateral drive. A set of in vivo recordings from the rat hippocampus confirms a model-predicted segregation of pyramidal cells into subgroups according to the SO state where they preferentially fire and their response to SWRs. These groups can potentially play distinct functional roles in the replay of spike sequences.

  17. Brain Networks Subserving Emotion Regulation and Adaptation after Mild Traumatic Brain Injury

    NARCIS (Netherlands)

    van der Horn, Harm J.; Liemburg, Edith J.; Aleman, Andre; Spikman, Jacoba M.; van der Naalt, Joukje

    2016-01-01

    The majority of patients with traumatic brain injury (TBI) sustain a mild injury (mTBI). One out of 4 patients experiences persistent complaints, despite their often normal neuropsychological test results and the absence of structural brain damage on conventional neuroimaging. Susceptibility to deve

  18. From Spinal Central Pattern Generators to Cortical Network: Integrated BCI for Walking Rehabilitation

    Directory of Open Access Journals (Sweden)

    G. Cheron

    2012-01-01

    Full Text Available Success in locomotor rehabilitation programs can be improved with the use of brain-computer interfaces (BCIs. Although a wealth of research has demonstrated that locomotion is largely controlled by spinal mechanisms, the brain is of utmost importance in monitoring locomotor patterns and therefore contains information regarding central pattern generation functioning. In addition, there is also a tight coordination between the upper and lower limbs, which can also be useful in controlling locomotion. The current paper critically investigates different approaches that are applicable to this field: the use of electroencephalogram (EEG, upper limb electromyogram (EMG, or a hybrid of the two neurophysiological signals to control assistive exoskeletons used in locomotion based on programmable central pattern generators (PCPGs or dynamic recurrent neural networks (DRNNs. Plantar surface tactile stimulation devices combined with virtual reality may provide the sensation of walking while in a supine position for use of training brain signals generated during locomotion. These methods may exploit mechanisms of brain plasticity and assist in the neurorehabilitation of gait in a variety of clinical conditions, including stroke, spinal trauma, multiple sclerosis, and cerebral palsy.

  19. A cortical network model of cognitive and emotional influences in human decision making.

    Science.gov (United States)

    Nazir, Azadeh Hassannejad; Liljenström, Hans

    2015-10-01

    Decision making (DM)(2) is a complex process that appears to involve several brain structures. In particular, amygdala, orbitofrontal cortex (OFC) and lateral prefrontal cortex (LPFC) seem to be essential in human decision making, where both emotional and cognitive aspects are taken into account. In this paper, we present a computational network model representing the neural information processing of DM, from perception to behavior. We model the population dynamics of the three neural structures (amygdala, OFC and LPFC), as well as their interaction. In our model, the neurodynamic activity of amygdala and OFC represents the neural correlates of secondary emotion, while the activity of certain neural populations in OFC alone represents the outcome expectancy of different options. The cognitive/rational aspect of DM is associated with LPFC. Our model is intended to give insights on the emotional and cognitive processes involved in DM under various internal and external contexts. Different options for actions are represented by the oscillatory activity of cell assemblies, which may change due to experience and learning. Knowledge and experience of the outcome of our decisions and actions can eventually result in changes in our neural structures, attitudes and behaviors. Simulation results may have implications for how we make decisions for our individual actions, as well as for societal choices, where we take examples from transport and its impact on CO2 emissions and climate change.

  20. Integrating microRNA and mRNA expression profiles of neuronal progenitors to identify regulatory networks underlying the onset of cortical neurogenesis

    Directory of Open Access Journals (Sweden)

    Barker Jeffery L

    2009-08-01

    Full Text Available Abstract Background Cortical development is a complex process that includes sequential generation of neuronal progenitors, which proliferate and migrate to form the stratified layers of the developing cortex. To identify the individual microRNAs (miRNAs and mRNAs that may regulate the genetic network guiding the earliest phase of cortical development, the expression profiles of rat neuronal progenitors obtained at embryonic day 11 (E11, E12 and E13 were analyzed. Results Neuronal progenitors were purified from telencephalic dissociates by a positive-selection strategy featuring surface labeling with tetanus-toxin and cholera-toxin followed by fluorescence-activated cell sorting. Microarray analyses revealed the fractions of miRNAs and mRNAs that were up-regulated or down-regulated in these neuronal progenitors at the beginning of cortical development. Nearly half of the dynamically expressed miRNAs were negatively correlated with the expression of their predicted target mRNAs. Conclusion These data support a regulatory role for miRNAs during the transition from neuronal progenitors into the earliest differentiating cortical neurons. In addition, by supplying a robust data set in which miRNA and mRNA profiles originate from the same purified cell type, this empirical study may facilitate the development of new algorithms to integrate various "-omics" data sets.

  1. Functional brain network organisation of children between 2 and 5 years derived from reconstructed activity of cortical sources of high-density EEG recordings.

    Science.gov (United States)

    Bathelt, Joe; O'Reilly, Helen; Clayden, Jonathan D; Cross, J Helen; de Haan, Michelle

    2013-11-15

    There is increasing interest in applying connectivity analysis to brain measures (Rubinov and Sporns, 2010), but most studies have relied on fMRI, which substantially limits the participant groups and numbers that can be studied. High-density EEG recordings offer a comparatively inexpensive easy-to-use alternative, but require channel-level connectivity analysis which currently lacks a common analytic framework and is very limited in spatial resolution. To address this problem, we have developed a new technique for studies of network development that overcomes the spatial constraint and obtains functional networks of cortical areas by using EEG source reconstruction with age-matched average MRI templates (He et al., 1999). In contrast to previously reported channel-level analysis, this approach provides information about the cortical areas most likely to be involved in the network as well as their functional relationship (Babiloni et al., 2005; De Vico Fallani et al., 2007). In this study, we applied source reconstruction with age-matched templates to task-free high-density EEG recordings in typically-developing children between 2 and 6 years of age (O'Reilly, 2012). Graph theory was then applied to the association strengths of 68 cortical regions of interest based on the Desikan-Killiany atlas. We found linear increases of mean node degree, mean clustering coefficient and maximum betweenness centrality between 2 years and 6 years of age. Characteristic path length was negatively correlated with age. The correlation of the network measures with age indicates network development towards more closely integrated networks similar to reports from other imaging modalities (Fair et al., 2008; Power et al., 2010). We also applied eigenvalue decomposition to obtain functional modules (Clayden et al., 2013). Connection strength within these modules did not change with age, and the modules resembled hub networks previously described for MRI (Hagmann et al., 2010; Power et al

  2. Psychophysical evaluation of a sanshool derivative (alkylamide) and the elucidation of mechanisms subserving tingle.

    Science.gov (United States)

    Albin, Kelly C; Simons, Christopher T

    2010-03-03

    Previous studies investigated the neural and molecular underpinnings of the tingle sensation evoked by sanshool and other natural or synthetic alkylamides. Currently, we sought to characterize the psychophysical properties associated with administration of these compounds. Like other chemesthetic stimuli, the synthetic tingle analog isobutylalkylamide (IBA) evoked a sensation that was temporally dynamic. Repeated IBA application at short (30 sec) interstimulus intervals (ISI) resulted in a tingle sensation that increased across trials. Application at longer ISIs (approximately 30 min) resulted in a sensation of decreased intensity consistent with self-desensitization. Prior treatment with the TRPV1 or TRPA1 agonists, capsaicin and mustard oil did not cross-desensitize the tingle sensation evoked by IBA suggesting that neither TRPV1 nor TRPA1 participate in the transduction mechanism sub-serving tingle. When evaluated over 30-min time period, lingual IBA evoked a sensation that was described initially as tingling and pungent but after approximately 15 min, as a cooling sensation. Further, we found that the sensation evoked by lingual IBA was potentiated by simultaneous application of cold (0 degrees C) and cool (21 degrees C) thermal stimuli but was unaffected by warm (33 degrees C) and hot (41 degrees C) temperatures. Finally, to test the hypothesis that the tingling sensation is subserved by the activation of mechanosensitve fibers, we evaluated lingual tactile thresholds in the presence and absence of lingual IBA. The presence of IBA significantly raised lingual tactile thresholds, whereas capsaicin did not, identifying a role for mechanosensitive fibers in conveying the tingle sensation evoked by sanshool-like compounds. Collectively, these results show that lingual alkylamide evokes a complex sensation that is temporally dynamic and consistent with in vitro and in vivo experiments suggesting these compounds activate mechanosensitve neurons via blockade of KCNK

  3. Psychophysical evaluation of a sanshool derivative (alkylamide and the elucidation of mechanisms subserving tingle.

    Directory of Open Access Journals (Sweden)

    Kelly C Albin

    Full Text Available Previous studies investigated the neural and molecular underpinnings of the tingle sensation evoked by sanshool and other natural or synthetic alkylamides. Currently, we sought to characterize the psychophysical properties associated with administration of these compounds. Like other chemesthetic stimuli, the synthetic tingle analog isobutylalkylamide (IBA evoked a sensation that was temporally dynamic. Repeated IBA application at short (30 sec interstimulus intervals (ISI resulted in a tingle sensation that increased across trials. Application at longer ISIs (approximately 30 min resulted in a sensation of decreased intensity consistent with self-desensitization. Prior treatment with the TRPV1 or TRPA1 agonists, capsaicin and mustard oil did not cross-desensitize the tingle sensation evoked by IBA suggesting that neither TRPV1 nor TRPA1 participate in the transduction mechanism sub-serving tingle. When evaluated over 30-min time period, lingual IBA evoked a sensation that was described initially as tingling and pungent but after approximately 15 min, as a cooling sensation. Further, we found that the sensation evoked by lingual IBA was potentiated by simultaneous application of cold (0 degrees C and cool (21 degrees C thermal stimuli but was unaffected by warm (33 degrees C and hot (41 degrees C temperatures. Finally, to test the hypothesis that the tingling sensation is subserved by the activation of mechanosensitve fibers, we evaluated lingual tactile thresholds in the presence and absence of lingual IBA. The presence of IBA significantly raised lingual tactile thresholds, whereas capsaicin did not, identifying a role for mechanosensitive fibers in conveying the tingle sensation evoked by sanshool-like compounds. Collectively, these results show that lingual alkylamide evokes a complex sensation that is temporally dynamic and consistent with in vitro and in vivo experiments suggesting these compounds activate mechanosensitve neurons via

  4. The fragmented self: imbalance between intrinsic and extrinsic self-networks in psychotic disorders.

    Science.gov (United States)

    Ebisch, Sjoerd J H; Aleman, André

    2016-08-01

    Self-disturbances are among the core features of schizophrenia and related psychotic disorders. The basic structure of the self could depend on the balance between intrinsic and extrinsic self-processing. We discuss studies on self-related processing in psychotic disorders that provide converging evidence for disrupted communication between neural networks subserving the so-called intrinsic self and extrinsic self. This disruption might be mainly caused by impaired integrity of key brain hubs. The intrinsic self has been associated with cortical midline structures involved in self-referential processing, autobiographical memory, and emotional evaluation. Additionally, we highlight central aspects of the extrinsic self in its interaction with the environment using sensorimotor networks, including self-experience in sensation and actions. A deficient relationship between these self-aspects because of disrupted between-network interactions offers a framework to explain core clinical features of psychotic disorders. In particular, we show how relative isolation and reduced modularity of networks subserving intrinsic and extrinsic self-processing might trigger the emergence of hallucinations and delusions, and why patients with psychosis typically have difficulties with self-other relationships and do not recognise mental problems.

  5. The development of neural synchrony and large-scale cortical networks during adolescence: relevance for the pathophysiology of schizophrenia and neurodevelopmental hypothesis.

    Science.gov (United States)

    Uhlhaas, Peter J; Singer, Wolf

    2011-05-01

    Recent data from developmental cognitive neuroscience highlight the profound changes in the organization and function of cortical networks during the transition from adolescence to adulthood. While previous studies have focused on the development of gray and white matter, recent evidence suggests that brain maturation during adolescence extends to fundamental changes in the properties of cortical circuits that in turn promote the precise temporal coding of neural activity. In the current article, we will highlight modifications in the amplitude and synchrony of neural oscillations during adolescence that may be crucial for the emergence of cognitive deficits and psychotic symptoms in schizophrenia. Specifically, we will suggest that schizophrenia is associated with impaired parameters of synchronous oscillations that undergo changes during late brain maturation, suggesting an important role of adolescent brain development for the understanding, treatment, and prevention of the disorder.

  6. Laminar thickness alterations in the fronto-parietal cortical mantle of patients with attention-deficit/hyperactivity disorder.

    Directory of Open Access Journals (Sweden)

    Elseline Hoekzema

    Full Text Available Although Attention-Deficit/Hyperactivity Disorder (ADHD was initially regarded as a disorder exclusive to childhood, nowadays its prevalence in adulthood is well established. The development of novel techniques for quantifying the thickness of the cerebral mantle allows the further exploration of the neuroanatomical profiles underlying the child and adult form of the disorder. To examine the cortical mantle in children and adults with ADHD, we applied a vertex-wise analysis of cortical thickness to anatomical brain MRI scans acquired from children with (n = 43 and without ADHD (n = 41, as well as a group of adult neurotypical individuals (n = 31, adult patients with a history of stimulant treatment (n = 31 and medication-naïve adults with ADHD (n = 24. We observed several clusters of reduced laminar cortical thickness in ADHD patients in comparison to neurotypical individuals. These differences were primarily located in the dorsal attention network, including the bilateral inferior and superior parietal cortex and a section of the frontal cortex (centered on the superior frontal and precentral gyrus bilaterally. Further laminar thickness deficits were observed in the bilateral orbitofrontal cortex and medial occipital cortex. The deficits in the cortical surface were especially pronounced in the child sample, while adult patients showed a more typical laminar thickness across the cerebral mantle. These findings show that the neuroanatomical profile of ADHD, especially the childhood form of the disorder, involves robust alterations in the cortical mantle, which are most prominent in brain regions subserving attentional processing.

  7. Laminar Thickness Alterations in the Fronto-Parietal Cortical Mantle of Patients with Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Ramos-Quiroga, J. Antoni; Fernández, Vanesa Richarte; Picado, Marisol; Bosch, Rosa; Soliva, Juan Carlos; Rovira, Mariana; Vives, Yolanda; Bulbena, Antonio; Tobeña, Adolf; Casas, Miguel; Vilarroya, Oscar

    2012-01-01

    Although Attention-Deficit/Hyperactivity Disorder (ADHD) was initially regarded as a disorder exclusive to childhood, nowadays its prevalence in adulthood is well established. The development of novel techniques for quantifying the thickness of the cerebral mantle allows the further exploration of the neuroanatomical profiles underlying the child and adult form of the disorder. To examine the cortical mantle in children and adults with ADHD, we applied a vertex-wise analysis of cortical thickness to anatomical brain MRI scans acquired from children with (n = 43) and without ADHD (n = 41), as well as a group of adult neurotypical individuals (n = 31), adult patients with a history of stimulant treatment (n = 31) and medication-naïve adults with ADHD (n = 24). We observed several clusters of reduced laminar cortical thickness in ADHD patients in comparison to neurotypical individuals. These differences were primarily located in the dorsal attention network, including the bilateral inferior and superior parietal cortex and a section of the frontal cortex (centered on the superior frontal and precentral gyrus bilaterally). Further laminar thickness deficits were observed in the bilateral orbitofrontal cortex and medial occipital cortex. The deficits in the cortical surface were especially pronounced in the child sample, while adult patients showed a more typical laminar thickness across the cerebral mantle. These findings show that the neuroanatomical profile of ADHD, especially the childhood form of the disorder, involves robust alterations in the cortical mantle, which are most prominent in brain regions subserving attentional processing. PMID:23239964

  8. [Cortical blindness].

    Science.gov (United States)

    Chokron, S

    2014-02-01

    Cortical blindness refers to a visual loss induced by a bilateral occipital lesion. The very strong cooperation between psychophysics, cognitive psychology, neurophysiology and neuropsychology these latter twenty years as well as recent progress in cerebral imagery have led to a better understanding of neurovisual deficits, such as cortical blindness. It thus becomes possible now to propose an earlier diagnosis of cortical blindness as well as new perspectives for rehabilitation in children as well as in adults. On the other hand, studying complex neurovisual deficits, such as cortical blindness is a way to infer normal functioning of the visual system.

  9. Cortical hierarchy governs rat claustrocortical circuit organization.

    Science.gov (United States)

    White, Michael G; Cody, Patrick A; Bubser, Michael; Wang, Hui-Dong; Deutch, Ariel Y; Mathur, Brian N

    2017-04-15

    The claustrum is a telencephalic gray matter structure with various proposed functions, including sensory integration and attentional allocation. Underlying these concepts is the reciprocal connectivity of the claustrum with most, if not all, areas of the cortex. What remains to be elucidated to inform functional hypotheses further is whether a pattern exists in the strength of connectivity between a given cortical area and the claustrum. To this end, we performed a series of retrograde neuronal tract tracer injections into rat cortical areas along the cortical processing hierarchy, from primary sensory and motor to frontal cortices. We observed that the number of claustrocortical projections increased as a function of processing hierarchy; claustrum neurons projecting to primary sensory cortices were scant and restricted in distribution across the claustrum, whereas neurons projecting to the cingulate cortex were densely packed and more evenly distributed throughout the claustrum. This connectivity pattern suggests that the claustrum may preferentially subserve executive functions orchestrated by the cingulate cortex. J. Comp. Neurol. 525:1347-1362, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Analysis of Cortical Flow Models In Vivo

    Science.gov (United States)

    Benink, Hélène A.; Mandato, Craig A.; Bement, William M.

    2000-01-01

    Cortical flow, the directed movement of cortical F-actin and cortical organelles, is a basic cellular motility process. Microtubules are thought to somehow direct cortical flow, but whether they do so by stimulating or inhibiting contraction of the cortical actin cytoskeleton is the subject of debate. Treatment of Xenopus oocytes with phorbol 12-myristate 13-acetate (PMA) triggers cortical flow toward the animal pole of the oocyte; this flow is suppressed by microtubules. To determine how this suppression occurs and whether it can control the direction of cortical flow, oocytes were subjected to localized manipulation of either the contractile stimulus (PMA) or microtubules. Localized PMA application resulted in redirection of cortical flow toward the site of application, as judged by movement of cortical pigment granules, cortical F-actin, and cortical myosin-2A. Such redirected flow was accelerated by microtubule depolymerization, showing that the suppression of cortical flow by microtubules is independent of the direction of flow. Direct observation of cortical F-actin by time-lapse confocal analysis in combination with photobleaching showed that cortical flow is driven by contraction of the cortical F-actin network and that microtubules suppress this contraction. The oocyte germinal vesicle serves as a microtubule organizing center in Xenopus oocytes; experimental displacement of the germinal vesicle toward the animal pole resulted in localized flow away from the animal pole. The results show that 1) cortical flow is directed toward areas of localized contraction of the cortical F-actin cytoskeleton; 2) microtubules suppress cortical flow by inhibiting contraction of the cortical F-actin cytoskeleton; and 3) localized, microtubule-dependent suppression of actomyosin-based contraction can control the direction of cortical flow. We discuss these findings in light of current models of cortical flow. PMID:10930453

  11. Regulation of the fear network by mediators of stress: Norepinephrine alters the balance between Cortical and Subcortical afferent excitation of the Lateral Amygdala

    Directory of Open Access Journals (Sweden)

    Luke R Johnson

    2011-05-01

    Full Text Available Pavlovian auditory fear conditioning crucially involves the integration of information about and acoustic conditioned stimulus (CS and an aversive unconditioned stimulus (US in the lateral nucleus of the amygdala (LA. The auditory CS reaches the LA subcortically via a direct connection from the auditory thalamus and also from the auditory association cortex itself. How neural modulators, especially those activated during stress, such as norepinephrine (NE, regulate synaptic transmission and plasticity in this network is poorly understood. Here we show that NE inhibits synaptic transmission in both the subcortical and cortical input pathway but that sensory processing is biased towards the subcortical pathway. In addition binding of NE to β-adrenergic receptors further dissociates sensory processing in the LA. These findings suggest a network mechanism that shifts sensory balance towards the faster but more primitive subcortical input.

  12. Brainlab: a Python toolkit to aid in the design, simulation, and analysis of spiking neural networks with the NeoCortical Simulator

    Directory of Open Access Journals (Sweden)

    Richard P Drewes

    2009-05-01

    Full Text Available Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading ``glue'' tool for managing all sorts of complex programmatictasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS environment in particular. Brainlab is an integrated model building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS (the NeoCortical Simulator.

  13. Brainlab: A Python Toolkit to Aid in the Design, Simulation, and Analysis of Spiking Neural Networks with the NeoCortical Simulator.

    Science.gov (United States)

    Drewes, Rich; Zou, Quan; Goodman, Philip H

    2009-01-01

    Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading "glue" tool for managing all sorts of complex programmatic tasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS (NeoCortical Simulator) environment in particular. Brainlab is an integrated model-building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS.

  14. Functional connectivity of motor cortical network in patients with brachial plexus avulsion injury after contralateral cervical nerve transfer: a resting-state fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Aihong; Cheng, Xiaoguang; Liang, Wei; Bai, Rongjie [The 4th Medical College of Peking University, Department of Radiology, Beijing Jishuitan Hospital, Xicheng Qu, Beijing (China); Wang, Shufeng; Xue, Yunhao; Li, Wenjun [The 4th Medical College of Peking University, Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing (China)

    2017-03-15

    The purpose of this study is to assess the functional connectivity of the motor cortical network in patients with brachial plexus avulsion injury (BPAI) after contralateral C7 nerve transfer, using resting-state functional magnetic resonance imaging (RS-fMRI). Twelve patients with total brachial plexus root avulsion underwent RS-fMRI after contralateral C7 nerve transfer. Seventeen healthy volunteers were also included in this fMRI study as controls. The hand motor seed regions were defined as region of interests in the bilateral hemispheres. The seed-based functional connectivity was calculated in all the subjects. Differences in functional connectivity of the motor cortical network between patients and healthy controls were compared. The inter-hemispheric functional connectivity of the M1 areas was increased in patients with BPAI compared with the controls. The inter-hemispheric functional connectivity between the supplementary motor areas was reduced bilaterally. The resting-state inter-hemispheric functional connectivity of the bilateral M1 areas is altered in patients after contralateral C7 nerve transfer, suggesting a functional reorganization of cerebral cortex. (orig.)

  15. On-off intermittency of thalamo-cortical neuronal network oscillations in the electroencephalogram of rodents with genetic predisposition to absence epilepsy

    Science.gov (United States)

    Hramov, Alexander E.; Grubov, Vadim V.; Pavlov, Alexey N.; Sitnikova, Evgenija Yu.; Koronovskii, Alexey A.; Runnova, Anastasija E.; Shurugina, Sveltlana A.; Ivanov, Alexey V.

    2013-02-01

    Spike-wave discharges are electroencephalographic hallmarks of absence epilepsy. Spike-wave discharges are known to originate from thalamo-cortical neuronal network that normally produces sleep spindle oscillations. Although both sleep spindles and spike-wave discharges are considered as thalamo-cortical oscillations, functional relationship between them is still uncertain. The present study describes temporal dynamics of spike-wave discharges and sleep spindles as determined in long-time electroencephalograms (EEG) recorded in WAG/Rij rat model of absence epilepsy. We have proposed the wavelet-based method for the automatic detection of spike-wave discharges, sleep spindles (10-15Hz) and 5-9Hz oscillations in EEG. It was found that non-linear dynamics of spike-wave discharges and sleep spindles fits well to the law of 'on-off intermittency'. Intermittency in sleep spindles and spike-wave discharges implies that (1) temporal dynamics of these oscillations are deterministic in nature, and (2) it might be controlled by a system-level mechanism responsible for circadian modulation of neuronal network activity.

  16. Spatiotemporal 16p11.2 protein network implicates cortical late mid-fetal brain development and KCTD13-Cul3-RhoA pathway in psychiatric diseases.

    Science.gov (United States)

    Lin, Guan Ning; Corominas, Roser; Lemmens, Irma; Yang, Xinping; Tavernier, Jan; Hill, David E; Vidal, Marc; Sebat, Jonathan; Iakoucheva, Lilia M

    2015-02-18

    The psychiatric disorders autism and schizophrenia have a strong genetic component, and copy number variants (CNVs) are firmly implicated. Recurrent deletions and duplications of chromosome 16p11.2 confer a high risk for both diseases, but the pathways disrupted by this CNV are poorly defined. Here we investigate the dynamics of the 16p11.2 network by integrating physical interactions of 16p11.2 proteins with spatiotemporal gene expression from the developing human brain. We observe profound changes in protein interaction networks throughout different stages of brain development and/or in different brain regions. We identify the late mid-fetal period of cortical development as most critical for establishing the connectivity of 16p11.2 proteins with their co-expressed partners. Furthermore, our results suggest that the regulation of the KCTD13-Cul3-RhoA pathway in layer 4 of the inner cortical plate is crucial for controlling brain size and connectivity and that its dysregulation by de novo mutations may be a potential determinant of 16p11.2 CNV deletion and duplication phenotypes.

  17. Top-down feedback in an HMAX-like cortical model of object perception based on hierarchical Bayesian networks and belief propagation.

    Directory of Open Access Journals (Sweden)

    Salvador Dura-Bernal

    Full Text Available Hierarchical generative models, such as Bayesian networks, and belief propagation have been shown to provide a theoretical framework that can account for perceptual processes, including feedforward recognition and feedback modulation. The framework explains both psychophysical and physiological experimental data and maps well onto the hierarchical distributed cortical anatomy. However, the complexity required to model cortical processes makes inference, even using approximate methods, very computationally expensive. Thus, existing object perception models based on this approach are typically limited to tree-structured networks with no loops, use small toy examples or fail to account for certain perceptual aspects such as invariance to transformations or feedback reconstruction. In this study we develop a Bayesian network with an architecture similar to that of HMAX, a biologically-inspired hierarchical model of object recognition, and use loopy belief propagation to approximate the model operations (selectivity and invariance. Crucially, the resulting Bayesian network extends the functionality of HMAX by including top-down recursive feedback. Thus, the proposed model not only achieves successful feedforward recognition invariant to noise, occlusions, and changes in position and size, but is also able to reproduce modulatory effects such as illusory contour completion and attention. Our novel and rigorous methodology covers key aspects such as learning using a layerwise greedy algorithm, combining feedback information from multiple parents and reducing the number of operations required. Overall, this work extends an established model of object recognition to include high-level feedback modulation, based on state-of-the-art probabilistic approaches. The methodology employed, consistent with evidence from the visual cortex, can be potentially generalized to build models of hierarchical perceptual organization that include top-down and bottom

  18. Glutamate-bound NMDARs arising from in vivo-like network activity extend spatio-temporal integration in a L5 cortical pyramidal cell model.

    Directory of Open Access Journals (Sweden)

    Matteo Farinella

    2014-04-01

    Full Text Available In vivo, cortical pyramidal cells are bombarded by asynchronous synaptic input arising from ongoing network activity. However, little is known about how such 'background' synaptic input interacts with nonlinear dendritic mechanisms. We have modified an existing model of a layer 5 (L5 pyramidal cell to explore how dendritic integration in the apical dendritic tuft could be altered by the levels of network activity observed in vivo. Here we show that asynchronous background excitatory input increases neuronal gain and extends both temporal and spatial integration of stimulus-evoked synaptic input onto the dendritic tuft. Addition of fast and slow inhibitory synaptic conductances, with properties similar to those from dendritic targeting interneurons, that provided a 'balanced' background configuration, partially counteracted these effects, suggesting that inhibition can tune spatio-temporal integration in the tuft. Excitatory background input lowered the threshold for NMDA receptor-mediated dendritic spikes, extended their duration and increased the probability of additional regenerative events occurring in neighbouring branches. These effects were also observed in a passive model where all the non-synaptic voltage-gated conductances were removed. Our results show that glutamate-bound NMDA receptors arising from ongoing network activity can provide a powerful spatially distributed nonlinear dendritic conductance. This may enable L5 pyramidal cells to change their integrative properties as a function of local network activity, potentially allowing both clustered and spatially distributed synaptic inputs to be integrated over extended timescales.

  19. Ketamine Dysregulates the Amplitude and Connectivity of High-Frequency Oscillations in Cortical-Subcortical Networks in Humans: Evidence From Resting-State Magnetoencephalography-Recordings.

    Science.gov (United States)

    Rivolta, Davide; Heidegger, Tonio; Scheller, Bertram; Sauer, Andreas; Schaum, Michael; Birkner, Katharina; Singer, Wolf; Wibral, Michael; Uhlhaas, Peter J

    2015-09-01

    Hypofunctioning of the N-methyl-D-aspartate receptor (NMDA-R) has been prominently implicated in the pathophysiology of schizophrenia (ScZ). The current study tested the effects of ketamine, a dissociative anesthetic and NMDA-R antagonist, on resting-state activity recorded with magnetoencephalography (MEG) in healthy volunteers. In a single-blind cross-over design, each participant (n = 12) received, on 2 different sessions, a subanesthetic dose of S-ketamine (0.006 mg/Kg) and saline injection. MEG-data were analyzed at sensor- and source-level in the beta (13-30 Hz) and gamma (30-90 Hz) frequency ranges. In addition, connectivity analysis at source-level was performed using transfer entropy (TE). Ketamine increased gamma-power while beta-band activity was decreased. Specifically, elevated 30-90 Hz activity was pronounced in subcortical (thalamus and hippocampus) and cortical (frontal and temporal cortex) regions, whilst reductions in beta-band power were localized to the precuneus, cerebellum, anterior cingulate, temporal and visual cortex. TE analysis demonstrated increased information transfer in a thalamo-cortical network after ketamine administration. The findings are consistent with the pronounced dysregulation of high-frequency oscillations following the inhibition of NMDA-R in animal models of ScZ as well as with evidence from electroencephalogram-data in ScZ-patients and increased functional connectivity during early illness stages. Moreover, our data highlight the potential contribution of thalamo-cortical connectivity patterns towards ketamine-induced neuronal dysregulation, which may be relevant for the understanding of ScZ as a disorder of disinhibition of neural circuits.

  20. Persistence and storage of activity patterns in spiking recurrent cortical networks:Modulation of sigmoid signals by after-hyperpolarization currents and acetylcholine

    Directory of Open Access Journals (Sweden)

    Jesse ePalma

    2012-06-01

    Full Text Available Many cortical networks contain recurrent architectures that transform input patterns before storing them in short-term memory (STM. Theorems in the 1970’s showed how feedback signal functions in rate-based recurrent on-center off-surround networks control this process. A sigmoid signal function induces a quenching threshold below which inputs are suppressed as noise and above which they are contrast-enhanced before pattern storage. This article describes how changes in feedback signaling, neuromodulation, and recurrent connectivity may alter pattern processing in recurrent on-center off-surround networks of spiking neurons. In spiking neurons, fast, medium, and slow after-hyperpolarization (AHP currents control sigmoid signal threshold and slope. Modulation of AHP currents by acetylcholine (ACh can change sigmoid shape and, with it, network dynamics. For example, decreasing signal function threshold and increasing slope can lengthen the persistence of a partially contrast-enhanced pattern, increase the number of active cells stored in STM, or, if connectivity is distance-dependent, cause cell activities to cluster. These results clarify how cholinergic modulation by the basal forebrain may alter the vigilance of category learning circuits, and thus their sensitivity to predictive mismatches, thereby controlling whether learned categories code concrete or abstract features, as predicted by Adaptive Resonance Theory. The analysis includes global, distance-dependent, and interneuron-mediated circuits. With an appropriate degree of recurrent excitation and inhibition, spiking networks maintain a partially contrast-enhanced pattern for 800 milliseconds or longer after stimuli offset, then resolve to no stored pattern, or to winner-take-all stored patterns with one or multiple winners. Strengthening inhibition prolongs a partially contrast-enhanced pattern by slowing the transition to stability, while strengthening excitation causes more winners

  1. Inactivation of the anterior cingulate reveals enhanced reliance on cortical networks for remote spatial memory retrieval after sequential memory processing.

    Directory of Open Access Journals (Sweden)

    Brianne C Wartman

    Full Text Available One system consolidation model suggests that as time passes, ensembles of cortical neurons form strong connections to represent remote memories. In this model, the anterior cingulate cortex (ACC serves as a cortical region that represents remote memories. However, there is debate as to whether remote spatial memories go through this systems consolidation process and come to rely on the ACC. The present experiment examined whether increasing the processing demand on the hippocampus, by sequential training on two spatial tasks, would more fully engage the ACC during retrieval of a remote spatial memory. In this scenario, inactivation of the ACC at a remote time point was hypothesized to produce a severe memory deficit if rats had been trained on two, sequential spatial tasks. Rats were trained on a water maze (WM task only or a WM task followed by a radial arm maze task. A WM probe test was given recently or remotely to all rats. Prior to the probe test, rats received an injection of saline or muscimol into the ACC. A subtle deficit in probe performance was found at the remote time point in the group trained on only one spatial task and treated with muscimol. In the group trained on two spatial tasks and treated with muscimol, a subtle deficit in probe performance was noted at the recent time point and a substantial deficit in probe performance was observed at the remote time point. c-Fos labeling in the hippocampus revealed more labeling in the CA1 region in all remotely tested groups than recently tested groups. Findings suggest that spatial remote memories come to rely more fully on the ACC when hippocampal processing requirements are increased. Results also suggest continued involvement of the hippocampus in spatial memory retrieval along with a progressive strengthening of cortical connections as time progresses.

  2. Inactivation of the anterior cingulate reveals enhanced reliance on cortical networks for remote spatial memory retrieval after sequential memory processing.

    Science.gov (United States)

    Wartman, Brianne C; Gabel, Jennifer; Holahan, Matthew R

    2014-01-01

    One system consolidation model suggests that as time passes, ensembles of cortical neurons form strong connections to represent remote memories. In this model, the anterior cingulate cortex (ACC) serves as a cortical region that represents remote memories. However, there is debate as to whether remote spatial memories go through this systems consolidation process and come to rely on the ACC. The present experiment examined whether increasing the processing demand on the hippocampus, by sequential training on two spatial tasks, would more fully engage the ACC during retrieval of a remote spatial memory. In this scenario, inactivation of the ACC at a remote time point was hypothesized to produce a severe memory deficit if rats had been trained on two, sequential spatial tasks. Rats were trained on a water maze (WM) task only or a WM task followed by a radial arm maze task. A WM probe test was given recently or remotely to all rats. Prior to the probe test, rats received an injection of saline or muscimol into the ACC. A subtle deficit in probe performance was found at the remote time point in the group trained on only one spatial task and treated with muscimol. In the group trained on two spatial tasks and treated with muscimol, a subtle deficit in probe performance was noted at the recent time point and a substantial deficit in probe performance was observed at the remote time point. c-Fos labeling in the hippocampus revealed more labeling in the CA1 region in all remotely tested groups than recently tested groups. Findings suggest that spatial remote memories come to rely more fully on the ACC when hippocampal processing requirements are increased. Results also suggest continued involvement of the hippocampus in spatial memory retrieval along with a progressive strengthening of cortical connections as time progresses.

  3. Altered Dynamics Between Neural Systems Sub-serving Decisions for Unhealthy Food

    Directory of Open Access Journals (Sweden)

    Qinghua eHe

    2014-11-01

    Full Text Available Using BOLD functional magnetic resonance imaging (fMRI techniques, we examined the relationships between activities in the neural systems elicited by the decision stage of the Iowa Gambling Task (IGT, and food choices of either vegetables or snacks high in fat and sugar. Twenty-three healthy normal weight adolescents and young adults, ranging in age from 14-21, were studied. Neural systems implicated in decision-making and inhibitory control were engaged by having participants perform the IGT during fMRI scanning. The Youth/Adolescent Questionnaire, a food frequency questionnaire, was used to obtain daily food choices. Higher consumption of vegetables correlated with higher activity in prefrontal cortical regions, namely the left superior frontal gyrus (SFG, and lower activity in sub-cortical regions, namely the right insular cortex. In contrast, higher consumption of fatty and sugary snacks correlated with lower activity in the prefrontal regions, combined with higher activity in the sub-cortical, insular cortex.These results provide preliminary support for our hypotheses that unhealthy food choices in real life are reflected by neuronal changes in key neural systems involved in habits, decision-making and self-control processes. These findings have implications for the creation of decision-making based intervention strategies that promote healthier eating.

  4. Altered dynamics between neural systems sub-serving decisions for unhealthy food.

    Science.gov (United States)

    He, Qinghua; Xiao, Lin; Xue, Gui; Wong, Savio; Ames, Susan L; Xie, Bin; Bechara, Antoine

    2014-01-01

    Using BOLD functional magnetic resonance imaging (fMRI) techniques, we examined the relationships between activities in the neural systems elicited by the decision stage of the Iowa Gambling Task (IGT), and food choices of either vegetables or snacks high in fat and sugar. Twenty-three healthy normal weight adolescents and young adults, ranging in age from 14 to 21, were studied. Neural systems implicated in decision-making and inhibitory control were engaged by having participants perform the IGT during fMRI scanning. The Youth/Adolescent Questionnaire, a food frequency questionnaire, was used to obtain daily food choices. Higher consumption of vegetables correlated with higher activity in prefrontal cortical regions, namely the left superior frontal gyrus (SFG), and lower activity in sub-cortical regions, namely the right insular cortex. In contrast, higher consumption of fatty and sugary snacks correlated with lower activity in the prefrontal regions, combined with higher activity in the sub-cortical, insular cortex. These results provide preliminary support for our hypotheses that unhealthy food choices in real life are reflected by neuronal changes in key neural systems involved in habits, decision-making and self-control processes. These findings have implications for the creation of decision-making based intervention strategies that promote healthier eating.

  5. Distribution and network of basal temporal language areas: a study of the combination of electric cortical stimulation and diffusion tensor imaging.

    Science.gov (United States)

    Enatsu, Rei; Kanno, Aya; Ookawa, Satoshi; Ochi, Satoko; Ishiai, Sumio; Nagamine, Takashi; Mikuni, Nobuhiro

    2017-06-21

    The basal temporal language area (BTLA) is considered to have several functions in language processing; however, its brain network is still unknown. This study investigated the distribution and networks of the BTLA using a combination of electric cortical stimulation and diffusion tensor imaging (DTI). Ten patients with intractable focal epilepsy who underwent presurgical evaluation with subdural electrodes were enrolled in this study (language dominant side: six patients, language non-dominant side: four patients). Electric stimulation at 50 Hz was applied to the electrodes during Japanese sentence reading, morphograms (kanji) reading, and syllabograms (kana) reading tasks to identify the BTLA. DTI was used to identify the subcortical fibers originating from the BTLA found by electrical stimulation. The BTLA was found in six patients who underwent implantation of the subdural electrodes in the dominant hemisphere. The BTLA was located anywhere between 20-56 mm posterior to temporal tips. In three patients, electrical stimulation of some or all areas within the BTLA induced disturbance in reading of kanji words only. DTI detected the inferior longitudinal fasciculus (ILF) in all patients and the uncinate fasciculus (UF) in one patient, originating from the BTLA. ILF was detected from both kanji-specific areas and kanji-nonspecific areas. This study indicates that the network of the BTLA is a part of a ventral stream, and is mainly composed of the ILF, which acts as a critical structure for lexical retrieval. ILF is also associated with the specific process of kanji words. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone.

    Science.gov (United States)

    Nazemi, S Majid; Amini, Morteza; Kontulainen, Saija A; Milner, Jaques S; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D

    2017-01-01

    Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain. However, it is unclear what density-modulus equation(s) should be applied with subchondral cortical and subchondral trabecular bone when constructing finite element models of the tibia. Using a novel approach applying neural networks, optimization, and back-calculation against in situ experimental testing results, the objective of this study was to identify subchondral-specific equations that optimized finite element predictions of local structural stiffness at the proximal tibial subchondral surface. Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using multiple density-modulus equations (93 total variations) then mapped to corresponding finite element models. For each variation, root mean squared error was calculated between finite element prediction and in situ measured stiffness at 47 indentation sites. Resulting errors were used to train an artificial neural network, which provided an unlimited number of model variations, with corresponding error, for predicting stiffness at the subchondral bone surface. Nelder-Mead optimization was used to identify optimum density-modulus equations for predicting stiffness. Finite element modeling predicted 81% of experimental stiffness variance (with 10.5% error) using optimized equations for subchondral cortical and trabecular bone differentiated with a 0.5g/cm(3) density. In comparison with published density-modulus relationships, optimized equations offered improved predictions of local subchondral structural stiffness. Further research is needed with anisotropy inclusion, a smaller voxel size and de-blurring algorithms to improve predictions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Orexin-dependent activation of layer VIb enhances cortical network activity and integration of non-specific thalamocortical inputs.

    Science.gov (United States)

    Hay, Y Audrey; Andjelic, Sofija; Badr, Sammy; Lambolez, Bertrand

    2015-11-01

    Neocortical layer VI is critically involved in thalamocortical activity changes during the sleep/wake cycle. It receives dense projections from thalamic nuclei sensitive to the wake-promoting neuropeptides orexins, and its deepest part, layer VIb, is the only cortical lamina reactive to orexins. This convergence of wake-promoting inputs prompted us to investigate how layer VIb can modulate cortical arousal, using patch-clamp recordings and optogenetics in rat brain slices. We found that the majority of layer VIb neurons were excited by nicotinic agonists and orexin through the activation of nicotinic receptors containing α4-α5-β2 subunits and OX2 receptor, respectively. Specific effects of orexin on layer VIb neurons were potentiated by low nicotine concentrations and we used this paradigm to explore their intracortical projections. Co-application of nicotine and orexin increased the frequency of excitatory post-synaptic currents in the ipsilateral cortex, with maximal effect in infragranular layers and minimal effect in layer IV, as well as in the contralateral cortex. The ability of layer VIb to relay thalamocortical inputs was tested using photostimulation of channelrhodopsin-expressing fibers from the orexin-sensitive rhomboid nucleus in the parietal cortex. Photostimulation induced robust excitatory currents in layer VIa neurons that were not pre-synaptically modulated by orexin, but exhibited a delayed, orexin-dependent, component. Activation of layer VIb by orexin enhanced the reliability and spike-timing precision of layer VIa responses to rhomboid inputs. These results indicate that layer VIb acts as an orexin-gated excitatory feedforward loop that potentiates thalamocortical arousal.

  8. Large-scale, high-resolution multielectrode-array recording depicts functional network differences of cortical and hippocampal cultures.

    Directory of Open Access Journals (Sweden)

    Shinya Ito

    Full Text Available Understanding the detailed circuitry of functioning neuronal networks is one of the major goals of neuroscience. Recent improvements in neuronal recording techniques have made it possible to record the spiking activity from hundreds of neurons simultaneously with sub-millisecond temporal resolution. Here we used a 512-channel multielectrode array system to record the activity from hundreds of neurons in organotypic cultures of cortico-hippocampal brain slices from mice. To probe the network structure, we employed a wavelet transform of the cross-correlogram to categorize the functional connectivity in different frequency ranges. With this method we directly compare, for the first time, in any preparation, the neuronal network structures of cortex and hippocampus, on the scale of hundreds of neurons, with sub-millisecond time resolution. Among the three frequency ranges that we investigated, the lower two frequency ranges (gamma (30-80 Hz and beta (12-30 Hz range showed similar network structure between cortex and hippocampus, but there were many significant differences between these structures in the high frequency range (100-1000 Hz. The high frequency networks in cortex showed short tailed degree-distributions, shorter decay length of connectivity density, smaller clustering coefficients, and positive assortativity. Our results suggest that our method can characterize frequency dependent differences of network architecture from different brain regions. Crucially, because these differences between brain regions require millisecond temporal scales to be observed and characterized, these results underscore the importance of high temporal resolution recordings for the understanding of functional networks in neuronal systems.

  9. The trans-species core SELF: the emergence of active cultural and neuro-ecological agents through self-related processing within subcortical-cortical midline networks.

    Science.gov (United States)

    Panksepp, Jaak; Northoff, Georg

    2009-03-01

    The nature of "the self" has been one of the central problems in philosophy and more recently in neuroscience. This raises various questions: (i) Can we attribute a self to animals? (ii) Do animals and humans share certain aspects of their core selves, yielding a trans-species concept of self? (iii) What are the neural processes that underlie a possible trans-species concept of self? (iv) What are the developmental aspects and do they result in various levels of self-representation? Drawing on recent literature from both human and animal research, we suggest a trans-species concept of self that is based upon what has been called a "core-self" which can be described by self-related processing (SRP) as a specific mode of interaction between organism and environment. When we refer to specific neural networks, we will here refer to the underlying system as the "core-SELF." The core-SELF provides primordial neural coordinates that represent organisms as living creatures-at the lowest level this elaborates interoceptive states along with raw emotional feelings (i.e., the intentions in action of a primordial core-SELF) while higher medial cortical levels facilitate affective-cognitive integration (yielding a fully-developed nomothetic core-self). Developmentally, SRP allows stimuli from the environment to be related and linked to organismic needs, signaled and processed within core-self structures within subcorical-cortical midline structures (SCMS) that provide the foundation for epigenetic emergence of ecologically framed, higher idiographic forms of selfhood across different individuals within a species. These functions ultimately operate as a coordinated network. We postulate that core SRP operates automatically, is deeply affective, and is developmentally and epigenetically connected to sensory-motor and higher cognitive abilities. This core-self is mediated by SCMS, embedded in visceral and instinctual representations of the body that are well integrated with basic

  10. Functional rehabilitation of partial cortical blindness?

    Science.gov (United States)

    Stoerig, Petra

    2008-01-01

    The current doctrine regards fields of partial cortical blindness as permanent once a temporally restricted window for spontaneous recovery has passed. Accordingly, neuropsychological rehabilitation mainly applies compensatory procedures that train patients to make better use of their sighted field. The more ambitious goal of functional recovery depends on the survival of pathways that continue to transmit retinal information from the blind field. Although wide-spread antero- and retrograde degeneration follows lesions that destroy or denervate the primary visual cortex and cause partial cortical blindness, several retinofugal pathways survive in cats, monkeys, and humans. In all three species, they subserve a variety of visual functions which develop and improve with practice. Post lesion plasticity is greater when the lesion occurs early in life, but changes in behavioural performance and brain responses have also been demonstrated in late lesion subjects. Although the extent of functional improvement is variable, and the most effective approaches still need to be established across cohorts, the evidence for perceptual learning in fields of cortical blindness indicates that the visual processes mediated by the surviving parts of the visual system can be harnessed to improve functional outcome.

  11. Relationship Between White Matter Hyperintensities, Cortical Thickness, and Cognition

    NARCIS (Netherlands)

    Tuladhar, Anil M.; Norris, David Gordon

    2015-01-01

    Background and Purpose White matter hyperintensities (WMH) are associated with clinically heterogeneous symptoms that cannot be explained by these lesions alone. It is hypothesized that these lesions are associated with distant cortical atrophy and cortical thickness network measures, which can

  12. Recently learned foreign abstract and concrete nouns are represented in distinct cortical networks similar to the native language.

    Science.gov (United States)

    Mayer, Katja M; Macedonia, Manuela; von Kriegstein, Katharina

    2017-09-01

    In the native language, abstract and concrete nouns are represented in distinct areas of the cerebral cortex. Currently, it is unknown whether this is also the case for abstract and concrete nouns of a foreign language. Here, we taught adult native speakers of German 45 abstract and 45 concrete nouns of a foreign language. After learning the nouns for 5 days, participants performed a vocabulary translation task during functional magnetic resonance imaging. Translating abstract nouns in contrast to concrete nouns elicited responses in regions that are also responsive to abstract nouns in the native language: the left inferior frontal gyrus and the left middle and superior temporal gyri. Concrete nouns elicited larger responses in the angular gyri bilaterally and the left parahippocampal gyrus than abstract nouns. The cluster in the left angular gyrus showed psychophysiological interaction (PPI) with the left lingual gyrus. The left parahippocampal gyrus showed PPI with the posterior cingulate cortex. Similar regions have been previously found for concrete nouns in the native language. The results reveal similarities in the cortical representation of foreign language nouns with the representation of native language nouns that already occur after 5 days of vocabulary learning. Furthermore, we showed that verbal and enriched learning methods were equally suitable to teach foreign abstract and concrete nouns. Hum Brain Mapp 38:4398-4412, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Functional MRI reveals compromised neural integrity of the face processing network in congenital prosopagnosia.

    Science.gov (United States)

    Avidan, Galia; Behrmann, Marlene

    2009-07-14

    The summed activity of multiple nodes of a distributed cortical network supports face recognition in humans, including "core" ventral occipitotemporal cortex (VOTC) regions, and "extended" regions outside VOTC. Many individuals with congenital prosopagnosia-an impairment in face processing-exhibit normal blood oxygenation level-dependent (BOLD) activation in the core VOTC regions. These individuals evince a reduction in the structural integrity of the white matter tracts connecting VOTC to anterior temporal and frontal cortices, part of the "extended" face network. The impairment in congenital prosopagnosia may arise, therefore, not from a dysfunction of the core VOTC areas but from a failure to propagate signals between the intact VOTC and the extended nodes of the network. Using the fMR adaptation paradigm with famous and unknown faces, we show that individuals with congenital prosopagnosia evince normal adaptation effects in VOTC, indicating sensitivity to facial identity, but show no differential activation for familiar versus unknown faces outside VOTC, particularly in the precuneus/posterior cingulate cortex and the anterior paracingulate cortex. Normal BOLD activation in VOTC is thus insufficient to subserve intact face recognition, and disrupted information propagation between VOTC and the extended face processing network may explain the functional impairment in congenital prosopagnosia.

  14. Cortical networks for vision and language in dyslexic and normal children of variable socio-economic status.

    Science.gov (United States)

    Monzalvo, Karla; Fluss, Joel; Billard, Catherine; Dehaene, Stanislas; Dehaene-Lambertz, Ghislaine

    2012-05-15

    In dyslexia, anomalous activations have been described in both left temporo-parietal language cortices and in left ventral visual occipito-temporal cortex. However, the reproducibility, task-dependency, and presence of these brain anomalies in childhood rather than adulthood remain debated. We probed the large-scale organization of ventral visual and spoken language areas in dyslexic children using minimal target-detection tasks that were performed equally well by all groups. In 23 normal and 23 dyslexic 10-year-old children from two different socio-economic status (SES) backgrounds, we compared fMRI activity to visually presented houses, faces, and written strings, and to spoken sentences in the native or in a foreign language. Our results confirm a disorganization of both ventral visual and spoken language areas in dyslexic children. Visually, dyslexic children showed a normal lateral-to-medial mosaic of preferences, as well as normal responses to houses and checkerboards, but a reduced activation to words in the visual word form area (VWFA) and to faces in the right fusiform face area (FFA). Auditorily, dyslexic children exhibited reduced responses to speech in posterior temporal cortex, left insula and supplementary motor area, as well as reduced responses to maternal language in subparts of the planum temporale, left basal language area and VWFA. By correlating these two findings, we identify spoken-language predictors of VWFA activation to written words, which differ for dyslexic and normal readers. Similarities in fMRI deficits in both SES groups emphasize the existence of a core set of brain activation anomalies in dyslexia, regardless of culture, language and SES, without however resolving whether these anomalies are a cause or a consequence of impaired reading. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Spatio-temporal electrical stimuli shape behavior of an embodied cortical network in a goal-directed learning task

    Science.gov (United States)

    Bakkum, Douglas J.; Chao, Zenas C.; Potter, Steve M.

    2008-09-01

    We developed an adaptive training algorithm, whereby an in vitro neocortical network learned to modulate its dynamics and achieve pre-determined activity states within tens of minutes through the application of patterned training stimuli using a multi-electrode array. A priori knowledge of functional connectivity was not necessary. Instead, effective training sequences were continuously discovered and refined based on real-time feedback of performance. The short-term neural dynamics in response to training became engraved in the network, requiring progressively fewer training stimuli to achieve successful behavior in a movement task. After 2 h of training, plasticity remained significantly greater than the baseline for 80 min (p-value disorders by gradually shaping functional connectivity. Corrections were made to this article on 27 August 2008. Changes were made to affiliation 3, and to figure 2. The corrected electronic version is identical to the print version.

  16. A common cortical circuit mechanism for perceptual categorical discrimination and veridical judgment.

    Directory of Open Access Journals (Sweden)

    Feng Liu

    2008-12-01

    Full Text Available Perception involves two types of decisions about the sensory world: identification of stimulus features as analog quantities, or discrimination of the same stimulus features among a set of discrete alternatives. Veridical judgment and categorical discrimination have traditionally been conceptualized as two distinct computational problems. Here, we found that these two types of decision making can be subserved by a shared cortical circuit mechanism. We used a continuous recurrent network model to simulate two monkey experiments in which subjects were required to make either a two-alternative forced choice or a veridical judgment about the direction of random-dot motion. The model network is endowed with a continuum of bell-shaped population activity patterns, each representing a possible motion direction. Slow recurrent excitation underlies accumulation of sensory evidence, and its interplay with strong recurrent inhibition leads to decision behaviors. The model reproduced the monkey's performance as well as single-neuron activity in the categorical discrimination task. Furthermore, we examined how direction identification is determined by a combination of sensory stimulation and microstimulation. Using a population-vector measure, we found that direction judgments instantiate winner-take-all (with the population vector coinciding with either the coherent motion direction or the electrically elicited motion direction when two stimuli are far apart, or vector averaging (with the population vector falling between the two directions when two stimuli are close to each other. Interestingly, for a broad range of intermediate angular distances between the two stimuli, the network displays a mixed strategy in the sense that direction estimates are stochastically produced by winner-take-all on some trials and by vector averaging on the other trials, a model prediction that is experimentally testable. This work thus lends support to a common neurodynamic

  17. Charting the effects of TMS with fMRI: Modulation of cortical recruitment within the distributed network supporting semantic control.

    Science.gov (United States)

    Hallam, Glyn P; Whitney, Carin; Hymers, Mark; Gouws, Andre D; Jefferies, Elizabeth

    2016-12-01

    Semantic memory comprises our knowledge of the meanings of words and objects but only some of this knowledge is relevant at any given time. Thus, semantic control processes are needed to focus retrieval on relevant information. Research on the neural basis of semantic control has strongly implicated left inferior frontal gyrus (LIFG) but recent work suggests that a wider network supports semantic control, including left posterior middle temporal gyrus (pMTG), right inferior frontal gyrus (RIFG) and pre-supplementary motor area (pre-SMA). In the current study, we used repetitive transcranial magnetic stimulation (1Hz offline TMS) over LIFG, immediately followed by fMRI, to examine modulation of the semantic network. We compared the effect of stimulation on judgements about strongly-associated words (dog-bone) and weaker associations (dog-beach), since previous studies have found that dominant links can be recovered largely automatically with little engagement of LIFG, while more distant connections require greater control. Even though behavioural performance was maintained in response to TMS, LIFG stimulation increased the effect of semantic control demands in pMTG and pre-SMA, relative to stimulation of a control site (occipital pole). These changes were accompanied by reduced recruitment of both the stimulated region (LIFG) and its right hemisphere homologue (RIFG), particularly for strong associations with low control requirements. Thus repetitive TMS to LIFG modulated the contribution of distributed regions to semantic judgements in two distinct ways.

  18. How the human brain goes virtual: distinct cortical regions of the person-processing network are involved in self-identification with virtual agents.

    Science.gov (United States)

    Ganesh, Shanti; van Schie, Hein T; de Lange, Floris P; Thompson, Evan; Wigboldus, Daniël H J

    2012-07-01

    Millions of people worldwide engage in online role-playing with their avatar, a virtual agent that represents the self. Previous behavioral studies have indicated that many gamers identify more strongly with their avatar than with their biological self. Through their avatar, gamers develop social networks and learn new social-cognitive skills. The cognitive neurosciences have yet to identify the neural processes that underlie self-identification with these virtual agents. We applied functional neuroimaging to 22 long-term online gamers and 21 nongaming controls, while they rated personality traits of self, avatar, and familiar others. Strikingly, neuroimaging data revealed greater avatar-referential cortical activity in the left inferior parietal lobe, a region associated with self-identification from a third-person perspective. The magnitude of this brain activity correlated positively with the propensity to incorporate external body enhancements into one's bodily identity. Avatar-referencing furthermore recruited greater activity in the rostral anterior cingulate gyrus, suggesting relatively greater emotional self-involvement with one's avatar. Post-scanning behavioral data revealed superior recognition memory for avatar relative to others. Interestingly, memory for avatar positively covaried with play duration. These findings significantly advance our knowledge about the brain's plasticity to self-identify with virtual agents and the human cognitive-affective potential to live and learn in virtual worlds.

  19. Negative childhood experiences alter a prefrontal-insular-motor cortical network in healthy adults: A preliminary multimodal rsfMRI-fMRI-MRS-dMRI study

    Science.gov (United States)

    Duncan, Niall W.; Hayes, Dave J.; Wiebking, Christine; Tiret, Brice; Pietruska, Karin; Chen, David Q.; Rainville, Pierre; Marjańska, Malgorzata; Mohammid, Omar; Doyon, Julien; Hodaie, Mojgan; Northoff, Georg

    2016-01-01

    Research in humans and animals has shown that negative childhood experiences (NCE) can have long-term effects on the structure and function of the brain. Alterations have been noted in grey and white matter, in the brain’s resting state, on the glutamatergic system, and on neural and behavioural responses to aversive stimuli. These effects can be linked to psychiatric disorder such as depression and anxiety disorders that are influenced by excessive exposure to early life stressors. The aim of the current study was to investigate the effect of NCEs on these systems. Resting state functional MRI (rsfMRI), aversion task fMRI, glutamate magnetic resonance spectroscopy (MRS), and diffusion magnetic resonance imaging (dMRI) were combined with the Childhood Trauma Questionnaire (CTQ) in healthy subjects to examine the impact of NCEs on the brain. Low CTQ scores, a measure of NCEs, were related to higher resting state glutamate levels and higher resting state entropy in the medial prefrontal cortex (mPFC). CTQ scores, mPFC glutamate and entropy, correlated with neural BOLD responses to the anticipation of aversive stimuli in regions throughout the aversion-related network, with strong correlations between all measures in the motor cortex and left insula. Structural connectivity strength, measured using mean fractional anisotropy, between the mPFC and left insula correlated to aversion-related signal changes in the motor cortex. These findings highlight the impact of NCEs on multiple inter-related brain systems. In particular, they highlight the role of a prefrontal-insular-motor cortical network in the processing and responsivity to aversive stimuli and its potential adaptability by NCEs. PMID:26287448

  20. Low and then high frequency oscillations of distinct right cortical networks are progressively enhanced by medium and long term Satyananda Yoga meditation practice

    Directory of Open Access Journals (Sweden)

    John eThomas

    2014-06-01

    Full Text Available Meditation proficiency is related to trait-like (learned effects on brain function, developed over time. Previous studies show increases in EEG power in lower frequency bands (theta, alpha in experienced meditators in both meditation states and baseline conditions. Higher gamma band power has been found in advanced Buddhist meditators, yet it is not known if this occurs in Yoga meditation practices. This study used eLORETA to compare differences in cortical source activity underlying scalp EEG from intermediate (mean experience 4 years and advanced (mean experience 30 years Australian meditators from the Satyananda Yoga tradition during a body-steadiness meditation, mantra meditation and non-meditation mental calculation condition. Intermediate Yoga meditators showed greater source activity in low frequencies (particularly theta and alpha1 during mental calculation, body-steadiness and mantra meditation. A similar spatial pattern of significant differences was found in all conditions but the number of significant voxels was double during body-steadiness and mantra meditation than in the non-meditation (calculation condition. These differences were greatest in right (R superior frontal and R precentral gyri and extended back to include the R parietal and occipital lobes. Advanced Yoga meditators showed greater activity in high frequencies (beta and especially gamma in all conditions but greatly expanded during meditation practice. Across all conditions (meditation and non-meditation differences were greatest in the same regions; R insula, R inferior frontal gyrus and R anterior temporal lobe. Distinct R core networks were identified in alpha1 (8-10 Hz and gamma (25-42 Hz bands respectively. The voxels recruited to these networks greatly expanded during meditation practice to include homologous regions of the left hemisphere. Functional interpretation parallels traditionally described stages of development in Yoga proficiency.

  1. Monitoring Different Phonological Parameters of Sign Language Engages the Same Cortical Language Network but Distinctive Perceptual Ones.

    Science.gov (United States)

    Cardin, Velia; Orfanidou, Eleni; Kästner, Lena; Rönnberg, Jerker; Woll, Bencie; Capek, Cheryl M; Rudner, Mary

    2016-01-01

    The study of signed languages allows the dissociation of sensorimotor and cognitive neural components of the language signal. Here we investigated the neurocognitive processes underlying the monitoring of two phonological parameters of sign languages: handshape and location. Our goal was to determine if brain regions processing sensorimotor characteristics of different phonological parameters of sign languages were also involved in phonological processing, with their activity being modulated by the linguistic content of manual actions. We conducted an fMRI experiment using manual actions varying in phonological structure and semantics: (1) signs of a familiar sign language (British Sign Language), (2) signs of an unfamiliar sign language (Swedish Sign Language), and (3) invented nonsigns that violate the phonological rules of British Sign Language and Swedish Sign Language or consist of nonoccurring combinations of phonological parameters. Three groups of participants were tested: deaf native signers, deaf nonsigners, and hearing nonsigners. Results show that the linguistic processing of different phonological parameters of sign language is independent of the sensorimotor characteristics of the language signal. Handshape and location were processed by different perceptual and task-related brain networks but recruited the same language areas. The semantic content of the stimuli did not influence this process, but phonological structure did, with nonsigns being associated with longer RTs and stronger activations in an action observation network in all participants and in the supramarginal gyrus exclusively in deaf signers. These results suggest higher processing demands for stimuli that contravene the phonological rules of a signed language, independently of previous knowledge of signed languages. We suggest that the phonological characteristics of a language may arise as a consequence of more efficient neural processing for its perception and production.

  2. The two forms of Visuo-Spatial Perspective Taking are differently embodied and subserve different spatial prepositions

    Directory of Open Access Journals (Sweden)

    Klaus eKessler

    2010-12-01

    Full Text Available We set out to distinguish level 1 (VPT-1 and level 2 (VPT-2 perspective taking with respect to the embodied nature of the underlying processes as well as to investigate their dependence or independence of response modality (motor vs. verbal. While VPT-1 reflects understanding of what lies within someone else’s line of sight, VPT-2 involves mentally adopting someone else’s spatial point of view. Perspective taking is a high-level conscious and deliberate mental transformation that is crucially placed at the convergence of perception, mental imagery, communication, and even theory of mind in the case of VPT-2. The differences between VPT-1 and VPT-2 mark a qualitative boundary between humans and apes, with the latter being capable of VPT-1 but not of VPT-2. However, our recent data showed that VPT-2 is best conceptualised as the deliberate simulation or emulation of a movement, thus underpinning its embodied origins. In the work presented here we compared VPT-2 to VPT-1 and found that VPT-1 is not at all, or very differently embodied. In a second experiment we replicated the qualitatively different patterns for VPT-1 and VPT-2 with verbal responses that employed spatial prepositions. We conclude that VPT-1 is the cognitive process that subserves verbal localisations using in front and behind, while VPT-2 subserves left and right from a perspective other than the egocentric. We further conclude that both processes are grounded and situated, but only VPT-2 is embodied in the form of a deliberate movement simulation that increases in mental effort with distance and incongruent proprioception. The differences in cognitive effort predict differences in the use of the associated prepositions. Our findings, therefore, shed light on the situated, grounded and embodied basis of spatial localisations and on the psychology of their use.

  3. Muscle synergy patterns as physiological markers of motor cortical damage.

    Science.gov (United States)

    Cheung, Vincent C K; Turolla, Andrea; Agostini, Michela; Silvoni, Stefano; Bennis, Caoimhe; Kasi, Patrick; Paganoni, Sabrina; Bonato, Paolo; Bizzi, Emilio

    2012-09-04

    The experimental findings herein reported are aimed at gaining a perspective on the complex neural events that follow lesions of the motor cortical areas. Cortical damage, whether by trauma or stroke, interferes with the flow of descending signals to the modular interneuronal structures of the spinal cord. These spinal modules subserve normal motor behaviors by activating groups of muscles as individual units (muscle synergies). Damage to the motor cortical areas disrupts the orchestration of the modules, resulting in abnormal movements. To gain insights into this complex process, we recorded myoelectric signals from multiple upper-limb muscles in subjects with cortical lesions. We used a factorization algorithm to identify the muscle synergies. Our factorization analysis revealed, in a quantitative way, three distinct patterns of muscle coordination-including preservation, merging, and fractionation of muscle synergies-that reflect the multiple neural responses that occur after cortical damage. These patterns varied as a function of both the severity of functional impairment and the temporal distance from stroke onset. We think these muscle-synergy patterns can be used as physiological markers of the status of any patient with stroke or trauma, thereby guiding the development of different rehabilitation approaches, as well as future physiological experiments for a further understanding of postinjury mechanisms of motor control and recovery.

  4. Cortical excitability differences between flexor pollicis longus and APB.

    Science.gov (United States)

    Bae, Jong Seok; Menon, Parvathi; Mioshi, Eneida; Kiernan, Matthew C; Vucic, Steve

    2013-04-29

    Although abductor pollicis brevis (APB) and flexor pollicis longus (FPL) share a common peripheral nerve supply, these muscles subserve different functions and may be differently affected in neurodegenerative disease such as amyotrophic lateral sclerosis (ALS). As a consequence, differences in cortical excitability may potentially develop in relation to these functional differences. Cortical excitability was assessed using the threshold tracking transcranial magnetic stimulation (TMS) technique in 15 healthy controls with motor responses recorded over the APB and FPL using surface electrode recordings. Short-interval intracortical inhibition (SICI) was significantly reduced from the FPL compared to APB (SICIFPL 6.9±1.8%; SICIAPB 10.7±1.4%, P<0.01). In addition, the FPL motor evoked potential amplitude (MEPFPL 14.7±2.3%; MEPAPB 21.7±3.9%; P<0.01) and cortical silent period duration (CSPFPL 174.7±6.7ms; CSPAPB 205.4±3.9ms, P<0.01) were significantly smaller. The findings in the present study indicate that cortical inhibition and corticomotoneuronal output is reduced when recording over the FPL. The differences in cortical excitability may develop as a consequence of varied function and could potentially explain the dissociated muscle atrophy evident in ALS.

  5. Extradural cortical stimulation for neural network recovery in stroke patients%硬膜外植入式皮质刺激脑卒中患者提高神经网络功能

    Institute of Scientific and Technical Information of China (English)

    赵健乐; 李景琦; 牛森林; 高坚

    2014-01-01

    stimulation, extradural motor cortex stimulation, extradural cortical implants, extradural cortical stimulation, stroke, rehabilitation”in English and Chinese. RESULTS AND CONCLUSION:Because of implantable cortical stimulation, the advantage of extradural cortical stimulation is its minimal invasiveness, high accuracy and transdural contact with the brain. For lack of effective treatment for the chronic phase of stroke patients with motor and language dysfunction, extradural cortical stimulation may be a new therapeutic method. Motor and language functional improvement must derive from reactivation of plasticity, local enhancement of perilesional areas, enhancement of network function and inter-hemispheric balance function, and amplification of sensory input.

  6. Cortical Visual Impairment

    Science.gov (United States)

    ... Frequently Asked Questions Español Condiciones Chinese Conditions Cortical Visual Impairment En Español Read in Chinese What is cortical visual impairment? Cortical visual impairment (CVI) is a decreased visual ...

  7. Grid cells and cortical representation.

    Science.gov (United States)

    Moser, Edvard I; Roudi, Yasser; Witter, Menno P; Kentros, Clifford; Bonhoeffer, Tobias; Moser, May-Britt

    2014-07-01

    One of the grand challenges in neuroscience is to comprehend neural computation in the association cortices, the parts of the cortex that have shown the largest expansion and differentiation during mammalian evolution and that are thought to contribute profoundly to the emergence of advanced cognition in humans. In this Review, we use grid cells in the medial entorhinal cortex as a gateway to understand network computation at a stage of cortical processing in which firing patterns are shaped not primarily by incoming sensory signals but to a large extent by the intrinsic properties of the local circuit.

  8. Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks.

    Science.gov (United States)

    Triggiani, Antonio I; Bevilacqua, Vitoantonio; Brunetti, Antonio; Lizio, Roberta; Tattoli, Giacomo; Cassano, Fabio; Soricelli, Andrea; Ferri, Raffaele; Nobili, Flavio; Gesualdo, Loreto; Barulli, Maria R; Tortelli, Rosanna; Cardinali, Valentina; Giannini, Antonio; Spagnolo, Pantaleo; Armenise, Silvia; Stocchi, Fabrizio; Buenza, Grazia; Scianatico, Gaetano; Logroscino, Giancarlo; Lacidogna, Giordano; Orzi, Francesco; Buttinelli, Carla; Giubilei, Franco; Del Percio, Claudio; Frisoni, Giovanni B; Babiloni, Claudio

    2016-01-01

    Previous evidence showed a 75.5% best accuracy in the classification of 120 Alzheimer's disease (AD) patients with dementia and 100 matched normal elderly (Nold) subjects based on cortical source current density and linear lagged connectivity estimated by eLORETA freeware from resting state eyes-closed electroencephalographic (rsEEG) rhythms (Babiloni et al., 2016a). Specifically, that accuracy was reached using the ratio between occipital delta and alpha1 current density for a linear univariate classifier (receiver operating characteristic curves). Here we tested an innovative approach based on an artificial neural network (ANN) classifier from the same database of rsEEG markers. Frequency bands of interest were delta (2-4 Hz), theta (4-8 Hz Hz), alpha1 (8-10.5 Hz), and alpha2 (10.5-13 Hz). ANN classification showed an accuracy of 77% using the most 4 discriminative rsEEG markers of source current density (parietal theta/alpha 1, temporal theta/alpha 1, occipital theta/alpha 1, and occipital delta/alpha 1). It also showed an accuracy of 72% using the most 4 discriminative rsEEG markers of source lagged linear connectivity (inter-hemispherical occipital delta/alpha 2, intra-hemispherical right parietal-limbic alpha 1, intra-hemispherical left occipital-temporal theta/alpha 1, intra-hemispherical right occipital-temporal theta/alpha 1). With these 8 markers combined, an accuracy of at least 76% was reached. Interestingly, this accuracy based on 8 (linear) rsEEG markers as inputs to ANN was similar to that obtained with a single rsEEG marker (Babiloni et al., 2016a), thus unveiling their information redundancy for classification purposes. In future AD studies, inputs to ANNs should include other classes of independent linear (i.e., directed transfer function) and non-linear (i.e., entropy) rsEEG markers to improve the classification.

  9. Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks

    Science.gov (United States)

    Triggiani, Antonio I.; Bevilacqua, Vitoantonio; Brunetti, Antonio; Lizio, Roberta; Tattoli, Giacomo; Cassano, Fabio; Soricelli, Andrea; Ferri, Raffaele; Nobili, Flavio; Gesualdo, Loreto; Barulli, Maria R.; Tortelli, Rosanna; Cardinali, Valentina; Giannini, Antonio; Spagnolo, Pantaleo; Armenise, Silvia; Stocchi, Fabrizio; Buenza, Grazia; Scianatico, Gaetano; Logroscino, Giancarlo; Lacidogna, Giordano; Orzi, Francesco; Buttinelli, Carla; Giubilei, Franco; Del Percio, Claudio; Frisoni, Giovanni B.; Babiloni, Claudio

    2017-01-01

    Previous evidence showed a 75.5% best accuracy in the classification of 120 Alzheimer's disease (AD) patients with dementia and 100 matched normal elderly (Nold) subjects based on cortical source current density and linear lagged connectivity estimated by eLORETA freeware from resting state eyes-closed electroencephalographic (rsEEG) rhythms (Babiloni et al., 2016a). Specifically, that accuracy was reached using the ratio between occipital delta and alpha1 current density for a linear univariate classifier (receiver operating characteristic curves). Here we tested an innovative approach based on an artificial neural network (ANN) classifier from the same database of rsEEG markers. Frequency bands of interest were delta (2–4 Hz), theta (4–8 Hz Hz), alpha1 (8–10.5 Hz), and alpha2 (10.5–13 Hz). ANN classification showed an accuracy of 77% using the most 4 discriminative rsEEG markers of source current density (parietal theta/alpha 1, temporal theta/alpha 1, occipital theta/alpha 1, and occipital delta/alpha 1). It also showed an accuracy of 72% using the most 4 discriminative rsEEG markers of source lagged linear connectivity (inter-hemispherical occipital delta/alpha 2, intra-hemispherical right parietal-limbic alpha 1, intra-hemispherical left occipital-temporal theta/alpha 1, intra-hemispherical right occipital-temporal theta/alpha 1). With these 8 markers combined, an accuracy of at least 76% was reached. Interestingly, this accuracy based on 8 (linear) rsEEG markers as inputs to ANN was similar to that obtained with a single rsEEG marker (Babiloni et al., 2016a), thus unveiling their information redundancy for classification purposes. In future AD studies, inputs to ANNs should include other classes of independent linear (i.e., directed transfer function) and non-linear (i.e., entropy) rsEEG markers to improve the classification. PMID:28184183

  10. Increased functional connectivity within memory networks following memory rehabilitation in multiple sclerosis.

    Science.gov (United States)

    Leavitt, Victoria M; Wylie, Glenn R; Girgis, Peter A; DeLuca, John; Chiaravalloti, Nancy D

    2014-09-01

    Identifying effective behavioral treatments to improve memory in persons with learning and memory impairment is a primary goal for neurorehabilitation researchers. Memory deficits are the most common cognitive symptom in multiple sclerosis (MS), and hold negative professional and personal consequences for people who are often in the prime of their lives when diagnosed. A 10-session behavioral treatment, the modified Story Memory Technique (mSMT), was studied in a randomized, placebo-controlled clinical trial. Behavioral improvements and increased fMRI activation were shown after treatment. Here, connectivity within the neural networks underlying memory function was examined with resting-state functional connectivity (RSFC) in a subset of participants from the clinical trial. We hypothesized that the treatment would result in increased integrity of connections within two primary memory networks of the brain, the hippocampal memory network, and the default network (DN). Seeds were placed in left and right hippocampus, and the posterior cingulate cortex. Increased connectivity was found between left hippocampus and cortical regions specifically involved in memory for visual imagery, as well as among critical hubs of the DN. These results represent the first evidence for efficacy of a behavioral intervention to impact the integrity of neural networks subserving memory functions in persons with MS.

  11. Enhancement of cortical network activity in vitro and promotion of GABAergic neurogenesis by stimulation with an electromagnetic field with a 150 MHz carrier wave pulsed with an alternating 10 and 16 Hz modulation.

    Directory of Open Access Journals (Sweden)

    Alexandra eGramowski-Voss

    2015-07-01

    Full Text Available In recent years, various stimuli were identified capable of enhancing neurogenesis, a process which is dysfunctional in the senescent brain and in neurodegenerative and certain neuropsychiatric diseases. Applications of electromagnetic fields to brain tissue have been shown to affect cellular properties and their importance for therapies in medicine is recognized.In this study, differentiating murine cortical networks on multiwell microelectrode arrays were repeatedly exposed to an extremely low electromagnetic field (ELEMF with alternating 10 and 16 Hz frequencies piggy-backed onto a 150 MHz carrier frequency. The ELEMF exposure stimulated the electrical network activity and intensified the structure of bursts. Further, the exposure with an electromagnetic field within the first 28 days of the differentiation the network activity induced also reorganization within the burst structure. This effect was already most pronounced at 14 days in vitro after 10 days of exposure. Overall, the development of cortical activity under these conditions was accelerated. These functional electrophysiological changes were accompanied by morphological ones. The percentage of neurons in the neuron glia co-culture was increased without affecting the total number of cells, indicating an enhancement of neurogenesis. The ELEMF exposure selectively promoted the proliferation of a particular population of neurons, evidenced by the increased proportion of GABAergic neurons. The results support the initial hypothesis that this kind of ELEMF stimulation is a treatment option for specific indications with promising potential for CNS applications, especially for degenerative diseases such as Alzheimer’s disease and other dementias.

  12. Functional roles of 10 Hz alpha-band power modulating engagement and disengagement of cortical networks in a complex visual motion task.

    Directory of Open Access Journals (Sweden)

    Kunjan D Rana

    Full Text Available Alpha band power, particularly at the 10 Hz frequency, is significantly involved in sensory inhibition, attention modulation, and working memory. However, the interactions between cortical areas and their relationship to the different functional roles of the alpha band oscillations are still poorly understood. Here we examined alpha band power and the cortico-cortical interregional phase synchrony in a psychophysical task involving the detection of an object moving in depth by an observer in forward self-motion. Wavelet filtering at the 10 Hz frequency revealed differences in the profile of cortical activation in the visual processing regions (occipital and parietal lobes and in the frontoparietal regions. The alpha rhythm driving the visual processing areas was found to be asynchronous with the frontoparietal regions. These findings suggest a decoupling of the 10 Hz frequency into separate functional roles: sensory inhibition in the visual processing regions and spatial attention in the frontoparietal regions.

  13. Functional roles of 10 Hz alpha-band power modulating engagement and disengagement of cortical networks in a complex visual motion task.

    Science.gov (United States)

    Rana, Kunjan D; Vaina, Lucia M

    2014-01-01

    Alpha band power, particularly at the 10 Hz frequency, is significantly involved in sensory inhibition, attention modulation, and working memory. However, the interactions between cortical areas and their relationship to the different functional roles of the alpha band oscillations are still poorly understood. Here we examined alpha band power and the cortico-cortical interregional phase synchrony in a psychophysical task involving the detection of an object moving in depth by an observer in forward self-motion. Wavelet filtering at the 10 Hz frequency revealed differences in the profile of cortical activation in the visual processing regions (occipital and parietal lobes) and in the frontoparietal regions. The alpha rhythm driving the visual processing areas was found to be asynchronous with the frontoparietal regions. These findings suggest a decoupling of the 10 Hz frequency into separate functional roles: sensory inhibition in the visual processing regions and spatial attention in the frontoparietal regions.

  14. Spatio-temporal 16p11.2 protein network implicates cortical late mid-fetal brain development and KCTD13-Cul3-RhoA pathway in psychiatric diseases

    Science.gov (United States)

    Lin, Guan Ning; Corominas, Roser; Lemmens, Irma; Yang, Xinping; Tavernier, Jan; Hill, David E.; Vidal, Marc; Sebat, Jonathan; Iakoucheva, Lilia M.

    2015-01-01

    Summary Psychiatric disorders autism and schizophrenia have a strong genetic component, and copy number variants (CNVs) are firmly implicated. Recurrent deletions and duplications of chromosome 16p11.2 confer high risk for both diseases, but the pathways disrupted by this CNV are poorly defined. Here we investigate the dynamics of 16p11.2 network by integrating physical interactions of 16p11.2 proteins with spatio-temporal gene expression from developing human brain. We observe profound changes in protein interaction networks throughout different stages of brain development and/or in different brain regions. We identify late mid-fetal period of cortical development as most critical for establishing connectivity of 16p11.2 proteins with their co-expressed partners. Furthermore, our results suggest that the regulation of KCTD13-Cul3-RhoA pathway in layer four of inner cortical plate is crucial for controlling brain size and connectivity, and its dysregulation by the de novo mutations may be a potential determinant of 16p11.2 CNV deletion and duplication phenotypes. PMID:25695269

  15. Control and amplification of cortical neurodynamics

    Science.gov (United States)

    Liljenstroem, Hans; Aronsson, P.

    1999-03-01

    We investigate different mechanisms for the control and amplification of cortical neurodynamics, using a neural network model of a three layered cortical structure. We show that different dynamical states can be obtained by changing a control parameter of the input-output relation, or by changing the noise level. Point attractor, limit cycle, and strange attractor dynamics occur at different values of the control parameter. For certain, optimal noise levels, system performance is maximized, analogous to stochastic resonance phenomena. Noise can also be used to induce different dynamical states. A few noisy network units distributed in a network layer can result in global synchronous oscillations, or waves of activity moving across the network. We further demonstrate that fast synchronization of network activity can be obtained by implementing electromagnetic interactions between network units.

  16. Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane - a minimally invasive investigation by STED-FCS

    Science.gov (United States)

    Andrade, Débora M.; Clausen, Mathias P.; Keller, Jan; Mueller, Veronika; Wu, Congying; Bear, James E.; Hell, Stefan W.; Lagerholm, B. Christoffer; Eggeling, Christian

    2015-06-01

    Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes.

  17. Hubs of Anticorrelation in High-Resolution Resting-State Functional Connectivity Network Architecture.

    Science.gov (United States)

    Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Cabanban, Romeo; Crosson, Bruce A

    2015-06-01

    A major focus of brain research recently has been to map the resting-state functional connectivity (rsFC) network architecture of the normal brain and pathology through functional magnetic resonance imaging. However, the phenomenon of anticorrelations in resting-state signals between different brain regions has not been adequately examined. The preponderance of studies on resting-state fMRI (rsFMRI) have either ignored anticorrelations in rsFC networks or adopted methods in data analysis, which have rendered anticorrelations in rsFC networks uninterpretable. The few studies that have examined anticorrelations in rsFC networks using conventional methods have found anticorrelations to be weak in strength and not very reproducible across subjects. Anticorrelations in rsFC network architecture could reflect mechanisms that subserve a number of important brain processes. In this preliminary study, we examined the properties of anticorrelated rsFC networks by systematically focusing on negative cross-correlation coefficients (CCs) among rsFMRI voxel time series across the brain with graph theory-based network analysis. A number of methods were implemented to enhance the neuronal specificity of resting-state functional connections that yield negative CCs, although at the cost of decreased sensitivity. Hubs of anticorrelation were seen in a number of cortical and subcortical brain regions. Examination of the anticorrelation maps of these hubs indicated that negative CCs in rsFC network architecture highlight a number of regulatory interactions between brain networks and regions, including reciprocal modulations, suppression, inhibition, and neurofeedback.

  18. Spreading effect of tDCS in individuals with attention-deficit/hyperactivity disorder as shown by functional cortical networks: a randomized, double-blind, sham-controlled trial

    Directory of Open Access Journals (Sweden)

    Camila eCosmo

    2015-08-01

    Full Text Available Transcranial direct current stimulation (tDCS is known to modulate spontaneous neural network excitability. The cognitive improvement observed in previous trials raises the potential of this technique as a possible therapeutic tool for use in attention-deficit/hyperactivity disorder (ADHD population. However, to explore the potential of this technique as a treatment approach the functional parameters of brain connectivity and the extent of its effects need to be more fully investigated.The aim of this study was to investigate a functional cortical network model based on electroencephalographic activity for studying the dynamic patterns of brain connectivity modulated by tDCS and the distribution of its effects in individuals with attention-deficit/hyperactivity disorder (ADHD.Sixty ADHD patients participated in a parallel, randomized, double-blind, sham-controlled trial. Individuals underwent a single session of sham or anodal tDCS at 1 mA of current intensity over the left dorsolateral prefrontal cortex for 20 minutes. The acute effects of stimulation on brain connectivity were assessed using the functional cortical network model based on electroencephalography (EEG activity.Comparing the weighted node degree within groups prior to and following the intervention, a statistically significant difference was found in the electrodes located on the target and correlated areas in the active group (p<0.05, while no statistically significant results were found in the sham group (p ≥0.05; paired-sample Wilcoxon signed rank test. Anodal tDCS increased functional brain connectivity in individuals with ADHD compared to data recorded in the baseline resting state. In addition, although some studies have suggested that the effects of tDCS are selective, the present findings show that its modulatory activity spreads. Further studies need to be performed to investigate the dynamic patterns and physiological mechanisms underlying the modulatory effects of tDCS.

  19. Substrates of metacognition on perception and metacognition on higher-order cognition relate to different subsystems of the mentalizing network.

    Science.gov (United States)

    Valk, Sofie L; Bernhardt, Boris C; Böckler, Anne; Kanske, Philipp; Singer, Tania

    2016-10-01

    Humans have the ability to reflect upon their perception, thoughts, and actions, known as metacognition (MC). The brain basis of MC is incompletely understood, and it is debated whether MC on different processes is subserved by common or divergent networks. We combined behavioral phenotyping with multi-modal neuroimaging to investigate whether structural substrates of individual differences in MC on higher-order cognition (MC-C) are dissociable from those underlying MC on perceptual accuracy (MC-P). Motivated by conceptual work suggesting a link between MC and cognitive perspective taking, we furthermore tested for overlaps between MC substrates and mentalizing networks. In a large sample of healthy adults, individual differences in MC-C and MC-P did not correlate. MRI-based cortical thickness mapping revealed a structural basis of this independence, by showing that individual differences in MC-P related to right prefrontal cortical thickness, while MC-C scores correlated with measures in lateral prefrontal, temporo-parietal, and posterior midline regions. Surface-based superficial white matter diffusivity analysis revealed substrates resembling those seen for cortical thickness, confirming the divergence of both MC faculties using an independent imaging marker. Despite their specificity, substrates of MC-C and MC-P fell clearly within networks known to participate in mentalizing, confirmed by task-based fMRI in the same subjects, previous meta-analytical findings, and ad-hoc Neurosynth-based meta-analyses. Our integrative multi-method approach indicates domain-specific substrates of MC; despite their divergence, these nevertheless likely rely on component processes mediated by circuits also involved in mentalizing. Hum Brain Mapp 37:3388-3399, 2016. © 2016 Wiley Periodicals, Inc.

  20. [Parietal Cortices and Body Information].

    Science.gov (United States)

    Naito, Eiichi; Amemiya, Kaoru; Morita, Tomoyo

    2016-11-01

    Proprioceptive signals originating from skeletal muscles and joints contribute to the formation of both the human body schema and the body image. In this chapter, we introduce various types of bodily illusions that are elicited by proprioceptive inputs, and we discuss distinct functions implemented by different parietal cortices. First, we illustrate the primary importance of the motor network in the processing of proprioceptive (kinesthetic) signals originating from muscle spindles. Next, we argue that the right inferior parietal cortex, in concert with the inferior frontal cortex (both regions connected by the inferior branch of the superior longitudinal fasciculus-SLF III), may be involved in the conscious experience of body image. Further, we hypothesize other functions of distinct parietal regions: the association between internal hand motor representation with external object representation in the left inferior parietal cortex, visuo-kinesthetic processing in the bilateral posterior parietal cortices, and the integration of somatic signals from different body parts in the higher-order somatosensory parietal cortices. Our results indicate that a distinct parietal region, in concert with its anatomically and functionally connected frontal regions, probably plays specialized roles in the processing of body-related information.

  1. The oscillatory network of simple repetitive bimanual movements.

    Science.gov (United States)

    Pollok, Bettina; Südmeyer, Martin; Gross, Joachim; Schnitzler, Alfons

    2005-09-01

    Bimanual synchronization relies on the precisely coordinated interplay of both hands. It is assumed that during temporal bimanual coordination, timing signals controlling each hand might be integrated. Although a specific role of the cerebellum for this integration process has been suggested, its neural foundations are still poorly understood. Since dynamic interactions between spatially distributed neural activity are reflected in oscillatory neural coupling, the aim of the present study was to characterize the dynamic interplay between participating brain structures. More specifically, the study aimed at investigating whether any evidence for the integration of bilateral cerebellar hemispheres could be found. Seven right-handed subjects synchronized bimanual index finger-taps to a regular pacing signal. We recorded continuous neuromagnetic activity using a 122-channel whole-head neuromagnetometer and surface EMGs of the first dorsal interosseus (FDI) muscle of both hands. Coherence analysis revealed that an oscillatory network coupling at 8-12 Hz subserves task execution. The constituents are bilateral primary sensorimotor and premotor areas, posterior-parietal and primary auditory cortex, thalamus and cerebellum. Coupling occurred at different cortical and subcortical levels within and between both hemispheres. Coupling between primary sensorimotor and premotor areas was observed directly and indirectly via the thalamus. Coupling direction suggests that information was integrated within the left premotor cortex corroborating a specific role of the left premotor cortex for motor control in right-handers. Most importantly, our data indicate strong coupling between both cerebellar hemispheres substantiating the hypothesis that cerebellar signals might be integrated during task execution.

  2. Simultaneous stability and sensitivity in model cortical networks is achieved through anti-correlations between the in- and out-degree of connectivity

    Directory of Open Access Journals (Sweden)

    Juan Carlos Vasquez

    2013-11-01

    Full Text Available Neuronal networks in rodent barrel cortex are characterized by stable low baseline firing rates. However, they are sensitive to the action potentials of single neurons as suggested by recent single-cell stimulation experiments that report quantifiable behavioral responses in response to short spike trains elicited in single neurons. Hence, these networks are stable against internally generated fluctuations in firing rate but at the same time remain sensitive to similarly-sized externally induced perturbations. We investigated stability and sensitivity in a simple recurrent network of stochastic binary neurons and determined numerically the effects of correlation between the number of afferent (‘in-degree’ and efferent (‘out-degree’ connections in neurons. The key advance reported in this work is that anti-correlation between in-/out-degree distributions increased the stability of the network in comparison to networks with no correlation or positive correlations, while being able to achieve the same level of sensitivity. The experimental characterization of degree distributions is difficult because all presynaptic and postsynaptic neurons have to be identified and counted. We explored whether the statistics of network motifs, which requires the characterization of connections between small subsets of neurons, could be used to detect evidence for degree anti-correlations. We find that the sample frequency of the 3-neuron ‘ring’ motif (1→2→3→1, can be used to detect degree anti-correlation for sub-networks of size 30 using about 50 samples, which is of significance because the necessary measurements are achievable experimentally in the near future.Taken together, we hypothesize that barrel cortex networks exhibit degree anti-correlations and specific network motif statistics.

  3. The Network Modification (NeMo) Tool: Elucidating the Effect of White Matter Integrity Changes on Cortical and Subcortical Structural Connectivity

    OpenAIRE

    Kuceyeski, Amy; Maruta, Jun; Relkin, Norman; Raj, Ashish

    2013-01-01

    Accurate prediction of brain dysfunction caused by disease or injury requires the quantification of resultant neural connectivity changes compared with the normal state. There are many methods with which to assess anatomical changes in structural or diffusion magnetic resonance imaging, but most overlook the topology of white matter (WM) connections that make up the healthy brain network. Here, a new neuroimaging software pipeline called the Network Modification (NeMo) Tool is presented that ...

  4. Apolipoprotein E (APOE) genotype has dissociable effects on memory and attentional–executive network function in Alzheimer’s disease

    Science.gov (United States)

    Wolk, David A.; Dickerson, Bradford C.; Weiner, Michael; Aiello, Marilyn; Aisen, Paul; Albert, Marilyn S.; Alexander, Gene; Anderson, Heather S.; Anderson, Karen; Apostolova, Liana; Arnold, Steve; Ashford, Wes; Assaly, Michele; Asthana, Sanjay; Bandy, Dan; Bartha, Rob; Bates, Vernice; Beckett, Laurel; Bell, Karen L.; Benincasa, Amanda L.; Bergman, Howard; Bernick, Charles; Bernstein, Matthew; Black, Sandra; Blank, Karen; Borrie, Michael; Brand, Connie; Brewer, James; Brown, Alice D.; Burns, Jeffrey M.; Cairns, Nigel J.; Caldwell, Curtis; Capote, Horacio; Carlsson, Cynthia M.; Carmichael, Owen; Cellar, Janet S.; Celmins, Dzintra; Chen, Kewei; Chertkow, Howard; Chowdhury, Munir; Clark, David; Connor, Donald; Correia, Stephen; Crawford, Karen; Dale, Anders; de Leon, Mony J; De Santi, Susan M; DeCarli, Charles; deToledo-Morrell, Leyla; DeVous, Michael; Diaz-Arrastia, Ramon; Dolen, Sara; Donohue, Michael; Doody, Rachelle S.; Doraiswamy, P. Murali; Duara, Ranjan; Englert, Jessica; Farlow, Martin; Feldman, Howard; Felmlee, Joel; Fleisher, Adam; Fletcher, Evan; Foroud, Tatiana M.; Foster, Norm; Fox, Nick; Frank, Richard; Gamst, Anthony; Given, Curtis A.; Graff-Radford, Neill R; Green, Robert C.; Griffith, Randall; Grossman, Hillel; Hake, Ann M.; Hardy, Peter; Harvey, Danielle; Heidebrink, Judith L.; Hendin, Barry A.; Herring, Scott; Honig, Lawrence S.; Hosein, Chris; Robin Hsiung, Ging-Yuek; Hudson, Leon; Ismail, M. Saleem; Jack, Clifford R.; Jacobson, Sandra; Jagust, William; Jayam-Trouth, Annapurni; Johnson, Kris; Johnson, Heather; Johnson, Nancy; Johnson, Kathleen; Johnson, Keith A.; Johnson, Sterling; Kachaturian, Zaven; Karlawish, Jason H.; Kataki, Maria; Kaye, Jeffrey; Kertesz, Andrew; Killiany, Ronald; Kittur, Smita; Koeppe, Robert A.; Korecka, Magdalena; Kornak, John; Kozauer, Nicholas; Lah, James J.; Laubinger, Mary M.; Lee, Virginia M.-Y.; Lee, T.-Y.; Lerner, Alan; Levey, Allan I.; Longmire, Crystal Flynn; Lopez, Oscar L.; Lord, Joanne L.; Lu, Po H.; MacAvoy, Martha G.; Malloy, Paul; Marson, Daniel; Martin-Cook, Kristen; Martinez, Walter; Marzloff, George; Mathis, Chet; Mc-Adams-Ortiz, Catherine; Mesulam, Marsel; Miller, Bruce L.; Mintun, Mark A.; Mintzer, Jacobo; Molchan, Susan; Montine, Tom; Morris, John; Mulnard, Ruth A.; Munic, Donna; Nair, Anil; Neu, Scott; Nguyen, Dana; Norbash, Alexander; Oakley, MaryAnn; Obisesan, Thomas O.; Ogrocki, Paula; Ott, Brian R.; Parfitt, Francine; Pawluczyk, Sonia; Pearlson, Godfrey; Petersen, Ronald; Petrella, Jeffrey R.; Potkin, Steven; Potter, William Z.; Preda, Adrian; Quinn, Joseph; Rainka, Michelle; Reeder, Stephanie; Reiman, Eric M.; Rentz, Dorene M.; Reynolds, Brigid; Richard, Jennifer; Roberts, Peggy; Rogers, John; Rosen, Allyson; Rosen, Howard J.; Rusinek, Henry; Sabbagh, Marwan; Sadowsky, Carl; Salloway, Stephen; Santulli, Robert B.; Saykin, Andrew J.; Scharre, Douglas W.; Schneider, Lon; Schneider, Stacy; Schuff, Norbert; Shah, Raj C.; Shaw, Les; Shen, Li; Silverman, Daniel H.S.; Simpson, Donna M.; Sink, Kaycee M.; Smith, Charles D.; Snyder, Peter J.; Spann, Bryan M.; Sperling, Reisa A.; Spicer, Kenneth; Stefanovic, Bojana; Stern, Yaakov; Stopa, Edward; Tang, Cheuk; Tariot, Pierre; Taylor-Reinwald, Lisa; Thai, Gaby; Thomas, Ronald G.; Thompson, Paul; Tinklenberg, Jared; Toga, Arthur W.; Tremont, Geoffrey; Trojanowki, J.Q.; Trost, Dick; Turner, Raymond Scott; van Dyck, Christopher H.; Vanderswag, Helen; Varon, Daniel; Villanueva-Meyer, Javier; Villena, Teresa; Walter, Sarah; Wang, Paul; Watkins, Franklin; Weiner, Michael; Williamson, Jeff D.; Wolk, David; Wu, Chuang-Kuo; Zerrate, Maria; Zimmerman., Earl A.

    2010-01-01

    The ε4 allele of the apolipoprotein E (APOE) gene is the major genetic risk factor for Alzheimer’s disease (AD), but limited work has suggested that APOE genotype may modulate disease phenotype. Carriers of the ε4 allele have been reported to have greater medial temporal lobe (MTL) pathology and poorer memory than noncarriers. Less attention has focused on whether there are domains of cognition and neuroanatomical regions more affected in noncarriers. Further, a major potential confound of prior in vivo studies is the possibility of different rates of clinical misdiagnosis for carriers vs. noncarriers. We compared phenotypic differences in cognition and topography of regional cortical atrophy of ε4 carriers (n = 67) vs. noncarriers (n = 24) with mild AD from the Alzheimer’s Disease Neuroimaging Initiative, restricted to those with a cerebrospinal fluid (CSF) molecular profile consistent with AD. Between-group comparisons were made for psychometric tests and morphometric measures of cortical thickness and hippocampal volume. Carriers displayed significantly greater impairment on measures of memory retention, whereas noncarriers were more impaired on tests of working memory, executive control, and lexical access. Consistent with this cognitive dissociation, carriers exhibited greater MTL atrophy, whereas noncarriers had greater frontoparietal atrophy. Performance deficits in particular cognitive domains were associated with disproportionate regional brain atrophy within nodes of cortical networks thought to subserve these cognitive processes. These convergent cognitive and neuroanatomic findings in individuals with a CSF molecular profile consistent with AD support the hypothesis that APOE genotype modulates the clinical phenotype of AD through influence on specific large-scale brain networks. PMID:20479234

  5. Abnormal connectivity between attentional, language and auditory networks in schizophrenia

    NARCIS (Netherlands)

    Liemburg, Edith J.; Vercammen, Ans; Ter Horst, Gert J.; Curcic-Blake, Branislava; Knegtering, Henderikus; Aleman, Andre

    2012-01-01

    Brain circuits involved in language processing have been suggested to be compromised in patients with schizophrenia. This does not only include regions subserving language production and perception, but also auditory processing and attention. We investigated resting state network connectivity of aud

  6. Cortical activation elicited by unrecognized stimuli

    Directory of Open Access Journals (Sweden)

    Badgaiyan Rajendra D

    2006-05-01

    Full Text Available Abstract Background It is unclear whether a stimulus that cannot be recognized consciously, could elicit a well-processed cognitive response. Methods We used functional imaging to examine the pattern of cortical activation elicited by unrecognized stimuli during memory processing. Subjects were given a recognition task using recognizable and non-recognizable subliminal stimuli. Results Unrecognized stimuli activated the cortical areas that are associated with retrieval attempt (left prefrontal, and novelty detection (left hippocampus. This indicates that the stimuli that were not consciously recognized, activated neural network associated with aspects of explicit memory processing. Conclusion Results suggest that conscious recognition of stimuli is not necessary for activation of cognitive processing.

  7. Evolution of cortical neurogenesis.

    Science.gov (United States)

    Abdel-Mannan, Omar; Cheung, Amanda F P; Molnár, Zoltán

    2008-03-18

    The neurons of the mammalian neocortex are organised into six layers. By contrast, the reptilian and avian dorsal cortices only have three layers which are thought to be equivalent to layers I, V and VI of mammals. Increased repertoire of mammalian higher cognitive functions is likely a result of an expanded cortical surface area. The majority of cortical cell proliferation in mammals occurs in the ventricular zone (VZ) and subventricular zone (SVZ), with a small number of scattered divisions outside the germinal zone. Comparative developmental studies suggest that the appearance of SVZ coincides with the laminar expansion of the cortex to six layers, as well as the tangential expansion of the cortical sheet seen within mammals. In spite of great variation and further compartmentalisation in the mitotic compartments, the number of neurons in an arbitrary cortical column appears to be remarkably constant within mammals. The current challenge is to understand how the emergence and elaboration of the SVZ has contributed to increased cortical cell diversity, tangential expansion and gyrus formation of the mammalian neocortex. This review discusses neurogenic processes that are believed to underlie these major changes in cortical dimensions in vertebrates.

  8. Cortical Lewy Body Dementia

    Directory of Open Access Journals (Sweden)

    W. R. G. Gibb

    1990-01-01

    Full Text Available In cortical Lewy body dementia the distribution of Lewy bodies in the nervous system follows that of Parkinson's disease, except for their greater profusion in the cerebral cortex. The cortical tangles and plaques of Alzheimer pathology are often present, the likely explanation being that Alzheimer pathology provokes dementia in many patients. Pure cortical Lewy body dementia without Alzheimer pathology is uncommon. The age of onset reflects that of Parkinson's disease, and clinical features, though not diagnostic, include aphasias, apraxias, agnosias, paranoid delusions and visual hallucinations. Parkinsonism may present before or after the dementia, and survival duration is approximately half that seen in Parkinson's disease without dementia.

  9. Evidence of cortical reorganization of language networks after stroke with subacute Broca's aphasia: a blood oxygenation level dependent-functional magnetic resonance imaging study.

    Science.gov (United States)

    Qiu, Wei-Hong; Wu, Hui-Xiang; Yang, Qing-Lu; Kang, Zhuang; Chen, Zhao-Cong; Li, Kui; Qiu, Guo-Rong; Xie, Chun-Qing; Wan, Gui-Fang; Chen, Shao-Qiong

    2017-01-01

    Aphasia is an acquired language disorder that is a common consequence of stroke. The pathogenesis of the disease is not fully understood, and as a result, current treatment options are not satisfactory. Here, we used blood oxygenation level-dependent functional magnetic resonance imaging to evaluate the activation of bilateral cortices in patients with Broca's aphasia 1 to 3 months after stroke. Our results showed that language expression was associated with multiple brain regions in which the right hemisphere participated in the generation of language. The activation areas in the left hemisphere of aphasia patients were significantly smaller compared with those in healthy adults. The activation frequency, volumes, and intensity in the regions related to language, such as the left inferior frontal gyrus (Broca's area), the left superior temporal gyrus, and the right inferior frontal gyrus (the mirror region of Broca's area), were lower in patients compared with healthy adults. In contrast, activation in the right superior temporal gyrus, the bilateral superior parietal lobule, and the left inferior temporal gyrus was stronger in patients compared with healthy controls. These results suggest that the right inferior frontal gyrus plays a role in the recovery of language function in the subacute stage of stroke-related aphasia by increasing the engagement of related brain areas.

  10. Evidence of cortical reorganization of language networks after stroke with subacute Broca's aphasia: a blood oxygenation level dependent-functional magnetic resonance imaging study

    Science.gov (United States)

    Qiu, Wei-hong; Wu, Hui-xiang; Yang, Qing-lu; Kang, Zhuang; Chen, Zhao-cong; Li, Kui; Qiu, Guo-rong; Xie, Chun-qing; Wan, Gui-fang; Chen, Shao-qiong

    2017-01-01

    Aphasia is an acquired language disorder that is a common consequence of stroke. The pathogenesis of the disease is not fully understood, and as a result, current treatment options are not satisfactory. Here, we used blood oxygenation level-dependent functional magnetic resonance imaging to evaluate the activation of bilateral cortices in patients with Broca's aphasia 1 to 3 months after stroke. Our results showed that language expression was associated with multiple brain regions in which the right hemisphere participated in the generation of language. The activation areas in the left hemisphere of aphasia patients were significantly smaller compared with those in healthy adults. The activation frequency, volumes, and intensity in the regions related to language, such as the left inferior frontal gyrus (Broca's area), the left superior temporal gyrus, and the right inferior frontal gyrus (the mirror region of Broca's area), were lower in patients compared with healthy adults. In contrast, activation in the right superior temporal gyrus, the bilateral superior parietal lobule, and the left inferior temporal gyrus was stronger in patients compared with healthy controls. These results suggest that the right inferior frontal gyrus plays a role in the recovery of language function in the subacute stage of stroke-related aphasia by increasing the engagement of related brain areas. PMID:28250756

  11. Physiological maturation and drug responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-term culture.

    Science.gov (United States)

    Odawara, A; Katoh, H; Matsuda, N; Suzuki, I

    2016-05-18

    The functional network of human induced pluripotent stem cell (hiPSC)-derived neurons is a potentially powerful in vitro model for evaluating disease mechanisms and drug responses. However, the culture time required for the full functional maturation of individual neurons and networks is uncertain. We investigated the development of spontaneous electrophysiological activity and pharmacological responses for over 1 year in culture using multi-electrode arrays (MEAs). The complete maturation of spontaneous firing, evoked responses, and modulation of activity by glutamatergic and GABAergic receptor antagonists/agonists required 20-30 weeks. At this stage, neural networks also demonstrated epileptiform synchronized burst firing (SBF) in response to pro-convulsants and SBF suppression using clinical anti-epilepsy drugs. Our results reveal the feasibility of long-term MEA measurements from hiPSC-derived neuronal networks in vitro for mechanistic analyses and drug screening. However, developmental changes in electrophysiological and pharmacological properties indicate the necessity for the international standardization of culture and evaluation procedures.

  12. Direct mapping rather than motor prediction subserves modulation of corticospinal excitability during observation of actions in real time.

    Science.gov (United States)

    Gueugneau, Nicolas; Mc Cabe, Sofia I; Villalta, Jorge I; Grafton, Scott T; Della-Maggiore, Valeria

    2015-06-01

    Motor facilitation refers to the specific increment in corticospinal excitability (CSE) elicited by the observation of actions performed by others. To date, the precise nature of the mechanism at the basis of this phenomenon is unknown. One possibility is that motor facilitation is driven by a predictive process reminiscent of the role of forward models in motor control. Alternatively, motor facilitation may result from a model-free mechanism by which the basic elements of the observed action are directly mapped onto their cortical representations. Our study was designed to discern these alternatives. To this aim, we recorded the time course of CSE for the first dorsal interosseous (FDI) and the abductor digiti minimi (ADM) during observation of three grasping actions in real time, two of which strongly diverged in kinematics from their natural (invariant) form. Although artificially slow movements used in most action observation studies might enhance the observer's discrimination performance, the use of videos in real time is crucial to maintain the time course of CSE within the physiological range of daily actions. CSE was measured at 4 time points within a 240-ms window that best captured the kinematic divergence from the invariant form. Our results show that CSE of the FDI, not the ADM, closely follows the functional role of the muscle despite the mismatch between the natural and the divergent kinematics. We propose that motor facilitation during observation of actions performed in real time reflects the model-free coding of perceived movement following a direct mapping mechanism. Copyright © 2015 the American Physiological Society.

  13. Focal cortical dysplasia - review.

    Science.gov (United States)

    Kabat, Joanna; Król, Przemysław

    2012-04-01

    Focal cortical dysplasia is a malformation of cortical development, which is the most common cause of medically refractory epilepsy in the pediatric population and the second/third most common etiology of medically intractable seizures in adults.Both genetic and acquired factors are involved in the pathogenesis of cortical dysplasia. Numerous classifications of the complex structural abnormalities of focal cortical dysplasia have been proposed - from Taylor et al. in 1971 to the last modification of Palmini classification made by Blumcke in 2011. In general, three types of cortical dysplasia are recognized.Type I focal cortical dysplasia with mild symptomatic expression and late onset, is more often seen in adults, with changes present in the temporal lobe.Clinical symptoms are more severe in type II of cortical dysplasia usually seen in children. In this type, more extensive changes occur outside the temporal lobe with predilection for the frontal lobes.New type III is one of the above dysplasias with associated another principal lesion as hippocampal sclerosis, tumor, vascular malformation or acquired pathology during early life.Brain MRI imaging shows abnormalities in the majority of type II dysplasias and in only some of type I cortical dysplasias.THE MOST COMMON FINDINGS ON MRI IMAGING INCLUDE: focal cortical thickening or thinning, areas of focal brain atrophy, blurring of the gray-white junction, increased signal on T2- and FLAIR-weighted images in the gray and subcortical white matter often tapering toward the ventricle. On the basis of the MRI findings, it is possible to differentiate between type I and type II cortical dysplasia. A complete resection of the epileptogenic zone is required for seizure-free life. MRI imaging is very helpful to identify those patients who are likely to benefit from surgical treatment in a group of patients with drug-resistant epilepsy.However, in type I cortical dysplasia, MR imaging is often normal, and also in both types

  14. Postpartum cortical blindness.

    Science.gov (United States)

    Faiz, Shakeel Ahmed

    2008-09-01

    A 30-years-old third gravida with previous normal pregnancies and an unremarkable prenatal course had an emergency lower segment caesarean section at a periphery hospital for failure of labour to progress. She developed bilateral cortical blindness immediately after recovery from anesthesia due to cerebral angiopathy shown by CT and MR scan as cortical infarct cerebral angiopathy, which is a rare complication of a normal pregnancy.

  15. Fiber pathway pathology, synapse loss and decline of cortical function in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Max R Bennett

    Full Text Available A quantitative cortical model is developed, based on both computational and simulation approaches, which relates measured changes in cortical activity of gray matter with changes in the integrity of longitudinal fiber pathways. The model consists of modules of up to 5,000 neurons each, 80% excitatory and 20% inhibitory, with these having different degrees of synaptic connectiveness both within a module as well as between modules. It is shown that if the inter-modular synaptic connections are reduced to zero while maintaining the intra-modular synaptic connections constant, then activity in the modules is reduced by about 50%. This agrees with experimental observations in which cortical electrical activity in a region of interest, measured using the rate of oxidative glucose metabolism (CMRglc(ox, is reduced by about 50% when the cortical region is isolated, either by surgical means or by transient cold block. There is also a 50% decrease in measured cortical activity following inactivation of the nucleus of Meynert and the intra-laminar nuclei of the thalamus, which arise either following appropriate lesions or in sleep. This occurs in the model if the inter-modular synaptic connections require input from these nuclei in order to function. In schizophrenia there is a 24% decrease in functional anisotropy of longitudinal fasciculi accompanied by a 7% decrease in cortical activity (CMRglc(ox.The cortical model predicts this, namely for a 24% decrease in the functioning of the inter-modular connections, either through the complete loss of 24% of axons subserving the connections or due to such a decrease in the efficacy of all the inter-modular connections, there will be about a 7% decrease in the activity of the modules. This work suggests that deterioration of longitudinal fasciculi in schizophrenia explains the loss of activity in the gray matter.

  16. Cerebral blood flow in posterior cortical nodes of the default mode network decreases with task engagement but remains higher than in most brain regions.

    Science.gov (United States)

    Pfefferbaum, Adolf; Chanraud, Sandra; Pitel, Anne-Lise; Müller-Oehring, Eva; Shankaranarayanan, Ajit; Alsop, David C; Rohlfing, Torsten; Sullivan, Edith V

    2011-01-01

    Functional neuroimaging studies provide converging evidence for existence of intrinsic brain networks activated during resting states and deactivated with selective cognitive demands. Whether task-related deactivation of the default mode network signifies depressed activity relative to the remaining brain or simply lower activity relative to its resting state remains controversial. We employed 3D arterial spin labeling imaging to examine regional cerebral blood flow (CBF) during rest, a spatial working memory task, and a second rest. Change in regional CBF from rest to task showed significant normalized and absolute CBF reductions in posterior cingulate, posterior-inferior precuneus, and medial frontal lobes . A Statistical Parametric Mapping connectivity analysis, with an a priori seed in the posterior cingulate cortex, produced deactivation connectivity patterns consistent with the classic "default mode network" and activation connectivity anatomically consistent with engagement in visuospatial tasks. The large task-related CBF decrease in posterior-inferior precuneus relative to its anterior and middle portions adds evidence for the precuneus' heterogeneity. The posterior cingulate and posterior-inferior precuneus were also regions of the highest CBF at rest and during task performance. The difference in regional CBF between intrinsic (resting) and evoked (task) activity levels may represent functional readiness or reserve vulnerable to diminution by conditions affecting perfusion.

  17. Thyroid hormone-dependent development of early cortical networks: Temporal specificity and the contribution of trkB and mTOR pathways

    Directory of Open Access Journals (Sweden)

    Sören eWesterholz

    2013-08-01

    Full Text Available Early in neocortical network development, triiodothyronine (T3 promotes GABAergic neurons’ population increase, their somatic growth and the formation of GABAergic synapses. In the presence of T3, GABAergic interneurons form longer axons and conspicuous axonal arborizations, with an increased number of putative synaptic boutons. Here we show that the increased GABAergic axonal growth is positively correlated with the proximity to non-GABAergic neurons. A differential innervation emerges from a T3-dependent decrease of axonal length in fields with low density of neuronal cell bodies, combined with an increased bouton formation in fields with high density of neuronal somata. T3 addition to deprived networks after the first two weeks of development did not rescue deficits in the GABAergic synaptic bouton distribution, or in the frequency and duration of spontaneous bursts. During the critical two-week-period, GABAergic signaling is depolarizing as revealed by calcium imaging experiments. Interestingly, T3 enhanced the expression of the potassium-chloride cotransporter 2 (KCC2, and accelerated the developmental shift from depolarizing to hyperpolarizing GABAergic signaling in non-GABAergic neurons.The T3-related increase of spontaneous network activity was remarkably reduced after blockade of either tropomyosin-receptor kinase B (trkB or mammalian target of rapamycin (mTOR pathways. T3-dependent increase in GABAergic neurons’ soma size was mediated mainly by mTOR signaling. Conversely, the T3-dependent selective increase of GABAergic boutons near non-GABAergic cell bodies is mediated by trkB signaling only. Both trkB and mTOR signaling mediate T3-dependent reduction of the GABAergic axon extension. The circuitry context is relevant for the interaction between T3 and trkB signaling, but not for the interactions between T3 and mTOR signaling.

  18. Lateral thinking, from the Hopfield model to cortical dynamics.

    Science.gov (United States)

    Akrami, Athena; Russo, Eleonora; Treves, Alessandro

    2012-01-24

    Self-organizing attractor networks may comprise the building blocks for cortical dynamics, providing the basic operations of categorization, including analog-to-digital conversion, association and auto-association, which are then expressed as components of distinct cognitive functions depending on the contents of the neural codes in each region. To assess the viability of this scenario, we first review how a local cortical patch may be modeled as an attractor network, in which memory representations are not artificially stored as prescribed binary patterns of activity as in the Hopfield model, but self-organize as continuously graded patterns induced by afferent input. Recordings in macaques indicate that such cortical attractor networks may express retrieval dynamics over cognitively plausible rapid time scales, shorter than those dominated by neuronal fatigue. A cortical network encompassing many local attractor networks, and incorporating a realistic description of adaptation dynamics, may be captured by a Potts model. This network model has the capacity to engage long-range associations into sustained iterative attractor dynamics at a cortical scale, in what may be regarded as a mathematical model of spontaneous lateral thought. This article is part of a Special Issue entitled: Neural Coding.

  19. Modulation of Cortical Oscillations by Low-Frequency Direct Cortical Stimulation Is State-Dependent.

    Directory of Open Access Journals (Sweden)

    Sankaraleengam Alagapan

    2016-03-01

    Full Text Available Cortical oscillations play a fundamental role in organizing large-scale functional brain networks. Noninvasive brain stimulation with temporally patterned waveforms such as repetitive transcranial magnetic stimulation (rTMS and transcranial alternating current stimulation (tACS have been proposed to modulate these oscillations. Thus, these stimulation modalities represent promising new approaches for the treatment of psychiatric illnesses in which these oscillations are impaired. However, the mechanism by which periodic brain stimulation alters endogenous oscillation dynamics is debated and appears to depend on brain state. Here, we demonstrate with a static model and a neural oscillator model that recurrent excitation in the thalamo-cortical circuit, together with recruitment of cortico-cortical connections, can explain the enhancement of oscillations by brain stimulation as a function of brain state. We then performed concurrent invasive recording and stimulation of the human cortical surface to elucidate the response of cortical oscillations to periodic stimulation and support the findings from the computational models. We found that (1 stimulation enhanced the targeted oscillation power, (2 this enhancement outlasted stimulation, and (3 the effect of stimulation depended on behavioral state. Together, our results show successful target engagement of oscillations by periodic brain stimulation and highlight the role of nonlinear interaction between endogenous network oscillations and stimulation. These mechanistic insights will contribute to the design of adaptive, more targeted stimulation paradigms.

  20. Uncertainty and confidence from the triple-network perspective

    DEFF Research Database (Denmark)

    White, Thomas P.; Engen, Nina Helkjær; Sørensen, Susan

    2014-01-01

    was consistently observed in the salience (anterior cingulate cortex and insula) and central executive network (dorsolateral prefrontal and posterior parietal cortices) in conditions of increased uncertainty; by contrast, default mode network (midline cortical and medial temporal lobe) regions robustly exhibited...

  1. Altered cortical beta‐band oscillations reflect motor system degeneration in amyotrophic lateral sclerosis

    Science.gov (United States)

    Proudfoot, Malcolm; Rohenkohl, Gustavo; Quinn, Andrew; Colclough, Giles L.; Wuu, Joanne; Talbot, Kevin; Woolrich, Mark W.; Benatar, Michael

    2016-01-01

    Abstract Continuous rhythmic neuronal oscillations underpin local and regional cortical communication. The impact of the motor system neurodegenerative syndrome amyotrophic lateral sclerosis (ALS) on the neuronal oscillations subserving movement might therefore serve as a sensitive marker of disease activity. Movement preparation and execution are consistently associated with modulations to neuronal oscillation beta (15–30 Hz) power. Cortical beta‐band oscillations were measured using magnetoencephalography (MEG) during preparation for, execution, and completion of a visually cued, lateralized motor task that included movement inhibition trials. Eleven “classical” ALS patients, 9 with the primary lateral sclerosis (PLS) phenotype, and 12 asymptomatic carriers of ALS‐associated gene mutations were compared with age‐similar healthy control groups. Augmented beta desynchronization was observed in both contra‐ and ipsilateral motor cortices of ALS patients during motor preparation. Movement execution coincided with excess beta desynchronization in asymptomatic mutation carriers. Movement completion was followed by a slowed rebound of beta power in all symptomatic patients, further reflected in delayed hemispheric lateralization for beta rebound in the PLS group. This may correspond to the particular involvement of interhemispheric fibers of the corpus callosum previously demonstrated in diffusion tensor imaging studies. We conclude that the ALS spectrum is characterized by intensified cortical beta desynchronization followed by delayed rebound, concordant with a broader concept of cortical hyperexcitability, possibly through loss of inhibitory interneuronal influences. MEG may potentially detect cortical dysfunction prior to the development of overt symptoms, and thus be able to contribute to the assessment of future neuroprotective strategies. Hum Brain Mapp 38:237–254, 2017. © 2016 Wiley Periodicals, Inc. PMID:27623516

  2. Early development of synchrony in cortical activations in the human.

    Science.gov (United States)

    Koolen, N; Dereymaeker, A; Räsänen, O; Jansen, K; Vervisch, J; Matic, V; Naulaers, G; De Vos, M; Van Huffel, S; Vanhatalo, S

    2016-05-13

    Early intermittent cortical activity is thought to play a crucial role in the growth of neuronal network development, and large scale brain networks are known to provide the basis for higher brain functions. Yet, the early development of the large scale synchrony in cortical activations is unknown. Here, we tested the hypothesis that the early intermittent cortical activations seen in the human scalp EEG show a clear developmental course during the last trimester of pregnancy, the period of intensive growth of cortico-cortical connections. We recorded scalp EEG from altogether 22 premature infants at post-menstrual age between 30 and 44 weeks, and the early cortical synchrony was quantified using recently introduced activation synchrony index (ASI). The developmental correlations of ASI were computed for individual EEG signals as well as anatomically and mathematically defined spatial subgroups. We report two main findings. First, we observed a robust and statistically significant increase in ASI in all cortical areas. Second, there were significant spatial gradients in the synchrony in fronto-occipital and left-to-right directions. These findings provide evidence that early cortical activity is increasingly synchronized across the neocortex. The ASI-based metrics introduced in our work allow direct translational comparison to in vivo animal models, as well as hold promise for implementation as a functional developmental biomarker in future research on human neonates.

  3. Cortical myoclonus and cerebellar pathology

    NARCIS (Netherlands)

    Tijssen, MAJ; Thom, M; Ellison, DW; Wilkins, P; Barnes, D; Thompson, PD; Brown, P

    2000-01-01

    Objective To study the electrophysiologic and pathologic findings in three patients with cortical myoclonus. In two patients the myoclonic ataxic syndrome was associated with proven celiac disease. Background: The pathologic findings in conditions associated with cortical myoclonus commonly involve

  4. Cortical Abnormalities in ADHD

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-12-01

    Full Text Available Grey-matter abnormalities at the cortical surface and regional brain size were mapped by high-resolution MRI and surface-based, computational image analytical techniques in a group of 27 children and adolescents with attention deficit hyperactivity disorder (ADHD and 46 controls, matched by age and sex, at the University of California at Los Angeles.

  5. Voxel-based comparison of rCBF SPET images in frontotemporal dementia and Alzheimer's disease highlights the involvement of different cortical networks

    Energy Technology Data Exchange (ETDEWEB)

    Varrone, Andrea; Pappata, Sabina; Quarantelli, Mario; Alfano, Bruno [Biostructure and Bioimaging Institute, National Research Council, Via S. Pansini 5, 80131 Napoli (Italy); Caraco, Corradina [Institute of Experimental Medicine and Biotechnology, Piano Lago Mangone (Cosenza) (Italy); Soricelli, Andrea [Faculty of Motor Sciences, University ' ' Parthenope' ' , Napoli (Italy); Milan, Graziella; Postiglione, Alfredo [Department of Clinical and Experimental Medicine, University ' ' Federico II' ' of Napoli (Italy); Salvatore, Marco [Department of Biomorphological and Functional Sciences, University ' ' Federico II' ' of Napoli (Italy)

    2002-11-01

    inferior parietal (BA 40), superior occipital (BA 19) and temporo-occipital regions (BA 39, 19). The results of this study confirm the preferential involvement of the frontotemporal regions in FTD patients and of the temporoparietal regions in AD patients. Furthermore, they highlight the networks that are more specifically impaired in these disorders and that could be implicated in the emotional-behavioural and cognitive disturbances that characterise FTD and AD respectively. (orig.)

  6. Malformations of cortical development and neocortical focus.

    Science.gov (United States)

    Luhmann, Heiko J; Kilb, Werner; Clusmann, Hans

    2014-01-01

    Developmental neocortical malformations resulting from abnormal neurogenesis, disturbances in programmed cell death, or neuronal migration disorders may cause a long-term hyperexcitability. Early generated Cajal-Retzius and subplate neurons play important roles in transient cortical circuits, and structural/functional disorders in early cortical development may induce persistent network disturbances and epileptic disorders. In particular, depolarizing GABAergic responses are important for the regulation of neurodevelopmental events, like neurogenesis or migration, while pathophysiological alterations in chloride homeostasis may cause epileptic activity. Although modern imaging techniques may provide an estimate of the structural lesion, the site and extent of the cortical malformation may not correlate with the epileptogenic zone. The neocortical focus may be surrounded by widespread molecular, structural, and functional disturbances, which are difficult to recognize with imaging technologies. However, modern imaging and electrophysiological techniques enable focused hypotheses of the neocortical epileptogenic zone, thus allowing more specific epilepsy surgery. Focal cortical malformation can be successfully removed with minimal rim, close to or even within eloquent cortex with a promising risk-benefit ratio.

  7. Purely Cortical Anaplastic Ependymoma

    Directory of Open Access Journals (Sweden)

    Flávio Ramalho Romero

    2012-01-01

    Full Text Available Ependymomas are glial tumors derived from ependymal cells lining the ventricles and the central canal of the spinal cord. It may occur outside the ventricular structures, representing the extraventicular form, or without any relationship of ventricular system, called ectopic ependymona. Less than fifteen cases of ectopic ependymomas were reported and less than five were anaplastic. We report a rare case of pure cortical ectopic anaplastic ependymoma.

  8. Regional vulnerability of longitudinal cortical association connectivity

    Directory of Open Access Journals (Sweden)

    Rafael Ceschin

    2015-01-01

    Full Text Available Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL, are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4 and 75 healthy controls (mean age 5.7 ± 3.4. Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS and voxel-based morphometry (VBM demonstrating diffusely reduced fractional anisotropy (FA reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1 reduced regional posterior–anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation correlated with reduced posterior–anterior gradient of intra-regional (nodal efficiency metrics with relative sparing of frontal and temporal regions; and (2 reduced regional FA within frontal–thalamic–striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract

  9. [Posterior cortical atrophy].

    Science.gov (United States)

    Solyga, Volker Moræus; Western, Elin; Solheim, Hanne; Hassel, Bjørnar; Kerty, Emilia

    2015-06-02

    Posterior cortical atrophy is a neurodegenerative condition with atrophy of posterior parts of the cerebral cortex, including the visual cortex and parts of the parietal and temporal cortices. It presents early, in the 50s or 60s, with nonspecific visual disturbances that are often misinterpreted as ophthalmological, which can delay the diagnosis. The purpose of this article is to present current knowledge about symptoms, diagnostics and treatment of this condition. The review is based on a selection of relevant articles in PubMed and on the authors' own experience with the patient group. Posterior cortical atrophy causes gradually increasing impairment in reading, distance judgement, and the ability to perceive complex images. Examination of higher visual functions, neuropsychological testing, and neuroimaging contribute to diagnosis. In the early stages, patients do not have problems with memory or insight, but cognitive impairment and dementia can develop. It is unclear whether the condition is a variant of Alzheimer's disease, or whether it is a separate disease entity. There is no established treatment, but practical measures such as the aid of social care workers, telephones with large keypads, computers with voice recognition software and audiobooks can be useful. Currently available treatment has very limited effect on the disease itself. Nevertheless it is important to identify and diagnose the condition in its early stages in order to be able to offer patients practical assistance in their daily lives.

  10. Lifespan anxiety is reflected in human amygdala cortical connectivity.

    Science.gov (United States)

    He, Ye; Xu, Ting; Zhang, Wei; Zuo, Xi-Nian

    2016-03-01

    The amygdala plays a pivotal role in processing anxiety and connects to large-scale brain networks. However, intrinsic functional connectivity (iFC) between amygdala and these networks has rarely been examined in relation to anxiety, especially across the lifespan. We employed resting-state functional MRI data from 280 healthy adults (18-83.5 yrs) to elucidate the relationship between anxiety and amygdala iFC with common cortical networks including the visual network, somatomotor network, dorsal attention network, ventral attention network, limbic network, frontoparietal network, and default network. Global and network-specific iFC were separately computed as mean iFC of amygdala with the entire cerebral cortex and each cortical network. We detected negative correlation between global positive amygdala iFC and trait anxiety. Network-specific associations between amygdala iFC and anxiety were also detectable. Specifically, the higher iFC strength between the left amygdala and the limbic network predicted lower state anxiety. For the trait anxiety, left amygdala anxiety-connectivity correlation was observed in both somatomotor and dorsal attention networks, whereas the right amygdala anxiety-connectivity correlation was primarily distributed in the frontoparietal and ventral attention networks. Ventral attention network exhibited significant anxiety-gender interactions on its iFC with amygdala. Together with findings from additional vertex-wise analysis, these data clearly indicated that both low-level sensory networks and high-level associative networks could contribute to detectable predictions of anxiety behaviors by their iFC profiles with the amygdala. This set of systems neuroscience findings could lead to novel functional network models on neural correlates of human anxiety and provide targets for novel treatment strategies on anxiety disorders.

  11. Cortical control of anticipatory postural adjustments prior to stepping.

    Science.gov (United States)

    Varghese, J P; Merino, D M; Beyer, K B; McIlroy, W E

    2016-01-28

    Human bipedal balance control is achieved either reactively or predictively by a distributed network of neural areas within the central nervous system with a potential role for cerebral cortex. While the role of the cortex in reactive balance has been widely explored, only few studies have addressed the cortical activations related to predictive balance control. The present study investigated the cortical activations related to the preparation and execution of anticipatory postural adjustment (APA) that precede a step. This study also examined whether the preparatory cortical activations related to a specific movement is dependent on the context of control (postural component vs. focal component). Ground reaction forces and electroencephalographic (EEG) data were recorded from 14 healthy adults while they performed lateral weight shift and lateral stepping with and without initially preloading their weight to the stance leg. EEG analysis revealed that there were distinct movement-related potentials (MRPs) with concurrent event-related desynchronization (ERD) of mu and beta rhythms prior to the onset of APA and also to the onset of foot-off during lateral stepping in the fronto-central cortical areas. Also, the MRPs and ERD prior to the onset of APA and onset of lateral weight shift were not significantly different suggesting the comparable cortical activations for the generation of postural and focal movements. The present study reveals the occurrence of cortical activation prior to the execution of an APA that precedes a step. Importantly, this cortical activity appears independent of the context of the movement.

  12. Motor cortical plasticity in Parkinson's disease.

    Science.gov (United States)

    Udupa, Kaviraja; Chen, Robert

    2013-09-04

    In Parkinson's disease (PD), there are alterations of the basal ganglia (BG) thalamocortical networks, primarily due to degeneration of nigrostriatal dopaminergic neurons. These changes in subcortical networks lead to plastic changes in primary motor cortex (M1), which mediates cortical motor output and is a potential target for treatment of PD. Studies investigating the motor cortical plasticity using non-invasive transcranial magnetic stimulation (TMS) have found altered plasticity in PD, but there are inconsistencies among these studies. This is likely because plasticity depends on many factors such as the extent of dopaminergic loss and disease severity, response to dopaminergic replacement therapies, development of l-DOPA-induced dyskinesias (LID), the plasticity protocol used, medication, and stimulation status in patients treated with deep brain stimulation (DBS). The influences of LID and DBS on BG and M1 plasticity have been explored in animal models and in PD patients. In addition, many other factors such age, genetic factors (e.g., brain derived neurotropic factor and other neurotransmitters or receptors polymorphism), emotional state, time of the day, physical fitness have been documented to play role in the extent of plasticity induced by TMS in human studies. In this review, we summarize the studies that investigated M1 plasticity in PD and demonstrate how these afore-mentioned factors affect motor cortical plasticity in PD. We conclude that it is important to consider the clinical, demographic, and technical factors that influence various plasticity protocols while developing these protocols as diagnostic or prognostic tools in PD. We also discuss how the modulation of cortical excitability and the plasticity with these non-invasive brain stimulation techniques facilitate the understanding of the pathophysiology of PD and help design potential therapeutic possibilities in this disorder.

  13. Violence: heightened brain attentional network response is selectively muted in Down syndrome.

    Science.gov (United States)

    Anderson, Jeffrey S; Treiman, Scott M; Ferguson, Michael A; Nielsen, Jared A; Edgin, Jamie O; Dai, Li; Gerig, Guido; Korenberg, Julie R

    2015-01-01

    The ability to recognize and respond appropriately to threat is critical to survival, and the neural substrates subserving attention to threat may be probed using depictions of media violence. Whether neural responses to potential threat differ in Down syndrome is not known. We performed functional MRI scans of 15 adolescent and adult Down syndrome and 14 typically developing individuals, group matched by age and gender, during 50 min of passive cartoon viewing. Brain activation to auditory and visual features, violence, and presence of the protagonist and antagonist were compared across cartoon segments. fMRI signal from the brain's dorsal attention network was compared to thematic and violent events within the cartoons between Down syndrome and control samples. We found that in typical development, the brain's dorsal attention network was most active during violent scenes in the cartoons and that this was significantly and specifically reduced in Down syndrome. When the antagonist was on screen, there was significantly less activation in the left medial temporal lobe of individuals with Down syndrome. As scenes represented greater relative threat, the disparity between attentional brain activation in Down syndrome and control individuals increased. There was a reduction in the temporal autocorrelation of the dorsal attention network, consistent with a shortened attention span in Down syndrome. Individuals with Down syndrome exhibited significantly reduced activation in primary sensory cortices, and such perceptual impairments may constrain their ability to respond to more complex social cues such as violence. These findings may indicate a relative deficit in emotive perception of violence in Down syndrome, possibly mediated by impaired sensory perception and hypoactivation of medial temporal structures in response to threats, with relative preservation of activity in pro-social brain regions. These findings indicate that specific genetic differences associated

  14. Cortical network from human embryonic stem cells

    OpenAIRE

    2010-01-01

    Abstract The connection of embryonic stem cell technology and developmental biology provides valuable tools to decipher the mechanisms underlying human brain development and diseases, especially among neuronal populations, that are not readily available in primary cultures. It is obviously the case of neurons forming the human cerebral cortex. In the images that are presented, the neurons were generated in vitro from human embryonic stem cells via forebrain-like progenitors. Maintained in cul...

  15. Response variability in balanced cortical networks

    DEFF Research Database (Denmark)

    Lerchner, Alexander; Ursta, C.; Hertz, J.

    2006-01-01

    population. The high connectivity permits a mean field description in which synaptic currents can be treated as gaussian noise, the mean and autocorrelation function of which are calculated self-consistently from the firing statistics of single model neurons. Within this description, a wide range of Fano...

  16. Activating Developmental Reserve Capacity Via Cognitive Training or Non-invasive Brain Stimulation: Potentials for Promoting Fronto-Parietal and Hippocampal-Striatal Network Functions in Old Age.

    Science.gov (United States)

    Passow, Susanne; Thurm, Franka; Li, Shu-Chen

    2017-01-01

    Existing neurocomputational and empirical data link deficient neuromodulation of the fronto-parietal and hippocampal-striatal circuitries with aging-related increase in processing noise and declines in various cognitive functions. Specifically, the theory of aging neuronal gain control postulates that aging-related suboptimal neuromodulation may attenuate neuronal gain control, which yields computational consequences on reducing the signal-to-noise-ratio of synaptic signal transmission and hampering information processing within and between cortical networks. Intervention methods such as cognitive training and non-invasive brain stimulation, e.g., transcranial direct current stimulation (tDCS), have been considered as means to buffer cognitive functions or delay cognitive decline in old age. However, to date the reported effect sizes of immediate training gains and maintenance effects of a variety of cognitive trainings are small to moderate at best; moreover, training-related transfer effects to non-trained but closely related (i.e., near-transfer) or other (i.e., far-transfer) cognitive functions are inconsistent or lacking. Similarly, although applying different tDCS protocols to reduce aging-related cognitive impairments by inducing temporary changes in cortical excitability seem somewhat promising, evidence of effects on short- and long-term plasticity is still equivocal. In this article, we will review and critically discuss existing findings of cognitive training- and stimulation-related behavioral and neural plasticity effects in the context of cognitive aging, focusing specifically on working memory and episodic memory functions, which are subserved by the fronto-parietal and hippocampal-striatal networks, respectively. Furthermore, in line with the theory of aging neuronal gain control we will highlight that developing age-specific brain stimulation protocols and the concurrent applications of tDCS during cognitive training may potentially facilitate

  17. Lifespan anxiety is reflected in human amygdala cortical connectivity

    Science.gov (United States)

    He, Ye; Xu, Ting; Zhang, Wei

    2016-01-01

    Abstract The amygdala plays a pivotal role in processing anxiety and connects to large‐scale brain networks. However, intrinsic functional connectivity (iFC) between amygdala and these networks has rarely been examined in relation to anxiety, especially across the lifespan. We employed resting‐state functional MRI data from 280 healthy adults (18–83.5 yrs) to elucidate the relationship between anxiety and amygdala iFC with common cortical networks including the visual network, somatomotor network, dorsal attention network, ventral attention network, limbic network, frontoparietal network, and default network. Global and network‐specific iFC were separately computed as mean iFC of amygdala with the entire cerebral cortex and each cortical network. We detected negative correlation between global positive amygdala iFC and trait anxiety. Network‐specific associations between amygdala iFC and anxiety were also detectable. Specifically, the higher iFC strength between the left amygdala and the limbic network predicted lower state anxiety. For the trait anxiety, left amygdala anxiety–connectivity correlation was observed in both somatomotor and dorsal attention networks, whereas the right amygdala anxiety–connectivity correlation was primarily distributed in the frontoparietal and ventral attention networks. Ventral attention network exhibited significant anxiety–gender interactions on its iFC with amygdala. Together with findings from additional vertex‐wise analysis, these data clearly indicated that both low‐level sensory networks and high‐level associative networks could contribute to detectable predictions of anxiety behaviors by their iFC profiles with the amygdala. This set of systems neuroscience findings could lead to novel functional network models on neural correlates of human anxiety and provide targets for novel treatment strategies on anxiety disorders. Hum Brain Mapp 37:1178–1193, 2016. © 2015 The Authors Human Brain Mapping

  18. The changing roles of neurons in the cortical subplate

    Directory of Open Access Journals (Sweden)

    Michael J Friedlander

    2009-08-01

    Full Text Available Neurons may serve different functions over the course of an organism’s life. Recent evidence suggests that cortical subplate neurons including those that reside in the white matter may perform longitudinal multi-tasking at different stages of development. These cells play a key role in early cortical development in coordinating thalamocortical reciprocal innervation. At later stages of development, they become integrated within the cortical microcircuitry. This type of longitudinal multi-tasking can enhance the capacity for information processing by populations of cells serving different functions over the lifespan. Subplate cells are initially derived when cells from the ventricular zone underlying the cortex migrate to the cortical preplate that is subsequently split by the differentiating neurons of the cortical plate with some neurons locating in the marginal zone and others settling below in the subplate (SP. While the cortical plate neurons form most of the cortical layers (layers 2-6, the marginal zone neurons form layer 1 and the SP neurons become interstitial cells of the white matter as well as forming a compact sublayer along the bottom of layer 6. After serving as transient innervation targets for thalamocortical axons, most of these cells die and layer 4 neurons become innervated by thalamic axons. However, 10-20% survives, remaining into adulthood along the bottom of layer 6 and as a scattered population of interstitial neurons in the white matter. Surviving subplate cells’ axons project throughout the overlying laminae, reaching layer 1 and issuing axon collaterals within white matter and in lower layer 6. This suggests that they participate in local synaptic networks, as well. Moreover, they receive excitatory and inhibitory synaptic inputs, potentially monitoring outputs from axon collaterals of cortical efferents, from cortical afferents and/or from each other. We explore our understanding of the functional connectivity of

  19. Relationships among Cortical Thickness, Reading Skill, and Print Exposure in Adults

    Science.gov (United States)

    Goldman, Jason G.; Manis, Frank R.

    2013-01-01

    This study investigated relationships among cortical thickness in the left-hemisphere reading network, and reading skill and experience in adult nonimpaired readers. Given the relationship between print exposure and reading, it is possible that print exposure is related to cortical structure. The pattern of correlations indicated that individuals…

  20. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    Science.gov (United States)

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.

  1. Design Features for Linguistically-Mediated Meaning Construction: The Relative Roles of the Linguistic and Conceptual Systems in Subserving the Ideational Function of Language.

    Science.gov (United States)

    Evans, Vyvyan

    2016-01-01

    Recent research in language and cognitive science proposes that the linguistic system evolved to provide an "executive" control system on the evolutionarily more ancient conceptual system (e.g., Barsalou et al., 2008; Evans, 2009, 2015a,b; Bergen, 2012). In short, the claim is that embodied representations in the linguistic system interface with non-linguistic representations in the conceptual system, facilitating rich meanings, or simulations, enabling linguistically mediated communication. In this paper I build on these proposals by examining the nature of what I identify as design features for this control system. In particular, I address how the ideational function of language-our ability to deploy linguistic symbols to convey meanings of great complexity-is facilitated. The central proposal of this paper is as follows. The linguistic system of any given language user, of any given linguistic system-spoken or signed-facilitates access to knowledge representation-concepts-in the conceptual system, which subserves this ideational function. In the most general terms, the human meaning-making capacity is underpinned by two distinct, although tightly coupled representational systems: the conceptual system and the linguistic system. Each system contributes to meaning construction in qualitatively distinct ways. This leads to the first design feature: given that the two systems are representational-they are populated by semantic representations-the nature and function of the representations are qualitatively different. This proposed design feature I term the bifurcation in semantic representation. After all, it stands to reason that if a linguistic system has a different function, vis-à-vis the conceptual system, which is of far greater evolutionary antiquity, then the semantic representations will be complementary, and as such, qualitatively different, reflecting the functional distinctions of the two systems, in collectively giving rise to meaning. I consider the

  2. Evaluating mandibular cortical index quantitatively.

    Science.gov (United States)

    Yasar, Fusun; Akgunlu, Faruk

    2008-10-01

    The aim was to assess whether Fractal Dimension and Lacunarity analysis can discriminate patients having different mandibular cortical shape. Panoramic radiographs of 52 patients were evaluated for mandibular cortical index. Weighted Kappa between the observations were varying between 0.718-0.805. These radiographs were scanned and converted to binary images. Fractal Dimension and Lacunarity were calculated from the regions where best represents the cortical morphology. It was found that there were statistically significant difference between the Fractal Dimension and Lacunarity of radiographs which were classified as having Cl 1 and Cl 2 (Fractal Dimension P:0.000; Lacunarity P:0.003); and Cl 1 and Cl 3 cortical morphology (Fractal Dimension P:0.008; Lacunarity P:0.001); but there was no statistically significant difference between Fractal Dimension and Lacunarity of radiographs which were classified as having Cl 2 and Cl 3 cortical morphology (Fractal Dimension P:1.000; Lacunarity P:0.758). FD and L can differentiate Cl 1 mandibular cortical shape from both Cl 2 and Cl 3 mandibular cortical shape but cannot differentiate Cl 2 from Cl 3 mandibular cortical shape on panoramic radiographs.

  3. Cortico-cortical communication dynamics

    Directory of Open Access Journals (Sweden)

    Per E Roland

    2014-05-01

    Full Text Available IIn principle, cortico-cortical communication dynamics is simple: neurons in one cortical area communicate by sending action potentials that release glutamate and excite their target neurons in other cortical areas. In practice, knowledge about cortico-cortical communication dynamics is minute. One reason is that no current technique can capture the fast spatio-temporal cortico-cortical evolution of action potential transmission and membrane conductances with sufficient spatial resolution. A combination of optogenetics and monosynaptic tracing with virus can reveal the spatio-temporal cortico-cortical dynamics of specific neurons and their targets, but does not reveal how the dynamics evolves under natural conditions. Spontaneous ongoing action potentials also spread across cortical areas and are difficult to separate from structured evoked and intrinsic brain activity such as thinking. At a certain state of evolution, the dynamics may engage larger populations of neurons to drive the brain to decisions, percepts and behaviors. For example, successfully evolving dynamics to sensory transients can appear at the mesoscopic scale revealing how the transient is perceived. As a consequence of these methodological and conceptual difficulties, studies in this field comprise a wide range of computational models, large-scale measurements (e.g., by MEG, EEG, and a combination of invasive measurements in animal experiments. Further obstacles and challenges of studying cortico-cortical communication dynamics are outlined in this critical review.

  4. Modeling cortical circuits.

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.; Xavier, Patrick Gordon

    2010-09-01

    The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.

  5. Cortical and spinal assessment

    DEFF Research Database (Denmark)

    Fischer, I W; Gram, Mikkel; Hansen, T M

    2017-01-01

    BACKGROUND: Standardized objective methods to assess the analgesic effects of opioids, enable identification of underlying mechanisms of drug actions in the central nervous system. Opioids may exert their effect on both cortical and spinal levels. In this study actions of morphine at both levels...... subjects was included in the data analysis. There was no change in the activity in resting EEG (P>0.05) after morphine administration as compared to placebo. During cold pressor stimulation, morphine significantly lowered the relative activity in the delta (1-4Hz) band (P=0.03) and increased the activity...... morphine administration (P>0.05). CONCLUSIONS: Cold pressor EEG and the nociceptive reflex were more sensitive to morphine analgesia than resting EEG and can be used as standardized objective methods to assess opioid effects. However, no correlation between the analgesic effect of morphine on the spinal...

  6. Hiperostosis cortical infantil

    OpenAIRE

    Salvador Javier Santos Medina; Orelvis Pérez Duerto

    2015-01-01

    La enfermedad de Caffey, o hiperostosis cortical infantil, es una rara enfermedad ósea autolimitada, que aparece de preferencia en lactantes con signos inespecíficos sistémicos; el más relevante es la reacción subperióstica e hiperostosis en varios huesos del cuerpo, con predilección en el 75-80 % de los casos por la mandíbula. Su pronóstico es bueno, la mayoría no deja secuelas. El propósito del presente trabajo es describir las características clínicas, presentes en un lactante de cinco mes...

  7. Progressive posterior cortical dysfunction

    Directory of Open Access Journals (Sweden)

    Fábio Henrique de Gobbi Porto

    Full Text Available Abstract Progressive posterior cortical dysfunction (PPCD is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal and ventral (occipito-temporal pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction, complete Balint's syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right . Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD.

  8. Cortical plasticity and rehabilitation.

    Science.gov (United States)

    Moucha, Raluca; Kilgard, Michael P

    2006-01-01

    The brain is constantly adapting to environmental and endogenous changes (including injury) that occur at every stage of life. The mechanisms that regulate neural plasticity have been refined over millions of years. Motivation and sensory experience directly shape the rewiring that makes learning and neurological recovery possible. Guiding neural reorganization in a manner that facilitates recovery of function is a primary goal of neurological rehabilitation. As the rules that govern neural plasticity become better understood, it will be possible to manipulate the sensory and motor experience of patients to induce specific forms of plasticity. This review summarizes our current knowledge regarding factors that regulate cortical plasticity, illustrates specific forms of reorganization induced by control of each factor, and suggests how to exploit these factors for clinical benefit.

  9. Differential Modification of Cortical and Thalamic Projections to Cat Primary Auditory Cortex Following Early- and Late-Onset Deafness.

    Science.gov (United States)

    Chabot, Nicole; Butler, Blake E; Lomber, Stephen G

    2015-10-15

    Following sensory deprivation, primary somatosensory and visual cortices undergo crossmodal plasticity, which subserves the remaining modalities. However, controversy remains regarding the neuroplastic potential of primary auditory cortex (A1). To examine this, we identified cortical and thalamic projections to A1 in hearing cats and those with early- and late-onset deafness. Following early deafness, inputs from second auditory cortex (A2) are amplified, whereas the number originating in the dorsal zone (DZ) decreases. In addition, inputs from the dorsal medial geniculate nucleus (dMGN) increase, whereas those from the ventral division (vMGN) are reduced. In late-deaf cats, projections from the anterior auditory field (AAF) are amplified, whereas those from the DZ decrease. Additionally, in a subset of early- and late-deaf cats, area 17 and the lateral posterior nucleus (LP) of the visual thalamus project concurrently to A1. These results demonstrate that patterns of projections to A1 are modified following deafness, with statistically significant changes occurring within the auditory thalamus and some cortical areas. Moreover, we provide anatomical evidence for small-scale crossmodal changes in projections to A1 that differ between early- and late-onset deaf animals, suggesting that potential crossmodal activation of primary auditory cortex differs depending on the age of deafness onset.

  10. Leading role of thalamic over cortical neurons during postinhibitory rebound excitation

    Science.gov (United States)

    Grenier, F.; Timofeev, I.; Steriade, M.

    1998-01-01

    The postinhibitory rebound excitation is an intrinsic property of thalamic and cortical neurons that is implicated in a variety of normal and abnormal operations of neuronal networks, such as slow or fast brain rhythms during different states of vigilance as well as seizures. We used dual simultaneous intracellular recordings of thalamocortical neurons from the ventrolateral nucleus and neurons from the motor cortex, together with thalamic and cortical field potentials, to investigate the temporal relations between thalamic and cortical events during the rebound excitation that follows prolonged periods of stimulus-induced inhibition. Invariably, the rebound spike-bursts in thalamocortical cells occurred before the rebound depolarization in cortical neurons and preceded the peak of the depth-negative, rebound field potential in cortical areas. Also, the inhibitory-rebound sequences were more pronounced and prolonged in cortical neurons when elicited by thalamic stimuli, compared with cortical stimuli. The role of thalamocortical loops in the rebound excitation of cortical neurons was shown further by the absence of rebound activity in isolated cortical slabs. However, whereas thalamocortical neurons remained hyperpolarized after rebound excitation, because of the prolonged spike-bursts in inhibitory thalamic reticular neurons, the rebound depolarization in cortical neurons was prolonged, suggesting the role of intracortical excitatory circuits in this sustained activity. The role of intrathalamic events in triggering rebound cortical activity should be taken into consideration when analyzing information processes at the cortical level; at each step, corticothalamic volleys can set into action thalamic inhibitory neurons, leading to rebound spike-bursts that are transferred back to the cortex, thus modifying cortical activities. PMID:9811903

  11. Optimizing working memory with heterogeneity of recurrent cortical excitation.

    Science.gov (United States)

    Kilpatrick, Zachary P; Ermentrout, Bard; Doiron, Brent

    2013-11-27

    A neural correlate of parametric working memory is a stimulus-specific rise in neuron firing rate that persists long after the stimulus is removed. Network models with local excitation and broad inhibition support persistent neural activity, linking network architecture and parametric working memory. Cortical neurons receive noisy input fluctuations that cause persistent activity to diffusively wander about the network, degrading memory over time. We explore how cortical architecture that supports parametric working memory affects the diffusion of persistent neural activity. Studying both a spiking network and a simplified potential well model, we show that spatially heterogeneous excitatory coupling stabilizes a discrete number of persistent states, reducing the diffusion of persistent activity over the network. However, heterogeneous coupling also coarse-grains the stimulus representation space, limiting the storage capacity of parametric working memory. The storage errors due to coarse-graining and diffusion trade off so that information transfer between the initial and recalled stimulus is optimized at a fixed network heterogeneity. For sufficiently long delay times, the optimal number of attractors is less than the number of possible stimuli, suggesting that memory networks can under-represent stimulus space to optimize performance. Our results clearly demonstrate the combined effects of network architecture and stochastic fluctuations on parametric memory storage.

  12. Cortical current source connectivity by means of partial coherence fields

    CERN Document Server

    Pascual-Marqui, Roberto D; Valdes-Sosa, Pedro A; Bosch-Bayard, Jorge; Riera-Diaz, Jorge J

    2011-01-01

    An important field of research in functional neuroimaging is the discovery of integrated, distributed brain systems and networks, whose different regions need to work in unison for normal functioning. The EEG is a non-invasive technique that can provide information for massive connectivity analyses. Cortical signals of time varying electric neuronal activity can be estimated from the EEG. Although such techniques have very high time resolution, two cortical signals even at distant locations will appear to be highly similar due to the low spatial resolution nature of the EEG. In this study a method for eliminating the effect of common sources due to low spatial resolution is presented. It is based on an efficient estimation of the whole-cortex partial coherence matrix. Using as a starting point any linear EEG tomography that satisfies the EEG forward equation, it is shown that the generalized partial coherences for the cortical grey matter current density time series are invariant to the selected tomography. I...

  13. Amygdala activation for eye contact despite complete cortical blindness.

    Science.gov (United States)

    Burra, Nicolas; Hervais-Adelman, Alexis; Kerzel, Dirk; Tamietto, Marco; de Gelder, Beatrice; Pegna, Alan J

    2013-06-19

    Cortical blindness refers to the loss of vision that occurs after destruction of the primary visual cortex. Although there is no sensory cortex and hence no conscious vision, some cortically blind patients show amygdala activation in response to facial or bodily expressions of emotion. Here we investigated whether direction of gaze could also be processed in the absence of any functional visual cortex. A well-known patient with bilateral destruction of his visual cortex and subsequent cortical blindness was investigated in an fMRI paradigm during which blocks of faces were presented either with their gaze directed toward or away from the viewer. Increased right amygdala activation was found in response to directed compared with averted gaze. Activity in this region was further found to be functionally connected to a larger network associated with face and gaze processing. The present study demonstrates that, in human subjects, the amygdala response to eye contact does not require an intact primary visual cortex.

  14. Focal cortical dysplasia – review

    Science.gov (United States)

    Kabat, Joanna; Król, Przemysław

    2012-01-01

    Summary Focal cortical dysplasia is a malformation of cortical development, which is the most common cause of medically refractory epilepsy in the pediatric population and the second/third most common etiology of medically intractable seizures in adults. Both genetic and acquired factors are involved in the pathogenesis of cortical dysplasia. Numerous classifications of the complex structural abnormalities of focal cortical dysplasia have been proposed – from Taylor et al. in 1971 to the last modification of Palmini classification made by Blumcke in 2011. In general, three types of cortical dysplasia are recognized. Type I focal cortical dysplasia with mild symptomatic expression and late onset, is more often seen in adults, with changes present in the temporal lobe. Clinical symptoms are more severe in type II of cortical dysplasia usually seen in children. In this type, more extensive changes occur outside the temporal lobe with predilection for the frontal lobes. New type III is one of the above dysplasias with associated another principal lesion as hippocampal sclerosis, tumor, vascular malformation or acquired pathology during early life. Brain MRI imaging shows abnormalities in the majority of type II dysplasias and in only some of type I cortical dysplasias. The most common findings on MRI imaging include: focal cortical thickening or thinning, areas of focal brain atrophy, blurring of the gray-white junction, increased signal on T2- and FLAIR-weighted images in the gray and subcortical white matter often tapering toward the ventricle. On the basis of the MRI findings, it is possible to differentiate between type I and type II cortical dysplasia. A complete resection of the epileptogenic zone is required for seizure-free life. MRI imaging is very helpful to identify those patients who are likely to benefit from surgical treatment in a group of patients with drug-resistant epilepsy. However, in type I cortical dysplasia, MR imaging is often normal, and also

  15. Hiperostosis cortical infantil

    Directory of Open Access Journals (Sweden)

    Salvador Javier Santos Medina

    2015-04-01

    Full Text Available La enfermedad de Caffey, o hiperostosis cortical infantil, es una rara enfermedad ósea autolimitada, que aparece de preferencia en lactantes con signos inespecíficos sistémicos; el más relevante es la reacción subperióstica e hiperostosis en varios huesos del cuerpo, con predilección en el 75-80 % de los casos por la mandíbula. Su pronóstico es bueno, la mayoría no deja secuelas. El propósito del presente trabajo es describir las características clínicas, presentes en un lactante de cinco meses de edad, atendido en el Hospital Pediátrico Provincial “Mártires de Las Tunas” con este diagnóstico, quien ingresó en el servicio de miscelánea B por una celulitis facial. Presentaba aumento de volumen en la región geniana izquierda, febrícola e inapetencia. Se impuso tratamiento con cefazolina y se egresó a los siete días. Acudió nuevamente con tumefacción blanda y difusa de ambas hemicaras, irritabilidad y fiebre. Se interconsultó con cirugía maxilofacial, se indicaron estudios sanguíneos y radiológicos. Se diagnosticó como enfermedad de Caffey, basado en la edad del niño, tumefacción facial sin signos inflamatorios agudos e hiperostosis en ambas corticales mandibulares a la radiografía AP mandíbula; unido a anemia ligera, leucocitosis y eritrosedimentación acelerada. El paciente se trató sintomáticamente y con antinflamatorios no esteroideos. Esta rara entidad se debe tener presente en casos de niños y lactantes con irritabilidad y fiebre inespecífica

  16. A mechanism for the cortical computation of hierarchical linguistic structure.

    Science.gov (United States)

    Martin, Andrea E; Doumas, Leonidas A A

    2017-03-01

    Biological systems often detect species-specific signals in the environment. In humans, speech and language are species-specific signals of fundamental biological importance. To detect the linguistic signal, human brains must form hierarchical representations from a sequence of perceptual inputs distributed in time. What mechanism underlies this ability? One hypothesis is that the brain repurposed an available neurobiological mechanism when hierarchical linguistic representation became an efficient solution to a computational problem posed to the organism. Under such an account, a single mechanism must have the capacity to perform multiple, functionally related computations, e.g., detect the linguistic signal and perform other cognitive functions, while, ideally, oscillating like the human brain. We show that a computational model of analogy, built for an entirely different purpose-learning relational reasoning-processes sentences, represents their meaning, and, crucially, exhibits oscillatory activation patterns resembling cortical signals elicited by the same stimuli. Such redundancy in the cortical and machine signals is indicative of formal and mechanistic alignment between representational structure building and "cortical" oscillations. By inductive inference, this synergy suggests that the cortical signal reflects structure generation, just as the machine signal does. A single mechanism-using time to encode information across a layered network-generates the kind of (de)compositional representational hierarchy that is crucial for human language and offers a mechanistic linking hypothesis between linguistic representation and cortical computation.

  17. Rich-Club Organization in Effective Connectivity among Cortical Neurons

    Science.gov (United States)

    Shimono, Masanori; Ito, Shinya; Yeh, Fang-Chin; Timme, Nicholas; Myroshnychenko, Maxym; Lapish, Christopher C.; Tosi, Zachary; Hottowy, Pawel; Smith, Wesley C.; Masmanidis, Sotiris C.; Litke, Alan M.; Sporns, Olaf; Beggs, John M.

    2016-01-01

    The performance of complex networks, like the brain, depends on how effectively their elements communicate. Despite the importance of communication, it is virtually unknown how information is transferred in local cortical networks, consisting of hundreds of closely spaced neurons. To address this, it is important to record simultaneously from hundreds of neurons at a spacing that matches typical axonal connection distances, and at a temporal resolution that matches synaptic delays. We used a 512-electrode array (60 μm spacing) to record spontaneous activity at 20 kHz from up to 500 neurons simultaneously in slice cultures of mouse somatosensory cortex for 1 h at a time. We applied a previously validated version of transfer entropy to quantify information transfer. Similar to in vivo reports, we found an approximately lognormal distribution of firing rates. Pairwise information transfer strengths also were nearly lognormally distributed, similar to reports of synaptic strengths. Some neurons transferred and received much more information than others, which is consistent with previous predictions. Neurons with the highest outgoing and incoming information transfer were more strongly connected to each other than chance, thus forming a “rich club.” We found similar results in networks recorded in vivo from rodent cortex, suggesting the generality of these findings. A rich-club structure has been found previously in large-scale human brain networks and is thought to facilitate communication between cortical regions. The discovery of a small, but information-rich, subset of neurons within cortical regions suggests that this population will play a vital role in communication, learning, and memory. SIGNIFICANCE STATEMENT Many studies have focused on communication networks between cortical brain regions. In contrast, very few studies have examined communication networks within a cortical region. This is the first study to combine such a large number of neurons (several

  18. In vivo models of cortical acquired epilepsy

    Science.gov (United States)

    Chauvette, Sylvain; Soltani, Sara; Seigneur, Josée; Timofeev, Igor

    2015-01-01

    The neocortex is the site of origin of several forms of acquired epilepsy. Here we provide a brief review of experimental models that were recently developed to study neocortical epileptogenesis as well as some major results obtained with these methods. Most of neocortical seizures appear to be nocturnal and it is known that neuronal activities reveal high levels of synchrony during slow-wave sleep. Therefore, we start the review with a description of mechanisms of neuronal synchronization and major forms of synchronized normal and pathological activities. Then, we describe three experimental models of seizures and epileptogenesis: ketamine-xylazine anesthesia as feline seizure triggered factor, cortical undercut as cortical penetrating wound model and neocortical kindling. Besides specific technical details describing these models we also provide major features of pathological brain activities recorded during epileptogenesis and seizures. The most common feature of all models of neocortical epileptogenesis is the increased duration of network silent states that up-regulates neuronal excitability and eventually leads to epilepsy. PMID:26343530

  19. In vivo models of cortical acquired epilepsy.

    Science.gov (United States)

    Chauvette, Sylvain; Soltani, Sara; Seigneur, Josée; Timofeev, Igor

    2016-02-15

    The neocortex is the site of origin of several forms of acquired epilepsy. Here we provide a brief review of experimental models that were recently developed to study neocortical epileptogenesis as well as some major results obtained with these methods. Most of neocortical seizures appear to be nocturnal and it is known that neuronal activities reveal high levels of synchrony during slow-wave sleep. Therefore, we start the review with a description of mechanisms of neuronal synchronization and major forms of synchronized normal and pathological activities. Then, we describe three experimental models of seizures and epileptogenesis: ketamine-xylazine anesthesia as feline seizure triggered factor, cortical undercut as cortical penetrating wound model and neocortical kindling. Besides specific technical details describing these models we also provide major features of pathological brain activities recorded during epileptogenesis and seizures. The most common feature of all models of neocortical epileptogenesis is the increased duration of network silent states that up-regulates neuronal excitability and eventually leads to epilepsy.

  20. Cortical Correlates of Fitts’ Law

    Directory of Open Access Journals (Sweden)

    Peter eIfft

    2011-12-01

    Full Text Available Fitts' law describes the fundamental trade-off between movement accuracy and speed: It states that the duration of reaching movements is a function of target size and distance. While Fitts' law has been extensively studied in ergonomics and has guided the design of human-computer interfaces, there have been few studies on its neuronal correlates. To elucidate sensorimotor cortical activity underlying Fitts’ law, we implanted two monkeys with multielectrode arrays in the primary motor (M1 and primary somatosensory (S1 cortices. The monkeys performed reaches with a joystick-controlled cursor towards targets of different size. The reaction time, movement time and movement velocity changed with target size, and M1 and S1 activity reflected these changes. Moreover, modifications of cortical activity could not be explained by changes of movement parameters alone, but required target size as an additional parameter. Neuronal representation of target size was especially prominent during the early reaction time period where it influenced the slope of the firing rate rise preceding movement initiation. During the movement period, cortical activity was mostly correlated with movement velocity. Neural decoders were applied to simultaneously decode target size and motor parameters from cortical modulations. We suggest using such classifiers to improve neuroprosthetic control.

  1. Una propuesta para el monitoreo de la movilidad cortical actual en la sierra Chica de Zonda (Precordillera oriental de San Juan: mediciones de gravedad en red A proposal for monitoring the present crustal mobility in Sierra Chica de Zonda (Eastern Precordillera of San Juan: Gravity measurements in a network

    Directory of Open Access Journals (Sweden)

    S. Miranda

    2006-09-01

    Full Text Available Se detallan los requerimientos para el procedimiento de medición de redes precisas de gravedad que permitan obtener una interpretación de los cambios temporales de gravedad observados con relación a movimientos verticales en la corteza. Para Argentina, esta es la primera medición de gravedad en red realizada con fines de monitoreo cortical a escala local. Los vértices de la red prácticamente rodean a la sierra Chica de Zonda (Precordillera Oriental de San Juan caracterizada como una región de fallamiento activo. El objetivo científico del experimento es el ensayo de esta herramienta geofísica para cuantificar probables deformaciones verticales y/o cambios de masas subsuperficiales vinculados con actividad sísmica.In an attempt to obtain an interpretation of the observed temporal gravity changes related to crustal vertical motions, we describe a methodology using accurate gravity measurements within a fixed network. In Argentina, this is the first gravity survey measured in a network configuration for crustal monitoring studies at a local scale. The network contains the Sierra Chica de Zonda (San Juan Eastern Precordillera, a region of active tectonics. The main goal is to test a geophysical tool useful to quantify probable vertical ground deformations and/or subsurface mass changes associated with seismic activity.

  2. Latency dependent development of related firing patterns of cultured cortical neurons

    NARCIS (Netherlands)

    le Feber, Jakob; van Pelt, Jaap; Rutten, Wim

    Networks of cortical neurons were grown over multi electrode arrays to enable simultaneous measurement of signals from multiple neurons. We described functional connectivity in these networks by relationships be¬tween individual electrodes, based on conditional firing probabilities. In this study we

  3. Abnormalities in Structural Covariance of Cortical Gyrification in Parkinson's Disease

    Science.gov (United States)

    Xu, Jinping; Zhang, Jiuquan; Zhang, Jinlei; Wang, Yue; Zhang, Yanling; Wang, Jian; Li, Guanglin; Hu, Qingmao; Zhang, Yuanchao

    2017-01-01

    Although abnormal cortical morphology and connectivity between brain regions (structural covariance) have been reported in Parkinson's disease (PD), the topological organizations of large-scale structural brain networks are still poorly understood. In this study, we investigated large-scale structural brain networks in a sample of 37 PD patients and 34 healthy controls (HC) by assessing the structural covariance of cortical gyrification with local gyrification index (lGI). We demonstrated prominent small-world properties of the structural brain networks for both groups. Compared with the HC group, PD patients showed significantly increased integrated characteristic path length and integrated clustering coefficient, as well as decreased integrated global efficiency in structural brain networks. Distinct distributions of hub regions were identified between the two groups, showing more hub regions in the frontal cortex in PD patients. Moreover, the modular analyses revealed significantly decreased integrated regional efficiency in lateral Fronto-Insula-Temporal module, and increased integrated regional efficiency in Parieto-Temporal module in the PD group as compared to the HC group. In summary, our study demonstrated altered topological properties of structural networks at a global, regional and modular level in PD patients. These findings suggests that the structural networks of PD patients have a suboptimal topological organization, resulting in less effective integration of information between brain regions.

  4. Cortical myoclonus in Huntington's disease.

    Science.gov (United States)

    Thompson, P D; Bhatia, K P; Brown, P; Davis, M B; Pires, M; Quinn, N P; Luthert, P; Honovar, M; O'Brien, M D; Marsden, C D

    1994-11-01

    We describe three patients with Huntington's disease, from two families, in whom myoclonus was the predominant clinical feature. The diagnosis was confirmed at autopsy in two cases and by DNA analysis in all three. These patients all presented before the age of 30 years and were the offspring of affected fathers. Neurophysiological studies documented generalised and multifocal action myoclonus of cortical origin that was strikingly stimulus sensitive, without enlargement of the cortical somatosensory evoked potential. The myoclonus improved with piracetam therapy in one patient and a combination of sodium valproate and clonazepam in the other two. Cortical reflex myoclonus is a rare but disabling component of the complex movement disorder of Huntington's disease, which may lead to substantial diagnostic difficulties.

  5. Paroxysmal kinesigenic dyskinesia : Cortical or non-cortical origin

    NARCIS (Netherlands)

    van Strien, Teun W.; van Rootselaar, Anne-Fleur; Hilgevoord, Anthony A. J.; Linssen, Wim H. J. P.; Groffen, Alexander J. A.; Tijssen, Marina A. J.

    2012-01-01

    Paroxysmal kinesigenic dyskinesia (PKD) is characterized by involuntary dystonia and/or chorea triggered by a sudden movement. Cases are usually familial with an autosomal dominant inheritance. Hypotheses regarding the pathogenesis of PKD focus on the controversy whether PKD has a cortical or non-co

  6. Dense neuron clustering explains connectivity statistics in cortical microcircuits.

    Directory of Open Access Journals (Sweden)

    Vladimir V Klinshov

    Full Text Available Local cortical circuits appear highly non-random, but the underlying connectivity rule remains elusive. Here, we analyze experimental data observed in layer 5 of rat neocortex and suggest a model for connectivity from which emerge essential observed non-random features of both wiring and weighting. These features include lognormal distributions of synaptic connection strength, anatomical clustering, and strong correlations between clustering and connection strength. Our model predicts that cortical microcircuits contain large groups of densely connected neurons which we call clusters. We show that such a cluster contains about one fifth of all excitatory neurons of a circuit which are very densely connected with stronger than average synapses. We demonstrate that such clustering plays an important role in the network dynamics, namely, it creates bistable neural spiking in small cortical circuits. Furthermore, introducing local clustering in large-scale networks leads to the emergence of various patterns of persistent local activity in an ongoing network activity. Thus, our results may bridge a gap between anatomical structure and persistent activity observed during working memory and other cognitive processes.

  7. Orbitofrontal cortical dysfunction in akinetic catatonia: a functional magnetic resonance imaging study during negative emotional stimulation.

    Science.gov (United States)

    Northoff, Georg; Kötter, Rolf; Baumgart, Frank; Danos, Peter; Boeker, Heinz; Kaulisch, Thomas; Schlagenhauf, Florian; Walter, Henrik; Heinzel, Alexander; Witzel, Thomas; Bogerts, Bernhard

    2004-01-01

    Catatonia is a psychomotor syndrome characterized by concurrent emotional, behavioral, and motor anomalies. Pathophysiological mechanisms of psychomotor disturbances may be related to abnormal emotional-motor processing in prefrontal cortical networks. We therefore investigated prefrontal cortical activation and connectivity patterns during emotional-motor stimulation using functional magnetic resonance imaging (FMRI). We investigated 10 akinetic catatonic patients in a postacute state and compared them with 10 noncatatonic postacute psychiatric controls (age-, sex-, diagnosis-, and medication-matched) and 10 healthy controls. Positive and negative pictures from the International Affective Picture System were used for emotional stimulation. FMRI measurements covered the whole frontal lobe, activation signals in various frontal cortical regions were obtained, and functional connectivity between the different prefrontal cortical regions was investigated using structural equation modeling. Catatonic patients showed alterations in the orbitofrontal cortical activation pattern and in functional connectivity to the premotor cortex in negative and positive emotions compared to psychiatric and healthy controls. Catatonic behavioral and affective symptoms correlated significantly with orbitofrontal activity, whereas catatonic motor symptoms were rather related to medial prefrontal activity. It is concluded that catatonic symptoms may be closely related to dysfunction in the orbitofrontal cortex and consequent alteration in the prefrontal cortical network during emotional processing. Because we investigated postacute patients, orbitofrontal cortical alterations may be interpreted as a trait marker predisposing for development of catatonic syndrome in schizophrenic or affective psychosis.

  8. Associations between cortical thickness and verbal fluency in childhood, adolescence, and young adulthood.

    Science.gov (United States)

    Porter, James N; Collins, Paul F; Muetzel, Ryan L; Lim, Kelvin O; Luciana, Monica

    2011-04-15

    Neuroimaging studies of normative human brain development indicate that the brain matures at differing rates across time and brain regions, with some areas maturing into young adulthood. In particular, changes in cortical thickness may index maturational progressions from an overabundance of neuropil toward efficiently pruned neural networks. Developmental changes in structural MRI measures have rarely been examined in relation to discrete neuropsychological functions. In this study, healthy right-handed adolescents completed MRI scanning and the Controlled Oral Word Association Test (COWAT). Associations of task performance and cortical thickness were assessed with cortical-surface-based analyses. Significant correlations between increasing COWAT performances and decreasing cortical thickness were found in left hemisphere language regions, including perisylvian regions surrounding Wernicke's and Broca's areas. Task performance was also correlated with regions associated with effortful verbal processing, working memory, and performance monitoring. Structure-function associations were not significantly different between older and younger subjects. Decreases in cortical thicknesses in regions that comprise the language network likely reflect maturation toward adult-like cortical organization and processing efficiency. The changes in cortical thicknesses that support verbal fluency are apparent by middle childhood, but with regionally separate developmental trajectories for males and females, consistent with other studies of adolescent development.

  9. Moderate Cortical Cooling Eliminates Thalamocortical Silent States during Slow Oscillation.

    Science.gov (United States)

    Sheroziya, Maxim; Timofeev, Igor

    2015-09-23

    Reduction in temperature depolarizes neurons by a partial closure of potassium channels but decreases the vesicle release probability within synapses. Compared with cooling, neuromodulators produce qualitatively similar effects on intrinsic neuronal properties and synapses in the cortex. We used this similarity of neuronal action in ketamine-xylazine-anesthetized mice and non-anesthetized mice to manipulate the thalamocortical activity. We recorded cortical electroencephalogram/local field potential (LFP) activity and intracellular activities from the somatosensory thalamus in control conditions, during cortical cooling and on rewarming. In the deeply anesthetized mice, moderate cortical cooling was characterized by reversible disruption of the thalamocortical slow-wave pattern rhythmicity and the appearance of fast LFP spikes, with frequencies ranging from 6 to 9 Hz. These LFP spikes were correlated with the rhythmic IPSP activities recorded within the thalamic ventral posterior medial neurons and with depolarizing events in the posterior nucleus neurons. Similar cooling of the cortex during light anesthesia rapidly and reversibly eliminated thalamocortical silent states and evoked thalamocortical persistent activity; conversely, mild heating increased thalamocortical slow-wave rhythmicity. In the non-anesthetized head-restrained mice, cooling also prevented the generation of thalamocortical silent states. We conclude that moderate cortical cooling might be used to manipulate slow-wave network activity and induce neuromodulator-independent transition to activated states. Significance statement: In this study, we demonstrate that moderate local cortical cooling of lightly anesthetized or naturally sleeping mice disrupts thalamocortical slow oscillation and induces the activated local field potential pattern. Mild heating has the opposite effect; it increases the rhythmicity of thalamocortical slow oscillation. Our results demonstrate that slow oscillation can be

  10. Cortical thickness abnormalities associated with dyslexia, independent of remediation status.

    Science.gov (United States)

    Ma, Yizhou; Koyama, Maki S; Milham, Michael P; Castellanos, F Xavier; Quinn, Brian T; Pardoe, Heath; Wang, Xiuyuan; Kuzniecky, Ruben; Devinsky, Orrin; Thesen, Thomas; Blackmon, Karen

    2015-01-01

    Abnormalities in cortical structure are commonly observed in children with dyslexia in key regions of the "reading network." Whether alteration in cortical features reflects pathology inherent to dyslexia or environmental influence (e.g., impoverished reading experience) remains unclear. To address this question, we compared MRI-derived metrics of cortical thickness (CT), surface area (SA), gray matter volume (GMV), and their lateralization across three different groups of children with a historical diagnosis of dyslexia, who varied in current reading level. We compared three dyslexia subgroups with: (1) persistent reading and spelling impairment; (2) remediated reading impairment (normal reading scores), and (3) remediated reading and spelling impairments (normal reading and spelling scores); and a control group of (4) typically developing children. All groups were matched for age, gender, handedness, and IQ. We hypothesized that the dyslexia group would show cortical abnormalities in regions of the reading network relative to controls, irrespective of remediation status. Such a finding would support that cortical abnormalities are inherent to dyslexia and are not a consequence of abnormal reading experience. Results revealed increased CT of the left fusiform gyrus in the dyslexia group relative to controls. Similarly, the dyslexia group showed CT increase of the right superior temporal gyrus, extending into the planum temporale, which resulted in a rightward CT asymmetry on lateralization indices. There were no group differences in SA, GMV, or their lateralization. These findings held true regardless of remediation status. Each reading level group showed the same "double hit" of atypically increased left fusiform CT and rightward superior temporal CT asymmetry. Thus, findings provide evidence that a developmental history of dyslexia is associated with CT abnormalities, independent of remediation status.

  11. Cortical thickness abnormalities associated with dyslexia, independent of remediation status

    Directory of Open Access Journals (Sweden)

    Yizhou Ma

    2015-01-01

    Full Text Available Abnormalities in cortical structure are commonly observed in children with dyslexia in key regions of the “reading network.” Whether alteration in cortical features reflects pathology inherent to dyslexia or environmental influence (e.g., impoverished reading experience remains unclear. To address this question, we compared MRI-derived metrics of cortical thickness (CT, surface area (SA, gray matter volume (GMV, and their lateralization across three different groups of children with a historical diagnosis of dyslexia, who varied in current reading level. We compared three dyslexia subgroups with: (1 persistent reading and spelling impairment; (2 remediated reading impairment (normal reading scores, and (3 remediated reading and spelling impairments (normal reading and spelling scores; and a control group of (4 typically developing children. All groups were matched for age, gender, handedness, and IQ. We hypothesized that the dyslexia group would show cortical abnormalities in regions of the reading network relative to controls, irrespective of remediation status. Such a finding would support that cortical abnormalities are inherent to dyslexia and are not a consequence of abnormal reading experience. Results revealed increased CT of the left fusiform gyrus in the dyslexia group relative to controls. Similarly, the dyslexia group showed CT increase of the right superior temporal gyrus, extending into the planum temporale, which resulted in a rightward CT asymmetry on lateralization indices. There were no group differences in SA, GMV, or their lateralization. These findings held true regardless of remediation status. Each reading level group showed the same “double hit” of atypically increased left fusiform CT and rightward superior temporal CT asymmetry. Thus, findings provide evidence that a developmental history of dyslexia is associated with CT abnormalities, independent of remediation status.

  12. Motor cortical plasticity in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Kaviraja eUdupa

    2013-09-01

    Full Text Available In Parkinson’s disease (PD, there are alterations of the basal ganglia (BG thalamo-cortical networks, primarily due to degeneration of nigrostrial dopaminergic neurons. These changes in subcortical networks lead to plastic changes in primary motor cortex (M1, which mediates cortical motor output and is a potential target for treatment of PD. Studies investigating the motor cortical plasticity using non-invasive transcranial magnetic stimulation (TMS have found altered plasticity in PD, but there are inconsistencies among these studies. This is likely because plasticity depends on many factors such as the extent of dopaminergic loss and disease severity, response to dopaminergic replacement therapies, development of L-dopa-induced dyskinesias (LID, the plasticity protocol used, medication and stimulation status in patients treated with deep brain stimulation (DBS. The influences of LID and DBS on BG and M1 plasticity have been explored in animal models and in PD patients. In addition, many other factors such age, genetic factors (e.g. brain derived neurotropic factor and other neurotransmitters or receptors polymorphism, emotional state, time of the day, physical fitness have been documented to play role in the extent of plasticity induced by TMS in human studies. In this review, we summarize the studies that investigated M1 plasticity in PD and demonstrate how these afore-mentioned factors affect motor cortical plasticity in PD. We conclude that it is important to consider the clinical, demographic and technical factors that influence various plasticity protocols while developing these protocols as diagnostic or prognostic tools in PD. We also discuss how the modulation of cortical excitability and the plasticity with these non-invasive brain stimulation techniques facilitate the understanding of the pathophysiology of PD and help design potential therapeutic possibilities in this disorder.

  13. Cortical thickness abnormalities associated with dyslexia, independent of remediation status

    Science.gov (United States)

    Ma, Yizhou; Koyama, Maki S.; Milham, Michael P.; Castellanos, F. Xavier; Quinn, Brian T.; Pardoe, Heath; Wang, Xiuyuan; Kuzniecky, Ruben; Devinsky, Orrin; Thesen, Thomas; Blackmon, Karen

    2014-01-01

    Abnormalities in cortical structure are commonly observed in children with dyslexia in key regions of the “reading network.” Whether alteration in cortical features reflects pathology inherent to dyslexia or environmental influence (e.g., impoverished reading experience) remains unclear. To address this question, we compared MRI-derived metrics of cortical thickness (CT), surface area (SA), gray matter volume (GMV), and their lateralization across three different groups of children with a historical diagnosis of dyslexia, who varied in current reading level. We compared three dyslexia subgroups with: (1) persistent reading and spelling impairment; (2) remediated reading impairment (normal reading scores), and (3) remediated reading and spelling impairments (normal reading and spelling scores); and a control group of (4) typically developing children. All groups were matched for age, gender, handedness, and IQ. We hypothesized that the dyslexia group would show cortical abnormalities in regions of the reading network relative to controls, irrespective of remediation status. Such a finding would support that cortical abnormalities are inherent to dyslexia and are not a consequence of abnormal reading experience. Results revealed increased CT of the left fusiform gyrus in the dyslexia group relative to controls. Similarly, the dyslexia group showed CT increase of the right superior temporal gyrus, extending into the planum temporale, which resulted in a rightward CT asymmetry on lateralization indices. There were no group differences in SA, GMV, or their lateralization. These findings held true regardless of remediation status. Each reading level group showed the same “double hit” of atypically increased left fusiform CT and rightward superior temporal CT asymmetry. Thus, findings provide evidence that a developmental history of dyslexia is associated with CT abnormalities, independent of remediation status. PMID:25610779

  14. Functions of gamma-band synchronization in cognition: from single circuits to functional diversity across cortical and subcortical systems.

    Science.gov (United States)

    Bosman, Conrado A; Lansink, Carien S; Pennartz, Cyriel M A

    2014-06-01

    Gamma-band activity (30-90 Hz) and the synchronization of neural activity in the gamma-frequency range have been observed in different cortical and subcortical structures and have been associated with different cognitive functions. However, it is still unknown whether gamma-band synchronization subserves a single universal function or a diversity of functions across the full spectrum of cognitive processes. Here, we address this question reviewing the mechanisms of gamma-band oscillation generation and the functions associated with gamma-band activity across several cortical and subcortical structures. Additionally, we raise a plausible explanation of why gamma rhythms are found so ubiquitously across brain structures. Gamma band activity originates from the interplay between inhibition and excitation. We stress that gamma oscillations, associated with this interplay, originate from basic functional motifs that conferred advantages for low-level system processing and multiple cognitive functions throughout evolution. We illustrate the multifunctionality of gamma-band activity by considering its role in neural systems for perception, selective attention, memory, motivation and behavioral control. We conclude that gamma-band oscillations support multiple cognitive processes, rather than a single one, which, however, can be traced back to a limited set of circuit motifs which are found universally across species and brain structures.

  15. Trends and properties of human cerebral cortex: correlations with cortical myelin content.

    Science.gov (United States)

    Glasser, Matthew F; Goyal, Manu S; Preuss, Todd M; Raichle, Marcus E; Van Essen, David C

    2014-06-01

    "In vivo Brodmann mapping" or non-invasive cortical parcellation using MRI, especially by measuring cortical myelination, has recently become a popular research topic, though myeloarchitectonic cortical parcellation in humans previously languished in favor of cytoarchitecture. We review recent in vivo myelin mapping studies and discuss some of the different methods for estimating myelin content. We discuss some ways in which myelin maps may improve surface registration and be useful for cross-modal and cross-species comparisons, including some preliminary cross-species results. Next, we consider neurobiological aspects of why some parts of cortex are more myelinated than others. Myelin content is inversely correlated with intracortical circuit complexity - in general, more myelin content means simpler and perhaps less dynamic intracortical circuits. Using existing PET data and functional network parcellations, we examine metabolic differences in the differently myelinated cortical functional networks. Lightly myelinated cognitive association networks tend to have higher aerobic glycolysis than heavily myelinated early sensory-motor ones, perhaps reflecting greater ongoing dynamic anabolic cortical processes. This finding is consistent with the hypothesis that intracortical myelination may stabilize intracortical circuits and inhibit synaptic plasticity. Finally, we discuss the future of the in vivo myeloarchitectural field and cortical parcellation--"in vivo Brodmann mapping"--in general.

  16. The effect of binaural beats on verbal working memory and cortical connectivity

    Science.gov (United States)

    Beauchene, Christine; Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A.; Leonessa, Alexander

    2017-04-01

    Objective. Synchronization in activated regions of cortical networks affect the brain’s frequency response, which has been associated with a wide range of states and abilities, including memory. A non-invasive method for manipulating cortical synchronization is binaural beats. Binaural beats take advantage of the brain’s response to two pure tones, delivered independently to each ear, when those tones have a small frequency mismatch. The mismatch between the tones is interpreted as a beat frequency, which may act to synchronize cortical oscillations. Neural synchrony is particularly important for working memory processes, the system controlling online organization and retention of information for successful goal-directed behavior. Therefore, manipulation of synchrony via binaural beats provides a unique window into working memory and associated connectivity of cortical networks. Approach. In this study, we examined the effects of different acoustic stimulation conditions during an N-back working memory task, and we measured participant response accuracy and cortical network topology via EEG recordings. Six acoustic stimulation conditions were used: None, Pure Tone, Classical Music, 5 Hz binaural beats, 10 Hz binaural beats, and 15 Hz binaural beats. Main results. We determined that listening to 15 Hz binaural beats during an N-Back working memory task increased the individual participant’s accuracy, modulated the cortical frequency response, and changed the cortical network connection strengths during the task. Only the 15 Hz binaural beats produced significant change in relative accuracy compared to the None condition. Significance. Listening to 15 Hz binaural beats during the N-back task activated salient frequency bands and produced networks characterized by higher information transfer as compared to other auditory stimulation conditions.

  17. High-Degree Neurons Feed Cortical Computations.

    Directory of Open Access Journals (Sweden)

    Nicholas M Timme

    2016-05-01

    Full Text Available Recent work has shown that functional connectivity among cortical neurons is highly varied, with a small percentage of neurons having many more connections than others. Also, recent theoretical developments now make it possible to quantify how neurons modify information from the connections they receive. Therefore, it is now possible to investigate how information modification, or computation, depends on the number of connections a neuron receives (in-degree or sends out (out-degree. To do this, we recorded the simultaneous spiking activity of hundreds of neurons in cortico-hippocampal slice cultures using a high-density 512-electrode array. This preparation and recording method combination produced large numbers of neurons recorded at temporal and spatial resolutions that are not currently available in any in vivo recording system. We utilized transfer entropy (a well-established method for detecting linear and nonlinear interactions in time series and the partial information decomposition (a powerful, recently developed tool for dissecting multivariate information processing into distinct parts to quantify computation between neurons where information flows converged. We found that computations did not occur equally in all neurons throughout the networks. Surprisingly, neurons that computed large amounts of information tended to receive connections from high out-degree neurons. However, the in-degree of a neuron was not related to the amount of information it computed. To gain insight into these findings, we developed a simple feedforward network model. We found that a degree-modified Hebbian wiring rule best reproduced the pattern of computation and degree correlation results seen in the real data. Interestingly, this rule also maximized signal propagation in the presence of network-wide correlations, suggesting a mechanism by which cortex could deal with common random background input. These are the first results to show that the extent to

  18. Relating normalization to neuronal populations across cortical areas.

    Science.gov (United States)

    Ruff, Douglas A; Alberts, Joshua J; Cohen, Marlene R

    2016-09-01

    Normalization, which divisively scales neuronal responses to multiple stimuli, is thought to underlie many sensory, motor, and cognitive processes. In every study where it has been investigated, neurons measured in the same brain area under identical conditions exhibit a range of normalization, ranging from suppression by nonpreferred stimuli (strong normalization) to additive responses to combinations of stimuli (no normalization). Normalization has been hypothesized to arise from interactions between neuronal populations, either in the same or different brain areas, but current models of normalization are not mechanistic and focus on trial-averaged responses. To gain insight into the mechanisms underlying normalization, we examined interactions between neurons that exhibit different degrees of normalization. We recorded from multiple neurons in three cortical areas while rhesus monkeys viewed superimposed drifting gratings. We found that neurons showing strong normalization shared less trial-to-trial variability with other neurons in the same cortical area and more variability with neurons in other cortical areas than did units with weak normalization. Furthermore, the cortical organization of normalization was not random: neurons recorded on nearby electrodes tended to exhibit similar amounts of normalization. Together, our results suggest that normalization reflects a neuron's role in its local network and that modulatory factors like normalization share the topographic organization typical of sensory tuning properties.

  19. Homeostatic responses by surviving cortical pyramidal cells in neurodegenerative tauopathy.

    Science.gov (United States)

    Crimins, Johanna L; Rocher, Anne B; Peters, Alan; Shultz, Penny; Lewis, Jada; Luebke, Jennifer I

    2011-11-01

    Cortical neuron death is prevalent by 9 months in rTg(tau(P301L))4510 tau mutant mice (TG) and surviving pyramidal cells exhibit dendritic regression and spine loss. We used whole-cell patch-clamp recordings to investigate the impact of these marked structural changes on spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) of layer 3 pyramidal cells in frontal cortical slices from behaviorally characterized TG and non-transgenic (NT) mice at this age. Frontal lobe function of TG mice was intact following a short delay interval but impaired following a long delay interval in an object recognition test, and cortical atrophy and cell loss were pronounced. Surviving TG cells had significantly reduced dendritic diameters, total spine density, and mushroom spines, yet sEPSCs were increased and sIPSCs were unchanged in frequency. Thus, despite significant regressive structural changes, synaptic responses were not reduced in TG cells, indicating that homeostatic compensatory mechanisms occur during progressive tauopathy. Consistent with this idea, surviving TG cells were more intrinsically excitable than NT cells, and exhibited sprouting of filopodia and axonal boutons. Moreover, the neuropil in TG mice showed an increased density of asymmetric synapses, although their mean size was reduced. Taken together, these data indicate that during progressive tauopathy, cortical pyramidal cells compensate for loss of afferent input by increased excitability and establishment of new synapses. These compensatory homeostatic mechanisms may play an important role in slowing the progression of neuronal network dysfunction during neurodegenerative tauopathies.

  20. Broadband Macroscopic Cortical Oscillations Emerge from Intrinsic Neuronal Response Failures

    Directory of Open Access Journals (Sweden)

    Amir eGoldental

    2015-10-01

    Full Text Available Broadband spontaneous macroscopic neural oscillations are rhythmic cortical firing which was extensively examined during the last century, however, their possible origination is still controversial. In this work we show how macroscopic oscillations emerge in solely excitatory random networks and without topological constraints. We experimentally and theoretically show that these oscillations stem from the counterintuitive underlying mechanism - the intrinsic stochastic neuronal response failures. These neuronal response failures, which are characterized by short-term memory, lead to cooperation among neurons, resulting in sub- or several- Hertz macroscopic oscillations which coexist with high frequency gamma oscillations. A quantitative interplay between the statistical network properties and the emerging oscillations is supported by simulations of large networks based on single-neuron in-vitro experiments and a Langevin equation describing the network dynamics. Results call for the examination of these oscillations in the presence of inhibition and external drives.

  1. Motor cortical thresholds and cortical silent periods in epilepsy.

    Science.gov (United States)

    Tataroglu, Cengiz; Ozkiziltan, Safa; Baklan, Baris

    2004-10-01

    We studied motor cortical thresholds (TIs) and cortical silent periods (SPs) evoked by transcranial magnetic stimulation (TMS) in 110 epileptic patients. Sixty-two had primary generalised, 48 had partial type seizures. Fifteen out 110 patients were analysed both before and after anticonvulsant medication. Our aims were to evaluate the TI levels and the duration of SPs in patients with epilepsy and to determine the reliability of TMS in patients with epilepsy. There was no negative effect of TMS on the clinical status and EEG findings in patients with epilepsy. TIs obtained from patients with partial epilepsy were higher than those obtained from both controls and primary epileptics. The duration of SP in patients with primary epileptics was more prolonged than those obtained from controls. There was no correlation between EEG lateralisation and both SP duration and TI values. In de novo patient group, SP duration was significantly prolonged after anticonvulsant medication. We concluded that TMS is a reliable electrophysiological investigation in patients with epilepsy. The analysis of SP duration may be an appropriate investigation in monitoring the effect of anticonvulsant medication on the cortical inhibitory activity.

  2. The cortical structure of consolidated memory: a hypothesis on the role of the cingulate-entorhinal cortical connection.

    Science.gov (United States)

    Insel, Nathan; Takehara-Nishiuchi, Kaori

    2013-11-01

    Daily experiences are represented by networks of neurons distributed across the neocortex, bound together for rapid storage and later retrieval by the hippocampus. While the hippocampus is necessary for retrieving recent episode-based memory associations, over time, consolidation processes take place that enable many of these associations to be expressed independent of the hippocampus. It is generally thought that mechanisms of consolidation involve synaptic weight changes between cortical regions; or, in other words, the formation of "horizontal" cortico-cortical connections. Here, we review anatomical, behavioral, and physiological data which suggest that the connections in and between the entorhinal and cingulate cortices may be uniquely important for the long-term storage of memories that initially depend on the hippocampus. We propose that current theories of consolidation that divide memory into dual systems of hippocampus and neocortex might be improved by introducing a third, middle layer of entorhinal and cingulate allocortex, the synaptic weights within which are necessary and potentially sufficient for maintaining initially hippocampus-dependent associations over long time periods. This hypothesis makes a number of still untested predictions, and future experiments designed to address these will help to fill gaps in the current understanding of the cortical structure of consolidated memory.

  3. The impact of high grade glial neoplasms on human cortical electrophysiology

    Science.gov (United States)

    Pahwa, Mrinal; Hacker, Carl D.; Bundy, David T.; Breshears, Jonathan D.; Sharma, Mohit; Shimony, Joshua S.; Leuthardt, Eric C.

    2017-01-01

    Objective The brain’s functional architecture of interconnected network-related oscillatory patterns in discrete cortical regions has been well established with functional magnetic resonance imaging (fMRI) studies or direct cortical electrophysiology from electrodes placed on the surface of the brain, or electrocorticography (ECoG). These resting state networks exhibit a robust functional architecture that persists through all stages of sleep and under anesthesia. While the stability of these networks provides a fundamental understanding of the organization of the brain, understanding how these regions can be perturbed is also critical in defining the brain’s ability to adapt while learning and recovering from injury. Methods Patients undergoing an awake craniotomy for resection of a tumor were studied as a unique model of an evolving injury to help define how the cortical physiology and the associated networks were altered by the presence of an invasive brain tumor. Results This study demonstrates that there is a distinct pattern of alteration of cortical physiology in the setting of a malignant glioma. These changes lead to a physiologic sequestration and progressive synaptic homogeneity suggesting that a de-learning phenomenon occurs within the tumoral tissue compared to its surroundings. Significance These findings provide insight into how the brain accommodates a region of “defunctionalized” cortex. Additionally, these findings may have important implications for emerging techniques in brain mapping using endogenous cortical physiology. PMID:28319187

  4. Stochastic synchronization in finite size spiking networks

    Science.gov (United States)

    Doiron, Brent; Rinzel, John; Reyes, Alex

    2006-09-01

    We study a stochastic synchronization of spiking activity in feedforward networks of integrate-and-fire model neurons. A stochastic mean field analysis shows that synchronization occurs only when the network size is sufficiently small. This gives evidence that the dynamics, and hence processing, of finite size populations can be drastically different from that observed in the infinite size limit. Our results agree with experimentally observed synchrony in cortical networks, and further strengthen the link between synchrony and propagation in cortical systems.

  5. Broadband cortical desynchronization underlies the human psychedelic state.

    Science.gov (United States)

    Muthukumaraswamy, Suresh D; Carhart-Harris, Robin L; Moran, Rosalyn J; Brookes, Matthew J; Williams, Tim M; Errtizoe, David; Sessa, Ben; Papadopoulos, Andreas; Bolstridge, Mark; Singh, Krish D; Feilding, Amanda; Friston, Karl J; Nutt, David J

    2013-09-18

    Psychedelic drugs produce profound changes in consciousness, but the underlying neurobiological mechanisms for this remain unclear. Spontaneous and induced oscillatory activity was recorded in healthy human participants with magnetoencephalography after intravenous infusion of psilocybin--prodrug of the nonselective serotonin 2A receptor agonist and classic psychedelic psilocin. Psilocybin reduced spontaneous cortical oscillatory power from 1 to 50 Hz in posterior association cortices, and from 8 to 100 Hz in frontal association cortices. Large decreases in oscillatory power were seen in areas of the default-mode network. Independent component analysis was used to identify a number of resting-state networks, and activity in these was similarly decreased after psilocybin. Psilocybin had no effect on low-level visually induced and motor-induced gamma-band oscillations, suggesting that some basic elements of oscillatory brain activity are relatively preserved during the psychedelic experience. Dynamic causal modeling revealed that posterior cingulate cortex desynchronization can be explained by increased excitability of deep-layer pyramidal neurons, which are known to be rich in 5-HT2A receptors. These findings suggest that the subjective effects of psychedelics result from a desynchronization of ongoing oscillatory rhythms in the cortex, likely triggered by 5-HT2A receptor-mediated excitation of deep pyramidal cells.

  6. Cortical factor feedback model for cellular locomotion and cytofission.

    Directory of Open Access Journals (Sweden)

    Shin I Nishimura

    2009-03-01

    Full Text Available Eukaryotic cells can move spontaneously without being guided by external cues. For such spontaneous movements, a variety of different modes have been observed, including the amoeboid-like locomotion with protrusion of multiple pseudopods, the keratocyte-like locomotion with a widely spread lamellipodium, cell division with two daughter cells crawling in opposite directions, and fragmentations of a cell to multiple pieces. Mutagenesis studies have revealed that cells exhibit these modes depending on which genes are deficient, suggesting that seemingly different modes are the manifestation of a common mechanism to regulate cell motion. In this paper, we propose a hypothesis that the positive feedback mechanism working through the inhomogeneous distribution of regulatory proteins underlies this variety of cell locomotion and cytofission. In this hypothesis, a set of regulatory proteins, which we call cortical factors, suppress actin polymerization. These suppressing factors are diluted at the extending front and accumulated at the retracting rear of cell, which establishes a cellular polarity and enhances the cell motility, leading to the further accumulation of cortical factors at the rear. Stochastic simulation of cell movement shows that the positive feedback mechanism of cortical factors stabilizes or destabilizes modes of movement and determines the cell migration pattern. The model predicts that the pattern is selected by changing the rate of formation of the actin-filament network or the threshold to initiate the network formation.

  7. Global segregation of cortical activity and metastable dynamics.

    Science.gov (United States)

    Stratton, Peter; Wiles, Janet

    2015-01-01

    Cortical activity exhibits persistent metastable dynamics. Assemblies of neurons transiently couple (integrate) and decouple (segregate) at multiple spatiotemporal scales; both integration and segregation are required to support metastability. Integration of distant brain regions can be achieved through long range excitatory projections, but the mechanism supporting long range segregation is not clear. We argue that the thalamocortical matrix connections, which project diffusely from the thalamus to the cortex and have long been thought to support cortical gain control, play an equally-important role in cortical segregation. We present a computational model of the diffuse thalamocortical loop, called the competitive cross-coupling (CXC) spiking network. Simulations of the model show how different levels of tonic input from the brainstem to the thalamus could control dynamical complexity in the cortex, directing transitions between sleep, wakefulness and high attention or vigilance. The model also explains how mutually-exclusive activity could arise across large portions of the cortex, such as between the default-mode and task-positive networks. It is robust to noise but does not require noise to autonomously generate metastability. We conclude that the long range segregation observed in brain activity and required for global metastable dynamics could be provided by the thalamocortical matrix, and is strongly modulated by brainstem input to the thalamus.

  8. Global segregation of cortical activity and metastable dynamics

    Directory of Open Access Journals (Sweden)

    Peter eStratton

    2015-08-01

    Full Text Available Cortical activity exhibits persistent metastable dynamics. Assemblies of neurons transiently couple (integrate and decouple (segregate at multiple spatiotemporal scales; both integration and segregation are required to support metastability. Integration of distant brain regions can be achieved through long range excitatory projections, but the mechanism supporting long range segregation is not clear. We argue that the thalamocortical matrix connections, which project diffusely from the thalamus to the cortex and have long been thought to support cortical gain control, play an equally-important role in cortical segregation. We present a computational model of the diffuse thalamocortical loop, called the competitive cross-coupling (CXC spiking network. Simulations of the model show how different levels of tonic input from the brainstem to the thalamus could control dynamical complexity in the cortex, directing transitions between sleep, wakefulness and high attention or vigilance. The model also explains how mutually-exclusive activity could arise across large portions of the cortex, such as between the default-mode and task-positive networks. It is robust to noise but does not require noise to autonomously generate metastability. We conclude that the long range segregation observed in brain activity and required for global metastable dynamics could be provided by the thalamocortical matrix, and is strongly modulated by brainstem input to the thalamus.

  9. Imprinting and recalling cortical ensembles.

    Science.gov (United States)

    Carrillo-Reid, Luis; Yang, Weijian; Bando, Yuki; Peterka, Darcy S; Yuste, Rafael

    2016-08-12

    Neuronal ensembles are coactive groups of neurons that may represent building blocks of cortical circuits. These ensembles could be formed by Hebbian plasticity, whereby synapses between coactive neurons are strengthened. Here we report that repetitive activation with two-photon optogenetics of neuronal populations from ensembles in the visual cortex of awake mice builds neuronal ensembles that recur spontaneously after being imprinted and do not disrupt preexisting ones. Moreover, imprinted ensembles can be recalled by single- cell stimulation and remain coactive on consecutive days. Our results demonstrate the persistent reconfiguration of cortical circuits by two-photon optogenetics into neuronal ensembles that can perform pattern completion. Copyright © 2016, American Association for the Advancement of Science.

  10. Cortical sensorimotor integration: a hypothesis.

    Science.gov (United States)

    Batuev, A S

    1989-01-01

    A hypothesis is proposed that neocortex is constructed from structural neuronal modules (columns and rings). Each module is considered as unit for cortical sensorimotor integration. Complex functional relationships between modules can be arranged by intracortical inhibition participation. High pronounced neocortical plasticity ensures the process of continuous formation of various dominating operative constellations comprising stable neuronal modules whose component structure and distributive characteristic are determined by the dominant motivation and the central motor program.

  11. Endocannabinoid modulation of cortical up-states and NREM sleep.

    Directory of Open Access Journals (Sweden)

    Matthew J Pava

    Full Text Available Up-/down-state transitions are a form of network activity observed when sensory input into the cortex is diminished such as during non-REM sleep. Up-states emerge from coordinated signaling between glutamatergic and GABAergic synapses and are modulated by systems that affect the balance between inhibition and excitation. We hypothesized that the endocannabinoid (EC system, a neuromodulatory system intrinsic to the cortical microcircuitry, is an important regulator of up-states and sleep. To test this hypothesis, up-states were recorded from layer V/VI pyramidal neurons in organotypic cultures of wild-type or CB1R knockout (KO mouse prefrontal cortex. Activation of the cannabinoid 1 receptor (CB1 with exogenous agonists or by blocking metabolism of endocannabinoids, anandamide or 2-arachidonoyl glycerol, increased up-state amplitude and facilitated action potential discharge during up-states. The CB1 agonist also produced a layer II/III-selective reduction in synaptic GABAergic signaling that may underlie its effects on up-state amplitude and spiking. Application of CB1 antagonists revealed that an endogenous EC tone regulates up-state duration. Paradoxically, the duration of up-states in CB1 KO cultures was increased suggesting that chronic absence of EC signaling alters cortical activity. Consistent with increased cortical excitability, CB1 KO mice exhibited increased wakefulness as a result of reduced NREM sleep and NREM bout duration. Under baseline conditions, NREM delta (0.5-4 Hz power was not different in CB1 KO mice, but during recovery from forced sleep deprivation, KO mice had reduced NREM delta power and increased sleep fragmentation. Overall, these findings demonstrate that the EC system actively regulates cortical up-states and important features of NREM sleep such as its duration and low frequency cortical oscillations.

  12. (-) deprenyl attenuates aluminium induced neurotoxicity in primary cortical cultures.

    Science.gov (United States)

    Munirathinam, S; Lakshmana, M K; Raju, T R

    1996-06-01

    The role of (-) deprenyl in offering neuroprotection to cortical neurons exposed to Aluminium chloride (AlCl3) was examined. Primary cortical cultures derived from newborn rats were exposed to AlCl3 on 6th day in vitro, at 100,200,400,600,800 and 1000 microM concentrations of AlCl3. After 48 h of AlCl3 exposure, many nerve cell bodies were swollen; a beading of neurites and a disruption of the neuritic network were also observed suggesting neurodegeneration. Lactate dehydrogenase (LDH) efflux increased in a dose-dependent manner (59-120%). (-) Deprenyl co-exposure at concentrations of 10(-7), 10(-8) and 10(-9) M significantly attenuated both the morphological alterations and the LDH efflux induced by AlCl3. This in vitro study has demonstrated that (-) deprenyl can protect neurons from aluminium induced neurotoxicity.

  13. Cortical Entropy, Mutual Information and Scale-Free Dynamics in Waking Mice

    Science.gov (United States)

    Fagerholm, Erik D.; Scott, Gregory; Shew, Woodrow L.; Song, Chenchen; Leech, Robert; Knöpfel, Thomas; Sharp, David J.

    2016-01-01

    Some neural circuits operate with simple dynamics characterized by one or a few well-defined spatiotemporal scales (e.g. central pattern generators). In contrast, cortical neuronal networks often exhibit richer activity patterns in which all spatiotemporal scales are represented. Such “scale-free” cortical dynamics manifest as cascades of activity with cascade sizes that are distributed according to a power-law. Theory and in vitro experiments suggest that information transmission among cortical circuits is optimized by scale-free dynamics. In vivo tests of this hypothesis have been limited by experimental techniques with insufficient spatial coverage and resolution, i.e., restricted access to a wide range of scales. We overcame these limitations by using genetically encoded voltage imaging to track neural activity in layer 2/3 pyramidal cells across the cortex in mice. As mice recovered from anesthesia, we observed three changes: (a) cortical information capacity increased, (b) information transmission among cortical regions increased and (c) neural activity became scale-free. Our results demonstrate that both information capacity and information transmission are maximized in the awake state in cortical regions with scale-free network dynamics. PMID:27384059

  14. Effect of Synaptic Connectivity on Long-Range Synchronization of Fast Cortical Oscillations

    Science.gov (United States)

    Bazhenov, M.; Rulkov, N. F.; Timofeev, I.

    2008-01-01

    Cortical gamma oscillations in the 20- to 80-Hz range are associated with attentiveness and sensory perception and have strong connections to both cognitive processing and temporal binding of sensory stimuli. These gamma oscillations become synchronized within a few milliseconds over distances spanning a few millimeters in spite of synaptic delays. In this study using in vivo recordings and large-scale cortical network models, we reveal a critical role played by the network geometry in achieving precise long-range synchronization in the gamma frequency band. Our results indicate that the presence of many independent synaptic pathways in a two-dimensional network facilitate precise phase synchronization of fast gamma band oscillations with nearly zero phase delays between remote network sites. These findings predict a common mechanism of precise oscillatory synchronization in neuronal networks. PMID:18632897

  15. Autaptic self-inhibition of cortical GABAergic neurons: synaptic narcissism or useful introspection?

    Science.gov (United States)

    Deleuze, Charlotte; Pazienti, Antonio; Bacci, Alberto

    2014-06-01

    Fast synaptic inhibition sculpts all forms of cortical activity by means of a specialized connectivity pattern between highly heterogeneous inhibitory interneurons and principal excitatory cells. Importantly, inhibitory neurons connect also to each other extensively, following a detailed blueprint, and, indeed, specific forms of disinhibition affect important behavioral functions. Here we discuss a peculiar form of cortical disinhibition: the massive autaptic self-inhibition of parvalbumin-(PV) positive basket cells. Despite being described long ago, autaptic inhibition onto PV basket cells is rarely included in cortical circuit diagrams, perhaps because of its still elusive function. We propose here a potential dual role of autaptic feedback inhibition in temporally coordinating PV basket cells during cortical network activity.

  16. Hamilton-Jacobi skeleton on cortical surfaces.

    Science.gov (United States)

    Shi, Y; Thompson, P M; Dinov, I; Toga, A W

    2008-05-01

    In this paper, we propose a new method to construct graphical representations of cortical folding patterns by computing skeletons on triangulated cortical surfaces. In our approach, a cortical surface is first partitioned into sulcal and gyral regions via the solution of a variational problem using graph cuts, which can guarantee global optimality. After that, we extend the method of Hamilton-Jacobi skeleton [1] to subsets of triangulated surfaces, together with a geometrically intuitive pruning process that can trade off between skeleton complexity and the completeness of representing folding patterns. Compared with previous work that uses skeletons of 3-D volumes to represent sulcal patterns, the skeletons on cortical surfaces can be easily decomposed into branches and provide a simpler way to construct graphical representations of cortical morphometry. In our experiments, we demonstrate our method on two different cortical surface models, its ability of capturing major sulcal patterns and its application to compute skeletons of gyral regions.

  17. Disorders of cortical formation: MR imaging features.

    Science.gov (United States)

    Abdel Razek, A A K; Kandell, A Y; Elsorogy, L G; Elmongy, A; Basett, A A

    2009-01-01

    The purpose of this article was to review the embryologic stages of the cerebral cortex, illustrate the classification of disorders of cortical formation, and finally describe the main MR imaging features of these disorders. Disorders of cortical formation are classified according to the embryologic stage of the cerebral cortex at which the abnormality occurred. MR imaging shows diminished cortical thickness and sulcation in microcephaly, enlarged dysplastic cortex in hemimegalencephaly, and ipsilateral focal cortical thickening with radial hyperintense bands in focal cortical dysplasia. MR imaging detects smooth brain in classic lissencephaly, the nodular cortex with cobblestone cortex with congenital muscular dystrophy, and the ectopic position of the gray matter with heterotopias. MR imaging can detect polymicrogyria and related syndromes as well as the types of schizencephaly. We concluded that MR imaging is essential to demonstrate the morphology, distribution, and extent of different disorders of cortical formation as well as the associated anomalies and related syndromes.

  18. Influence of wiring cost on the large-scale architecture of human cortical connectivity.

    Science.gov (United States)

    Samu, David; Seth, Anil K; Nowotny, Thomas

    2014-04-01

    In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained ('random'), connection length preserving ('spatial'), and connection length optimised ('reduced') surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints. In contrast

  19. Influence of wiring cost on the large-scale architecture of human cortical connectivity.

    Directory of Open Access Journals (Sweden)

    David Samu

    2014-04-01

    Full Text Available In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained ('random', connection length preserving ('spatial', and connection length optimised ('reduced' surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints

  20. Detecting a cortical fingerprint of Parkinson’s disease for closed-loop neuromodulation

    Directory of Open Access Journals (Sweden)

    Kevin eKern

    2016-03-01

    Full Text Available Recent evidence suggests that deep brain stimulation (DBS of the subthalamic nucleus (STN in Parkinson’s disease (PD mediates its clinical effects by modulating cortical oscillatory activity, presumably via a direct cortico-subthalamic connection. This observation might pave the way for novel closed-loop approaches comprising a cortical sensor. Enhanced beta oscillations (13-35 Hz have been linked to the pathophysiology of PD and may serve as such a candidate marker to localize a cortical area reliably modulated by DBS. However, beta-oscillations are widely distributed over the cortical surface, necessitating an additional signal source for spotting the cortical area linked to the pathologically synchronized cortico-subcortical motor network.In this context, both cortico-subthalamic coherence and cortico-muscular coherence (CMC have been studied in PD patients. Whereas the former requires invasive recordings, the latter allows for non-invasive detection, but displays a rather distributed cortical synchronization pattern in motor tasks. This distributed cortical representation may conflict with the goal of detecting a cortical localization with robust biomarker properties which is detectable on a single subject basis. We propose that this limitation could be overcome when recording CMC at rest. We hypothesized that – unlike healthy subjects – PD would show CMC at rest owing to the enhanced beta oscillations observed in PD. By performing source space analysis of beta CMC recorded during resting-state magnetoencephalography, we provide preliminary evidence in one patient for a cortical hot spot that is modulated most strongly by subthalamic DBS. Such a spot would provide a prominent target region either for direct neuromodulation or for placing a potential sensor in closed-loop DBS approaches, a proposal that requires investigation in a larger cohort of PD patients.

  1. A Rare Hydrocephalus Complication: Cortical Blindness.

    Science.gov (United States)

    Ünal, Emre; Göçmen, Rahşan; Işıkay, Ayşe İlksen; Tekşam, Özlem

    2015-01-01

    Cortical blindness related to bilateral occipital lobe infarction is an extremely rare complication of hydrocephalus. Compression of the posterior cerebral artery, secondary to tentorial herniation, is the cause of occipital infarction. Particularly in children and mentally ill patients, cortical blindness may be missed. Therefore, early diagnosis and treatment of hydrocephalus is important. We present herein a child of ventricular shunt malfunction complicated by cortical blindness.

  2. Acute hepatic encephalopathy with diffuse cortical lesions

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.M.; Spreer, J.; Schumacher, M. [Section of Neuroradiology, Univ. of Freiburg (Germany); Els, T. [Dept. of Neurology, University of Freiburg (Germany)

    2001-07-01

    Acute hepatic encephalopathy is a poorly defined syndrome of heterogeneous aetiology. We report a 49-year-old woman with alcoholic cirrhosis and hereditary haemorrhagic telangiectasia who developed acute hepatic coma induced by severe gastrointestinal bleeding. Laboratory analysis revealed excessively elevated blood ammonia. MRI showed lesions compatible with chronic hepatic encephalopathy and widespread cortical signal change sparing the perirolandic and occipital cortex. The cortical lesions resembled those of hypoxic brain damage and were interpreted as acute toxic cortical laminar necrosis. (orig.)

  3. Recurrent cortico-cortical Interactions in neural disease

    NARCIS (Netherlands)

    Lamme, V.A.F.; Pletson, J.E.

    2005-01-01

    The cerebral cortex consists of a large number of areas, each subserving a more or less distinct function. This view has its roots in the early work of Penfield, and today is reflected in the body of functional MRI literature describing the regions of the brain that are activated during particular t

  4. Decreased cortical inhibition and yet cerebellar pathology in 'familial cortical myoclonic tremor with epilepsy'

    NARCIS (Netherlands)

    van Rootselaar, Anne-Fleur; van der Salm, Sandra M. A.; Bour, Lo J.; Edwards, Mark J.; Brown, Peter; Aronica, Eleonora; Rozemuller-Kwakkel, Johanna M.; Koehler, Peter J.; Koelman, Johannes H. T. M.; Rothwell, John C.; Tijssen, Marina A. J.

    2007-01-01

    Cortical hyperexcitability is a feature of "familial cortical myoclonic tremor with epilepsy" (FCMTE). However, neuropathological investigations in a single FCMTE patient showed isolated cerebellar pathology. Pathological investigations in a second FCMTE patient, reported here, confirmed cerebellar

  5. Coherent delta-band oscillations between cortical areas correlate with decision making

    Science.gov (United States)

    Nácher, Verónica; Ledberg, Anders; Deco, Gustavo; Romo, Ranulfo

    2013-01-01

    Coherent oscillations in the theta-to-gamma frequency range have been proposed as a mechanism that coordinates neural activity in large-scale cortical networks in sensory, motor, and cognitive tasks. Whether this mechanism also involves coherent oscillations at delta frequencies (1–4 Hz) is not known. Rather, delta oscillations have been associated with slow-wave sleep. Here, we show coherent oscillations in the delta frequency band between parietal and frontal cortices during the decision-making component of a somatosensory discrimination task. Importantly, the magnitude of this delta-band coherence is modulated by the different decision alternatives. Furthermore, during control conditions not requiring decision making, delta-band coherences are typically much reduced. Our work indicates an important role for synchronous activity in the delta frequency band when large-scale, distant cortical networks coordinate their neural activity during decision making. PMID:23980180

  6. Coherent delta-band oscillations between cortical areas correlate with decision making.

    Science.gov (United States)

    Nácher, Verónica; Ledberg, Anders; Deco, Gustavo; Romo, Ranulfo

    2013-09-10

    Coherent oscillations in the theta-to-gamma frequency range have been proposed as a mechanism that coordinates neural activity in large-scale cortical networks in sensory, motor, and cognitive tasks. Whether this mechanism also involves coherent oscillations at delta frequencies (1-4 Hz) is not known. Rather, delta oscillations have been associated with slow-wave sleep. Here, we show coherent oscillations in the delta frequency band between parietal and frontal cortices during the decision-making component of a somatosensory discrimination task. Importantly, the magnitude of this delta-band coherence is modulated by the different decision alternatives. Furthermore, during control conditions not requiring decision making, delta-band coherences are typically much reduced. Our work indicates an important role for synchronous activity in the delta frequency band when large-scale, distant cortical networks coordinate their neural activity during decision making.

  7. Functional Connectivity of Ventral and Dorsal Visual Streams in Posterior Cortical Atrophy.

    Science.gov (United States)

    Migliaccio, Raffaella; Gallea, Cécile; Kas, Aurélie; Perlbarg, Vincent; Samri, Dalila; Trotta, Laura; Michon, Agnès; Lacomblez, Lucette; Dubois, Bruno; Lehericy, Stéphane; Bartolomeo, Paolo

    2016-01-01

    Posterior cortical atrophy (PCA) induces progressive dysfunction of ventral and dorsal visual networks. Little is known, however, about corresponding changes in functional connectivity (FC). To investigate FC changes in the visual networks, their relationship with cortical atrophy, and the association with Alzheimer's disease (AD) pathology. Ten PCA patients and 28 age-matched controls participated in the study. Using resting state fMRI, we measured FC in ventral and dorsal cortical visual networks, defined on the basis of a priori knowledge of long-range white matter connections. To assess the relationships with AD, we determined AD biomarkers in cerebrospinal fluid and FC in the default mode network (DMN), which is vulnerable to AD pathology. Voxel-based morphometry analysis assessed the pattern of grey matter (GM) atrophy. PCA patients showed GM atrophy in bilateral occipital and inferior parietal regions. PCA patients had lower FC levels in a ventral network than controls, but higher FC in inferior components of the dorsal network. In particular, the increased connectivity correlated with greater GM atrophy in occipital regions. All PCA patients had positive cerebrospinal fluid biomarkers for AD; however, FC in global DMN did not differ from controls. FC in PCA reflects brain structure in a non-univocal way. Hyperconnectivity of dorsal networks may indicate aberrant communication in response to posterior brain atrophy or processes of neural resilience during the initial stage of brain dysfunction. The lack of difference from controls in global DMN FC highlights the atypical nature of PCA with respect to typical AD.

  8. Effects of Morphology Constraint on Electrophysiological Properties of Cortical Neurons

    Science.gov (United States)

    Zhu, Geng; Du, Liping; Jin, Lei; Offenhäusser, Andreas

    2016-04-01

    There is growing interest in engineering nerve cells in vitro to control architecture and connectivity of cultured neuronal networks or to build neuronal networks with predictable computational function. Pattern technologies, such as micro-contact printing, have been developed to design ordered neuronal networks. However, electrophysiological characteristics of the single patterned neuron haven’t been reported. Here, micro-contact printing, using polyolefine polymer (POP) stamps with high resolution, was employed to grow cortical neurons in a designed structure. The results demonstrated that the morphology of patterned neurons was well constrained, and the number of dendrites was decreased to be about 2. Our electrophysiological results showed that alterations of dendritic morphology affected firing patterns of neurons and neural excitability. When stimulated by current, though both patterned and un-patterned neurons presented regular spiking, the dynamics and strength of the response were different. The un-patterned neurons exhibited a monotonically increasing firing frequency in response to injected current, while the patterned neurons first exhibited frequency increase and then a slow decrease. Our findings indicate that the decrease in dendritic complexity of cortical neurons will influence their electrophysiological characteristics and alter their information processing activity, which could be considered when designing neuronal circuitries.

  9. Functional connectivity associated with hand shape generation: Imitating novel hand postures and pantomiming tool grips challenge different nodes of a shared neural network.

    Science.gov (United States)

    Vingerhoets, Guy; Clauwaert, Amanda

    2015-09-01

    Clinical research suggests that imitating meaningless hand postures and pantomiming tool-related hand shapes rely on different neuroanatomical substrates. We investigated the BOLD responses to different tasks of hand posture generation in 14 right handed volunteers. Conjunction and contrast analyses were applied to select regions that were either common or sensitive to imitation and/or pantomime tasks. The selection included bilateral areas of medial and lateral extrastriate cortex, superior and inferior regions of the lateral and medial parietal lobe, primary motor and somatosensory cortex, and left dorsolateral prefrontal, and ventral and dorsal premotor cortices. Functional connectivity analysis revealed that during hand shape generation the BOLD-response of every region correlated significantly with every other area regardless of the hand posture task performed, although some regions were more involved in some hand postures tasks than others. Based on between-task differences in functional connectivity we predict that imitation of novel hand postures would suffer most from left superior parietal disruption and that pantomiming hand postures for tools would be impaired following left frontal damage, whereas both tasks would be sensitive to inferior parietal dysfunction. We also unveiled that posterior temporal cortex is committed to pantomiming tool grips, but that the involvement of this region to the execution of hand postures in general appears limited. We conclude that the generation of hand postures is subserved by a highly interconnected task-general neural network. Depending on task requirements some nodes/connections will be more engaged than others and these task-sensitive findings are in general agreement with recent lesion studies.

  10. Gyrification from constrained cortical expansion

    CERN Document Server

    Tallinen, Tuomas; Biggins, John S; Mahadevan, L

    2015-01-01

    The exterior of the mammalian brain - the cerebral cortex - has a conserved layered structure whose thickness varies little across species. However, selection pressures over evolutionary time scales have led to cortices that have a large surface area to volume ratio in some organisms, with the result that the brain is strongly convoluted into sulci and gyri. Here we show that the gyrification can arise as a nonlinear consequence of a simple mechanical instability driven by tangential expansion of the gray matter constrained by the white matter. A physical mimic of the process using a layered swelling gel captures the essence of the mechanism, and numerical simulations of the brain treated as a soft solid lead to the formation of cusped sulci and smooth gyri similar to those in the brain. The resulting gyrification patterns are a function of relative cortical expansion and relative thickness (compared with brain size), and are consistent with observations of a wide range of brains, ranging from smooth to highl...

  11. Cortical control of facial expression.

    Science.gov (United States)

    Müri, René M

    2016-06-01

    The present Review deals with the motor control of facial expressions in humans. Facial expressions are a central part of human communication. Emotional face expressions have a crucial role in human nonverbal behavior, allowing a rapid transfer of information between individuals. Facial expressions can be either voluntarily or emotionally controlled. Recent studies in nonhuman primates and humans have revealed that the motor control of facial expressions has a distributed neural representation. At least five cortical regions on the medial and lateral aspects of each hemisphere are involved: the primary motor cortex, the ventral lateral premotor cortex, the supplementary motor area on the medial wall, and the rostral and caudal cingulate cortex. The results of studies in humans and nonhuman primates suggest that the innervation of the face is bilaterally controlled for the upper part and mainly contralaterally controlled for the lower part. Furthermore, the primary motor cortex, the ventral lateral premotor cortex, and the supplementary motor area are essential for the voluntary control of facial expressions. In contrast, the cingulate cortical areas are important for emotional expression, because they receive input from different structures of the limbic system.

  12. SLEEP AND OLFACTORY CORTICAL PLASTICITY

    Directory of Open Access Journals (Sweden)

    Dylan eBarnes

    2014-04-01

    Full Text Available In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the known olfactory impairments associated with those disorders.

  13. From Neural Plate to Cortical Arousal—A Neuronal Network Theory of Sleep Derived from in Vitro “Model” Systems for Primordial Patterns of Spontaneous Bioelectric Activity in the Vertebrate Central Nervous System

    Directory of Open Access Journals (Sweden)

    Michael A. Corner

    2013-05-01

    Full Text Available In the early 1960s intrinsically generated widespread neuronal discharges were discovered to be the basis for the earliest motor behavior throughout the animal kingdom. The pattern generating system is in fact programmed into the developing nervous system, in a regionally specific manner, already at the early neural plate stage. Such rhythmically modulated phasic bursts were next discovered to be a general feature of developing neural networks and, largely on the basis of experimental interventions in cultured neural tissues, to contribute significantly to their morpho-physiological maturation. In particular, the level of spontaneous synchronized bursting is homeostatically regulated, and has the effect of constraining the development of excessive network excitability. After birth or hatching, this “slow-wave” activity pattern becomes sporadically suppressed in favor of sensory oriented “waking” behaviors better adapted to dealing with environmental contingencies. It nevertheless reappears periodically as “sleep” at several species-specific points in the diurnal/nocturnal cycle. Although this “default” behavior pattern evolves with development, its essential features are preserved throughout the life cycle, and are based upon a few simple mechanisms which can be both experimentally demonstrated and simulated by computer modeling. In contrast, a late onto- and phylogenetic aspect of sleep, viz., the intermittent “paradoxical” activation of the forebrain so as to mimic waking activity, is much less well understood as regards its contribution to brain development. Some recent findings dealing with this question by means of cholinergically induced “aroused” firing patterns in developing neocortical cell cultures, followed by quantitative electrophysiological assays of immediate and longterm sequelae, will be discussed in connection with their putative implications for sleep ontogeny.

  14. From neural plate to cortical arousal-a neuronal network theory of sleep derived from in vitro "model" systems for primordial patterns of spontaneous bioelectric activity in the vertebrate central nervous system.

    Science.gov (United States)

    Corner, Michael A

    2013-05-22

    In the early 1960s intrinsically generated widespread neuronal discharges were discovered to be the basis for the earliest motor behavior throughout the animal kingdom. The pattern generating system is in fact programmed into the developing nervous system, in a regionally specific manner, already at the early neural plate stage. Such rhythmically modulated phasic bursts were next discovered to be a general feature of developing neural networks and, largely on the basis of experimental interventions in cultured neural tissues, to contribute significantly to their morpho-physiological maturation. In particular, the level of spontaneous synchronized bursting is homeostatically regulated, and has the effect of constraining the development of excessive network excitability. After birth or hatching, this "slow-wave" activity pattern becomes sporadically suppressed in favor of sensory oriented "waking" behaviors better adapted to dealing with environmental contingencies. It nevertheless reappears periodically as "sleep" at several species-specific points in the diurnal/nocturnal cycle. Although this "default" behavior pattern evolves with development, its essential features are preserved throughout the life cycle, and are based upon a few simple mechanisms which can be both experimentally demonstrated and simulated by computer modeling. In contrast, a late onto- and phylogenetic aspect of sleep, viz., the intermittent "paradoxical" activation of the forebrain so as to mimic waking activity, is much less well understood as regards its contribution to brain development. Some recent findings dealing with this question by means of cholinergically induced "aroused" firing patterns in developing neocortical cell cultures, followed by quantitative electrophysiological assays of immediate and longterm sequelae, will be discussed in connection with their putative implications for sleep ontogeny.

  15. Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis

    Science.gov (United States)

    Hof, P. R.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Visual function in monkeys is subserved at the cortical level by a large number of areas defined by their specific physiological properties and connectivity patterns. For most of these cortical fields, a precise index of their degree of anatomical specialization has not yet been defined, although many regional patterns have been described using Nissl or myelin stains. In the present study, an attempt has been made to elucidate the regional characteristics, and to varying degrees boundaries, of several visual cortical areas in the macaque monkey using an antibody to neurofilament protein (SMI32). This antibody labels a subset of pyramidal neurons with highly specific regional and laminar distribution patterns in the cerebral cortex. Based on the staining patterns and regional quantitative analysis, as many as 28 cortical fields were reliably identified. Each field had a homogeneous distribution of labeled neurons, except area V1, where increases in layer IVB cell and in Meynert cell counts paralleled the increase in the degree of eccentricity in the visual field representation. Within the occipitotemporal pathway, areas V3 and V4 and fields in the inferior temporal cortex were characterized by a distinct population of neurofilament-rich neurons in layers II-IIIa, whereas areas located in the parietal cortex and part of the occipitoparietal pathway had a consistent population of large labeled neurons in layer Va. The mediotemporal areas MT and MST displayed a distinct population of densely labeled neurons in layer VI. Quantitative analysis of the laminar distribution of the labeled neurons demonstrated that the visual cortical areas could be grouped in four hierarchical levels based on the ratio of neuron counts between infragranular and supragranular layers, with the first (areas V1, V2, V3, and V3A) and third (temporal and parietal regions) levels characterized by low ratios and the second (areas MT, MST, and V4) and fourth (frontal regions) levels characterized by

  16. Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis

    Science.gov (United States)

    Hof, P. R.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Visual function in monkeys is subserved at the cortical level by a large number of areas defined by their specific physiological properties and connectivity patterns. For most of these cortical fields, a precise index of their degree of anatomical specialization has not yet been defined, although many regional patterns have been described using Nissl or myelin stains. In the present study, an attempt has been made to elucidate the regional characteristics, and to varying degrees boundaries, of several visual cortical areas in the macaque monkey using an antibody to neurofilament protein (SMI32). This antibody labels a subset of pyramidal neurons with highly specific regional and laminar distribution patterns in the cerebral cortex. Based on the staining patterns and regional quantitative analysis, as many as 28 cortical fields were reliably identified. Each field had a homogeneous distribution of labeled neurons, except area V1, where increases in layer IVB cell and in Meynert cell counts paralleled the increase in the degree of eccentricity in the visual field representation. Within the occipitotemporal pathway, areas V3 and V4 and fields in the inferior temporal cortex were characterized by a distinct population of neurofilament-rich neurons in layers II-IIIa, whereas areas located in the parietal cortex and part of the occipitoparietal pathway had a consistent population of large labeled neurons in layer Va. The mediotemporal areas MT and MST displayed a distinct population of densely labeled neurons in layer VI. Quantitative analysis of the laminar distribution of the labeled neurons demonstrated that the visual cortical areas could be grouped in four hierarchical levels based on the ratio of neuron counts between infragranular and supragranular layers, with the first (areas V1, V2, V3, and V3A) and third (temporal and parietal regions) levels characterized by low ratios and the second (areas MT, MST, and V4) and fourth (frontal regions) levels characterized by

  17. Focal cortical lesions induce bidirectional changes in the excitability of fast spiking and non fast spiking cortical interneurons.

    Science.gov (United States)

    Imbrosci, Barbara; Neitz, Angela; Mittmann, Thomas

    2014-01-01

    A physiological brain function requires neuronal networks to operate within a well-defined range of activity. Indeed, alterations in neuronal excitability have been associated with several pathological conditions, ranging from epilepsy to neuropsychiatric disorders. Changes in inhibitory transmission are known to play a key role in the development of hyperexcitability. However it is largely unknown whether specific interneuronal subpopulations contribute differentially to such pathological condition. In the present study we investigated functional alterations of inhibitory interneurons embedded in a hyperexcitable cortical circuit at the border of chronically induced focal lesions in mouse visual cortex. Interestingly, we found opposite alterations in the excitability of non fast-spiking (Non Fs) and fast-spiking (Fs) interneurons in acute cortical slices from injured animals. Non Fs interneurons displayed a depolarized membrane potential and a higher frequency of spontaneous excitatory postsynaptic currents (sEPSCs). In contrast, Fs interneurons showed a reduced sEPSCs amplitude. The observed downscaling of excitatory synapses targeting Fs interneurons may prevent the recruitment of this specific population of interneurons to the hyperexcitable network. This mechanism is likely to seriously affect neuronal network function and to exacerbate hyperexcitability but it may be important to protect this particular vulnerable population of GABAegic neurons from excitotoxicity.

  18. Towards a mathematical theory of cortical micro-circuits.

    Directory of Open Access Journals (Sweden)

    Dileep George

    2009-10-01

    Full Text Available The theoretical setting of hierarchical Bayesian inference is gaining acceptance as a framework for understanding cortical computation. In this paper, we describe how Bayesian belief propagation in a spatio-temporal hierarchical model, called Hierarchical Temporal Memory (HTM, can lead to a mathematical model for cortical circuits. An HTM node is abstracted using a coincidence detector and a mixture of Markov chains. Bayesian belief propagation equations for such an HTM node define a set of functional constraints for a neuronal implementation. Anatomical data provide a contrasting set of organizational constraints. The combination of these two constraints suggests a theoretically derived interpretation for many anatomical and physiological features and predicts several others. We describe the pattern recognition capabilities of HTM networks and demonstrate the application of the derived circuits for modeling the subjective contour effect. We also discuss how the theory and the circuit can be extended to explain cortical features that are not explained by the current model and describe testable predictions that can be derived from the model.

  19. Motor-cortical interaction in Gilles de la Tourette syndrome.

    Directory of Open Access Journals (Sweden)

    Stephanie Franzkowiak

    Full Text Available BACKGROUND: In Gilles de la Tourette syndrome (GTS increased activation of the primary motor cortex (M1 before and during movement execution followed by increased inhibition after movement termination was reported. The present study aimed at investigating, whether this activation pattern is due to altered functional interaction between motor cortical areas. METHODOLOGY/PRINCIPAL FINDINGS: 10 GTS-patients and 10 control subjects performed a self-paced finger movement task while neuromagnetic brain activity was recorded using Magnetoencephalography (MEG. Cerebro-cerebral coherence as a measure of functional interaction was calculated. During movement preparation and execution coherence between contralateral M1 and supplementary motor area (SMA was significantly increased at beta-frequency in GTS-patients. After movement termination no significant differences between groups were evident. CONCLUSIONS/SIGNIFICANCE: The present data suggest that increased M1 activation in GTS-patients might be due to increased functional interaction between SMA and M1 most likely reflecting a pathophysiological marker of GTS. The data extend previous findings of motor-cortical alterations in GTS by showing that local activation changes are associated with alterations of functional networks between premotor and primary motor areas. Interestingly enough, alterations were evident during preparation and execution of voluntary movements, which implies a general theme of increased motor-cortical interaction in GTS.

  20. Towards a mathematical theory of cortical micro-circuits.

    Science.gov (United States)

    George, Dileep; Hawkins, Jeff

    2009-10-01

    The theoretical setting of hierarchical Bayesian inference is gaining acceptance as a framework for understanding cortical computation. In this paper, we describe how Bayesian belief propagation in a spatio-temporal hierarchical model, called Hierarchical Temporal Memory (HTM), can lead to a mathematical model for cortical circuits. An HTM node is abstracted using a coincidence detector and a mixture of Markov chains. Bayesian belief propagation equations for such an HTM node define a set of functional constraints for a neuronal implementation. Anatomical data provide a contrasting set of organizational constraints. The combination of these two constraints suggests a theoretically derived interpretation for many anatomical and physiological features and predicts several others. We describe the pattern recognition capabilities of HTM networks and demonstrate the application of the derived circuits for modeling the subjective contour effect. We also discuss how the theory and the circuit can be extended to explain cortical features that are not explained by the current model and describe testable predictions that can be derived from the model.

  1. Regulation of Cerebral Cortical Size and Neuron Number by Fibroblast Growth Factors: Implications for Autism

    Science.gov (United States)

    Vaccarino, Flora M.; Grigorenko, Elena L.; Smith, Karen Muller; Stevens, Hanna E.

    2009-01-01

    Increased brain size is common in children with autism spectrum disorders. Here we propose that an increased number of cortical excitatory neurons may underlie the increased brain volume, minicolumn pathology and excessive network excitability, leading to sensory hyper-reactivity and seizures, which are often found in autism. We suggest that…

  2. K-shell decomposition reveals hierarchical cortical organization of the human brain

    Science.gov (United States)

    Lahav, Nir; Ksherim, Baruch; Ben-Simon, Eti; Maron-Katz, Adi; Cohen, Reuven; Havlin, Shlomo

    2016-08-01

    In recent years numerous attempts to understand the human brain were undertaken from a network point of view. A network framework takes into account the relationships between the different parts of the system and enables to examine how global and complex functions might emerge from network topology. Previous work revealed that the human brain features ‘small world’ characteristics and that cortical hubs tend to interconnect among themselves. However, in order to fully understand the topological structure of hubs, and how their profile reflect the brain’s global functional organization, one needs to go beyond the properties of a specific hub and examine the various structural layers that make up the network. To address this topic further, we applied an analysis known in statistical physics and network theory as k-shell decomposition analysis. The analysis was applied on a human cortical network, derived from MRI\\DSI data of six participants. Such analysis enables us to portray a detailed account of cortical connectivity focusing on different neighborhoods of inter-connected layers across the cortex. Our findings reveal that the human cortex is highly connected and efficient, and unlike the internet network contains no isolated nodes. The cortical network is comprised of a nucleus alongside shells of increasing connectivity that formed one connected giant component, revealing the human brain’s global functional organization. All these components were further categorized into three hierarchies in accordance with their connectivity profile, with each hierarchy reflecting different functional roles. Such a model may explain an efficient flow of information from the lowest hierarchy to the highest one, with each step enabling increased data integration. At the top, the highest hierarchy (the nucleus) serves as a global interconnected collective and demonstrates high correlation with consciousness related regions, suggesting that the nucleus might serve as a

  3. The contribution of brain sub-cortical loops in the expression and acquisition of action understanding abilities☆

    Science.gov (United States)

    Caligiore, Daniele; Pezzulo, Giovanni; Miall, R. Chris; Baldassarre, Gianluca

    2013-01-01

    Research on action understanding in cognitive neuroscience has led to the identification of a wide “action understanding network” mainly encompassing parietal and premotor cortical areas. Within this cortical network mirror neurons are critically involved implementing a neural mechanism according to which, during action understanding, observed actions are reflected in the motor patterns for the same actions of the observer. We suggest that focusing only on cortical areas and processes could be too restrictive to explain important facets of action understanding regarding, for example, the influence of the observer's motor experience, the multiple levels at which an observed action can be understood, and the acquisition of action understanding ability. In this respect, we propose that aside from the cortical action understanding network, sub-cortical processes pivoting on cerebellar and basal ganglia cortical loops could crucially support both the expression and the acquisition of action understanding abilities. Within the paper we will discuss how this extended view can overcome some limitations of the “pure” cortical perspective, supporting new theoretical predictions on the brain mechanisms underlying action understanding that could be tested by future empirical investigations. PMID:23911926

  4. Bursting and synaptic plasticity in neuronal networks

    NARCIS (Netherlands)

    Stegenga, Jan

    2010-01-01

    Networks of neonatal cortical neurons, cultured on multi electrode arrays (MEAs) exhibit spontaneous action potential firings. The electrodes embedded in the glass surface of a MEA can be used to record and stimulate activity at 60 sites in a network of ~50.000 neurons. Such in-vitro networks enable

  5. Cortical damage in the posterior visual pathway in patients with sialidosis type 1.

    Science.gov (United States)

    Lu, Chin-Song; Ng, Shu-Hang; Lai, Szu-Chia; Kao, Ling-Yuh; Liu, Laura; Lin, Wey-Yil; Wu, Yi-Ming; Chen, Yao-Liang; Wang, Jiun-Jie

    2016-02-03

    In order to identify the cortical changes in patients with Sialidosis type 1, diffusion tensor imaging and resting state fMRI were acquired from 11 patients and 11 sex/age matched normal controls after clinical evaluations. The neuroimages from each participant were normalized and parcellated according to the Automatic Anatomical Labeling. Both the mean diffusivity and the corresponding functional connectivity were calculated from each cortical region. The white matter tract integrity was examined. The difference between patients and controls was examined using Student's t-test and between patients with either homozygous or heterozygous mutations by Mann-Whitney U test, both at a threshold of 0.05. Increased mean diffusivity throughout the brain can be noticed in the patients, together with a compromised white matter tracts integrity. The most severely affected cortical regions are in the occipital lobe. Decreased functional connectivity was from the temporal and occipital lobes to the hippocampus and parahippocampus. In contrast, connectivity from thalamus was enhanced. Diffused cortical atrophy with posterior focal lesions was noticed. We concluded that MRI observed functional changes in the posterior cortical pathways in the patients with Sialidosis. The observation might be related to the cortical blindness due to an altered neural network and a compromised visual pathway in the patients.

  6. Adolescent brain maturation and cortical folding: evidence for reductions in gyrification.

    Directory of Open Access Journals (Sweden)

    Daniel Klein

    Full Text Available Evidence from anatomical and functional imaging studies have highlighted major modifications of cortical circuits during adolescence. These include reductions of gray matter (GM, increases in the myelination of cortico-cortical connections and changes in the architecture of large-scale cortical networks. It is currently unclear, however, how the ongoing developmental processes impact upon the folding of the cerebral cortex and how changes in gyrification relate to maturation of GM/WM-volume, thickness and surface area. In the current study, we acquired high-resolution (3 Tesla magnetic resonance imaging (MRI data from 79 healthy subjects (34 males and 45 females between the ages of 12 and 23 years and performed whole brain analysis of cortical folding patterns with the gyrification index (GI. In addition to GI-values, we obtained estimates of cortical thickness, surface area, GM and white matter (WM volume which permitted correlations with changes in gyrification. Our data show pronounced and widespread reductions in GI-values during adolescence in several cortical regions which include precentral, temporal and frontal areas. Decreases in gyrification overlap only partially with changes in the thickness, volume and surface of GM and were characterized overall by a linear developmental trajectory. Our data suggest that the observed reductions in GI-values represent an additional, important modification of the cerebral cortex during late brain maturation which may be related to cognitive development.

  7. Characterization of early cortical population response to thalamocortical input in vitro

    Directory of Open Access Journals (Sweden)

    Michael Raymond Heliodor Hill

    2014-01-01

    Full Text Available The in vitro thalamocortical slice preparation of mouse barrel cortex allows for stimulation of the cortex through its natural afferent thalamocortical pathway. This preparation was used here to investigate the first stage of cortical processing in the large postsynaptic dendritic networks as revealed by voltage sensitive dye imaging. We identified the precise location and dimensions of two clearly distinguishable dendritic networks, one in the granular layer IV and one in the infragranular layer V and VI and showed that they have different physiological properties. DiI fluorescent staining further revealed that thalamocortical axons project on to these two networks in the typical barrel like form, not only in the granular but also in the infragranular layer. Finally we investigated the short term dynamics of both the voltage sensitive dye imaging signal and the local field potential in response to a train of eight-pulses at various frequencies in both these layers. We found evidence of differences in the plasticity between the first two response peaks compared to the remaining six peaks as well as differences in short term plasticity between the voltage sensitive dye imaging response and the local field potential. Our findings suggest, that at least early cortical processing takes place in two separate dendritic networks that may stand at the beginning of further parallel computation. The detailed characterization of the parameters of these networks may provide tools for further research into the complex dynamics of large dendritic networks and their role in cortical computation.

  8. Characterization of early cortical population response to thalamocortical input in vitro.

    Science.gov (United States)

    Hill, Michael R H; Greenfield, Susan A

    2013-01-01

    The in vitro thalamocortical slice preparation of mouse barrel cortex allows for stimulation of the cortex through its natural afferent thalamocortical pathway. This preparation was used here to investigate the first stage of cortical processing in the large postsynaptic dendritic networks as revealed by voltage sensitive dye imaging (VSDI). We identified the precise location and dimensions of two clearly distinguishable dendritic networks, one in the granular layer (GL) IV and one in the infragranular layer (IGL) V and VI and showed that they have different physiological properties. DiI fluorescent staining further revealed that thalamocortical axons project on to these two networks in the typical barrel like form, not only in the granular but also in the IGL. Finally we investigated the short-term dynamics of both the VSDI signal and the local field potential (LFP) in response to a train of eight-pulses at various frequencies in both these layers. We found evidence of differences in the plasticity between the first two response peaks compared to the remaining six peaks as well as differences in short-term plasticity between the VSDI response and the LFP. Our findings suggest, that at least early cortical processing takes place in two separate dendritic networks that may stand at the beginning of further parallel computation. The detailed characterization of the parameters of these networks may provide tools for further research into the complex dynamics of large dendritic networks and their role in cortical computation.

  9. Cortical control of whisker movement.

    Science.gov (United States)

    Petersen, Carl C H

    2014-01-01

    Facial muscles drive whisker movements, which are important for active tactile sensory perception in mice and rats. These whisker muscles are innervated by cholinergic motor neurons located in the lateral facial nucleus. The whisker motor neurons receive synaptic inputs from premotor neurons, which are located within the brain stem, the midbrain, and the neocortex. Complex, distributed neural circuits therefore regulate whisker movement during behavior. This review focuses specifically on cortical whisker motor control. The whisker primary motor cortex (M1) strongly innervates brain stem reticular nuclei containing whisker premotor neurons, which might form a central pattern generator for rhythmic whisker protraction. In a parallel analogous pathway, the whisker primary somatosensory cortex (S1) strongly projects to the brain stem spinal trigeminal interpolaris nucleus, which contains whisker premotor neurons innervating muscles for whisker retraction. These anatomical pathways may play important functional roles, since stimulation of M1 drives exploratory rhythmic whisking, whereas stimulation of S1 drives whisker retraction.

  10. The origin of cortical neurons

    Directory of Open Access Journals (Sweden)

    J.G. Parnavelas

    2002-12-01

    Full Text Available Neurons of the mammalian cerebral cortex comprise two broad classes: pyramidal neurons, which project to distant targets, and the inhibitory nonpyramidal cells, the cortical interneurons. Pyramidal neurons are generated in the germinal ventricular zone, which lines the lateral ventricles, and migrate along the processes of radial glial cells to their positions in the developing cortex in an `inside-out' sequence. The GABA-containing nonpyramidal cells originate for the most part in the ganglionic eminence, the primordium of the basal ganglia in the ventral telencephalon. These cells follow tangential migratory routes to enter the cortex and are in close association with the corticofugal axonal system. Once they enter the cortex, they move towards the ventricular zone, possibly to obtain positional information, before they migrate radially in the direction of the pial surface to take up their positions in the developing cortex. The mechanisms that guide interneurons throughout these long and complex migratory routes are currently under investigation.

  11. Cortical cartography and Caret software.

    Science.gov (United States)

    Van Essen, David C

    2012-08-15

    Caret software is widely used for analyzing and visualizing many types of fMRI data, often in conjunction with experimental data from other modalities. This article places Caret's development in a historical context that spans three decades of brain mapping--from the early days of manually generated flat maps to the nascent field of human connectomics. It also highlights some of Caret's distinctive capabilities. This includes the ease of visualizing data on surfaces and/or volumes and on atlases as well as individual subjects. Caret can display many types of experimental data using various combinations of overlays (e.g., fMRI activation maps, cortical parcellations, areal boundaries), and it has other features that facilitate the analysis and visualization of complex neuroimaging datasets. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Unsupervised fetal cortical surface parcellation

    Science.gov (United States)

    Dahdouh, Sonia; Limperopoulos, Catherine

    2016-03-01

    At the core of many neuro-imaging studies, atlas-based brain parcellations are used for example to study normal brain evolution across the lifespan. These atlases rely on the assumption that the same anatomical features are present on all subjects to be studied and that these features are stable enough to allow meaningful comparisons between different brain surfaces and structures These methods, however, often fail when applied to fetal MRI data, due to the lack of consistent anatomical features present across gestation. This paper presents a novel surface-based fetal cortical parcellation framework which attempts to circumvent the lack of consistent anatomical features by proposing a brain parcellation scheme that is based solely on learned geometrical features. A mesh signature incorporating both extrinsic and intrinsic geometrical features is proposed and used in a clustering scheme to define a parcellation of the fetal brain. This parcellation is then learned using a Random Forest (RF) based learning approach and then further refined in an alpha-expansion graph-cut scheme. Based on the votes obtained by the RF inference procedure, a probability map is computed and used as a data term in the graph-cut procedure. The smoothness term is defined by learning a transition matrix based on the dihedral angles of the faces. Qualitative and quantitative results on a cohort of both healthy and high-risk fetuses are presented. Both visual and quantitative assessments show good results demonstrating a reliable method for fetal brain data and the possibility of obtaining a parcellation of the fetal cortical surfaces using only geometrical features.

  13. Towards a 'canonical' agranular cortical microcircuit

    Directory of Open Access Journals (Sweden)

    Sarah F. Beul

    2015-01-01

    Full Text Available Based on regularities in the intrinsic microcircuitry of cortical areas, variants of a 'canonical' cortical microcircuit have been proposed and widely adopted, particularly in computational neuroscience and neuroinformatics. However, this circuit is founded on striate cortex, which manifests perhaps the most extreme instance of cortical organization, in terms of a very high density of cells in highly differentiated cortical layers. Most other cortical regions have a less well differentiated architecture, stretching in gradients from the very dense eulaminate primary cortical areas to the other extreme of dysgranular and agranular areas of low density and poor laminar differentiation. It is unlikely for the patterns of inter- and intra-laminar connections to be uniform in spite of strong variations of their structural substrate. This assumption is corroborated by reports of divergence in intrinsic circuitry across the cortex. Consequently, it remains an important goal to define local microcircuits for a variety of cortical types, in particular, agranular cortical regions. As a counterpoint to the striate microcircuit, which may be anchored in an exceptional cytoarchitecture, we here outline a tentative microcircuit for agranular cortex. The circuit is based on a synthesis of the available literature on the local microcircuitry in agranular cortical areas of the rodent brain, investigated by anatomical and electrophysiological approaches. A central observation of these investigations is a weakening of interlaminar inhibition as cortical cytoarchitecture becomes less distinctive. Thus, our study of agranular microcircuitry revealed deviations from the well-known 'canonical' microcircuit established for striate cortex, suggesting variations in the intrinsic circuitry across the cortex that may be functionally relevant.

  14. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex

    Directory of Open Access Journals (Sweden)

    Jimmy eStehberg

    2014-09-01

    Full Text Available Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI and primary visual (VI. It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA and retrograde (CTb tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging and cortical parcellation are discussed.

  15. Correlation between Cortical State and Locus Coeruleus Activity: Implications for Sensory Coding in Rat Barrel Cortex

    Directory of Open Access Journals (Sweden)

    Zeinab eFazlali

    2016-03-01

    Full Text Available Cortical state modulates the background activity of cortical neurons, and their evoked response to sensory stimulation. Multiple mechanisms are involved in switching between cortical states including various neuromodulatory systems. Locus Coeruleus (LC is one of the major neuromodulatory nuclei in the brainstem with widespread projections throughout the brain and modulates the activity of cells and networks. Here, we quantified the link between the LC spontaneous activity, cortical state and sensory processing in the rat vibrissal somatosensory barrel cortex (BC. We simultaneously recorded unit activity from LC and BC along with prefrontal EEG while presenting brief whisker deflections under urethane anesthesia. The ratio of low to high frequency components of EEG (referred to as the L/H ratio was employed to identify cortical state. We found that the spontaneous activity of LC units exhibited a negative correlation with the L/H ratio. Cross-correlation analysis revealed that changes in LC firing preceded changes in the cortical state: the correlation of the LC firing profile with the L/H ratio was maximal at an average lag of -1.2 s. We further quantified BC neuronal responses to whisker stimulation during the synchronized and desynchronized states. In the desynchronized state, BC neurons showed lower stimulus detection threshold, higher response fidelity, and shorter response latency. The most prominent change was observed in the late phase of BC evoked activity (100-400 ms post stimulus onset: almost every BC unit exhibited a greater late response during the desynchronized state. Categorization of the BC evoked responses based on LC activity (into high and low LC discharge rates resulted in highly similar response profiles compared to categorization based on the cortical state (low and high L/H ratios. These findings provide evidence for the involvement of the LC neuromodulatory system in desynchronization of cortical state and the consequent

  16. Automatic Detection of Cortical Bones Haversian Osteonal Boundaries

    Directory of Open Access Journals (Sweden)

    Ilige Hage

    2015-10-01

    Full Text Available This work aims to automatically detect cement lines in decalcified cortical bone sections stained with H&E. Employed is a methodology developed previously by the authors and proven to successfully count and disambiguate the micro-architectural features (namely Haversian canals, canaliculi, and osteocyte lacunae present in the secondary osteons/Haversian system (osteon of cortical bone. This methodology combines methods typically considered separately, namely pulse coupled neural networks (PCNN, particle swarm optimization (PSO, and adaptive threshold (AT. In lieu of human bone, slides (at 20× magnification from bovid cortical bone are used in this study as proxy of human bone. Having been characterized, features with same orientation are used to detect the cement line viewed as the next coaxial layer adjacent to the outermost lamella of the osteon. Employed for this purpose are three attributes for each and every micro-sized feature identified in the osteon lamellar system: (1 orientation, (2 size (ellipse perimeter and (3 Euler number (a topological measure. From a training image, automated parameters for the PCNN network are obtained by forming fitness functions extracted from these attributes. It is found that a 3-way combination of these features attributes yields good representations of the overall osteon boundary (cement line. Near-unity values of classical metrics of quality (precision, sensitivity, specificity, accuracy, and dice suggest that the segments obtained automatically by the optimized artificial intelligent methodology are of high fidelity as compared with manual tracing. For bench marking, cement lines segmented by k-means did not fare as well. An analysis based on the modified Hausdorff distance (MHD of the segmented cement lines also testified to the quality of the detected cement lines vis-a-vis the k-means method.

  17. Magnitude Processing in the Brain: An fMRI Study of Time, Space, and Numerosity as a Shared Cortical System

    Science.gov (United States)

    Skagerlund, Kenny; Karlsson, Thomas; Träff, Ulf

    2016-01-01

    Continuous dimensions, such as time, space, and numerosity, have been suggested to be subserved by common neurocognitive mechanisms. Neuroimaging studies that have investigated either one or two dimensions simultaneously have consistently identified neural correlates in the parietal cortex of the brain. However, studies investigating the degree of neural overlap across several dimensions are inconclusive, and it remains an open question whether a potential overlap can be conceptualized as a neurocognitive magnitude processing system. The current functional magnetic resonance imaging study investigated the potential neurocognitive overlap across three dimensions. A sample of adults (N = 24) performed three different magnitude processing tasks: a temporal discrimination task, a number discrimination task, and a line length discrimination task. A conjunction analysis revealed several overlapping neural substrates across multiple magnitude dimensions, and we argue that these cortical nodes comprise a distributed magnitude processing system. Key components of this predominantly right-lateralized system include the intraparietal sulcus, insula, premotor cortex/SMA, and inferior frontal gyrus. Together with previous research highlighting intraparietal sulcus, our results suggest that the insula also is a core component of the magnitude processing system. We discuss the functional role of each of these components in the magnitude processing system and suggest that further research of this system may provide insight into the etiology of neurodevelopmental disorders where cognitive deficits in magnitude processing are manifest. PMID:27761110

  18. Do mirror neurons subserve action understanding?

    Science.gov (United States)

    Hickok, Gregory

    2013-04-12

    Mirror neurons were once widely believed to support action understanding via motor simulation of the observed actions. Recent evidence regarding the functional properties of mirror neurons in monkeys as well as much neuropsychological evidence in humans has shown that this is not the case. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Collateral branching of long-distance cortical projections in monkey.

    Science.gov (United States)

    Rockland, Kathleen S

    2013-12-15

    Collateralization of individual cortical axons is well documented for rodents but less so for monkeys, where double retrograde tracer experiments have tended to find only small numbers of neurons projecting to two different injection sites. Evidence from both double label and single axon studies, however, suggests that in specific projection systems the number of neurons with collateralized axons can be 10% or greater. These include feedback projections from temporal areas (but less so those from V4 and MT/V5). Single-axon analyses show that many parietal neurons branch to multiple targets. Except for giant Meynert cells in area V1, feedforward projections from early visual areas have only a small number of neurons with branching axons. Why only some neurons collateralize, what determines branch points and projection foci, and how this impacts network organization are largely unknown. Deciphering the branching code might offer new perspectives on space-time organization at the network level.

  20. Organisation of Xenopus oocyte and egg cortices.

    Science.gov (United States)

    Chang, P; Pérez-Mongiovi, D; Houliston, E

    1999-03-15

    The division of the Xenopus oocyte cortex into structurally and functionally distinct "animal" and "vegetal" regions during oogenesis provides the basis of the organisation of the early embryo. The vegetal region of the cortex accumulates specific maternal mRNAs that specify the development of the endoderm and mesoderm, as well as functionally-defined "determinants" of dorso-anterior development, and recognisable "germ plasm" determinants that segregate into primary germ cells. These localised elements on the vegetal cortex underlie both the primary animal-vegetal polarity of the egg and the organisation of the developing embryo. The animal cortex meanwhile becomes specialised for the events associated with fertilisation: sperm entry, calcium release into the cytoplasm, cortical granule exocytosis, and polarised cortical contraction. Cortical and subcortical reorganisations associated with meiotic maturation, fertilisation, cortical rotation, and the first mitotic cleavage divisions redistribute the vegetal cortical determinants, contributing to the specification of dorso-anterior axis and segregation of the germ line. In this article we consider what is known about the changing organisation of the oocyte and egg cortex in relation to the mechanisms of determinant localisation, anchorage, and redistribution, and show novel ultrastructural views of cortices isolated at different stages and processed by the rapid-freeze deep-etch method. Cortical organisation involves interactions between the different cytoskeletal filament systems and internal membranes. Associated proteins and cytoplasmic signals probably modulate these interactions in stage-specific ways, leaving much to be understood.

  1. Inhibitory stabilization and visual coding in cortical circuits with multiple interneuron subtypes.

    Science.gov (United States)

    Litwin-Kumar, Ashok; Rosenbaum, Robert; Doiron, Brent

    2016-03-01

    Recent anatomical and functional characterization of cortical inhibitory interneurons has highlighted the diverse computations supported by different subtypes of interneurons. However, most theoretical models of cortex do not feature multiple classes of interneurons and rather assume a single homogeneous population. We study the dynamics of recurrent excitatory-inhibitory model cortical networks with parvalbumin (PV)-, somatostatin (SOM)-, and vasointestinal peptide-expressing (VIP) interneurons, with connectivity properties motivated by experimental recordings from mouse primary visual cortex. Our theory describes conditions under which the activity of such networks is stable and how perturbations of distinct neuronal subtypes recruit changes in activity through recurrent synaptic projections. We apply these conclusions to study the roles of each interneuron subtype in disinhibition, surround suppression, and subtractive or divisive modulation of orientation tuning curves. Our calculations and simulations determine the architectural and stimulus tuning conditions under which cortical activity consistent with experiment is possible. They also lead to novel predictions concerning connectivity and network dynamics that can be tested via optogenetic manipulations. Our work demonstrates that recurrent inhibitory dynamics must be taken into account to fully understand many properties of cortical dynamics observed in experiments.

  2. Effects of network resolution on topological properties of human neocortex

    DEFF Research Database (Denmark)

    Romero-Garcia, Rafael; Atienza, Mercedes; Clemmensen, Line Katrine Harder

    2012-01-01

    Graph theoretical analyses applied to neuroimaging datasets have provided valuable insights into the large-scale anatomical organization of the human neocortex. Most of these studies were performed with different cortical scales leading to cortical networks with different levels of small-world or......Graph theoretical analyses applied to neuroimaging datasets have provided valuable insights into the large-scale anatomical organization of the human neocortex. Most of these studies were performed with different cortical scales leading to cortical networks with different levels of small......-world organization. The present study investigates how resolution of thickness-based cortical scales impacts on topological properties of human anatomical cortical networks. To this end, we designed a novel approach aimed at determining the best trade-off between small-world attributes of anatomical cortical...... networks and the number of cortical regions included in the scale. Results revealed that schemes comprising 540–599 regions (surface areas spanning between 250 and 275mm2) at sparsities below 10% showed a superior balance between small-world organization and the size of the cortical scale employed...

  3. RGMa regulates cortical interneuron migration and differentiation.

    Directory of Open Access Journals (Sweden)

    Conor O'Leary

    Full Text Available The etiology of neuropsychiatric disorders, including schizophrenia and autism, has been linked to a failure to establish the intricate neural network comprising excitatory pyramidal and inhibitory interneurons during neocortex development. A large proportion of cortical inhibitory interneurons originate in the medial ganglionic eminence (MGE of the ventral telencephalon and then migrate through the ventral subventricular zone, across the corticostriatal junction, into the embryonic cortex. Successful navigation of newborn interneurons through the complex environment of the ventral telencephalon is governed by spatiotemporally restricted deployment of both chemorepulsive and chemoattractive guidance cues which work in concert to create a migratory corridor. Despite the expanding list of interneuron guidance cues, cues responsible for preventing interneurons from re-entering the ventricular zone of the ganglionic eminences have not been well characterized. Here we provide evidence that the chemorepulsive axon guidance cue, RGMa (Repulsive Guidance Molecule a, may fulfill this function. The ventricular zone restricted expression of RGMa in the ganglionic eminences and the presence of its receptor, Neogenin, in the ventricular zone and on newborn and maturing MGE-derived interneurons implicates RGMa-Neogenin interactions in interneuron differentiation and migration. Using an in vitro approach, we show that RGMa promotes interneuron differentiation by potentiating neurite outgrowth. In addition, using in vitro explant and migration assays, we provide evidence that RGMa is a repulsive guidance cue for newborn interneurons migrating out of the ganglionic eminence ventricular zone. Intriguingly, the alternative Neogenin ligand, Netrin-1, had no effect on migration. However, we observed complete abrogation of RGMa-induced chemorepulsion when newborn interneurons were simultaneously exposed to RGMa and Netrin-1 gradients, suggesting a novel mechanism for

  4. Contrast-induced transient cortical blindness.

    Science.gov (United States)

    Shah, Parth R; Yohendran, Jayshan; Parker, Geoffrey D; McCluskey, Peter J

    2013-05-01

    We present a case of transient cortical blindness secondary to contrast medium toxicity. A 58-year-old man had successful endovascular coiling of a right posterior inferior cerebellar artery aneurysm but became confused and unable to see after the procedure. His visual acuity was no light perception bilaterally. Clinically, there was no new intra-ocular pathology. An urgent non-contrast computed tomography scan of the brain showed cortical hyperdensity in both parieto-occipital cortices, consistent with contrast medium leakage through the blood-brain barrier from the coiling procedure. The man remained completely blind for 72 hours, after which his visual acuity improved gradually back to his baseline level.

  5. Reversible cortical blindness: posterior reversible encephalopathy syndrome.

    Science.gov (United States)

    Bandyopadhyay, Sabyasachi; Mondal, Kanchan Kumar; Das, Somnath; Gupta, Anindya; Biswas, Jaya; Bhattacharyya, Subir Kumar; Biswas, Gautam

    2010-11-01

    Cortical blindness is defined as visual failure with preserved pupillary reflexes in structurally intact eyes due to bilateral lesions affecting occipital cortex. Bilateral oedema and infarction of the posterior and middle cerebral arterial territory, trauma, glioma and meningioma of the occipital cortex are the main causes of cortical blindness. Posterior reversible encephalopathy syndrome (PRES) refers to the reversible subtype of cortical blindness and is usually associated with hypertension, diabetes, immunosuppression, puerperium with or without eclampsia. Here, 3 cases of PRES with complete or partial visual recovery following treatment in 6-month follow-up are reported.

  6. Tibial cortical lesions: A multimodality pictorial review

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, P.A., E-mail: philippa.tyler@rnoh.nhs.uk [Department of Radiology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore HA7 4LP (United Kingdom); Mohaghegh, P., E-mail: pegah1000@gmail.com [Department of Radiology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore HA7 4LP (United Kingdom); Foley, J., E-mail: jfoley1@nhs.net [Department of Radiology, Glasgow Royal Infirmary, 16 Alexandra Parade, Glasgow G31 2ES (United Kingdom); Isaac, A., E-mail: amandaisaac@doctors.org.uk [Department of Radiology, King' s College Hospital, Denmark Hill, London SE5 9RS (United Kingdom); Zavareh, A., E-mail: ali.zavareh@gmail.com [Department of Radiology, North Bristol NHS Trust, Frenchay, Bristol BS16 1LE (United Kingdom); Thorning, C., E-mail: cthorning@doctors.org.uk [Department of Radiology, East Surrey Hospital, Canada Avenue, Redhill, Surrey RH1 5RH (United Kingdom); Kirwadi, A., E-mail: anandkirwadi@gmail.com [Department of Radiology, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL (United Kingdom); Pressney, I., E-mail: ipressney@hotmail.com [Department of Radiology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore HA7 4LP (United Kingdom); Amary, F., E-mail: fernanda.amary@rnoh.nhs.uk [Department of Histopathology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore HA7 4LP (United Kingdom); Rajeswaran, G., E-mail: grajeswaran@gmail.com [Department of Radiology, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH (United Kingdom)

    2015-01-15

    Highlights: • Multimodality imaging plays an important role in the investigation and diagnosis of shin pain. • We review the multimodality imaging findings of common cortically based tibial lesions. • We also describe the rarer pathologies of tibial cortical lesions. - Abstract: Shin pain is a common complaint, particularly in young and active patients, with a wide range of potential diagnoses and resulting implications. We review the natural history and multimodality imaging findings of the more common causes of cortically-based tibial lesions, as well as the rarer pathologies less frequently encountered in a general radiology department.

  7. Cross-approximate entropy of cortical local field potentials quantifies effects of anesthesia - a pilot study in rats

    Directory of Open Access Journals (Sweden)

    Schwarz Cornelius

    2010-09-01

    Full Text Available Abstract Background Anesthetics dose-dependently shift electroencephalographic (EEG activity towards high-amplitude, slow rhythms, indicative of a synchronization of neuronal activity in thalamocortical networks. Additionally, they uncouple brain areas in higher (gamma frequency ranges possibly underlying conscious perception. It is currently thought that both effects may impair brain function by impeding proper information exchange between cortical areas. But what happens at the local network level? Local networks with strong excitatory interconnections may be more resilient towards global changes in brain rhythms, but depend heavily on locally projecting, inhibitory interneurons. As anesthetics bias cortical networks towards inhibition, we hypothesized that they may cause excessive synchrony and compromise information processing already on a small spatial scale. Using a recently introduced measure of signal independence, cross-approximate entropy (XApEn, we investigated to what degree anesthetics synchronized local cortical network activity. We recorded local field potentials (LFP from the somatosensory cortex of three rats chronically implanted with multielectrode arrays and compared activity patterns under control (awake state with those at increasing concentrations of isoflurane, enflurane and halothane. Results Cortical LFP signals were more synchronous, as expressed by XApEn, in the presence of anesthetics. Specifically, XApEn was a monotonously declining function of anesthetic concentration. Isoflurane and enflurane were indistinguishable; at a concentration of 1 MAC (the minimum alveolar concentration required to suppress movement in response to noxious stimuli in 50% of subjects both volatile agents reduced XApEn by about 70%, whereas halothane was less potent (50% reduction. Conclusions The results suggest that anesthetics strongly diminish the independence of operation of local cortical neuronal populations, and that the

  8. Reduced cortical complexity in children with Prader-Willi Syndrome and its association with cognitive impairment and developmental delay.

    Directory of Open Access Journals (Sweden)

    Akvile Lukoshe

    Full Text Available BACKGROUND: Prader-Willi Syndrome (PWS is a complex neurogenetic disorder with symptoms involving not only hypothalamic, but also a global, central nervous system dysfunction. Previously, qualitative studies reported polymicrogyria in adults with PWS. However, there have been no quantitative neuroimaging studies of cortical morphology in PWS and no studies to date in children with PWS. Thus, our aim was to investigate and quantify cortical complexity in children with PWS compared to healthy controls. In addition, we investigated differences between genetic subtypes of PWS and the relationship between cortical complexity and intelligence within the PWS group. METHODS: High-resolution structural magnetic resonance images were acquired in 24 children with genetically confirmed PWS (12 carrying a deletion (DEL, 12 with maternal uniparental disomy (mUPD and 11 age- and sex-matched typically developing siblings as healthy controls. Local gyrification index (lGI was obtained using the FreeSurfer software suite. RESULTS: Four large clusters, two in each hemisphere, comprising frontal, parietal and temporal lobes, had lower lGI in children with PWS, compared to healthy controls. Clusters with lower lGI also had significantly lower cortical surface area in children with PWS. No differences in cortical thickness of the clusters were found between the PWS and healthy controls. lGI correlated significantly with cortical surface area, but not with cortical thickness. Within the PWS group, lGI in both hemispheres correlated with Total IQ and Verbal IQ, but not with Performance IQ. Children with mUPD, compared to children with DEL, had two small clusters with lower lGI in the right hemisphere. lGI of these clusters correlated with cortical surface area, but not with cortical thickness or IQ. CONCLUSIONS: These results suggest that lower cortical complexity in children with PWS partially underlies cognitive impairment and developmental delay, probably due to

  9. Superresolution improves MRI cortical segmentation with FACE

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Manjón, José V.; Coupé, Pierrick

    Brain cortical surface extraction from MRI has applications for measurement of gray matter (GM) atrophy, functional mapping, source localization and preoperative neurosurgical planning. Accurate cortex segmentation requires high resolution morphological images and several methods for extracting...

  10. Perceptual incongruence influences bistability and cortical activation

    NARCIS (Netherlands)

    Brouwer, G.J.; Tong, F.; Hagoort, P.; van Ee, R.

    2009-01-01

    We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability

  11. Transient cortical blindness after coronary angiography.

    Science.gov (United States)

    Alp, B N; Bozbuğa, N; Tuncer, M A; Yakut, C

    2009-01-01

    Transient cortical blindness is rarely encountered after angiography of native coronary arteries or bypass grafts. This paper reports a case of transient cortical blindness that occurred 72 h after coronary angiography in a 56-year old patient. This was the patient's fourth exposure to contrast medium. Neurological examination demonstrated cortical blindness and the absence of any focal neurological deficit. A non-contrast-enhanced computed tomographic scan of the brain revealed bilateral contrast enhancement in the occipital lobes and no evidence of cerebral haemorrhage, and magnetic resonance imaging of the brain showed no pathology. Sight returned spontaneously within 4 days and his vision gradually improved. A search of the current literature for reported cases of transient cortical blindness suggested that this is a rarely encountered complication of coronary angiography.

  12. Reversible cortical blindness after lung transplantation.

    Science.gov (United States)

    Knower, Mark T; Pethke, Scott D; Valentine, Vincent G

    2003-06-01

    Cyclosporine (CYA) is a calcineurin inhibitor widely used in immunosuppressive regimens after organ transplantation. Several neurologic side effects are frequently associated with CYA use; however, reversible cortical blindness is a rare manifestation of CYA toxicity traditionally seen after liver and bone marrow transplantation. This report presents a case of reversible cortical blindness after lung transplantation, then details the risk factors and clinical course of 28 previously well-documented cases of CYA-induced cortical blindness after transplantation. Identification of known risk factors, clinical clues, and typical radiographic findings may aid in the diagnosis of CYA-induced cortical blindness, since reduction in CYA dose or cessation of CYA therapy usually permits resolution of the neurologic effects.

  13. Cortical areas involved in Arabic number reading.

    Science.gov (United States)

    Roux, F-E; Lubrano, V; Lauwers-Cances, V; Giussani, C; Démonet, J-F

    2008-01-15

    Distinct functional pathways for processing words and numbers have been hypothesized from the observation of dissociated impairments of these categories in brain-damaged patients. We aimed to identify the cortical areas involved in Arabic number reading process in patients operated on for various brain lesions. Direct cortical electrostimulation was prospectively used in 60 brain mappings. We used object naming and two reading tasks: alphabetic script (sentences and number words) and Arabic number reading. Cortical areas involved in Arabic number reading were identified according to location, type of interference, and distinctness from areas associated with other language tasks. Arabic number reading was sustained by small cortical areas, often extremely well localized (area (Brodmann area 45), the anterior part of the dominant supramarginal gyrus (Brodmann area 40; p area (Brodmann area 37; p areas.

  14. The Diversity of Cortical Inhibitory Synapses

    Directory of Open Access Journals (Sweden)

    Yoshiyuki eKubota

    2016-04-01

    Full Text Available The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their IPSP size is not uniform. Thus cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.

  15. Abnormal resting-state cortical coupling in chronic tinnitus

    Directory of Open Access Journals (Sweden)

    Langguth Berthold

    2009-02-01

    Full Text Available Abstract Background Subjective tinnitus is characterized by an auditory phantom perception in the absence of any physical sound source. Consequently, in a quiet environment, tinnitus patients differ from control participants because they constantly perceive a sound whereas controls do not. We hypothesized that this difference is expressed by differential activation of distributed cortical networks. Results The analysis was based on a sample of 41 participants: 21 patients with chronic tinnitus and 20 healthy control participants. To investigate the architecture of these networks, we used phase locking analysis in the 1–90 Hz frequency range of a minute of resting-state MEG recording. We found: 1 For tinnitus patients: A significant decrease of inter-areal coupling in the alpha (9–12 Hz band and an increase of inter-areal coupling in the 48–54 Hz gamma frequency range relative to the control group. 2 For both groups: an inverse relationship (r = -.71 of the alpha and gamma network coupling. 3 A discrimination of 83% between the patient and the control group based on the alpha and gamma networks. 4 An effect of manifestation on the distribution of the gamma network: In patients with a tinnitus history of less than 4 years, the left temporal cortex was predominant in the gamma network whereas in patients with tinnitus duration of more than 4 years, the gamma network was more widely distributed including more frontal and parietal regions. Conclusion In the here presented data set we found strong support for an alteration of long-range coupling in tinnitus. Long-range coupling in the alpha frequency band was decreased for tinnitus patients while long-range gamma coupling was increased. These changes discriminate well between tinnitus and control participants. We propose a tinnitus model that integrates this finding in the current knowledge about tinnitus. Furthermore we discuss the impact of this finding to tinnitus therapies using Transcranial

  16. Cortical Source Localization of Infant Cognition

    OpenAIRE

    Reynolds, GD; Richards, JE

    2009-01-01

    Neuroimaging techniques such as positron emission topography (PET) and functional magnetic resonance imaging (fMRI) have been utilized with older children and adults to identify cortical sources of perceptual and cognitive processes. However, due to practical and ethical concerns, these techniques cannot be routinely applied to infant participants. An alternative to such neuroimaging techniques appropriate for use with infant participants is high-density EEG recording and cortical source loca...

  17. CLADA: cortical longitudinal atrophy detection algorithm.

    Science.gov (United States)

    Nakamura, Kunio; Fox, Robert; Fisher, Elizabeth

    2011-01-01

    Measurement of changes in brain cortical thickness is useful for the assessment of regional gray matter atrophy in neurodegenerative conditions. A new longitudinal method, called CLADA (cortical longitudinal atrophy detection algorithm), has been developed for the measurement of changes in cortical thickness in magnetic resonance images (MRI) acquired over time. CLADA creates a subject-specific cortical model which is longitudinally deformed to match images from individual time points. The algorithm was designed to work reliably for lower resolution images, such as the MRIs with 1×1×5 mm(3) voxels previously acquired for many clinical trials in multiple sclerosis (MS). CLADA was evaluated to determine reproducibility, accuracy, and sensitivity. Scan-rescan variability was 0.45% for images with 1mm(3) isotropic voxels and 0.77% for images with 1×1×5 mm(3) voxels. The mean absolute accuracy error was 0.43 mm, as determined by comparison of CLADA measurements to cortical thickness measured directly in post-mortem tissue. CLADA's sensitivity for correctly detecting at least 0.1mm change was 86% in a simulation study. A comparison to FreeSurfer showed good agreement (Pearson correlation=0.73 for global mean thickness). CLADA was also applied to MRIs acquired over 18 months in secondary progressive MS patients who were imaged at two different resolutions. Cortical thinning was detected in this group in both the lower and higher resolution images. CLADA detected a higher rate of cortical thinning in MS patients compared to healthy controls over 2 years. These results show that CLADA can be used for reliable measurement of cortical atrophy in longitudinal studies, even in lower resolution images.

  18. Cortical Neural Computation by Discrete Results Hypothesis

    Science.gov (United States)

    Castejon, Carlos; Nuñez, Angel

    2016-01-01

    One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called “Discrete Results” (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of “Discrete Results” is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel “Discrete Results” concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast

  19. Cortical depth dependence of the diffusion anisotropy in the human cortical gray matter in vivo.

    Directory of Open Access Journals (Sweden)

    Trong-Kha Truong

    Full Text Available Diffusion tensor imaging (DTI is typically used to study white matter fiber pathways, but may also be valuable to assess the microstructure of cortical gray matter. Although cortical diffusion anisotropy has previously been observed in vivo, its cortical depth dependence has mostly been examined in high-resolution ex vivo studies. This study thus aims to investigate the cortical depth dependence of the diffusion anisotropy in the human cortex in vivo on a clinical 3 T scanner. Specifically, a novel multishot constant-density spiral DTI technique with inherent correction of motion-induced phase errors was used to achieve a high spatial resolution (0.625 × 0.625 × 3 mm and high spatial fidelity with no scan time penalty. The results show: (i a diffusion anisotropy in the cortical gray matter, with a primarily radial diffusion orientation, as observed in previous ex vivo and in vivo studies, and (ii a cortical depth dependence of the fractional anisotropy, with consistently higher values in the middle cortical lamina than in the deep and superficial cortical laminae, as observed in previous ex vivo studies. These results, which are consistent across subjects, demonstrate the feasibility of this technique for investigating the cortical depth dependence of the diffusion anisotropy in the human cortex in vivo.

  20. Cortical depth dependence of the diffusion anisotropy in the human cortical gray matter in vivo.

    Science.gov (United States)

    Truong, Trong-Kha; Guidon, Arnaud; Song, Allen W

    2014-01-01

    Diffusion tensor imaging (DTI) is typically used to study white matter fiber pathways, but may also be valuable to assess the microstructure of cortical gray matter. Although cortical diffusion anisotropy has previously been observed in vivo, its cortical depth dependence has mostly been examined in high-resolution ex vivo studies. This study thus aims to investigate the cortical depth dependence of the diffusion anisotropy in the human cortex in vivo on a clinical 3 T scanner. Specifically, a novel multishot constant-density spiral DTI technique with inherent correction of motion-induced phase errors was used to achieve a high spatial resolution (0.625 × 0.625 × 3 mm) and high spatial fidelity with no scan time penalty. The results show: (i) a diffusion anisotropy in the cortical gray matter, with a primarily radial diffusion orientation, as observed in previous ex vivo and in vivo studies, and (ii) a cortical depth dependence of the fractional anisotropy, with consistently higher values in the middle cortical lamina than in the deep and superficial cortical laminae, as observed in previous ex vivo studies. These results, which are consistent across subjects, demonstrate the feasibility of this technique for investigating the cortical depth dependence of the diffusion anisotropy in the human cortex in vivo.

  1. Cortical thinning in former professional soccer players.

    Science.gov (United States)

    Koerte, Inga K; Mayinger, Michael; Muehlmann, Marc; Kaufmann, David; Lin, Alexander P; Steffinger, Denise; Fisch, Barbara; Rauchmann, Boris-Stephan; Immler, Stefanie; Karch, Susanne; Heinen, Florian R; Ertl-Wagner, Birgit; Reiser, Maximilian; Stern, Robert A; Zafonte, Ross; Shenton, Martha E

    2016-09-01

    Soccer is the most popular sport in the world. Soccer players are at high risk for repetitive subconcussive head impact when heading the ball. Whether this leads to long-term alterations of the brain's structure associated with cognitive decline remains unknown. The aim of this study was to evaluate cortical thickness in former professional soccer players using high-resolution structural MR imaging. Fifteen former male professional soccer players (mean age 49.3 [SD 5.1] years) underwent high-resolution structural 3 T MR imaging, as well as cognitive testing. Fifteen male, age-matched former professional non-contact sport athletes (mean age 49.6 [SD 6.4] years) served as controls. Group analyses of cortical thickness were performed using voxel-based statistics. Soccer players demonstrated greater cortical thinning with increasing age compared to controls in the right inferolateral-parietal, temporal, and occipital cortex. Cortical thinning was associated with lower cognitive performance as well as with estimated exposure to repetitive subconcussive head impact. Neurocognitive evaluation revealed decreased memory performance in the soccer players compared to controls. The association of cortical thinning and decreased cognitive performance, as well as exposure to repetitive subconcussive head impact, further supports the hypothesis that repetitive subconcussive head impact may play a role in early cognitive decline in soccer players. Future studies are needed to elucidate the time course of changes in cortical thickness as well as their association with impaired cognitive function and possible underlying neurodegenerative process.

  2. Cortical swallowing processing in early subacute stroke

    Directory of Open Access Journals (Sweden)

    Fischer Maren

    2011-03-01

    Full Text Available Abstract Background Dysphagia is a major complication in hemispheric as well as brainstem stroke patients causing aspiration pneumonia and increased mortality. Little is known about the recovery from dysphagia after stroke. The aim of the present study was to determine the different patterns of cortical swallowing processing in patients with hemispheric and brainstem stroke with and without dysphagia in the early subacute phase. Methods We measured brain activity by mean of whole-head MEG in 37 patients with different stroke localisation 8.2 +/- 4.8 days after stroke to study changes in cortical activation during self-paced swallowing. An age matched group of healthy subjects served as controls. Data were analyzed by means of synthetic aperture magnetometry and group analyses were performed using a permutation test. Results Our results demonstrate strong bilateral reduction of cortical swallowing activation in dysphagic patients with hemispheric stroke. In hemispheric stroke without dysphagia, bilateral activation was found. In the small group of patients with brainstem stroke we observed a reduction of cortical activation and a right hemispheric lateralization. Conclusion Bulbar central pattern generators coordinate the pharyngeal swallowing phase. The observed right hemispheric lateralization in brainstem stroke can therefore be interpreted as acute cortical compensation of subcortically caused dysphagia. The reduction of activation in brainstem stroke patients and dysphagic patients with cortical stroke could be explained in terms of diaschisis.

  3. Attentional Modulation of Primary Interoceptive and Exteroceptive Cortices

    Science.gov (United States)

    Segal, Zindel V.; Anderson, Adam K.

    2013-01-01

    How exteroceptive attention (EA) alters neural representations of the external world is well characterized, yet little is known about how interoceptive attention (IA) alters neural representations of the body's internal state. We contrasted visual EA against IA toward respiration. Visual EA modulated striate and extrastriate cortices and a lateral frontoparietal “executive” network. By contrast, respiratory IA modulated a posterior insula region sensitive to respiratory frequency, consistent with primary interoceptive cortex, and a posterior limbic and medial parietal network, including the hippocampus, precuneus, and midcingulate cortex. Further distinguishing between EA and IA networks, attention-dependent connectivity analyses revealed that EA enhanced visual cortex connectivity with the inferior parietal lobule and pulvinar of the thalamus, while IA enhanced insula connectivity with the posterior ventromedial thalamus, a relay of the laminar I spinothalamocortical pathway supporting interoceptive afference. Despite strong connectivity between the posterior and the anterior insula, anatomical parcellation of the insula revealed a gradient of IA to EA recruitment along its posterior–anterior axis. These results suggest that distinct networks may support EA and IA. Furthermore, the anterior insula is not an area of pure body awareness but may link representations of the outside world with the body's internal state—a potential basis for emotional experience. PMID:22267308

  4. Electrophysiological Data and the Biophysical Modelling of Local Cortical Circuits

    Directory of Open Access Journals (Sweden)

    Dimitris Pinotsis

    2014-03-01

    Full Text Available This paper shows how recordings of gamma oscillations – under different experimental conditions or from different subjects – can be combined with a class of population models called neural fields and dynamic causal modeling (DCM to distinguish among alternative hypotheses regarding cortical structure and function. This approach exploits inter-subject variability and trial-specific effects associated with modulations in the peak frequency of gamma oscillations. It draws on the computational power of Bayesian model inversion, when applied to neural field models of cortical dynamics. Bayesian model comparison allows one to adjudicate among different mechanistic hypotheses about cortical excitability, synaptic kinetics and the cardinal topographic features of local cortical circuits. It also provides optimal parameter estimates that quantify neuromodulation and the spatial dispersion of axonal connections or summation of receptive fields in the visual cortex. This paper provides an overview of a family of neural field models that have been recently implemented using the DCM toolbox of the academic freeware Statistical Parametric Mapping (SPM. The SPM software is a popular platform for analyzing neuroimaging data, used by several neuroscience communities worldwide. DCM allows for a formal (Bayesian statistical analysis of cortical network connectivity, based upon realistic biophysical models of brain responses. It is this particular feature of DCM – the unique combination of generative models with optimization techniques based upon (variational Bayesian principles – that furnishes a novel way to characterize functional brain architectures. In particular, it provides answers to questions about how the brain is wired and how it responds to different experimental manipulations. For a review of the general role of neural fields in SPM the reader can consult e.g. see [1]. Neural fields have a long and illustrious history in mathematical

  5. Functional magnetic resonance imaging suggests automatization of the cortical response to inspiratory threshold loading in humans.

    Science.gov (United States)

    Raux, Mathieu; Tyvaert, Louise; Ferreira, Michael; Kindler, Félix; Bardinet, Eric; Karachi, Carine; Morelot-Panzini, Capucine; Gotman, Jean; Pike, G Bruce; Koski, Lisa; Similowski, Thomas

    2013-12-01

    Inspiratory threshold loading (ITL) induces cortical activation. It is sustained over time and is resistant to distraction, suggesting automaticity. We hypothesized that ITL-induced changes in cerebral activation may differ between single-breath ITL and continuous ITL, with differences resembling those observed after cortical automatization of motor tasks. We analyzed the brain blood oxygen level dependent (BOLD) signal of 11 naive healthy volunteers during 5 min of random, single-breath ITL and 5 min of continuous ITL. Single-breath ITL increased BOLD in many areas (premotor cortices, bilateral insula, cerebellum, reticular formation of the lateral mesencephalon) and decreased BOLD in regions co-localizing with the default mode network. Continuous ITL induced signal changes in a limited number of areas (supplementary motor area). These differences are comparable to those observed before and after overlearning of motor tasks. We conclude that the respiratory-related cortical activation observed in response to ITL is likely due to automated, attention-independent mechanisms. Also, ITL activates cortical circuits right from the first breath.

  6. Longitudinal data on cortical thickness before and after working memory training

    Science.gov (United States)

    Metzler-Baddeley, Claudia; Caeyenberghs, Karen; Foley, Sonya; Jones, Derek K.

    2016-01-01

    The data and supplementary information provided in this article relate to our research article “Task complexity and location specific changes of cortical thickness in executive and salience networks after working memory training” (Metzler-Baddeley et al., 2016) [1]. We provide cortical thickness and subcortical volume data derived from parieto-frontal cortical regions and the basal ganglia with the FreeSurfer longitudinal analyses stream (http://surfer.nmr.mgh.harvard.edu [2]) before and after Cogmed working memory training (Cogmed and Cogmed Working Memory Training, 2012) [3]. This article also provides supplementary information to the research article, i.e., within-group comparisons between baseline and outcome cortical thickness and subcortical volume measures, between-group tests of performance changes in cognitive benchmark tests (www.cambridgebrainsciences.com [4]), correlation analyses between performance changes in benchmark tests and training-related structural changes, correlation analyses between the time spent training and structural changes, a scatterplot of the relationship between cortical thickness measures derived from the occipital lobe as control region and the chronological order of the MRI sessions to assess potential scanner drift effects and a post-hoc vertex-wise whole brain analysis with FreeSurfer Qdec (https://surfer.nmr.mgh.harvard.edu/fswiki/Qdec [5]). PMID:27115029

  7. Imaging cortical activity following affective stimulation with a high temporal and spatial resolution

    Directory of Open Access Journals (Sweden)

    Catani Claudia

    2009-07-01

    Full Text Available Abstract Background The affective and motivational relevance of a stimulus has a distinct impact on cortical processing, particularly in sensory areas. However, the spatial and temporal dynamics of this affective modulation of brain activities remains unclear. The purpose of the present study was the development of a paradigm to investigate the affective modulation of cortical networks with a high temporal and spatial resolution. We assessed cortical activity with MEG using a visual steady-state paradigm with affective pictures. A combination of a complex demodulation procedure with a minimum norm estimation was applied to assess the temporal variation of the topography of cortical activity. Results Statistical permutation analyses of the results of the complex demodulation procedure revealed increased steady-state visual evoked field amplitudes over occipital areas following presentation of affective pictures compared to neutral pictures. This differentiation shifted in the time course from occipital regions to parietal and temporal regions. Conclusion It can be shown that stimulation with affective pictures leads to an enhanced activity in occipital region as compared to neutral pictures. However, the focus of differentiation is not stable over time but shifts into temporal and parietal regions within four seconds of stimulation. Thus, it can be crucial to carefully choose regions of interests and time intervals when analyzing the affective modulation of cortical activity.

  8. Disrupted cross-laminar cortical processing in β amyloid pathology precedes cell death.

    Science.gov (United States)

    Lison, H; Happel, M F K; Schneider, F; Baldauf, K; Kerbstat, S; Seelbinder, B; Schneeberg, J; Zappe, M; Goldschmidt, J; Budinger, E; Schröder, U H; Ohl, F W; Schilling, S; Demuth, H-U; Scheich, H; Reymann, K G; Rönicke, R

    2014-03-01

    Disruption of neuronal networks in the Alzheimer-afflicted brain is increasingly recognized as a key correlate of cognitive and memory decline in Alzheimer patients. We hypothesized that functional synaptic disconnections within cortical columnar microcircuits by pathological β-amyloid accumulation, rather than cell death, initially causes the cognitive impairments. During development of cortical β-amyloidosis with still few plaques in the transgenic 5xFAD mouse model single cell resolution mapping of neuronal thallium uptake revealed that electrical activity of pyramidal cells breaks down throughout infragranular cortical layer V long before cell death occurs. Treatment of 5xFAD mice with the glutaminyl cyclase inhibitor, PQ 529, partially prevented the decline of pyramidal cell activity, indicating pyroglutamate-modified forms, potentially mixed oligomers of Aβ are contributing to neuronal impairment. Laminar investigation of cortical circuit dysfunction with current source density analysis identified an early loss of excitatory synaptic input in infragranular layers, linked to pathological recurrent activations in supragranular layers. This specific disruption of normal cross-laminar cortical processing coincided with a decline of contextual fear learning. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. The Effect of Binaural Beats on Visuospatial Working Memory and Cortical Connectivity.

    Science.gov (United States)

    Beauchene, Christine; Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A; Leonessa, Alexander

    2016-01-01

    Binaural beats utilize a phenomenon that occurs within the cortex when two different frequencies are presented separately to each ear. This procedure produces a third phantom binaural beat, whose frequency is equal to the difference of the two presented tones and which can be manipulated for non-invasive brain stimulation. The effects of binaural beats on working memory, the system in control of temporary retention and online organization of thoughts for successful goal directed behavior, have not been well studied. Furthermore, no studies have evaluated the effects of binaural beats on brain connectivity during working memory tasks. In this study, we determined the effects of different acoustic stimulation conditions on participant response accuracy and cortical network topology, as measured by EEG recordings, during a visuospatial working memory task. Three acoustic stimulation control conditions and three binaural beat stimulation conditions were used: None, Pure Tone, Classical Music, 5Hz binaural beats, 10Hz binaural beats, and 15Hz binaural beats. We found that listening to 15Hz binaural beats during a visuospatial working memory task not only increased the response accuracy, but also modified the strengths of the cortical networks during the task. The three auditory control conditions and the 5Hz and 10Hz binaural beats all decreased accuracy. Based on graphical network analyses, the cortical activity during 15Hz binaural beats produced networks characteristic of high information transfer with consistent connection strengths throughout the visuospatial working memory task.

  10. Cortical representation of experimental tooth pain in humans.

    Science.gov (United States)

    Jantsch, H H F; Kemppainen, P; Ringler, R; Handwerker, H O; Forster, C

    2005-12-05

    Cortical processing of electrically induced pain from the tooth pulp was studied in healthy volunteers with fMRI. In a first experiment, cortical representation of tooth pain was compared with that of painful mechanical stimulation to the hand. The contralateral S1 cortex was activated during painful mechanical stimulation of the hand, whereas tooth pain lead to bilateral activation of S1. The S2 and insular region were bilaterally activated by both stimuli. In S2, the center of gravity of the activation during painful mechanical stimulation was more medial/posterior compared to tooth pain. In the insular region, tooth pain induced a stronger activation of the anterior and medial parts. The posterior part of the anterior cingulate gyrus was more strongly activated by painful stimulation of the hand. Differential activations were also found in motor and frontal areas including the orbital frontal cortex where tooth pain lead to greater activations. In a second experiment, we compared the effect of weak with strong tooth pain. A significantly greater activation by more painful tooth stimuli was found in most of those areas in which tooth pain had induced more activation than hand pain. In the medial frontal and right superior frontal gyri, we found an inverse relationship between pain intensity and BOLD contrast. We concluded that tooth pain activates a cortical network which is in several respects different from that activated by painful mechanical stimulation of the hand, not only in the somatotopically organized somatosensory areas but also in parts of the 'medial' pain projection system.

  11. TETRAMETHRIN AND DDT INHIBIT SPONTANEOUS FIRING IN CORTICAL NEURONAL NETWORKS

    Science.gov (United States)

    The insecticidal and neurotoxic effects of pyrethroids result from prolonged sodium channel inactivation, which causes alterations in neuronal firing and communication. Previously, we determined the relative potencies of 11 type I and type II pyrethroid insecticides using microel...

  12. Oscillatory Cortical Network Involved in Auditory Verbal Hallucinations in Schizophrenia

    NARCIS (Netherlands)

    van Lutterveld, Remko; Hillebrand, Arjan; Diederen, Kelly M. J.; Daalman, Kirstin; Kahn, Rene S.; Stam, Cornelis J.; Sommer, Iris E. C.

    2012-01-01

    Background: Auditory verbal hallucinations (AVH), a prominent symptom of schizophrenia, are often highly distressing for patients. Better understanding of the pathogenesis of hallucinations could increase therapeutic options. Magnetoencephalography (MEG) provides direct measures of neuronal activity

  13. Oscillatory cortical network involved in auditory verbal hallucinations in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Remko van Lutterveld

    Full Text Available BACKGROUND: Auditory verbal hallucinations (AVH, a prominent symptom of schizophrenia, are often highly distressing for patients. Better understanding of the pathogenesis of hallucinations could increase therapeutic options. Magnetoencephalography (MEG provides direct measures of neuronal activity and has an excellent temporal resolution, offering a unique opportunity to study AVH pathophysiology. METHODS: Twelve patients (10 paranoid schizophrenia, 2 psychosis not otherwise specified indicated the presence of AVH by button-press while lying in a MEG scanner. As a control condition, patients performed a self-paced button-press task. AVH-state and non-AVH state were contrasted in a region-of-interest (ROI approach. In addition, the two seconds before AVH onset were contrasted with the two seconds after AVH onset to elucidate a possible triggering mechanism. RESULTS: AVH correlated with a decrease in beta-band power in the left temporal cortex. A decrease in alpha-band power was observed in the right inferior frontal gyrus. AVH onset was related to a decrease in theta-band power in the right hippocampus. CONCLUSIONS: These results suggest that AVH are triggered by a short aberration in the theta band in a memory-related structure, followed by activity in language areas accompanying the experience of AVH itself.

  14. Organization of a Large-Scale Cortical Network

    Science.gov (United States)

    1989-01-01

    potentiation of the dcntatc mossy fiber synapscs on hippocampal CA3 pyramidal cells, and interactions between this short-term potentiation and long-term...resume firing, sometimes beginning with a "rebound burst". Since we suspect these neurons to be inhibitory interneurons , this may indicate a suppression

  15. Alteration of network activity in cortical neurons by triadimefon

    Science.gov (United States)

    ABSTRACT BODY: Triadimefon (TRI) is a conazole fungicide used to control powdery mildews on crops and as a veterinary and clinical treatment. TRI inhibits transmitter re-uptake at dopaminergic synapses in the central nervous system, and exposure to high levels of TRI causes hyper...

  16. Self-organized Critical Model Based on Complex Brain Networks with Hierarchical Organization

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying-Yue; ZHANG Gui-Qing; YANG Qiu-Ying; CHEN Tian-Lun

    2008-01-01

    The dynamical behavior in the cortical brain network of macaque is studied by modelling each cortical area with a subnetwork of interacting excitable neurons.We find that the avalanche of our model on different levels exhibits power-law.Furthermore the power-law exponent of the distribution and the average avalanche Size are affected by the topology of the network.

  17. Cortico-cortical evoked potentials for sites of early versus late seizure spread in stereoelectroencephalography.

    Science.gov (United States)

    Lega, Bradley; Dionisio, Sasha; Flanigan, Patrick; Bingaman, William; Najm, Imad; Nair, Dileep; Gonzalez-Martinez, Jorge

    2015-09-01

    Cortico-cortical evoked potentials offer the possibility of understanding connectivity within seizure networks to improve diagnosis and more accurately identify candidates for seizure surgery. We sought to determine if cortico-cortical evoked potentials and post-stimulation oscillatory changes differ for sites of EARLY versus LATE ictal spread. 37 patients undergoing stereoelectroencephalography were tested using a cortico-cortical evoked potential paradigm. All electrodes were classified according to the speed of ictal spread. EARLY spread sites were matched to a LATE spread site equidistant from the onset zone. Root-mean-square was used to quantify evoked responses and post-stimulation gamma band power and coherence were extracted and compared. Sites of EARLY spread exhibited significantly greater evoked responses after stimulation across all patients (t(36)=2.973, p=0.004). Stimulation elicited enhanced gamma band activity at EARLY spread sites (t(36)=2.61, p=0.03, FDR corrected); this gamma band oscillation was highly coherent with the onset zone. Cortico-cortical evoked potentials and post-stimulation changes in gamma band activity differ between sites of EARLY versus LATE ictal spread. The oscillatory changes can help visualize connectivity within the seizure network.

  18. Stochastic Amplification of Fluctuations in Cortical Up-States

    Science.gov (United States)

    Hidalgo, Jorge; Seoane, Luís F.; Cortés, Jesús M.; Muñoz, Miguel A.

    2012-01-01

    Cortical neurons are bistable; as a consequence their local field potentials can fluctuate between quiescent and active states, generating slow Hz oscillations which are widely known as transitions between Up and Down States. Despite a large number of studies on Up-Down transitions, deciphering its nature, mechanisms and function are still today challenging tasks. In this paper we focus on recent experimental evidence, showing that a class of spontaneous oscillations can emerge within the Up states. In particular, a non-trivial peak around Hz appears in their associated power-spectra, what produces an enhancement of the activity power for higher frequencies (in the Hz band). Moreover, this rhythm within Ups seems to be an emergent or collective phenomenon given that individual neurons do not lock to it as they remain mostly unsynchronized. Remarkably, similar oscillations (and the concomitant peak in the spectrum) do not appear in the Down states. Here we shed light on these findings by using different computational models for the dynamics of cortical networks in presence of different levels of physiological complexity. Our conclusion, supported by both theory and simulations, is that the collective phenomenon of “stochastic amplification of fluctuations” – previously described in other contexts such as Ecology and Epidemiology – explains in an elegant and parsimonious manner, beyond model-dependent details, this extra-rhythm emerging only in the Up states but not in the Downs. PMID:22879879

  19. Stochastic amplification of fluctuations in cortical up-states.

    Directory of Open Access Journals (Sweden)

    Jorge Hidalgo

    Full Text Available Cortical neurons are bistable; as a consequence their local field potentials can fluctuate between quiescent and active states, generating slow 0.5 2 Hz oscillations which are widely known as transitions between Up and Down States. Despite a large number of studies on Up-Down transitions, deciphering its nature, mechanisms and function are still today challenging tasks. In this paper we focus on recent experimental evidence, showing that a class of spontaneous oscillations can emerge within the Up states. In particular, a non-trivial peak around 20 Hz appears in their associated power-spectra, what produces an enhancement of the activity power for higher frequencies (in the 30-90 Hz band. Moreover, this rhythm within Ups seems to be an emergent or collective phenomenon given that individual neurons do not lock to it as they remain mostly unsynchronized. Remarkably, similar oscillations (and the concomitant peak in the spectrum do not appear in the Down states. Here we shed light on these findings by using different computational models for the dynamics of cortical networks in presence of different levels of physiological complexity. Our conclusion, supported by both theory and simulations, is that the collective phenomenon of "stochastic amplification of fluctuations"--previously described in other contexts such as Ecology and Epidemiology--explains in an elegant and parsimonious manner, beyond model-dependent details, this extra-rhythm emerging only in the Up states but not in the Downs.

  20. Cortical oscillatory dynamics in a social interaction model.

    Science.gov (United States)

    Knyazev, Gennady G; Slobodskoj-Plusnin, Jaroslav Y; Bocharov, Andrey V; Pylkova, Liudmila V

    2013-03-15

    In this study we sought to investigate cortical oscillatory dynamics accompanying three major kinds of social behavior: aggressive, friendly, and avoidant. Behavioral and EEG data were collected in 48 participants during a computer game modeling social interactions with virtual 'persons'. 3D source reconstruction and independent component analysis were applied to EEG data. Results showed that social behavior was partly reactive and partly proactive with subject's personality playing an important role in shaping this behavior. Most salient differences were found between avoidance and approach behaviors, whereas the two kinds of approach behavior (i.e., aggression and friendship) did not differ from each other. Comparative to avoidance, approach behaviors were associated with higher induced responses in most frequency bands which were mostly observed in cortical areas overlapping with the default mode network. The difference between approach- and avoidance-related oscillatory dynamics was more salient in subjects predisposed to approach behaviors (i.e., in aggressive or sociable subjects) and was less pronounced in subjects predisposed to avoidance behavior (i.e., in high trait anxiety scorers). There was a trend to higher low frequency phase-locking in motor area in approach than in avoid condition. Results are discussed in light of the concept linking induced responses with top-down and evoked responses with bottom-up processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The impact of cortical deafferentation on the neocortical slow oscillation.

    Science.gov (United States)

    Lemieux, Maxime; Chen, Jen-Yung; Lonjers, Peter; Bazhenov, Maxim; Timofeev, Igor

    2014-04-16

    Slow oscillation is the main brain rhythm observed during deep sleep in mammals. Although several studies have demonstrated its neocortical origin, the extent of the thalamic contribution is still a matter of discussion. Using electrophysiological recordings in vivo on cats and computational modeling, we found that the local thalamic inactivation or the complete isolation of the neocortical slabs maintained within the brain dramatically reduced the expression of slow and fast oscillations in affected cortical areas. The slow oscillation began to recover 12 h after thalamic inactivation. The slow oscillation, but not faster activities, nearly recovered after 30 h and persisted for weeks in the isolated slabs. We also observed an increase of the membrane potential fluctuations recorded in vivo several hours after thalamic inactivation. Mimicking this enhancement in a network computational model with an increased postsynaptic activity of long-range intracortical afferents or scaling K(+) leak current, but not several other Na(+) and K(+) intrinsic currents was sufficient for recovering the slow oscillation. We conclude that, in the intact brain, the thalamus contributes to the generation of cortical active states of the slow oscillation and mediates its large-scale synchronization. Our study also suggests that the deafferentation-induced alterations of the sleep slow oscillation can be counteracted by compensatory intracortical mechanisms and that the sleep slow oscillation is a fundamental and intrinsic state of the neocortex.

  2. Quantitative radiology: radiogrammetry of cortical bone.

    Science.gov (United States)

    Dequeker, J

    1976-11-01

    Based on personal experience and data in the literature, an overview is given of radiogrammetry of cortical bone of the second metacarpal. There is a within- and between-observer error which amounts respectively to 1.2 and 1.5% for the outer diameter and 4.8 and 6.4% for the inner diameter. The systematic + or-- trend between observers indicates that one observer working according to certain defined rules obtains the most reliable results. There is a large variability in amount of bone within one age and sex group which is partly due to skeletal size differences, are insufficient since skeletal size differences still exist. The variability is reduced when the data are divided into strata of skeletal size. Since cortical area shows the best correlation with outer diameter within each age group and since cortical area represents best the ash content of the bones the values of this index are most suited to be grouped according to outer diameter. In differentiating pathological from physiological bone loss this procedure is an improvement on the previously published indices of amount of bone. When comparing different populations this method has advantages since skeletal size differences are eliminated. Comparing seven populations it was found that populations living in the United States of America have more bone for a given skeletal size than populations in Europe or Nigeria. Bone loss with age is a general phenomenon but differences in rate of loss are observed between the sexes and between ethnic different populations. The decrease of bone mass is faster after the age of 50 years in woman than in men. Blacks living in the United States loose less bone with age than whites. Radiogrammetry of cortical bone in groups gives useful information on bond remodelling during ageing and in pathological conditions. At an individual level, however, it is difficult to evaluate changes on a short term basis with radiogrammetry. Radiogrammetry of cortical bone is a simple and

  3. Using an Artificial Neural Bypass to Restore Cortical Control of Rhythmic Movements in a Human with Quadriplegia

    Science.gov (United States)

    Sharma, Gaurav; Friedenberg, David A.; Annetta, Nicholas; Glenn, Bradley; Bockbrader, Marcie; Majstorovic, Connor; Domas, Stephanie; Mysiw, W. Jerry; Rezai, Ali; Bouton, Chad

    2016-09-01

    Neuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand movements in a paralyzed person. However, cortical control of rhythmic movements which originate in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal cord has not been demonstrated previously. Here we show a demonstration of an artificial neural bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing volitional rhythmic hand movement. The technology uses a combination of signals recorded from the brain, machine-learning algorithms to decode the signals, a numerical model of CPG network, and a neuromuscular electrical stimulation system to evoke rhythmic movements. Using the neural bypass, a quadriplegic participant was able to initiate, sustain, and switch between rhythmic and discrete finger movements, using his thoughts alone. These results have implications in advancing neuroprosthetic technology to restore complex movements in people living with paralysis.

  4. Cortical Evolution: Judge the Brain by Its Cover

    Science.gov (United States)

    Geschwind, Daniel H.; Rakic, Pasko

    2014-01-01

    To understand the emergence of human higher cognition, we must understand its biological substrate—the cerebral cortex, which considers itself the crowning achievement of evolution. Here, we describe how advances in developmental neurobiology, coupled with those in genetics, including adaptive protein evolution via gene duplications and the emergence of novel regulatory elements, can provide insights into the evolutionary mechanisms culminating in the human cerebrum. Given that the massive expansion of the cortical surface and elaboration of its connections in humans originates from developmental events, understanding the genetic regulation of cell number, neuronal migration to proper layers, columns, and regions, and ultimately their differentiation into specific phenotypes, is critical. The pre- and postnatal environment also interacts with the cellular substrate to yield a basic network that is refined via selection and elimination of synaptic connections, a process that is prolonged in humans. This knowledge provides essential insight into the pathogenesis of human-specific neuropsychiatric disorders. PMID:24183016

  5. The roles of cortical oscillations in sustained attention.

    Science.gov (United States)

    Clayton, Michael S; Yeung, Nick; Cohen Kadosh, Roi

    2015-04-01

    We rely on sustained attention to protect task performance against fatigue and distraction. Time-related variations in attention correlate with amplitude changes of specific cortical oscillations. However, the ways in which these oscillations might support sustained attention, how these oscillations are controlled, and the extent to which they influence one another remain unclear. We address this issue by proposing an oscillatory model of sustained attention. Within this framework, sustained attention relies on frontomedial theta oscillations, inter-areal communication via low-frequency phase synchronisation, and selective excitation and inhibition of cognitive processing through gamma and alpha oscillations, respectively. Sustained attention also relies on interactions between these oscillations across attention-related brain networks.

  6. Stochastic transitions into silence cause noise correlations in cortical circuits.

    Science.gov (United States)

    Mochol, Gabriela; Hermoso-Mendizabal, Ainhoa; Sakata, Shuzo; Harris, Kenneth D; de la Rocha, Jaime

    2015-03-17

    The spiking activity of cortical neurons is highly variable. This variability is generally correlated among nearby neurons, an effect commonly interpreted to reflect the coactivation of neurons due to anatomically shared inputs. Recent findings, however, indicate that correlations can be dynamically modulated, suggesting that the underlying mechanisms are not well understood. Here, we investigate the hypothesis that correlations are dominated by neuronal coinactivation: the occurrence of brief silent periods during which all neurons in the local network stop firing. We recorded spiking activity from large populations of neurons in the auditory cortex of anesthetized rats across different brain states. During spontaneous activity, the reduction of correlation accompanying brain state desynchronization was largely explained by a decrease in the density of the silent periods. The presentation of a stimulus caused an initial drop of correlations followed by a rebound, a time course that was mimicked by the instantaneous silence density. We built a rate network model with fluctuation-driven transitions between a silent and an active attractor and assumed that neurons fired Poisson spike trains with a rate following the model dynamics. Variations of the network external input altered the transition rate into the silent attractor and reproduced the relation between correlation and silence density found in the data, both in spontaneous and evoked conditions. This suggests that the observed changes in correlation, occurring gradually with brain state variations or abruptly with sensory stimulation, are due to changes in the likeliness of the microcircuit to transiently cease firing.

  7. Neurodynamics of somatosensory cortices studied by magnetoencephelography.

    Science.gov (United States)

    Kishida, Kuniharu

    2013-09-01

    From the viewpoint of statistical inverse problems, identification of transfer functions in feedback models is applied for neurodynamics of somatosensory cortices, and brain communication among active regions can be expressed in terms of transfer functions. However, brain activities have been investigated mainly by averaged waveforms in the conventional magnetoencephalography analysis, and thus brain communication among active regions has not yet been identified. It is shown that brain communication among two more than three brain regions is determined, when fluctuations related to concatenate averaged waveforms can be obtained by using a suitable blind source separation method. In blind identification of feedback model, some transfer functions or their impulse responses between output variables of current dipoles corresponding to active regions are identified from reconstructed time series data of fluctuations by the method of inverse problem. Neurodynamics of somatosensory cortices in 5 Hz median nerve stimuli can be shown by cerebral communication among active regions of somatosensory cortices in terms of impulse responses of feedback model.

  8. Temporal interactions between cortical rhythms

    Directory of Open Access Journals (Sweden)

    Anita K Roopun

    2008-12-01

    Full Text Available Multiple local neuronal circuits support different, discrete frequencies of network rhythm in neocortex. Relationships between different frequencies correspond to mechanisms designed to minimise interference, couple activity via stable phase interactions, and control the amplitude of one frequency relative to the phase of another. These mechanisms are proposed to form a framework for spectral information processing. Individual local circuits can also transform their frequency through changes in intrinsic neuronal properties and interactions with other oscillating microcircuits. Here we discuss a frequency transformation in which activity in two coactive local circuits may combine sequentially to generate a third frequency whose period is the concatenation sum of the original two. With such an interaction, the intrinsic periodicity in each component local circuit is preserved – alternate, single periods of each original rhythm form one period of a new frequency - suggesting a robust mechanism for combining information processed on multiple concurrent spatiotemporal scales.

  9. Rasmussen's encephalitis presenting as focal cortical dysplasia

    Directory of Open Access Journals (Sweden)

    D.J. O'Rourke

    2014-01-01

    Full Text Available Rasmussen's encephalitis is a rare syndrome characterized by intractable seizures, often associated with epilepsia partialis continua and symptoms of progressive hemispheric dysfunction. Seizures are usually the hallmark of presentation, but antiepileptic drug treatment fails in most patients and is ineffective against epilepsia partialis continua, which often requires surgical intervention. Co-occurrence of focal cortical dysplasia has only rarely been described and may have implications regarding pathophysiology and management. We describe a rare case of dual pathology of Rasmussen's encephalitis presenting as a focal cortical dysplasia (FCD and discuss the literature on this topic.

  10. Elemental mercury poisoning probably causes cortical myoclonus.

    Science.gov (United States)

    Ragothaman, Mona; Kulkarni, Girish; Ashraf, Valappil V; Pal, Pramod K; Chickabasavaiah, Yasha; Shankar, Susarla K; Govindappa, Srikanth S; Satishchandra, Parthasarthy; Muthane, Uday B

    2007-10-15

    Mercury toxicity causes postural tremors, commonly referred to as "mercurial tremors," and cerebellar dysfunction. A 23-year woman, 2 years after injecting herself with elemental mercury developed disabling generalized myoclonus and ataxia. Electrophysiological studies confirmed the myoclonus was probably of cortical origin. Her deficits progressed over 2 years and improved after subcutaneous mercury deposits at the injection site were surgically cleared. Myoclonus of cortical origin has never been described in mercury poisoning. It is important to ask patients presenting with jerks about exposure to elemental mercury even if they have a progressive illness, as it is a potentially reversible condition as in our patient.

  11. Posterior cortical atrophy: a brief review.

    Science.gov (United States)

    Kirshner, Howard S; Lavin, Patrick J M

    2006-11-01

    Posterior cortical atrophy is a striking clinical syndrome in which a dementing illness begins with visual symptoms. Initially, the problem may seem to be loss of elementary vision, but over time the patient develops features of visual agnosia, topographical difficulty, optic ataxia, simultanagnosia, ocular apraxia (Balint's syndrome), alexia, acalculia, right-left confusion, and agraphia (Gerstmann's syndrome), and later a more generalized dementia. Occasional patients have visual hallucinations and signs of Parkinson's disease or Lewy body dementia. A number of different neuropathologic disorders are associated with posterior cortical atrophy.

  12. Cell-sized liposomes reveal how actomyosin cortical tension drives shape change.

    Science.gov (United States)

    Carvalho, Kevin; Tsai, Feng-Ching; Tsai, Feng C; Lees, Edouard; Voituriez, Raphaël; Koenderink, Gijsje H; Sykes, Cecile

    2013-10-08

    Animal cells actively generate contractile stress in the actin cortex, a thin actin network beneath the cell membrane, to facilitate shape changes during processes like cytokinesis and motility. On the microscopic scale, this stress is generated by myosin molecular motors, which bind to actin cytoskeletal filaments and use chemical energy to exert pulling forces. To decipher the physical basis for the regulation of cell shape changes, here, we use a cell-like system with a cortex anchored to the outside or inside of a liposome membrane. This system enables us to dissect the interplay between motor pulling forces, cortex-membrane anchoring, and network connectivity. We show that cortices on the outside of liposomes either spontaneously rupture and relax built-up mechanical stress by peeling away around the liposome or actively compress and crush the liposome. The decision between peeling and crushing depends on the cortical tension determined by the amount of motors and also on the connectivity of the cortex and its attachment to the membrane. Membrane anchoring strongly affects the morphology of cortex contraction inside liposomes: cortices contract inward when weakly attached, whereas they contract toward the membrane when strongly attached. We propose a physical model based on a balance of active tension and mechanical resistance to rupture. Our findings show how membrane attachment and network connectivity are able to regulate actin cortex remodeling and membrane-shape changes for cell polarization.

  13. Independent measurement of femoral cortical thickness and cortical bone density using clinical CT.

    Science.gov (United States)

    Treece, G M; Gee, A H

    2015-02-01

    The local structure of the proximal femoral cortex is of interest since both fracture risk, and the effects of various interventions aimed at reducing that risk, are associated with cortical properties focused in particular regions rather than dispersed over the whole bone. Much of the femoral cortex is less than 3mm thick, appearing so blurred in clinical CT that its actual density is not apparent in the data, and neither thresholding nor full-width half-maximum techniques are capable of determining its width. Our previous work on cortical bone mapping showed how to produce more accurate estimates of cortical thickness by assuming a fixed value of the cortical density for each hip. However, although cortical density varies much less over the proximal femur than thickness, what little variation there is leads to errors in thickness measurement. In this paper, we develop the cortical bone mapping technique by exploiting local estimates of imaging blur to correct the global density estimate, thus providing a local density estimate as well as more accurate estimates of thickness. We also consider measurement of cortical mass surface density and the density of trabecular bone immediately adjacent to the cortex. Performance is assessed with ex vivo clinical QCT scans of proximal femurs, with true values derived from high resolution HRpQCT scans of the same bones. We demonstrate superior estimation of thickness than is possible with alternative techniques (accuracy 0.12 ± 0.39 mm for cortices in the range 1-3mm), and that local cortical density estimation is feasible for densities >800 mg/cm(3).

  14. A thalamo-cortical neural mass model for the simulation of brain rhythms during sleep.

    Science.gov (United States)

    Cona, F; Lacanna, M; Ursino, M

    2014-08-01

    Cortico-thalamic interactions are known to play a pivotal role in many brain phenomena, including sleep, attention, memory consolidation and rhythm generation. Hence, simple mathematical models that can simulate the dialogue between the cortex and the thalamus, at a mesoscopic level, have a great cognitive value. In the present work we describe a neural mass model of a cortico-thalamic module, based on ne