WorldWideScience

Sample records for cortical microtubule array

  1. Model for the orientational ordering of the plant microtubule cortical array

    Science.gov (United States)

    Hawkins, Rhoda J.; Tindemans, Simon H.; Mulder, Bela M.

    2010-07-01

    The plant microtubule cortical array is a striking feature of all growing plant cells. It consists of a more or less homogeneously distributed array of highly aligned microtubules connected to the inner side of the plasma membrane and oriented transversely to the cell growth axis. Here, we formulate a continuum model to describe the origin of orientational order in such confined arrays of dynamical microtubules. The model is based on recent experimental observations that show that a growing cortical microtubule can interact through angle dependent collisions with pre-existing microtubules that can lead either to co-alignment of the growth, retraction through catastrophe induction or crossing over the encountered microtubule. We identify a single control parameter, which is fully determined by the nucleation rate and intrinsic dynamics of individual microtubules. We solve the model analytically in the stationary isotropic phase, discuss the limits of stability of this isotropic phase, and explicitly solve for the ordered stationary states in a simplified version of the model.

  2. TONNEAU2/FASS Regulates the Geometry of Microtubule Nucleation and Cortical Array Organization in Interphase Arabidopsis Cells[C][W

    Science.gov (United States)

    Kirik, Angela; Ehrhardt, David W.; Kirik, Viktor

    2012-01-01

    Organization of microtubules into ordered arrays involves spatial and temporal regulation of microtubule nucleation. Here, we show that acentrosomal microtubule nucleation in plant cells involves a previously unknown regulatory step that determines the geometry of microtubule nucleation. Dynamic imaging of interphase cortical microtubules revealed that the ratio of branching to in-bundle microtubule nucleation on cortical microtubules is regulated by the Arabidopsis thaliana B′′ subunit of protein phosphatase 2A, which is encoded by the TONNEAU2/FASS (TON2) gene. The probability of nucleation from γ-tubulin complexes localized at the cell cortex was not affected by a loss of TON2 function, suggesting a specific role of TON2 in regulating the nucleation geometry. Both loss of TON2 function and ectopic targeting of TON2 to the plasma membrane resulted in defects in cell shape, suggesting the importance of TON2-mediated regulation of the microtubule cytoskeleton in cell morphogenesis. Loss of TON2 function also resulted in an inability for cortical arrays to reorient in response to light stimulus, suggesting an essential role for TON2 and microtubule branching nucleation in reorganization of microtubule arrays. Our data establish TON2 as a regulator of interphase microtubule nucleation and provide experimental evidence for a novel regulatory step in the process of microtubule-dependent nucleation. PMID:22395485

  3. Taking directions: the role of microtubule-bound nucleation in the self-organization of the plant cortical array

    International Nuclear Information System (INIS)

    Deinum, Eva E; Tindemans, Simon H; Mulder, Bela M

    2011-01-01

    The highly aligned cortical microtubule array of interphase plant cells is a key regulator of anisotropic cell expansion. Recent computational and analytical work has shown that the non-equilibrium self-organization of this structure can be understood on the basis of experimentally observed collisional interactions between dynamic microtubules attached to the plasma membrane. Most of these approaches assumed that new microtubules are homogeneously and isotropically nucleated on the cortical surface. Experimental evidence, however, shows that nucleation mostly occurs from other microtubules and under specific relative angles. Here, we investigate the impact of directed microtubule-bound nucleations on the alignment process using computer simulations. The results show that microtubule-bound nucleations can increase the degree of alignment achieved, decrease the timescale of the ordering process and widen the regime of dynamic parameters for which the system can self-organize. We establish that the major determinant of this effect is the degree of co-alignment of the nucleations with the parent microtubule. The specific role of sideways branching nucleations appears to allow stronger alignment while maintaining a measure of overall spatial homogeneity. Finally, we investigate the suggestion that observed persistent rotation of microtubule domains can be explained through a handedness bias in microtubule-bound nucleations, showing that this is possible only for an extreme bias and over a limited range of parameters

  4. Taking directions: the role of microtubule-bound nucleation in the self-organization of the plant cortical array

    Science.gov (United States)

    Deinum, Eva E.; Tindemans, Simon H.; Mulder, Bela M.

    2011-10-01

    The highly aligned cortical microtubule array of interphase plant cells is a key regulator of anisotropic cell expansion. Recent computational and analytical work has shown that the non-equilibrium self-organization of this structure can be understood on the basis of experimentally observed collisional interactions between dynamic microtubules attached to the plasma membrane. Most of these approaches assumed that new microtubules are homogeneously and isotropically nucleated on the cortical surface. Experimental evidence, however, shows that nucleation mostly occurs from other microtubules and under specific relative angles. Here, we investigate the impact of directed microtubule-bound nucleations on the alignment process using computer simulations. The results show that microtubule-bound nucleations can increase the degree of alignment achieved, decrease the timescale of the ordering process and widen the regime of dynamic parameters for which the system can self-organize. We establish that the major determinant of this effect is the degree of co-alignment of the nucleations with the parent microtubule. The specific role of sideways branching nucleations appears to allow stronger alignment while maintaining a measure of overall spatial homogeneity. Finally, we investigate the suggestion that observed persistent rotation of microtubule domains can be explained through a handedness bias in microtubule-bound nucleations, showing that this is possible only for an extreme bias and over a limited range of parameters.

  5. Calcium-dependent depletion zones in the cortical microtubule array coincide with sites of, but do not regulate, wall ingrowth papillae deposition in epidermal transfer cells

    Science.gov (United States)

    Zhang, Hui-ming; Talbot, Mark J.; McCurdy, David W.; Patrick, John W.; Offler, Christina E.

    2015-01-01

    Trans-differentiation to a transfer-cell morphology is characterized by the localized deposition of wall ingrowth papillae that protrude into the cytosol. Whether the cortical microtubule array directs wall ingrowth papillae formation was investigated using a Vicia faba cotyledon culture system in which their adaxial epidermal cells were spontaneously induced to trans-differentiate to transfer cells. During deposition of wall ingrowth papillae, the aligned cortical microtubule arrays in precursor epidermal cells were reorganized into a randomized array characterized by circular depletion zones. Concurrence of the temporal appearance, spatial pattern, and size of depletion zones and wall ingrowth papillae was consistent with each papilla occupying a depletion zone. Surprisingly, microtubules appeared not to regulate construction of wall ingrowth papillae, as neither depolymerization nor stabilization of cortical microtubules changed their deposition pattern or morphology. Moreover, the size and spatial pattern of depletion zones was unaltered when the formation of wall ingrowth papillae was blocked by inhibiting cellulose biosynthesis. In contrast, the depletion zones were absent when the cytosolic calcium plumes, responsible for directing wall ingrowth papillae formation, were blocked or dissipated. Thus, we conclude that the depletion zones within the cortical microtubule array result from localized depolymerization of microtubules initiated by elevated cytosolic Ca2+ levels at loci where wall ingrowth papillae are deposited. The physiological significance of the depletion zones as a mechanism to accommodate the construction of wall ingrowth papillae without compromising maintenance of the plasma membrane–microtubule inter-relationship is discussed. PMID:26136268

  6. Calcium-dependent depletion zones in the cortical microtubule array coincide with sites of, but do not regulate, wall ingrowth papillae deposition in epidermal transfer cells.

    Science.gov (United States)

    Zhang, Hui-ming; Talbot, Mark J; McCurdy, David W; Patrick, John W; Offler, Christina E

    2015-09-01

    Trans-differentiation to a transfer-cell morphology is characterized by the localized deposition of wall ingrowth papillae that protrude into the cytosol. Whether the cortical microtubule array directs wall ingrowth papillae formation was investigated using a Vicia faba cotyledon culture system in which their adaxial epidermal cells were spontaneously induced to trans-differentiate to transfer cells. During deposition of wall ingrowth papillae, the aligned cortical microtubule arrays in precursor epidermal cells were reorganized into a randomized array characterized by circular depletion zones. Concurrence of the temporal appearance, spatial pattern, and size of depletion zones and wall ingrowth papillae was consistent with each papilla occupying a depletion zone. Surprisingly, microtubules appeared not to regulate construction of wall ingrowth papillae, as neither depolymerization nor stabilization of cortical microtubules changed their deposition pattern or morphology. Moreover, the size and spatial pattern of depletion zones was unaltered when the formation of wall ingrowth papillae was blocked by inhibiting cellulose biosynthesis. In contrast, the depletion zones were absent when the cytosolic calcium plumes, responsible for directing wall ingrowth papillae formation, were blocked or dissipated. Thus, we conclude that the depletion zones within the cortical microtubule array result from localized depolymerization of microtubules initiated by elevated cytosolic Ca(2+) levels at loci where wall ingrowth papillae are deposited. The physiological significance of the depletion zones as a mechanism to accommodate the construction of wall ingrowth papillae without compromising maintenance of the plasma membrane-microtubule inter-relationship is discussed. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Microtubule bundling plays a role in ethylene-mediated cortical microtubule reorientation in etiolated Arabidopsis hypocotyls.

    Science.gov (United States)

    Ma, Qianqian; Sun, Jingbo; Mao, Tonglin

    2016-05-15

    The gaseous hormone ethylene is known to regulate plant growth under etiolated conditions (the 'triple response'). Although organization of cortical microtubules is essential for cell elongation, the underlying mechanisms that regulate microtubule organization by hormone signaling, including ethylene, are ambiguous. In the present study, we demonstrate that ethylene signaling participates in regulation of cortical microtubule reorientation. In particular, regulation of microtubule bundling is important for this process in etiolated hypocotyls. Time-lapse analysis indicated that selective stabilization of microtubule-bundling structures formed in various arrays is related to ethylene-mediated microtubule orientation. Bundling events and bundle growth lifetimes were significantly increased in oblique and longitudinal arrays, but decreased in transverse arrays in wild-type cells in response to ethylene. However, the effects of ethylene on microtubule bundling were partially suppressed in a microtubule-bundling protein WDL5 knockout mutant (wdl5-1). This study suggests that modulation of microtubule bundles that have formed in certain orientations plays a role in reorienting microtubule arrays in response to ethylene-mediated etiolated hypocotyl cell elongation. © 2016. Published by The Company of Biologists Ltd.

  8. The dynamic interplay of plasma membrane domains and cortical microtubules in secondary cell wall patterning

    Directory of Open Access Journals (Sweden)

    Yoshihisa eOda

    2013-12-01

    Full Text Available Patterning of the cellulosic cell wall underlies the shape and function of plant cells. The cortical microtubule array plays a central role in the regulation of cell wall patterns. However, the regulatory mechanisms by which secondary cell wall patterns are established through cortical microtubules remain to be fully determined. Our recent study in xylem vessel cells revealed that a mutual inhibitory interaction between cortical microtubules and distinct plasma membrane domains leads to distinctive patterning in secondary cell walls. Our research revealed that the recycling of active and inactive ROP proteins by a specific GAP and GEF pair establishes distinct de novo plasma membrane domains. Active ROP recruits a plant-specific microtubule-associated protein, MIDD1, which mediates the mutual interaction between cortical microtubules and plasma membrane domains. In this mini review, we summarize recent research regarding secondary wall patterning, with a focus on the emerging interplay between plasma membrane domains and cortical microtubules through MIDD1 and ROP.

  9. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments.

    NARCIS (Netherlands)

    Gutierrez, R.; Lindeboom, J.J.; Paredez, A.R.; Emons, A.M.C.; Ehrhardt, D.W.

    2009-01-01

    Plant cell morphogenesis relies on the organization and function of two polymer arrays separated by the plasma membrane: the cortical microtubule cytoskeleton and cellulose microfibrils in the cell wall. Studies using in vivo markers confirmed that one function of the cortical microtubule array is

  10. Microtubule heterogeneity of Ornithogalum umbellatum ovary epidermal cells: non-stable cortical microtubules and stable lipotubuloid microtubules.

    Science.gov (United States)

    Kwiatkowska, Maria; Stępiński, Dariusz; Polit, Justyna T; Popłońska, Katarzyna; Wojtczak, Agnieszka

    2011-01-01

    Lipotubuloids, structures containing lipid bodies and microtubules, are described in ovary epidermal cells of Ornithogalum umbellatum. Microtubules of lipotubuloids can be fixed in electron microscope fixative containing only buffered OsO(4) or in glutaraldehyde with OsO(4) post-fixation, or in a mixture of OsO(4) and glutaraldehyde. None of these substances fixes cortical microtubules of ovary epidermis of this plant which is characterized by dynamic longitudinal growth. However, cortical microtubules can be fixed with cold methanol according immunocytological methods with the use of β-tubulin antibodies and fluorescein. The existence of cortical microtubules has also been evidenced by EM observations solely after the use of taxol, microtubule stabilizer, and fixation in a glutaraldehyde/OsO(4) mixture. These microtubules mostly lie transversely, sometimes obliquely, and rarely parallel to the cell axis. Staining, using Ruthenium Red and silver hexamine, has revealed that lipotubuloid microtubules surface is covered with polysaccharides. The presumption has been made that the presence of a polysaccharide layer enhances the stability of lipotubuloid microtubules.

  11. A computational framework for cortical microtubule dynamics in realistically shaped plant cells.

    Directory of Open Access Journals (Sweden)

    Bandan Chakrabortty

    2018-02-01

    Full Text Available Plant morphogenesis is strongly dependent on the directional growth and the subsequent oriented division of individual cells. It has been shown that the plant cortical microtubule array plays a key role in controlling both these processes. This ordered structure emerges as the collective result of stochastic interactions between large numbers of dynamic microtubules. To elucidate this complex self-organization process a number of analytical and computational approaches to study the dynamics of cortical microtubules have been proposed. To date, however, these models have been restricted to two dimensional planes or geometrically simple surfaces in three dimensions, which strongly limits their applicability as plant cells display a wide variety of shapes. This limitation is even more acute, as both local as well as global geometrical features of cells are expected to influence the overall organization of the array. Here we describe a framework for efficiently simulating microtubule dynamics on triangulated approximations of arbitrary three dimensional surfaces. This allows the study of microtubule array organization on realistic cell surfaces obtained by segmentation of microscopic images. We validate the framework against expected or known results for the spherical and cubical geometry. We then use it to systematically study the individual contributions of global geometry, cell-edge induced catastrophes and cell-face induced stability to array organization in a cuboidal geometry. Finally, we apply our framework to analyze the highly non-trivial geometry of leaf pavement cells of Arabidopsis thaliana, Nicotiana benthamiana and Hedera helix. We show that our simulations can predict multiple features of the microtubule array structure in these cells, revealing, among others, strong constraints on the orientation of division planes.

  12. A computational framework for cortical microtubule dynamics in realistically shaped plant cells

    KAUST Repository

    Chakrabortty, Bandan; Blilou, Ikram; Scheres, Ben; Mulder, Bela M.

    2018-01-01

    Plant morphogenesis is strongly dependent on the directional growth and the subsequent oriented division of individual cells. It has been shown that the plant cortical microtubule array plays a key role in controlling both these processes. This ordered structure emerges as the collective result of stochastic interactions between large numbers of dynamic microtubules. To elucidate this complex self-organization process a number of analytical and computational approaches to study the dynamics of cortical microtubules have been proposed. To date, however, these models have been restricted to two dimensional planes or geometrically simple surfaces in three dimensions, which strongly limits their applicability as plant cells display a wide variety of shapes. This limitation is even more acute, as both local as well as global geometrical features of cells are expected to influence the overall organization of the array. Here we describe a framework for efficiently simulating microtubule dynamics on triangulated approximations of arbitrary three dimensional surfaces. This allows the study of microtubule array organization on realistic cell surfaces obtained by segmentation of microscopic images. We validate the framework against expected or known results for the spherical and cubical geometry. We then use it to systematically study the individual contributions of global geometry, cell-edge induced catastrophes and cell-face induced stability to array organization in a cuboidal geometry. Finally, we apply our framework to analyze the highly non-trivial geometry of leaf pavement cells of Arabidopsis thaliana, Nicotiana benthamiana and Hedera helix. We show that our simulations can predict multiple features of the microtubule array structure in these cells, revealing, among others, strong constraints on the orientation of division planes.

  13. A computational framework for cortical microtubule dynamics in realistically shaped plant cells

    KAUST Repository

    Chakrabortty, Bandan

    2018-02-02

    Plant morphogenesis is strongly dependent on the directional growth and the subsequent oriented division of individual cells. It has been shown that the plant cortical microtubule array plays a key role in controlling both these processes. This ordered structure emerges as the collective result of stochastic interactions between large numbers of dynamic microtubules. To elucidate this complex self-organization process a number of analytical and computational approaches to study the dynamics of cortical microtubules have been proposed. To date, however, these models have been restricted to two dimensional planes or geometrically simple surfaces in three dimensions, which strongly limits their applicability as plant cells display a wide variety of shapes. This limitation is even more acute, as both local as well as global geometrical features of cells are expected to influence the overall organization of the array. Here we describe a framework for efficiently simulating microtubule dynamics on triangulated approximations of arbitrary three dimensional surfaces. This allows the study of microtubule array organization on realistic cell surfaces obtained by segmentation of microscopic images. We validate the framework against expected or known results for the spherical and cubical geometry. We then use it to systematically study the individual contributions of global geometry, cell-edge induced catastrophes and cell-face induced stability to array organization in a cuboidal geometry. Finally, we apply our framework to analyze the highly non-trivial geometry of leaf pavement cells of Arabidopsis thaliana, Nicotiana benthamiana and Hedera helix. We show that our simulations can predict multiple features of the microtubule array structure in these cells, revealing, among others, strong constraints on the orientation of division planes.

  14. Microtubule array reorientation in response to hormones does not involve changes in microtubule nucleation modes at the periclinal cell surface

    Science.gov (United States)

    Atkinson, Samantha; Kirik, Angela; Kirik, Viktor

    2014-01-01

    Aligned microtubule arrays spatially organize cell division, trafficking, and determine the direction of cell expansion in plant cells. In response to changes in environmental and developmental signals, cells reorganize their microtubule arrays into new configurations. Here, we tested the role of microtubule nucleation during hormone-induced microtubule array reorientation. We have found that in the process of microtubule array reorientation the ratios between branching, parallel, and de-novo nucleations remained constant, suggesting that the microtubule reorientation mechanism does not involve changes in nucleation modes. In the ton2/fass mutant, which has reduced microtubule branching nucleation frequency and decreased nucleation activity of the γ-tubulin complexes, microtubule arrays were able to reorient. Presented data suggest that reorientation of microtubules into transverse arrays in response to hormones does not involve changes in microtubule nucleation at the periclinal cell surface PMID:25135522

  15. Calmodulin immunolocalization to cortical microtubules is calcium independent

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.D.; Cyr, R.J.

    1992-12-31

    Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10), was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical Mats of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tobacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these Mats, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized Mats were lysed in the presence of various concentrations of calcium and examined for the association of Cam with cortical Mats. At 1 {mu}M calcium, many protoplasts did not have CaM in association with the cortical Mats, while at 3.6 {mu}M calcium, this association was completely abolished. The results are discussed in terms of a model in which CaM associates with Mats via two types of interactions; one calcium dependent and one independent.

  16. Calmodulin immunolocalization to cortical microtubules is calcium independent

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.D.; Cyr, R.J.

    1992-01-01

    Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10), was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical Mats of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tobacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these Mats, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized Mats were lysed in the presence of various concentrations of calcium and examined for the association of Cam with cortical Mats. At 1 [mu]M calcium, many protoplasts did not have CaM in association with the cortical Mats, while at 3.6 [mu]M calcium, this association was completely abolished. The results are discussed in terms of a model in which CaM associates with Mats via two types of interactions; one calcium dependent and one independent.

  17. Linking cortical microtubule attachment and exocytosis [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Ivar Noordstra

    2017-04-01

    Full Text Available Exocytosis is a fundamental cellular process whereby secreted molecules are packaged into vesicles that move along cytoskeletal filaments and fuse with the plasma membrane. To function optimally, cells are strongly dependent on precisely controlled delivery of exocytotic cargo. In mammalian cells, microtubules serve as major tracks for vesicle transport by motor proteins, and thus microtubule organization is important for targeted delivery of secretory carriers. Over the years, multiple microtubule-associated and cortical proteins have been discovered that facilitate the interaction between the microtubule plus ends and the cell cortex. In this review, we focus on mammalian protein complexes that have been shown to participate in both cortical microtubule capture and exocytosis, thereby regulating the spatial organization of secretion. These complexes include microtubule plus-end tracking proteins, scaffolding factors, actin-binding proteins, and components of vesicle docking machinery, which together allow efficient coordination of cargo transport and release.

  18. Cortical microtubule nucleation can organise the cytoskeleton of Drosophila oocytes to define the anteroposterior axis

    Science.gov (United States)

    Khuc Trong, Philipp; Doerflinger, Hélène; Dunkel, Jörn; St Johnston, Daniel; Goldstein, Raymond E

    2015-01-01

    Many cells contain non-centrosomal arrays of microtubules (MTs), but the assembly, organisation and function of these arrays are poorly understood. We present the first theoretical model for the non-centrosomal MT cytoskeleton in Drosophila oocytes, in which bicoid and oskar mRNAs become localised to establish the anterior-posterior body axis. Constrained by experimental measurements, the model shows that a simple gradient of cortical MT nucleation is sufficient to reproduce the observed MT distribution, cytoplasmic flow patterns and localisation of oskar and naive bicoid mRNAs. Our simulations exclude a major role for cytoplasmic flows in localisation and reveal an organisation of the MT cytoskeleton that is more ordered than previously thought. Furthermore, modulating cortical MT nucleation induces a bifurcation in cytoskeletal organisation that accounts for the phenotypes of polarity mutants. Thus, our three-dimensional model explains many features of the MT network and highlights the importance of differential cortical MT nucleation for axis formation. DOI: http://dx.doi.org/10.7554/eLife.06088.001 PMID:26406117

  19. Microtubule-targeting drugs rescue axonal swellings in cortical neurons from spastin knockout mice

    Directory of Open Access Journals (Sweden)

    Coralie Fassier

    2013-01-01

    Mutations in SPG4, encoding the microtubule-severing protein spastin, are responsible for the most frequent form of hereditary spastic paraplegia (HSP, a heterogeneous group of genetic diseases characterized by degeneration of the corticospinal tracts. We previously reported that mice harboring a deletion in Spg4, generating a premature stop codon, develop progressive axonal degeneration characterized by focal axonal swellings associated with impaired axonal transport. To further characterize the molecular and cellular mechanisms underlying this mutant phenotype, we have assessed microtubule dynamics and axonal transport in primary cultures of cortical neurons from spastin-mutant mice. We show an early and marked impairment of microtubule dynamics all along the axons of spastin-deficient cortical neurons, which is likely to be responsible for the occurrence of axonal swellings and cargo stalling. Our analysis also reveals that a modulation of microtubule dynamics by microtubule-targeting drugs rescues the mutant phenotype of cortical neurons. Together, these results contribute to a better understanding of the pathogenesis of SPG4-linked HSP and ascertain the influence of microtubule-targeted drugs on the early axonal phenotype in a mouse model of the disease.

  20. A novel mechanism important for the alignment of microtubules.

    Science.gov (United States)

    Wightman, Raymond; Turner, Simon R

    2008-04-01

    Using a live-cell imaging approach to study individual micro-tubules, we have compared microtubule behavior between net-like and aligned cortical arrays. In contrast to previous studies, a steep angled collision between the growing end of a microtubule and a preexisting microtubule was found to favor crossover. Frequencies of microtubule crossovers, bundling and catastrophes are similar regardless of whether the cell exhibited a net-like or aligned microtubule array. In the predominantly aligned array of petiole cells, severing occurs at the sites of microtubule crossovers and serves to remove unaligned microtubules and to increase microtubule density. Severing was observed to be rare in net-like arrays. Microtubule severing is carried out by the katanin enzyme. In this addendum, we present new insights into the possible mechanism of crossing over and preliminary data looking at organization of the array in a katanin mutant.

  1. Role of membrane sterols and cortical microtubules in gravity resistance in plants

    Science.gov (United States)

    Hoson, T.; Koizumi, T.; Matsumoto, S.; Kumasaki, S.; Soga, K.; Wakabayashi, K.; Sakaki, T.

    Resistance to the gravitational force is a principal graviresponse in plants comparable to gravitropism Nevertheless only limited information has been obtained for this graviresponse We have examined mechanisms of signal perception transformation and transduction of the perceived signal and response to the transduced signal in gravity resistance using hypergravity conditions produced by centrifugation In Arabidopsis hypocotyls hypergravity treatment greatly increased the expression level of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase HMGR which catalyzes a reaction producing mevalonic acid a key precursor of terpenoids such as membrane sterols Geranyl diphosphate synthase gene was also up-regulated by hypergravity whereas the expression of other genes involved in membrane lipid metabolism was not influenced Hypergravity caused an increase in sterol content in azuki bean epicotyls but not in phospholipid glycolipid or fatty acid content Also hypergravity did not influence fatty acid composition in any lipid class Thus the effect of hypergravity on membrane lipid metabolism was specific for sterol synthesis On the other hand alpha- and beta-tubulin genes were up-regulated by hypergravity treatment in Arabidopsis hypocotyls Hypergravity also induced reorientation of cortical microtubules in azuki epicotyls the percentage of epidermal cells with transverse microtubles was decreased whereas that with longitudinal microtubules was increased Inhibitors of HMGR action and microtubule-disrupting agents completely prevented the gravity resistance

  2. Producing Conditional Mutants for Studying Plant Microtubule Function

    Energy Technology Data Exchange (ETDEWEB)

    Richard Cyr

    2009-09-29

    The cytoskeleton, and in particular its microtubule component, participates in several processes that directly affect growth and development in higher plants. Normal cytoskeletal function requires the precise and orderly arrangement of microtubules into several cell cycle and developmentally specific arrays. One of these, the cortical array, is notable for its role in directing the deposition of cellulose (the most prominent polymer in the biosphere). An understanding of how these arrays form, and the molecular interactions that contribute to their function, is incomplete. To gain a better understanding of how microtubules work, we have been working to characterize mutants in critical cytoskeletal genes. This characterization is being carried out at the subcellular level using vital microtubule gene constructs. In the last year of funding colleagues have discovered that gamma-tubulin complexes form along the lengths of cortical microtubules where they act to spawn new microtubules at a characteristic 40 deg angle. This finding complements nicely the finding from our lab (which was funded by the DOE) showing that microtubule encounters are angle dependent; high angles encounters results in catastrophic collisions while low angle encounters result in favorable zippering. The finding of a 40 deg spawn of new microtubules from extant microtubule, together with aforementioned rules of encounters, insures favorable co-alignment in the array. I was invited to write a New and Views essay on this topic and a PDF is attached (News and Views policy does not permit funding acknowledgments and so I was not allowed to acknowledge support from the DOE).

  3. Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants.

    Science.gov (United States)

    Sotiriou, P; Giannoutsou, E; Panteris, E; Apostolakos, P; Galatis, B

    2016-03-01

    This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: : 1067-1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril

  4. Phospholipase D family interactions with the cytoskeleton: isoform delta promotes plasma membrane anchoring of cortical microtubules

    Czech Academy of Sciences Publication Activity Database

    Andreeva, Z.; Ho, A. Y. Y.; Barthet, M. M.; Potocký, Martin; Bezvoda, R.; Žárský, Viktor; Marc, J.

    2009-01-01

    Roč. 36, č. 7 (2009), s. 600-612 ISSN 1445-4408 R&D Projects: GA AV ČR IAA601110916 Institutional research plan: CEZ:AV0Z50380511 Keywords : Allium * Arabidopsis * F-actin-microtubule interactions Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.678, year: 2009

  5. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells

    Directory of Open Access Journals (Sweden)

    Qun Zhang

    2015-12-01

    Full Text Available ABSTRACT Cell division and expansion require the ordered arrangement of microtubules, which are subject to spatial and temporal modifications by developmental and environmental factors. Understanding how signals translate to changes in cortical microtubule organization is of fundamental importance. A defining feature of the cortical microtubule array is its association with the plasma membrane; modules of the plasma membrane are thought to play important roles in the mediation of microtubule organization. In this review, we highlight advances in research on the regulation of cortical microtubule organization by membrane-associated and membrane-tethered proteins and lipids in response to phytohormones and stress. The transmembrane kinase receptor Rho-like guanosine triphosphatase, phospholipase D, phosphatidic acid, and phosphoinositides are discussed with a focus on their roles in microtubule organization.

  6. Ase1p Organizes Antiparallel Microtubule Arrays during Interphase and Mitosis in Fission YeastV⃞

    OpenAIRE

    Loïodice, Isabelle; Staub, Jayme; Setty, Thanuja Gangi; Nguyen, Nam-Phuong T.; Paoletti, Anne; Tran, P. T.

    2005-01-01

    Proper microtubule organization is essential for cellular processes such as organelle positioning during interphase and spindle formation during mitosis. The fission yeast Schizosaccharomyces pombe presents a good model for understanding microtubule organization. We identify fission yeast ase1p, a member of the conserved ASE1/PRC1/MAP65 family of microtubule bundling proteins, which functions in organizing the spindle midzone during mitosis. Using fluorescence live cell imaging, we show that ...

  7. Microtubule-Organizing Centers.

    Science.gov (United States)

    Wu, Jingchao; Akhmanova, Anna

    2017-10-06

    The organization of microtubule networks is crucial for controlling chromosome segregation during cell division, for positioning and transport of different organelles, and for cell polarity and morphogenesis. The geometry of microtubule arrays strongly depends on the localization and activity of the sites where microtubules are nucleated and where their minus ends are anchored. Such sites are often clustered into structures known as microtubule-organizing centers, which include the centrosomes in animals and spindle pole bodies in fungi. In addition, other microtubules, as well as membrane compartments such as the cell nucleus, the Golgi apparatus, and the cell cortex, can nucleate, stabilize, and tether microtubule minus ends. These activities depend on microtubule-nucleating factors, such as γ-tubulin-containing complexes and their activators and receptors, and microtubule minus end-stabilizing proteins with their binding partners. Here, we provide an overview of the current knowledge on how such factors work together to control microtubule organization in different systems.

  8. Positioning of microtubule organizing centers by cortical pushing and pulling forces

    International Nuclear Information System (INIS)

    Pavin, Nenad; Ma Rui; Jülicher, Frank; Laan, Liedewij; Dogterom, Marileen

    2012-01-01

    Positioning of microtubule (MT) organizing centers with respect to the confining geometry of cells depends on pushing and/or pulling forces generated by MTs that interact with the cell cortex (Dogterom et al 2005 Curr. Opin. Cell Biol. 17 67–74). How, in living cells, these forces lead to proper positioning is still largely an open question. Recently, it was shown by in vitro experiments using artificial microchambers that in a square geometry, MT asters center more reliably by a combination of pulling and pushing forces than by pushing forces alone (Laan et al 2012a Cell 148 502–14). These findings were explained by a physical description of aster mechanics that includes slipping of pushing MT ends along chamber boundaries. In this paper, we extend that theoretical work by studying the influence of the shape of the confining geometry on the positioning process. We find that pushing and pulling forces can have centering or off-centering behavior in different geometries. Pushing forces center in a one-dimensional and a square geometry, but lead to off-centering in a circle if slipping is sufficiently pronounced. Pulling forces, however, do not center in a one-dimensional geometry, but improve centering in a circle and a square. In an elongated stadium geometry, positioning along the short axis depends mainly on pulling forces, while positioning along the long axis depends mainly on pushing forces. Our theoretical results suggest that different positioning strategies could be used by different cell types. (paper)

  9. Microtubule reorganization in tobacco BY-2 cells stably expressing GFP-MBD

    Science.gov (United States)

    Granger, C. L.; Cyr, R. J.

    2000-01-01

    Microtubule organization plays an important role in plant morphogenesis; however, little is known about how microtubule arrays transit from one organized state to another. The use of a genetically incorporated fluorescent marker would allow long-term observation of microtubule behavior in living cells. Here, we have characterized a Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cell line that had been stably transformed with a gfp-mbd construct previously demonstrated to label microtubules (J. Marc et al., 1998, Plant Cell 10: 1927-1939). Fluorescence levels were low, but interphase and mitotic microtubule arrays, as well as the transitions between these arrays, could be observed in individual gfp-mbd-transformed cells. By comparing several attributes of transformed and untransformed cells it was concluded that the transgenic cells are not adversely affected by low-level expression of the transgene and that these cells will serve as a useful and accurate model system for observing microtubule reorganization in vivo. Indeed, some initial observations were made that are consistent with the involvement of motor proteins in the transition between the spindle and phragmoplast arrays. Our observations also support the role of the perinuclear region in nucleating microtubules at the end of cell division with a progressive shift of these microtubules and/or nucleating activity to the cortex to form the interphase cortical array.

  10. Stable and dynamic microtubules coordinately shape the myosin activation zone during cytokinetic furrow formation

    Science.gov (United States)

    Foe, Victoria E.; von Dassow, George

    2008-01-01

    The cytokinetic furrow arises from spatial and temporal regulation of cortical contractility. To test the role microtubules play in furrow specification, we studied myosin II activation in echinoderm zygotes by assessing serine19-phosphorylated regulatory light chain (pRLC) localization after precisely timed drug treatments. Cortical pRLC was globally depressed before cytokinesis, then elevated only at the equator. We implicated cell cycle biochemistry (not microtubules) in pRLC depression, and differential microtubule stability in localizing the subsequent myosin activation. With no microtubules, pRLC accumulation occurred globally instead of equatorially, and loss of just dynamic microtubules increased equatorial pRLC recruitment. Nocodazole treatment revealed a population of stable astral microtubules that formed during anaphase; among these, those aimed toward the equator grew longer, and their tips coincided with cortical pRLC accumulation. Shrinking the mitotic apparatus with colchicine revealed pRLC suppression near dynamic microtubule arrays. We conclude that opposite effects of stable versus dynamic microtubules focuses myosin activation to the cell equator during cytokinesis. PMID:18955555

  11. Cortical movement of Bicoid in early Drosophila embryos is actin- and microtubule-dependent and disagrees with the SDD diffusion model.

    Directory of Open Access Journals (Sweden)

    Xiaoli Cai

    Full Text Available The Bicoid (Bcd protein gradient in Drosophila serves as a paradigm for gradient formation in textbooks. The SDD model (synthesis, diffusion, degradation was proposed to explain the formation of the gradient. The SDD model states that the bcd mRNA is located at the anterior pole of the embryo at all times and serves a source for translation of the Bicoid protein, coupled with diffusion and uniform degradation throughout the embryo. Recently, the ARTS model (active RNA transport, synthesis challenged the SDD model. In this model, the mRNA is transported at the cortex along microtubules to form a mRNA gradient which serves as template for the production of Bcd, hence little Bcd movement is involved. To test the validity of the SDD model, we developed a sensitive assay to monitor the movement of Bcd during early nuclear cycles. We observed that Bcd moved along the cortex and not in a broad front towards the posterior as the SDD model would have predicted. We subjected embryos to hypoxia where the mRNA remained strictly located at the tip at all times, while the protein was allowed to move freely, thus conforming to an ideal experimental setup to test the SDD model. Unexpectedly, Bcd still moved along the cortex. Moreover, cortical Bcd movement was sparse, even under longer hypoxic conditions. Hypoxic embryos treated with drugs compromising microtubule and actin function affected Bcd cortical movement and stability. Vinblastine treatment allowed the simulation of an ideal SDD model whereby the protein moved throughout the embryo in a broad front. In unfertilized embryos, the Bcd protein followed the mRNA which itself was transported into the interior of the embryo utilizing a hitherto undiscovered microtubular network. Our data suggest that the Bcd gradient formation is probably more complex than previously anticipated.

  12. Characterization of Early Cortical Neural Network Development in Multiwell Microelectrode Array Plates

    Science.gov (United States)

    We examined the development of neural network activity using microelectrode array (MEA) recordings made in multi-well MEA plates (mwMEAs) over the first 12 days in vitro (DIV). In primary cortical cultures made from postnatal rats, action potential spiking activity was essentiall...

  13. Hexavalent chromium-induced differential disruption of cortical microtubules in some Fabaceae species is correlated with acetylation of α-tubulin.

    Science.gov (United States)

    Eleftheriou, Eleftherios P; Adamakis, Ioannis-Dimosthenis S; Michalopoulou, Vasiliki A

    2016-03-01

    The effects of hexavalent chromium [Cr(VI)] on the cortical microtubules (MTs) of five species of the Fabaceae family (Vicia faba, Pisum sativum, Vigna sinensis, Vigna angularis, and Medicago sativa) were investigated by confocal laser scanning microscopy after immunolocalization of total tubulin with conventional immunofluorescence techniques and of acetylated α-tubulin with the specific 6-11B-1 monoclonal antibody. Moreover, total α-tubulin and acetylated α-tubulin were quantified by Western immunoblotting and scanning densitometry. Results showed the universality of Cr(VI) detrimental effects to cortical MTs, which proved to be a sensitive and reliable subcellular marker for monitoring Cr(VI) toxicity in plant cells. However, a species-specific response was recorded, and a correlation of MT disturbance with the acetylation status of α-tubulin was demonstrated. In V. faba, MTs were depolymerized at the gain of cytoplasmic tubulin background and displayed low α-tubulin acetylation, while in P. sativum, V. sinensis, V. angularis, and M. sativa, MTs became bundled and changed orientation from perpendicular to oblique or longitudinal. Bundled MTs were highly acetylated as determined by both immunofluorescence and Western immunoblotting. Tubulin acetylation in P. sativum and M. sativa preceded MT bundling; in V. sinensis it followed MT derangement, while in V. angularis the two phenomena coincided. Total α-tubulin remained constant in all treatments. Should acetylation be an indicator of MT stabilization, it is deduced that bundled MTs became stabilized, lost their dynamic properties, and were rendered inactive. Results of this report allow the conclusion that Cr(VI) toxicity disrupts MTs and deranges the MT-mediated functions either by depolymerizing or stabilizing them.

  14. Feeding cells induced by phytoparasitic nematodes require γ-tubulin ring complex for microtubule reorganization.

    Directory of Open Access Journals (Sweden)

    Mohamed Youssef Banora

    2011-12-01

    Full Text Available Reorganization of the microtubule network is important for the fast isodiametric expansion of giant-feeding cells induced by root-knot nematodes. The efficiency of microtubule reorganization depends on the nucleation of new microtubules, their elongation rate and activity of microtubule severing factors. New microtubules in plants are nucleated by cytoplasmic or microtubule-bound γ-tubulin ring complexes. Here we investigate the requirement of γ-tubulin complexes for giant feeding cells development using the interaction between Arabidopsis and Meloidogyne spp. as a model system. Immunocytochemical analyses demonstrate that γ-tubulin localizes to both cortical cytoplasm and mitotic microtubule arrays of the giant cells where it can associate with microtubules. The transcripts of two Arabidopsis γ-tubulin (TUBG1 and TUBG2 and two γ-tubulin complex proteins genes (GCP3 and GCP4 are upregulated in galls. Electron microscopy demonstrates association of GCP3 and γ-tubulin as part of a complex in the cytoplasm of giant cells. Knockout of either or both γ-tubulin genes results in the gene dose-dependent alteration of the morphology of feeding site and failure of nematode life cycle completion. We conclude that the γ-tubulin complex is essential for the control of microtubular network remodelling in the course of initiation and development of giant-feeding cells, and for the successful reproduction of nematodes in their plant hosts.

  15. Mapping the fine structure of cortical activity with different micro-ECoG electrode array geometries

    Science.gov (United States)

    Wang, Xi; Gkogkidis, C. Alexis; Iljina, Olga; Fiederer, Lukas D. J.; Henle, Christian; Mader, Irina; Kaminsky, Jan; Stieglitz, Thomas; Gierthmuehlen, Mortimer; Ball, Tonio

    2017-10-01

    Objective. Innovations in micro-electrocorticography (µECoG) electrode array manufacturing now allow for intricate designs with smaller contact diameters and/or pitch (i.e. inter-contact distance) down to the sub-mm range. The aims of the present study were: (i) to investigate whether frequency ranges up to 400 Hz can be reproducibly observed in µECoG recordings and (ii) to examine how differences in topographical substructure between these frequency bands and electrode array geometries can be quantified. We also investigated, for the first time, the influence of blood vessels on signal properties and assessed the influence of cortical vasculature on topographic mapping. Approach. The present study employed two µECoG electrode arrays with different contact diameters and inter-contact distances, which were used to characterize neural activity from the somatosensory cortex of minipigs in a broad frequency range up to 400 Hz. The analysed neural data were recorded in acute experiments under anaesthesia during peripheral electrical stimulation. Main results. We observed that µECoG recordings reliably revealed multi-focal cortical somatosensory response patterns, in which response peaks were often less than 1 cm apart and would thus not have been resolvable with conventional ECoG. The response patterns differed by stimulation site and intensity, they were distinct for different frequency bands, and the results of functional mapping proved independent of cortical vascular. Our analysis of different frequency bands exhibited differences in the number of activation peaks in topographical substructures. Notably, signal strength and signal-to-noise ratios differed between the two electrode arrays, possibly due to their different sensitivity for variations in spatial patterns and signal strengths. Significance. Our findings that the geometry of µECoG electrode arrays can strongly influence their recording performance can help to make informed decisions that maybe

  16. Katanin: A Sword Cutting Microtubules for Cellular, Developmental, and Physiological Purposes

    Directory of Open Access Journals (Sweden)

    Ivan Luptovčiak

    2017-11-01

    Full Text Available KATANIN is a well-studied microtubule severing protein affecting microtubule organization and dynamic properties in higher plants. By regulating mitotic and cytokinetic and cortical microtubule arrays it is involved in the progression of cell division and cell division plane orientation. KATANIN is also involved in cell elongation and morphogenesis during plant growth. In this way KATANIN plays critical roles in diverse plant developmental processes including the development of pollen, embryo, seed, meristem, root, hypocotyl, cotyledon, leaf, shoot, and silique. KATANIN-dependent microtubule regulation seems to be under the control of plant hormones. This minireview provides an overview on available KATANIN mutants and discusses advances in our understanding of KATANIN biological roles in plants.

  17. Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array

    NARCIS (Netherlands)

    Schuster, M.; Kilaru, S.; Fink, G.; Collemare, J.A.R.; Roger, Y.; Steinberg, G.

    2011-01-01

    The polarity of microtubules (MTs) determines the motors for intracellular motility, with kinesins moving to plus ends and dynein to minus ends. In elongated cells of Ustilago maydis, dynein is thought to move early endosomes (EEs) toward the septum (retrograde), whereas kinesin-3 transports them to

  18. Linear distributed source modeling of local field potentials recorded with intra-cortical electrode arrays.

    Directory of Open Access Journals (Sweden)

    Rikkert Hindriks

    Full Text Available Planar intra-cortical electrode (Utah arrays provide a unique window into the spatial organization of cortical activity. Reconstruction of the current source density (CSD underlying such recordings, however, requires "inverting" Poisson's equation. For inter-laminar recordings, this is commonly done by the CSD method, which consists in taking the second-order spatial derivative of the recorded local field potentials (LFPs. Although the CSD method has been tremendously successful in mapping the current generators underlying inter-laminar LFPs, its application to planar recordings is more challenging. While for inter-laminar recordings the CSD method seems reasonably robust against violations of its assumptions, is it unclear as to what extent this holds for planar recordings. One of the objectives of this study is to characterize the conditions under which the CSD method can be successfully applied to Utah array data. Using forward modeling, we find that for spatially coherent CSDs, the CSD method yields inaccurate reconstructions due to volume-conducted contamination from currents in deeper cortical layers. An alternative approach is to "invert" a constructed forward model. The advantage of this approach is that any a priori knowledge about the geometrical and electrical properties of the tissue can be taken into account. Although several inverse methods have been proposed for LFP data, the applicability of existing electroencephalographic (EEG and magnetoencephalographic (MEG inverse methods to LFP data is largely unexplored. Another objective of our study therefore, is to assess the applicability of the most commonly used EEG/MEG inverse methods to Utah array data. Our main conclusion is that these inverse methods provide more accurate CSD reconstructions than the CSD method. We illustrate the inverse methods using event-related potentials recorded from primary visual cortex of a macaque monkey during a motion discrimination task.

  19. Evaluation of the Neuroactivity of ToxCast Compounds Using Multi-well Microelectrode Array Recordings in Primary Cortical Neurons

    Science.gov (United States)

    Evaluation of the Neuroactivity of ToxCast Compounds Using Multi-well Microelectrode Array Recordings in Primary Cortical Neurons P Valdivia1, M Martin2, WR LeFew3, D Hall3, J Ross1, K Houck2 and TJ Shafer3 1Axion Biosystems, Atlanta GA and 2NCCT, 3ISTD, NHEERL, ORD, US EPA, RT...

  20. SDF1 Reduces Interneuron Leading Process Branching through Dual Regulation of Actin and Microtubules

    Science.gov (United States)

    Lysko, Daniel E.; Putt, Mary

    2014-01-01

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process. PMID:24695713

  1. SDF1 reduces interneuron leading process branching through dual regulation of actin and microtubules.

    Science.gov (United States)

    Lysko, Daniel E; Putt, Mary; Golden, Jeffrey A

    2014-04-02

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process.

  2. Microtubule catastrophe and rescue.

    Science.gov (United States)

    Gardner, Melissa K; Zanic, Marija; Howard, Jonathon

    2013-02-01

    Microtubules are long cylindrical polymers composed of tubulin subunits. In cells, microtubules play an essential role in architecture and motility. For example, microtubules give shape to cells, serve as intracellular transport tracks, and act as key elements in important cellular structures such as axonemes and mitotic spindles. To accomplish these varied functions, networks of microtubules in cells are very dynamic, continuously remodeling through stochastic length fluctuations at the ends of individual microtubules. The dynamic behavior at the end of an individual microtubule is termed 'dynamic instability'. This behavior manifests itself by periods of persistent microtubule growth interrupted by occasional switching to rapid shrinkage (called microtubule 'catastrophe'), and then by switching back from shrinkage to growth (called microtubule 'rescue'). In this review, we summarize recent findings which provide new insights into the mechanisms of microtubule catastrophe and rescue, and discuss the impact of these findings in regards to the role of microtubule dynamics inside of cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Functional characterization of GABAA receptor-mediated modulation of cortical neuron network activity in microelectrode array recordings

    DEFF Research Database (Denmark)

    Bader, Benjamin M; Steder, Anne; Klein, Anders Bue

    2017-01-01

    The numerous γ-aminobutyric acid type A receptor (GABAAR) subtypes are differentially expressed and mediate distinct functions at neuronal level. In this study we have investigated GABAAR-mediated modulation of the spontaneous activity patterns of primary neuronal networks from murine frontal...... of the information extractable from the MEA recordings offers interesting insights into the contributions of various GABAAR subtypes/subgroups to cortical network activity and the putative functional interplay between these receptors in these neurons....... cortex by characterizing the effects induced by a wide selection of pharmacological tools at a plethora of activity parameters in microelectrode array (MEA) recordings. The basic characteristics of the primary cortical neurons used in the recordings were studied in some detail, and the expression levels...

  4. Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells.

    Science.gov (United States)

    Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro

    2015-01-01

    Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells.

  5. Microtubule Catastrophe and Rescue

    OpenAIRE

    Gardner, Melissa K.; Zanic, Marija; Howard, Jonathon

    2012-01-01

    Microtubules are long cylindrical polymers composed of tubulin subunits. In cells, microtubules play an essential role in architecture and motility. For example, microtubules give shape to cells, serve as intracellular transport tracks, and act as key elements in important cellular structures such as axonemes and mitotic spindles. To accomplish these varied functions, networks of microtubules in cells are very dynamic, continuously remodeling through stochastic length fluctuations at the ends...

  6. Low Frequency Activity of Cortical Networks on Microelectrode Arrays is Differentially Altered by Bicuculline and Carbaryl

    Science.gov (United States)

    Thousands of chemicals need to be characterized for their neurotoxicity potential. Neurons grown on microelectrode arrays (MEAs) are an in vitro model used to screen chemicals for functional effects on neuronal networks. Typically, after removal of low frequency components, effec...

  7. A Cortically Implantable Multielectrode Array for Investigating the Mammalian Visual System.

    Science.gov (United States)

    1981-12-01

    AFIT Multielectrode Array from the harsh cerebro - spinal environment encountered inside the cranium. Secondary emphasis is placed on analyzing the...experience before a primate implant). This is a particularly exciting period for neurocortical research because we are at the brink of significant

  8. Wood cell-wall structure requires local 2D-microtubule disassembly by a novel plasma membrane-anchored protein.

    Science.gov (United States)

    Oda, Yoshihisa; Iida, Yuki; Kondo, Yuki; Fukuda, Hiroo

    2010-07-13

    Plant cells have evolved cortical microtubules, in a two-dimensional space beneath the plasma membrane, that regulate patterning of cellulose deposition. Although recent studies have revealed that several microtubule-associated proteins facilitate self-organization of transverse cortical microtubules, it is still unknown how diverse patterns of cortical microtubules are organized in different xylem cells, which are the major components of wood. Using our newly established in vitro xylem cell differentiation system, we found that a novel microtubule end-tracking protein, microtubule depletion domain 1 (MIDD1), was anchored to distinct plasma membrane domains and promoted local microtubule disassembly, resulting in pits on xylem cell walls. The introduction of RNA interference for MIDD1 resulted in the failure of local microtubule depletion and the formation of secondary walls without pits. Conversely, the overexpression of MIDD1 reduced microtubule density. MIDD1 has two coiled-coil domains for the binding to microtubules and for the anchorage to plasma membrane domains, respectively. Combination of the two coils caused end tracking of microtubules during shrinkage and suppressed their rescue events. Our results indicate that MIDD1 integrates spatial information in the plasma membrane with cortical microtubule dynamics for determining xylem cell wall pattern. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Microtubule–microtubule sliding by kinesin-1 is essential for normal cytoplasmic streaming in Drosophila oocytes

    Science.gov (United States)

    Lu, Wen; Winding, Michael; Lakonishok, Margot; Wildonger, Jill

    2016-01-01

    Cytoplasmic streaming in Drosophila oocytes is a microtubule-based bulk cytoplasmic movement. Streaming efficiently circulates and localizes mRNAs and proteins deposited by the nurse cells across the oocyte. This movement is driven by kinesin-1, a major microtubule motor. Recently, we have shown that kinesin-1 heavy chain (KHC) can transport one microtubule on another microtubule, thus driving microtubule–microtubule sliding in multiple cell types. To study the role of microtubule sliding in oocyte cytoplasmic streaming, we used a Khc mutant that is deficient in microtubule sliding but able to transport a majority of cargoes. We demonstrated that streaming is reduced by genomic replacement of wild-type Khc with this sliding-deficient mutant. Streaming can be fully rescued by wild-type KHC and partially rescued by a chimeric motor that cannot move organelles but is active in microtubule sliding. Consistent with these data, we identified two populations of microtubules in fast-streaming oocytes: a network of stable microtubules anchored to the actin cortex and free cytoplasmic microtubules that moved in the ooplasm. We further demonstrated that the reduced streaming in sliding-deficient oocytes resulted in posterior determination defects. Together, we propose that kinesin-1 slides free cytoplasmic microtubules against cortically immobilized microtubules, generating forces that contribute to cytoplasmic streaming and are essential for the refinement of posterior determinants. PMID:27512034

  10. Linking cortical microtubule attachment and exocytosis

    NARCIS (Netherlands)

    Noordstra, Ivar; Akhmanova, Anna

    2017-01-01

    Exocytosis is a fundamental cellular process whereby secreted molecules are packaged into vesicles that move along cytoskeletal filaments and fuse with the plasma membrane. To function optimally, cells are strongly dependent on precisely controlled delivery of exocytotic cargo. In mammalian cells,

  11. Arabidopsis GCP3-interacting protein 1/MOZART 1 is an integral component of the γ-tubulin-containing microtubule nucleating complex.

    Science.gov (United States)

    Nakamura, Masayoshi; Yagi, Noriyoshi; Kato, Takehide; Fujita, Satoshi; Kawashima, Noriyuki; Ehrhardt, David W; Hashimoto, Takashi

    2012-07-01

    Microtubules in eukaryotic cells are nucleated from ring-shaped complexes that contain γ-tubulin and a family of homologous γ-tubulin complex proteins (GCPs), but the subunit composition of the complexes can vary among fungi, animals and plants. Arabidopsis GCP3-interacting protein 1 (GIP1), a small protein with no homology to the GCP family, interacts with GCP3 in vitro, and is a plant homolog of vertebrate mitotic-spindle organizing protein associated with a ring of γ-tubulin 1 (MOZART1), a recently identified component of the γ-tubulin complex in human cell lines. In this study, we characterized two closely related Arabidopsis GIP1s: GIP1a and GIP1b. Single mutants of gip1a and gip1b were indistinguishable from wild-type plants, but their double mutant was embryonic lethal, and showed impaired development of male gametophytes. Functional fusions of GIP1a with green fluorescent protein (GFP) were used to purify GIP1a-containing complexes from Arabidopsis plants, which contained all the subunits (except NEDD1) previously identified in the Arabidopsis γ-tubulin complexes. GIP1a and GIP1b interacted specifically with Arabidopsis GCP3 in yeast. GFP-GIP1a labeled mitotic microtubule arrays in a pattern largely consistent with, but partly distinct from, the localization of the γ-tubulin complex containing GCP2 or GCP3 in planta. In interphase cortical arrays, the labeled complexes were preferentially recruited to existing microtubules, from which new microtubules were efficiently nucleated. However, in contrast to complexes labeled with tagged GCP2 or GCP3, their recruitment to cortical areas with no microtubules was rarely observed. These results indicate that GIP1/MOZART1 is an integral component of a subset of the Arabidopsis γ-tubulin complexes. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  12. Microtubules are organized independently of the centrosome in Drosophila neurons

    Directory of Open Access Journals (Sweden)

    Nguyen Michelle M

    2011-12-01

    Full Text Available Abstract Background The best-studied arrangement of microtubules is that organized by the centrosome, a cloud of microtubule nucleating and anchoring proteins is clustered around centrioles. However, noncentrosomal microtubule arrays are common in many differentiated cells, including neurons. Although microtubules are not anchored at neuronal centrosomes, it remains unclear whether the centrosome plays a role in organizing neuronal microtubules. We use Drosophila as a model system to determine whether centrosomal microtubule nucleation is important in mature neurons. Results In developing and mature neurons, centrioles were not surrounded by the core nucleation protein γ-tubulin. This suggests that the centrioles do not organize functional centrosomes in Drosophila neurons in vivo. Consistent with this idea, centriole position was not correlated with a specific region of the cell body in neurons, and growing microtubules did not cluster around the centriole, even after axon severing when the number of growing plus ends is dramatically increased. To determine whether the centrosome was required for microtubule organization in mature neurons, we used two approaches. First, we used DSas-4 centriole duplication mutants. In these mutants, centrioles were present in many larval sensory neurons, but they were not fully functional. Despite reduced centriole function, microtubule orientation was normal in axons and dendrites. Second, we used laser ablation to eliminate the centriole, and again found that microtubule polarity in axons and dendrites was normal, even 3 days after treatment. Conclusion We conclude that the centrosome is not a major site of microtubule nucleation in Drosophila neurons, and is not required for maintenance of neuronal microtubule organization in these cells.

  13. Optical Tweezers-Based Measurements of Forces and Dynamics at Microtubule Ends.

    Science.gov (United States)

    Baclayon, Marian; Kalisch, Svenja-Marei; Hendel, Ed; Laan, Liedewij; Husson, Julien; Munteanu, E Laura; Dogterom, Marileen

    2017-01-01

    Microtubules are dynamic cytoskeletal polymers that polymerize and depolymerize while interacting with different proteins and structures within the cell. The highly regulated dynamic properties as well as the pushing and pulling forces generated by dynamic microtubule ends play important roles in processes such as in cell division. For instance, microtubule end-binding proteins are known to affect dramatically the dynamic properties of microtubules, and cortical dyneins are known to mediate pulling forces on microtubule ends. We discuss in this chapter our efforts to reconstitute these systems in vitro and mimic their interactions with structures within the cell using micro-fabricated barriers. Using an optical tweezers setup, we investigate the dynamics and forces of microtubules growing against functionalized barriers in the absence and presence of end-binding proteins and barrier-attached motor proteins. This setup allows high-speed as well as nanometer and piconewton resolution measurements on dynamic microtubules.

  14. Capture of microtubule plus-ends at the actin cortex promotes axophilic neuronal migration by enhancing microtubule tension in the leading process.

    Science.gov (United States)

    Hutchins, B Ian; Wray, Susan

    2014-01-01

    Microtubules are a critical part of neuronal polarity and leading process extension, thus microtubule movement plays an important role in neuronal migration. However, the dynamics of microtubules during the forward movement of the nucleus into the leading process (nucleokinesis) is unclear and may be dependent on the cell type and mode of migration used. In particular, little is known about cytoskeletal changes during axophilic migration, commonly used in anteroposterior neuronal migration. We recently showed that leading process actin flow in migrating GnRH neurons is controlled by a signaling cascade involving IP3 receptors, CaMKK, AMPK, and RhoA. In the present study, microtubule dynamics were examined in GnRH neurons. Failure of the migration of these cells leads to the neuroendocrine disorder Kallmann Syndrome. Microtubules translocated forward along the leading process shaft during migration, but reversed direction and moved toward the nucleus when migration stalled. Blocking calcium release through IP3 receptors halted migration and induced the same reversal of microtubule translocation, while blocking cortical actin flow prevented microtubules from translocating toward the distal leading process. Super-resolution imaging revealed that microtubule plus-end tips are captured at the actin cortex through calcium-dependent mechanisms. This work shows that cortical actin flow draws the microtubule network forward through calcium-dependent capture in order to promote nucleokinesis, revealing a novel mechanism engaged by migrating neurons to facilitate movement.

  15. Effects of an environmentally-relevant mixture of pyrethroid insecticides on spontaneous activity in primary cortical networks on microelectrode arrays.

    Science.gov (United States)

    Johnstone, Andrew F M; Strickland, Jenna D; Crofton, Kevin M; Gennings, Chris; Shafer, Timothy J

    2017-05-01

    Pyrethroid insecticides exert their insecticidal and toxicological effects primarily by disrupting voltage-gated sodium channel (VGSC) function, resulting in altered neuronal excitability. Numerous studies of individual pyrethroids have characterized effects on mammalian VGSC function and neuronal excitability, yet studies examining effects of complex pyrethroid mixtures in mammalian neurons, especially in environmentally relevant mixture ratios, are limited. In the present study, concentration-response functions were characterized for five pyrethroids (permethrin, deltamethrin, cypermethrin, β-cyfluthrin and esfenvalerate) in an in vitro preparation containing cortical neurons and glia. As a metric of neuronal network activity, spontaneous mean network firing rates (MFR) were measured using microelectorde arrays (MEAs). In addition, the effect of a complex and exposure relevant mixture of the five pyrethroids (containing 52% permethrin, 28.8% cypermethrin, 12.9% β-cyfluthrin, 3.4% deltamethrin and 2.7% esfenvalerate) was also measured. Data were modeled to determine whether effects of the pyrethroid mixture were predicted by dose-addition. At concentrations up to 10μM, all compounds except permethrin reduced MFR. Deltamethrin and β-cyfluthrin were the most potent and reduced MFR by as much as 60 and 50%, respectively, while cypermethrin and esfenvalerate were of approximately equal potency and reduced MFR by only ∼20% at the highest concentration. Permethrin caused small (∼24% maximum), concentration-dependent increases in MFR. Effects of the environmentally relevant mixture did not depart from the prediction of dose-addition. These data demonstrate that an environmentally relevant mixture caused dose-additive effects on spontaneous neuronal network activity in vitro, and is consistent with other in vitro and in vivo assessments of pyrethroid mixtures. Published by Elsevier B.V.

  16. Expansion and Polarity Sorting in Microtubule-Dynein Bundles(WHAT IS LIFE? THE NEXT 100 YEARS OF YUKAWA'S DREAM)

    OpenAIRE

    Assaf, ZEMEL; Alex, MOGILNER; Department of Neurobiology, Physiology and Behavior, University of California; Department of Neurobiology, Physiology and Behavior, University of California

    2008-01-01

    Interactions of multiple molecular motors with dynamic polymers, such as actin and microtubules, form the basis for many processes in the cell cytoskeleton. One example is the active 'sorting' of microtubule bundles by dynein molecular motors into aster-like arrays of microtubules; in these bundles dynein motors cross-link and slide neighboring microtubules apart. A number of models have been suggested to quantify the active dynamics of cross-linked bundles of polar filaments. In the case of ...

  17. Tau can switch microtubule network organizations: from random networks to dynamic and stable bundles.

    Science.gov (United States)

    Prezel, Elea; Elie, Auréliane; Delaroche, Julie; Stoppin-Mellet, Virginie; Bosc, Christophe; Serre, Laurence; Fourest-Lieuvin, Anne; Andrieux, Annie; Vantard, Marylin; Arnal, Isabelle

    2018-01-15

    In neurons, microtubule networks alternate between single filaments and bundled arrays under the influence of effectors controlling their dynamics and organization. Tau is a microtubule bundler that stabilizes microtubules by stimulating growth and inhibiting shrinkage. The mechanisms by which tau organizes microtubule networks remain poorly understood. Here, we studied the self-organization of microtubules growing in the presence of tau isoforms and mutants. The results show that tau's ability to induce stable microtubule bundles requires two hexapeptides located in its microtubule-binding domain and is modulated by its projection domain. Site-specific pseudophosphorylation of tau promotes distinct microtubule organizations: stable single microtubules, stable bundles, or dynamic bundles. Disease-related tau mutations increase the formation of highly dynamic bundles. Finally, cryo-electron microscopy experiments indicate that tau and its variants similarly change the microtubule lattice structure by increasing both the protofilament number and lattice defects. Overall, our results uncover novel phosphodependent mechanisms governing tau's ability to trigger microtubule organization and reveal that disease-related modifications of tau promote specific microtubule organizations that may have a deleterious impact during neurodegeneration. © 2018 Prezel, Elie, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. S. pombe kinesins-8 promote both nucleation and catastrophe of microtubules.

    Directory of Open Access Journals (Sweden)

    Muriel Erent

    Full Text Available The kinesins-8 were originally thought to be microtubule depolymerases, but are now emerging as more versatile catalysts of microtubule dynamics. We show here that S. pombe Klp5-436 and Klp6-440 are non-processive plus-end-directed motors whose in vitro velocities on S. pombe microtubules at 7 and 23 nm s(-1 are too slow to keep pace with the growing tips of dynamic interphase microtubules in living S. pombe. In vitro, Klp5 and 6 dimers exhibit a hitherto-undescribed combination of strong enhancement of microtubule nucleation with no effect on growth rate or catastrophe frequency. By contrast in vivo, both Klp5 and Klp6 promote microtubule catastrophe at cell ends whilst Klp6 also increases the number of interphase microtubule arrays (IMAs. Our data support a model in which Klp5/6 bind tightly to free tubulin heterodimers, strongly promoting the nucleation of new microtubules, and then continue to land as a tubulin-motor complex on the tips of growing microtubules, with the motors then dissociating after a few seconds residence on the lattice. In vivo, we predict that only at cell ends, when growing microtubule tips become lodged and their growth slows down, will Klp5/6 motor activity succeed in tracking growing microtubule tips. This mechanism would allow Klp5/6 to detect the arrival of microtubule tips at cells ends and to amplify the intrinsic tendency for microtubules to catastrophise in compression at cell ends. Our evidence identifies Klp5 and 6 as spatial regulators of microtubule dynamics that enhance both microtubule nucleation at the cell centre and microtubule catastrophe at the cell ends.

  19. TgICMAP1 is a novel microtubule binding protein in Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Aoife T Heaslip

    Full Text Available The microtubule cytoskeleton provides essential structural support for all eukaryotic cells and can be assembled into various higher order structures that perform drastically different functions. Understanding how microtubule-containing assemblies are built in a spatially and temporally controlled manner is therefore fundamental to understanding cell physiology. Toxoplasma gondii, a protozoan parasite, contains at least five distinct tubulin-containing structures, the spindle pole, centrioles, cortical microtubules, the conoid, and the intra-conoid microtubules. How these five structurally and functionally distinct sets of tubulin containing structures are constructed and maintained in the same cell is an intriguing problem. Previously, we performed a proteomic analysis of the T. gondii apical complex, a cytoskeletal complex located at the apical end of the parasite that is composed of the conoid, three ring-like structures, and the two short intra-conoid microtubules. Here we report the characterization of one of the proteins identified in that analysis, TgICMAP1. We show that TgICMAP1 is a novel microtubule binding protein that can directly bind to microtubules in vitro and stabilizes microtubules when ectopically expressed in mammalian cells. Interestingly, in T. gondii, TgICMAP1 preferentially binds to the intra-conoid microtubules, providing us the first molecular tool to investigate the intra-conoid microtubule assembly process during daughter construction.

  20. Multiscale modeling and simulation of microtubule-motor-protein assemblies

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2015-12-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  1. Multiscale modeling and simulation of microtubule-motor-protein assemblies.

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A; Betterton, M D; Shelley, Michael J

    2015-01-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  2. Electrodynamic effects on microtubules

    Czech Academy of Sciences Publication Activity Database

    Kučera, Ondřej; Havelka, Daniel; Deriu, M.A.; Cifra, Michal

    2015-01-01

    Roč. 44, Jul (2015), s. 169-169 ISSN 0175-7571. [10th European-Biophysical-Societies-Association (EBSA) European Biophysics Congress. 18.07.2015-22.07.2015, Dresden] R&D Projects: GA ČR(CZ) GA15-17102S Institutional support: RVO:67985882 Keywords : Microtubules * Electric al polarity Subject RIV: JA - Electronics ; Optoelectronics, Electric al Engineering

  3. Microtubule's conformational cap

    DEFF Research Database (Denmark)

    Flyvbjerg, H.

    1999-01-01

    The molecular mechanisms that allow elongation of the unstable microtubule lattice remain unclear. It is usually thought that the GDP-liganded tubulin lattice is capped by a small layer of GTP- or GDP-P(i)-liganded molecules, the so called "GTP-cap". Here, we point-out that the elastic properties...

  4. Synchronous Oscillations in Microtubule Polymerization

    Science.gov (United States)

    Carlier, M. F.; Melki, R.; Pantaloni, D.; Hill, T. L.; Chen, Y.

    1987-08-01

    Under conditions where microtubule nucleation and growth are fast (i.e., high magnesium ion and tubulin concentrations and absence of glycerol), microtubule assembly in vitro exhibits an oscillatory regime preceding the establishment of steady state. The amplitude of the oscillations can represent >50% of the maximum turbidity change and oscillations persist for up to 20 periods of 80 s each. Oscillations are accompanied by extensive length redistribution of microtubules. Preliminary work suggests that the oscillatory kinetics can be simulated using a model in which many microtubules undergo synchronous transitions between growing and rapidly depolymerizing phases, complicated by the kinetically limiting rate of nucleotide exchange on free tubulin.

  5. Further Evaluation of DNT Hazard Screening using Neural Networks from Rat Cortical Neurons on Multi-well Microelectrode Arrays

    Science.gov (United States)

    Thousands of chemicals have not been characterized for their DNT potential. Due to the need for DNT hazard identification, efforts to develop screening assays for DNT potential is a high priority. Multi-well microelectrode arrays (MEA) measure the spontaneous activity of electr...

  6. Modeling microtubule oscillations

    DEFF Research Database (Denmark)

    Jobs, E.; Wolf, D.E.; Flyvbjerg, H.

    1997-01-01

    Synchronization of molecular reactions in a macroscopic volume may cause the volume's physical properties to change dynamically and thus reveal much about the reactions. As an example, experimental time series for so-called microtubule oscillations are analyzed in terms of a minimal model...... for this complex polymerization-depolymerization cycle. The model reproduces well the qualitatively different time series that result from different experimental conditions, and illuminates the role and importance of individual processes in the cycle. Simple experiments are suggested that can further test...... and define the model and the polymer's reaction cycle....

  7. Brassinosteroids regulate pavement cell growth by mediating BIN2-induced microtubule stabilization.

    Science.gov (United States)

    Liu, Xiaolei; Yang, Qin; Wang, Yuan; Wang, Linhai; Fu, Ying; Wang, Xuelu

    2018-02-23

    Brassinosteroids (BRs), a group of plant steroid hormones, play important roles in regulating plant development. The cytoskeleton also affects key developmental processes and a deficiency in BR biosynthesis or signaling leads to abnormal phenotypes similar to those of microtubule-defective mutants. However, how BRs regulate microtubule and cell morphology remains unknown. Here, using liquid chromatography-tandem mass spectrometry, we identified tubulin proteins that interact with Arabidopsis BRASSINOSTEROID INSENSITIVE2 (BIN2), a negative regulator of BR responses in plants. In vitro and in vivo pull-down assays confirmed that BIN2 interacts with tubulin proteins. High-speed co-sedimentation assays demonstrated that BIN2 also binds microtubules. The Arabidopsis genome also encodes two BIN2 homologs, BIN2-LIKE 1 (BIL1) and BIL2, which function redundantly with BIN2. In the bin2-3 bil1 bil2 triple mutant, cortical microtubules were more sensitive to treatment with the microtubule-disrupting drug oryzalin than in wild-type, whereas in the BIN2 gain-of-function mutant bin2-1, cortical microtubules were insensitive to oryzalin treatment. These results provide important insight into how BR regulates plant pavement cell and leaf growth by mediating the stabilization of microtubules by BIN2.

  8. Microtubules as mechanical force sensors.

    Science.gov (United States)

    Karafyllidis, Ioannis G; Lagoudas, Dimitris C

    2007-03-01

    Microtubules are polymers of tubulin subunits (dimers) arranged on a hexagonal lattice. Each tubulin dimer comprises two monomers, the alpha-tubulin and beta-tubulin, and can be found in two states. In the first state a mobile negative charge is located into the alpha-tubulin monomer and in the second into the beta-tubulin monomer. Each tubulin dimer is modeled as an electrical dipole coupled to its neighbors by electrostatic forces. The location of the mobile charge in each dimer depends on the location of the charges in the dimer's neighborhood. Mechanical forces that act on the microtubule affect the distances between the dimers and alter the electrostatic potential. Changes in this potential affect the mobile negative charge location in each dimer and the charge distribution in the microtubule. The net effect is that mechanical forces affect the charge distribution in microtubules. We propose to exploit this effect and use microtubules as mechanical force sensors. We model each dimer as a two-state quantum system and, following the quantum computation paradigm, we use discrete quantum random walk on the hexagonal microtubule lattice to determine the charge distribution. Different forces applied on the microtubule are modeled as different coin biases leading to different probability distributions of the quantum walker location, which are directly connected to different charge distributions. Simulation results show that there is a strong indication that microtubules can be used as mechanical force sensors and that they can also detect the force directions and magnitudes.

  9. A Mechanism for Cytoplasmic Streaming: Kinesin-Driven Alignment of Microtubules and Fast Fluid Flows.

    Science.gov (United States)

    Monteith, Corey E; Brunner, Matthew E; Djagaeva, Inna; Bielecki, Anthony M; Deutsch, Joshua M; Saxton, William M

    2016-05-10

    The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism, we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, microtubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for microtubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kinesin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying directions

  10. Large-scale, high-resolution multielectrode-array recording depicts functional network differences of cortical and hippocampal cultures.

    Directory of Open Access Journals (Sweden)

    Shinya Ito

    Full Text Available Understanding the detailed circuitry of functioning neuronal networks is one of the major goals of neuroscience. Recent improvements in neuronal recording techniques have made it possible to record the spiking activity from hundreds of neurons simultaneously with sub-millisecond temporal resolution. Here we used a 512-channel multielectrode array system to record the activity from hundreds of neurons in organotypic cultures of cortico-hippocampal brain slices from mice. To probe the network structure, we employed a wavelet transform of the cross-correlogram to categorize the functional connectivity in different frequency ranges. With this method we directly compare, for the first time, in any preparation, the neuronal network structures of cortex and hippocampus, on the scale of hundreds of neurons, with sub-millisecond time resolution. Among the three frequency ranges that we investigated, the lower two frequency ranges (gamma (30-80 Hz and beta (12-30 Hz range showed similar network structure between cortex and hippocampus, but there were many significant differences between these structures in the high frequency range (100-1000 Hz. The high frequency networks in cortex showed short tailed degree-distributions, shorter decay length of connectivity density, smaller clustering coefficients, and positive assortativity. Our results suggest that our method can characterize frequency dependent differences of network architecture from different brain regions. Crucially, because these differences between brain regions require millisecond temporal scales to be observed and characterized, these results underscore the importance of high temporal resolution recordings for the understanding of functional networks in neuronal systems.

  11. Dynamic release of nuclear RanGTP triggers TPX2-dependent microtubule assembly during the apoptotic execution phase.

    Science.gov (United States)

    Moss, David K; Wilde, Andrew; Lane, Jon D

    2009-03-01

    During apoptosis, the interphase microtubule network is dismantled then later replaced by a novel, non-centrosomal microtubule array. These microtubules assist in the peripheral redistribution of nuclear fragments in the apoptotic cell; however, the regulation of apoptotic microtubule assembly is not understood. Here, we demonstrate that microtubule assembly depends upon the release of nuclear RanGTP into the apoptotic cytoplasm because this process is blocked in apoptotic cells overexpressing dominant-negative GDP-locked Ran (T24N). Actin-myosin-II contractility provides the impetus for Ran release and, consequently, microtubule assembly is blocked in blebbistatin- and Y27632-treated apoptotic cells. Importantly, the spindle-assembly factor TPX2 (targeting protein for Xklp2), colocalises with apoptotic microtubules, and siRNA silencing of TPX2, but not of the microtubule motors Mklp1 and Kid, abrogates apoptotic microtubule assembly. These data provide a molecular explanation for the assembly of the apoptotic microtubule network, and suggest important similarities with the process of RanGTP- and TPX2-mediated mitotic spindle formation.

  12. On the nature and shape of tubulin trails: implications on microtubule self-organization.

    Science.gov (United States)

    Glade, Nicolas

    2012-06-01

    Microtubules, major elements of the cell skeleton are, most of the time, well organized in vivo, but they can also show self-organizing behaviors in time and/or space in purified solutions in vitro. Theoretical studies and models based on the concepts of collective dynamics in complex systems, reaction-diffusion processes and emergent phenomena were proposed to explain some of these behaviors. In the particular case of microtubule spatial self-organization, it has been advanced that microtubules could behave like ants, self-organizing by 'talking to each other' by way of hypothetic (because never observed) concentrated chemical trails of tubulin that are expected to be released by their disassembling ends. Deterministic models based on this idea yielded indeed like-looking spatio-temporal self-organizing behaviors. Nevertheless the question remains of whether microscopic tubulin trails produced by individual or bundles of several microtubules are intense enough to allow microtubule self-organization at a macroscopic level. In the present work, by simulating the diffusion of tubulin in microtubule solutions at the microscopic scale, we measure the shape and intensity of tubulin trails and discuss about the assumption of microtubule self-organization due to the production of chemical trails by disassembling microtubules. We show that the tubulin trails produced by individual microtubules or small microtubule arrays are very weak and not elongated even at very high reactive rates. Although the variations of concentration due to such trails are not significant compared to natural fluctuations of the concentration of tubuline in the chemical environment, the study shows that heterogeneities of biochemical composition can form due to microtubule disassembly. They could become significant when produced by numerous microtubule ends located in the same place. Their possible formation could play a role in certain conditions of reaction. In particular, it gives a mesoscopic

  13. Centriolar CPAP/SAS-4 Imparts Slow Processive Microtubule Growth

    NARCIS (Netherlands)

    Sharma, Ashwani; Aher, Amol; Dynes, Nicola J; Frey, Daniel; Katrukha, Eugene A; Jaussi, Rolf; Grigoriev, Ilya; Croisier, Marie; Kammerer, Richard A; Akhmanova, Anna; Gönczy, Pierre; Steinmetz, Michel O

    2016-01-01

    Centrioles are fundamental and evolutionarily conserved microtubule-based organelles whose assembly is characterized by microtubule growth rates that are orders of magnitude slower than those of cytoplasmic microtubules. Several centriolar proteins can interact with tubulin or microtubules, but how

  14. Interplay between microtubule bundling and sorting factors ensures acentriolar spindle stability during C. elegans oocyte meiosis.

    Directory of Open Access Journals (Sweden)

    Timothy J Mullen

    2017-09-01

    Full Text Available In many species, oocyte meiosis is carried out in the absence of centrioles. As a result, microtubule organization, spindle assembly, and chromosome segregation proceed by unique mechanisms. Here, we report insights into the principles underlying this specialized form of cell division, through studies of C. elegans KLP-15 and KLP-16, two highly homologous members of the kinesin-14 family of minus-end-directed kinesins. These proteins localize to the acentriolar oocyte spindle and promote microtubule bundling during spindle assembly; following KLP-15/16 depletion, microtubule bundles form but then collapse into a disorganized array. Surprisingly, despite this defect we found that during anaphase, microtubules are able to reorganize into a bundled array that facilitates chromosome segregation. This phenotype therefore enabled us to identify factors promoting microtubule organization during anaphase, whose contributions are normally undetectable in wild-type worms; we found that SPD-1 (PRC1 bundles microtubules and KLP-18 (kinesin-12 likely sorts those bundles into a functional orientation capable of mediating chromosome segregation. Therefore, our studies have revealed an interplay between distinct mechanisms that together promote spindle formation and chromosome segregation in the absence of structural cues such as centrioles.

  15. Cytoplasmic Nucleation and Atypical Branching Nucleation Generate Endoplasmic Microtubules in Physcomitrella patens[OPEN

    Science.gov (United States)

    Nakaoka, Yuki; Kimura, Akatsuki; Tani, Tomomi; Goshima, Gohta

    2015-01-01

    The mechanism underlying microtubule (MT) generation in plants has been primarily studied using the cortical MT array, in which fixed-angled branching nucleation and katanin-dependent MT severing predominate. However, little is known about MT generation in the endoplasm. Here, we explored the mechanism of endoplasmic MT generation in protonemal cells of Physcomitrella patens. We developed an assay that utilizes flow cell and oblique illumination fluorescence microscopy, which allowed visualization and quantification of individual MT dynamics. MT severing was infrequently observed, and disruption of katanin did not severely affect MT generation. Branching nucleation was observed, but it showed markedly variable branch angles and was occasionally accompanied by the transport of nucleated MTs. Cytoplasmic nucleation at seemingly random locations was most frequently observed and predominated when depolymerized MTs were regrown. The MT nucleator γ-tubulin was detected at the majority of the nucleation sites, at which a single MT was generated in random directions. When γ-tubulin was knocked down, MT generation was significantly delayed in the regrowth assay. However, nucleation occurred at a normal frequency in steady state, suggesting the presence of a γ-tubulin-independent backup mechanism. Thus, endoplasmic MTs in this cell type are generated in a less ordered manner, showing a broader spectrum of nucleation mechanisms in plants. PMID:25616870

  16. Growth and microtubule orientation of Zea mays roots subjected to osmotic stress

    Science.gov (United States)

    Blancaflor, E. B.; Hasenstein, K. H.

    1995-01-01

    Previous work has shown that microtubule (MT) reorientation follows the onset of growth inhibition on the lower side of graviresponding roots, indicating that growth reduction can occur independently of MT reorientation. To test this observation further, we examined whether the reduction in growth in response to osmotic stress is correlated with MT reorientation. The distribution and rate of growth in maize roots exposed to 350 mOsm sorbitol and KCl or 5 mM Mes/Tris buffer were measured with a digitizer. After various times roots were processed for indirect immunofluorescence microscopy. Application of sorbitol or KCl had no effect on the organization of MTs in the apical 2 mm of the root but resulted in striking and different effects in the basal region of the root. Sorbitol treatment caused rapid appearance of oval to circular holes in the microtubular array that persisted for at least 9 h. Between 30 min and 4 h of submersion in KCl, MTs in cortical cells 4 mm and farther from the quiescent center began to reorient oblique to the longitudinal axis. After 9 h, the alignment of MTs had shifted to parallel to the root axis but MTs of the epidermal cells remained transverse. In KCl-treated roots MT reorientation appeared to follow a pattern of development similar to that in controls but without elongation. Our data provide additional evidence that MT reorientation is not the cause but a consequence of growth inhibition.

  17. Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy.

    Science.gov (United States)

    Yan, Si; Guo, Changmiao; Hou, Guangjin; Zhang, Huilan; Lu, Xingyu; Williams, John Charles; Polenova, Tatyana

    2015-11-24

    Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant gaps in our knowledge concerning how microtubule-binding proteins bind to microtubules, how dynamics connect different conformational states, and how these interactions and dynamics affect cellular processes. Structures of microtubule-associated proteins assembled on polymeric microtubules are not known at atomic resolution. Here, we report a structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of dynactin motor on polymeric microtubules, solved by magic angle spinning NMR spectroscopy. We present the intermolecular interface of CAP-Gly with microtubules, derived by recording direct dipolar contacts between CAP-Gly and tubulin using double rotational echo double resonance (dREDOR)-filtered experiments. Our results indicate that the structure adopted by CAP-Gly varies, particularly around its loop regions, permitting its interaction with multiple binding partners and with the microtubules. To our knowledge, this study reports the first atomic-resolution structure of a microtubule-associated protein on polymeric microtubules. Our approach lays the foundation for atomic-resolution structural analysis of other microtubule-associated motors.

  18. Manipulation and quantification of microtubule lattice integrity

    Directory of Open Access Journals (Sweden)

    Taylor A. Reid

    2017-08-01

    Full Text Available Microtubules are structural polymers that participate in a wide range of cellular functions. The addition and loss of tubulin subunits allows the microtubule to grow and shorten, as well as to develop and repair defects and gaps in its cylindrical lattice. These lattice defects act to modulate the interactions of microtubules with molecular motors and other microtubule-associated proteins. Therefore, tools to control and measure microtubule lattice structure will be invaluable for developing a quantitative understanding of how the structural state of the microtubule lattice may regulate its interactions with other proteins. In this work, we manipulated the lattice integrity of in vitro microtubules to create pools of microtubules with common nucleotide states, but with variations in structural states. We then developed a series of novel semi-automated analysis tools for both fluorescence and electron microscopy experiments to quantify the type and severity of alterations in microtubule lattice integrity. These techniques will enable new investigations that explore the role of microtubule lattice structure in interactions with microtubule-associated proteins.

  19. Plant cortical microtubule dynamics and cell division plane orientation

    NARCIS (Netherlands)

    Chakrabortty, Bandan

    2017-01-01

    This thesis work aimed at a better understanding of the molecular basis of oriented cell division in plant cell. As, the efficiency of plant morphogenesis depends on oriented cell division, this work should contribute towards a fundamental understanding of the molecular basis of efficient plant

  20. Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Vukašinović, Nemanja; Oda, Y.; Pejchar, Přemysl; Synek, Lukáš; Pečenková, Tamara; Rawat, Anamika; Sekereš, Juraj; Potocký, Martin; Žárský, Viktor

    2017-01-01

    Roč. 213, č. 3 (2017), s. 1052-1067 ISSN 0028-646X R&D Projects: GA ČR(CZ) GA15-14886S Grant - others:GA MŠk(CZ) LO1417 Institutional support: RVO:61389030 Keywords : secondary cell-wall * tracheary element differentiation * cortical microtubules * plasma-membrane * vesicle trafficking * secretory pathways * auxin transport * exocytosis * deposition * thaliana * conserved oligomeric Golgi (COG) complex * exocyst * microtubules * secondary cell wall * tracheary elements * xylem Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 7.330, year: 2016

  1. Melanophores for microtubule dynamics and motility assays.

    Science.gov (United States)

    Ikeda, Kazuho; Semenova, Irina; Zhapparova, Olga; Rodionov, Vladimir

    2010-01-01

    Microtubules (MTs) are cytoskeletal structures essential for cell division, locomotion, intracellular transport, and spatial organization of the cytoplasm. In most interphase cells, MTs are organized into a polarized radial array with minus-ends clustered at the centrosome and plus-ends extended to the cell periphery. This array directs transport of organelles driven by MT-based motor proteins that specifically move either to plus- or to minus-ends. Along with using MTs as tracks for cargo, motor proteins can organize MTs into a radial array in the absence of the centrosome. Transport of organelles and motor-dependent radial organization of MTs require MT dynamics, continuous addition and loss of tubulin subunits at minus- and plus-ends. A unique experimental system for studying the role of MT dynamics in these processes is the melanophore, which provides a useful tool for imaging of both dynamic MTs and moving membrane organelles. Melanophores are filled with pigment granules that are synchronously transported by motor proteins in response to hormonal stimuli. The flat shape of the cell and the radial organization of MTs facilitate imaging of dynamic MT plus-ends and monitoring of their interaction with membrane organelles. Microsurgically produced cytoplasmic fragments of melanophores are used to study the centrosome-independent rearrangement of MTs into a radial array. Here we describe the experimental approaches to study the role of MT dynamics in intracellular transport and centrosome-independent MT organization in melanophores. We focus on the preparation of cell cultures, microsurgery and microinjection, fluorescence labeling, and live imaging of MTs. 2010 Elsevier Inc. All rights reserved.

  2. Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy.

    Science.gov (United States)

    Flex, Elisabetta; Niceta, Marcello; Cecchetti, Serena; Thiffault, Isabelle; Au, Margaret G; Capuano, Alessandro; Piermarini, Emanuela; Ivanova, Anna A; Francis, Joshua W; Chillemi, Giovanni; Chandramouli, Balasubramanian; Carpentieri, Giovanna; Haaxma, Charlotte A; Ciolfi, Andrea; Pizzi, Simone; Douglas, Ganka V; Levine, Kara; Sferra, Antonella; Dentici, Maria Lisa; Pfundt, Rolph R; Le Pichon, Jean-Baptiste; Farrow, Emily; Baas, Frank; Piemonte, Fiorella; Dallapiccola, Bruno; Graham, John M; Saunders, Carol J; Bertini, Enrico; Kahn, Richard A; Koolen, David A; Tartaglia, Marco

    2016-10-06

    Microtubules are dynamic cytoskeletal elements coordinating and supporting a variety of neuronal processes, including cell division, migration, polarity, intracellular trafficking, and signal transduction. Mutations in genes encoding tubulins and microtubule-associated proteins are known to cause neurodevelopmental and neurodegenerative disorders. Growing evidence suggests that altered microtubule dynamics may also underlie or contribute to neurodevelopmental disorders and neurodegeneration. We report that biallelic mutations in TBCD, encoding one of the five co-chaperones required for assembly and disassembly of the αβ-tubulin heterodimer, the structural unit of microtubules, cause a disease with neurodevelopmental and neurodegenerative features characterized by early-onset cortical atrophy, secondary hypomyelination, microcephaly, thin corpus callosum, developmental delay, intellectual disability, seizures, optic atrophy, and spastic quadriplegia. Molecular dynamics simulations predicted long-range and/or local structural perturbations associated with the disease-causing mutations. Biochemical analyses documented variably reduced levels of TBCD, indicating relative instability of mutant proteins, and defective β-tubulin binding in a subset of the tested mutants. Reduced or defective TBCD function resulted in decreased soluble α/β-tubulin levels and accelerated microtubule polymerization in fibroblasts from affected subjects, demonstrating an overall shift toward a more rapidly growing and stable microtubule population. These cells displayed an aberrant mitotic spindle with disorganized, tangle-shaped microtubules and reduced aster formation, which however did not alter appreciably the rate of cell proliferation. Our findings establish that defective TBCD function underlies a recognizable encephalopathy and drives accelerated microtubule polymerization and enhanced microtubule stability, underscoring an additional cause of altered microtubule dynamics with

  3. Three-dimensional fine structure of the organization of microtubules in neurite varicosities by ultra-high voltage electron microscope tomography.

    Science.gov (United States)

    Nishida, Tomoki; Yoshimura, Ryoichi; Endo, Yasuhisa

    2017-09-01

    Neurite varicosities are highly specialized compartments that are involved in neurotransmitter/ neuromodulator release and provide a physiological platform for neural functions. However, it remains unclear how microtubule organization contributes to the form of varicosity. Here, we examine the three-dimensional structure of microtubules in varicosities of a differentiated PC12 neural cell line using ultra-high voltage electron microscope tomography. Three-dimensional imaging showed that a part of the varicosities contained an accumulation of organelles that were separated from parallel microtubule arrays. Further detailed analysis using serial sections and whole-mount tomography revealed microtubules running in a spindle shape of swelling in some other types of varicosities. These electron tomographic results showed that the structural diversity and heterogeneity of microtubule organization supported the form of varicosities, suggesting that a different distribution pattern of microtubules in varicosities is crucial to the regulation of varicosities development.

  4. Microtubule nucleation and organization in dendrites

    Science.gov (United States)

    Delandre, Caroline; Amikura, Reiko; Moore, Adrian W.

    2016-01-01

    ABSTRACT Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122

  5. Assembly and control of large microtubule complexes

    Science.gov (United States)

    Korolev, Kirill; Ishihara, Keisuke; Mitchison, Timothy

    Motility, division, and other cellular processes require rapid assembly and disassembly of microtubule structures. We report a new mechanism for the formation of asters, radial microtubule complexes found in very large cells. The standard model of aster growth assumes elongation of a fixed number of microtubules originating from the centrosomes. However, aster morphology in this model does not scale with cell size, and we found evidence for microtubule nucleation away from centrosomes. By combining polymerization dynamics and auto-catalytic nucleation of microtubules, we developed a new biophysical model of aster growth. The model predicts an explosive transition from an aster with a steady-state radius to one that expands as a travelling wave. At the transition, microtubule density increases continuously, but aster growth rate discontinuously jumps to a nonzero value. We tested our model with biochemical perturbations in egg extract and confirmed main theoretical predictions including the jump in the growth rate. Our results show that asters can grow even though individual microtubules are short and unstable. The dynamic balance between microtubule collapse and nucleation could be a general framework for the assembly and control of large microtubule complexes. NIH GM39565; Simons Foundation 409704; Honjo International 486 Scholarship Foundation.

  6. The microtubule-associated protein 1A (MAP1A) is an early molecular target of soluble Aβ-peptide

    DEFF Research Database (Denmark)

    Clemmensen, C; Aznar, S; Knudsen, G M

    2012-01-01

    that microtubule rearrangements may be proximate to neuritic degeneration and deficits in episodic declarative memory. Here, we examined primary cortical neurons for changes in markers associated with synaptic function following exposure to sublethal concentrations of non-aggregated Aβ-peptide. This data show...

  7. Microtubule dynamics of the centrosome-like polar organizers from the basal land plant Marchantia polymorpha.

    Science.gov (United States)

    Buschmann, Henrik; Holtmannspötter, Michael; Borchers, Agnes; O'Donoghue, Martin-Timothy; Zachgo, Sabine

    2016-02-01

    The liverwort Marchantia employs both modern and ancestral devices during cell division: it forms preprophase bands and in addition it shows centrosome-like polar organizers. We investigated whether polar organizers and preprophase bands cooperate to set up the division plane. To this end, two novel green fluorescent protein-based microtubule markers for dividing cells of Marchantia were developed. Cells of the apical notch formed polar organizers first and subsequently assembled preprophase bands. Polar organizers were formed de novo from multiple mobile microtubule foci localizing to the nuclear envelope. The foci then became concentrated by bipolar aggregation. We determined the comet production rate of polar organizers and show that microtubule plus ends of astral microtubules polymerize faster than those found on cortical microtubules. Importantly, it was observed that conditions increasing polar organizer numbers interfere with preprophase band formation. The data show that polar organizers have much in common with centrosomes, but that they also have specialized features. The results suggest that polar organizers contribute to preprophase band formation and in this way are involved in controlling the division plane. Our analyses of the basal land plant Marchantia shed new light on the evolution of plant cell division. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. A Novel Plasma Membrane-Anchored Protein Regulates Xylem Cell-Wall Deposition through Microtubule-Dependent Lateral Inhibition of Rho GTPase Domains.

    Science.gov (United States)

    Sugiyama, Yuki; Wakazaki, Mayumi; Toyooka, Kiminori; Fukuda, Hiroo; Oda, Yoshihisa

    2017-08-21

    Spatial control of cell-wall deposition is essential for determining plant cell shape [1]. Rho-type GTPases, together with the cortical cytoskeleton, play central roles in regulating cell-wall patterning [2]. In metaxylem vessel cells, which are the major components of xylem tissues, active ROP11 Rho GTPases form oval plasma membrane domains that locally disrupt cortical microtubules, thereby directing the formation of oval pits in secondary cell walls [3-5]. However, the regulatory mechanism that determines the planar shape of active Rho of Plants (ROP) domains is still unknown. Here we show that IQD13 associates with cortical microtubules and the plasma membrane to laterally restrict the localization of ROP GTPase domains, thereby directing the formation of oval secondary cell-wall pits. Loss and overexpression of IQD13 led to the formation of abnormally round and narrow secondary cell-wall pits, respectively. Ectopically expressed IQD13 increased the presence of parallel cortical microtubules by promoting microtubule rescue. A reconstructive approach revealed that IQD13 confines the area of active ROP domains within the lattice of the cortical microtubules, causing narrow ROP domains to form. This activity required the interaction of IQD13 with the plasma membrane. These findings suggest that IQD13 positively regulates microtubule dynamics as well as their linkage to the plasma membrane, which synergistically confines the area of active ROP domains, leading to the formation of oval secondary cell-wall pits. This finding sheds light on the role of microtubule-plasma membrane linkage as a lateral fence that determines the planar shape of Rho GTPase domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Microtubule dynamics: Caps, catastrophes, and coupled hydrolysis

    DEFF Research Database (Denmark)

    Flyvbjerg, H.; Holy, T.E.; Leibler, S.

    1996-01-01

    An effective theory is formulated for the dynamics of the guanosine triphosphate (GTP) cap believed to stabilize growing microtubules. The theory provides a ''coarse-grained'' description of the cap's dynamics. ''Microscopic'' details, such as the microtubule lattice structure and the fate of its...

  10. Biological Information Processing in Single Microtubules

    Science.gov (United States)

    2014-03-05

    generated by synchronized oscillations of microtubules, centrosomes and chromosomes regulate the dynamics of mitosis and meiosis, Yue Zhao and Qimin...of frequency by a single microtubule. Green arrows depict the peaks that appear in absorption and disappear in transmission. Purple arrows show

  11. Mechanics of microtubules: effects of protofilament orientation.

    Science.gov (United States)

    Donhauser, Zachary J; Jobs, William B; Binka, Edem C

    2010-09-08

    Microtubules are hollow cylindrical polymers of the protein tubulin that play a number of important dynamic and structural roles in eukaryotic cells. Both in vivo and in vitro microtubules can exist in several possible configurations, differing in the number of protofilaments, helical rise of tubulin dimers, and protofilament skew angle with respect to the main tube axis. Here, finite element modeling is applied to examine the mechanical response of several known microtubule types when subjected to radial deformation. The data presented here provide an important insight into microtubule stiffness and reveal that protofilament orientation does not affect radial stiffness. Rather, stiffness is primarily dependent on the effective Young's modulus of the polymerized material and the effective radius of the microtubule. These results are also directly correlated to atomic force microscopy nanoindentation measurements to allow a more detailed interpretation of previous experiments. When combined with experimental data that show a significant difference between microtubules stabilized with a slowly hydrolyzable GTP analog and microtubules stabilized with paclitaxel, the finite element data suggest that paclitaxel increases the overall radial flexibility of the microtubule wall. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Effects of ultraviolet radiation on microtubule organisation and morphogenesis in plants

    International Nuclear Information System (INIS)

    Staxen, I.

    1994-09-01

    The involvement of the cytoskeleton in the development of somatic embryos was studied in Larix x eurolepis. Protoplasts were isolated from both somatic embryo-regenerating and non-generating cultures and fractionated on a discontinuous Percoll density gradient, whereby a highly embryogenic protoplast fraction could be enriched. Protoplasts of two cell lines of Larix eurolepis, one with regenerating potential and one lacking this potential, were compared. In contrast to the non-regenerating line were a protoplast-like organisation of the cortical microtubules was maintained, re-organisation of this microtubular network occurred in the regenerable line after only three days of culture, indicating that organised growth was occurring. However, this early organisation of cortical microtubules may not always be a valid marker for regenerable and non-regenerable material. In order to investigate the effect of ultraviolet-B (UV-B, 280-320 nm) radiation on the microtubule cytoskeleton, protoplasts were isolated from leaves of Petunia hybrida and subjected to four different doses of UV-B radiation. The organisation of the microtubules and the progression of the cells through the cell cycle was observed at 0, 24, 48 and 72 h after irradiation. UV-B induced breaks in the cortical microtubules resulting in shorter fragments with increasing amounts of radiation. Also, the division of the protoplasts was delayed, which was related to the absence of an microtubule network. Whole Petunia plants were grown in growth chambers in the presence and absence of UV-B. The plants responded to UV-B with increased rates of CO 2 assimilation, a 60% increase in UV-screening compounds and the changes in the morphology of the leaves that were reflected in a 70-100% increase in leaf area and 20% decrease in leaf thickness. The microtubules of the epidermal cells was not affected by UV-B, nor was the number of epidermal cells (per unit area). The increase in leaf area in the UV-treated plants

  13. An agent-based model contrasts opposite effects of dynamic and stable microtubules on cleavage furrow positioning.

    Science.gov (United States)

    Odell, Garrett M; Foe, Victoria E

    2008-11-03

    From experiments by Foe and von Dassow (Foe, V.E., and G. von Dassow. 2008. J. Cell Biol. 183:457-470) and others, we infer a molecular mechanism for positioning the cleavage furrow during cytokinesis. Computer simulations reveal how this mechanism depends on quantitative motor-behavior details and explore how robustly this mechanism succeeds across a range of cell sizes. The mechanism involves the MKLP1 (kinesin-6) component of centralspindlin binding to and walking along microtubules to stimulate cortical contractility where the centralspindlin complex concentrates. The majority of astral microtubules are dynamically unstable. They bind most MKLP1 and suppress cortical Rho/myosin II activation because the tips of unstable microtubules usually depolymerize before MKLP1s reach the cortex. A subset of astral microtubules stabilizes during anaphase, becoming effective rails along which MKLP1 can actually reach the cortex. Because stabilized microtubules aim statistically at the equatorial spindle midplane, that is where centralspindlin accumulates to stimulate furrow formation.

  14. Interaction of the Tobacco mosaic virus movement protein with microtubules during the cell cycle in tobacco BY-2 cells.

    Science.gov (United States)

    Boutant, Emmanuel; Fitterer, Chantal; Ritzenthaler, Christophe; Heinlein, Manfred

    2009-10-01

    Cell-to-cell movement of Tobacco mosaic virus (TMV) involves the interaction of virus-encoded 30-kDa movement protein (MP) with microtubules. In cells behind the infection front that accumulate high levels of MP, this activity is reflected by the formation of stabilized MP/microtubule complexes. The ability of MP to bind along and stabilize microtubules is conserved upon expression in mammalian cells. In mammalian cells, the protein also leads to inhibition of mitosis and cell division through a microtubule-independent process correlated with the loss of centrosomal gamma-tubulin and of centrosomal microtubule-nucleation activity. Since MP has the capacity to interact with plant factors involved in microtubule nucleation and dynamics, we used inducible expression in BY-2 cells to test whether MP expression inhibits mitosis and cell division also in plants. We demonstrate that MP:GFP associates with all plant microtubule arrays and, unlike in mammalian cells, does not interfere with mitosis. Thus, MP function and the interaction of MP with factors of the cytoskeleton do not entail an inhibition of mitosis in plants. We also report that the protein targets primary plasmodesmata in BY-2 cells immediately upon or during cytokinesis and that the accumulation of MP in plasmodesmata occurs in the presence of inhibitors of the cytoskeleton and the secretory pathway.

  15. Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming.

    Science.gov (United States)

    Kimura, Kenji; Mamane, Alexandre; Sasaki, Tohru; Sato, Kohta; Takagi, Jun; Niwayama, Ritsuya; Hufnagel, Lars; Shimamoto, Yuta; Joanny, Jean-François; Uchida, Seiichi; Kimura, Akatsuki

    2017-04-01

    Cytoplasmic streaming refers to a collective movement of cytoplasm observed in many cell types. The mechanism of meiotic cytoplasmic streaming (MeiCS) in Caenorhabditis elegans zygotes is puzzling as the direction of the flow is not predefined by cell polarity and occasionally reverses. Here, we demonstrate that the endoplasmic reticulum (ER) network structure is required for the collective flow. Using a combination of RNAi, microscopy and image processing of C. elegans zygotes, we devise a theoretical model, which reproduces and predicts the emergence and reversal of the flow. We propose a positive-feedback mechanism, where a local flow generated along a microtubule is transmitted to neighbouring regions through the ER. This, in turn, aligns microtubules over a broader area to self-organize the collective flow. The proposed model could be applicable to various cytoplasmic streaming phenomena in the absence of predefined polarity. The increased mobility of cortical granules by MeiCS correlates with the efficient exocytosis of the granules to protect the zygotes from osmotic and mechanical stresses.

  16. Katanin spiral and ring structures shed light on power stroke for microtubule severing

    Energy Technology Data Exchange (ETDEWEB)

    Zehr, Elena; Szyk, Agnieszka; Piszczek, Grzegorz; Szczesna, Ewa; Zuo, Xiaobing; Roll-Mecak, Antonina

    2017-08-07

    Microtubule-severing enzymes katanin, spastin and fidgetin are AAA ATPases critical for the biogenesis and maintenance of complex microtubule arrays in axons, spindles and cilia. Because of a lack of 3D structures, their mechanism has remained poorly understood. We report the first X-ray structure of the monomeric AAA katanin module and cryo-EM reconstructions of the hexamer in two conformations. These reveal an unexpected asymmetric arrangement of the AAA domains mediated by structural elements unique to severing enzymes and critical for their function. Our reconstructions show that katanin cycles between open spiral and closed ring conformations, depending on the ATP occupancy of a gating protomer that tenses or relaxes inter-protomer interfaces. Cycling of the hexamer between these conformations would provide the power stroke for microtubule severing.

  17. Moonlighting microtubule-associated proteins: regulatory functions by day and pathological functions at night.

    Science.gov (United States)

    Oláh, J; Tőkési, N; Lehotzky, A; Orosz, F; Ovádi, J

    2013-11-01

    The sensing, integrating, and coordinating features of the eukaryotic cells are achieved by the complex ultrastructural arrays and multifarious functions of the cytoskeletal network. Cytoskeleton comprises fibrous protein networks of microtubules, actin, and intermediate filaments. These filamentous polymer structures are highly dynamic and undergo constant and rapid reorganization during cellular processes. The microtubular system plays a crucial role in the brain, as it is involved in an enormous number of cellular events including cell differentiation and pathological inclusion formation. These multifarious functions of microtubules can be achieved by their decoration with proteins/enzymes that exert specific effects on the dynamics and organization of the cytoskeleton and mediate distinct functions due to their moonlighting features. This mini-review focuses on two aspects of the microtubule cytoskeleton. On the one hand, we describe the heteroassociation of tubulin/microtubules with metabolic enzymes, which in addition to their catalytic activities stabilize microtubule structures via their cross-linking functions. On the other hand, we focus on the recently identified moonlighting tubulin polymerization promoting protein, TPPP/p25. TPPP/p25 is a microtubule-associated protein and it displays distinct physiological or pathological (aberrant) functions; thus it is a prototype of Neomorphic Moonlighting Proteins. The expression of TPPP/p25 is finely controlled in the human brain; this protein is indispensable for the development of projections of oligodendrocytes that are responsible for the ensheathment of axons. The nonphysiological, higher or lower TPPP/p25 level leads to distinct CNS diseases. Mechanisms contributing to the control of microtubule stability and dynamics by metabolic enzymes and TPPP/p25 will be discussed. Copyright © 2013 Wiley Periodicals, Inc.

  18. Cep192 controls the balance of centrosome and non-centrosomal microtubules during interphase.

    Directory of Open Access Journals (Sweden)

    Brian P O'Rourke

    Full Text Available Cep192 is a centrosomal protein that contributes to the formation and function of the mitotic spindle in mammalian cells. Cep192's mitotic activities stem largely from its role in the recruitment to the centrosome of numerous additional proteins such as gamma-tubulin and Pericentrin. Here, we examine Cep192's function in interphase cells. Our data indicate that, as in mitosis, Cep192 stimulates the nucleation of centrosomal microtubules thereby regulating the morphology of interphase microtubule arrays. Interestingly, however, cells lacking Cep192 remain capable of generating normal levels of MTs as the loss of centrosomal microtubules is augmented by MT nucleation from other sites, most notably the Golgi apparatus. The depletion of Cep192 results in a significant decrease in the level of centrosome-associated gamma-tubulin, likely explaining its impact on centrosome microtubule nucleation. However, in stark contrast to mitosis, Cep192 appears to maintain an antagonistic relationship with Pericentrin at interphase centrosomes. Interphase cells depleted of Cep192 display significantly higher levels of centrosome-associated Pericentrin while overexpression of Cep192 reduces the levels of centrosomal Pericentrin. Conversely, depletion of Pericentrin results in elevated levels of centrosomal Cep192 and enhances microtubule nucleation at centrosomes, at least during interphase. Finally, we show that depletion of Cep192 negatively impacts cell motility and alters normal cell polarization. Our current working hypothesis is that the microtubule nucleating capacity of the interphase centrosome is determined by an antagonistic balance of Cep192, which promotes nucleation, and Pericentrin, which inhibits nucleation. This in turn determines the relative abundance of centrosomal and non-centrosomal microtubules that tune cell movement and shape.

  19. Cell cycle-dependent microtubule-based dynamic transport of cytoplasmic dynein in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Takuya Kobayashi

    Full Text Available BACKGROUND: Cytoplasmic dynein complex is a large multi-subunit microtubule (MT-associated molecular motor involved in various cellular functions including organelle positioning, vesicle transport and cell division. However, regulatory mechanism of the cell-cycle dependent distribution of dynein has not fully been understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we report live-cell imaging of cytoplasmic dynein in HeLa cells, by expressing multifunctional green fluorescent protein (mfGFP-tagged 74-kDa intermediate chain (IC74. IC74-mfGFP was successfully incorporated into functional dynein complex. In interphase, dynein moved bi-directionally along with MTs, which might carry cargos such as transport vesicles. A substantial fraction of dynein moved toward cell periphery together with EB1, a member of MT plus end-tracking proteins (+TIPs, suggesting +TIPs-mediated transport of dynein. In late-interphase and prophase, dynein was localized at the centrosomes and the radial MT array. In prometaphase and metaphase, dynein was localized at spindle MTs where it frequently moved from spindle poles toward chromosomes or cell cortex. +TIPs may be involved in the transport of spindle dyneins. Possible kinetochore and cortical dyneins were also observed. CONCLUSIONS AND SIGNIFICANCE: These findings suggest that cytoplasmic dynein is transported to the site of action in preparation for the following cellular events, primarily by the MT-based transport. The MT-based transport may have greater advantage than simple diffusion of soluble dynein in rapid and efficient transport of the limited concentration of the protein.

  20. Reassessing the Roles of PIN Proteins and Anticlinal Microtubules during Pavement Cell Morphogenesis1[OPEN

    Science.gov (United States)

    Sawchuk, Megan G.; Scarpella, Enrico

    2018-01-01

    The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxin gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here, we used Arabidopsis (Arabidopsis thaliana) reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor long-lived microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls. PMID:29192026

  1. Reassessing the Roles of PIN Proteins and Anticlinal Microtubules during Pavement Cell Morphogenesis.

    Science.gov (United States)

    Belteton, Samuel A; Sawchuk, Megan G; Donohoe, Bryon S; Scarpella, Enrico; Szymanski, Daniel B

    2018-01-01

    The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxin gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here, we used Arabidopsis ( Arabidopsis thaliana ) reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor long-lived microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls. © 2018 American Society of Plant Biologists. All Rights Reserved.

  2. Reassessing the roles of PIN proteins and anticlinal microtubules during pavement cell morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Belteton, Samuel; Sawchuk, Megan G.; Donohoe, Bryon S.; Scarpella, Enrico; Szymanski, Daniel B.

    2017-11-30

    The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxin gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here we used Arabidopsis reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells, and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls.

  3. Effects of ultraviolet radiation on microtubule organisation and morphogenesis in plants

    Energy Technology Data Exchange (ETDEWEB)

    Staxen, I.

    1994-09-01

    The involvement of the cytoskeleton in the development of somatic embryos was studied in Larix x eurolepis. Protoplasts were isolated from both somatic embryo-regenerating and non-generating cultures and fractionated on a discontinuous Percoll density gradient. Protoplasts of two cell lines of Larix eurolepis, one with regenerating potential and one lacking this potential, were compared. In contrast to the non-regenerating line were a protoplast-like organisation of the cortical microtubules was maintained, re-organisation of this microtubular network occurred in the regenerable line after only three days of culture, indicating that organised growth was occurring. However, this early organisation of cortical microtubules may not always be a valid marker for regenerable and non-regenerable material. In order to investigate the effect of ultraviolet-B (UV-B, 280-320 nm) radiation on the microtubule cytoskeleton, protoplasts were isolated from leaves of Petunia hybrida and subjected to four different doses of UV-B radiation. The organisation of the microtubules and the progression of the cells through the cell cycle was observed at 0, 24, 48 and 72 h after irradiation. UV-B induced breaks in the cortical microtubules resulting in shorter fragments with increasing amounts of radiation. Also, the division of the protoplasts was delayed. Whole Petunia plants were grown in growth chambers in the presence and absence of UV-B. The plants responded to UV-B with increased rates of CO{sub 2} assimilation, a 60% increase in UV-screening compounds and the changes in the morphology of the leaves that were reflected in a 70-100% increase in leaf area and 20% decrease in leaf thickness. The microtubules of the epidermal cells was not affected by UV-B, nor was the number of epidermal cells (per unit area). The increase in leaf area in the UV-treated plants appeared due to stimulation of cell division in the leaf meristems. 111 refs, 5 figs, 2 tabs.

  4. Microtubules self-repair in response to mechanical stress

    Science.gov (United States)

    Schaedel, Laura; John, Karin; Gaillard, Jérémie; Nachury, Maxence V.; Blanchoin, Laurent; Théry, Manuel

    2015-11-01

    Microtubules--which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport--can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules' adaptation to mechanical stresses.

  5. YB-1 promotes microtubule assembly in vitro through interaction with tubulin and microtubules

    Directory of Open Access Journals (Sweden)

    Baconnais Sonia

    2008-09-01

    Full Text Available Abstract Background YB-1 is a major regulator of gene expression in eukaryotic cells. In addition to its role in transcription, YB-1 plays a key role in translation and stabilization of mRNAs. Results We show here that YB-1 interacts with tubulin and microtubules and stimulates microtubule assembly in vitro. High resolution imaging via electron and atomic force microscopy revealed that microtubules assembled in the presence of YB-1 exhibited a normal single wall ultrastructure and indicated that YB-1 most probably coats the outer microtubule wall. Furthermore, we found that YB-1 also promotes the assembly of MAPs-tubulin and subtilisin-treated tubulin. Finally, we demonstrated that tubulin interferes with RNA:YB-1 complexes. Conclusion These results suggest that YB-1 may regulate microtubule assembly in vivo and that its interaction with tubulin may contribute to the control of mRNA translation.

  6. KATNAL1 regulation of sertoli cell microtubule dynamics is essential for spermiogenesis and male fertility.

    Directory of Open Access Journals (Sweden)

    Lee B Smith

    Full Text Available Spermatogenesis is a complex process reliant upon interactions between germ cells (GC and supporting somatic cells. Testicular Sertoli cells (SC support GCs during maturation through physical attachment, the provision of nutrients, and protection from immunological attack. This role is facilitated by an active cytoskeleton of parallel microtubule arrays that permit transport of nutrients to GCs, as well as translocation of spermatids through the seminiferous epithelium during maturation. It is well established that chemical perturbation of SC microtubule remodelling leads to premature GC exfoliation demonstrating that microtubule remodelling is an essential component of male fertility, yet the genes responsible for this process remain unknown. Using a random ENU mutagenesis approach, we have identified a novel mouse line displaying male-specific infertility, due to a point mutation in the highly conserved ATPase domain of the novel KATANIN p60-related microtubule severing protein Katanin p60 subunit A-like1 (KATNAL1. We demonstrate that Katnal1 is expressed in testicular Sertoli cells (SC from 15.5 days post-coitum (dpc and that, consistent with chemical disruption models, loss of function of KATNAL1 leads to male-specific infertility through disruption of SC microtubule dynamics and premature exfoliation of spermatids from the seminiferous epithelium. The identification of KATNAL1 as an essential regulator of male fertility provides a significant novel entry point into advancing our understanding of how SC microtubule dynamics promotes male fertility. Such information will have resonance both for future treatment of male fertility and the development of non-hormonal male contraceptives.

  7. The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function.

    Science.gov (United States)

    Müller, Sabine; Smertenko, Andrei; Wagner, Vera; Heinrich, Maria; Hussey, Patrick J; Hauser, Marie-Theres

    2004-03-09

    Directional cell expansion in interphase and nuclear and cell division in M-phase are mediated by four microtubule arrays, three of which are unique to plants: the interphase array, the preprophase band, and the phragmoplast. The plant microtubule-associated protein MAP65 has been identified as a key structural component in these arrays. The Arabidopsis genome has nine MAP65 genes, and here we show that one, AtMAP65-3/PLE, locates only to the mitotic arrays and is essential for cytokinesis. The Arabidopsis pleiade (ple) alleles are single recessive mutations, and we show that these mutations are in the AtMAP65-3 gene. Moreover, these mutations cause C-terminal truncations that abolish microtubule binding. In the ple mutants the anaphase spindle is normal, and the cytokinetic phragmoplast can form but is distorted; not only is it wider, but the midline, the region where oppositely oriented microtubules overlap, is unusually expanded. Here we present data that demonstrate an essential role for AtMAP65-3/PLE in cytokinesis in plant cells.

  8. Ferritin associates with marginal band microtubules

    International Nuclear Information System (INIS)

    Infante, Anthony A.; Infante, Dzintra; Chan, M.-C.; How, P.-C.; Kutschera, Waltraud; Linhartova, Irena; Muellner, Ernst W.; Wiche, Gerhard; Propst, Friedrich

    2007-01-01

    We characterized chicken erythrocyte and human platelet ferritin by biochemical studies and immunofluorescence. Erythrocyte ferritin was found to be a homopolymer of H-ferritin subunits, resistant to proteinase K digestion, heat stable, and contained iron. In mature chicken erythrocytes and human platelets, ferritin was localized at the marginal band, a ring-shaped peripheral microtubule bundle, and displayed properties of bona fide microtubule-associated proteins such as tau. Red blood cell ferritin association with the marginal band was confirmed by temperature-induced disassembly-reassembly of microtubules. During erythrocyte differentiation, ferritin co-localized with coalescing microtubules during marginal band formation. In addition, ferritin was found in the nuclei of mature erythrocytes, but was not detectable in those of bone marrow erythrocyte precursors. These results suggest that ferritin has a function in marginal band formation and possibly in protection of the marginal band from damaging effects of reactive oxygen species by sequestering iron in the mature erythrocyte. Moreover, our data suggest that ferritin and syncolin, a previously identified erythrocyte microtubule-associated protein, are identical. Nuclear ferritin might contribute to transcriptional silencing or, alternatively, constitute a ferritin reservoir

  9. Taxol crystals can masquerade as stabilized microtubules.

    Directory of Open Access Journals (Sweden)

    Margit Foss

    Full Text Available Taxol is a potent anti-mitotic drug used in chemotherapy, angioplastic stents, and cell biology research. By binding and stabilizing microtubules, Taxol inhibits their dynamics, crucial for cell division, motility, and survival. The drug has also been reported to induce formation of asters and bundles composed of stabilized microtubules. Surprisingly, at commonly used concentrations, Taxol forms crystals that rapidly bind fluorescent tubulin subunits, generating structures with an uncanny resemblance to microtubule asters and bundles. Kinetic and topological considerations suggest that tubulin subunits, rather than microtubules, bind the crystals. This sequestration of tubulin from the subunit pool would be expected to shift the equilibrium of free to polymerized tubulin to disfavor assembly. Our results imply that some previously reported Taxol-induced asters or bundles could include or be composed of tubulin-decorated Taxol crystals. Thus, reevaluation of certain morphological, chemical, and physical properties of Taxol-treated microtubules may be necessary. Moreover, our findings suggest a novel mechanism for chemotherapy-induced cytotoxicity in non-dividing cells, with far-reaching medical implications.

  10. Auxin-dependent microtubule responses and seedling development are affected in a rice mutant resistant to EPC

    International Nuclear Information System (INIS)

    Nick, P.; Yatou, O.; Furuya, M.; Lambert, A.M.

    1994-01-01

    Mutants in rice (Oryza sativa L. cv. japonica) were used to study the role of the cytoskeleton in signal-dependent morphogenesis. Mutants obtained by gamma ray irradiation were selected that failed to show inhibition of coleoptile elongation by the anti microtubular drug ethyl-N-phenylcarbamate (EPC). The mutation EPC-Resistant 31 (ER31), isolated from such a screen, caused lethality in putatively homozygous embryos. Heterozygotes exhibited drug resistance, impaired development of crown roots, and characteristic changes in the pattern of cell elongation: cell elongation was enhanced in mesocotyls and leaf sheaths, but inhibited in coleoptiles. The orientation of cortical microtubules changed correspondingly: for etiolated seedlings, compared with the wild-type, they were more transverse with respect to the long cell axis in mesocotyls and leaf sheaths, but more longitudinal in coleoptiles. In mutant coleoptiles, in contrast to wild-type, microtubules did not reorient in response to auxin, and their response to microtubule-eliminating and microtubule-stabilizing drugs was conspicuously reduced. In contrast, they responded normally to other stimuli such as gibberellins or red light. Auxin sensitivity as assayed by the dose-response for callus induction did not show any significant differences between wild-type and mutant. The mutant phenotype is interpreted in terms of an interrupted link between auxin-triggered signal transduction and microtubule reorientation. (author)

  11. HSPB1 facilitates the formation of non-centrosomal microtubules.

    Directory of Open Access Journals (Sweden)

    Leonardo Almeida-Souza

    Full Text Available The remodeling capacity of microtubules (MT is essential for their proper function. In mammals, MTs are predominantly formed at the centrosome, but can also originate from non-centrosomal sites, a process that is still poorly understood. We here show that the small heat shock protein HSPB1 plays a role in the control of non-centrosomal MT formation. The HSPB1 expression level regulates the balance between centrosomal and non-centrosomal MTs. The HSPB1 protein can be detected specifically at sites of de novo forming non-centrosomal MTs, while it is absent from the centrosomes. In addition, we show that HSPB1 binds preferentially to the lattice of newly formed MTs in vitro, suggesting that its function occurs by stabilizing MT seeds. Our findings open new avenues for the understanding of the role of HSPB1 in the development, maintenance and protection of cells with specialized non-centrosomal MT arrays.

  12. Microtubules move the nucleus to quiescence.

    Science.gov (United States)

    Laporte, Damien; Sagot, Isabelle

    2014-01-01

    The nucleus is a cellular compartment that hosts several macro-molecular machines displaying a highly complex spatial organization. This tight architectural orchestration determines not only DNA replication and repair but also regulates gene expression. In budding yeast microtubules play a key role in structuring the nucleus since they condition the Rabl arrangement in G1 and chromosome partitioning during mitosis through their attachment to centromeres via the kinetochore proteins. Recently, we have shown that upon quiescence entry, intranuclear microtubules emanating from the spindle pole body elongate to form a highly stable bundle that spans the entire nucleus. Here, we examine some molecular mechanisms that may underlie the formation of this structure. As the intranuclear microtubule bundle causes a profound re-organization of the yeast nucleus and is required for cell survival during quiescence, we discuss the possibility that the assembly of such a structure participates in quiescence establishment.

  13. Potential mechanisms of resistance to microtubule inhibitors.

    Science.gov (United States)

    Kavallaris, Maria; Annereau, Jean-Philippe; Barret, Jean-Marc

    2008-06-01

    Antimitotic drugs targeting the microtubules, such as the taxanes and vinca alkaloids, are widely used in the treatment of neoplastic diseases. Development of drug resistance over time, however, limits the efficacy of these agents and poses a clinical challenge to long-term improvement of patient outcomes. Understanding the mechanism(s) of drug resistance becomes paramount to allowing for alternative, if not improved, therapeutic options that might circumvent this challenge. Vinflunine, a novel microtubule inhibitor, has shown superior preclinical antitumor activity, and displays a different pattern of resistance, compared with other agents in the vinca alkaloid class.

  14. Microtubules: A network for solitary waves

    Directory of Open Access Journals (Sweden)

    Zdravković Slobodan

    2017-01-01

    Full Text Available In the present paper we deal with nonlinear dynamics of microtubules. The structure and role of microtubules in cells are explained as well as one of models explaining their dynamics. Solutions of the crucial nonlinear differential equation depend on used mathematical methods. Two commonly used procedures, continuum and semi-discrete approximations, are explained. These solutions are solitary waves usually called as kink solitons, breathers and bell-type solitons. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III45010

  15. Dissecting the function and assembly of acentriolar microtubule organizing centers in Drosophila cells in vivo.

    Directory of Open Access Journals (Sweden)

    Janina Baumbach

    2015-05-01

    Full Text Available Acentriolar microtubule organizing centers (aMTOCs are formed during meiosis and mitosis in several cell types, but their function and assembly mechanism is unclear. Importantly, aMTOCs can be overactive in cancer cells, enhancing multipolar spindle formation, merotelic kinetochore attachment and aneuploidy. Here we show that aMTOCs can form in acentriolar Drosophila somatic cells in vivo via an assembly pathway that depends on Asl, Cnn and, to a lesser extent, Spd-2--the same proteins that appear to drive mitotic centrosome assembly in flies. This finding enabled us to ablate aMTOC formation in acentriolar cells, and so perform a detailed genetic analysis of the contribution of aMTOCs to acentriolar mitotic spindle formation. Here we show that although aMTOCs can nucleate microtubules, they do not detectably increase the efficiency of acentriolar spindle assembly in somatic fly cells. We find that they are required, however, for robust microtubule array assembly in cells without centrioles that also lack microtubule nucleation from around the chromatin. Importantly, aMTOCs are also essential for dynein-dependent acentriolar spindle pole focusing and for robust cell proliferation in the absence of centrioles and HSET/Ncd (a kinesin essential for acentriolar spindle pole focusing in many systems. We propose an updated model for acentriolar spindle pole coalescence by the molecular motors Ncd/HSET and dynein in conjunction with aMTOCs.

  16. GDP-tubulin incorporation into growing microtubules modulates polymer stability.

    Science.gov (United States)

    Valiron, Odile; Arnal, Isabelle; Caudron, Nicolas; Job, Didier

    2010-06-04

    Microtubule growth proceeds through the endwise addition of nucleotide-bound tubulin dimers. The microtubule wall is composed of GDP-tubulin subunits, which are thought to come exclusively from the incorporation of GTP-tubulin complexes at microtubule ends followed by GTP hydrolysis within the polymer. The possibility of a direct GDP-tubulin incorporation into growing polymers is regarded as hardly compatible with recent structural data. Here, we have examined GTP-tubulin and GDP-tubulin incorporation into polymerizing microtubules using a minimal assembly system comprised of nucleotide-bound tubulin dimers, in the absence of free nucleotide. We find that GDP-tubulin complexes can efficiently co-polymerize with GTP-tubulin complexes during microtubule assembly. GDP-tubulin incorporation into microtubules occurs with similar efficiency during bulk microtubule assembly as during microtubule growth from seeds or centrosomes. Microtubules formed from GTP-tubulin/GDP-tubulin mixtures display altered microtubule dynamics, in particular a decreased shrinkage rate, apparently due to intrinsic modifications of the polymer disassembly properties. Thus, although microtubules polymerized from GTP-tubulin/GDP-tubulin mixtures or from homogeneous GTP-tubulin solutions are both composed of GDP-tubulin subunits, they have different dynamic properties, and this may reveal a novel form of microtubule "structural plasticity."

  17. Phosphatase PP2A and microtubule-mediated pulling forces disassemble centrosomes during mitotic exit

    Directory of Open Access Journals (Sweden)

    Stephen J. Enos

    2018-01-01

    Full Text Available Centrosomes are microtubule-nucleating organelles that facilitate chromosome segregation and cell division in metazoans. Centrosomes comprise centrioles that organize a micron-scale mass of protein called pericentriolar material (PCM from which microtubules nucleate. During each cell cycle, PCM accumulates around centrioles through phosphorylation-mediated assembly of PCM scaffold proteins. During mitotic exit, PCM swiftly disassembles by an unknown mechanism. Here, we used Caenorhabditis elegans embryos to determine the mechanism and importance of PCM disassembly in dividing cells. We found that the phosphatase PP2A and its regulatory subunit SUR-6 (PP2ASUR-6, together with cortically directed microtubule pulling forces, actively disassemble PCM. In embryos depleted of these activities, ∼25% of PCM persisted from one cell cycle into the next. Purified PP2ASUR-6 could dephosphorylate the major PCM scaffold protein SPD-5 in vitro. Our data suggest that PCM disassembly occurs through a combination of dephosphorylation of PCM components and force-driven fragmentation of the PCM scaffold.

  18. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles

    Directory of Open Access Journals (Sweden)

    Demongeot Jacques

    2004-06-01

    Full Text Available Abstract Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo.

  19. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles

    Science.gov (United States)

    Glade, Nicolas; Demongeot, Jacques; Tabony, James

    2004-01-01

    Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo. PMID:15176973

  20. The Microtubule Regulatory Protein Stathmin Is Required to Maintain the Integrity of Axonal Microtubules in Drosophila

    Science.gov (United States)

    Duncan, Jason E.; Lytle, Nikki K.; Zuniga, Alfredo; Goldstein, Lawrence S. B.

    2013-01-01

    Axonal transport, a form of long-distance, bi-directional intracellular transport that occurs between the cell body and synaptic terminal, is critical in maintaining the function and viability of neurons. We have identified a requirement for the stathmin (stai) gene in the maintenance of axonal microtubules and regulation of axonal transport in Drosophila . The stai gene encodes a cytosolic phosphoprotein that regulates microtubule dynamics by partitioning tubulin dimers between pools of soluble tubulin and polymerized microtubules, and by directly binding to microtubules and promoting depolymerization. Analysis of stai function in Drosophila , which has a single stai gene, circumvents potential complications with studies performed in vertebrate systems in which mutant phenotypes may be compensated by genetic redundancy of other members of the stai gene family. This has allowed us to identify an essential function for stai in the maintenance of the integrity of axonal microtubules. In addition to the severe disruption in the abundance and architecture of microtubules in the axons of stai mutant Drosophila , we also observe additional neurological phenotypes associated with loss of stai function including a posterior paralysis and tail-flip phenotype in third instar larvae, aberrant accumulation of transported membranous organelles in stai deficient axons, a progressive bang-sensitive response to mechanical stimulation reminiscent of the class of Drosophila mutants used to model human epileptic seizures, and a reduced adult lifespan. Reductions in the levels of Kinesin-1, the primary anterograde motor in axonal transport, enhance these phenotypes. Collectively, our results indicate that stai has an important role in neuronal function, likely through the maintenance of microtubule integrity in the axons of nerves of the peripheral nervous system necessary to support and sustain long-distance axonal transport. PMID:23840848

  1. Halogenated auxins affect microtubules and root elongation in Lactuca sativa

    Science.gov (United States)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.

  2. Microtubules Growth Rate Alteration in Human Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Irina B. Alieva

    2010-01-01

    Full Text Available To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with “normal” (similar to those in monolayer EC and “fast” (three times as much growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules.

  3. Dinitroaniline herbicide resistance and the microtubule cytoskeleton.

    Science.gov (United States)

    Anthony; Hussey

    1999-03-01

    Dinitroaniline herbicides have been used for pre-emergence weed control for the past 25 years in cotton, soybean, wheat and oilseed crops. Considering their long persistence and extensive use, resistance to dinitroanilines is fairly rare. However, the most widespread dinitroaniline-resistant weeds, the highly resistant (R) and the intermediate (I) biotypes of the invasive goosegrass Eleusine indica, are now infesting more than 1000 cotton fields in the southern states of the USA. The molecular basis of this resistance has been identified, and found to be a point mutation in a major microtubule cytoskeletal protein, alpha-tubulin. These studies have served both to explain the establishment of resistance and to reveal fundamental properties of tubulin gene expression and microtubule structure.

  4. The Role of Molecular Microtubule Motors and the Microtubule Cytoskeleton in Stress Granule Dynamics

    Directory of Open Access Journals (Sweden)

    Kristen M. Bartoli

    2011-01-01

    Full Text Available Stress granules (SGs are cytoplasmic foci that appear in cells exposed to stress-induced translational inhibition. SGs function as a triage center, where mRNAs are sorted for storage, degradation, and translation reinitiation. The underlying mechanisms of SGs dynamics are still being characterized, although many key players have been identified. The main components of SGs are stalled 48S preinitiation complexes. To date, many other proteins have also been found to localize in SGs and are hypothesized to function in SG dynamics. Most recently, the microtubule cytoskeleton and associated motor proteins have been demonstrated to function in SG dynamics. In this paper, we will discuss current literature examining the function of microtubules and the molecular microtubule motors in SG assembly, coalescence, movement, composition, organization, and disassembly.

  5. Effect of radiation on microtubule structure in cancer cells

    International Nuclear Information System (INIS)

    Tripath, Shambhoo Sharan; Panda, Dulal; Jayakumar, S.; Maikho, Thoh; Sandur, Santosh Kumar

    2017-01-01

    Microtubules (MT) are dynamic structural cellular components. In proliferating cells, they are essential components in cell division through the formation of the mitotic spindle. Radiotherapy is an integral part of cancer treatment for most of the solid cancers. Scanty data exists in the literature related to how ionizing radiation affects microtubule reorganization in tumor cells. In the present study, breast cancer cell line (MCF-7 cells) was exposed to different doses of radiation (2-10Gy). Cells were cultured for 24 h, fixed and stained with antitubulin antibody and subjected to immunofluorescence microscopy. In another experiment, cells were subjected to cold treatment for 5 min or 30 min for studying the disassembly of microtubules after 24 h of irradiation. Further, these cells were incubated at 37°C for 20 min for studying the reassembly of microtubules. Acetylation of microtubule was also examined after exposure of cells to radiation. Experiments were also performed by combining radiation with low concentration of CXI-Benzo 84 (MT destabilizing agent 1 and 2.5 uM). Exposure of MCF-7 cells to radiation lead to destabilization of microtubules. Interestingly, destabilization of microtubule was faster upon cold treatment in irradiated group as compared to control group. These cells failed to re-stabilize at 37°C. Radiation also reduced the acetylation level of microtubule. Combination treatment of CXI-Benzo 84 with radiation exhibited additive effect in terms of depolymerization of MT. Our results suggest that ionizing radiation indeed modulates microtubule dynamics. (author)

  6. Cortical visual impairment

    OpenAIRE

    Koželj, Urša

    2013-01-01

    In this thesis we discuss cortical visual impairment, diagnosis that is in the developed world in first place, since 20 percent of children with blindness or low vision are diagnosed with it. The objectives of the thesis are to define cortical visual impairment and the definition of characters suggestive of the cortical visual impairment as well as to search for causes that affect the growing diagnosis of cortical visual impairment. There are a lot of signs of cortical visual impairment. ...

  7. Shaping the tracks : Regulation of microtubule dynamics by kinesins KIF21A and KIF21B

    NARCIS (Netherlands)

    van Riel, W.E.|info:eu-repo/dai/nl/338772634

    2016-01-01

    Control of microtubule dynamics is important for cell morphogenesis. Kinesins, motor proteins known to function in cargo transport, were recently also implicated in altering the microtubule network. Several kinesins are described to cause microtubule network reorganization or stabilization, either

  8. Molecular architecture of axonemal microtubule doublets revealedby cryo-electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Haixin; Downing, Kenneth H.

    2006-05-22

    The axoneme, which forms the core of eukaryotic flagella and cilia, is one of the largest macromolecular machines with a structure that is largely conserved from protists to mammals. Microtubule doublets are structural components of axonemes containing a number of proteins besides tubulin, and are usually found in arrays of nine doublets arranged around two singlet microtubules. Coordinated sliding of adjacent doublets, which involves a host of other proteins in the axoneme, produces periodic beating movements of the axoneme. We have obtained a 3D density map of intact microtubule doublets using cryo-electron tomography and image averaging. Our map, with a resolution of about 3 nm, provides insights into locations of particular proteins within the doublets and the structural features of the doublets that define their mechanical properties. We identify likely candidates for several of these non-tubulin components of the doublets. This work offers novel insight on how tubulin protofilaments and accessory proteins attach together to form the doublets and provides a structural basis for understanding doublet function in axonemes.

  9. Spatiotemporal relationships between growth and microtubule orientation as revealed in living root cells of Arabidopsis thaliana transformed with green-fluorescent-protein gene construct GFP-MBD

    Science.gov (United States)

    Granger, C. L.; Cyr, R. J.

    2001-01-01

    Arabidopsis thaliana plants were transformed with GFP-MBD (J. Marc et al., Plant Cell 10: 1927-1939, 1998) under the control of a constitutive (35S) or copper-inducible promoter. GFP-specific fluorescence distributions, levels, and persistence were determined and found to vary with age, tissue type, transgenic line, and individual plant. With the exception of an increased frequency of abnormal roots of 35S GFP-MBD plants grown on kanamycin-containing media, expression of GFP-MBD does not appear to affect plant phenotype. The number of leaves, branches, bolts, and siliques as well as overall height, leaf size, and seed set are similar between wild-type and transgenic plants as is the rate of root growth. Thus, we conclude that the transgenic plants can serve as a living model system in which the dynamic behavior of microtubules can be visualized. Confocal microscopy was used to simultaneously monitor growth and microtubule behavior within individual cells as they passed through the elongation zone of the Arabidopsis root. Generally, microtubules reoriented from transverse to oblique or longitudinal orientations as growth declined. Microtubule reorientation initiated at the ends of the cell did not necessarily occur simultaneously in adjacent neighboring cells and did not involve complete disintegration and repolymerization of microtubule arrays. Although growth rates correlated with microtubule reorientation, the two processes were not tightly coupled in terms of their temporal relationships, suggesting that other factor(s) may be involved in regulating both events. Additionally, microtubule orientation was more defined in cells whose growth was accelerating and less stringent in cells whose growth was decelerating, indicating that microtubule-orienting factor(s) may be sensitive to growth acceleration, rather than growth per se.

  10. Optomechanical proposal for monitoring microtubule mechanical vibrations

    Czech Academy of Sciences Publication Activity Database

    Barzanjeh, Sh.; Salari, V.; Tuszynski, J. A.; Cifra, Michal; Simon, C.

    2017-01-01

    Roč. 96, č. 1 (2017), č. článku 012404. ISSN 2470-0045 R&D Projects: GA ČR(CZ) GA15-17102S Grant - others:AV ČR(CZ) SAV-15-22 Program:Bilaterální spolupráce Institutional support: RVO:67985882 Keywords : Vibrational modes * Microtubule * Resonance frequencies Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.366, year: 2016

  11. Emerging microtubule targets in glioma therapy

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.D.; Reginato, M.J.; Baas, P.W.; D'Agostino, L.; Legido, A.; Tuszynski, J. A.; Dráberová, Eduarda; Dráber, Pavel

    2015-01-01

    Roč. 22, č. 1 (2015), s. 49-72 ISSN 1071-9091 R&D Projects: GA MŠk LH12050; GA MZd NT14467 Grant - others:GA AV ČR M200521203PIPP; NIH(US) R01 NS028785; Philadelphia Health Education Corporation (PHEC)–St. Christopher’s Hospital for Children Reunified Endowment (C.D.K.)(US) 323256 Institutional support: RVO:68378050 Keywords : glioma tumorigenesis * glioblastoma * tubulin * microtubules Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.303, year: 2015

  12. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2

    Science.gov (United States)

    Petry, Sabine; Groen, Aaron C.; Ishihara, Keisuke; Mitchison, Timothy J.; Vale, Ronald D.

    2013-01-01

    Summary The microtubules that comprise mitotic spindles in animal cells are nucleated at centrosomes and by spindle assembly factors that are activated in the vicinity of chromatin. Indirect evidence also has suggested that microtubules might be nucleated from pre-existing microtubules throughout the spindle, but this process has not been observed directly. Here, we demonstrate microtubule nucleation from the sides of existing microtubules in meiotic Xenopus egg extracts. Daughter microtubules grow at a low branch angle and with the same polarity as mother filaments. Branching microtubule nucleation requires gamma-tubulin and augmin and is stimulated by GTP-bound Ran and its effector TPX2, factors previously implicated in chromatin-stimulated nucleation. Because of the rapid amplification of microtubule numbers and the preservation of microtubule polarity, microtubule-dependent microtubule nucleation is well suited for spindle assembly and maintenance. PMID:23415226

  13. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    DEFF Research Database (Denmark)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been...

  14. Cortical Visual Impairment

    Science.gov (United States)

    ... resolves by one year of life. Is “cortical blindness” the same thing as CVI? Cortical blindness is ... What visual characteristics are associated with CVI? • Distinct color preferences • Variable level of vision loss, often demonstrating ...

  15. Nonlinear dynamics of C-terminal tails in cellular microtubules

    Science.gov (United States)

    Sekulic, Dalibor L.; Sataric, Bogdan M.; Zdravkovic, Slobodan; Bugay, Aleksandr N.; Sataric, Miljko V.

    2016-07-01

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano-electrical waves elicited in the rows of very flexible C-terminal tails which decorate the outer surface of each microtubule. The fact that C-terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule-associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink-waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.

  16. Differential regulation of microtubule severing by APC underlies distinct patterns of projection neuron and interneuron migration

    Science.gov (United States)

    Eom, Tae-Yeon; Stanco, Amelia; Guo, Jiami; Wilkins, Gary; Deslauriers, Danielle; Yan, Jessica; Monckton, Chase; Blair, Josh; Oon, Eesim; Perez, Abby; Salas, Eduardo; Oh, Adrianna; Ghukasyan, Vladimir; Snider, William D.; Rubenstein, John L. R.; Anton, E. S.

    2014-01-01

    Coordinated migration of distinct classes of neurons to appropriate positions leads to the formation of functional neuronal circuitry in the cerebral cortex. Two major classes of cortical neurons, interneurons and projection neurons, utilize distinctly different modes (radial vs. tangential) and routes of migration to arrive at their final positions in the cerebral cortex. Here, we show that adenomatous polyposis coli (APC) modulates microtubule (MT) severing in interneurons to facilitate tangential mode of interneuron migration, but not the glial-guided, radial migration of projection neurons. APC regulates the stability and activity of the MT severing protein p60-katanin in interneurons to promote the rapid remodeling of neuronal processes necessary for interneuron migration. These findings reveal how severing and restructuring of MTs facilitate distinct modes of neuronal migration necessary for laminar organization of neurons in the developing cerebral cortex. PMID:25535916

  17. Structural insights into microtubule doublet interactions inaxonemes

    Energy Technology Data Exchange (ETDEWEB)

    Downing, Kenneth H.; Sui, Haixin

    2007-06-06

    Coordinated sliding of microtubule doublets, driven by dynein motors, produces periodic beating of the axoneme. Recent structural studies of the axoneme have used cryo-electron tomography to reveal new details of the interactions among some of the multitude of proteins that form the axoneme and regulate its movement. Connections among the several sets of dyneins, in particular, suggest ways in which their actions may be coordinated. Study of the molecular architecture of isolated doublets has provided a structural basis for understanding the doublet's mechanical properties that are related to the bending of the axoneme, and has also offered insight into its potential role in the mechanism of dynein activity regulation.

  18. Centrosome and microtubule instability in aging Drosophila cells

    Science.gov (United States)

    Schatten, H.; Chakrabarti, A.; Hedrick, J.

    1999-01-01

    Several cytoskeletal changes are associated with aging which includes alterations in muscle structure leading to muscular atrophy, and weakening of the microtubule network which affects cellular secretion and maintenance of cell shape. Weakening of the microtubule network during meiosis in aging oocytes can result in aneuploidy or trisomic zygotes with increasing maternal age. Imbalances of cytoskeletal organization can lead to disease such as Alzheimer's, muscular disorders, and cancer. Because many cytoskeletal diseases are related to age we investigated the effects of aging on microtubule organization in cell cultures of the Drosophila cell model system (Schneider S-1 and Kc23 cell lines). This cell model is increasingly being used as an alternative system to mammalian cell cultures. Drosophila cells are amenable to genetic manipulations and can be used to identify and manipulate genes which are involved in the aging processes. Immunofluorescence, scanning, and transmission electron microscopy were employed for the analysis of microtubule organizing centers (centrosomes) and microtubules at various times after subculturing cells in fresh medium. Our results reveal that centrosomes and the microtubule network becomes significantly affected in aging cells after 5 days of subculture. At 5-14 days of subculture, 1% abnormal out of 3% mitoses were noted which were clearly distinguishable from freshly subcultured control cells in which 3% of cells undergo normal mitosis with bipolar configurations. Microtubules are also affected in the midbody during cell division. The midbody in aging cells becomes up to 10 times longer when compared with midbodies in freshly subcultured cells. During interphase, microtubules are often disrupted and disorganized, which may indicate improper function related to transport of cell organelles along microtubules. These results are likely to help explain some cytoskeletal disorders and diseases related to aging.

  19. Birefringence of single and bundled microtubules.

    Science.gov (United States)

    Oldenbourg, R; Salmon, E D; Tran, P T

    1998-01-01

    We have measured the birefringence of microtubules (MTs) and of MT-based macromolecular assemblies in vitro and in living cells by using the new Pol-Scope. A single microtubule in aqueous suspension and imaged with a numerical aperture of 1.4 had a peak retardance of 0.07 nm. The peak retardance of a small bundle increased linearly with the number of MTs in the bundle. Axonemes (prepared from sea urchin sperm) had a peak retardance 20 times higher than that of single MTs, in accordance with the nine doublets and two singlets arrangement of parallel MTs in the axoneme. Measured filament retardance decreased when the filament was defocused or the numerical aperture of the imaging system was decreased. However, the retardance "area," which we defined as the image retardance integrated along a line perpendicular to the filament axis, proved to be independent of focus and of numerical aperture. These results are in good agreement with a theory that we developed for measuring retardances with imaging optics. Our theoretical concept is based on Wiener's theory of mixed dielectrics, which is well established for nonimaging applications. We extend its use to imaging systems by considering the coherence region defined by the optical set-up. Light scattered from within that region interferes coherently in the image point. The presence of a filament in the coherence region leads to a polarization dependent scattering cross section and to a finite retardance measured in the image point. Similar to resolution measurements, the linear dimension of the coherence region for retardance measurements is on the order lambda/(2 NA), where lambda is the wavelength of light and NA is the numerical aperture of the illumination and imaging lenses.

  20. Physical Limits on the Precision of Mitotic Spindle Positioning by Microtubule Pushing forces: Mechanics of mitotic spindle positioning.

    Science.gov (United States)

    Howard, Jonathon; Garzon-Coral, Carlos

    2017-11-01

    Tissues are shaped and patterned by mechanical and chemical processes. A key mechanical process is the positioning of the mitotic spindle, which determines the size and location of the daughter cells within the tissue. Recent force and position-fluctuation measurements indicate that pushing forces, mediated by the polymerization of astral microtubules against- the cell cortex, maintain the mitotic spindle at the cell center in Caenorhabditis elegans embryos. The magnitude of the centering forces suggests that the physical limit on the accuracy and precision of this centering mechanism is determined by the number of pushing microtubules rather than by thermally driven fluctuations. In cells that divide asymmetrically, anti-centering, pulling forces generated by cortically located dyneins, in conjunction with microtubule depolymerization, oppose the pushing forces to drive spindle displacements away from the center. Thus, a balance of centering pushing forces and anti-centering pulling forces localize the mitotic spindles within dividing C. elegans cells. © 2017 The Authors. BioEssays published by Wiley Periodicals, Inc.

  1. Effects of the KIF2C neck peptide on microtubules: lateral disintegration of microtubules and β-structure formation.

    Science.gov (United States)

    Shimizu, Youské; Shimizu, Takashi; Nara, Masayuki; Kikumoto, Mahito; Kojima, Hiroaki; Morii, Hisayuki

    2013-04-01

    Members of the kinesin-13 sub-family, including KIF2C, depolymerize microtubules. The positive charge-rich 'neck' region extending from the N-terminus of the catalytic head is considered to be important in the depolymerization activity. Chemically synthesized peptides, covering the basic region (A182-E200), induced a sigmoidal increase in the turbidity of a microtubule suspension. The increase was suppressed by salt addition or by reduction of basicity by amino acid substitutions. Electron microscopic observations revealed ring structures surrounding the microtubules at high peptide concentrations. Using the peptide A182-D218, we also detected free thin straight filaments, probably protofilaments disintegrated from microtubules. Therefore, the neck region, even without the catalytic head domain, may induce lateral disintegration of microtubules. With microtubules lacking anion-rich C-termini as a result of subtilisin treatment, addition of the peptide induced only a moderate increase in turbidity, and rings and protofilaments were rarely detected, while aggregations, also thought to be caused by lateral disintegration, were often observed in electron micrographs. Thus, the C-termini are not crucial for the action of the peptides in lateral disintegration but contribute to structural stabilization of the protofilaments. Previous structural studies indicated that the neck region of KIF2C is flexible, but our IR analysis suggests that the cation-rich region (K190-A204) forms β-structure in the presence of microtubules, which may be of significance with regard to the action of the neck region. Therefore, the neck region of KIF2C is sufficient to cause disintegration of microtubules into protofilaments, and this may contribute to the ability of KIF2C to cause depolymerization of microtubules. © 2013 The Authors Journal compilation © 2013 FEBS.

  2. Lysosomes are associated with microtubules and not with intermediate filaments in cultured fibroblasts.

    OpenAIRE

    Collot, M; Louvard, D; Singer, S J

    1984-01-01

    Double immunofluorescent labeling experiments for lysosomes and either microtubules or vimentin intermediate filaments in cultured well-spread fibroblasts show a remarkable degree of superposition of the lysosomes and the microtubules. Under two different sets of conditions where the microtubules and intermediate filaments are well segregated from one another, the lysosomes remain codistributed with the microtubules. It is suggested that this specific association of lysosomes with microtubule...

  3. and its allicin on microtubule and cancer cell lines

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... microtubule protein polymer that treated by A. hirtifolium. (A), and allicin (B) in .... with a chromogenic thiol: reaction of 4-mercaptopyridine with ... transformed tumor growth in vivo by diallyl disulfide is associated with inhibition ...

  4. EML proteins in microtubule regulation and human disease.

    Science.gov (United States)

    Fry, Andrew M; O'Regan, Laura; Montgomery, Jessica; Adib, Rozita; Bayliss, Richard

    2016-10-15

    The EMLs are a conserved family of microtubule-associated proteins (MAPs). The founding member was discovered in sea urchins as a 77-kDa polypeptide that co-purified with microtubules. This protein, termed EMAP for echinoderm MAP, was the major non-tubulin component present in purified microtubule preparations made from unfertilized sea urchin eggs [J. Cell Sci. (1993) 104: , 445-450; J. Cell Sci. (1987) 87: (Pt 1), 71-84]. Orthologues of EMAP were subsequently identified in other echinoderms, such as starfish and sand dollar, and then in more distant eukaryotes, including flies, worms and vertebrates, where the name of ELP or EML (both for EMAP-like protein) has been adopted [BMC Dev. Biol. (2008) 8: , 110; Dev. Genes Evol. (2000) 210: , 2-10]. The common property of these proteins is their ability to decorate microtubules. However, whether they are associated with particular microtubule populations or exercise specific functions in different microtubule-dependent processes remains unknown. Furthermore, although there is limited evidence that they regulate microtubule dynamics, the biochemical mechanisms of their molecular activity have yet to be explored. Nevertheless, interest in these proteins has grown substantially because of the identification of EML mutations in neuronal disorders and oncogenic fusions in human cancers. Here, we summarize our current knowledge of the expression, localization and structure of what is proving to be an interesting and important class of MAPs. We also speculate about their function in microtubule regulation and highlight how the studies of EMLs in human diseases may open up novel avenues for patient therapy. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  5. Optical properties of template synthesized nanowalled ZnS microtubules

    Science.gov (United States)

    Kumar, Rajesh; Chakarvarti, S. K.

    2007-12-01

    Electrodeposition is a versatile technique combining low processing cost with ambient conditions that can be used to prepare metallic, polymeric and semiconducting nano/micro structures. In the present work, track-etch membranes (TEMs) of makrofol (KG) have been used as templates for synthesis of ZnS nanowalled microtubules using electrodeposition technique. The morphology of the microtubules was characterized by scanning electron microscopy. Size effects on the band gap of tubules have also been studied by UV-visible spectrophotometer.

  6. Nonlinear dynamics of C–terminal tails in cellular microtubules

    Energy Technology Data Exchange (ETDEWEB)

    Sekulic, Dalibor L., E-mail: dalsek@uns.ac.rs; Sataric, Bogdan M.; Sataric, Miljko V. [University of Novi Sad, Faculty of Technical Sciences, Novi Sad (Serbia); Zdravkovic, Slobodan [University of Belgrade, Institute of Nuclear Sciences Vinca, Belgrade (Serbia); Bugay, Aleksandr N. [Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2016-07-15

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano–electrical waves elicited in the rows of very flexible C–terminal tails which decorate the outer surface of each microtubule. The fact that C–terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule–associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink–waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.

  7. Nonlinear dynamics of C–terminal tails in cellular microtubules

    International Nuclear Information System (INIS)

    Sekulic, Dalibor L.; Sataric, Bogdan M.; Sataric, Miljko V.; Zdravkovic, Slobodan; Bugay, Aleksandr N.

    2016-01-01

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano–electrical waves elicited in the rows of very flexible C–terminal tails which decorate the outer surface of each microtubule. The fact that C–terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule–associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink–waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.

  8. Ibuprofen regulation of microtubule dynamics in cystic fibrosis epithelial cells.

    Science.gov (United States)

    Rymut, Sharon M; Kampman, Claire M; Corey, Deborah A; Endres, Tori; Cotton, Calvin U; Kelley, Thomas J

    2016-08-01

    High-dose ibuprofen, an effective anti-inflammatory therapy for the treatment of cystic fibrosis (CF), has been shown to preserve lung function in a pediatric population. Despite its efficacy, few patients receive ibuprofen treatment due to potential renal and gastrointestinal toxicity. The mechanism of ibuprofen efficacy is also unclear. We have previously demonstrated that CF microtubules are slower to reform after depolymerization compared with respective wild-type controls. Slower microtubule dynamics in CF cells are responsible for impaired intracellular transport and are related to inflammatory signaling. Here, it is identified that high-dose ibuprofen treatment in both CF cell models and primary CF nasal epithelial cells restores microtubule reformation rates to wild-type levels, as well as induce extension of microtubules to the cell periphery. Ibuprofen treatment also restores microtubule-dependent intracellular transport monitored by measuring intracellular cholesterol transport. These effects are specific to ibuprofen as other cyclooxygenase inhibitors have no effect on these measures. Effects of ibuprofen are mimicked by stimulation of AMPK and blocked by the AMPK inhibitor compound C. We conclude that high-dose ibuprofen treatment enhances microtubule formation in CF cells likely through an AMPK-related pathway. These findings define a potential mechanism to explain the efficacy of ibuprofen therapy in CF. Copyright © 2016 the American Physiological Society.

  9. Microtubules become more dynamic but not shorter during preprophase band formation: A possible "search-and-capture" mechanism for microtubule translocation

    NARCIS (Netherlands)

    Vos, J.W.; Dogterom, M.; Emons, A.M.C.

    2004-01-01

    The dynamic behavior of the microtubule cytoskeleton plays a crucial role in cellular organization, but the physical mechanisms underlying microtubule (re)organization in plant cells are poorly understood. We investigated microtubule dynamics in tobacco BY-2 suspension cells during interphase and

  10. Electron tomography of the microtubule cytoskeleton in multinucleated hyphae of Ashbya gossypii.

    Science.gov (United States)

    Gibeaux, Romain; Lang, Claudia; Politi, Antonio Z; Jaspersen, Sue L; Philippsen, Peter; Antony, Claude

    2012-12-01

    We report the mechanistic basis guiding the migration pattern of multiple nuclei in hyphae of Ashbya gossypii. Using electron tomography, we reconstructed the cytoplasmic microtubule (cMT) cytoskeleton in three tip regions with a total of 13 nuclei and also the spindle microtubules of four mitotic nuclei. Each spindle pole body (SPB) nucleates three cMTs and most cMTs above a certain length grow according to their plus-end structure. Long cMTs closely align for several microns along the cortex, presumably marking regions where dynein generates pulling forces on nuclei. Close proximity between cMTs emanating from adjacent nuclei was not observed. The majority of nuclei carry duplicated side-by-side SPBs, which together emanate an average of six cMTs, in most cases in opposite orientation with respect to the hyphal growth axis. Such cMT arrays explain why many nuclei undergo short-range back and forth movements. Only occasionally do all six cMTs orient in one direction, a precondition for long-range nuclear bypassing. Following mitosis, daughter nuclei carry a single SPB with three cMTs. The increased probability that all three cMTs orient in one direction explains the high rate of nuclear bypassing observed in these nuclei. The A. gossypii mitotic spindle was found to be structurally similar to that of Saccharomyces cerevisiae in terms of nuclear microtubule (nMT) number, length distribution and three-dimensional organization even though the two organisms differ significantly in chromosome number. Our results suggest that two nMTs attach to each kinetochore in A. gossypii and not only one nMT like in S. cerevisiae.

  11. Association of TCTP with Centrosome and Microtubules

    Directory of Open Access Journals (Sweden)

    Mariusz K. Jaglarz

    2012-01-01

    Full Text Available Translationally Controlled Tumour Protein (TCTP associates with microtubules (MT, however, the details of this association are unknown. Here we analyze the relationship of TCTP with MTs and centrosomes in Xenopus laevis and mammalian cells using immunofluorescence, tagged TCTP expression and immunoelectron microscopy. We show that TCTP associates both with MTs and centrosomes at spindle poles when detected by species-specific antibodies and by Myc-XlTCTP expression in Xenopus and mammalian cells. However, when the antibodies against XlTCTP were used in mammalian cells, TCTP was detected exclusively in the centrosomes. These results suggest that a distinct pool of TCTP may be specific for, and associate with, the centrosomes. Double labelling for TCTP and γ-tubulin with immuno-gold electron microscopy in Xenopus laevis oogonia shows localization of TCTP at the periphery of the γ-tubulin-containing pericentriolar material (PCM enveloping the centriole. TCTP localizes in the close vicinity of, but not directly on the MTs in Xenopus ovary suggesting that this association requires unidentified linker proteins. Thus, we show for the first time: (1 the association of TCTP with centrosomes, (2 peripheral localization of TCTP in relation to the centriole and the γ-tubulin-containing PCM within the centrosome, and (3 the indirect association of TCTP with MTs.

  12. Oscillatory fluid flow influences primary cilia and microtubule mechanics.

    Science.gov (United States)

    Espinha, Lina C; Hoey, David A; Fernandes, Paulo R; Rodrigues, Hélder C; Jacobs, Christopher R

    2014-07-01

    Many tissues are sensitive to mechanical stimuli; however, the mechanotransduction mechanism used by cells remains unknown in many cases. The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell which extends from the basal body. The cilium is a mechanosensitive organelle and has been shown to transduce fluid flow-induced shear stress in tissues, such as the kidney and bone. The majority of microtubules assemble from the mother centriole (basal body), contributing significantly to the anchoring of the primary cilium. Several studies have attempted to quantify the number of microtubules emanating from the basal body and the results vary depending on the cell type. It has also been shown that cellular response to shear stress depends on microtubular integrity. This study hypothesizes that changing the microtubule attachment of primary cilia in response to a mechanical stimulus could change primary cilia mechanics and, possibly, mechanosensitivity. Oscillatory fluid flow was applied to two different cell types and the microtubule attachment to the ciliary base was quantified. For the first time, an increase in microtubules around primary cilia both with time and shear rate in response to oscillatory fluid flow stimulation was demonstrated. Moreover, it is presented that the primary cilium is required for this loading-induced cellular response. This study has demonstrated a new role for the cilium in regulating alterations in the cytoplasmic microtubule network in response to mechanical stimulation, and therefore provides a new insight into how cilia may regulate its mechanics and thus the cells mechanosensitivity. Copyright © 2014 Wiley Periodicals, Inc.

  13. Myosins 1 and 6, myosin light chain kinase, actin and microtubules cooperate during antibody-mediated internalisation and trafficking of membrane-expressed viral antigens in feline infectious peritonitis virus infected monocytes.

    Science.gov (United States)

    Dewerchin, Hannah L; Desmarets, Lowiese M; Noppe, Ytse; Nauwynck, Hans J

    2014-02-12

    Monocytes infected with feline infectious peritonitis virus, a coronavirus, express viral proteins in their plasma membranes. Upon binding of antibodies, these proteins are quickly internalised through a new clathrin- and caveolae-independent internalisation pathway. By doing so, the infected monocytes can escape antibody-dependent cell lysis. In the present study, we investigated which kinases and cytoskeletal proteins are of importance during internalisation and subsequent intracellular transport. The experiments showed that myosin light chain kinase (MLCK) and myosin 1 are crucial for the initiation of the internalisation. With co-localisation stainings, it was found that MLCK and myosin 1 co-localise with antigens even before internalisation started. Myosin 6 co-localised with the internalising complexes during passage through the cortical actin, were it might play a role in moving or disintegrating actin filaments, to overcome the actin barrier. One minute after internalisation started, vesicles had passed the cortical actin, co-localised with microtubules and association with myosin 6 was lost. The vesicles were further transported over the microtubules and accumulated at the microtubule organising centre after 10 to 30 min. Intracellular trafficking over microtubules was mediated by MLCK, myosin 1 and a small actin tail. Since inhibiting MLCK with ML-7 was so efficient in blocking the internalisation pathway, this target can be used for the development of a new treatment for FIPV.

  14. Quantitative Analysis of Tau-Microtubule Interaction Using FRET

    Directory of Open Access Journals (Sweden)

    Isabelle L. Di Maïo

    2014-08-01

    Full Text Available The interaction between the microtubule associated protein, tau and the microtubules is investigated. A fluorescence resonance energy transfer (FRET assay was used to determine the distance separating tau to the microtubule wall, as well as the binding parameters of the interaction. By using microtubules stabilized with Flutax-2 as donor and tau labeled with rhodamine as acceptor, a donor-to-acceptor distance of 54 ± 1 Å was found. A molecular model is proposed in which Flutax-2 is directly accessible to tau-rhodamine molecules for energy transfer. By titration, we calculated the stoichiometric dissociation constant to be equal to 1.0 ± 0.5 µM. The influence of the C-terminal tails of αβ-tubulin on the tau-microtubule interaction is presented once a procedure to form homogeneous solution of cleaved tubulin has been determined. The results indicate that the C-terminal tails of α- and β-tubulin by electrostatic effects and of recruitment seem to be involved in the binding mechanism of tau.

  15. Kinesin expands and stabilizes the GDP-microtubule lattice

    Science.gov (United States)

    Peet, Daniel R.; Burroughs, Nigel J.; Cross, Robert A.

    2018-05-01

    Kinesin-1 is a nanoscale molecular motor that walks towards the fast-growing (plus) ends of microtubules, hauling molecular cargo to specific reaction sites in cells. Kinesin-driven transport is central to the self-organization of eukaryotic cells and shows great promise as a tool for nano-engineering1. Recent work hints that kinesin may also play a role in modulating the stability of its microtubule track, both in vitro2,3 and in vivo4, but the results are conflicting5-7 and the mechanisms are unclear. Here, we report a new dimension to the kinesin-microtubule interaction, whereby strong-binding state (adenosine triphosphate (ATP)-bound and apo) kinesin-1 motor domains inhibit the shrinkage of guanosine diphosphate (GDP) microtubules by up to two orders of magnitude and expand their lattice spacing by 1.6%. Our data reveal an unexpected mechanism by which the mechanochemical cycles of kinesin and tubulin interlock, and so allow motile kinesins to influence the structure, stability and mechanics of their microtubule track.

  16. Cortical bone metastases

    International Nuclear Information System (INIS)

    Davis, T.M. Jr.; Rogers, L.F.; Hendrix, R.W.

    1986-01-01

    Twenty-five cases of bone metastases involving the cortex alone are reviewed. Seven patients had primary lung carcinoma, while 18 had primary tumors not previously reported to produce cortical bone metastases (tumors of the breast, kidney, pancreas, adenocarcinoma of unknown origin, multiple myeloma). Radiographically, these cortical lesions were well circumscribed, osteolytic, and produced soft-tissue swelling and occasional periosteal reaction. A recurrent pattern of metadiaphyseal involvement of the long bones of the lower extremity (particularly the femur) was noted, and is discussed. Findings reported in the literature, review, pathophysiology, and the role of skeletal radiographs, bone scans, and CT scans in evaluating cortical bone metastases are addressed

  17. CENTROSOMES AND MICROTUBULES DURING MEIOSIS IN THE MUSHROOM BOLETUS RUBINELLUS

    Science.gov (United States)

    McLaughlin, David J.

    1971-01-01

    The double centrosome in the basidium of Boletus rubinellus has been observed in three planes with the electron microscope at interphase preceding nuclear fusion, at prophase I, and at interphase I. It is composed of two components connected by a band-shaped middle part. At anaphase I a single, enlarged centrosome is found at the spindle pole, which is attached to the cell membrane. Microtubules mainly oriented parallel to the longitudinal axis of the basidium are present at prefusion, prophase I and interphase I. Cytoplasmic microtubules are absent when the spindle is present. The relationship of the centrosome in B. rubinellus to that in other organisms and the role of the cytoplasmic microtubules are discussed. PMID:4329156

  18. Autocatalytic microtubule nucleation determines the size and mass of Xenopus laevis egg extract spindles.

    Science.gov (United States)

    Decker, Franziska; Oriola, David; Dalton, Benjamin; Brugués, Jan

    2018-01-11

    Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule nucleation and its spatial regulation are still unclear. Here, we developed an assay based on laser ablation to directly probe microtubule nucleation events in Xenopus laevis egg extracts. Combining this method with theory and quantitative microscopy, we show that the size of a spindle is controlled by autocatalytic growth of microtubules, driven by microtubule-stimulated microtubule nucleation. The autocatalytic activity of this nucleation system is spatially regulated by the limiting amounts of active microtubule nucleators, which decrease with distance from the chromosomes. This mechanism provides an upper limit to spindle size even when resources are not limiting. © 2018, Decker et al.

  19. The engine of microtubule dynamics comes into focus.

    Science.gov (United States)

    Mitchison, T J

    2014-05-22

    In this issue, Alushin et al. report high-resolution structures of three states of the microtubule lattice: GTP-bound, which is stable to depolymerization; unstable GDP-bound; and stable Taxol and GDP-bound. By comparing these structures at near-atomic resolution, they are able to propose a detailed model for how GTP hydrolysis destabilizes the microtubule and thus powers dynamic instability and chromosome movement. Destabilization of cytoskeleton filaments by nucleotide hydrolysis is an important general principle in cell dynamics, and this work represents a major step forward on a problem with a long history. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Regulation of microtubule nucleation mediated by gamma-tubulin complexes

    Czech Academy of Sciences Publication Activity Database

    Sulimenko, Vadym; Hájková, Zuzana; Klebanovych, Anastasiya; Dráber, Pavel

    2017-01-01

    Roč. 254, č. 3 (2017), s. 1187-1199 ISSN 0033-183X R&D Projects: GA MŠk(CZ) LD13015 Institutional support: RVO:68378050 Keywords : mitotic spindle formation * ring complex * fission yeast * organizing centers * protein complex * golgi-complex * cell-cycle * pole body * augmin * centrosome * Centrosomes * Microtubule nucleation * Microtubule-organizing centers * Non-centrosomal nucleation sites * Spindle pole bodies * gamma-Tubulin complexes Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 2.870, year: 2016

  1. Dietary flavonoid fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells

    OpenAIRE

    Mukhtar, Eiman; Adhami, Vaqar Mustafa; Sechi, Mario; Mukhtar, Hasan

    2015-01-01

    Microtubule targeting based therapies have revolutionized cancer treatment; however, resistance and side effects remain a major limitation. Therefore, novel strategies that can overcome these limitations are urgently needed. We made a novel discovery that fisetin, a hydroxyflavone, is a microtubule stabilizing agent. Fisetin binds to tubulin and stabilizes microtubules with binding characteristics far superior than paclitaxel. Surface plasmon resonance and computational docking studies sugges...

  2. Microtubule protein ADP-ribosylation in vitro leads to assembly inhibition and rapid depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Scaife, R.M. (Fred Hutchinson Cancer Research Center, Seattle, WA (United States)); Wilson, L. (Univ. of California, Santa Barbara (United States)); Purich, D.L. (Univ. of Florida, Gainesville (United States))

    1992-01-14

    Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of ({sup 14}C)NAD{sup +} and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the {alpha} and {beta} chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight microtubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated ({sup 14}C)ADP-ribose to an average extent of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD{sup +} resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.

  3. Short Linear Sequence Motif LxxPTPh Targets Diverse Proteins to Growing Microtubule Ends

    NARCIS (Netherlands)

    Kumar, Anil; Manatschal, Cristina; Rai, Ankit; Grigoriev, Ilya; Degen, Miriam Steiner; Jaussi, Rolf; Kretzschmar, Ines; Prota, Andrea E; Volkmer, Rudolf; Kammerer, Richard A.; Akhmanova, Anna; Steinmetz, Michel O.

    2017-01-01

    Microtubule plus-end tracking proteins (+TIPs) are involved in virtually all microtubule-based processes. End-binding (EB) proteins are considered master regulators of +TIP interaction networks, since they autonomously track growing microtubule ends and recruit a plethora of proteins to this

  4. How biological microtubules may avoid decoherence

    International Nuclear Information System (INIS)

    Hameroff, S.

    2005-01-01

    Full text: Entangled superpositions persisting for hundreds of milliseconds in protein assemblies such as microtubules (MTs) are proposed in biological functions, e.g. quantum computation relevant to consciousness in the Penrose-Hameroff 'Orch OR' model. Cylindrical polymers of the protein tubulin, MTs organize cell activities. The obvious question is how biological quantum states could avoid decoherence, e.g. in the brain at 37.6 degrees centigrade. Screening/sheelding: tubulin protein states/functions are governed by van der Waals London forces, quantum interactions among clouds of delocalizable electrons in nonpolar 'hydrophobic' intra-protein pockets screened from external van der Waals thermal interactions. Such pockets include amino acid resonance structures benzene and indole rings. (Anesthetic gases erase consciousness solely by interfering with London forces in hydrophobic pockets in various brain proteins). Hence tubulin states may act as superpositioned qubits also shielded at the MT level by counter-ion Debye plasma layers (due to charged C-termini tails on tubulin) and by water-ordering actin gels which embed MTs in a quasi-solid. Biological systems may also exploit thermodynamic gradients to give extremely low effective temperatures. Decoherence free subspaces: paradoxically, a system coupled strongly to its environment through certain degrees of freedom can effectively 'freeze' other degrees of freedom (quantum Zeno effect), enabling coherent superpositions and entanglement to persist. Metabolic energy supplied to MT collective dynamics (e.g. Froehlich coherence) can cause Bose-Einstein condenzation and counter decoherence as lasers avoid decoherence at room temperature. Topological quantum error correction: MT lattice structure reveals various helical winding paths through adjacent tubulins which follow the Fibonacci series. Propagation/interactions of quasi-particles along these paths may process information. As proposed by Kitaev (1997), various

  5. Prion protein inhibits microtubule assembly by inducing tubulin oligomerization

    International Nuclear Information System (INIS)

    Nieznanski, Krzysztof; Podlubnaya, Zoya A.; Nieznanska, Hanna

    2006-01-01

    A growing body of evidence points to an association of prion protein (PrP) with microtubular cytoskeleton. Recently, direct binding of PrP to tubulin has also been found. In this work, using standard light scattering measurements, sedimentation experiments, and electron microscopy, we show for First time the effect of a direct interaction between these proteins on tubulin polymerization. We demonstrate that full-length recombinant PrP induces a rapid increase in the turbidity of tubulin diluted below the critical concentration for microtubule assembly. This effect requires magnesium ions and is weakened by NaCl. Moreover, the PrP-induced light scattering structures of tubulin are cold-stable. In preparations of diluted tubulin incubated with PrP, electron microscopy revealed the presence of ∼50 nm disc-shaped structures not reported so far. These unique tubulin oligomers may form large aggregates. The effect of PrP is more pronounced under the conditions promoting microtubule formation. In these tubulin samples, PrP induces formation of the above oligomers associated with short protofilaments and sheets of protofilaments into aggregates. Noticeably, this is accompanied by a significant reduction of the number and length of microtubules. Hence, we postulate that prion protein may act as an inhibitor of microtubule assembly by inducing formation of stable tubulin oligomers

  6. EWSR1 regulates mitosis by dynamically influencing microtubule acetylation.

    Science.gov (United States)

    Wang, Yi-Long; Chen, Hui; Zhan, Yi-Qun; Yin, Rong-Hua; Li, Chang-Yan; Ge, Chang-Hui; Yu, Miao; Yang, Xiao-Ming

    2016-08-17

    EWSR1, participating in transcription and splicing, has been identified as a translocation partner for various transcription factors, resulting in translocation, which in turn plays crucial roles in tumorigenesis. Recent studies have investigated the role of EWSR1 in mitosis. However, the effect of EWSR1 on mitosis is poorly understood. Here, we observed that depletion of EWSR1 resulted in cell cycle arrest in the mitotic phase, mainly due to an increase in the time from nuclear envelope breakdown to metaphase, resulting in a high percentage of unaligned chromosomes and multipolar spindles. We also demonstrated that EWSR1 is a spindle-associated protein that interacts with α-tubulin during mitosis. EWSR1 depletion increased the cold-sensitivity of spindle microtubules, and decreased the rate of spindle assembly. EWSR1 regulated the level of microtubule acetylation in the mitotic spindle; microtubule acetylation was rescued in EWSR1-depleted mitotic cells following suppression of HDAC6 activity by its specific inhibitor or siRNA treatment. In summary, these results suggest that EWSR1 regulates the acetylation of microtubules in a cell cycle-dependent manner through its dynamic location on spindle MTs, and may be a novel regulator for mitosis progress independent of its translocation.

  7. Neuronal microtubule organization: from minus end to plus end

    NARCIS (Netherlands)

    Yau, K.W.

    2016-01-01

    Neurons are highly polarized cells consisting of a dendritic part and axonal part. Dendrites receive signals from other cells while axons transmit signals to other cells. In this thesis, mostly hippocampal neurons from rat embryos are used to study fundamental aspects of the microtubule organization

  8. Microtubules in cell migration, morphogenesis and metabolism: Making the connections

    NARCIS (Netherlands)

    Noordstra, I.

    2017-01-01

    Cell polarity refers to a fundamental property of eukaryotic cells, in which cellular components and structures are organized in an asymmetric fashion. In order to control their polarity, cells make use of microtubules, hollow polymers that extend throughout the cytoplasm. Due to the asymmetry of

  9. Viability of dielectrophoretically trapped neuronal cortical cells in culture

    NARCIS (Netherlands)

    Heida, Tjitske; Vulto, P; Rutten, Wim; Marani, Enrico

    2001-01-01

    Negative dielectrophoretic trapping of neural cells is an efficient way to position neural cells on the electrode sites of planar micro-electrode arrays. The preservation of viability of the neural cells is essential for this approach. This study investigates the viability of postnatal cortical rat

  10. The nucleation of microtubules in Aspergillus nidulans germlings

    Directory of Open Access Journals (Sweden)

    Cristina de Andrade-Monteiro

    1999-09-01

    Full Text Available Microtubules are filaments composed of dimers of alpha- and beta-tubulins, which have a variety of functions in living cells. In fungi, the spindle pole bodies usually have been considered to be microtubule-organizing centers. We used the antimicrotubule drug Benomyl in block/release experiments to depolymerize and repolymerize microtubules in Aspergillus nidulans germlings to learn more about the microtubule nucleation process in this filamentous fungus. Twenty seconds after release from Benomyl short microtubules were formed from several bright (immunofluorescent dots distributed along the germlings, suggesting that microtubule nucleation is randomly distributed in A. nidulans germlings. Since nuclear movement is dependent on microtubules in A. nidulans we analyzed whether mutants defective in nuclear distribution along the growing hyphae (nud mutants have some obvious microtubule defect. Cytoplasmic, astral and spindle microtubules were present and appeared to be normal in all nud mutants. However, significant changes in the percentage of short versus long mitotic spindles were observed in nud mutants. This suggests that some of the nuclei of nud mutants do not reach the late stage of cell division at normal temperatures.Microtúbulos são filamentos compostos por dímeros das tubulinas a e b e têm uma variedade de funções nas células vivas. Em fungos, os corpúsculos polares dos fusos são geralmente considerados os centros organizadores dos microtúbulos. Com o objetivo de contribuir para uma melhor compreensão dos processos de nucleação dos microtúbulos no fungo filamentoso A. nidulans, nós utilizamos a droga antimicrotúbulo Benomil em experimentos de bloqueio e liberação para depolimerizar e repolimerizar os microtúbulos. Após 20 segundos de reincubação em meio sem Benomil, pequenos microtúbulos foram formados a partir de pontos distribuídos pela célula, sugerindo que os pontos de nucleação de microtúbulos s

  11. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons.

    Science.gov (United States)

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew Cn; Swindale, Nicholas V; Murphy, Timothy H

    2017-02-04

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps.

  12. Recovery of microtubules on the blepharoplast of Ceratopteris spermatogenous cells after oryzalin treatment.

    Science.gov (United States)

    Vaughn, Kevin C; Bowling, Andrew J

    2008-11-01

    Most land plants have ill-defined microtubule-organizing centers (MTOCs), consisting of sites on the nuclear envelope or even along microtubules (MTs). In contrast, the spermatogenous cells of the pteridophyte Ceratopteris richardii have a well-defined MTOC, the blepharoplast, which organizes MTs through the last two division cycles. This allows a rare opportunity to study the organization and workings of a structurally well-defined plant MTOC. In this study, antheridial plants were treated with levels of oryzalin that cause complete MT loss from the cells containing blepharoplasts. The oryzalin was then washed out and plants were allowed to recover for varying amounts of time. If the spermatogenous cells were fixed prior to washing out, the blepharoplasts had an unusual appearance. In the matrix (pericentriolar) material where MT ends are normally found, clear areas of about the diameter of MTs were seen embedded in a much deeper matrix, made more obvious in stereo pairs. Occasionally, the matrix material was highly distended, although the basal body template cylinder morphology appeared to be unaltered. The blepharoplasts often occurred as clusters of 2 or 4, indicating that blepharoplast reproduction is not affected by the lack of MTs, but that their movement to the poles is. Gamma (gamma) tubulin antibodies labeled the edge of the blepharoplast in areas where the pits are located, indicating that these might be sites for MT nucleation. After wash out, the new MTs always re-appeared on the blepharoplast and the recovery occurred within an hour of washout. MT lengths increased with increasing washout time and were indistinguishable from untreated blepharoplasts after 24 h of recovery. After washout, arrays formed in new sperm cells such as the spline and basal bodies were often malformed or present in multiple copies, as were the blepharoplasts in these cells prior to wash out. These data indicate that the blepharoplast serves as the site of MT nucleation and

  13. Ionic wave propagation and collision in an excitable circuit model of microtubules

    Science.gov (United States)

    Guemkam Ghomsi, P.; Tameh Berinyoh, J. T.; Moukam Kakmeni, F. M.

    2018-02-01

    In this paper, we report the propensity to excitability of the internal structure of cellular microtubules, modelled as a relatively large one-dimensional spatial array of electrical units with nonlinear resistive features. We propose a model mimicking the dynamics of a large set of such intracellular dynamical entities as an excitable medium. We show that the behavior of such lattices can be described by a complex Ginzburg-Landau equation, which admits several wave solutions, including the plane waves paradigm. A stability analysis of the plane waves solutions of our dynamical system is conducted both analytically and numerically. It is observed that perturbed plane waves will always evolve toward promoting the generation of localized periodic waves trains. These modes include both stationary and travelling spatial excitations. They encompass, on one hand, localized structures such as solitary waves embracing bright solitons, dark solitons, and bisolitonic impulses with head-on collisions phenomena, and on the other hand, the appearance of both spatially homogeneous and spatially inhomogeneous stationary patterns. This ability exhibited by our array of proteinic elements to display several states of excitability exposes their stunning biological and physical complexity and is of high relevance in the description of the developmental and informative processes occurring on the subcellular scale.

  14. Cortical myoclonus and cerebellar pathology

    NARCIS (Netherlands)

    Tijssen, MAJ; Thom, M; Ellison, DW; Wilkins, P; Barnes, D; Thompson, PD; Brown, P

    2000-01-01

    Objective To study the electrophysiologic and pathologic findings in three patients with cortical myoclonus. In two patients the myoclonic ataxic syndrome was associated with proven celiac disease. Background: The pathologic findings in conditions associated with cortical myoclonus commonly involve

  15. Cortical myoclonus and cerebellar pathology

    NARCIS (Netherlands)

    Tijssen, M. A.; Thom, M.; Ellison, D. W.; Wilkins, P.; Barnes, D.; Thompson, P. D.; Brown, P.

    2000-01-01

    OBJECTIVE: To study the electrophysiologic and pathologic findings in three patients with cortical myoclonus. In two patients the myoclonic ataxic syndrome was associated with proven celiac disease. BACKGROUND: The pathologic findings in conditions associated with cortical myoclonus commonly involve

  16. Stabilizing versus Destabilizing the Microtubules: A Double-Edge Sword for an Effective Cancer Treatment Option?

    Directory of Open Access Journals (Sweden)

    Daniele Fanale

    2015-01-01

    Full Text Available Microtubules are dynamic and structural cellular components involved in several cell functions, including cell shape, motility, and intracellular trafficking. In proliferating cells, they are essential components in the division process through the formation of the mitotic spindle. As a result of these functions, tubulin and microtubules are targets for anticancer agents. Microtubule-targeting agents can be divided into two groups: microtubule-stabilizing, and microtubule-destabilizing agents. The former bind to the tubulin polymer and stabilize microtubules, while the latter bind to the tubulin dimers and destabilize microtubules. Alteration of tubulin-microtubule equilibrium determines the disruption of the mitotic spindle, halting the cell cycle at the metaphase-anaphase transition and, eventually, resulting in cell death. Clinical application of earlier microtubule inhibitors, however, unfortunately showed several limits, such as neurological and bone marrow toxicity and the emergence of drug-resistant tumor cells. Here we review several natural and synthetic microtubule-targeting agents, which showed antitumor activity and increased efficacy in comparison to traditional drugs in various preclinical and clinical studies. Cryptophycins, combretastatins, ombrabulin, soblidotin, D-24851, epothilones and discodermolide were used in clinical trials. Some of them showed antiangiogenic and antivascular activity and others showed the ability to overcome multidrug resistance, supporting their possible use in chemotherapy.

  17. Modeling vocalization with ECoG cortical activity recorded during vocal production in the macaque monkey.

    Science.gov (United States)

    Fukushima, Makoto; Saunders, Richard C; Fujii, Naotaka; Averbeck, Bruno B; Mishkin, Mortimer

    2014-01-01

    Vocal production is an example of controlled motor behavior with high temporal precision. Previous studies have decoded auditory evoked cortical activity while monkeys listened to vocalization sounds. On the other hand, there have been few attempts at decoding motor cortical activity during vocal production. Here we recorded cortical activity during vocal production in the macaque with a chronically implanted electrocorticographic (ECoG) electrode array. The array detected robust activity in motor cortex during vocal production. We used a nonlinear dynamical model of the vocal organ to reduce the dimensionality of `Coo' calls produced by the monkey. We then used linear regression to evaluate the information in motor cortical activity for this reduced representation of calls. This simple linear model accounted for circa 65% of the variance in the reduced sound representations, supporting the feasibility of using the dynamical model of the vocal organ for decoding motor cortical activity during vocal production.

  18. Microtubule dynamics. II. Kinetics of self-assembly

    DEFF Research Database (Denmark)

    Flyvbjerg, H.; Jobs, E.

    1997-01-01

    Inverse scattering theory describes the conditions necessary and sufficient to determine an unknown potential from known scattering data. No similar theory exists for when and how one may deduce the kinetics of an unknown chemical reaction from quantitative information about its final state and i...... to analyze the self-assembly of microtubules from tubulin are general, and many other reactions and processes may be studied as inverse problems with these methods when enough experimental data are available....

  19. Vibrations of microtubules: Physics that has not met biology yet

    Czech Academy of Sciences Publication Activity Database

    Kučera, Ondřej; Havelka, Daniel; Cifra, Michal

    2017-01-01

    Roč. 72, 1 July (2017), s. 13-22 ISSN 0165-2125 R&D Projects: GA ČR(CZ) GA15-17102S Grant - others:AV ČR(CZ) SAV-15-22 Program:Bilaterální spolupráce Institutional support: RVO:67985882 Keywords : Models * Vibrations * Microtubules Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 1.575, year: 2016

  20. Dictyoceratidan poisons: Defined mark on microtubule-tubulin dynamics.

    Science.gov (United States)

    Gnanambal K, Mary Elizabeth; Lakshmipathy, Shailaja Vommi

    2016-03-01

    Tubulin/microtubule assembly and disassembly is characterized as one of the chief processes during cell growth and division. Hence drugs those perturb these process are considered to be effective in killing fast multiplying cancer cells. There is a collection of natural compounds which disturb microtubule/tubulin dis/assemblage and there have been a lot of efforts concerted in the marine realm too, to surveying such killer molecules. Close to half the natural compounds shooting out from marine invertebrates are generally with no traceable definite mechanisms of action though may be tough anti-cancerous hits at nanogram levels, hence fatefully those discoveries conclude therein without a capacity of translation from laboratory to pharmacy. Astoundingly at least 50% of natural compounds which have definite mechanisms of action causing disorders in tubulin/microtubule kinetics have an isolation history from sponges belonging to the Phylum: Porifera. Poriferans have always been a wonder worker to treat cancers with a choice of, yet precise targets on cancerous tissues. There is a specific order: Dictyoceratida within this Phylum which has contributed to yielding at least 50% of effective compounds possessing this unique mechanism of action mentioned above. However, not much notice is driven to Dictyoceratidans alongside the order: Demospongiae thus dictating the need to know its select microtubule/tubulin irritants since the unearthing of avarol in the year 1974 till date. Hence this review selectively pinpoints all the compounds, noteworthy derivatives and analogs stemming from order: Dictyoceratida focusing on the past, present and future. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. GIT1 enhances neurite outgrowth by stimulating microtubule assembly

    Directory of Open Access Journals (Sweden)

    Yi-sheng Li

    2016-01-01

    Full Text Available GIT1, a G-protein-coupled receptor kinase interacting protein, has been reported to be involved in neurite outgrowth. However, the neurobiological functions of the protein remain unclear. In this study, we found that GIT1 was highly expressed in the nervous system, and its expression was maintained throughout all stages of neuritogenesis in the brain. In primary cultured mouse hippocampal neurons from GIT1 knockout mice, there was a significant reduction in total neurite length per neuron, as well as in the average length of axon-like structures, which could not be prevented by nerve growth factor treatment. Overexpression of GIT1 significantly promoted axon growth and fully rescued the axon outgrowth defect in the primary hippocampal neuron cultures from GIT1 knockout mice. The GIT1 N terminal region, including the ADP ribosylation factor-GTPase activating protein domain, the ankyrin domains and the Spa2 homology domain, were sufficient to enhance axonal extension. Importantly, GIT1 bound to many tubulin proteins and microtubule-associated proteins, and it accelerated microtubule assembly in vitro. Collectively, our findings suggest that GIT1 promotes neurite outgrowth, at least partially by stimulating microtubule assembly. This study provides new insight into the cellular and molecular pathogenesis of GIT1-associated neurological diseases.

  2. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    Science.gov (United States)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs. PMID:23593258

  3. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  4. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Science.gov (United States)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  5. Array capabilities and future arrays

    International Nuclear Information System (INIS)

    Radford, D.

    1993-01-01

    Early results from the new third-generation instruments GAMMASPHERE and EUROGAM are confirming the expectation that such arrays will have a revolutionary effect on the field of high-spin nuclear structure. When completed, GAMMASHPERE will have a resolving power am order of magnitude greater that of the best second-generation arrays. When combined with other instruments such as particle-detector arrays and fragment mass analysers, the capabilites of the arrays for the study of more exotic nuclei will be further enhanced. In order to better understand the limitations of these instruments, and to design improved future detector systems, it is important to have some intelligible and reliable calculation for the relative resolving power of different instrument designs. The derivation of such a figure of merit will be briefly presented, and the relative sensitivities of arrays currently proposed or under construction presented. The design of TRIGAM, a new third-generation array proposed for Chalk River, will also be discussed. It is instructive to consider how far arrays of Compton-suppressed Ge detectors could be taken. For example, it will be shown that an idealised open-quote perfectclose quotes third-generation array of 1000 detectors has a sensitivity an order of magnitude higher again than that of GAMMASPHERE. Less conventional options for new arrays will also be explored

  6. NAD+ and SIRT3 control microtubule dynamics and reduce susceptibility to antimicrotubule agents

    Science.gov (United States)

    Harkcom, William T.; Ghosh, Ananda K.; Sung, Matthew S.; Matov, Alexandre; Brown, Kevin D.; Giannakakou, Paraskevi; Jaffrey, Samie R.

    2014-01-01

    Nicotinamide adenine dinucleotide (NAD+) is an endogenous enzyme cofactor and cosubstrate that has effects on diverse cellular and physiologic processes, including reactive oxygen species generation, mitochondrial function, apoptosis, and axonal degeneration. A major goal is to identify the NAD+-regulated cellular pathways that may mediate these effects. Here we show that the dynamic assembly and disassembly of microtubules is markedly altered by NAD+. Furthermore, we show that the disassembly of microtubule polymers elicited by microtubule depolymerizing agents is blocked by increasing intracellular NAD+ levels. We find that these effects of NAD+ are mediated by the activation of the mitochondrial sirtuin sirtuin-3 (SIRT3). Overexpression of SIRT3 prevents microtubule disassembly and apoptosis elicited by antimicrotubule agents and knockdown of SIRT3 prevents the protective effects of NAD+ on microtubule polymers. Taken together, these data demonstrate that NAD+ and SIRT3 regulate microtubule polymerization and the efficacy of antimicrotubule agents. PMID:24889606

  7. Simultaneous 3D tracking of passive tracers and microtubule bundles in an active gel

    Science.gov (United States)

    Fan, Yi; Breuer, Kenneth S.; Fluids Team

    Kinesin-driven microtubule bundles generate a spontaneous flow in unconfined geometries. They exhibit properties of active matter, including the emergence of collective motion, reduction of apparent viscosity and consumption of local energy. Here we present results from 3D tracking of passive tracers (using Airy rings and 3D scanning) synchronized with 3D measurement of the microtubule bundles motion. This technique is applied to measure viscosity variation and collective flow in a confined geometry with particular attention paid to the self-pumping system recently reported by Wu et al. (2016). Results show that the viscosity in an equilibrium microtubule network is around half that of the isotropic unbundled microtubule solution. Cross-correlations of the active microtubule network and passive tracers define a neighborhood around microtubule bundles in which passive tracers are effectively transported. MRSEC NSF.

  8. Measuring and modeling polymer concentration profiles near spindle boundaries argues that spindle microtubules regulate their own nucleation

    Science.gov (United States)

    Kaye, Bryan; Stiehl, Olivia; Foster, Peter J.; Shelley, Michael J.; Needleman, Daniel J.; Fürthauer, Sebastian

    2018-05-01

    Spindles are self-organized microtubule-based structures that segregate chromosomes during cell division. The mass of the spindle is controlled by the balance between microtubule turnover and nucleation. The mechanisms that control the spatial regulation of microtubule nucleation remain poorly understood. While previous work found that microtubule nucleators bind to pre-existing microtubules in the spindle, it is still unclear whether this binding regulates the activity of those nucleators. Here we use a combination of experiments and mathematical modeling to investigate this issue. We measured the concentration of microtubules and soluble tubulin in and around the spindle. We found a very sharp decay in the concentration of microtubules at the spindle interface. This is inconsistent with a model in which the activity of nucleators is independent of their association with microtubules but consistent with a model in which microtubule nucleators are only active when bound to pre-existing microtubules. This argues that the activity of microtubule nucleators is greatly enhanced when bound to pre-existing microtubules. Thus, microtubule nucleators are both localized and activated by the microtubules they generate.

  9. A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation and stabilizes microtubules

    International Nuclear Information System (INIS)

    Iimori, Makoto; Ozaki, Kanako; Chikashige, Yuji; Habu, Toshiyuki; Hiraoka, Yasushi; Maki, Takahisa; Hayashi, Ikuko; Obuse, Chikashi; Matsumoto, Tomohiro

    2012-01-01

    Mal3 is a fission yeast homolog of EB1, a plus-end tracking protein (+ TIP). We have generated a mutation (89R) replacing glutamine with arginine in the calponin homology (CH) domain of Mal3. Analysis of the 89R mutant in vitro has revealed that the mutation confers a higher affinity to microtubules and enhances the intrinsic activity to promote the microtubule-assembly. The mutant Mal3 is no longer a + TIP, but binds strongly the microtubule lattice. Live cell imaging has revealed that while the wild type Mal3 proteins dissociate from the tip of the growing microtubules before the onset of shrinkage, the mutant Mal3 proteins persist on microtubules and reduces a rate of shrinkage after a longer pausing period. Consequently, the mutant Mal3 proteins cause abnormal elongation of microtubules composing the spindle and aster. Mal3 is phosphorylated at a cluster of serine/threonine residues in the linker connecting the CH and EB1-like C-terminal motif domains. The phosphorylation occurs in a microtubule-dependent manner and reduces the affinity of Mal3 to microtubules. We propose that because the 89R mutation is resistant to the effect of phosphorylation, it can associate persistently with microtubules and confers a stronger stability of microtubules likely by reinforcing the cylindrical structure. -- Highlights: ► We characterize a mutation (mal3-89R) in fission yeast homolog of EB1. ► The mutation enhances the activity to assemble microtubules. ► Mal3 is phosphorylated in a microtubule-dependent manner. ► The phosphorylation negatively regulates the Mal3 activity.

  10. A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation and stabilizes microtubules

    Energy Technology Data Exchange (ETDEWEB)

    Iimori, Makoto; Ozaki, Kanako [Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo ku, Kyoto, 606-8502 (Japan); Chikashige, Yuji [Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Kobe, 651-2492 (Japan); Habu, Toshiyuki [Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo ku, Kyoto, 606-8502 (Japan); Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto, 606-8501 (Japan); Hiraoka, Yasushi [Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Kobe, 651-2492 (Japan); Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871 (Japan); Maki, Takahisa; Hayashi, Ikuko [Graduate School of Nanobioscience, Yokohama City University, Tsurumi, Yokohama, 230-0045 (Japan); Obuse, Chikashi [Graduate School of Life Science, Hokkaido University, Sapporo 001-0021 (Japan); Matsumoto, Tomohiro, E-mail: tmatsumo@house.rbc.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo ku, Kyoto, 606-8502 (Japan); Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto, 606-8501 (Japan)

    2012-02-01

    Mal3 is a fission yeast homolog of EB1, a plus-end tracking protein (+ TIP). We have generated a mutation (89R) replacing glutamine with arginine in the calponin homology (CH) domain of Mal3. Analysis of the 89R mutant in vitro has revealed that the mutation confers a higher affinity to microtubules and enhances the intrinsic activity to promote the microtubule-assembly. The mutant Mal3 is no longer a + TIP, but binds strongly the microtubule lattice. Live cell imaging has revealed that while the wild type Mal3 proteins dissociate from the tip of the growing microtubules before the onset of shrinkage, the mutant Mal3 proteins persist on microtubules and reduces a rate of shrinkage after a longer pausing period. Consequently, the mutant Mal3 proteins cause abnormal elongation of microtubules composing the spindle and aster. Mal3 is phosphorylated at a cluster of serine/threonine residues in the linker connecting the CH and EB1-like C-terminal motif domains. The phosphorylation occurs in a microtubule-dependent manner and reduces the affinity of Mal3 to microtubules. We propose that because the 89R mutation is resistant to the effect of phosphorylation, it can associate persistently with microtubules and confers a stronger stability of microtubules likely by reinforcing the cylindrical structure. -- Highlights: Black-Right-Pointing-Pointer We characterize a mutation (mal3-89R) in fission yeast homolog of EB1. Black-Right-Pointing-Pointer The mutation enhances the activity to assemble microtubules. Black-Right-Pointing-Pointer Mal3 is phosphorylated in a microtubule-dependent manner. Black-Right-Pointing-Pointer The phosphorylation negatively regulates the Mal3 activity.

  11. SNP Arrays

    Directory of Open Access Journals (Sweden)

    Jari Louhelainen

    2016-10-01

    Full Text Available The papers published in this Special Issue “SNP arrays” (Single Nucleotide Polymorphism Arrays focus on several perspectives associated with arrays of this type. The range of papers vary from a case report to reviews, thereby targeting wider audiences working in this field. The research focus of SNP arrays is often human cancers but this Issue expands that focus to include areas such as rare conditions, animal breeding and bioinformatics tools. Given the limited scope, the spectrum of papers is nothing short of remarkable and even from a technical point of view these papers will contribute to the field at a general level. Three of the papers published in this Special Issue focus on the use of various SNP array approaches in the analysis of three different cancer types. Two of the papers concentrate on two very different rare conditions, applying the SNP arrays slightly differently. Finally, two other papers evaluate the use of the SNP arrays in the context of genetic analysis of livestock. The findings reported in these papers help to close gaps in the current literature and also to give guidelines for future applications of SNP arrays.

  12. Combing and self-assembly phenomena in dry films of Taxol-stabilized microtubules

    Directory of Open Access Journals (Sweden)

    Rose Franck

    2007-01-01

    Full Text Available AbstractMicrotubules are filamentous proteins that act as a substrate for the translocation of motor proteins. As such, they may be envisioned as a scaffold for the self-assembly of functional materials and devices. Physisorption, self-assembly and combing are here investigated as a potential prelude to microtubule-templated self-assembly. Dense films of self-assembled microtubules were successfully produced, as well as patterns of both dendritic and non-dendritic bundles of microtubules. They are presented in the present paper and the mechanism of their formation is discussed.

  13. Polyamine sharing between tubulin dimers favours microtubule nucleation and elongation via facilitated diffusion.

    Directory of Open Access Journals (Sweden)

    Alain Mechulam

    2009-01-01

    Full Text Available We suggest for the first time that the action of multivalent cations on microtubule dynamics can result from facilitated diffusion of GTP-tubulin to the microtubule ends. Facilitated diffusion can promote microtubule assembly, because, upon encountering a growing nucleus or the microtubule wall, random GTP-tubulin sliding on their surfaces will increase the probability of association to the target sites (nucleation sites or MT ends. This is an original explanation for understanding the apparent discrepancy between the high rate of microtubule elongation and the low rate of tubulin association at the microtubule ends in the viscous cytoplasm. The mechanism of facilitated diffusion requires an attraction force between two tubulins, which can result from the sharing of multivalent counterions. Natural polyamines (putrescine, spermidine, and spermine are present in all living cells and are potent agents to trigger tubulin self-attraction. By using an analytical model, we analyze the implication of facilitated diffusion mediated by polyamines on nucleation and elongation of microtubules. In vitro experiments using pure tubulin indicate that the promotion of microtubule assembly by polyamines is typical of facilitated diffusion. The results presented here show that polyamines can be of particular importance for the regulation of the microtubule network in vivo and provide the basis for further investigations into the effects of facilitated diffusion on cytoskeleton dynamics.

  14. Msd1/SSX2IP-dependent microtubule anchorage ensures spindle orientation and primary cilia formation

    OpenAIRE

    Hori, Akiko; Ikebe, Chiho; Tada, Masazumi; Toda, Takashi

    2014-01-01

    Anchoring microtubules to the centrosome is critical for cell geometry and polarity, yet the molecular mechanism remains unknown. Here we show that the conserved human Msd1/SSX2IP is required for microtubule anchoring. hMsd1/SSX2IP is delivered to the centrosome in a centriolar satellite-dependent manner and binds the microtubule-nucleator ?-tubulin complex. hMsd1/SSX2IP depletion leads to disorganised interphase microtubules and misoriented mitotic spindles with reduced length and intensity....

  15. Cep169, a Novel Microtubule Plus-End-Tracking Centrosomal Protein, Binds to CDK5RAP2 and Regulates Microtubule Stability.

    Directory of Open Access Journals (Sweden)

    Yusuke Mori

    Full Text Available The centrosomal protein, CDK5RAP2, is a microcephaly protein that regulates centrosomal maturation by recruitment of a γ-tubulin ring complex (γ-TuRC onto centrosomes. In this report, we identified a novel human centrosomal protein, Cep169, as a binding partner of CDK5RAP2, a member of microtubule plus-end-tracking proteins (+TIPs. Cep169 interacts directly with CDK5RAP2 through CM1, an evolutionarily conserved domain, and colocalizes at the pericentriolar matrix (PCM around centrioles with CDK5RAP2. In addition, Cep169 interacts with EB1 through SxIP-motif responsible for EB1 binding, and colocalizes with CDK5RAP2 at the microtubule plus-end. EB1-binding-deficient Cep169 abolishes EB1 interaction and microtubule plus-end attachment, indicating Cep169 as a novel member of +TIPs. We further show that ectopic expression of either Cep169 or CDK5RAP2 induces microtubule bundling and acetylation in U2OS cells, and depletion of Cep169 induces microtubule depolymerization in HeLa cells, although Cep169 is not required for assembly of γ-tubulin onto centrosome by CDK5RAP2. These results show that Cep169 targets microtubule tips and regulates stability of microtubules with CDK5RAP2.

  16. Arabidopsis Microtubule-Associated Protein MAP65-3 Cross-Links Antiparallel Microtubules toward Their Plus Ends in the Phragmoplast via Its Distinct C-Terminal Microtubule Binding Domain[W

    Science.gov (United States)

    Ho, Chin-Min Kimmy; Lee, Yuh-Ru Julie; Kiyama, Lindsay D.; Dinesh-Kumar, Savithramma P.; Liu, Bo

    2012-01-01

    Plant cytokinesis is brought about by the phragmoplast, which contains an antiparallel microtubule (MT) array. The MT-associated protein MAP65-3 acts as an MT-bundling factor that specifically cross-links antiparallel MTs near their plus ends. MAP65 family proteins contain an N-terminal dimerization domain and C-terminal MT interaction domain. Compared with other MAP65 isoforms, MAP65-3 contains an extended C terminus. A MT binding site was discovered in the region between amino acids 496 and 588 and found to be essential for the organization of phragmoplast MTs. The frequent cytokinetic failure caused by loss of MAP65-3 was not rescued by ectopic expression of MAP65-1 under the control of the MAP65-3 promoter, indicating nonoverlapping functions between the two isoforms. In the presence of MAP65-3, however, ectopic MAP65-1 appeared in the phragmoplast midline. We show that MAP65-1 could acquire the function of MAP65-3 when the C terminus of MAP65-3, which contains the MT binding site, was grafted to it. Our results also show that MAP65-1 and MAP65-3 may share redundant functions in MT stabilization. Such a stabilization effect was likely brought about by MT binding and bundling. We conclude that MAP65-3 contains a distinct C-terminal MT binding site with a specific role in cross-linking antiparallel MTs toward their plus ends in the phragmoplast. PMID:22570443

  17. electrode array

    African Journals Online (AJOL)

    PROF EKWUEME

    A geoelectric investigation employing vertical electrical soundings (VES) using the Ajayi - Makinde Two-Electrode array and the ... arrangements used in electrical D.C. resistivity survey. These include ..... Refraction Tomography to Study the.

  18. GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation.

    Science.gov (United States)

    Černohorská, Markéta; Sulimenko, Vadym; Hájková, Zuzana; Sulimenko, Tetyana; Sládková, Vladimíra; Vinopal, Stanislav; Dráberová, Eduarda; Dráber, Pavel

    2016-06-01

    Microtubule nucleation from γ-tubulin complexes, located at the centrosome, is an essential step in the formation of the microtubule cytoskeleton. However, the signaling mechanisms that regulate microtubule nucleation in interphase cells are largely unknown. In this study, we report that γ-tubulin is in complexes containing G protein-coupled receptor kinase-interacting protein 1 (GIT1), p21-activated kinase interacting exchange factor (βPIX), and p21 protein (Cdc42/Rac)-activated kinase 1 (PAK1) in various cell lines. Immunofluorescence microscopy revealed association of GIT1, βPIX and activated PAK1 with centrosomes. Microtubule regrowth experiments showed that depletion of βPIX stimulated microtubule nucleation, while depletion of GIT1 or PAK1 resulted in decreased nucleation in the interphase cells. These data were confirmed for GIT1 and βPIX by phenotypic rescue experiments, and counting of new microtubules emanating from centrosomes during the microtubule regrowth. The importance of PAK1 for microtubule nucleation was corroborated by the inhibition of its kinase activity with IPA-3 inhibitor. GIT1 with PAK1 thus represent positive regulators, and βPIX is a negative regulator of microtubule nucleation from the interphase centrosomes. The regulatory roles of GIT1, βPIX and PAK1 in microtubule nucleation correlated with recruitment of γ-tubulin to the centrosome. Furthermore, in vitro kinase assays showed that GIT1 and βPIX, but not γ-tubulin, serve as substrates for PAK1. Finally, direct interaction of γ-tubulin with the C-terminal domain of βPIX and the N-terminal domain of GIT1, which targets this protein to the centrosome, was determined by pull-down experiments. We propose that GIT1/βPIX signaling proteins with PAK1 kinase represent a novel regulatory mechanism of microtubule nucleation in interphase cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Katanin localization requires triplet microtubules in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Jessica M Esparza

    Full Text Available Centrioles and basal bodies are essential for a variety of cellular processes that include the recruitment of proteins to these structures for both centrosomal and ciliary function. This recruitment is compromised when centriole/basal body assembly is defective. Mutations that cause basal body assembly defects confer supersensitivity to Taxol. These include bld2, bld10, bld12, uni3, vfl1, vfl2, and vfl3. Flagellar motility mutants do not confer sensitivity with the exception of mutations in the p60 (pf19 and p80 (pf15 subunits of the microtubule severing protein katanin. We have identified additional pf15 and bld2 (ε-tubulin alleles in screens for Taxol sensitivity. Null pf15 and bld2 alleles are viable and are not essential genes in Chlamydomonas. Analysis of double mutant strains with the pf15-3 and bld2-6 null alleles suggests that basal bodies in Chlamydomonas may recruit additional proteins beyond katanin that affect spindle microtubule stability. The bld2-5 allele is a hypomorphic allele and its phenotype is modulated by nutritional cues. Basal bodies in bld2-5 cells are missing proximal ends. The basal body mutants show aberrant localization of an epitope-tagged p80 subunit of katanin. Unlike IFT proteins, katanin p80 does not localize to the transition fibers of the basal bodies based on an analysis of the uni1 mutant as well as the lack of colocalization of katanin p80 with IFT74. We suggest that the triplet microtubules are likely to play a key role in katanin p80 recruitment to the basal body of Chlamydomonas rather than the transition fibers that are needed for IFT localization.

  20. Interaction of microtubules with active principles of Xanthium strumarium.

    Science.gov (United States)

    Menon, G S; Kuchroo, K; Dasgupta, D

    2001-01-01

    Indigenous variety of Xanthium strumarium (X. strumarium) was screened for its antimitotic activity using the microtubule-tubulin system isolated from mammalian tissue. A preliminary phytochemical screening of the whole extracts of the plant was carried out followed by partial purification of the whole extract of X.strumarium. The separated fractions obtained were identified and used for in vitro polymerization studies. The whole as well as partially separated chemical constituents of X. strumarium showed effective inhibition of tubulin polymerization. The results thus suggest that X. strumarium may possess antimitotic components.

  1. Genetic analysis of a Drosophila microtubule-associated protein

    OpenAIRE

    1992-01-01

    The 205-kD microtubule-associated protein (205K MAP) is one of the principal MAPs in Drosophila. 205K MAP is similar to the HeLa 210K/MAP4 family of MAPs since it shares the following biochemical properties: it is present in several isoforms, has a molecular mass of approximately 200 kD, and is thermostable. Furthermore, immuno-crossreactivity has been observed between mouse MAP4, HeLa 210K, and Drosophila 205K MAP. Currently, there is little information concerning the biological function of ...

  2. Stretchable, Twisted Conductive Microtubules for Wearable Computing, Robotics, Electronics, and Healthcare.

    Science.gov (United States)

    Do, Thanh Nho; Visell, Yon

    2017-05-11

    Stretchable and flexible multifunctional electronic components, including sensors and actuators, have received increasing attention in robotics, electronics, wearable, and healthcare applications. Despite advances, it has remained challenging to design analogs of many electronic components to be highly stretchable, to be efficient to fabricate, and to provide control over electronic performance. Here, we describe highly elastic sensors and interconnects formed from thin, twisted conductive microtubules. These devices consist of twisted assemblies of thin, highly stretchable (>400%) elastomer tubules filled with liquid conductor (eutectic gallium indium, EGaIn), and fabricated using a simple roller coating process. As we demonstrate, these devices can operate as multimodal sensors for strain, rotation, contact force, or contact location. We also show that, through twisting, it is possible to control their mechanical performance and electronic sensitivity. In extensive experiments, we have evaluated the capabilities of these devices, and have prototyped an array of applications in several domains of stretchable and wearable electronics. These devices provide a novel, low cost solution for high performance stretchable electronics with broad applications in industry, healthcare, and consumer electronics, to emerging product categories of high potential economic and societal significance.

  3. Collective behavior of minus-ended motors in mitotic microtubule asters gliding toward DNA

    International Nuclear Information System (INIS)

    Athale, Chaitanya A; Dinarina, Ana; Nedelec, Francois; Karsenti, Eric

    2014-01-01

    Microtubules (MTs) nucleated by centrosomes form star-shaped structures referred to as asters. Aster motility and dynamics is vital for genome stability, cell division, polarization and differentiation. Asters move either toward the cell center or away from it. Here, we focus on the centering mechanism in a membrane independent system of Xenopus cytoplasmic egg extracts. Using live microscopy and single particle tracking, we find that asters move toward chromatinized DNA structures. The velocity and directionality profiles suggest a random-walk with drift directed toward DNA. We have developed a theoretical model that can explain this movement as a result of a gradient of MT length dynamics and MT gliding on immobilized dynein motors. In simulations, the antagonistic action of the motor species on the radial array of MTs leads to a tug-of-war purely due to geometric considerations and aster motility resembles a directed random-walk. Additionally, our model predicts that aster velocities do not change greatly with varying initial distance from DNA. The movement of asymmetric asters becomes increasingly super-diffusive with increasing motor density, but for symmetric asters it becomes less super-diffusive. The transition of symmetric asters from superdiffusive to diffusive mobility is the result of number fluctuations in bound motors in the tug-of-war. Overall, our model is in good agreement with experimental data in Xenopus cytoplasmic extracts and predicts novel features of the collective effects of motor-MT interactions. (paper)

  4. Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy

    NARCIS (Netherlands)

    Flex, Elisabetta; Niceta, Marcello; Cecchetti, Serena; Thiffault, Isabelle; Au, Margaret G.; Capuano, Alessandro; Piermarini, Emanuela; Ivanova, Anna A.; Francis, Joshua W.; Chillemi, Giovanni; Chandramouli, Balasubramanian; Carpentieri, Giovanna; Haaxma, Charlotte A.; Ciolfi, Andrea; Pizzi, Simone; Douglas, Ganka V.; Levine, Kara; Sferra, Antonella; Dentici, Maria Lisa; Pfundt, Rolph R.; Le Pichon, Jean-Baptiste; Farrow, Emily; Baas, Frank; Piemonte, Fiorella; Dallapiccola, Bruno; Graham, John M.; Saunders, Carol J.; Bertini, Enrico; Kahn, Richard A.; Koolen, David A.; Tartaglia, Marco

    2016-01-01

    Microtubules are dynamic cytoskeletal elements coordinating and supporting a variety of neuronal processes, including cell division, migration, polarity, intracellular trafficking, and signal transduction. Mutations in genes encoding tubulins and microtubule-associated proteins are known to cause

  5. A ROP2-RIC1 pathway fine-tunes microtubule reorganization for salt tolerance in Arabidopsis.

    Science.gov (United States)

    Li, Changjiang; Lu, Hanmei; Li, Wei; Yuan, Ming; Fu, Ying

    2017-07-01

    The reorganization of microtubules induced by salt stress is required for Arabidopsis survival under high salinity conditions. RIC1 is an effector of Rho-related GTPase from plants (ROPs) and a known microtubule-associated protein. In this study, we demonstrated that RIC1 expression decreased with long-term NaCl treatment, and ric1-1 seedlings exhibited a higher survival rate under salt stress. We found that RIC1 reduced the frequency of microtubule transition from shortening to growing status and knockout of RIC1 improved the reassembly of depolymerized microtubules caused by either oryzalin treatment or salt stress. Further investigation showed that constitutively active ROP2 promoted the reassembly of microtubules and the survival of seedlings under salt stress. A rop2-1 ric1-1 double mutant rescued the salt-sensitive phenotype of rop2-1, indicating that ROP2 functions in salt tolerance through RIC1. Although ROP2 did not regulate RIC1 expression upon salt stress, a quick but mild increase of ROP2 activity was induced, led to reduction of RIC1 on microtubules. Collectively, our study reveals an ROP2-RIC1 pathway that fine-tunes microtubule dynamics in response to salt stress in Arabidopsis. This finding not only reveals a new regulatory mechanism for microtubule reorganization under salt stress but also the importance of ROP signalling for salinity tolerance. © 2017 John Wiley & Sons Ltd.

  6. Four-stranded mini microtubules formed by Prosthecobacter BtubAB show dynamic instability.

    Science.gov (United States)

    Deng, Xian; Fink, Gero; Bharat, Tanmay A M; He, Shaoda; Kureisaite-Ciziene, Danguole; Löwe, Jan

    2017-07-18

    Microtubules, the dynamic, yet stiff hollow tubes built from αβ-tubulin protein heterodimers, are thought to be present only in eukaryotic cells. Here, we report a 3.6-Å helical reconstruction electron cryomicroscopy structure of four-stranded mini microtubules formed by bacterial tubulin-like Prosthecobacter dejongeii BtubAB proteins. Despite their much smaller diameter, mini microtubules share many key structural features with eukaryotic microtubules, such as an M-loop, alternating subunits, and a seam that breaks overall helical symmetry. Using in vitro total internal reflection fluorescence microscopy, we show that bacterial mini microtubules treadmill and display dynamic instability, another hallmark of eukaryotic microtubules. The third protein in the btub gene cluster, BtubC, previously known as "bacterial kinesin light chain," binds along protofilaments every 8 nm, inhibits BtubAB mini microtubule catastrophe, and increases rescue. Our work reveals that some bacteria contain regulated and dynamic cytomotive microtubule systems that were once thought to be only useful in much larger and sophisticated eukaryotic cells.

  7. Synthesis and biological evaluation of structurally simplified noscapine analogues as microtubule binding agents

    Czech Academy of Sciences Publication Activity Database

    Ghaly, P.E.; Churchill, C.D.M.; Abou El-Magd, R.M.; Hájková, Zuzana; Dráber, Pavel; West, F.G.; Tuszyński, J.A.

    2017-01-01

    Roč. 95, č. 6 (2017), s. 649-655 ISSN 0008-4042 R&D Projects: GA ČR GA15-22194S Institutional support: RVO:68378050 Keywords : noscapine * microtubule * tubulin * cytotoxicity * microtubule dynamics * docking Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 1.080, year: 2016

  8. Dietary flavonoid fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells.

    Science.gov (United States)

    Mukhtar, Eiman; Adhami, Vaqar Mustafa; Sechi, Mario; Mukhtar, Hasan

    2015-10-28

    Microtubule targeting based therapies have revolutionized cancer treatment; however, resistance and side effects remain a major limitation. Therefore, novel strategies that can overcome these limitations are urgently needed. We made a novel discovery that fisetin, a hydroxyflavone, is a microtubule stabilizing agent. Fisetin binds to tubulin and stabilizes microtubules with binding characteristics far superior than paclitaxel. Surface plasmon resonance and computational docking studies suggested that fisetin binds to β-tubulin with superior affinity compared to paclitaxel. Fisetin treatment of human prostate cancer cells resulted in robust up-regulation of microtubule associated proteins (MAP)-2 and -4. In addition, fisetin treated cells were enriched in α-tubulin acetylation, an indication of stabilization of microtubules. Fisetin significantly inhibited PCa cell proliferation, migration, and invasion. Nudc, a protein associated with microtubule motor dynein/dynactin complex that regulates microtubule dynamics, was inhibited with fisetin treatment. Further, fisetin treatment of a P-glycoprotein overexpressing multidrug-resistant cancer cell line NCI/ADR-RES inhibited the viability and colony formation. Our results offer in vitro proof-of-concept for fisetin as a microtubule targeting agent. We suggest that fisetin could be developed as an adjuvant for treatment of prostate and other cancer types. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. A structural model for microtubule minus-end recognition and protection by CAMSAP proteins

    NARCIS (Netherlands)

    Atherton, Joseph; Jiang, Kai; Stangier, Marcel M.; Luo, Yanzhang; Hua, Shasha; Houben, Klaartje; Van Hooff, Jolien J.E.; Joseph, Agnel Praveen; Scarabelli, Guido; Grant, Barry J.; Roberts, Anthony J.; Topf, Maya; Steinmetz, Michel O.; Baldus, Marc; Moores, Carolyn A.; Akhmanova, Anna

    2017-01-01

    CAMSAP and Patronin family members regulate microtubule minus-end stability and localization and thus organize noncentrosomal microtubule networks, which are essential for cell division, polarization and differentiation. Here, we found that the CAMSAP C-terminal CKK domain is widely present among

  10. Disruption of actin filaments in Zea mays by bisphenol A depends on their crosstalk with microtubules.

    Science.gov (United States)

    Stavropoulou, Konstantina; Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Arseni, Ermioni-Makedonia; Eleftheriou, Eleftherios P

    2018-03-01

    Bisphenol A (BPA) is a widespread environmental pollutant, reportedly harmful to living organisms. In plant cells, BPA was shown to disrupt microtubule (MT) arrays and perturb mitosis, but its effects on filamentous actin (F-actin) have not been explored. Here we studied the effects of BPA on actin filaments (AFs) in meristematic root tip and leaf cells of Zea mays, by fluorescent labeling and confocal microscopy. Considering the typical dynamic interaction between MTs and AFs, the effects on these two essential components of the plant cytoskeleton were correlated. It was found that BPA disorganized rapidly AFs in a concentration- and time-dependent manner. The fine filaments were first to be affected, followed by the subcortical bundles, resulting in rod- and ring-like conformations. The observed differences in sensitivity between protodermal and cortex cells were attributed to the deeper location of the latter. Depolymerization or stabilization of MTs by relevant drugs (oryzalin, taxol) revealed that AF susceptibility to BPA depends on MT integrity. Developing leaves required harder and longer treatment to be affected by BPA. Ontogenesis of stomatal complexes was highly disturbed, arrangement of AFs and MT arrays was disordered and accuracy of cell division sequence was deranged or completely arrested. The effect of BPA confirmed that subsidiary cell mother cell polarization is not mediated by F-actin patch neither of preprophase band organization. On the overall, it is concluded that AFs in plant cells constitute a subcellular target of BPA and their disruption depends on their crosstalk with MTs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Kindlin1 regulates microtubule function to ensure normal mitosis.

    Science.gov (United States)

    Patel, Hitesh; Stavrou, Ifigeneia; Shrestha, Roshan L; Draviam, Viji; Frame, Margaret C; Brunton, Valerie G

    2016-08-01

    Loss of Kindlin 1 (Kin1) results in the skin blistering disorder Kindler Syndrome (KS), whose symptoms also include skin atrophy and reduced keratinocyte proliferation. Kin1 binds to integrins to modulate their activation and more recently it has been shown to regulate mitotic spindles and cell survival in a Plk1-dependent manner. Here we report that short-term Kin1 deletion in mouse skin results in impaired mitosis, which is associated with reduced acetylated tubulin (ac-tub) levels and cell proliferation. In cells, impaired mitosis and reduced ac-tub levels are also accompanied by reduced microtubule stability, all of which are rescued by HDAC6 inhibition. The ability of Kin1 to regulate HDAC6-dependent cellular ac-tub levels is dependent on its phosphorylation by Plk1. Taken together, these data define a novel role for Kin1 in microtubule acetylation and stability and offer a mechanistic insight into how certain KS phenotypes, such as skin atrophy and reduced cell proliferation, arise. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  12. Hepatocyte cotransport of taurocholate and bilirubin glucuronides: Role of microtubules

    International Nuclear Information System (INIS)

    Crawford, J.M.; Gollan, J.L.

    1988-01-01

    Modulation of bile pigment excretion by bile salts has been attributed to modification of canalicular membrane transport or a physical interaction in bile. Based on the observation that a microtubule-dependent pathway is involved in the hepatocellular transport of bile salts, the authors investigated the possibility that bilirubin glucuronides are associated with bile salts during intracellular transport. Experiments were conducted in intact rats (basal) or after overnight biliary diversion and intravenous reinfusion of taurocholate (depleted/reinfused). All rats were pretreated with intravenous low-dose colchicine or its inactive isomer lumicolchicine. Biliary excretion of radiolabeled bilirubin glucuronides derived from tracer [ 14 C]bilirubin-[ 3 H]bilirubin monoglucuronide (coinjected iv) was unchanged in basal rats but was consistently delayed in depleted/reinfused rats. This was accompanied by a significant shift toward bilirubin diglucuronide formation from both substrates. In basal Gunn rats, with deficient bilirubin glucuronidation, biliary excretion of intravenous [ 14 C]bilirubin monoglucuronide-[ 3 H]bilirubin diglucuronide was unaffected by colchicine but was retarded in depleted/reinfused Gunn rats. Colchicine had no effect on the rate of bilirubin glucuronidation in vitro in rat liver microsomes. They conclude that a portion of the bilirubin glucuronides generated endogenously in hepatocytes or taken up directly from plasma may be cotransported with bile salts to the bile canalicular membrane via a microtubule-dependent mechanism

  13. Spatiotemporal Regulation of Nuclear Transport Machinery and Microtubule Organization

    Science.gov (United States)

    Okada, Naoyuki; Sato, Masamitsu

    2015-01-01

    Spindle microtubules capture and segregate chromosomes and, therefore, their assembly is an essential event in mitosis. To carry out their mission, many key players for microtubule formation need to be strictly orchestrated. Particularly, proteins that assemble the spindle need to be translocated at appropriate sites during mitosis. A small GTPase (hydrolase enzyme of guanosine triphosphate), Ran, controls this translocation. Ran plays many roles in many cellular events: nucleocytoplasmic shuttling through the nuclear envelope, assembly of the mitotic spindle, and reorganization of the nuclear envelope at the mitotic exit. Although these events are seemingly distinct, recent studies demonstrate that the mechanisms underlying these phenomena are substantially the same as explained by molecular interplay of the master regulator Ran, the transport factor importin, and its cargo proteins. Our review focuses on how the transport machinery regulates mitotic progression of cells. We summarize translocation mechanisms governed by Ran and its regulatory proteins, and particularly focus on Ran-GTP targets in fission yeast that promote spindle formation. We also discuss the coordination of the spatial and temporal regulation of proteins from the viewpoint of transport machinery. We propose that the transport machinery is an essential key that couples the spatial and temporal events in cells. PMID:26308057

  14. Microtubules Nonlinear Models Dynamics Investigations through the exp(−Φ(ξ-Expansion Method Implementation

    Directory of Open Access Journals (Sweden)

    Nur Alam

    2016-02-01

    Full Text Available In this research article, we present exact solutions with parameters for two nonlinear model partial differential equations(PDEs describing microtubules, by implementing the exp(−Φ(ξ-Expansion Method. The considered models, describing highly nonlinear dynamics of microtubules, can be reduced to nonlinear ordinary differential equations. While the first PDE describes the longitudinal model of nonlinear dynamics of microtubules, the second one describes the nonlinear model of dynamics of radial dislocations in microtubules. The acquired solutions are then graphically presented, and their distinct properties are enumerated in respect to the corresponding dynamic behavior of the microtubules they model. Various patterns, including but not limited to regular, singular kink-like, as well as periodicity exhibiting ones, are detected. Being the method of choice herein, the exp(−Φ(ξ-Expansion Method not disappointing in the least, is found and declared highly efficient.

  15. Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells

    Science.gov (United States)

    Wang, Jennifer T; Kong, Dong; Hoerner, Christian R; Loncarek, Jadranka

    2017-01-01

    Centrioles are composed of long-lived microtubules arranged in nine triplets. However, the contribution of triplet microtubules to mammalian centriole formation and stability is unknown. Little is known of the mechanism of triplet microtubule formation, but experiments in unicellular eukaryotes indicate that delta-tubulin and epsilon-tubulin, two less-studied tubulin family members, are required. Here, we report that centrioles in delta-tubulin and epsilon-tubulin null mutant human cells lack triplet microtubules and fail to undergo centriole maturation. These aberrant centrioles are formed de novo each cell cycle, but are unstable and do not persist to the next cell cycle, leading to a futile cycle of centriole formation and disintegration. Disintegration can be suppressed by paclitaxel treatment. Delta-tubulin and epsilon-tubulin physically interact, indicating that these tubulins act together to maintain triplet microtubules and that these are necessary for inheritance of centrioles from one cell cycle to the next. PMID:28906251

  16. Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells.

    Science.gov (United States)

    Wang, Jennifer T; Kong, Dong; Hoerner, Christian R; Loncarek, Jadranka; Stearns, Tim

    2017-09-14

    Centrioles are composed of long-lived microtubules arranged in nine triplets. However, the contribution of triplet microtubules to mammalian centriole formation and stability is unknown. Little is known of the mechanism of triplet microtubule formation, but experiments in unicellular eukaryotes indicate that delta-tubulin and epsilon-tubulin, two less-studied tubulin family members, are required. Here, we report that centrioles in delta-tubulin and epsilon-tubulin null mutant human cells lack triplet microtubules and fail to undergo centriole maturation. These aberrant centrioles are formed de novo each cell cycle, but are unstable and do not persist to the next cell cycle, leading to a futile cycle of centriole formation and disintegration. Disintegration can be suppressed by paclitaxel treatment. Delta-tubulin and epsilon-tubulin physically interact, indicating that these tubulins act together to maintain triplet microtubules and that these are necessary for inheritance of centrioles from one cell cycle to the next.

  17. Filter arrays

    Science.gov (United States)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  18. Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly.

    Directory of Open Access Journals (Sweden)

    Joy G Ghosh

    2007-06-01

    Full Text Available Small heat shock proteins regulate microtubule assembly during cell proliferation and in response to stress through interactions that are poorly understood.Novel functions for five interactive sequences in the small heat shock protein and molecular chaperone, human alphaB crystallin, were investigated in the assembly/disassembly of microtubules and aggregation of tubulin using synthetic peptides and mutants of human alphaB crystallin.The interactive sequence (113FISREFHR(120 exposed on the surface of alphaB crystallin decreased microtubule assembly by approximately 45%. In contrast, the interactive sequences, (131LTITSSLSSDGV(142 and (156ERTIPITRE(164, corresponding to the beta8 strand and the C-terminal extension respectively, which are involved in complex formation, increased microtubule assembly by approximately 34-45%. The alphaB crystallin peptides, (113FISREFHR(120 and (156ERTIPITRE(164, inhibited microtubule disassembly by approximately 26-36%, and the peptides (113FISREFHR(120 and (131LTITSSLSSDGV(142 decreased the thermal aggregation of tubulin by approximately 42-44%. The (131LTITSSLSSDGV(142 and (156ERTIPITRE(164 peptides were more effective than the widely used anti-cancer drug, Paclitaxel, in modulating tubulinmicrotubule dynamics. Mutagenesis of these interactive sequences in wt human alphaB crystallin confirmed the effects of the alphaB crystallin peptides on microtubule assembly/disassembly and tubulin aggregation. The regulation of microtubule assembly by alphaB crystallin varied over a narrow range of concentrations. The assembly of microtubules was maximal at alphaB crystallin to tubulin molar ratios between 1:4 and 2:1, while molar ratios >2:1 inhibited microtubule assembly.Interactive sequences on the surface of human alphaB crystallin collectively modulate microtubule assembly through a dynamic subunit exchange mechanism that depends on the concentration and ratio of alphaB crystallin to tubulin. These are the first

  19. Cortico-cortical communication dynamics

    Directory of Open Access Journals (Sweden)

    Per E Roland

    2014-05-01

    Full Text Available IIn principle, cortico-cortical communication dynamics is simple: neurons in one cortical area communicate by sending action potentials that release glutamate and excite their target neurons in other cortical areas. In practice, knowledge about cortico-cortical communication dynamics is minute. One reason is that no current technique can capture the fast spatio-temporal cortico-cortical evolution of action potential transmission and membrane conductances with sufficient spatial resolution. A combination of optogenetics and monosynaptic tracing with virus can reveal the spatio-temporal cortico-cortical dynamics of specific neurons and their targets, but does not reveal how the dynamics evolves under natural conditions. Spontaneous ongoing action potentials also spread across cortical areas and are difficult to separate from structured evoked and intrinsic brain activity such as thinking. At a certain state of evolution, the dynamics may engage larger populations of neurons to drive the brain to decisions, percepts and behaviors. For example, successfully evolving dynamics to sensory transients can appear at the mesoscopic scale revealing how the transient is perceived. As a consequence of these methodological and conceptual difficulties, studies in this field comprise a wide range of computational models, large-scale measurements (e.g., by MEG, EEG, and a combination of invasive measurements in animal experiments. Further obstacles and challenges of studying cortico-cortical communication dynamics are outlined in this critical review.

  20. Progressive posterior cortical dysfunction

    Directory of Open Access Journals (Sweden)

    Fábio Henrique de Gobbi Porto

    Full Text Available Abstract Progressive posterior cortical dysfunction (PPCD is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal and ventral (occipito-temporal pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction, complete Balint's syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right . Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD.

  1. Progressive posterior cortical dysfunction

    Science.gov (United States)

    Porto, Fábio Henrique de Gobbi; Machado, Gislaine Cristina Lopes; Morillo, Lilian Schafirovits; Brucki, Sonia Maria Dozzi

    2010-01-01

    Progressive posterior cortical dysfunction (PPCD) is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal) and ventral (occipito-temporal) pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction), complete Balint’s syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right. Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD. PMID:29213665

  2. Modeling cortical circuits.

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.; Xavier, Patrick Gordon

    2010-09-01

    The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.

  3. Clustering of Nuclei in Multinucleated Hyphae Is Prevented by Dynein-Driven Bidirectional Nuclear Movements and Microtubule Growth Control in Ashbya gossypii ▿ †

    Science.gov (United States)

    Grava, Sandrine; Keller, Miyako; Voegeli, Sylvia; Seger, Shanon; Lang, Claudia; Philippsen, Peter

    2011-01-01

    During filamentous fungus development, multinucleated hyphae employ a system for long-range nuclear migration to maintain an equal nuclear density. A decade ago the microtubule motor dynein was shown to play a central role in this process. Previous studies with Ashbya gossypii revealed extensive bidirectional movements and bypassings of nuclei, an autonomous cytoplasmic microtubule (cMT) cytoskeleton emanating from each nucleus, and pulling of nuclei by sliding of cMTs along the cortex. Here, we show that dynein is the sole motor for bidirectional movements and bypassing because these movements are concomitantly decreased in mutants carrying truncations of the dynein heavy-chain DYN1 promoter. The dynactin component Jnm1, the accessory proteins Dyn2 and Ndl1, and the potential dynein cortical anchor Num1 are also involved in the dynamic distribution of nuclei. In their absence, nuclei aggregate to different degrees, whereby the mutants with dense nuclear clusters grow extremely long cMTs. As in budding yeast, we found that dynein is delivered to cMT plus ends, and its activity or processivity is probably controlled by dynactin and Num1. Together with its role in powering nuclear movements, we propose that dynein also plays (directly or indirectly) a role in the control of cMT length. Those combined dynein actions prevent nuclear clustering in A. gossypii and thus reveal a novel cellular role for dynein. PMID:21642510

  4. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria.

    Directory of Open Access Journals (Sweden)

    Carsten Schwan

    2009-10-01

    Full Text Available Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by production of the Rho GTPase-glucosylating toxins A and B. Recently emerging hypervirulent Clostridium difficile strains additionally produce the binary ADP-ribosyltransferase toxin CDT (Clostridium difficile transferase, which ADP-ribosylates actin and inhibits actin polymerization. Thus far, the role of CDT as a virulence factor is not understood. Here we report by using time-lapse- and immunofluorescence microscopy that CDT and other binary actin-ADP-ribosylating toxins, including Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin, induce redistribution of microtubules and formation of long (up to >150 microm microtubule-based protrusions at the surface of intestinal epithelial cells. The toxins increase the length of decoration of microtubule plus-ends by EB1/3, CLIP-170 and CLIP-115 proteins and cause redistribution of the capture proteins CLASP2 and ACF7 from microtubules at the cell cortex into the cell interior. The CDT-induced microtubule protrusions form a dense meshwork at the cell surface, which wrap and embed bacterial cells, thereby largely increasing the adherence of Clostridia. The study describes a novel type of microtubule structure caused by less efficient microtubule capture and offers a new perspective for the pathogenetic role of CDT and other binary actin-ADP-ribosylating toxins in host-pathogen interactions.

  5. Structural differences between yeast and mammalian microtubules revealed by cryo-EM

    Energy Technology Data Exchange (ETDEWEB)

    Howes, Stuart C. [Univ. of California, Berkeley, CA (United States). Biophysics Graduate Group; Geyer, Elisabeth A. [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biophysics; Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biochemistry; LaFrance, Benjamin [Univ. of California, Berkeley, CA (United States). Molecular and Cell Biology Graduate Program; Zhang, Rui [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst.; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Kellogg, Elizabeth H. [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst.; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Westermann, Stefan [Univ. of Duisburg-Essen, Essen (Germany). Dept. of Molecular Genetics, Center for Medical Biotechnology; Rice, Luke M. [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biophysics; Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biochemistry; Nogales, Eva [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst.; Univ. of California, Berkeley, CA (United States). Dept. of Molecular Biology and California Inst. for Quantitative Biosciences; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division

    2017-06-26

    Microtubules are polymers of αβ-tubulin heterodimers essential for all eukaryotes. Despite sequence conservation, there are significant structural differences between microtubules assembled in vitro from mammalian or budding yeast tubulin. Yeast MTs were not observed to undergo compaction at the interdimer interface as seen for mammalian microtubules upon GTP hydrolysis. Lack of compaction might reflect slower GTP hydrolysis or a different degree of allosteric coupling in the lattice. The microtubule plus end–tracking protein Bim1 binds yeast microtubules both between αβ-tubulin heterodimers, as seen for other organisms, and within tubulin dimers, but binds mammalian tubulin only at interdimer contacts. At the concentrations used in cryo-electron microscopy, Bim1 causes the compaction of yeast microtubules and induces their rapid disassembly. In conclusion, our studies demonstrate structural differences between yeast and mammalian microtubules that likely underlie their differing polymerization dynamics. These differences may reflect adaptations to the demands of different cell size or range of physiological growth temperatures.

  6. Buckling analysis of orthotropic protein microtubules under axial and radial compression based on couple stress theory.

    Science.gov (United States)

    Beni, Yaghoub Tadi; Zeverdejani, M Karimi; Mehralian, Fahimeh

    2017-10-01

    Protein microtubules (MTs) are one of the important intercellular components and have a vital role in the stability and strength of the cells. Due to applied external loads, protein microtubules may be involved buckling phenomenon. Due to impact of protein microtubules in cell reactions, it is important to determine their critical buckling load. Considering nature of protein microtubules, various parameters are effective on microtubules buckling. The small size of microtubules and also lack of uniformity of MTs properties in different directions caused the necessity of accuracy in the analysis of these bio-structure. In fact, microtubules must be considered as a size dependent cylinder, which behave as an orthotropic material. Hence, in the present work using first-order shear deformation model (FSDT), the buckling equations of anisotropic MTs are derived based on new modified couple stress theory (NMCST). After solving the stability equations, the influences of various parameters are measured on the MTs critical buckling load. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Measurement of in vitro microtubule polymerization by turbidity and fluorescence.

    Science.gov (United States)

    Mirigian, Matthew; Mukherjee, Kamalika; Bane, Susan L; Sackett, Dan L

    2013-01-01

    Tubulin polymerization may be conveniently monitored by the increase in turbidity (optical density, or OD) or by the increase in fluorescence intensity of diamidino-phenylindole. The resulting data can be a quantitative measure of microtubule (MT) assembly, but some care is needed in interpretation, especially of OD data. Buffer formulations used for the assembly reaction significantly influence the polymerization, both by altering the critical concentration for polymerization and by altering the exact polymer produced-for example, by increasing the production of sheet polymers in addition to MT. Both the turbidity and the fluorescence methods are useful for demonstrating the effect of MT-stabilizing or -destabilizing additives. 2013 Published by Elsevier Inc.

  8. Near-atomic model of microtubule-tau interactions.

    Science.gov (United States)

    Kellogg, Elizabeth H; Hejab, Nisreen M A; Poepsel, Simon; Downing, Kenneth H; DiMaio, Frank; Nogales, Eva

    2018-06-15

    Tau is a developmentally regulated axonal protein that stabilizes and bundles microtubules (MTs). Its hyperphosphorylation is thought to cause detachment from MTs and subsequent aggregation into fibrils implicated in Alzheimer's disease. It is unclear which tau residues are crucial for tau-MT interactions, where tau binds on MTs, and how it stabilizes them. We used cryo-electron microscopy to visualize different tau constructs on MTs and computational approaches to generate atomic models of tau-tubulin interactions. The conserved tubulin-binding repeats within tau adopt similar extended structures along the crest of the protofilament, stabilizing the interface between tubulin dimers. Our structures explain the effect of phosphorylation on MT affinity and lead to a model of tau repeats binding in tandem along protofilaments, tethering together tubulin dimers and stabilizing polymerization interfaces. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. STIM1-Directed Reorganization of Microtubules in Activated Mast Cells

    Czech Academy of Sciences Publication Activity Database

    Hájková, Zuzana; Bugajev, Viktor; Dráberová, Eduarda; Vinopal, Stanislav; Dráberová, Lubica; Janáček, Jiří; Dráber, Petr; Dráber, Pavel

    2011-01-01

    Roč. 186, č. 2 (2011), s. 913-923 ISSN 0022-1767 R&D Projects: GA ČR(CZ) GD204/09/H084; GA ČR GA204/09/1777; GA ČR GA301/09/1826; GA ČR GAP302/10/1759; GA MŠk LC545; GA MŠk(CZ) LC06063; GA AV ČR KAN200520701 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50110509 Keywords : STIM1 * bone marrow-derived mast cells * microtubules Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.788, year: 2011

  10. Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module.

    Science.gov (United States)

    Roostalu, Johanna; Cade, Nicholas I; Surrey, Thomas

    2015-11-01

    Spindle assembly and function require precise control of microtubule nucleation and dynamics. The chromatin-driven spindle assembly pathway exerts such control locally in the vicinity of chromosomes. One of the key targets of this pathway is TPX2. The molecular mechanism of how TPX2 stimulates microtubule nucleation is not understood. Using microscopy-based dynamic in vitro reconstitution assays with purified proteins, we find that human TPX2 directly stabilizes growing microtubule ends and stimulates microtubule nucleation by stabilizing early microtubule nucleation intermediates. Human microtubule polymerase chTOG (XMAP215/Msps/Stu2p/Dis1/Alp14 homologue) only weakly promotes nucleation, but acts synergistically with TPX2. Hence, a combination of distinct and complementary activities is sufficient for efficient microtubule formation in vitro. Importins control the efficiency of the microtubule nucleation by selectively blocking the interaction of TPX2 with microtubule nucleation intermediates. This in vitro reconstitution reveals the molecular mechanism of regulated microtubule formation by a minimal nucleation module essential for chromatin-dependent microtubule nucleation in cells.

  11. An ELMO2-RhoG-ILK network modulates microtubule dynamics.

    Science.gov (United States)

    Jackson, Bradley C; Ivanova, Iordanka A; Dagnino, Lina

    2015-07-15

    ELMO2 belongs to a family of scaffold proteins involved in phagocytosis and cell motility. ELMO2 can simultaneously bind integrin-linked kinase (ILK) and RhoG, forming tripartite ERI complexes. These complexes are involved in promoting β1 integrin-dependent directional migration in undifferentiated epidermal keratinocytes. ELMO2 and ILK have also separately been implicated in microtubule regulation at integrin-containing focal adhesions. During differentiation, epidermal keratinocytes cease to express integrins, but ERI complexes persist. Here we show an integrin-independent role of ERI complexes in modulation of microtubule dynamics in differentiated keratinocytes. Depletion of ERI complexes by inactivating the Ilk gene in these cells reduces microtubule growth and increases the frequency of catastrophe. Reciprocally, exogenous expression of ELMO2 or RhoG stabilizes microtubules, but only if ILK is also present. Mechanistically, activation of Rac1 downstream from ERI complexes mediates their effects on microtubule stability. In this pathway, Rac1 serves as a hub to modulate microtubule dynamics through two different routes: 1) phosphorylation and inactivation of the microtubule-destabilizing protein stathmin and 2) phosphorylation and inactivation of GSK-3β, which leads to the activation of CRMP2, promoting microtubule growth. At the cellular level, the absence of ERI species impairs Ca(2+)-mediated formation of adherens junctions, critical to maintaining mechanical integrity in the epidermis. Our findings support a key role for ERI species in integrin-independent stabilization of the microtubule network in differentiated keratinocytes. © 2015 Jackson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration of a tomographic array in which the object can rotate about its axis is described. The X-ray detector is a cylindrical screen perpendicular to the axis of rotation. The X-ray source has a line-shaped focus coinciding with the axis of rotation. The beam is fan-shaped with one side of this fan lying along the axis of rotation. The detector screen is placed inside an X-ray image multiplier tube

  13. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    A tomographic array with the following characteristics is described. An X-ray screen serving as detector is placed before a photomultiplier tube which itself is placed in front of a television camera connected to a set of image processors. The detector is concave towards the source and is replacable. Different images of the object are obtained simultaneously. Optical fibers and lenses are used for transmission within the system

  14. Classification of Cortical Brain Malformations

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2008-03-01

    Full Text Available Clinical, radiological, and genetic classifications of 113 cases of malformations of cortical development (MCD were evaluated at the Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands.

  15. Focal cortical dysplasia – review

    International Nuclear Information System (INIS)

    Kabat, Joanna; Król, Przemysław

    2012-01-01

    Focal cortical dysplasia is a malformation of cortical development, which is the most common cause of medically refractory epilepsy in the pediatric population and the second/third most common etiology of medically intractable seizures in adults. Both genetic and acquired factors are involved in the pathogenesis of cortical dysplasia. Numerous classifications of the complex structural abnormalities of focal cortical dysplasia have been proposed – from Taylor et al. in 1971 to the last modification of Palmini classification made by Blumcke in 2011. In general, three types of cortical dysplasia are recognized. Type I focal cortical dysplasia with mild symptomatic expression and late onset, is more often seen in adults, with changes present in the temporal lobe. Clinical symptoms are more severe in type II of cortical dysplasia usually seen in children. In this type, more extensive changes occur outside the temporal lobe with predilection for the frontal lobes. New type III is one of the above dysplasias with associated another principal lesion as hippocampal sclerosis, tumor, vascular malformation or acquired pathology during early life. Brain MRI imaging shows abnormalities in the majority of type II dysplasias and in only some of type I cortical dysplasias. The most common findings on MRI imaging include: focal cortical thickening or thinning, areas of focal brain atrophy, blurring of the gray-white junction, increased signal on T2- and FLAIR-weighted images in the gray and subcortical white matter often tapering toward the ventricle. On the basis of the MRI findings, it is possible to differentiate between type I and type II cortical dysplasia. A complete resection of the epileptogenic zone is required for seizure-free life. MRI imaging is very helpful to identify those patients who are likely to benefit from surgical treatment in a group of patients with drug-resistant epilepsy. However, in type I cortical dysplasia, MR imaging is often normal, and also in both

  16. Spatial integration and cortical dynamics.

    Science.gov (United States)

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-23

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.

  17. Spatial integration and cortical dynamics.

    OpenAIRE

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-01

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells wi...

  18. Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates

    Science.gov (United States)

    Rajangam, Sankaranarayani; Tseng, Po-He; Yin, Allen; Lehew, Gary; Schwarz, David; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.

    2016-03-01

    Several groups have developed brain-machine-interfaces (BMIs) that allow primates to use cortical activity to control artificial limbs. Yet, it remains unknown whether cortical ensembles could represent the kinematics of whole-body navigation and be used to operate a BMI that moves a wheelchair continuously in space. Here we show that rhesus monkeys can learn to navigate a robotic wheelchair, using their cortical activity as the main control signal. Two monkeys were chronically implanted with multichannel microelectrode arrays that allowed wireless recordings from ensembles of premotor and sensorimotor cortical neurons. Initially, while monkeys remained seated in the robotic wheelchair, passive navigation was employed to train a linear decoder to extract 2D wheelchair kinematics from cortical activity. Next, monkeys employed the wireless BMI to translate their cortical activity into the robotic wheelchair’s translational and rotational velocities. Over time, monkeys improved their ability to navigate the wheelchair toward the location of a grape reward. The navigation was enacted by populations of cortical neurons tuned to whole-body displacement. During practice with the apparatus, we also noticed the presence of a cortical representation of the distance to reward location. These results demonstrate that intracranial BMIs could restore whole-body mobility to severely paralyzed patients in the future.

  19. Hiperostosis cortical infantil

    Directory of Open Access Journals (Sweden)

    Salvador Javier Santos Medina

    2015-04-01

    Full Text Available La enfermedad de Caffey, o hiperostosis cortical infantil, es una rara enfermedad ósea autolimitada, que aparece de preferencia en lactantes con signos inespecíficos sistémicos; el más relevante es la reacción subperióstica e hiperostosis en varios huesos del cuerpo, con predilección en el 75-80 % de los casos por la mandíbula. Su pronóstico es bueno, la mayoría no deja secuelas. El propósito del presente trabajo es describir las características clínicas, presentes en un lactante de cinco meses de edad, atendido en el Hospital Pediátrico Provincial “Mártires de Las Tunas” con este diagnóstico, quien ingresó en el servicio de miscelánea B por una celulitis facial. Presentaba aumento de volumen en la región geniana izquierda, febrícola e inapetencia. Se impuso tratamiento con cefazolina y se egresó a los siete días. Acudió nuevamente con tumefacción blanda y difusa de ambas hemicaras, irritabilidad y fiebre. Se interconsultó con cirugía maxilofacial, se indicaron estudios sanguíneos y radiológicos. Se diagnosticó como enfermedad de Caffey, basado en la edad del niño, tumefacción facial sin signos inflamatorios agudos e hiperostosis en ambas corticales mandibulares a la radiografía AP mandíbula; unido a anemia ligera, leucocitosis y eritrosedimentación acelerada. El paciente se trató sintomáticamente y con antinflamatorios no esteroideos. Esta rara entidad se debe tener presente en casos de niños y lactantes con irritabilidad y fiebre inespecífica

  20. Protein friction limits diffusive and directed movements of kinesin motors on microtubules.

    Science.gov (United States)

    Bormuth, Volker; Varga, Vladimir; Howard, Jonathon; Schäffer, Erik

    2009-08-14

    Friction limits the operation of macroscopic engines and is critical to the performance of micromechanical devices. We report measurements of friction in a biological nanomachine. Using optical tweezers, we characterized the frictional drag force of individual kinesin-8 motor proteins interacting with their microtubule tracks. At low speeds and with no energy source, the frictional drag was related to the diffusion coefficient by the Einstein relation. At higher speeds, the frictional drag force increased nonlinearly, consistent with the motor jumping 8 nanometers between adjacent tubulin dimers along the microtubule, and was asymmetric, reflecting the structural polarity of the microtubule. We argue that these frictional forces arise from breaking bonds between the motor domains and the microtubule, and they limit the speed and efficiency of kinesin.

  1. Coupling of kinesin ATP turnover to translocation and microtubule regulation: one engine, many machines.

    Science.gov (United States)

    Friel, Claire T; Howard, Jonathon

    2012-12-01

    The cycle of ATP turnover is integral to the action of motor proteins. Here we discuss how variation in this cycle leads to variation of function observed amongst members of the kinesin superfamily of microtubule associated motor proteins. Variation in the ATP turnover cycle among superfamily members can tune the characteristic kinesin motor to one of the range of microtubule-based functions performed by kinesins. The speed at which ATP is hydrolysed affects the speed of translocation. The ratio of rate constants of ATP turnover in relation to association and dissociation from the microtubule influence the processivity of translocation. Variation in the rate-limiting step of the cycle can reverse the way in which the motor domain interacts with the microtubule producing non-motile kinesins. Because the ATP turnover cycle is not fully understood for the majority of kinesins, much work remains to show how the kinesin engine functions in such a wide variety of molecular machines.

  2. Survivin counteracts the therapeutic effect of microtubule de-stabilizers by stabilizing tubulin polymers

    Directory of Open Access Journals (Sweden)

    Hsieh Hsing-Pang

    2009-07-01

    Full Text Available Abstract Background Survivin is a dual function protein. It inhibits the apoptosis of cells by inhibiting caspases, and also promotes cell growth by stabilizing microtubules during mitosis. Over-expression of survivin has been demonstrated to induce drug-resistance to various chemo-therapeutic agents such as cisplatin (DNA damaging agent and paclitaxel (microtubule stabilizer in cancers. However, survivin-induced resistance to microtubule de-stabilizers such as Vinca alkaloids and Combretastatin A-4 (CA-4-related compounds were seldom demonstrated in the past. Furthermore, the question remains as to whether survivin plays a dominant role in processing cytokinesis or inhibiting caspases activity in cells treated with anti-mitotic compounds. The purpose of this study is to evaluate the effect of survivin on the resistance and susceptibility of human cancer cells to microtubule de-stabilizer-induced cell death. Results BPR0L075 is a CA-4 analog that induces microtubule de-polymerization and subsequent caspase-dependent apoptosis. To study the relationship between the expression of survivin and the resistance to microtubule de-stabilizers, a KB-derived BPR0L075-resistant cancer cell line, KB-L30, was generated for this study. Here, we found that survivin was over-expressed in the KB-L30 cells. Down-regulation of survivin by siRNA induced hyper-sensitivity to BPR0L075 in KB cells and partially re-stored sensitivity to BPR0L075 in KB-L30 cells. Western blot analysis revealed that down-regulation of survivin induced microtubule de-stabilization in both KB and KB-L30 cells. However, the same treatment did not enhance the down-stream caspase-3/-7 activities in BPR0L075-treated KB cells. Translocation of a caspase-independent apoptosis-related molecule, apoptosis-inducing factor (AIF, from cytoplasm to the nucleus was observed in survivin-targeted KB cells under BPR0L075 treatment. Conclusion In this study, survivin plays an important role in the

  3. Cellular effects of curcumin on Plasmodium falciparum include disruption of microtubules.

    Directory of Open Access Journals (Sweden)

    Rimi Chakrabarti

    Full Text Available Curcumin has been widely investigated for its myriad cellular effects resulting in reduced proliferation of various eukaryotic cells including cancer cells and the human malaria parasite Plasmodium falciparum. Studies with human cancer cell lines HT-29, Caco-2, and MCF-7 suggest that curcumin can bind to tubulin and induce alterations in microtubule structure. Based on this finding, we investigated whether curcumin has any effect on P. falciparum microtubules, considering that mammalian and parasite tubulin are 83% identical. IC50 of curcumin was found to be 5 µM as compared to 20 µM reported before. Immunofluorescence images of parasites treated with 5 or 20 µM curcumin showed a concentration-dependent effect on parasite microtubules resulting in diffuse staining contrasting with the discrete hemispindles and subpellicular microtubules observed in untreated parasites. The effect on P. falciparum microtubules was evident only in the second cycle for both concentrations tested. This diffuse pattern of tubulin fluorescence in curcumin treated parasites was similar to the effect of a microtubule destabilizing drug vinblastine on P. falciparum. Molecular docking predicted the binding site of curcumin at the interface of alpha and beta tubulin, similar to another destabilizing drug colchicine. Data from predicted drug binding is supported by results from drug combination assays showing antagonistic interactions between curcumin and colchicine, sharing a similar binding site, and additive/synergistic interactions of curcumin with paclitaxel and vinblastine, having different binding sites. This evidence suggests that cellular effects of curcumin are at least, in part, due to its perturbing effect on P. falciparum microtubules. The action of curcumin, both direct and indirect, on P. falciparum microtubules is discussed.

  4. GDP-to-GTP exchange on the microtubule end can contribute to the frequency of catastrophe.

    Science.gov (United States)

    Piedra, Felipe-Andrés; Kim, Tae; Garza, Emily S; Geyer, Elisabeth A; Burns, Alexander; Ye, Xuecheng; Rice, Luke M

    2016-11-07

    Microtubules are dynamic polymers of αβ-tubulin that have essential roles in chromosome segregation and organization of the cytoplasm. Catastrophe-the switch from growing to shrinking-occurs when a microtubule loses its stabilizing GTP cap. Recent evidence indicates that the nucleotide on the microtubule end controls how tightly an incoming subunit will be bound (trans-acting GTP), but most current models do not incorporate this information. We implemented trans-acting GTP into a computational model for microtubule dynamics. In simulations, growing microtubules often exposed terminal GDP-bound subunits without undergoing catastrophe. Transient GDP exposure on the growing plus end slowed elongation by reducing the number of favorable binding sites on the microtubule end. Slower elongation led to erosion of the GTP cap and an increase in the frequency of catastrophe. Allowing GDP-to-GTP exchange on terminal subunits in simulations mitigated these effects. Using mutant αβ-tubulin or modified GTP, we showed experimentally that a more readily exchangeable nucleotide led to less frequent catastrophe. Current models for microtubule dynamics do not account for GDP-to-GTP exchange on the growing microtubule end, so our findings provide a new way of thinking about the molecular events that initiate catastrophe. © 2016 Piedra et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. The growth speed of microtubules with XMAP215-coated beads coupled to their ends is increased by tensile force

    Science.gov (United States)

    Trushko, Anastasiya; Schäffer, Erik; Howard, Jonathon

    2013-01-01

    The generation of pulling and pushing forces is one of the important functions of microtubules, which are dynamic and polarized structures. The ends of dynamic microtubules are able to form relatively stable links to cellular structures, so that when a microtubule grows it can exert a pushing force and when it shrinks it can exert a pulling force. Microtubule growth and shrinkage are tightly regulated by microtubule-associated proteins (MAPs) that bind to microtubule ends. Given their localization, MAPs may be exposed to compressive and tensile forces. The effect of such forces on MAP function, however, is poorly understood. Here we show that beads coated with the microtubule polymerizing protein XMAP215, the Xenopus homolog of Dis1 and chTOG, are able to link stably to the plus ends of microtubules, even when the ends are growing or shrinking; at growing ends, the beads increase the polymerization rate. Using optical tweezers, we found that tensile force further increased the microtubule polymerization rate. These results show that physical forces can regulate the activity of MAPs. Furthermore, our results show that XMAP215 can be used as a handle to sense and mechanically manipulate the dynamics of the microtubule tip. PMID:23964126

  6. Hypothesis: NDL proteins function in stress responses by regulating microtubule organization.

    Science.gov (United States)

    Khatri, Nisha; Mudgil, Yashwanti

    2015-01-01

    N-MYC DOWNREGULATED-LIKE proteins (NDL), members of the alpha/beta hydrolase superfamily were recently rediscovered as interactors of G-protein signaling in Arabidopsis thaliana. Although the precise molecular function of NDL proteins is still elusive, in animals these proteins play protective role in hypoxia and expression is induced by hypoxia and nickel, indicating role in stress. Homology of NDL1 with animal counterpart N-MYC DOWNREGULATED GENE (NDRG) suggests similar functions in animals and plants. It is well established that stress responses leads to the microtubule depolymerization and reorganization which is crucial for stress tolerance. NDRG is a microtubule-associated protein which mediates the microtubule organization in animals by causing acetylation and increases the stability of α-tubulin. As NDL1 is highly homologous to NDRG, involvement of NDL1 in the microtubule organization during plant stress can also be expected. Discovery of interaction of NDL with protein kinesin light chain- related 1, enodomembrane family protein 70, syntaxin-23, tubulin alpha-2 chain, as a part of G protein interactome initiative encourages us to postulate microtubule stabilizing functions for NDL family in plants. Our search for NDL interactors in G protein interactome also predicts the role of NDL proteins in abiotic stress tolerance management. Based on published report in animals and predicted interacting partners for NDL in G protein interactome lead us to hypothesize involvement of NDL in the microtubule organization during abiotic stress management in plants.

  7. Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues

    Directory of Open Access Journals (Sweden)

    Alessandra eMoscatelli

    2015-02-01

    Full Text Available In plants, actin filaments have an important role in organelle movement and cytoplasmic streaming. Otherwise microtubules have a role in restricting organelles to specific areas of the cell and in maintaining organelle morphology. In somatic plant cells, microtubules also participate in cell division and morphogenesis, allowing cells to take their definitive shape in order to perform specific functions. In the latter case, microtubules influence assembly of the cell wall, controlling the delivery of enzymes involved in cellulose synthesis and of wall modulation material to the proper sites.In angiosperm pollen tubes, organelle movement is generally attributed to the acto-myosin system, the main role of which is in distributing organelles in the cytoplasm and in carrying secretory vesicles to the apex for polarized growth. Recent data on membrane trafficking suggests a role of microtubules in fine delivery and repositioning of vesicles to sustain pollen tube growth. This review examines the role of microtubules in secretion and endocytosis, highlighting new research cues regarding cell wall construction and pollen tube-pistil crosstalk, that help unravel the role of microtubules in polarized growth.

  8. ATPase Cycle of the Nonmotile Kinesin NOD Allows Microtubule End Tracking and Drives Chromosome Movement

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.; Sindelar, C; Mulko, N; Collins, K; Kong, S; Hawley, R; Kull, F

    2009-01-01

    Segregation of nonexchange chromosomes during Drosophila melanogaster meiosis requires the proper function of NOD, a nonmotile kinesin-10. We have determined the X-ray crystal structure of the NOD catalytic domain in the ADP- and AMPPNP-bound states. These structures reveal an alternate conformation of the microtubule binding region as well as a nucleotide-sensitive relay of hydrogen bonds at the active site. Additionally, a cryo-electron microscopy reconstruction of the nucleotide-free microtubule-NOD complex shows an atypical binding orientation. Thermodynamic studies show that NOD binds tightly to microtubules in the nucleotide-free state, yet other nucleotide states, including AMPPNP, are weakened. Our pre-steady-state kinetic analysis demonstrates that NOD interaction with microtubules occurs slowly with weak activation of ADP product release. Upon rapid substrate binding, NOD detaches from the microtubule prior to the rate-limiting step of ATP hydrolysis, which is also atypical for a kinesin. We propose a model for NOD's microtubule plus-end tracking that drives chromosome movement.

  9. Direct evidence for GTP and GDP-Pi intermediates in microtubule assembly

    International Nuclear Information System (INIS)

    Melki, R.; Carlier, M.F.; Pantaloni, D.

    1990-01-01

    Identification of the kinetic intermediates in GTP hydrolysis on microtubules and characterization of their assembly properties is essential in understanding microtubule dynamics. By using an improved glass filter assay that selectively traps microtubules with a dead time of 2 s and monitoring taxol-induced rapid assembly of microtubules from [γ- 32 P, 3 H]GTP-tubulin 1:1 complex, direct evidence has been obtained for GTP- and GDP-P i -microtubule transient states in the early stages of the polymerization process. A simple kinetic analysis of GTP hydrolysis on microtubules within two sequential pseudo-first-order processes led to apparent first-order rate constants of 0.065 s -1 for the cleavage of the γ-phosphate and 0.02 s -1 for the liberation of P i , assuming a simple random model. Apparent rate constants for GTP hydrolysis and P i release were independent of the composition of the buffer used to polymerize tubulin. The significance of these values with respect to those derived from previous studies from this and other laboratories and the possibility of a vectorial model for GTP hydrolysis are discussed

  10. Tubulin cofactor B regulates microtubule densities during microglia transition to the reactive states

    International Nuclear Information System (INIS)

    Fanarraga, M.L.; Villegas, J.C.; Carranza, G.; Castano, R.; Zabala, J.C.

    2009-01-01

    Microglia are highly dynamic cells of the CNS that continuously survey the welfare of the neural parenchyma and play key roles modulating neurogenesis and neuronal cell death. In response to injury or pathogen invasion parenchymal microglia transforms into a more active cell that proliferates, migrates and behaves as a macrophage. The acquisition of these extra skills implicates enormous modifications of the microtubule and actin cytoskeletons. Here we show that tubulin cofactor B (TBCB), which has been found to contribute to various aspects of microtubule dynamics in vivo, is also implicated in microglial cytoskeletal changes. We find that TBCB is upregulated in post-lesion reactive parenchymal microglia/macrophages, in interferon treated BV-2 microglial cells, and in neonate amoeboid microglia where the microtubule densities are remarkably low. Our data demonstrate that upon TBCB downregulation both, after microglia differentiation to the ramified phenotype in vivo and in vitro, or after TBCB gene silencing, microtubule densities are restored in these cells. Taken together these observations support the view that TBCB functions as a microtubule density regulator in microglia during activation, and provide an insight into the understanding of the complex mechanisms controlling microtubule reorganization during microglial transition between the amoeboid, ramified, and reactive phenotypes

  11. Actin and microtubule networks contribute differently to cell response for small and large strains

    Science.gov (United States)

    Kubitschke, H.; Schnauss, J.; Nnetu, K. D.; Warmt, E.; Stange, R.; Kaes, J.

    2017-09-01

    Cytoskeletal filaments provide cells with mechanical stability and organization. The main key players are actin filaments and microtubules governing a cell’s response to mechanical stimuli. We investigated the specific influences of these crucial components by deforming MCF-7 epithelial cells at small (≤5% deformation) and large strains (>5% deformation). To understand specific contributions of actin filaments and microtubules, we systematically studied cellular responses after treatment with cytoskeleton influencing drugs. Quantification with the microfluidic optical stretcher allowed capturing the relative deformation and relaxation of cells under different conditions. We separated distinctive deformational and relaxational contributions to cell mechanics for actin and microtubule networks for two orders of magnitude of drug dosages. Disrupting actin filaments via latrunculin A, for instance, revealed a strain-independent softening. Stabilizing these filaments by treatment with jasplakinolide yielded cell softening for small strains but showed no significant change at large strains. In contrast, cells treated with nocodazole to disrupt microtubules displayed a softening at large strains but remained unchanged at small strains. Stabilizing microtubules within the cells via paclitaxel revealed no significant changes for deformations at small strains, but concentration-dependent impact at large strains. This suggests that for suspended cells, the actin cortex is probed at small strains, while at larger strains; the whole cell is probed with a significant contribution from the microtubules.

  12. The cortical signature of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Federica Agosta

    Full Text Available The aim of this study was to explore the pattern of regional cortical thickness in patients with non-familial amyotrophic lateral sclerosis (ALS and to investigate whether cortical thinning is associated with disease progression rate. Cortical thickness analysis was performed in 44 ALS patients and 26 healthy controls. Group differences in cortical thickness and the age-by-group effects were assessed using vertex-by-vertex and multivariate linear models. The discriminatory ability of MRI variables in distinguishing patients from controls was estimated using the Concordance Statistics (C-statistic within logistic regression analyses. Correlations between cortical thickness measures and disease progression rate were tested using the Pearson coefficient. Relative to controls, ALS patients showed a bilateral cortical thinning of the primary motor, prefrontal and ventral frontal cortices, cingulate gyrus, insula, superior and inferior temporal and parietal regions, and medial and lateral occipital areas. There was a significant age-by-group effect in the sensorimotor cortices bilaterally, suggesting a stronger association between age and cortical thinning in ALS patients compared to controls. The mean cortical thickness of the sensorimotor cortices distinguished patients with ALS from controls (C-statistic ≥ 0.74. Cortical thinning of the left sensorimotor cortices was related to a faster clinical progression (r = -0.33, p = 0.03. Cortical thickness measurements allowed the detection and quantification of motor and extramotor involvement in patients with ALS. Cortical thinning of the precentral gyrus might offer a marker of upper motor neuron involvement and disease progression.

  13. The cortical signature of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Agosta, Federica; Valsasina, Paola; Riva, Nilo; Copetti, Massimiliano; Messina, Maria Josè; Prelle, Alessandro; Comi, Giancarlo; Filippi, Massimo

    2012-01-01

    The aim of this study was to explore the pattern of regional cortical thickness in patients with non-familial amyotrophic lateral sclerosis (ALS) and to investigate whether cortical thinning is associated with disease progression rate. Cortical thickness analysis was performed in 44 ALS patients and 26 healthy controls. Group differences in cortical thickness and the age-by-group effects were assessed using vertex-by-vertex and multivariate linear models. The discriminatory ability of MRI variables in distinguishing patients from controls was estimated using the Concordance Statistics (C-statistic) within logistic regression analyses. Correlations between cortical thickness measures and disease progression rate were tested using the Pearson coefficient. Relative to controls, ALS patients showed a bilateral cortical thinning of the primary motor, prefrontal and ventral frontal cortices, cingulate gyrus, insula, superior and inferior temporal and parietal regions, and medial and lateral occipital areas. There was a significant age-by-group effect in the sensorimotor cortices bilaterally, suggesting a stronger association between age and cortical thinning in ALS patients compared to controls. The mean cortical thickness of the sensorimotor cortices distinguished patients with ALS from controls (C-statistic ≥ 0.74). Cortical thinning of the left sensorimotor cortices was related to a faster clinical progression (r = -0.33, p = 0.03). Cortical thickness measurements allowed the detection and quantification of motor and extramotor involvement in patients with ALS. Cortical thinning of the precentral gyrus might offer a marker of upper motor neuron involvement and disease progression.

  14. Microfluidic measurement of effects of ACF7/MACF1 gene on the mechanics of primary cortical neurons

    Science.gov (United States)

    Lee, Donghee; Ka, Minhan; Kim, Woo-Yang; Ryu, Sangjin

    2014-03-01

    Actin filaments and microtubules play important roles in determining the mechanics of cells, and ACF7/MACF1 (Actin Crosslinking Family 7/Microtubule And Actin Crosslinking Factor 1) gene seems to be closely related to connections between actin filaments and microtubules. To identify such roles of the ACF7/MACF1 gene of primary cortical neurons, we isolated neuronal cells from the cerebral cortex of the embryonic mouse brain, which is important in memory, language and perception. We exerted viscous shear flow to normal neuronal cells and ACF7/MACF1 gene knockout neuronal cells using rectangular microfluidic channels. While changing viscous shear stress on the cells, we recorded changes in the morphology of the two cell types using video microscopy. Having analyzed the deformation of the cells, we could quantitatively correlate differences in the morphological change between the both normal and ACF7/MACF1 gene knockout neuronal cells to the applied shear force, which will contribute toward identifying cell mechanical roles of the ACF7/MACF1 gene.

  15. Cortical tremor: a variant of cortical reflex myoclonus.

    Science.gov (United States)

    Ikeda, A; Kakigi, R; Funai, N; Neshige, R; Kuroda, Y; Shibasaki, H

    1990-10-01

    Two patients with action tremor that was thought to originate in the cerebral cortex showed fine shivering-like finger twitching provoked mainly by action and posture. Surface EMG showed relatively rhythmic discharge at a rate of about 9 Hz, which resembled essential tremor. However, electrophysiologic studies revealed giant somatosensory evoked potentials (SEPs) with enhanced long-loop reflex and premovement cortical spike by the jerk-locked averaging method. Treatment with beta-blocker showed no effect, but anticonvulsants such as clonazepam, valproate, and primidone were effective to suppress the tremor and the amplitude of SEPs. We call this involuntary movement "cortical tremor," which is in fact a variant of cortical reflex myoclonus.

  16. Effects of microtubule mechanics on hydrolysis and catastrophes

    International Nuclear Information System (INIS)

    Müller, N; Kierfeld, J

    2014-01-01

    We introduce a model for microtubule (MT) mechanics containing lateral bonds between dimers in neighboring protofilaments, bending rigidity of dimers, and repulsive interactions between protofilaments modeling steric constraints to investigate the influence of mechanical forces on hydrolysis and catastrophes. We use the allosteric dimer model, where tubulin dimers are characterized by an equilibrium bending angle, which changes from 0 ∘ to 22 ∘ by hydrolysis of a dimer. This also affects the lateral interaction and bending energies and, thus, the mechanical equilibrium state of the MT. As hydrolysis gives rise to conformational changes in dimers, mechanical forces also influence the hydrolysis rates by mechanical energy changes modulating the hydrolysis rate. The interaction via the MT mechanics then gives rise to correlation effects in the hydrolysis dynamics, which have not been taken into account before. Assuming a dominant influence of mechanical energies on hydrolysis rates, we investigate the most probable hydrolysis pathways both for vectorial and random hydrolysis. Investigating the stability with respect to lateral bond rupture, we identify initiation configurations for catastrophes along the hydrolysis pathways and values for a lateral bond rupture force. If we allow for rupturing of lateral bonds between dimers in neighboring protofilaments above this threshold force, our model exhibits avalanche-like catastrophe events. (papers)

  17. Characterization of gold nanoparticle binding to microtubule filaments

    International Nuclear Information System (INIS)

    Zhou, Jing C.; Wang Xianghuai; Xue Mei; Xu Zheng; Hamasaki, Toshikazu; Yang, Yang; Wang Kang; Dunn, Bruce

    2010-01-01

    Microtubule (MT) protein filaments were used as templates for fabricating Au nanowires as a bottom-up approach for fabricating building blocks for future integrated circuits. Photochemical reduction methods were employed to form Au nanoparticles which bind and uniformly cover the MT filaments. Synthesis of the MT-templated Au nanowires was characterized using UV/vis spectroscopy and transmission electron microscopy (TEM). In addition, binding between the MT filaments and Au nanoparticles was investigated using surface enhanced Raman spectroscopy (SERS) and X-ray photoelectron spectroscopy (XPS) to establish the nature of the binding sites. A variety of functional groups were identified by SERS to interact with the Au including imidazole, sulfur, aromatic rings, amine, and carboxylate. The imidazole ring in the histidine is the most prominent functional group for Au binding. The results from these studies provide better understanding of the binding between Au and the biotemplate and give insight concerning methods to improve Au coverage for MT-templated Au nanowires.

  18. Regulation of microtubule-based transport by MAP4

    Science.gov (United States)

    Semenova, Irina; Ikeda, Kazuho; Resaul, Karim; Kraikivski, Pavel; Aguiar, Mike; Gygi, Steven; Zaliapin, Ilya; Cowan, Ann; Rodionov, Vladimir

    2014-01-01

    Microtubule (MT)-based transport of organelles driven by the opposing MT motors kinesins and dynein is tightly regulated in cells, but the underlying molecular mechanisms remain largely unknown. Here we tested the regulation of MT transport by the ubiquitous protein MAP4 using Xenopus melanophores as an experimental system. In these cells, pigment granules (melanosomes) move along MTs to the cell center (aggregation) or to the periphery (dispersion) by means of cytoplasmic dynein and kinesin-2, respectively. We found that aggregation signals induced phosphorylation of threonine residues in the MT-binding domain of the Xenopus MAP4 (XMAP4), thus decreasing binding of this protein to MTs. Overexpression of XMAP4 inhibited pigment aggregation by shortening dynein-dependent MT runs of melanosomes, whereas removal of XMAP4 from MTs reduced the length of kinesin-2–dependent runs and suppressed pigment dispersion. We hypothesize that binding of XMAP4 to MTs negatively regulates dynein-dependent movement of melanosomes and positively regulates kinesin-2–based movement. Phosphorylation during pigment aggregation reduces binding of XMAP4 to MTs, thus increasing dynein-dependent and decreasing kinesin-2–dependent motility of melanosomes, which stimulates their accumulation in the cell center, whereas dephosphorylation of XMAP4 during dispersion has an opposite effect. PMID:25143402

  19. APC functions at the centrosome to stimulate microtubule growth.

    Science.gov (United States)

    Lui, Christina; Ashton, Cahora; Sharma, Manisha; Brocardo, Mariana G; Henderson, Beric R

    2016-01-01

    The adenomatous polyposis coli (APC) tumor suppressor is multi-functional. APC is known to localize at the centrosome, and in mitotic cells contributes to formation of the mitotic spindle. To test whether APC contributes to nascent microtubule (MT) growth at interphase centrosomes, we employed MT regrowth assays in U2OS cells to measure MT assembly before and after nocodazole treatment and release. We showed that siRNA knockdown of full-length APC delayed both initial MT aster formation and MT elongation/regrowth. In contrast, APC-mutant SW480 cancer cells displayed a defect in MT regrowth that was unaffected by APC knockdown, but which was rescued by reconstitution of full-length APC. Our findings identify APC as a positive regulator of centrosome MT initial assembly and suggest that this process is disrupted by cancer mutations. We confirmed that full-length APC associates with the MT-nucleation factor γ-tubulin, and found that the APC cancer-truncated form (1-1309) also bound to γ-tubulin through APC amino acids 1-453. While binding to γ-tubulin may help target APC to the site of MT nucleation complexes, additional C-terminal sequences of APC are required to stimulate and stabilize MT growth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Microtubules Enable the Planar Cell Polarity of Airway Cilia

    Science.gov (United States)

    Vladar, Eszter K.; Bayly, Roy D.; Sangoram, Ashvin; Scott, Matthew P.; Axelrod, Jeffrey D.

    2012-01-01

    Summary Background Airway cilia must be physically oriented along the longitudinal tissue axis for concerted, directional motility that is essential for proper mucociliary clearance. Results We show that Planar Cell Polarity (PCP) signaling specifies directionality and orients respiratory cilia. Within all airway epithelial cells a conserved set of PCP proteins shows interdependent, asymmetric junctional localization; non-autonomous signaling coordinates polarization between cells; and a polarized microtubule (MT) network is likely required for asymmetric PCP protein localization. We find that basal bodies dock after polarity of PCP proteins is established, are polarized nearly simultaneously, and refinement of basal body/cilium orientation continues during airway epithelial development. Unique to mature multiciliated cells, we identify PCP-regulated, planar polarized MTs that originate from basal bodies and interact, via their plus ends, with membrane domains associated with the PCP proteins Frizzled and Dishevelled. Disruption of MTs leads to misoriented cilia. Conclusions A conserved PCP pathway orients airway cilia by communicating polarity information from asymmetric membrane domains at the apical junctions, through MTs, to orient the MT and actin based network of ciliary basal bodies below the apical surface. PMID:23122850

  1. Chronic 14-day exposure to insecticides or methylmercury modulates neuronal activity in primary rat cortical cultures

    NARCIS (Netherlands)

    Dingemans, Milou; Schütte, Marijke G; Wiersma, Daphne M M; de Groot, Aart; van Kleef, Gina; Wijnolts, Fiona; Westerink, Remco

    2016-01-01

    There is an increasing demand for in vitro test systems to detect neurotoxicity for use in chemical risk assessment. In this study, we evaluated the applicability of rat primary cortical cultures grown on multi-well micro-electrode arrays (mwMEAs) to detect effects of chronic 14-day exposure to

  2. Signal transfer within a cultured asymmetric cortical neuron circuit.

    Science.gov (United States)

    Isomura, Takuya; Shimba, Kenta; Takayama, Yuzo; Takeuchi, Akimasa; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-12-01

    Simplified neuronal circuits are required for investigating information representation in nervous systems and for validating theoretical neural network models. Here, we developed patterned neuronal circuits using micro fabricated devices, comprising a micro-well array bonded to a microelectrode-array substrate. The micro-well array consisted of micrometre-scale wells connected by tunnels, all contained within a silicone slab called a micro-chamber. The design of the micro-chamber confined somata to the wells and allowed axons to grow through the tunnels bidirectionally but with a designed, unidirectional bias. We guided axons into the point of the arrow structure where one of the two tunnel entrances is located, making that the preferred direction. When rat cortical neurons were cultured in the wells, their axons grew through the tunnels and connected to neurons in adjoining wells. Unidirectional burst transfers and other asymmetric signal-propagation phenomena were observed via the substrate-embedded electrodes. Seventy-nine percent of burst transfers were in the forward direction. We also observed rapid propagation of activity from sites of local electrical stimulation, and significant effects of inhibitory synapse blockade on bursting activity. These results suggest that this simple, substrate-controlled neuronal circuit can be applied to develop in vitro models of the function of cortical microcircuits or deep neural networks, better to elucidate the laws governing the dynamics of neuronal networks.

  3. Signal transfer within a cultured asymmetric cortical neuron circuit

    Science.gov (United States)

    Isomura, Takuya; Shimba, Kenta; Takayama, Yuzo; Takeuchi, Akimasa; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-12-01

    Objective. Simplified neuronal circuits are required for investigating information representation in nervous systems and for validating theoretical neural network models. Here, we developed patterned neuronal circuits using micro fabricated devices, comprising a micro-well array bonded to a microelectrode-array substrate. Approach. The micro-well array consisted of micrometre-scale wells connected by tunnels, all contained within a silicone slab called a micro-chamber. The design of the micro-chamber confined somata to the wells and allowed axons to grow through the tunnels bidirectionally but with a designed, unidirectional bias. We guided axons into the point of the arrow structure where one of the two tunnel entrances is located, making that the preferred direction. Main results. When rat cortical neurons were cultured in the wells, their axons grew through the tunnels and connected to neurons in adjoining wells. Unidirectional burst transfers and other asymmetric signal-propagation phenomena were observed via the substrate-embedded electrodes. Seventy-nine percent of burst transfers were in the forward direction. We also observed rapid propagation of activity from sites of local electrical stimulation, and significant effects of inhibitory synapse blockade on bursting activity. Significance. These results suggest that this simple, substrate-controlled neuronal circuit can be applied to develop in vitro models of the function of cortical microcircuits or deep neural networks, better to elucidate the laws governing the dynamics of neuronal networks.

  4. The effects of 60Co γ-ray irradiation on cytoplasmic microtubules of mouse macrophages and lymphocytes

    International Nuclear Information System (INIS)

    Li Qianqian; Mao Zijun; Yin Zhiwei; Hu Yumin

    1989-05-01

    The effects of 60 Co γ-ray irradiation on cytoplasmic microtubules of mouse macrophages and lymphocytes were investigated by immunofluorescence microscopy and scanning electron microscope. The results indicated. (1) microtubule organization of the irradiated cells remarkably differed from that of the control since the doses over 4 Gy; (2) 144 hours after irradiation the alterations of microtubules have been shown to be basically r epaired ; (3) the cytoplasmic microtubules and centrioles disappeared under transmission electron microscope, the membranes irradiated and microvilli showed changes under scanning electron microscope too. From these observations and those of other workers who studied the radiation effect on extracted microtubule proteins in vitro, the authors support that 60 Co γ-ray irradiation can inhabits cytoplasmic microtubule assembling

  5. Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease.

    Science.gov (United States)

    Hur, Eun-Mi; Lee, Byoung Dae

    2014-12-01

    Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  6. Microtubule-Targeting Agents Enter the Central Nervous System (CNS: Double-edged Swords for Treating CNS Injury and Disease

    Directory of Open Access Journals (Sweden)

    Eun-Mi Hur

    2014-12-01

    Full Text Available Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  7. Effect of 710 nm visible light irradiation on neurite outgrowth in primary rat cortical neurons following ischemic insult

    International Nuclear Information System (INIS)

    Choi, Dong-Hee; Lee, Kyoung-Hee; Kim, Ji-Hye; Kim, Moon Young; Lim, Jeong Hoon; Lee, Jongmin

    2012-01-01

    Highlights: ► 710 nm wavelength light (LED) has a protective effect in the stroke animal model. ► We determined the effects of LED irradiation in vitro stroke model. ► LED treatment promotes the neurite outgrowth through MAPK activation. ► The level of synaptic markers significantly increased with LED treatment. ► LED treatment protects cell death in the in vitro stroke model. -- Abstract: Objective: We previously reported that 710 nm Light-emitting Diode (LED) has a protective effect through cellular immunity activation in the stroke animal model. However, whether LED directly protects neurons suffering from neurodegeneration was entirely unknown. Therefore, we sought to determine the effects of 710 nm visible light irradiation on neuronal protection and neuronal outgrowth in an in vitro stroke model. Materials and methods: Primary cultured rat cortical neurons were exposed to oxygen-glucose deprivation (OGD) and reoxygenation and normal conditions. An LED array with a peak wavelength of 710 nm was placed beneath the covered culture dishes with the room light turned off and were irradiated accordingly. LED treatments (4 min at 4 J/cm 2 and 50 mW/cm 2 ) were given once to four times within 8 h at 2 h intervals for 7 days. Mean neurite density, mean neurite diameter, and total fiber length were also measured after microtubule associated protein 2 (MAP2) immunostaining using the Axio Vision program. Synaptic marker expression and MAPK activation were confirmed by Western blotting. Results: Images captured after MAP2 immunocytochemistry showed significant (p < 0.05) enhancement of post-ischemic neurite outgrowth with LED treatment once and twice a day. MAPK activation was enhanced by LED treatment in both OGD-exposed and normal cells. The levels of synaptic markers such as PSD 95, GAP 43, and synaptophysin significantly increased with LED treatment in both OGD-exposed and normal cells (p < 0.05). Conclusion: Our data suggest that LED treatment may promote

  8. Effect of 710 nm visible light irradiation on neurite outgrowth in primary rat cortical neurons following ischemic insult

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Dong-Hee [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Department of Medical Science, Konkuk University School of Medicine, Seoul (Korea, Republic of); Lee, Kyoung-Hee; Kim, Ji-Hye; Kim, Moon Young [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Lim, Jeong Hoon [Department of Rehabilitation Medicine, Konkuk University School of Medicine, Seoul (Korea, Republic of); Rehabilitation Medicine, Division of Neurology, Department of Medicine, National University Hospital, National University Health System (Singapore); Lee, Jongmin, E-mail: leej@kuh.ac.kr [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Department of Rehabilitation Medicine, Konkuk University School of Medicine, Seoul (Korea, Republic of)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer 710 nm wavelength light (LED) has a protective effect in the stroke animal model. Black-Right-Pointing-Pointer We determined the effects of LED irradiation in vitro stroke model. Black-Right-Pointing-Pointer LED treatment promotes the neurite outgrowth through MAPK activation. Black-Right-Pointing-Pointer The level of synaptic markers significantly increased with LED treatment. Black-Right-Pointing-Pointer LED treatment protects cell death in the in vitro stroke model. -- Abstract: Objective: We previously reported that 710 nm Light-emitting Diode (LED) has a protective effect through cellular immunity activation in the stroke animal model. However, whether LED directly protects neurons suffering from neurodegeneration was entirely unknown. Therefore, we sought to determine the effects of 710 nm visible light irradiation on neuronal protection and neuronal outgrowth in an in vitro stroke model. Materials and methods: Primary cultured rat cortical neurons were exposed to oxygen-glucose deprivation (OGD) and reoxygenation and normal conditions. An LED array with a peak wavelength of 710 nm was placed beneath the covered culture dishes with the room light turned off and were irradiated accordingly. LED treatments (4 min at 4 J/cm{sup 2} and 50 mW/cm{sup 2}) were given once to four times within 8 h at 2 h intervals for 7 days. Mean neurite density, mean neurite diameter, and total fiber length were also measured after microtubule associated protein 2 (MAP2) immunostaining using the Axio Vision program. Synaptic marker expression and MAPK activation were confirmed by Western blotting. Results: Images captured after MAP2 immunocytochemistry showed significant (p < 0.05) enhancement of post-ischemic neurite outgrowth with LED treatment once and twice a day. MAPK activation was enhanced by LED treatment in both OGD-exposed and normal cells. The levels of synaptic markers such as PSD 95, GAP 43, and synaptophysin significantly

  9. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus.

    Science.gov (United States)

    Khodagholy, Dion; Gelinas, Jennifer N; Buzsáki, György

    2017-10-20

    Consolidation of declarative memories requires hippocampal-neocortical communication. Although experimental evidence supports the role of sharp-wave ripples in transferring hippocampal information to the neocortex, the exact cortical destinations and the physiological mechanisms of such transfer are not known. We used a conducting polymer-based conformable microelectrode array (NeuroGrid) to record local field potentials and neural spiking across the dorsal cortical surface of the rat brain, combined with silicon probe recordings in the hippocampus, to identify candidate physiological patterns. Parietal, midline, and prefrontal, but not primary cortical areas, displayed localized ripple (100 to 150 hertz) oscillations during sleep, concurrent with hippocampal ripples. Coupling between hippocampal and neocortical ripples was strengthened during sleep following learning. These findings suggest that ripple-ripple coupling supports hippocampal-association cortical transfer of memory traces. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain

    Czech Academy of Sciences Publication Activity Database

    Deeks, M.J.; Fendrych, Matyáš; Smertenko, A.; Bell, K.S.; Oparka, K.; Cvrčková, F.; Žárský, Viktor; Hussey, P.J.

    2010-01-01

    Roč. 123, č. 8 (2010), s. 1209-1215 ISSN 0021-9533 R&D Projects: GA MŠk(CZ) LC06004; GA ČR GAP305/10/0433 Institutional research plan: CEZ:AV0Z50380511 Keywords : Actin regulating proteins * Membrane * Microtubule Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.290, year: 2010

  11. Horizontal integration and cortical dynamics.

    Science.gov (United States)

    Gilbert, C D

    1992-07-01

    We have discussed several results that lead to a view that cells in the visual system are endowed with dynamic properties, influenced by context, expectation, and long-term modifications of the cortical network. These observations will be important for understanding how neuronal ensembles produce a system that perceives, remembers, and adapts to injury. The advantage to being able to observe changes at early stages in a sensory pathway is that one may be able to understand the way in which neuronal ensembles encode and represent images at the level of their receptive field properties, of cortical topographies, and of the patterns of connections between cells participating in a network.

  12. Chlorpyrifos, chlorpyrifos-oxon, and diisopropylfluorophosphate inhibit kinesin-dependent microtubule motility

    International Nuclear Information System (INIS)

    Gearhart, Debra A.; Sickles, Dale W.; Buccafusco, Jerry J.; Prendergast, Mark A.; Terry, Alvin V.

    2007-01-01

    Diisopropylfluorophosphate, originally developed as a chemical warfare agent, is structurally similar to nerve agents, and chlorpyrifos has extensive worldwide use as an agricultural pesticide. While inhibition of cholinesterases underlies the acute toxicity of these organophosphates, we previously reported impaired axonal transport in the sciatic nerves from rats treated chronically with subthreshold doses of chlorpyrifos. Those data indicate that chlorpyrifos (and/or its active metabolite, chlorpyrifos-oxon) might directly affect the function of kinesin and/or microtubules-the principal proteins that mediate anterograde axonal transport. The current report describes in vitro assays to assess the concentration-dependent effects of chlorpyrifos (0-10 μM), chlorpyrifos-oxon (0-10 μM), and diisopropylfluorophosphate (0-0.59 nM) on kinesin-dependent microtubule motility. Preincubating bovine brain microtubules with the organophosphates did not alter kinesin-mediated microtubule motility. In contrast, preincubation of bovine brain kinesin with diisopropylfluorophosphate, chlorpyrifos, or chlorpyrifos-oxon produced a concentration-dependent increase in the number of locomoting microtubules that detached from the kinesin-coated glass cover slip. Our data suggest that the organophosphates-chlorpyrifos-oxon, chlorpyrifos, and diisopropylfluorophosphate-directly affect kinesin, thereby disrupting kinesin-dependent transport on microtubules. Kinesin-dependent movement of vesicles, organelles, and other cellular components along microtubules is fundamental to the organization of all eukaryotic cells, especially in neurons where organelles and proteins synthesized in the cell body must move down long axons to pre-synaptic sites in nerve terminals. We postulate that disruption of kinesin-dependent intracellular transport could account for some of the long-term effects of organophosphates on the peripheral and central nervous system

  13. Magnolol Inhibits the Growth of Non-Small Cell Lung Cancer via Inhibiting Microtubule Polymerization

    Directory of Open Access Journals (Sweden)

    Jia Shen

    2017-07-01

    Full Text Available Background: The tubulin/microtubule system, which is an integral component of the cytoskeleton, plays an essential role in mitosis. Targeting mitotic progression by disturbing microtubule dynamics is a rational strategy for cancer treatment. Methods: Microtubule polymerization assay was performed to examine the effect of Magnolol (a novel natural phenolic compound isolated from Magnolia obovata on cellular microtubule polymerization in human non-small cell lung cancer (NSCLC cells. Cell cycle analysis, mitotic index assay, cell proliferation assay, colony formation assay, western blotting analysis of cell cycle regulators, Annexin V-FITC/PI staining, and live/dead viability staining were carried out to investigate the Magnolol’s inhibitory effect on proliferation and viability of NSCLS cells in vitro. Xenograft model of human A549 NSCLC tumor was used to determine the Magnolol’s efficacy in vivo. Results: Magnolol treatment effectively inhibited cell proliferation and colony formation of NSCLC cells. Further study proved that Magnolol induced the mitotic phase arrest and inhibited G2/M progression in a dose-dependent manner, which were mechanistically associated with expression alteration of a series of cell cycle regulators. Furthermore, Magnolol treatment disrupted the cellular microtubule organization via inhibiting the polymerization of microtubule. We also found treatment with NSCLC cells with Magnolol resulted in apoptosis activation through a p53-independent pathway, and autophgy induction via down-regulation of the Akt/mTOR pathway. Finally, Magnolol treatment significantly suppressed the NSCLC tumor growth in mouse xenograft model in vivo. Conclusion: These findings identify Magnolol as a promising candidate with anti-microtubule polymerization activity for NSCLC treatment.

  14. Is cortical bone hip? What determines cortical bone properties?

    Science.gov (United States)

    Epstein, Sol

    2007-07-01

    Increased bone turnover may produce a disturbance in bone structure which may result in fracture. In cortical bone, both reduction in turnover and increase in hip bone mineral density (BMD) may be necessary to decrease hip fracture risk and may require relatively greater proportionate changes than for trabecular bone. It should also be noted that increased porosity produces disproportionate reduction in bone strength, and studies have shown that increased cortical porosity and decreased cortical thickness are associated with hip fracture. Continued studies for determining the causes of bone strength and deterioration show distinct promise. Osteocyte viability has been observed to be an indicator of bone strength, with viability as the result of maintaining physiological levels of loading and osteocyte apoptosis as the result of a decrease in loading. Osteocyte apoptosis and decrease are major factors in the bone loss and fracture associated with aging. Both the osteocyte and periosteal cell layer are assuming greater importance in the process of maintaining skeletal integrity as our knowledge of these cells expand, as well being a target for pharmacological agents to reduce fracture especially in cortical bone. The bisphosphonate alendronate has been seen to have a positive effect on cortical bone by allowing customary periosteal growth, while reducing the rate of endocortical bone remodeling and slowing bone loss from the endocortical surface. Risedronate treatment effects were attributed to decrease in bone resorption and thus a decrease in fracture risk. Ibandronate has been seen to increase BMD as the spine and femur as well as a reduced incidence of new vertebral fractures and non vertebral on subset post hoc analysis. And treatment with the anabolic agent PTH(1-34) documented modeling and remodelling of quiescent and active bone surfaces. Receptor activator of nuclear factor kappa B ligand (RANKL) plays a key role in bone destruction, and the human monoclonal

  15. TBCD links centriologenesis, spindle microtubule dynamics, and midbody abscission in human cells.

    Directory of Open Access Journals (Sweden)

    Mónica López Fanarraga

    2010-01-01

    Full Text Available Microtubule-organizing centers recruit alpha- and beta-tubulin polypeptides for microtubule nucleation. Tubulin synthesis is complex, requiring five specific cofactors, designated tubulin cofactors (TBCs A-E, which contribute to various aspects of microtubule dynamics in vivo. Here, we show that tubulin cofactor D (TBCD is concentrated at the centrosome and midbody, where it participates in centriologenesis, spindle organization, and cell abscission. TBCD exhibits a cell-cycle-specific pattern, localizing on the daughter centriole at G1 and on procentrioles by S, and disappearing from older centrioles at telophase as the protein is recruited to the midbody. Our data show that TBCD overexpression results in microtubule release from the centrosome and G1 arrest, whereas its depletion produces mitotic aberrations and incomplete microtubule retraction at the midbody during cytokinesis. TBCD is recruited to the centriole replication site at the onset of the centrosome duplication cycle. A role in centriologenesis is further supported in differentiating ciliated cells, where TBCD is organized into "centriolar rosettes". These data suggest that TBCD participates in both canonical and de novo centriolar assembly pathways.

  16. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast

    Science.gov (United States)

    Gergely, Zachary R.; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Betterton, Meredith D.

    2016-01-01

    Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen. PMID:27146110

  17. Identification and characterization of SSE15206, a microtubule depolymerizing agent that overcomes multidrug resistance

    KAUST Repository

    Manzoor, Safia

    2018-02-13

    Microtubules are highly dynamic structures that form spindle fibres during mitosis and are one of the most validated cancer targets. The success of drugs targeting microtubules, however, is often limited by the development of multidrug resistance. Here we describe the discovery and characterization of SSE15206, a pyrazolinethioamide derivative [3-phenyl-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide] that has potent antiproliferative activities in cancer cell lines of different origins and overcomes resistance to microtubule-targeting agents. Treatment of cells with SSE15206 causes aberrant mitosis resulting in G2/M arrest due to incomplete spindle formation, a phenotype often associated with drugs that interfere with microtubule dynamics. SSE15206 inhibits microtubule polymerization both in biochemical and cellular assays by binding to colchicine site in tubulin as shown by docking and competition studies. Prolonged treatment of cells with the compound results in apoptotic cell death [increased Poly (ADP-ribose) polymerase cleavage and Annexin V/PI staining] accompanied by p53 induction. More importantly, we demonstrate that SSE15206 is able to overcome resistance to chemotherapeutic drugs in different cancer cell lines including multidrug-resistant KB-V1 and A2780-Pac-Res cell lines overexpressing MDR-1, making it a promising hit for the lead optimization studies to target multidrug resistance.

  18. Self-Sustained Oscillatory Sliding Movement of Doublet Microtubules and Flagellar Bend Formation.

    Directory of Open Access Journals (Sweden)

    Sumio Ishijima

    Full Text Available It is well established that the basis for flagellar and ciliary movements is ATP-dependent sliding between adjacent doublet microtubules. However, the mechanism for converting microtubule sliding into flagellar and ciliary movements has long remained unresolved. The author has developed new sperm models that use bull spermatozoa divested of their plasma membrane and midpiece mitochondrial sheath by Triton X-100 and dithiothreitol. These models enable the observation of both the oscillatory sliding movement of activated doublet microtubules and flagellar bend formation in the presence of ATP. A long fiber of doublet microtubules extruded by synchronous sliding of the sperm flagella and a short fiber of doublet microtubules extruded by metachronal sliding exhibited spontaneous oscillatory movements and constructed a one beat cycle of flagellar bending by alternately actuating. The small sliding displacement generated by metachronal sliding formed helical bends, whereas the large displacement by synchronous sliding formed planar bends. Therefore, the resultant waveform is a half-funnel shape, which is similar to ciliary movements.

  19. Disruption of microtubule network rescues aberrant actin comets in dynamin2-depleted cells.

    Directory of Open Access Journals (Sweden)

    Yuji Henmi

    Full Text Available A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.

  20. Fission yeast cells undergo nuclear division in the absence of spindle microtubules.

    Directory of Open Access Journals (Sweden)

    Stefania Castagnetti

    2010-10-01

    Full Text Available Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.

  1. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis

    Science.gov (United States)

    Borek, Weronika E.; Groocock, Lynda M.; Samejima, Itaru; Zou, Juan; de Lima Alves, Flavia; Rappsilber, Juri; Sawin, Kenneth E.

    2015-01-01

    Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation ‘switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation. PMID:26243668

  2. Direct incorporation of guanosine 5'-diphosphate into microtubules without guanosine 5'-triphosphate hydrolysis

    International Nuclear Information System (INIS)

    Hamel, E.; Batra, J.K.; Lin, C.M.

    1986-01-01

    Using highly purified calf brain tubulin bearing [8- 14 C]guanosine 5'-diphosphate (GDP) in the exchangeable nucleotide site and heat-treated microtubule-associated proteins, the authors have found that a significant proportion of exchangeable-site GDP in microtubules can be incorporated directly during guanosine 5'-triphosphate (GTP) dependent polymerization of tubulin, without an initial exchange of GDP for GTP and subsequent GTP hydrolysis during assembly. The precise amount of GDP incorporated directly into microtubules is highly dependent on specific reaction conditions, being favored by high tubulin concentrations, low GTP and Mg 2+ concentrations, and exogenous GDP in the reaction mixture. Minimum effects were observed with changes in reaction pH or temperature, changes in concentration of microtubule-associated proteins, alteration of the sulfonate buffer, or the presence of a calcium chelator in the reaction mixture. Under conditions most favorable for direct GDP incorporation, about one-third of the GDP in microtubules is incorporated directly (without GTP hydrolysis) and two-thirds is incorporated hydrolytically (as a consequence of GTP hydrolysis). Direct incorporation of GDP occurs in a constant proportion throughout elongation, and the amount of direct incorporation probably reflects the rapid equilibration of GDP and GTP at the exchangeable site that occurs before the onset of assembly

  3. Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Chaowen; Zhang, Tian; Zheng, Yunzhen; Cosgrove, Daniel J.; Anderson, Charles T.

    2015-11-02

    Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis.

  4. Stabilization, not polymerization, of microtubules inhibits the nuclear translocation of STATs in adipocytes

    International Nuclear Information System (INIS)

    Gleason, Evanna L.; Hogan, Jessica C.; Stephens, Jacqueline M.

    2004-01-01

    Signal transducers and activators of transcriptions (STATs) are a family of latent transcription factors which are activated by a variety of growth factors and cytokines in many cell types. However, the mechanism by which these transcription factors translocate to the nucleus is poorly understood. The goal of this study was to determine the requirement of microfilaments and microtubules for cytokine induced STAT activation in cultured adipocytes. We used seven different actin-specific and microtubule-specific agents that are well-established effectors of these cytoskeletal networks. Our results clearly demonstrate that inhibition of microfilaments or the prevention of microtubule polymerization has no effect on the ability of STATs to be tyrosine phosphorylated or to translocate to the nucleus. However, we observed that paclitaxel, a microtubule stabilizer, resulted in a significant decrease in the nuclear translocation of STATs without affecting the cytosolic tyrosine phosphorylation of these transcription factors. In summary, our results demonstrate that the dynamic instability, but not the polymerization, of microtubules contributes to nuclear translocation of STAT proteins in adipocytes

  5. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms

    Directory of Open Access Journals (Sweden)

    Katherine A. Sharp

    2016-03-01

    Full Text Available Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing and the posterior abdomen (P-abd. We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism.

  6. TIPsy tour guides: How microtubule plus-end tracking proteins (+TIPs facilitate axon guidance

    Directory of Open Access Journals (Sweden)

    Elizabeth A Bearce

    2015-06-01

    Full Text Available The growth cone is a dynamic cytoskeletal vehicle, which drives the end of a developing axon. It serves to interpret and navigate through the complex landscape and guidance cues of the early nervous system. The growth cone’s distinctive cytoskeletal organization offers a fascinating platform to study how extracellular cues can be translated into mechanical outgrowth and turning behaviors. While many studies of cell motility highlight the importance of actin networks in signaling, adhesion, and propulsion, both seminal and emerging works in the field have highlighted a unique and necessary role for microtubules in growth cone navigation. Here, we focus on the role of singular pioneer microtubules, which extend into the growth cone periphery and are regulated by a diverse family of microtubule plus-end tracking proteins (+TIPs. These +TIPs accumulate at the dynamic ends of microtubules, where they are well-positioned to encounter and respond to key signaling events downstream of guidance receptors, catalyzing immediate changes in microtubule stability and actin cross-talk, that facilitate both axonal outgrowth and turning events.

  7. Coupling in reflector arrays

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1968-01-01

    In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic......In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present...

  8. Characterization of Early Cortical Neural Network ...

    Science.gov (United States)

    We examined the development of neural network activity using microelectrode array (MEA) recordings made in multi-well MEA plates (mwMEAs) over the first 12 days in vitro (DIV). In primary cortical cultures made from postnatal rats, action potential spiking activity was essentially absent on DIV 2 and developed rapidly between DIV 5 and 12. Spiking activity was primarily sporadic and unorganized at early DIV, and became progressively more organized with time in culture, with bursting parameters, synchrony and network bursting increasing between DIV 5 and 12. We selected 12 features to describe network activity and principal components analysis using these features demonstrated a general segregation of data by age at both the well and plate levels. Using a combination of random forest classifiers and Support Vector Machines, we demonstrated that 4 features (CV of within burst ISI, CV of IBI, network spike rate and burst rate) were sufficient to predict the age (either DIV 5, 7, 9 or 12) of each well recording with >65% accuracy. When restricting the classification problem to a binary decision, we found that classification improved dramatically, e.g. 95% accuracy for discriminating DIV 5 vs DIV 12 wells. Further, we present a novel resampling approach to determine the number of wells that might be needed for conducting comparisons of different treatments using mwMEA plates. Overall, these results demonstrate that network development on mwMEA plates is similar to

  9. Cortical-Cortical Interactions And Sensory Information Processing in Autism

    Science.gov (United States)

    2008-04-30

    significant development for disseminating the results of biomedical research in our lifetime." Sir Paul Nurse , Cancer Research UK Your research papers...of the evidence for local cortical over-connectivity is anecdotal. Belmonte and colleagues suggested the co-morbidity with epilepsy that is highly...Tomma-Halme J, Lahti-Nuuttila P, Service E, Virsu V: Rate of information segregation in developmentally dyslexic children . Brain Lang 2000, 75:66-81

  10. Template-free electrosynthesis of aligned poly(p-phenylene) microtubules

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Poly(p-phenylene) (PPP) microtubules with diameters of 0.2-0.8μm and lengths of~10 (m have been synthesized by direct oxidation of benzene in the mixed electrolyte of boron trifluoride diethyl etherate (BFEE) and trifluoroacetic acid (TFA) (BFEE:TFA= 2:1, by volume), containing a certain amount of sodium dodecylbenzene- sulfonate (SDBS) as surfactant. The microtubules were grown vertically on the working electrode surface. The tubular morphology has been confirmed by scanning and transmission electron microscopies and the chain structure of the skin of the tubules has been characterized by Raman spectroscopy. The electrode property, monomer/surfactant molar ratio and the value of applied potential have strong effects on the morphology of the microtubules.

  11. The Role of Microtubule End Binding (EB) Proteins in Ciliogenesis

    DEFF Research Database (Denmark)

    Schrøder, Jacob Morville

    cellular organelles (Lansbergen and Akhmanova, 2006). EB1 also localizes to centrosomes and is required for centrosomal MT anchoring and organization of the MT network (Askham et al., 2002). Further, EB1 has been shown to localize to the flagellar tip and proximal region of the basal bodies......, are required for assembly of primary cilia in cultured human cells. The EB3 - siRNA ciliary phenotype could be rescued by GFP-EB1 expression, and GFP-EB3 over expression resulted in elongated cilia. Transmission electron microscopy (TEM) revealed that EB3-depleted cells possess stumpy cilia, a disorganized...... centrosomal MT array and abnormally long centriole-associated rootlet filaments. Cells lacking EB1 also had stumpy cilia and a disorganized centrosomal MT array, but rootlet filaments appeared normal. Further, live imaging revealed increased release frequency of MTs from the centrosome upon EB1 or EB3...

  12. Calcium regulates ATP-sensitive microtubule binding by Chlamydomonas outer arm dynein.

    Science.gov (United States)

    Sakato, Miho; King, Stephen M

    2003-10-31

    The Chlamydomonas outer dynein arm contains three distinct heavy chains (alpha, beta, and gamma) that exhibit different motor properties. The LC4 protein, which binds 1-2 Ca2+ with KCa = 3 x 10-5 m, is associated with the gamma heavy chain and has been proposed to act as a sensor to regulate dynein motor function in response to alterations in intraflagellar Ca2+ levels. Here we genetically dissect the outer arm to yield subparticles containing different motor unit combinations and assess the microtubule-binding properties of these complexes both prior to and following preincubation with tubulin and ATP, which was used to inhibit ATP-insensitive (structural) microtubule binding. We observed that the alpha heavy chain exhibits a dominant Ca2+-independent ATP-sensitive MT binding activity in vitro that is inhibited by attachment of tubulin to the structural microtubule-binding domain. Furthermore, we show that ATP-sensitive microtubule binding by a dynein subparticle containing only the beta and gamma heavy chains does not occur at Ca2+ concentrations below pCa 6 but is maximally activated above pCa 5. This activity was not observed in mutant dyneins containing small deletions in the microtubule-binding region of the beta heavy chain or in dyneins that lack both the alpha heavy chain and the motor domain of the beta heavy chain. These findings strongly suggest that Ca2+ binding directly to a component of the dynein complex regulates ATP-sensitive interactions between the beta heavy chain and microtubules and lead to a model for how individual motor units are controlled within the outer dynein arm.

  13. Capu and Spire Assemble a Cytoplasmic Actin~Mesh that Maintains Microtubule Organization in the Drosophila Oocyte

    DEFF Research Database (Denmark)

    Dahlgaard, K.; Raposo, A.A.S.F.; Niccoli, T.

    2007-01-01

    Mutants in the actin nucleators Cappuccino and Spire disrupt the polarized microtubule network in the Drosophila oocyte that defines the anterior-posterior axis, suggesting that microtubule organization depends on actin. Here, we show that Cappuccino and Spire organize an isotropic mesh of actin...

  14. Learning-induced and stathmin-dependent changes in microtubule stability are critical for memory and disrupted in ageing

    Science.gov (United States)

    Uchida, Shusaku; Martel, Guillaume; Pavlowsky, Alice; Takizawa, Shuichi; Hevi, Charles; Watanabe, Yoshifumi; Kandel, Eric R.; Alarcon, Juan Marcos; Shumyatsky, Gleb P.

    2014-01-01

    Changes in the stability of microtubules regulate many biological processes, but their role in memory remains unclear. Here we show that learning causes biphasic changes in the microtubule-associated network in the hippocampus. In the early phase, stathmin is dephosphorylated, enhancing its microtubule-destabilizing activity by promoting stathmin-tubulin binding, whereas in the late phase these processes are reversed leading to an increase in microtubule/KIF5-mediated localization of the GluA2 subunit of AMPA receptors at synaptic sites. A microtubule stabilizer paclitaxel decreases or increases memory when applied at the early or late phases, respectively. Stathmin mutations disrupt changes in microtubule stability, GluA2 localization, synaptic plasticity and memory. Aged wild-type mice show impairments in stathmin levels, changes in microtubule stability, and GluA2 localization. Blocking GluA2 endocytosis rescues memory deficits in stathmin mutant and aged wild-type mice. These findings demonstrate a role for microtubules in memory in young adult and aged individuals. PMID:25007915

  15. Heuristic consequences of a load of oxygen in microtubules.

    Science.gov (United States)

    Denis, Pierre A

    2014-04-01

    The current cell oxygen paradigm shows some major gaps that have not yet been resolved. Something seems to be lacking for the comprehensive statement of the oxygen distribution in the cell, especially the low cytoplasmic oxygen level. The entrapment of oxygen in microtubules (MTs) resolves the latter observation, as well as the occurrence of an extensive cytoplasmic foam formation. It leads to a novel oxygen paradigm for cells. During the steady-state treadmilling, the mobile cavity would absorb oxygenated cytoplasm forward, entrap gas nuclei and concentrate them. A fluorescence method is described to confirm the in vitro load of oxygen in MTs during their periodic growths and shrinkages. The latter operating mechanism is called the gas dynamic instability (GDI) of MTs. Several known biosystems could rest on the GDI. (1) The GTP-cap is linked with the gas meniscus encountered in a tube filled with gas. The GTP hydrolysis is linked to the conformational change of the GTPase domain according to the bubble pressure, and to the shaking of protofilaments with gas particles (soliton-like waves). (2) The GDI provides a free energy water pump because water molecules have to escape from MT pores when foam concentrates within the MT. Beside ATP hydrolysis in motor proteins, the GDI provides an additional driving force in intracellular transport of cargo. The water streams flowing from the MT through slits organize themselves as water layers between the cargo and the MT surface, and break ionic bridges. It makes the cargo glide over a water rail. (3) The GDI provides a universal motor for chromosome segregation because the depolymerization of kinetochorial MTs is expected to generate a strong cytoplasmic foam. Chromosomes are sucked up according to the pressure difference (or density difference) applied to opposite sides of the kinetochore, which is in agreement with Archimedes' principle of buoyancy. Non-kinetochorial MTs reabsorb foam during GDI. Last, the mitotic spindle

  16. Imprinting and recalling cortical ensembles.

    Science.gov (United States)

    Carrillo-Reid, Luis; Yang, Weijian; Bando, Yuki; Peterka, Darcy S; Yuste, Rafael

    2016-08-12

    Neuronal ensembles are coactive groups of neurons that may represent building blocks of cortical circuits. These ensembles could be formed by Hebbian plasticity, whereby synapses between coactive neurons are strengthened. Here we report that repetitive activation with two-photon optogenetics of neuronal populations from ensembles in the visual cortex of awake mice builds neuronal ensembles that recur spontaneously after being imprinted and do not disrupt preexisting ones. Moreover, imprinted ensembles can be recalled by single- cell stimulation and remain coactive on consecutive days. Our results demonstrate the persistent reconfiguration of cortical circuits by two-photon optogenetics into neuronal ensembles that can perform pattern completion. Copyright © 2016, American Association for the Advancement of Science.

  17. Challenges and opportunities in the high-resolution cryo-EM visualization of microtubules and their binding partners.

    Science.gov (United States)

    Nogales, Eva; Kellogg, Elizabeth H

    2017-10-01

    As non-crystallizable polymers, microtubules have been the target of cryo-electron microscopy (cryo-EM) studies since the technique was first established. Over the years, image processing strategies have been developed that take care of the unique, pseudo-helical symmetry of the microtubule. With recent progress in data quality and data processing, cryo-EM reconstructions are now reaching resolutions that allow the generation of atomic models of microtubules and the factors that bind them. These include cellular partners that contribute to microtubule cellular functions, or small ligands that interfere with those functions in the treatment of cancer. The stage is set to generate a family portrait for all identified microtubule interacting proteins and to use cryo-EM as a drug development tool in the targeting of tubulin. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Cell proliferation, cell shape, and microtubule and cellulose microfibril organization of tobacco BY-2 cells are not altered by exposure to near weightlessness in space

    NARCIS (Netherlands)

    Sieberer, B.; Kieft, H.; Franssen-Verheijen, M.A.W.; Emons, A.M.C.; Vos, J.W.

    2009-01-01

    The microtubule cytoskeleton and the cell wall both play key roles in plant cell growth and division, determining the plant’s final stature. At near weightlessness, tubulin polymerizes into microtubules in vitro, but these microtubules do not self-organize in the ordered patterns observed at 1g.

  19. Microtubule organization in three-dimensional confined geometries: Evaluating the role of elasticity through a combined in vitro and modeling approach

    NARCIS (Netherlands)

    Cosentino Lagomarsino, M.; Tanase, C.; Vos, J.W.; Emons, A.M.C.; Mulder, B.; Dogterom, M.

    2007-01-01

    Microtubules or microtubule bundles in cells often grow longer than the size of the cell, which causes their shape and organization to adapt to constraints imposed by the cell geometry. We test the reciprocal role of elasticity and confinement in the organization of growing microtubules in a

  20. [Schizophrenia and cortical GABA neurotransmission].

    Science.gov (United States)

    Hashimoto, Takanori; Matsubara, Takuro; Lewis, David A

    2010-01-01

    -synaptic GABA-A receptors. Our recent analyses demonstrated that this pattern exists across diverse cortical areas including the prefrontal, anterior cingulate, primary motor, and primary visual cortices. GABA neurotransmission by PV-containing and SST-containing neurons is important for the generation of cortical oscillatory activities in the gamma (30-100 Hz) and theta (4-7 Hz) bands, respectively. These oscillatory activities have been proposed to play critical roles in regulating the efficiency of information transfer between neurons and neuronal networks in the cortex. Altered cortical GABA neurotransmission appears to contribute to disturbances in diverse functions through affecting the generation of cortical oscillations in schizophrenia.

  1. CEP295 interacts with microtubules and is required for centriole elongation.

    Science.gov (United States)

    Chang, Ching-Wen; Hsu, Wen-Bin; Tsai, Jhih-Jie; Tang, Chieh-Ju C; Tang, Tang K

    2016-07-01

    Centriole duplication is a tightly ordered process during which procentrioles are assembled in G1-S and elongate during S and G2. Here, we show that human CEP295 (Drosophila Ana1) is not essential for initial cartwheel assembly, but is required to build distal half centrioles during S and G2. Using super-resolution and immunogold electron microscopy, we demonstrate that CEP295 is recruited to the proximal end of procentrioles in early S phase, when it is also localized at the centriolar microtubule wall that surrounds the human SAS6 cartwheel hub. Interestingly, depletion of CEP295 not only inhibits the recruitments of POC5 and POC1B to the distal half centrioles in G2, resulting in shorter centrioles, it also blocks the post-translational modification of centriolar microtubules (e.g. acetylation and glutamylation). Importantly, our results indicate that CEP295 directly interacts with microtubules, and that excess CEP295 could induce the assembly of overly long centrioles. Furthermore, exogenous expression of the N-terminal domain of CEP295 exerts a dominant-negative effect on centriole elongation. Collectively, these findings suggest that CEP295 is essential for building the distal half centrioles and for post-translational modification of centriolar microtubules. © 2016. Published by The Company of Biologists Ltd.

  2. The current of a particle along a microtubule in microscopic plasma

    International Nuclear Information System (INIS)

    Li Wei; Chen Junfang; Wang Teng; Lai Xiuqiong

    2008-01-01

    Transport of a particle along the axis of a microtubule in a plasma-enhanced chemical vapor deposition (PECVD) system is investigated. The current, respectively, as a function of the temperature, the magnetic field and the external force is obtained. The value and direction of the current may be controlled by changing the above parameters

  3. Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human-Induced Pluripotent Cells

    Science.gov (United States)

    2016-09-01

    cells derived from human induced pluripotent stem cells (hiPSCs), originating from GW...AWARD NUMBER: W81XWH-15-1-0433 TITLE: Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human- Induced Pluripotent Cells ...A simple blood sample is taken from the soldier, and then transduced, using reliable established methods , to make the cells pluripotent .

  4. Wolbachia utilizes host microtubules and Dynein for anterior localization in the Drosophila oocyte.

    Directory of Open Access Journals (Sweden)

    Patrick M Ferree

    2005-10-01

    Full Text Available To investigate the role of the host cytoskeleton in the maternal transmission of the endoparasitic bacteria Wolbachia, we have characterized their distribution in the female germ line of Drosophila melanogaster. In the germarium, Wolbachia are distributed to all germ cells of the cyst, establishing an early infection in the cell destined to become the oocyte. During mid-oogenesis, Wolbachia exhibit a distinct concentration between the anterior cortex and the nucleus in the oocyte, where many bacteria appear to contact the nuclear envelope. Following programmed rearrangement of the microtubule network, Wolbachia dissociate from this anterior position and become dispersed throughout the oocyte. This localization pattern is distinct from mitochondria and all known axis determinants. Manipulation of microtubules and cytoplasmic Dynein and Dynactin, but not Kinesin-1, disrupts anterior bacterial localization in the oocyte. In live egg chambers, Wolbachia exhibit movement in nurse cells but not in the oocyte, suggesting that the bacteria are anchored by host factors. In addition, we identify mid-oogenesis as a period in the life cycle of Wolbachia in which bacterial replication occurs. Total bacterial counts show that Wolbachia increase at a significantly higher rate in the oocyte than in the average nurse cell, and that normal Wolbachia levels in the oocyte depend on microtubules. These findings demonstrate that Wolbachia utilize the host microtubule network and associated proteins for their subcellular localization in the Drosophila oocyte. These interactions may also play a role in bacterial motility and replication, ultimately leading to the bacteria's efficient maternal transmission.

  5. Novel mitochondrial extensions provide evidence for a link between microtubule-directed movement and mitochondrial fission

    International Nuclear Information System (INIS)

    Bowes, Timothy; Gupta, Radhey S.

    2008-01-01

    Mitochondrial dynamics play an important role in a large number of cellular processes. Previously, we reported that treatment of mammalian cells with the cysteine-alkylators, N-ethylmaleimide and ethacrynic acid, induced rapid mitochondrial fusion forming a large reticulum approximately 30 min after treatment. Here, we further investigated this phenomenon using a number of techniques including live-cell confocal microscopy. In live cells, drug-induced fusion coincided with a cessation of fast mitochondrial movement which was dependent on microtubules. During this loss of movement, thin mitochondrial tubules extending from mitochondria were also observed, which we refer to as 'mitochondrial extensions'. The formation of these mitochondrial extensions, which were not observed in untreated cells, depended on microtubules and was abolished by pretreatment with nocodazole. In this study, we provide evidence that these extensions result from of a block in mitochondrial fission combined with continued application of motile force by microtubule-dependent motor complexes. Our observations strongly suggest the existence of a link between microtubule-based mitochondrial trafficking and mitochondrial fission

  6. The imidazopyridine derivative JK184 reveals dual roles for microtubules in Hedgehog signaling.

    Science.gov (United States)

    Cupido, Tommaso; Rack, Paul G; Firestone, Ari J; Hyman, Joel M; Han, Kyuho; Sinha, Surajit; Ocasio, Cory A; Chen, James K

    2009-01-01

    Eradicating hedgehogs: The title molecule has been previously identified as a potent inhibitor of the Hedgehog signaling pathway, which gives embryonic cells information needed to develop properly. This molecule is shown to modulate Hedgehog target gene expression by depolymerizing microtubules, thus revealing dual roles of the cytoskeleton in pathway regulation (see figure).

  7. Deformation pattern in vibrating microtubule: Structural mechanics study based on an atomistic approach

    Czech Academy of Sciences Publication Activity Database

    Havelka, Daniel; Deriu, M.A.; Cifra, Michal; Kučera, Ondřej

    2017-01-01

    Roč. 7, č. 1 (2017), č. článku 4227. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GA15-17102S Institutional support: RVO:67985882 Keywords : Continuum model * Protein microtubules * Molecular-dymamics Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 4.259, year: 2016

  8. CLASP2 interacts with p120-catenin and governs microtubule dynamics at adherens junctions

    DEFF Research Database (Denmark)

    Shahbazi, Marta N; Megias, Diego; Epifano, Carolina

    2013-01-01

    Classical cadherins and their connections with microtubules (MTs) are emerging as important determinants of cell adhesion. However, the functional relevance of such interactions and the molecular players that contribute to tissue architecture are still emerging. In this paper, we report that the ...

  9. Proteomics of cancer cell lines resistant to microtubule-stabilizing agents

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Angeletti, Ruth H; Horwitz, Susan Band

    2014-01-01

    Despite the clinical success of microtubule-interacting agents (MIA), a significant challenge for oncologists is the inability to predict the response of individual patients with cancer to these drugs. In the present study, six cell lines were compared by 2D DIGE proteomics to investigate cellula...

  10. Application of quasi-steady state methods to molecular motor transport on microtubules in fungal hyphae.

    Science.gov (United States)

    Dauvergne, Duncan; Edelstein-Keshet, Leah

    2015-08-21

    We consider bidirectional transport of cargo by molecular motors dynein and kinesin that walk along microtubules, and/or diffuse in the cell. The motors compete to transport cargo in opposite directions with respect to microtubule polarity (towards the plus or minus end of the microtubule). In recent work, Gou et al. (2014) used a hierarchical set of models, each consisting of continuum transport equations to track the evolution of motors and their cargo (early endosomes) in the specific case of the fungus Ustilago maydis. We complement their work using a framework of quasi-steady state analysis developed by Newby and Bressloff (2010) and Bressloff and Newby (2013) to reduce the models to an approximating steady state Fokker-Plank equation. This analysis allows us to find analytic approximations to the steady state solutions in many cases where the full models are not easily solved. Consequently, we can make predictions about parameter dependence of the resulting spatial distributions. We also characterize the overall rates of bulk transport and diffusion, and how these are related to state transition parameters, motor speeds, microtubule polarity distribution, and specific assumptions made. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Tubular lysosome morphology and distribution within macrophages depend on the integrity of cytoplasmic microtubules

    International Nuclear Information System (INIS)

    Swanson, J.; Bushnell, A.; Silverstein, S.C.

    1987-01-01

    Pinocytosis of the fluorescent dye lucifer yellow labels elongated, membrane-bound tubular organelles in several cell types, including cultured human monocytes, thioglycolate-elicited mouse peritoneal macrophages, and the macrophage-like cell line J774.2. These tubular structures can be identified as lysosomes by acid phosphatase histochemistry and immunofluorescence localization of cathepsin L. The abundance of tubular lysosomes is markedly increased by treatment with phorbol 12-myristate 13-acetate. When labeled by pinocytosis of microperoxidase and examined by electron microscopic histochemistry, the tubular lysosomes have an outside diameter of ≅ 75 nm and a length of several micrometers; they radiate from the cell's centrosphere in alignment with cytoplasmic microtubules and intermediate filaments. Incubation of phorbol myristate acetate-treated macrophages at 4 0 C or in medium containing 5 μM colchicine or nocodazole at 37 0 C leads to disassembly of microtubules and fragmentation of the tubular lysosomes. Return of the cultures to 37 0 C or removal of nocodazole from the medium leads to reassembly of microtubules and the reappearance of tubular lysosomes within 10-20 min. The authors conclude that microtubules are essential for the maintenance of tubular lysosome morphology and that, in macrophages, a significant proportion of the lysosomal compartment is contained within these tubular structures

  12. Microtubule-Mediated Inositol Lipid Signaling Plays Critical Roles in Regulation of Blebbing.

    Directory of Open Access Journals (Sweden)

    Tatsuroh Sugiyama

    Full Text Available Cells migrate by extending pseudopods such as lamellipodia and blebs. Although the signals leading to lamellipodia extension have been extensively investigated, those for bleb extension remain unclear. Here, we investigated signals for blebbing in Dictyostelium cells using a newly developed assay to induce blebbing. When cells were cut into two pieces with a microneedle, the anucleate fragments vigorously extended blebs. This assay enabled us to induce blebbing reproducibly, and analyses of knockout mutants and specific inhibitors identified candidate molecules that regulate blebbing. Blebs were also induced in anucleate fragments of leukocytes, indicating that this assay is generally applicable to animal cells. After cutting, microtubules in the anucleate fragments promptly depolymerized, followed by the extension of blebs. Furthermore, when intact cells were treated with a microtubule inhibitor, they frequently extended blebs. The depolymerization of microtubules induced the delocalization of inositol lipid phosphatidylinositol 3,4,5-trisphosphate from the cell membrane. PI3 kinase-null cells frequently extended blebs, whereas PTEN-null cells extended fewer blebs. From these observations, we propose a model in which microtubules play a critical role in bleb regulation via inositol lipid metabolism.

  13. Cationic membranes complexed with oppositely charged microtubules: hierarchical self-assembly leading to bio-nanotubes

    International Nuclear Information System (INIS)

    Raviv, Uri; Needleman, Daniel J; Safinya, Cyrus R

    2006-01-01

    The self-assembly of microtubules and charged membranes has been studied, using x-ray diffraction and electron microscopy. Polyelectrolyte lipid complexes usually form structures templated by the lipid phase, when the polyelectrolyte curvature is much larger than the membrane spontaneous curvature. When the polyelectrolyte curvature approaches the membrane spontaneous curvature, as in microtubules, two types of new structures emerge. Depending on the conditions, vesicles either adsorb onto the microtubule, forming a 'beads on a rod' structure, or coat the microtubule, which now forms the template. Tubulin oligomers then coat the external lipid layer, forming a lipid protein nanotube. The tubulin oligomer coverage at the external layer is determined by the membrane charge density. The energy barrier between the beads on a rod and the lipid-protein nanotube states depends on the membrane bending rigidity and membrane charge density. By controlling the lipid/tubulin stoichiometry we can switch between lipid-protein nanotubes with open ends to lipid-protein nanotubes with closed end with lipid cups. This forms the basis for controlled drug encapsulation and release

  14. Vault mobility depends in part on microtubules and vaults can be recruited to the nuclear envelope

    International Nuclear Information System (INIS)

    Zon, Arend van; Mossink, Marieke H.; Houtsmuller, Adriaan B.; Schoester, Martijn; Scheffer, George L.; Scheper, Rik J.; Sonneveld, Pieter; Wiemer, Erik A.C.

    2006-01-01

    Vaults are ribonucleoproteins that may function in intracellular transport processes. We investigated the intracellular distribution and dynamics of vaults in non-small cell lung cancer cells in which vaults are labeled with the green fluorescent protein. Immunofluorescence experiments showed that vaults are dispersed throughout the cytoplasm; a small fraction is found in close proximity to microtubules. Immunoprecipitation experiments corroborated these results showing co-precipitation of MVP and β-tubulin. Using quantitative fluorescence-recovery after photobleaching (FRAP), we demonstrated that vault mobility over longer distances in part depends on intact microtubules; vaults moving slower when microtubules are depolymerized by nocodazole. Biochemical fractionation indicated a small fraction of MVP associated with the nucleus, however, no GFP-tagged vaults could be observed inside the nucleus. We observed an accumulation of vaults at the nuclear envelope upon treatment of cells with the protein synthesis inhibitor cycloheximide. Analysis of nucleo-cytoplasmic transport using a fluorescent substrate containing a classical NLS and NES expressed in MVP +/+ and MVP -/- mouse embryonic fibroblasts indicated no differences in nuclear import/export kinetics, suggesting no role for vaults in these processes. We hypothesize that a subset of vaults moves directionally via microtubules, possibly towards the nucleus

  15. Aluminum ions inhibit phospholipase D in a microtubule-dependent manner

    Czech Academy of Sciences Publication Activity Database

    Pejchar, Přemysl; Pleskot, R.; Schwarzerová, K.; Martinec, Jan; Valentová, O.; Novotná, Z.

    2008-01-01

    Roč. 32, č. 5 (2008), s. 554-556 ISSN 1065-6995 R&D Projects: GA ČR GA522/05/0340 Institutional research plan: CEZ:AV0Z50380511 Keywords : Aluminum toxicity * Phospholipase D * Microtubules Subject RIV: ED - Physiology Impact factor: 1.619, year: 2008

  16. The polarity protein Par6 is coupled to the microtubule network during molluscan early embryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Taihei [Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Shimizu, Miho [Kuroda Chiromorphology Team, ERATO-SORST, JST, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Kuroda, Reiko, E-mail: ckuroda@mail.ecc.u-tokyo.ac.jp [Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kuroda Chiromorphology Team, ERATO-SORST, JST, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2011-01-07

    Research highlights: {yields} The cDNAs encoding Par6 and aPKC homologues were cloned from the snail Lymnaea stagnalis. {yields} L. stagnalis Par6 directly interacts with tubulin and microtubules and localizes to the microtubule cytoskeleton during the early embryogenesis. {yields} Identical sequence and localization of LsPar6 for the dextral and the sinistral snails exclude the possibility of the gene being the primary determinant of body handedness. -- Abstract: Cell polarity, which directs the orientation of asymmetric cell division and segregation of fate determinants, is a fundamental feature of development and differentiation. Regulators of polarity have been extensively studied, and the critical importance of the Par (partitioning-defective) complex as the polarity machinery is now recognized in a wide range of eukaryotic systems. The Par polarity module is evolutionarily conserved, but its mechanism and cooperating factors vary among different systems. Here we describe the cloning and characterization of a pond snail Lymnaea stagnalis homologue of partitioning-defective 6 (Lspar6). The protein product LsPar6 shows high affinity for microtubules and localizes to the mitotic apparatus during embryonic cell division. In vitro assays revealed direct binding of LsPar6 to tubulin and microtubules, which is the first evidence of the direct interaction between the two proteins. The interaction is mediated by two distinct regions of LsPar6 both located in the N-terminal half. Atypical PKC, a functional partner of Par6, was also found to localize to the mitotic spindle. These results suggest that the L. stagnalis Par complex employs the microtubule network in cell polarity processes during the early embryogenesis. Identical sequence and localization of LsPar6 for the dextral and the sinistral snails exclude the possibility of the gene being the primary determinant of handedness.

  17. The polarity protein Par6 is coupled to the microtubule network during molluscan early embryogenesis

    International Nuclear Information System (INIS)

    Homma, Taihei; Shimizu, Miho; Kuroda, Reiko

    2011-01-01

    Research highlights: → The cDNAs encoding Par6 and aPKC homologues were cloned from the snail Lymnaea stagnalis. → L. stagnalis Par6 directly interacts with tubulin and microtubules and localizes to the microtubule cytoskeleton during the early embryogenesis. → Identical sequence and localization of LsPar6 for the dextral and the sinistral snails exclude the possibility of the gene being the primary determinant of body handedness. -- Abstract: Cell polarity, which directs the orientation of asymmetric cell division and segregation of fate determinants, is a fundamental feature of development and differentiation. Regulators of polarity have been extensively studied, and the critical importance of the Par (partitioning-defective) complex as the polarity machinery is now recognized in a wide range of eukaryotic systems. The Par polarity module is evolutionarily conserved, but its mechanism and cooperating factors vary among different systems. Here we describe the cloning and characterization of a pond snail Lymnaea stagnalis homologue of partitioning-defective 6 (Lspar6). The protein product LsPar6 shows high affinity for microtubules and localizes to the mitotic apparatus during embryonic cell division. In vitro assays revealed direct binding of LsPar6 to tubulin and microtubules, which is the first evidence of the direct interaction between the two proteins. The interaction is mediated by two distinct regions of LsPar6 both located in the N-terminal half. Atypical PKC, a functional partner of Par6, was also found to localize to the mitotic spindle. These results suggest that the L. stagnalis Par complex employs the microtubule network in cell polarity processes during the early embryogenesis. Identical sequence and localization of LsPar6 for the dextral and the sinistral snails exclude the possibility of the gene being the primary determinant of handedness.

  18. Plasma membrane factor XIIIA transglutaminase activity regulates osteoblast matrix secretion and deposition by affecting microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Hadil F Al-Jallad

    2011-01-01

    Full Text Available Transglutaminase activity, arising potentially from transglutaminase 2 (TG2 and Factor XIIIA (FXIIIA, has been linked to osteoblast differentiation where it is required for type I collagen and fibronectin matrix deposition. In this study we have used an irreversible TG-inhibitor to 'block -and-track' enzyme(s targeted during osteoblast differentiation. We show that the irreversible TG-inhibitor is highly potent in inhibiting osteoblast differentiation and mineralization and reduces secretion of both fibronectin and type I collagen and their release from the cell surface. Tracking of the dansyl probe by Western blotting and immunofluorescence microscopy demonstrated that the inhibitor targets plasma membrane-associated FXIIIA. TG2 appears not to contribute to crosslinking activity on the osteoblast surface. Inhibition of FXIIIA with NC9 resulted in defective secretory vesicle delivery to the plasma membrane which was attributable to a disorganized microtubule network and decreased microtubule association with the plasma membrane. NC9 inhibition of FXIIIA resulted in destabilization of microtubules as assessed by cellular Glu-tubulin levels. Furthermore, NC9 blocked modification of Glu-tubulin into 150 kDa high-molecular weight Glu-tubulin form which was specifically localized to the plasma membrane. FXIIIA enzyme and its crosslinking activity were colocalized with plasma membrane-associated tubulin, and thus, it appears that FXIIIA crosslinking activity is directed towards stabilizing the interaction of microtubules with the plasma membrane. Our work provides the first mechanistic cues as to how transglutaminase activity could affect protein secretion and matrix deposition in osteoblasts and suggests a novel function for plasma membrane FXIIIA in microtubule dynamics.

  19. Colchicine Depolymerizes Microtubules, Increases Junctophilin-2, and Improves Right Ventricular Function in Experimental Pulmonary Arterial Hypertension.

    Science.gov (United States)

    Prins, Kurt W; Tian, Lian; Wu, Danchen; Thenappan, Thenappan; Metzger, Joseph M; Archer, Stephen L

    2017-05-31

    Pulmonary arterial hypertension (PAH) is a lethal disease characterized by obstructive pulmonary vascular remodeling and right ventricular (RV) dysfunction. Although RV function predicts outcomes in PAH, mechanisms of RV dysfunction are poorly understood, and RV-targeted therapies are lacking. We hypothesized that in PAH, abnormal microtubular structure in RV cardiomyocytes impairs RV function by reducing junctophilin-2 (JPH2) expression, resulting in t-tubule derangements. Conversely, we assessed whether colchicine, a microtubule-depolymerizing agent, could increase JPH2 expression and enhance RV function in monocrotaline-induced PAH. Immunoblots, confocal microscopy, echocardiography, cardiac catheterization, and treadmill testing were used to examine colchicine's (0.5 mg/kg 3 times/week) effects on pulmonary hemodynamics, RV function, and functional capacity. Rats were treated with saline (n=28) or colchicine (n=24) for 3 weeks, beginning 1 week after monocrotaline (60 mg/kg, subcutaneous). In the monocrotaline RV, but not the left ventricle, microtubule density is increased, and JPH2 expression is reduced, with loss of t-tubule localization and t-tubule disarray. Colchicine reduces microtubule density, increases JPH2 expression, and improves t-tubule morphology in RV cardiomyocytes. Colchicine therapy diminishes RV hypertrophy, improves RV function, and enhances RV-pulmonary artery coupling. Colchicine reduces small pulmonary arteriolar thickness and improves pulmonary hemodynamics. Finally, colchicine increases exercise capacity. Monocrotaline-induced PAH causes RV-specific derangement of microtubules marked by reduction in JPH2 and t-tubule disarray. Colchicine reduces microtubule density, increases JPH2 expression, and improves both t-tubule architecture and RV function. Colchicine also reduces adverse pulmonary vascular remodeling. These results provide biological plausibility for a clinical trial to repurpose colchicine as a RV-directed therapy for PAH

  20. Involvement of microtubules in lipoprotein degradation and utilization for steroidogenesis in cultured rat luteal cells

    International Nuclear Information System (INIS)

    Rajan, V.P.; Menon, K.M.

    1985-01-01

    Cells isolated from superovulated rat ovaries metabolize low density lipoprotein (LDL) and high density lipoprotein (HDL) of human or rat origin and use the lipoprotein-derived cholesterol as a precursor for progesterone production. Under in vitro conditions, both lipoproteins are internalized and degraded in the lysosomes, although degradation of HDL is of lower magnitude than that of LDL. In this report we have examined the role of cellular microtubules in the internalization and degradation of human LDL and HDL in cultured rat luteal cells. The microtubule depolymerizing agents colchicine, podophyllotoxin, vinblastine, and nocodazole as well as taxol, deuterium oxide, and dimethyl sulfoxide, which are known to rapidly polymerize cellular tubulin into microtubules, were used to block the function of microtubules. When these antimicrotubule agents were included in the incubations, degradation of the apolipoproteins of [ 125 I]iodo-LDL and [ 125 I]iodo-HDL by the luteal cells was inhibited by 50-85% compared to untreated control values. Maximum inhibitory effects were observed when the cells were preincubated with the inhibitor for at least 4 h at 37 C before treatment with the labeled lipoprotein. Lipoprotein-stimulated progesterone production by luteal cells was also inhibited by 50% or more in the presence of antimicrotubule agents. However, basal and hCG-stimulated progesterone production were unaffected by these inhibitors. The binding of [ 125 I]iodo-LDL and [ 125 I]iodo-HDL to luteal cell plasma membrane receptors was not affected by the microtubule inhibitors. Although binding was unaffected and degradation was impaired in the presence of the inhibitors, there was no detectable accumulation of undegraded lipoprotein within the cells during the 24 h of study

  1. Luminal localization of α-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules.

    Directory of Open Access Journals (Sweden)

    Virupakshi Soppina

    Full Text Available The αβ-tubulin subunits of microtubules can undergo a variety of evolutionarily-conserved post-translational modifications (PTMs that provide functional specialization to subsets of cellular microtubules. Acetylation of α-tubulin residue Lysine-40 (K40 has been correlated with increased microtubule stability, intracellular transport, and ciliary assembly, yet a mechanistic understanding of how acetylation influences these events is lacking. Using the anti-acetylated tubulin antibody 6-11B-1 and electron cryo-microscopy, we demonstrate that the K40 acetylation site is located inside the microtubule lumen and thus cannot directly influence events on the microtubule surface, including kinesin-1 binding. Surprisingly, the monoclonal 6-11B-1 antibody recognizes both acetylated and deacetylated microtubules. These results suggest that acetylation induces structural changes in the K40-containing loop that could have important functional consequences on microtubule stability, bending, and subunit interactions. This work has important implications for acetylation and deacetylation reaction mechanisms as well as for interpreting experiments based on 6-11B-1 labeling.

  2. Influence of carbon nanotubes on the buckling of microtubule bundles in viscoelastic cytoplasm using nonlocal strain gradient theory

    Directory of Open Access Journals (Sweden)

    A. Farajpour

    Full Text Available Carbon nanotubes are a new class of microtubule-stabilizing agents since they interact with protein microtubules in living cells, interfering with cell division and inducing apoptosis. In the present work, a modified beam model is developed to investigate the effect of carbon nanotubes on the buckling of microtubule bundles in living cell. A realistic interaction model is employed using recent experimental data on the carbon nanotube-stabilized microtubules. Small scale and surface effects are taken into account applying the nonlocal strain gradient theory and surface elasticity theory. Pasternak model is used to describe the normal and shearing effects of enclosing filament matrix on the buckling behavior of the system. An exact solution is obtained for the buckling growth rates of the mixed bundle in viscoelastic surrounding cytoplasm. The present results are compared with those reported in the open literature for single microtubules and an excellent agreement is found. Finally, the effects of different parameters such as the size, chirality, position and surface energy of carbon nanotubes on the buckling growth rates of microtubule bundles are studied. It is found that the buckling growth rate may increase or decrease by adding carbon nanotubes, depending on the diameter and chirality of carbon nanotubes. Keywords: Microtubules, Carbon nanotubes, Buckling, Size effects

  3. Finding the Cell Center by a Balance of Dynein and Myosin Pulling and Microtubule Pushing: A Computational Study

    Science.gov (United States)

    Zhu, Jie; Burakov, Anton; Rodionov, Vladimir

    2010-01-01

    The centrosome position in many types of interphase cells is actively maintained in the cell center. Our previous work indicated that the centrosome is kept at the center by pulling force generated by dynein and actin flow produced by myosin contraction and that an unidentified factor that depends on microtubule dynamics destabilizes position of the centrosome. Here, we use modeling to simulate the centrosome positioning based on the idea that the balance of three forces—dyneins pulling along microtubule length, myosin-powered centripetal drag, and microtubules pushing on organelles—is responsible for the centrosome displacement. By comparing numerical predictions with centrosome behavior in wild-type and perturbed interphase cells, we rule out several plausible hypotheses about the nature of the microtubule-based force. We conclude that strong dynein- and weaker myosin-generated forces pull the microtubules inward competing with microtubule plus-ends pushing the microtubule aster outward and that the balance of these forces positions the centrosome at the cell center. The model also predicts that kinesin action could be another outward-pushing force. Simulations demonstrate that the force-balance centering mechanism is robust yet versatile. We use the experimental observations to reverse engineer the characteristic forces and centrosome mobility. PMID:20980619

  4. MRI of focal cortical dysplasia

    International Nuclear Information System (INIS)

    Lee, B.C.P.; Hatfield, G.A.; Bourgeois, B.; Park, T.S.

    1998-01-01

    We studied nine cases of focal cortical dysplasia (FCD) by MRI, with surface-rendered 3D reconstructions. One case was also examined using single-voxel proton MR spectroscopy (MRS). The histological features were reviewed and correlated with the MRI findings. The gyri affected by FCD were enlarged and the signal of the cortex was slightly increased on T1-weighted images. The gray-white junction was indistinct. Signal from the subcortical white matter was decreased on T1- and increased on T2-weighted images in most cases. Contrast enhancement was seen in two cases. Proton MRS showed a spectrum identical to that of normal brain. (orig.) (orig.)

  5. Cotinine improves visual recognition memory and decreases cortical Tau phosphorylation in the Tg6799 mice.

    Science.gov (United States)

    Grizzell, J Alex; Patel, Sagar; Barreto, George E; Echeverria, Valentina

    2017-08-01

    Alzheimer's disease (AD) is associated with the progressive aggregation of hyperphosphorylated forms of the microtubule associated protein Tau in the central nervous system. Cotinine, the main metabolite of nicotine, reduced working memory deficits, synaptic loss, and amyloid β peptide aggregation into oligomers and plaques as well as inhibited the cerebral Tau kinase, glycogen synthase 3β (GSK3β) in the transgenic (Tg)6799 (5XFAD) mice. In this study, the effect of cotinine on visual recognition memory and cortical Tau phosphorylation at the GSK3β sites Serine (Ser)-396/Ser-404 and phospho-CREB were investigated in the Tg6799 and non-transgenic (NT) littermate mice. Tg mice showed short-term visual recognition memory impairment in the novel object recognition test, and higher levels of Tau phosphorylation when compared to NT mice. Cotinine significantly improved visual recognition memory performance increased CREB phosphorylation and reduced cortical Tau phosphorylation. Potential mechanisms underlying theses beneficial effects are discussed. Copyright © 2017. Published by Elsevier Inc.

  6. Acute hepatic encephalopathy with diffuse cortical lesions

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.M.; Spreer, J.; Schumacher, M. [Section of Neuroradiology, Univ. of Freiburg (Germany); Els, T. [Dept. of Neurology, University of Freiburg (Germany)

    2001-07-01

    Acute hepatic encephalopathy is a poorly defined syndrome of heterogeneous aetiology. We report a 49-year-old woman with alcoholic cirrhosis and hereditary haemorrhagic telangiectasia who developed acute hepatic coma induced by severe gastrointestinal bleeding. Laboratory analysis revealed excessively elevated blood ammonia. MRI showed lesions compatible with chronic hepatic encephalopathy and widespread cortical signal change sparing the perirolandic and occipital cortex. The cortical lesions resembled those of hypoxic brain damage and were interpreted as acute toxic cortical laminar necrosis. (orig.)

  7. Communication and Wiring in the Cortical Connectome

    Directory of Open Access Journals (Sweden)

    Julian eBudd

    2012-10-01

    Full Text Available In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring principles underlying cortical connectivity. A popular explanation has been that axonal length is strictly minimized both within and between cortical regions. In contrast, we have hypothesized the existence of a multi-scale principle of cortical wiring where to optimise communication there is a trade-off between spatial (construction and temporal (routing costs. Here, using recent evidence concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local circuit, and pathway scales. We report three main conclusions. First, the axonal and dendritic arbor morphology of single neocortical neurons may be governed by a similar wiring principle, one that balances the conservation of cellular material and conduction delay. Second, the same principle may be observed for fibre tracts connecting cortical regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful assessment of the hypothesis at this scale of cortical organization. To avoid neglecting neuron and microcircuit levels of cortical organization, the connectome framework should incorporate more morphological description. In addition, structural analyses of temporal cost for cortical circuits should take account of both axonal conduction and neuronal integration delays, which appear mostly of the same order of magnitude. We conclude the hypothesized trade-off between spatial and temporal costs may potentially offer a powerful explanation for

  8. Acute hepatic encephalopathy with diffuse cortical lesions

    International Nuclear Information System (INIS)

    Arnold, S.M.; Spreer, J.; Schumacher, M.; Els, T.

    2001-01-01

    Acute hepatic encephalopathy is a poorly defined syndrome of heterogeneous aetiology. We report a 49-year-old woman with alcoholic cirrhosis and hereditary haemorrhagic telangiectasia who developed acute hepatic coma induced by severe gastrointestinal bleeding. Laboratory analysis revealed excessively elevated blood ammonia. MRI showed lesions compatible with chronic hepatic encephalopathy and widespread cortical signal change sparing the perirolandic and occipital cortex. The cortical lesions resembled those of hypoxic brain damage and were interpreted as acute toxic cortical laminar necrosis. (orig.)

  9. Lateral motion and bending of microtubules studied with a new single-filament tracking routine in living cells.

    Science.gov (United States)

    Pallavicini, Carla; Levi, Valeria; Wetzler, Diana E; Angiolini, Juan F; Benseñor, Lorena; Despósito, Marcelo A; Bruno, Luciana

    2014-06-17

    The cytoskeleton is involved in numerous cellular processes such as migration, division, and contraction and provides the tracks for transport driven by molecular motors. Therefore, it is very important to quantify the mechanical behavior of the cytoskeletal filaments to get a better insight into cell mechanics and organization. It has been demonstrated that relevant mechanical properties of microtubules can be extracted from the analysis of their motion and shape fluctuations. However, tracking individual filaments in living cells is extremely complex due, for example, to the high and heterogeneous background. We introduce a believed new tracking algorithm that allows recovering the coordinates of fluorescent microtubules with ∼9 nm precision in in vitro conditions. To illustrate potential applications of this algorithm, we studied the curvature distributions of fluorescent microtubules in living cells. By performing a Fourier analysis of the microtubule shapes, we found that the curvatures followed a thermal-like distribution as previously reported with an effective persistence length of ∼20 μm, a value significantly smaller than that measured in vitro. We also verified that the microtubule-associated protein XTP or the depolymerization of the actin network do not affect this value; however, the disruption of intermediate filaments decreased the persistence length. Also, we recovered trajectories of microtubule segments in actin or intermediate filament-depleted cells, and observed a significant increase of their motion with respect to untreated cells showing that these filaments contribute to the overall organization of the microtubule network. Moreover, the analysis of trajectories of microtubule segments in untreated cells showed that these filaments presented a slower but more directional motion in the cortex with respect to the perinuclear region, and suggests that the tracking routine would allow mapping the microtubule dynamical organization in cells

  10. Stabilization of microtubules by inorganic phosphate and its structural analogues, the fluoride complexes of aluminum and beryllium

    International Nuclear Information System (INIS)

    Carlier, M.F.; Didry, D.; Melki, R.; Chabre, M.; Pantaloni, D.

    1988-01-01

    In order to elucidate how the elementary reactions of GTP cleavage and subsequent inorganic phosphate (P/sub i/) release, which accompany microtubule assembly, regulate microtubule dynamics, the effect of P/sub i/ and of its structural analogues AlF 4 - and BeF 3 - on the stability of GDP-microtubules has been investigated. Inorganic phosphate binds to microtubules with a low affinity (K/sub D/ = 25 mM) and slows down the rate of GDP-subunit dissociation by about 2 orders of magnitude. AlF 4 - and BeF 3 - exhibit phosphate-like effects with 1000-fold higher affinity. Evidence has been obtained for direct binding of BeF 3 - to microtubules with a stoichiometry of 1 mol of BeF 3 - per mole of GDP-subunit and an equilibrium dissociation constant of 12-15 μM. AlF 4 - and P/sub i/ compete for this site. Phosphate analogues abolish oscillatory polymerization kinetics and slow down microtubule turnover at steady state. In view of these results, the authors propose that P/sub i/ and its structural analogues bind to the site of the γ-phosphate of GTP in the E site and reconstitute a GDP-P/sub i/-microtubule, from which tubulin subunits dissociate very slowly. They therefore understand that, following GTP cleavage on microtubules, P/sub i/ release in the medium is accompanied by a structural change resulting in a large destabilization of the polymer. A cap of slowly dissociating GDP-P/sub i/-subunits prevents depolymerization of the microtubule GDP-core at steady state. The similarity with the actin system is studied

  11. Erucin, the major isothiocyanate in arugula (Eruca sativa, inhibits proliferation of MCF7 tumor cells by suppressing microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Olga Azarenko

    Full Text Available Consumption of cruciferous vegetables is associated with reduced risk of various types of cancer. Isothiocyanates including sulforaphane and erucin are believed to be responsible for this activity. Erucin [1-isothiocyanato-4-(methylthiobutane], which is metabolically and structurally related to sulforaphane, is present in large quantities in arugula (Eruca sativa, Mill., kohlrabi and Chinese cabbage. However, its cancer preventive mechanisms remain poorly understood. We found that erucin inhibits proliferation of MCF7 breast cancer cells (IC50 = 28 µM in parallel with cell cycle arrest at mitosis (IC50 = 13 µM and apoptosis, by a mechanism consistent with impairment of microtubule dynamics. Concentrations of 5-15 µM erucin suppressed the dynamic instability of microtubules during interphase in the cells. Most dynamic instability parameters were inhibited, including the rates and extents of growing and shortening, the switching frequencies between growing and shortening, and the overall dynamicity. Much higher erucin concentrations were required to reduce the microtubule polymer mass. In addition, erucin suppressed dynamic instability of microtubules reassembled from purified tubulin in similar fashion. The effects of erucin on microtubule dynamics, like those of sulforaphane, are similar qualitatively to those of much more powerful clinically-used microtubule-targeting anticancer drugs, including taxanes and the vinca alkaloids. The results suggest that suppression of microtubule dynamics by erucin and the resulting impairment of critically important microtubule-dependent cell functions such as mitosis, cell migration and microtubule-based transport may be important in its cancer preventive activities.

  12. Cortical responses following simultaneous and sequential retinal neurostimulation with different return configurations.

    Science.gov (United States)

    Barriga-Rivera, Alejandro; Morley, John W; Lovell, Nigel H; Suaning, Gregg J

    2016-08-01

    Researchers continue to develop visual prostheses towards safer and more efficacious systems. However limitations still exist in the number of stimulating channels that can be integrated. Therefore there is a need for spatial and time multiplexing techniques to provide improved performance of the current technology. In particular, bright and high-contrast visual scenes may require simultaneous activation of several electrodes. In this research, a 24-electrode array was suprachoroidally implanted in three normally-sighted cats. Multi-unit activity was recorded from the primary visual cortex. Four stimulation strategies were contrasted to provide activation of seven electrodes arranged hexagonally: simultaneous monopolar, sequential monopolar, sequential bipolar and hexapolar. Both monopolar configurations showed similar cortical activation maps. Hexapolar and sequential bipolar configurations activated a lower number of cortical channels. Overall, the return configuration played a more relevant role in cortical activation than time multiplexing and thus, rapid sequential stimulation may assist in reducing the number of channels required to activate large retinal areas.

  13. An electrocorticographic electrode array for simultaneous recording from medial, lateral, and intrasulcal surface of the cortex in macaque monkeys.

    Science.gov (United States)

    Fukushima, Makoto; Saunders, Richard C; Mullarkey, Matthew; Doyle, Alexandra M; Mishkin, Mortimer; Fujii, Naotaka

    2014-08-15

    Electrocorticography (ECoG) permits recording electrical field potentials with high spatiotemporal resolution over a large part of the cerebral cortex. Application of chronically implanted ECoG arrays in animal models provides an opportunity to investigate global spatiotemporal neural patterns and functional connectivity systematically under various experimental conditions. Although ECoG is conventionally used to cover the gyral cortical surface, recent studies have shown the feasibility of intrasulcal ECoG recordings in macaque monkeys. Here we developed a new ECoG array to record neural activity simultaneously from much of the medial and lateral cortical surface of a single hemisphere, together with the supratemporal plane (STP) of the lateral sulcus in macaque monkeys. The ECoG array consisted of 256 electrodes for bipolar recording at 128 sites. We successfully implanted the ECoG array in the left hemisphere of three rhesus monkeys. The electrodes in the auditory and visual cortex detected robust event related potentials to auditory and visual stimuli, respectively. Bipolar recording from adjacent electrode pairs effectively eliminated chewing artifacts evident in monopolar recording, demonstrating the advantage of using the ECoG array under conditions that generate significant movement artifacts. Compared with bipolar ECoG arrays previously developed for macaque monkeys, this array significantly expands the number of cortical target areas in gyral and intralsulcal cortex. This new ECoG array provides an opportunity to investigate global network interactions among gyral and intrasulcal cortical areas. Published by Elsevier B.V.

  14. High-Degree Neurons Feed Cortical Computations.

    Directory of Open Access Journals (Sweden)

    Nicholas M Timme

    2016-05-01

    Full Text Available Recent work has shown that functional connectivity among cortical neurons is highly varied, with a small percentage of neurons having many more connections than others. Also, recent theoretical developments now make it possible to quantify how neurons modify information from the connections they receive. Therefore, it is now possible to investigate how information modification, or computation, depends on the number of connections a neuron receives (in-degree or sends out (out-degree. To do this, we recorded the simultaneous spiking activity of hundreds of neurons in cortico-hippocampal slice cultures using a high-density 512-electrode array. This preparation and recording method combination produced large numbers of neurons recorded at temporal and spatial resolutions that are not currently available in any in vivo recording system. We utilized transfer entropy (a well-established method for detecting linear and nonlinear interactions in time series and the partial information decomposition (a powerful, recently developed tool for dissecting multivariate information processing into distinct parts to quantify computation between neurons where information flows converged. We found that computations did not occur equally in all neurons throughout the networks. Surprisingly, neurons that computed large amounts of information tended to receive connections from high out-degree neurons. However, the in-degree of a neuron was not related to the amount of information it computed. To gain insight into these findings, we developed a simple feedforward network model. We found that a degree-modified Hebbian wiring rule best reproduced the pattern of computation and degree correlation results seen in the real data. Interestingly, this rule also maximized signal propagation in the presence of network-wide correlations, suggesting a mechanism by which cortex could deal with common random background input. These are the first results to show that the extent to

  15. Fiber Laser Array

    National Research Council Canada - National Science Library

    Simpson, Thomas

    2002-01-01

    ...., field-dependent, loss within the coupled laser array. During this program, Jaycor focused on the construction and use of an experimental apparatus that can be used to investigate the coherent combination of an array of fiber lasers...

  16. Microtubule Regulation of Kv7 Channels Orchestrates cAMP-Mediated Vasorelaxations in Rat Arterial Smooth Muscle

    DEFF Research Database (Denmark)

    Lindman, Johanna; Khammy, Makhala M; Lundegaard, Pia R

    2018-01-01

    Microtubules can regulate GPCR (G protein-coupled receptor) signaling in various cell types. In vascular smooth muscle, activation of the β-adrenoceptor leads to production of cAMP to mediate a vasorelaxation. Little is known about the role of microtubules in smooth muscle, and given the importance...... of renal and mesenteric arteries that the microtubule stabilizer, paclitaxel, prevented. Sharp microelectrode experiments showed that colchicine treatment caused increased hyperpolarization of mesenteric artery segments in response to isoprenaline. Application of the Kv7 channel blocker, XE991, attenuated...

  17. Cornu Ammonis Regions–Antecedents of Cortical Layers?

    Science.gov (United States)

    Mercer, Audrey; Thomson, Alex M.

    2017-01-01

    Studying neocortex and hippocampus in parallel, we are struck by the similarities. All three to four layered allocortices and the six layered mammalian neocortex arise in the pallium. All receive and integrate multiple cortical and subcortical inputs, provide multiple outputs and include an array of neuronal classes. During development, each cell positions itself to sample appropriate local and distant inputs and to innervate appropriate targets. Simpler cortices had already solved the need to transform multiple coincident inputs into serviceable outputs before neocortex appeared in mammals. Why then do phylogenetically more recent cortices need multiple pyramidal cell layers? A simple answer is that more neurones can compute more complex functions. The dentate gyrus and hippocampal CA regions—which might be seen as hippocampal antecedents of neocortical layers—lie side by side, albeit around a tight bend. Were the millions of cells of rat neocortex arranged in like fashion, the surface area of the CA pyramidal cell layers would be some 40 times larger. Even if evolution had managed to fold this immense sheet into the space available, the distances between neurones that needed to be synaptically connected would be huge and to maintain the speed of information transfer, massive, myelinated fiber tracts would be needed. How much more practical to stack the “cells that fire and wire together” into narrow columns, while retaining the mechanisms underlying the extraordinary precision with which circuits form. This demonstrably efficient arrangement presents us with challenges, however, not the least being to categorize the baffling array of neuronal subtypes in each of five “pyramidal layers.” If we imagine the puzzle posed by this bewildering jumble of apical dendrites, basal dendrites and axons, from many different pyramidal and interneuronal classes, that is encountered by a late-arriving interneurone insinuating itself into a functional circuit, we can

  18. SLEEP AND OLFACTORY CORTICAL PLASTICITY

    Directory of Open Access Journals (Sweden)

    Dylan eBarnes

    2014-04-01

    Full Text Available In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the known olfactory impairments associated with those disorders.

  19. Cortical representations of communication sounds.

    Science.gov (United States)

    Heiser, Marc A; Cheung, Steven W

    2008-10-01

    This review summarizes recent research into cortical processing of vocalizations in animals and humans. There has been a resurgent interest in this topic accompanied by an increased number of studies using animal models with complex vocalizations and new methods in human brain imaging. Recent results from such studies are discussed. Experiments have begun to reveal the bilateral cortical fields involved in communication sound processing and the transformations of neural representations that occur among those fields. Advances have also been made in understanding the neuronal basis of interaction between developmental exposures and behavioral experiences with vocalization perception. Exposure to sounds during the developmental period produces large effects on brain responses, as do a variety of specific trained tasks in adults. Studies have also uncovered a neural link between the motor production of vocalizations and the representation of vocalizations in cortex. Parallel experiments in humans and animals are answering important questions about vocalization processing in the central nervous system. This dual approach promises to reveal microscopic, mesoscopic, and macroscopic principles of large-scale dynamic interactions between brain regions that underlie the complex phenomenon of vocalization perception. Such advances will yield a greater understanding of the causes, consequences, and treatment of disorders related to speech processing.

  20. C-terminal region of MAP7 domain containing protein 3 (MAP7D3 promotes microtubule polymerization by binding at the C-terminal tail of tubulin.

    Directory of Open Access Journals (Sweden)

    Saroj Yadav

    Full Text Available MAP7 domain containing protein 3 (MAP7D3, a newly identified microtubule associated protein, has been shown to promote microtubule assembly and stability. Its microtubule binding region has been reported to consist of two coiled coil motifs located at the N-terminus. It possesses a MAP7 domain near the C-terminus and belongs to the microtubule associated protein 7 (MAP7 family. The MAP7 domain of MAP7 protein has been shown to bind to kinesin-1; however, the role of MAP7 domain in MAP7D3 remains unknown. Based on the bioinformatics analysis of MAP7D3, we hypothesized that the MAP7 domain of MAP7D3 may have microtubule binding activity. Indeed, we found that MAP7 domain of MAP7D3 bound to microtubules as well as enhanced the assembly of microtubules in vitro. Interestingly, a longer fragment MDCT that contained the MAP7 domain (MD with the C-terminal tail (CT of the protein promoted microtubule polymerization to a greater extent than MD and CT individually. MDCT stabilized microtubules against dilution induced disassembly. MDCT bound to reconstituted microtubules with an apparent dissociation constant of 3.0 ± 0.5 µM. An immunostaining experiment showed that MDCT localized along the length of the preassembled microtubules. Competition experiments with tau indicated that MDCT shares its binding site on microtubules with tau. Further, we present evidence indicating that MDCT binds to the C-terminal tail of tubulin. In addition, MDCT could bind to tubulin in HeLa cell extract. Here, we report a microtubule binding region in the C-terminal region of MAP7D3 that may have a role in regulating microtubule assembly dynamics.

  1. The Arabidopsis microtubule-associated protein MAP65-3 supports infection by filamentous biotrophic pathogens by down-regulating salicylic acid-dependent defenses.

    Science.gov (United States)

    Quentin, Michaël; Baurès, Isabelle; Hoefle, Caroline; Caillaud, Marie-Cécile; Allasia, Valérie; Panabières, Franck; Abad, Pierre; Hückelhoven, Ralph; Keller, Harald; Favery, Bruno

    2016-03-01

    The oomycete Hyaloperonospora arabidopsidis and the ascomycete Erysiphe cruciferarum are obligate biotrophic pathogens causing downy mildew and powdery mildew, respectively, on Arabidopsis. Upon infection, the filamentous pathogens induce the formation of intracellular bulbous structures called haustoria, which are required for the biotrophic lifestyle. We previously showed that the microtubule-associated protein AtMAP65-3 plays a critical role in organizing cytoskeleton microtubule arrays during mitosis and cytokinesis. This renders the protein essential for the development of giant cells, which are the feeding sites induced by root knot nematodes. Here, we show that AtMAP65-3 expression is also induced in leaves upon infection by the downy mildew oomycete and the powdery mildew fungus. Loss of AtMAP65-3 function in the map65-3 mutant dramatically reduced infection by both pathogens, predominantly at the stages of leaf penetration. Whole-transcriptome analysis showed an over-represented, constitutive activation of genes involved in salicylic acid (SA) biosynthesis, signaling, and defense execution in map65-3, whereas jasmonic acid (JA)-mediated signaling was down-regulated. Preventing SA synthesis and accumulation in map65-3 rescued plant susceptibility to pathogens, but not the developmental phenotype caused by cytoskeleton defaults. AtMAP65-3 thus has a dual role. It positively regulates cytokinesis, thus plant growth and development, and negatively interferes with plant defense against filamentous biotrophs. Our data suggest that downy mildew and powdery mildew stimulate AtMAP65-3 expression to down-regulate SA signaling for infection. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Rich-Club Organization in Effective Connectivity among Cortical Neurons.

    Science.gov (United States)

    Nigam, Sunny; Shimono, Masanori; Ito, Shinya; Yeh, Fang-Chin; Timme, Nicholas; Myroshnychenko, Maxym; Lapish, Christopher C; Tosi, Zachary; Hottowy, Pawel; Smith, Wesley C; Masmanidis, Sotiris C; Litke, Alan M; Sporns, Olaf; Beggs, John M

    2016-01-20

    The performance of complex networks, like the brain, depends on how effectively their elements communicate. Despite the importance of communication, it is virtually unknown how information is transferred in local cortical networks, consisting of hundreds of closely spaced neurons. To address this, it is important to record simultaneously from hundreds of neurons at a spacing that matches typical axonal connection distances, and at a temporal resolution that matches synaptic delays. We used a 512-electrode array (60 μm spacing) to record spontaneous activity at 20 kHz from up to 500 neurons simultaneously in slice cultures of mouse somatosensory cortex for 1 h at a time. We applied a previously validated version of transfer entropy to quantify information transfer. Similar to in vivo reports, we found an approximately lognormal distribution of firing rates. Pairwise information transfer strengths also were nearly lognormally distributed, similar to reports of synaptic strengths. Some neurons transferred and received much more information than others, which is consistent with previous predictions. Neurons with the highest outgoing and incoming information transfer were more strongly connected to each other than chance, thus forming a "rich club." We found similar results in networks recorded in vivo from rodent cortex, suggesting the generality of these findings. A rich-club structure has been found previously in large-scale human brain networks and is thought to facilitate communication between cortical regions. The discovery of a small, but information-rich, subset of neurons within cortical regions suggests that this population will play a vital role in communication, learning, and memory. Significance statement: Many studies have focused on communication networks between cortical brain regions. In contrast, very few studies have examined communication networks within a cortical region. This is the first study to combine such a large number of neurons (several

  3. Rich-Club Organization in Effective Connectivity among Cortical Neurons

    Science.gov (United States)

    Shimono, Masanori; Ito, Shinya; Yeh, Fang-Chin; Timme, Nicholas; Myroshnychenko, Maxym; Lapish, Christopher C.; Tosi, Zachary; Hottowy, Pawel; Smith, Wesley C.; Masmanidis, Sotiris C.; Litke, Alan M.; Sporns, Olaf; Beggs, John M.

    2016-01-01

    The performance of complex networks, like the brain, depends on how effectively their elements communicate. Despite the importance of communication, it is virtually unknown how information is transferred in local cortical networks, consisting of hundreds of closely spaced neurons. To address this, it is important to record simultaneously from hundreds of neurons at a spacing that matches typical axonal connection distances, and at a temporal resolution that matches synaptic delays. We used a 512-electrode array (60 μm spacing) to record spontaneous activity at 20 kHz from up to 500 neurons simultaneously in slice cultures of mouse somatosensory cortex for 1 h at a time. We applied a previously validated version of transfer entropy to quantify information transfer. Similar to in vivo reports, we found an approximately lognormal distribution of firing rates. Pairwise information transfer strengths also were nearly lognormally distributed, similar to reports of synaptic strengths. Some neurons transferred and received much more information than others, which is consistent with previous predictions. Neurons with the highest outgoing and incoming information transfer were more strongly connected to each other than chance, thus forming a “rich club.” We found similar results in networks recorded in vivo from rodent cortex, suggesting the generality of these findings. A rich-club structure has been found previously in large-scale human brain networks and is thought to facilitate communication between cortical regions. The discovery of a small, but information-rich, subset of neurons within cortical regions suggests that this population will play a vital role in communication, learning, and memory. SIGNIFICANCE STATEMENT Many studies have focused on communication networks between cortical brain regions. In contrast, very few studies have examined communication networks within a cortical region. This is the first study to combine such a large number of neurons (several

  4. Response of cortical bone to antiresorptive treatment

    DEFF Research Database (Denmark)

    Hyldstrup, Lars; Jørgensen, J T; Sørensen, T K

    2001-01-01

    of the spine, hip, and forearm. Longitudinal changes in bone densitometry were compared with changes captured by DXR: BMD evaluated by DXR (BMDDXR), cortical thickness of the second metacarpal (CTMC2), and porosity of cortical bone. The expected annual postmenopausal reduction in BMD in the control group...... treatment regimens used in the prevention of osteoporosis....

  5. Recruitment of EB1, a Master Regulator of Microtubule Dynamics, to the Surface of the Theileria annulata Schizont

    KAUST Repository

    Woods, Kerry L.

    2013-05-09

    The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs) surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell\\'s astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability). Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1), a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton. 2013 Woods et al.

  6. Recruitment of EB1, a master regulator of microtubule dynamics, to the surface of the Theileria annulata schizont.

    Directory of Open Access Journals (Sweden)

    Kerry L Woods

    2013-05-01

    Full Text Available The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell's astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability. Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1, a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton.

  7. A Genome-wide RNAi Screen for Microtubule Bundle Formation and Lysosome Motility Regulation in Drosophila S2 Cells

    Directory of Open Access Journals (Sweden)

    Amber L. Jolly

    2016-01-01

    Full Text Available Long-distance intracellular transport of organelles, mRNA, and proteins (“cargo” occurs along the microtubule cytoskeleton by the action of kinesin and dynein motor proteins, but the vast network of factors involved in regulating intracellular cargo transport are still unknown. We capitalize on the Drosophila melanogaster S2 model cell system to monitor lysosome transport along microtubule bundles, which require enzymatically active kinesin-1 motor protein for their formation. We use an automated tracking program and a naive Bayesian classifier for the multivariate motility data to analyze 15,683 gene phenotypes and find 98 proteins involved in regulating lysosome motility along microtubules and 48 involved in the formation of microtubule filled processes in S2 cells. We identify innate immunity genes, ion channels, and signaling proteins having a role in lysosome motility regulation and find an unexpected relationship between the dynein motor, Rab7a, and lysosome motility regulation.

  8. DISC1 Protein Regulates γ-Aminobutyric Acid, Type A (GABAA) Receptor Trafficking and Inhibitory Synaptic Transmission in Cortical Neurons.

    Science.gov (United States)

    Wei, Jing; Graziane, Nicholas M; Gu, Zhenglin; Yan, Zhen

    2015-11-13

    Association studies have suggested that Disrupted-in-Schizophrenia 1 (DISC1) confers a genetic risk at the level of endophenotypes that underlies many major mental disorders. Despite the progress in understanding the significance of DISC1 at neural development, the mechanisms underlying DISC1 regulation of synaptic functions remain elusive. Because alterations in the cortical GABA system have been strongly linked to the pathophysiology of schizophrenia, one potential target of DISC1 that is critically involved in the regulation of cognition and emotion is the GABAA receptor (GABAAR). We found that cellular knockdown of DISC1 significantly reduced GABAAR-mediated synaptic and whole-cell current, whereas overexpression of wild-type DISC1, but not the C-terminal-truncated DISC1 (a schizophrenia-related mutant), significantly increased GABAAR currents in pyramidal neurons of the prefrontal cortex. These effects were accompanied by DISC1-induced changes in surface GABAAR expression. Moreover, the regulation of GABAARs by DISC1 knockdown or overexpression depends on the microtubule motor protein kinesin 1 (KIF5). Our results suggest that DISC1 exerts an important effect on GABAergic inhibitory transmission by regulating KIF5/microtubule-based GABAAR trafficking in the cortex. The knowledge gained from this study would shed light on how DISC1 and the GABA system are linked mechanistically and how their interactions are critical for maintaining a normal mental state. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Perceptual learning and adult cortical plasticity.

    Science.gov (United States)

    Gilbert, Charles D; Li, Wu; Piech, Valentin

    2009-06-15

    The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.

  10. Dissecting the nanoscale distributions and functions of microtubule-end-binding proteins EB1 and ch-TOG in interphase HeLa cells.

    Directory of Open Access Journals (Sweden)

    Satoko Nakamura

    Full Text Available Recently, the EB1 and XMAP215/TOG families of microtubule binding proteins have been demonstrated to bind autonomously to the growing plus ends of microtubules and regulate their behaviour in in vitro systems. However, their functional redundancy or difference in cells remains obscure. Here, we compared the nanoscale distributions of EB1 and ch-TOG along microtubules using high-resolution microscopy techniques, and also their roles in microtubule organisation in interphase HeLa cells. The ch-TOG accumulation sites protruded ∼100 nm from the EB1 comets. Overexpression experiments showed that ch-TOG and EB1 did not interfere with each other's localisation, confirming that they recognise distinct regions at the ends of microtubules. While both EB1 and ch-TOG showed similar effects on microtubule plus end dynamics and additively increased microtubule dynamicity, only EB1 exhibited microtubule-cell cortex attachment activity. These observations indicate that EB1 and ch-TOG regulate microtubule organisation differently via distinct regions in the plus ends of microtubules.

  11. Daple Coordinates Planar Polarized Microtubule Dynamics in Ependymal Cells and Contributes to Hydrocephalus

    Directory of Open Access Journals (Sweden)

    Maki Takagishi

    2017-07-01

    Full Text Available Motile cilia in ependymal cells, which line the cerebral ventricles, exhibit a coordinated beating motion that drives directional cerebrospinal fluid (CSF flow and guides neuroblast migration. At the apical cortex of these multi-ciliated cells, asymmetric localization of planar cell polarity (PCP proteins is required for the planar polarization of microtubule dynamics, which coordinates cilia orientation. Daple is a disheveled-associating protein that controls the non-canonical Wnt signaling pathway and cell motility. Here, we show that Daple-deficient mice present hydrocephalus and their ependymal cilia lack coordinated orientation. Daple regulates microtubule dynamics at the anterior side of ependymal cells, which in turn orients the cilial basal bodies required for the directional cerebrospinal fluid flow. These results demonstrate an important role for Daple in planar polarity in motile cilia and provide a framework for understanding the mechanisms and functions of planar polarization in the ependymal cells.

  12. Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots.

    Science.gov (United States)

    Hess, H; Ross, Jennifer L

    2017-09-18

    Biological systems have evolved to harness non-equilibrium processes from the molecular to the macro scale. It is currently a grand challenge of chemistry, materials science, and engineering to understand and mimic biological systems that have the ability to autonomously sense stimuli, process these inputs, and respond by performing mechanical work. New chemical systems are responding to the challenge and form the basis for future responsive, adaptive, and active materials. In this article, we describe a particular biochemical-biomechanical network based on the microtubule cytoskeletal filament - itself a non-equilibrium chemical system. We trace the non-equilibrium aspects of the system from molecules to networks and describe how the cell uses this system to perform active work in essential processes. Finally, we discuss how microtubule-based engineered systems can serve as testbeds for autonomous chemical robots composed of biological and synthetic components.

  13. A comparative study of the effect of oxidative stress on the cytoskeleton in human cortical neurons

    International Nuclear Information System (INIS)

    Allani, Pramod K.; Sum, Tak; Bhansali, Suraj G.; Mukherjee, Suman K.; Sonee, Manisha

    2004-01-01

    Cytoskeleton disruption is a process by which oxidative stress disrupts cellular function. This study compares and contrasts the effect of oxidative stress on the three major cytoskeleton filaments, microfilaments (MFs), microtubule (MT), and vimentin in human cortical neuronal cell line (HCN2). HCN2 cells were treated with 100 μM tertiary butylhydroperoxide (t-BuOOH), a free radical generating neurotoxin for 1, 3, or 6 h. Cell viability studies demonstrated significant cell death although the morphology studies showed that there was a substantial loss in neurites of neurons treated with t-BuOOH for 6 h. Because the cytoskeleton plays a role in neurite outgrowth, the effect of oxidative stress on the cytoskeletal was studied. In neurons subjected to oxidative stress for 30 min or 1 h, there were no major changes in microfilament distribution though there was altered distribution of microtubule and vimentin filaments as compared to controls. However, loss and disruption of all the three cytoskeletal filaments was observed at later times (3 and 6 h), which was confirmed by Western Blot analysis. Further studies were done to measure the gene expression levels of actin, tubulin, and vimentin. Results indicated that the overall loss of the cytoskeletal proteins in neurons treated with free radical generating toxin might not be a direct result of the downregulation of the cytoskeletal genes. This study shows that free radical generation in human neurons leads to the disruption of the cytoskeleton, though there may be a difference in the susceptibility to oxidative stress among the individual components of the cytoskeletal filaments

  14. GTSE1 is a microtubule plus-end tracking protein that regulates EB1-dependent cell migration.

    Directory of Open Access Journals (Sweden)

    Massimilano Scolz

    Full Text Available The regulation of cell migration is a highly complex process that is often compromised when cancer cells become metastatic. The microtubule cytoskeleton is necessary for cell migration, but how microtubules and microtubule-associated proteins regulate multiple pathways promoting cell migration remains unclear. Microtubule plus-end binding proteins (+TIPs are emerging as important players in many cellular functions, including cell migration. Here we identify a +TIP, GTSE1, that promotes cell migration. GTSE1 accumulates at growing microtubule plus ends through interaction with the EB1+TIP. The EB1-dependent +TIP activity of GTSE1 is required for cell migration, as well as for microtubule-dependent disassembly of focal adhesions. GTSE1 protein levels determine the migratory capacity of both nontransformed and breast cancer cell lines. In breast cancers, increased GTSE1 expression correlates with invasive potential, tumor stage, and time to distant metastasis, suggesting that misregulation of GTSE1 expression could be associated with increased invasive potential.

  15. TCS1, a Microtubule-Binding Protein, Interacts with KCBP/ZWICHEL to Regulate Trichome Cell Shape in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Liangliang Chen

    2016-10-01

    Full Text Available How cell shape is controlled is a fundamental question in developmental biology, but the genetic and molecular mechanisms that determine cell shape are largely unknown. Arabidopsis trichomes have been used as a good model system to investigate cell shape at the single-cell level. Here we describe the trichome cell shape 1 (tcs1 mutants with the reduced trichome branch number in Arabidopsis. TCS1 encodes a coiled-coil domain-containing protein. Pharmacological analyses and observations of microtubule dynamics show that TCS1 influences the stability of microtubules. Biochemical analyses and live-cell imaging indicate that TCS1 binds to microtubules and promotes the assembly of microtubules. Further results reveal that TCS1 physically associates with KCBP/ZWICHEL, a microtubule motor involved in the regulation of trichome branch number. Genetic analyses indicate that kcbp/zwi is epistatic to tcs1 with respect to trichome branch number. Thus, our findings define a novel genetic and molecular mechanism by which TCS1 interacts with KCBP to regulate trichome cell shape by influencing the stability of microtubules.

  16. Explaining the Microtubule Energy Balance: Contributions Due to Dipole Moments, Charges, van der Waals and Solvation Energy

    Directory of Open Access Journals (Sweden)

    Ahmed Taha Ayoub

    2017-09-01

    Full Text Available Microtubules are the main components of mitotic spindles, and are the pillars of the cellular cytoskeleton. They perform most of their cellular functions by virtue of their unique dynamic instability processes which alternate between polymerization and depolymerization phases. This in turn is driven by a precise balance between attraction and repulsion forces between the constituents of microtubules (MTs—tubulin dimers. Therefore, it is critically important to know what contributions result in a balance of the interaction energy among tubulin dimers that make up microtubules and what interactions may tip this balance toward or away from a stable polymerized state of tubulin. In this paper, we calculate the dipole–dipole interaction energy between tubulin dimers in a microtubule as part of the various contributions to the energy balance. We also compare the remaining contributions to the interaction energies between tubulin dimers and establish a balance between stabilizing and destabilizing components, including the van der Waals, electrostatic, and solvent-accessible surface area energies. The energy balance shows that the GTP-capped tip of the seam at the plus end of microtubules is stabilized only by − 9 kcal/mol, which can be completely reversed by the hydrolysis of a single GTP molecule, which releases + 14 kcal/mol and destabilizes the seam by an excess of + 5 kcal/mol. This triggers the breakdown of microtubules and initiates a disassembly phase which is aptly called a catastrophe.

  17. Theory for the alignment of cortical feature maps during development.

    Science.gov (United States)

    Bressloff, Paul C; Oster, Andrew M

    2010-08-01

    We present a developmental model of ocular dominance column formation that takes into account the existence of an array of intrinsically specified cytochrome oxidase blobs. We assume that there is some molecular substrate for the blobs early in development, which generates a spatially periodic modulation of experience-dependent plasticity. We determine the effects of such a modulation on a competitive Hebbian mechanism for the modification of the feedforward afferents from the left and right eyes. We show how alternating left and right eye dominated columns can develop, in which the blobs are aligned with the centers of the ocular dominance columns and receive a greater density of feedforward connections, thus becoming defined extrinsically. More generally, our results suggest that the presence of periodically distributed anatomical markers early in development could provide a mechanism for the alignment of cortical feature maps.

  18. Theory for the alignment of cortical feature maps during development

    KAUST Repository

    Bressloff, Paul C.

    2010-08-23

    We present a developmental model of ocular dominance column formation that takes into account the existence of an array of intrinsically specified cytochrome oxidase blobs. We assume that there is some molecular substrate for the blobs early in development, which generates a spatially periodic modulation of experience-dependent plasticity. We determine the effects of such a modulation on a competitive Hebbian mechanism for the modification of the feedforward afferents from the left and right eyes. We show how alternating left and right eye dominated columns can develop, in which the blobs are aligned with the centers of the ocular dominance columns and receive a greater density of feedforward connections, thus becoming defined extrinsically. More generally, our results suggest that the presence of periodically distributed anatomical markers early in development could provide a mechanism for the alignment of cortical feature maps. © 2010 The American Physical Society.

  19. Oscillatory Hierarchy Controlling Cortical Excitability and Stimulus Integration

    Science.gov (United States)

    Shah, A. S.; Lakatos, P.; McGinnis, T.; O'Connell, N.; Mills, A.; Knuth, K. H.; Chen, C.; Karmos, G.; Schroeder, C. E.

    2004-01-01

    Cortical gamma band oscillations have been recorded in sensory cortices of cats and monkeys, and are thought to aid in perceptual binding. Gamma activity has also been recorded in the rat hippocampus and entorhinal cortex, where it has been shown, that field gamma power is modulated at theta frequency. Since the power of gamma activity in the sensory cortices is not constant (gamma-bursts). we decided to examine the relationship between gamma power and the phase of low frequency oscillation in the auditory cortex of the awake macaque. Macaque monkeys were surgically prepared for chronic awake electrophysiological recording. During the time of the experiments. linear array multielectrodes were inserted in area AI to obtain laminar current source density (CSD) and multiunit activity profiles. Instantaneous theta and gamma power and phase was extracted by applying the Morlet wavelet transformation to the CSD. Gamma power was averaged for every 1 degree of low frequency oscillations to calculate power-phase relation. Both gamma and theta-delta power are largest in the supragranular layers. Power modulation of gamma activity is phase locked to spontaneous, as well as stimulus-related local theta and delta field oscillations. Our analysis also revealed that the power of theta oscillations is always largest at a certain phase of delta oscillation. Auditory stimuli produce evoked responses in the theta band (Le., there is pre- to post-stimulus addition of theta power), but there is also indication that stimuli may cause partial phase re-setting of spontaneous delta (and thus also theta and gamma) oscillations. We also show that spontaneous oscillations might play a role in the processing of incoming sensory signals by 'preparing' the cortex.

  20. The centrosomal linker and microtubules provide dual levels of spatial coordination of centrosomes.

    Directory of Open Access Journals (Sweden)

    Marko Panic

    2015-05-01

    Full Text Available The centrosome is the principal microtubule organizing center in most animal cells. It consists of a pair of centrioles surrounded by pericentriolar material. The centrosome, like DNA, duplicates exactly once per cell cycle. During interphase duplicated centrosomes remain closely linked by a proteinaceous linker. This centrosomal linker is composed of rootletin filaments that are anchored to the centrioles via the protein C-Nap1. At the onset of mitosis the linker is dissolved by Nek2A kinase to support the formation of the bipolar mitotic spindle. The importance of the centrosomal linker for cell function during interphase awaits characterization. Here we assessed the phenotype of human RPE1 C-Nap1 knockout (KO cells. The absence of the linker led to a modest increase in the average centrosome separation from 1 to 2.5 μm. This small impact on the degree of separation is indicative of a second level of spatial organization of centrosomes. Microtubule depolymerisation or stabilization in C-Nap1 KO cells dramatically increased the inter-centrosomal separation (> 8 μm. Thus, microtubules position centrosomes relatively close to one another in the absence of linker function. C-Nap1 KO cells had a Golgi organization defect with a two-fold expansion of the area occupied by the Golgi. When the centrosomes of C-Nap1 KO cells showed considerable separation, two spatially distinct Golgi stacks could be observed. Furthermore, migration of C-Nap1 KO cells was slower than their wild type RPE1 counterparts. These data show that the spatial organization of centrosomes is modulated by a combination of centrosomal cohesion and microtubule forces. Furthermore a modest increase in centrosome separation has major impact on Golgi organization and cell migration.

  1. KIF7 Controls the Proliferation of Cells of the Respiratory Airway through Distinct Microtubule Dependent Mechanisms.

    Directory of Open Access Journals (Sweden)

    Garry L Coles

    2015-10-01

    Full Text Available The cell cycle must be tightly coordinated for proper control of embryonic development and for the long-term maintenance of organs such as the lung. There is emerging evidence that Kinesin family member 7 (Kif7 promotes Hedgehog (Hh signaling during embryonic development, and its misregulation contributes to diseases such as ciliopathies and cancer. Kif7 encodes a microtubule interacting protein that controls Hh signaling through regulation of microtubule dynamics within the primary cilium. However, whether Kif7 has a function in nonciliated cells remains largely unknown. The role Kif7 plays in basic cell biological processes like cell proliferation or cell cycle progression also remains to be elucidated. Here, we show that Kif7 is required for coordination of the cell cycle, and inactivation of this gene leads to increased cell proliferation in vivo and in vitro. Immunostaining and transmission electron microscopy experiments show that Kif7dda/dda mutant lungs are hyperproliferative and exhibit reduced alveolar epithelial cell differentiation. KIF7 depleted C3H10T1/2 fibroblasts and Kif7dda/dda mutant mouse embryonic fibroblasts have increased growth rates at high cellular densities, suggesting that Kif7 may function as a general regulator of cellular proliferation. We ascertained that in G1, Kif7 and microtubule dynamics regulate the expression and activity of several components of the cell cycle machinery known to control entry into S phase. Our data suggest that Kif7 may function to regulate the maintenance of the respiratory airway architecture by controlling cellular density, cell proliferation, and cycle exit through its role as a microtubule associated protein.

  2. Optimization of microtubule affinity regulating kinase (MARK) inhibitors with improved physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Sloman, David L.; Noucti, Njamkou; Altman, Michael D.; Chen, Dapeng; Mislak, Andrea C.; Szewczak, Alexander; Hayashi, Mansuo; Warren, Lee; Dellovade, Tammy; Wu, Zhenhua; Marcus, Jacob; Walker, Deborah; Su, Hua-Poo; Edavettal, Suzanne C.; Munshi, Sanjeev; Hutton, Michael; Nuthall, Hugh; Stanton, Matthew G. (Merck)

    2016-09-01

    Inhibition of microtubule affinity regulating kinase (MARK) represents a potentially attractive means of arresting neurofibrillary tangle pathology in Alzheimer’s disease. This manuscript outlines efforts to optimize a pyrazolopyrimidine series of MARK inhibitors by focusing on improvements in potency, physical properties and attributes amenable to CNS penetration. A unique cylcyclohexyldiamine scaffold was identified that led to remarkable improvements in potency, opening up opportunities to reduce MW, Pgp efflux and improve pharmacokinetic properties while also conferring improved solubility.

  3. Characterization of mitosis-specific phosphorylation of tumor-associated microtubule-associated protein

    OpenAIRE

    Hong, Kyung Uk; Kim, Hyun-Jun; Bae, Chang-Dae; Park, Joobae

    2009-01-01

    Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2), has been recently shown to be involved in the assembly and maintenance of mitotic spindle and also plays an essential role in maintaining the fidelity of chromosome segregation during mitosis. We have previously reported that TMAP is phosphorylated at multiple residues specifically during mitosis, and characterized the mechanism and functional importance of phosphorylation at one o...

  4. Identification of interphase functions for the NIMA kinase involving microtubules and the ESCRT pathway.

    Directory of Open Access Journals (Sweden)

    Meera Govindaraghavan

    2014-03-01

    Full Text Available The Never in Mitosis A (NIMA kinase (the founding member of the Nek family of kinases has been considered a mitotic specific kinase with nuclear restricted roles in the model fungus Aspergillus nidulans. By extending to A. nidulans the results of a synthetic lethal screen performed in Saccharomyces cerevisiae using the NIMA ortholog KIN3, we identified a conserved genetic interaction between nimA and genes encoding proteins of the Endosomal Sorting Complex Required for Transport (ESCRT pathway. Absence of ESCRT pathway functions in combination with partial NIMA function causes enhanced cell growth defects, including an inability to maintain a single polarized dominant cell tip. These genetic insights suggest NIMA potentially has interphase functions in addition to its established mitotic functions at nuclei. We therefore generated endogenously GFP-tagged NIMA (NIMA-GFP which was fully functional to follow its interphase locations using live cell spinning disc 4D confocal microscopy. During interphase some NIMA-GFP locates to the tips of rapidly growing cells and, when expressed ectopically, also locates to the tips of cytoplasmic microtubules, suggestive of non-nuclear interphase functions. In support of this, perturbation of NIMA function either by ectopic overexpression or through partial inactivation results in marked cell tip growth defects with excess NIMA-GFP promoting multiple growing cell tips. Ectopic NIMA-GFP was found to locate to the plus ends of microtubules in an EB1 dependent manner, while impairing NIMA function altered the dynamic localization of EB1 and the cytoplasmic microtubule network. Together, our genetic and cell biological analyses reveal novel non-nuclear interphase functions for NIMA involving microtubules and the ESCRT pathway for normal polarized fungal cell tip growth. These insights extend the roles of NIMA both spatially and temporally and indicate that this conserved protein kinase could help integrate cell

  5. Molecular recognition of epothilones by microtubules and tubulin dimers revealed by biochemical and NMR approaches.

    Science.gov (United States)

    Canales, Angeles; Nieto, Lidia; Rodríguez-Salarichs, Javier; Sánchez-Murcia, Pedro A; Coderch, Claire; Cortés-Cabrera, Alvaro; Paterson, Ian; Carlomagno, Teresa; Gago, Federico; Andreu, José M; Altmann, Karl-Heinz; Jiménez-Barbero, Jesús; Díaz, J Fernando

    2014-04-18

    The binding of epothilones to dimeric tubulin and to microtubules has been studied by means of biochemical and NMR techniques. We have determined the binding constants of epothilone A (EpoA) and B (EpoB) to dimeric tubulin, which are 4 orders of magnitude lower than those for microtubules, and we have elucidated the conformation and binding epitopes of EpoA and EpoB when bound to tubulin dimers and microtubules in solution. The determined conformation of epothilones when bound to dimeric tubulin is similar to that found by X-ray crystallographic techniques for the binding of EpoA to the Tubulin/RB3/TTL complex; it is markedly different from that reported for EpoA bound to zinc-induced sheets obtained by electron crystallography. Likewise, only the X-ray structure of EpoA bound to the Tubulin/RB3/TTL complex at the luminal site, but not the electron crystallography structure, is compatible with the results obtained by STD on the binding epitope of EpoA bound to dimeric tubulin, thus confirming that the allosteric change (structuring of the M-loop) is the biochemical mechanism of induction of tubulin assembly by epothilones. TR-NOESY signals of EpoA bound to microtubules have been obtained, supporting the interaction with a transient binding site with a fast exchange rate (pore site), consistent with the notion that epothilones access the luminal site through the pore site, as has also been observed for taxanes. Finally, the differences in the tubulin binding affinities of a series of epothilone analogues has been quantitatively explained using the newly determined binding pose and the COMBINE methodology.

  6. SAS-6 engineering reveals interdependence between cartwheel and microtubules in determining centriole architecture.

    Science.gov (United States)

    Hilbert, Manuel; Noga, Akira; Frey, Daniel; Hamel, Virginie; Guichard, Paul; Kraatz, Sebastian H W; Pfreundschuh, Moritz; Hosner, Sarah; Flückiger, Isabelle; Jaussi, Rolf; Wieser, Mara M; Thieltges, Katherine M; Deupi, Xavier; Müller, Daniel J; Kammerer, Richard A; Gönczy, Pierre; Hirono, Masafumi; Steinmetz, Michel O

    2016-04-01

    Centrioles are critical for the formation of centrosomes, cilia and flagella in eukaryotes. They are thought to assemble around a nine-fold symmetric cartwheel structure established by SAS-6 proteins. Here, we have engineered Chlamydomonas reinhardtii SAS-6-based oligomers with symmetries ranging from five- to ten-fold. Expression of a SAS-6 mutant that forms six-fold symmetric cartwheel structures in vitro resulted in cartwheels and centrioles with eight- or nine-fold symmetries in vivo. In combination with Bld10 mutants that weaken cartwheel-microtubule interactions, this SAS-6 mutant produced six- to eight-fold symmetric cartwheels. Concurrently, the microtubule wall maintained eight- and nine-fold symmetries. Expressing SAS-6 with analogous mutations in human cells resulted in nine-fold symmetric centrioles that exhibited impaired length and organization. Together, our data suggest that the self-assembly properties of SAS-6 instruct cartwheel symmetry, and lead us to propose a model in which the cartwheel and the microtubule wall assemble in an interdependent manner to establish the native architecture of centrioles.

  7. Torsion of the central pair microtubules in eukaryotic flagella due to bending-driven lateral buckling

    International Nuclear Information System (INIS)

    Li, C.; Ru, C.Q.; Mioduchowski, A.

    2006-01-01

    Inspired by recent interest in torsion of the central pair microtubules in eukaryotic flagella, a novel thin-walled elastic beam model is suggested to study critical condition under which uniform bending of a flagellum will cause lateral/torsional buckling of the central pair. The model is directed to the central pair itself and the role of all surrounding cross-linkings inside the flagellum is modeled as an equivalent surrounding elastic medium. The model predicts that bending-driven torsion of the central pair does occur when the radius of curvature of the bent flagellum reduces to a moderate critical value typically of tens of microns. In particular, this critical value is almost independent of the flagellum length, and more sensitive to the parameters defining the surrounding elastic medium than the shear modulus of microtubules. The predicted wavelengths of the torsional buckling mode are insensitive to the flagellum length and comparable to some known related experimental data. These results indicate that torsion of the central pair microtubules in flagella is inevitable as a result of bending-driven lateral buckling. This offers an entirely new insight into the ongoing research on the mechanism of the central pair torsion

  8. Microtubule and Cell Contact Dependency of ER-bound PTP1B Localization in Growth Cones

    Science.gov (United States)

    Fuentes, Federico

    2009-01-01

    PTP1B is an ER-bound protein tyrosine phosphatase implied in the regulation of cell adhesion. Here we investigated mechanisms involved in the positioning and dynamics of PTP1B in axonal growth cones and evaluated the role of this enzyme in axons. In growth cones, PTP1B consistently localizes in the central domain, and occasionally at the peripheral region and filopodia. Live imaging of GFP-PTP1B reveals dynamic excursions of fingerlike processes within the peripheral region and filopodia. PTP1B and GFP-PTP1B colocalize with ER markers and coalign with microtubules at the peripheral region and redistribute to the base of the growth cone after treatment with nocodazole, a condition that is reversible. Growth cone contact with cellular targets is accompanied by invasion of PTP1B and stable microtubules in the peripheral region aligned with the contact axis. Functional impairment of PTP1B causes retardation of axon elongation, as well as reduction of growth cone filopodia lifetime and Src activity. Our results highlight the role of microtubules and cell contacts in the positioning of ER-bound PTP1B to the peripheral region of growth cones, which may be required for the positive role of PTP1B in axon elongation, filopodia stabilization, and Src activity. PMID:19158394

  9. Changes in microtubule-associated protein tau during peripheral nerve injury and regeneration

    Directory of Open Access Journals (Sweden)

    Guang-bin Zha

    2016-01-01

    Full Text Available Tau, a primary component of microtubule-associated protein, promotes microtubule assembly and/or disassembly and maintains the stability of the microtubule structure. Although the importance of tau in neurodegenerative diseases has been well demonstrated, whether tau is involved in peripheral nerve regeneration remains unknown. In the current study, we obtained sciatic nerve tissue from adult rats 0, 1, 4, 7, and 14 days after sciatic nerve crush and examined tau mRNA and protein expression levels and the location of tau in the sciatic nerve following peripheral nerve injury. The results from our quantitative reverse transcription polymerase chain reaction analysis showed that compared with the uninjured control sciatic nerve, mRNA expression levels for both tau and tau tubulin kinase 1, a serine/threonine kinase that regulates tau phosphorylation, were decreased following peripheral nerve injury. Our western blot assay results suggested that the protein expression levels of tau and phosphorylated tau initially decreased 1 day post nerve injury but then gradually increased. The results of our immunohistochemical labeling showed that the location of tau protein was not altered by nerve injury. Thus, these results showed that the expression of tau was changed following sciatic nerve crush, suggesting that tau may be involved in peripheral nerve repair and regeneration.

  10. Noscapine alters microtubule dynamics in living cells and inhibits the progression of melanoma.

    Science.gov (United States)

    Landen, Jaren W; Lang, Roland; McMahon, Steve J; Rusan, Nasser M; Yvon, Anne-Marie; Adams, Ashley W; Sorcinelli, Mia D; Campbell, Ross; Bonaccorsi, Paola; Ansel, John C; Archer, David R; Wadsworth, Patricia; Armstrong, Cheryl A; Joshi, Harish C

    2002-07-15

    Cellular microtubules, polymers of tubulin, alternate relentlessly between phases of growth and shortening. We now show that noscapine, a tubulin-binding agent, increases the time that cellular microtubules spend idle in a paused state. As a result, most mammalian cell types observed arrest in mitosis in the presence of noscapine. We demonstrate that noscapine-treated murine melanoma B16LS9 cells do not arrest in mitosis but rather become polyploid followed by cell death, whereas primary melanocytes reversibly arrest in mitosis and resume a normal cell cycle after noscapine removal. Furthermore, in a syngeneic murine model of established s.c. melanoma, noscapine treatment resulted in an 85% inhibition of tumor volume on day 17 when delivered by gavage compared with untreated animals (P microtubule dynamics, with no detected toxicity to the host. Consequently, noscapine could be a valuable chemotherapeutic agent, alone or in combination, for the treatment of advanced melanoma.

  11. Curcumin alters the cytoskeleton and microtubule organization on trophozoites of Giardia lamblia.

    Science.gov (United States)

    Gutiérrez-Gutiérrez, Filiberto; Palomo-Ligas, Lissethe; Hernández-Hernández, José Manuel; Pérez-Rangel, Armando; Aguayo-Ortiz, Rodrigo; Hernández-Campos, Alicia; Castillo, Rafael; González-Pozos, Sirenia; Cortés-Zárate, Rafael; Ramírez-Herrera, Mario Alberto; Mendoza-Magaña, María Luisa; Castillo-Romero, Araceli

    2017-08-01

    Giardia lamblia is a worldwide protozoan responsible for a significant number of intestinal infections. There are several drugs for the treatment of giardiasis, but they often cause side effects. Curcumin, a component of turmeric, has antigiardial activity; however, the molecular target and mechanism of antiproliferative activity are not clear. The effects of curcumin on cellular microtubules have been widely investigated. Since tubulin is the most abundant protein in the cytoskeleton of Giardia, to elucidate whether curcumin has activity against the microtubules of this parasite, we treated trophozoites with curcumin and the cells were analyzed by scanning electron microscopy and confocal microscopy. Curcumin inhibited Giardia proliferation and adhesion in a time-concentration-dependent mode. The higher inhibitory concentrations of curcumin (3 and 15μM) disrupted the cytoskeletal structures of trophozoites; the damage was evident on the ventral disk, flagella and in the caudal region, also the membrane was affected. The immunofluorescence images showed altered distribution of tubulin staining on ventral disk and flagella. Additionally, we found that curcumin caused a clear reduction of tubulin expression. By docking analysis and molecular dynamics we showed that curcumin has a high probability to bind at the interface of the tubulin dimer close to the vinblastine binding site. All the data presented indicate that curcumin may inhibit Giardia proliferation by perturbing microtubules. Copyright © 2017. Published by Elsevier B.V.

  12. Effects of colchicine treatment on the microtubule cytoskeleton and total protein during microsporogenesis in ginkgo biloba

    International Nuclear Information System (INIS)

    Cao, Q.J.; Mei, F.F.

    2015-01-01

    The purpose of this study was to examine the effects of colchicine treatment on the microtubule cytoskeleton and the expression of proteins during microsporogenesis in G. biloba, as observed by immunofluorescence and 2-DE analysis in microsporangia treated with colchicine. The results showed the microtubule structures were affected by the colchicine in Ginkgo biloba, but the treatment effect of the colchicine had certain limitation in G. biloba. The percentage of microsporocytes whose microtubule structures were affected by the colchicine treatment was less than that observed in other plant species, not higher than 10 %. It was also found that the expression level of several endogenous proteins were changed in G. biloba when the microsporangia were treated with colchicine. Although we only tested colchicines was only tested in the present study, G. biloba appeared to possess factors that restricted the effect of such chemical agents. Our observations led us to speculate that the endogenous proteins are possibly responsible for the reduced effects of colchicine treatment in G. biloba. (author)

  13. Heterotrimeric Kinesin II Is the Microtubule Motor Protein Responsible for Pigment Dispersion in Xenopus Melanophores

    Science.gov (United States)

    Tuma, M. Carolina; Zill, Andrew; Le Bot, Nathalie; Vernos, Isabelle; Gelfand, Vladimir

    1998-01-01

    Melanophores move pigment organelles (melanosomes) from the cell center to the periphery and vice-versa. These bidirectional movements require cytoplasmic microtubules and microfilaments and depend on the function of microtubule motors and a myosin. Earlier we found that melanosomes purified from Xenopus melanophores contain the plus end microtubule motor kinesin II, indicating that it may be involved in dispersion (Rogers, S.L., I.S. Tint, P.C. Fanapour, and V.I. Gelfand. 1997. Proc. Natl. Acad. Sci. USA. 94: 3720–3725). Here, we generated a dominant-negative construct encoding green fluorescent protein fused to the stalk-tail region of Xenopus kinesin-like protein 3 (Xklp3), the 95-kD motor subunit of Xenopus kinesin II, and introduced it into melanophores. Overexpression of the fusion protein inhibited pigment dispersion but had no effect on aggregation. To control for the specificity of this effect, we studied the kinesin-dependent movement of lysosomes. Neither dispersion of lysosomes in acidic conditions nor their clustering under alkaline conditions was affected by the mutant Xklp3. Furthermore, microinjection of melanophores with SUK4, a function-blocking kinesin antibody, inhibited dispersion of lysosomes but had no effect on melanosome transport. We conclude that melanosome dispersion is powered by kinesin II and not by conventional kinesin. This paper demonstrates that kinesin II moves membrane-bound organelles. PMID:9852150

  14. Image-based compound profiling reveals a dual inhibitor of tyrosine kinase and microtubule polymerization.

    Science.gov (United States)

    Tanabe, Kenji

    2016-04-27

    Small-molecule compounds are widely used as biological research tools and therapeutic drugs. Therefore, uncovering novel targets of these compounds should provide insights that are valuable in both basic and clinical studies. I developed a method for image-based compound profiling by quantitating the effects of compounds on signal transduction and vesicle trafficking of epidermal growth factor receptor (EGFR). Using six signal transduction molecules and two markers of vesicle trafficking, 570 image features were obtained and subjected to multivariate analysis. Fourteen compounds that affected EGFR or its pathways were classified into four clusters, based on their phenotypic features. Surprisingly, one EGFR inhibitor (CAS 879127-07-8) was classified into the same cluster as nocodazole, a microtubule depolymerizer. In fact, this compound directly depolymerized microtubules. These results indicate that CAS 879127-07-8 could be used as a chemical probe to investigate both the EGFR pathway and microtubule dynamics. The image-based multivariate analysis developed herein has potential as a powerful tool for discovering unexpected drug properties.

  15. Aberration of mitosis by hexavalent chromium in some Fabaceae members is mediated by species-specific microtubule disruption.

    Science.gov (United States)

    Eleftheriou, Eleftherios P; Michalopoulou, Vasiliki A; Adamakis, Ioannis-Dimosthenis S

    2015-05-01

    Because the detrimental effects of chromium (Cr) to higher plants have been poorly investigated, the present study was undertaken to verify the toxic attributes of hexavalent chromium [Cr(VI)] to plant mitotic microtubules (MTs), to determine any differential disruption of MTs during mitosis of taxonomically related species and to clarify the relationship between the visualized chromosomal aberrations and the Cr(VI)-induced MT disturbance. For this purpose, 5-day-old uniform seedlings of Vicia faba, Pisum sativum, Vigna sinensis and Vigna angularis, all belonging to the Fabaceae family, were exposed to 250 μM Cr(VI) supplied as potassium dichromate (K₂Cr₂O₇) for 24, 72 and 120 h and others in distilled water serving as controls. Root tip samples were processed for tubulin immunolabelling (for MT visualization) and DNA fluorescent staining (for chromosomal visualization). Microscopic preparations of cell squashes were then examined and photographed by confocal laser scanning microscopy (CLSM). Cr(VI) halted seedling growth turning roots brown and necrotic. Severe chromosomal abnormalities and differential disturbance of the corresponding MT arrays were found in all mitotic phases. In particular, in V. faba MTs were primarily depolymerized and replaced by atypical tubulin conformations, whereas in P. sativum, V. sinensis and V. angularis they became bundled in a time-dependent manner. In P. sativum, the effects were milder compared to those of the other species, but in all cases MT disturbance adversely affected the proper aggregation of chromosomes on the metaphase plate, their segregation at anaphase and organization of the new nuclei at telophase. Cr(VI) is very toxic to seedling growth. The particular effect depends on the exact stage the cell is found at the time of Cr(VI) entrance and is species-specific. Mitotic MT arrays are differentially deranged by Cr(VI) in the different species examined, even if they are taxonomically related, while their

  16. MID1 and MID2 homo- and heterodimerise to tether the rapamycin-sensitive PP2A regulatory subunit, Alpha 4, to microtubules: implications for the clinical variability of X-linked Opitz GBBB syndrome and other developmental disorders

    Directory of Open Access Journals (Sweden)

    Cox Timothy C

    2002-01-01

    Full Text Available Abstract Background Patients with Opitz GBBB syndrome present with a variable array of developmental defects including craniofacial, cardiac, and genital anomalies. Mutations in the X-linked MID1 gene, which encodes a microtubule-binding protein, have been found in ~50% of Opitz GBBB syndrome patients consistent with the genetically heterogeneous nature of the disorder. A protein highly related to MID1, called MID2, has also been described that similarly associates with microtubules. Results To identify protein partners of MID1 and MID2 we undertook two separate yeast two-hybrid screens. Using this system we identified Alpha 4, a regulatory subunit of PP2-type phosphatases and a key component of the rapamycin-sensitive signaling pathway, as a strong interactor of both proteins. Analysis of domain-specific deletions has shown that the B-boxes of both MID1 and MID2 mediate the interaction with Alpha 4, the first demonstration in an RBCC protein of a specific role for the B-box region. In addition, we show that the MID1/2 coiled-coil motifs mediate both homo- and hetero-dimerisation, and that dimerisation is a prerequisite for association of the MID-Alpha 4 complex with microtubules. Conclusions Our findings not only implicate Alpha 4 in the pathogenesis of Opitz GBBB syndrome but also support our earlier hypothesis that MID2 is a modifier of the X-linked phenotype. Of further note is the observation that Alpha 4 maps to Xq13 within the region showing linkage to FG (Opitz-Kaveggia syndrome. Overlap in the clinical features of FG and Opitz GBBB syndromes warrants investigation of Alpha 4 as a candidate for causing FG syndrome.

  17. Cortical feedback control of olfactory bulb circuits.

    Science.gov (United States)

    Boyd, Alison M; Sturgill, James F; Poo, Cindy; Isaacson, Jeffry S

    2012-12-20

    Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Discrimination of cortical laminae using MEG.

    Science.gov (United States)

    Troebinger, Luzia; López, José David; Lutti, Antoine; Bestmann, Sven; Barnes, Gareth

    2014-11-15

    Typically MEG source reconstruction is used to estimate the distribution of current flow on a single anatomically derived cortical surface model. In this study we use two such models representing superficial and deep cortical laminae. We establish how well we can discriminate between these two different cortical layer models based on the same MEG data in the presence of different levels of co-registration noise, Signal-to-Noise Ratio (SNR) and cortical patch size. We demonstrate that it is possible to make a distinction between superficial and deep cortical laminae for levels of co-registration noise of less than 2mm translation and 2° rotation at SNR > 11 dB. We also show that an incorrect estimate of cortical patch size will tend to bias layer estimates. We then use a 3D printed head-cast (Troebinger et al., 2014) to achieve comparable levels of co-registration noise, in an auditory evoked response paradigm, and show that it is possible to discriminate between these cortical layer models in real data. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  20. Josephson junction arrays

    International Nuclear Information System (INIS)

    Bindslev Hansen, J.; Lindelof, P.E.

    1985-01-01

    In this review we intend to cover recent work involving arrays of Josephson junctions. The work on such arrays falls naturally into three main areas of interest: 1. Technical applications of Josephson junction arrays for high-frequency devices. 2. Experimental studies of 2-D model systems (Kosterlitz-Thouless phase transition, commensurate-incommensurate transition in frustrated (flux) lattices). 3. Investigations of phenomena associated with non-equilibrium superconductivity in and around Josephson junctions (with high current density). (orig./BUD)

  1. Phased-array radars

    Science.gov (United States)

    Brookner, E.

    1985-02-01

    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  2. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ren-Jie [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (China); Lin, Su-Shuan [Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (China); Wu, Wen-Ren [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Chen, Lih-Ren [Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Division of Physiology, Livestock Research Institute, Council of Agriculture, Taiwan (China); Li, Chien-Feng [Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan (China); National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan (China); Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Chen, Han-De; Chou, Chien-Ting; Chen, Ya-Chun [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Liang, Shih-Shin [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Chien, Shang-Tao [Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (China); Shiue, Yow-Ling, E-mail: ylshiue@mail.nsysu.edu.tw [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan (China)

    2016-11-15

    The objective was to investigate the upstream mechanisms of apoptosis which were triggered by a novel anti-microtubule drug, ABT-751, in hepatocellular carcinoma-derived Huh-7 cells. Effects of ABT-751 were evaluated by immunocytochemistry, flow cytometric, alkaline comet, soft agar, immunoblotting, CytoID, green fluorescent protein-microtubule associated protein 1 light chain 3 beta detection, plasmid transfection, nuclear/cytosol fractionation, coimmunoprecipitation, quantitative reverse transcription-polymerase chain reaction, small-hairpin RNA interference and mitochondria/cytosol fractionation assays. Results showed that ABT-751 caused dysregulation of microtubule, collapse of mitochondrial membrane potential, generation of reactive oxygen species (ROS), DNA damage, G{sub 2}/M cell cycle arrest, inhibition of anchorage-independent cell growth and apoptosis in Huh-7 cells. ABT-751 also induced early autophagy via upregulation of nuclear TP53 and downregulation of the AKT serine/threonine kinase (AKT)/mechanistic target of rapamycin (MTOR) pathway. Through modulation of the expression levels of DNA damage checkpoint proteins and G{sub 2}/M cell cycle regulators, ABT-751 induced G{sub 2}/M cell cycle arrest. Subsequently, ABT-751 triggered apoptosis with marked downregulation of B-cell CLL/lymphoma 2, upregulation of mitochondrial BCL2 antagonist/killer 1 and BCL2 like 11 protein levels, and cleavages of caspase 8 (CASP8), CASP9, CASP3 and DNA fragmentation factor subunit alpha proteins. Suppression of ROS significantly decreased ABT-751-induced autophagic and apoptotic cells. Pharmacological inhibition of autophagy significantly increased the percentages of ABT-751-induced apoptotic cells. The autophagy induced by ABT-751 plays a protective role to postpone apoptosis by exerting adaptive responses following microtubule damage, ROS and/or impaired mitochondria. - Highlights: • An anti-microtubule agent, ABT-751, induces autophagy and apoptosis in Huh-7 cells.

  3. Epothilones as lead structures for the synthesis-based discovery of new chemotypes for microtubule stabilization.

    Science.gov (United States)

    Feyen, Fabian; Cachoux, Frédéric; Gertsch, Jürg; Wartmann, Markus; Altmann, Karl-Heinz

    2008-01-01

    Epothilones are macrocyclic bacterial natural products with potent microtubule-stabilizing and antiproliferative activity. They have served as successful lead structures for the development of several clinical candidates for anticancer therapy. However, the structural diversity of this group of clinical compounds is rather limited, as their structures show little divergence from the original natural product leads. Our own research has explored the question of whether epothilones can serve as a basis for the development of new structural scaffolds, or chemotypes, for microtubule stabilization that might serve as a basis for the discovery of new generations of anticancer drugs. We have elaborated a series of epothilone-derived macrolactones whose overall structural features significantly deviate from those of the natural epothilone scaffold and thus define new structural families of microtubule-stabilizing agents. Key elements of our hypermodification strategy are the change of the natural epoxide geometry from cis to trans, the incorporation of a conformationally constrained side chain, the removal of the C3-hydroxyl group, and the replacement of C12 with nitrogen. So far, this approach has yielded analogs 30 and 40 that are the most advanced, the most rigorously modified, structures, both of which are potent antiproliferative agents with low nanomolar activity against several human cancer cell lines in vitro. The synthesis was achieved through a macrolactone-based strategy or a high-yielding RCM reaction. The 12-aza-epothilone ("azathilone" 40) may be considered a "non-natural" natural product that still retains most of the overall structural characteristics of a true natural product but is structurally unique, because it lies outside of the general scope of Nature's biosynthetic machinery for polyketide synthesis. Like natural epothilones, both 30 and 40 promote tubulin polymerization in vitro and at the cellular level induce cell cycle arrest in mitosis. These

  4. Storage array reflection considerations

    International Nuclear Information System (INIS)

    Haire, M.J.; Jordan, W.C.; Taylor, R.G.

    1997-01-01

    The assumptions used for reflection conditions of single containers are fairly well established and consistently applied throughout the industry in nuclear criticality safety evaluations. Containers are usually considered to be either fully water reflected (i.e., surrounded by 6 to 12 in. of water) for safety calculations or reflected by 1 in. of water for nominal (structural material and air) conditions. Tables and figures are usually available for performing comparative evaluations of containers under various loading conditions. Reflection considerations used for evaluating the safety of storage arrays of fissile material are not as well established. When evaluating arrays, it has become more common for analysts to use calculations to demonstrate the safety of the array configuration. In performing these calculations, the analyst has considerable freedom concerning the assumptions made for modeling the reflection of the array. Considerations are given for the physical layout of the array with little or no discussion (or demonstration) of what conditions are bounded by the assumed reflection conditions. For example, an array may be generically evaluated by placing it in a corner of a room in which the opposing walls are far away. Typically, it is believed that complete flooding of the room is incredible, so the array is evaluated for various levels of water mist interspersed among array containers. This paper discusses some assumptions that are made regarding storage array reflection

  5. The EUROBALL array

    International Nuclear Information System (INIS)

    Rossi Alvarez, C.

    1998-01-01

    The quality of the multidetector array EUROBALL is described, with emphasis on the history and formal organization of the related European collaboration. The detector layout is presented together with the electronics and Data Acquisition capabilities. The status of the instrument, its performances and the main features of some recently developed ancillary detectors will also be described. The EUROBALL array is operational in Legnaro National Laboratory (Italy) since April 1997 and is expected to run up to November 1998. The array represents a significant improvement in detector efficiency and sensitivity with respect to the previous generation of multidetector arrays

  6. Rectenna array measurement results

    Science.gov (United States)

    Dickinson, R. M.

    1980-01-01

    The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining were demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.

  7. Arrayed waveguide Sagnac interferometer.

    Science.gov (United States)

    Capmany, José; Muñoz, Pascual; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz; Martinez, Alfonso

    2003-02-01

    We present a novel device, an arrayed waveguide Sagnac interferometer, that combines the flexibility of arrayed waveguides and the wide application range of fiber or integrated optics Sagnac loops. We form the device by closing an array of wavelength-selective light paths provided by two arrayed waveguides with a single 2 x 2 coupler in a Sagnac configuration. The equations that describe the device's operation in general conditions are derived. A preliminary experimental demonstration is provided of a fiber prototype in passive operation that shows good agreement with the expected theoretical performance. Potential applications of the device in nonlinear operation are outlined and discussed.

  8. Reye's syndrome with cortical laminar necrosis: MRI

    International Nuclear Information System (INIS)

    Kinoshita, T.; Takahashi, S.; Ishii, K.; Higano, S.; Matsumoto, K.; Sakamoto, K.; Haginoya, K.; Iinuma, K.

    1996-01-01

    Serial MRI findings are described in two patients with Reye's syndrome, demonstrating diffuse cortical and white matter changes. In the acute stage, T2-weighted images showed subtle but definite laminar high signal and contrast-enhanced T1-weighted images laminar enhancement, along the entire cerebral cortex bilaterally. In the chronic stage, unenhanced T1-weighted images showed diffuse cortical laminar high signal. These characteristic MRI features seemed very similar to those of laminar cortical necrosis in hypoxic brain damage. MRI also displayed delayed white matter changes with cerebral atrophy. (orig.)

  9. Cortical heterotopia in Aicardi's syndrome - CT findings

    International Nuclear Information System (INIS)

    Besenski, N.; Bosnjak, V.; Ligutic, I.; Marusic-Della Marina, B.

    1988-01-01

    The case of 5-month-old female infant with Aicardi's syndrome is presented. The main clinical features were severe developmental retardation and intractable epileptic seizures. Ophthalmoscopic examination revealed pathognomonic choriorethinopathy. Ultrasonic examination of the brain detected agenesis of the corpus callosum, whereas CT showed a coexisting malformation of the brain, i.e. cortical heterotopia of the gray matter. Agenesis of the corpus callosum is an entity well-recognized by sonography. However, ultrasonography is an insufficient modality for the visualization of cortical heterotopia which is common to all cases of Aicardi's syndrome. Therefore, in cases of suspected Aicardi's syndrome CT is recommended, as it enables the diagnosis of cortical heterotopia. (orig.)

  10. Electrophysiological Data and the Biophysical Modelling of Local Cortical Circuits

    Directory of Open Access Journals (Sweden)

    Dimitris Pinotsis

    2014-03-01

    activity – using a field model that incorporates canonical cortical microcircuitry, where each population or layer has a receptor complement based on findings in cellular neuroscience. In the second part of this paper, we follow a different route, and use neural fields quantitatively – that is to fit empirical data recorded during visual stimulation, see e.g. [9–12]. We focus on neuromodulatory effects and discuss particular applications of DCMs with neural fields to explain invasive and non-invasive data. We present two studies of spectral responses obtained from the visual cortex during visual perception experiments: in the first study, MEG data were acquired during a task designed to show how activity in the gamma band is related to visual perception. This experiment tried to determine the spectral properties of an individual's gamma response, and how this relates to underlying visual cortex microcircuitry. In the second study, we exploited high density – spatially resolved – data from multi-electrode electrocorticographic (ECoG arrays to study the effect of varying stimulus contrast on cortical excitability and gamma peak frequency. These data were acquired at the Ernst Strüngmann Institute for Neuroscience, in collaboration with the Max Planck Society in Frankfurt. We will consider neural field models in the light of a Bayesian framework for evaluating model evidence and obtaining parameter estimates using invasive and non-invasive recordings of gamma oscillations. We will first focus on model predictions of conductance and convolution based field models and showed that these can yield spectral responses that are sensitive to biophysical properties of local cortical circuits like cortical excitability and synaptic filtering; we will also consider two different mechanisms for this filtering: a nonlinear mechanism involving specific conductances and a linear convolution of afferent firing rates producing post synaptic potentials. We will then turn to

  11. Biomechanics of far cortical locking.

    Science.gov (United States)

    Bottlang, Michael; Feist, Florian

    2011-02-01

    The development of far cortical locking (FCL) was motivated by a conundrum: locked plating constructs provide inherently rigid stabilization, yet they should facilitate biologic fixation and secondary bone healing that relies on flexible fixation to stimulate callus formation. Recent studies have confirmed that the high stiffness of standard locked plating constructs can suppress interfragmentary motion to a level that is insufficient to reliably promote secondary fracture healing by callus formation. Furthermore, rigid locking screws cause an uneven stress distribution that may lead to stress fracture at the end screw and stress shielding under the plate. This review summarizes four key features of FCL constructs that have been shown to enhance fixation and healing of fractures: flexible fixation, load distribution, progressive stiffening, and parallel interfragmentary motion. Specifically, flexible fixation provided by FCL reduces the stiffness of a locked plating construct by 80% to 88% to actively promote callus proliferation similar to an external fixator. Load is evenly distributed between FCL screws to mitigate stress risers at the end screw. Progressive stiffening occurs by near cortex support of FCL screws and provides additional support under elevated loading. Finally, parallel interfragmentary motion by the S-shaped flexion of FCL screws promotes symmetric callus formation. In combination, these features of FCL constructs have been shown to induce more callus and to yield significantly stronger and more consistent healing compared with standard locked plating constructs. As such, FCL constructs function as true internal fixators by replicating the biomechanical behavior and biologic healing response of external fixators.

  12. Focal plane array with modular pixel array components for scalability

    Science.gov (United States)

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  13. Two Types of Genetic Interaction Implicate the Whirligig Gene of Drosophila Melanogaster in Microtubule Organization in the Flagellar Axoneme

    Science.gov (United States)

    Green, L. L.; Wolf, N.; McDonald, K. L.; Fuller, M. T.

    1990-01-01

    The mutant nc4 allele of whirligig (3-54.4) of Drosophila melanogaster fails to complement mutations in an α-tubulin locus, α1t, mutations in a β-tubulin locus, B2t, or a mutation in the haywire locus. However, wrl fails to map to any of the known α- or β-tubulin genes. The extragenic failure to complement could indicate that the wrl product participates in structural interactions with microtubule proteins. The whirligig locus appears to be haploinsufficient for male fertility. Both a deficiency of wrl and possible loss of function alleles obtained by reverting the failure to complement between wrl(nc4) and B2t(n) are dominant male sterile in a genetic background wild type for tubulin. The dominant male sterility of the revertant alleles is suppressed if the flies are also heterozygous for B2t(n), for a deficiency of α1t, or for the hay(nc2) allele. These results suggest that it is not the absolute level of wrl gene product but its level relative to tubulin or microtubule function that is important for normal spermatogenesis. The phenotype of homozygous wrl mutants suggests that the whirligig product plays a role in postmeiotic spermatid differentiation, possibly in organizing the microtubules of the sperm flagellar axoneme. Flies homozygous for either wrl(nc4) or revertant alleles are viable and female fertile but male sterile. Premeiotic and meiotic stages of spermatogenesis appear normal. However, in post-meiotic stages, flagellar axonemes show loss of the accessory microtubule on the B-subfiber of outer doublet microtubules, outer triplet instead of outer doublet microtubules, and missing central pair microtubules. PMID:2127579

  14. Identification of a lysosome membrane protein which could mediate ATP-dependent stable association of lysosomes to microtubules

    International Nuclear Information System (INIS)

    Mithieux, G.; Rousset, B.

    1989-01-01

    We have previously reported that purified thyroid lysosomes bind to reconstituted microtubules to form stable complexes, a process which is inhibited by ATP. Among detergent-solubilized lysosomal membrane protein, we identified a 50-kDa molecular component which binds to preassembled microtubules. The binding of this polypeptide to microtubules was decreased in the presence of ATP. We purified this 50-kDa protein by affinity chromatography on immobilized ATP. The 50-kDa protein bound to the ATP column was eluted by 1 mM ATP. The purified protein, labeled with 125I, exhibited the ability of interacting with microtubules. The binding process was inhibited by increasing concentrations of ATP, the half-maximal inhibitory effect being obtained at an ATP concentration of 0.35 mM. The interaction of the 50-kDa protein with microtubules is a saturable phenomenon since the binding of the 125I-labeled 50-kDa protein was inhibited by unlabeled solubilized lysosomal membrane protein containing the 50-kDa polypeptide but not by the same protein fraction from which the 50-kDa polypeptide had been removed by the ATP affinity chromatography procedure. The 50-kDa protein has the property to bind to pure tubulin coupled to an insoluble matrix. The 50-kDa protein was eluted from the tubulin affinity column by ATP. These findings support the conclusion that a protein inserted into the lysosomal membrane is able to bind directly to microtubules in a process which can be regulated by ATP. We propose that this protein could account for the association of lysosomes to microtubules demonstrated both in vitro and in intact cells

  15. Perceptual incongruence influences bistability and cortical activation

    NARCIS (Netherlands)

    Brouwer, G.J.; Tong, F.; Hagoort, P.; van Ee, R.

    2009-01-01

    We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability

  16. Cortical electrophysiological network dynamics of feedback learning

    NARCIS (Netherlands)

    Cohen, M.X.; Wilmes, K.A.; van de Vijver, I.

    2011-01-01

    Understanding the neurophysiological mechanisms of learning is important for both fundamental and clinical neuroscience. We present a neurophysiologically inspired framework for understanding cortical mechanisms of feedback-guided learning. This framework is based on dynamic changes in systems-level

  17. Cortical areas involved in Arabic number reading.

    Science.gov (United States)

    Roux, F-E; Lubrano, V; Lauwers-Cances, V; Giussani, C; Démonet, J-F

    2008-01-15

    Distinct functional pathways for processing words and numbers have been hypothesized from the observation of dissociated impairments of these categories in brain-damaged patients. We aimed to identify the cortical areas involved in Arabic number reading process in patients operated on for various brain lesions. Direct cortical electrostimulation was prospectively used in 60 brain mappings. We used object naming and two reading tasks: alphabetic script (sentences and number words) and Arabic number reading. Cortical areas involved in Arabic number reading were identified according to location, type of interference, and distinctness from areas associated with other language tasks. Arabic number reading was sustained by small cortical areas, often extremely well localized (area (Brodmann area 45), the anterior part of the dominant supramarginal gyrus (Brodmann area 40; p area (Brodmann area 37; p areas.

  18. The Diversity of Cortical Inhibitory Synapses

    Directory of Open Access Journals (Sweden)

    Yoshiyuki eKubota

    2016-04-01

    Full Text Available The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their IPSP size is not uniform. Thus cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.

  19. Autosomal dominant cortical tremor, myoclonus and epilepsy.

    Science.gov (United States)

    Striano, Pasquale; Zara, Federico

    2016-09-01

    The term 'cortical tremor' was first introduced by Ikeda and colleagues to indicate a postural and action-induced shivering movement of the hands which mimics essential tremor, but presents with the electrophysiological findings of cortical reflex myoclonus. The association between autosomal dominant cortical tremor, myoclonus and epilepsy (ADCME) was first recognized in Japanese families and is now increasingly reported worldwide, although it is described using different acronyms (BAFME, FAME, FEME, FCTE and others). The disease usually takes a benign course, although drug-resistant focal seizures or slight intellectual disability occur in some cases. Moreover, a worsening of cortical tremor and myoclonus is common in advanced age. Although not yet recognized by the International League Against Epilepsy (ILAE), this is a well-delineated epilepsy syndrome with remarkable features that clearly distinguishes it from other myoclonus epilepsies. Moreover, genetic studies of these families show heterogeneity and different susceptible chromosomal loci have been identified.

  20. Triggering the GRANDE array

    International Nuclear Information System (INIS)

    Wilson, C.L.; Bratton, C.B.; Gurr, J.; Kropp, W.; Nelson, M.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.

    1990-01-01

    A brief description of the Gamma Ray And Neutrino Detector Experiment (GRANDE) is presented. The detector elements and electronics are described. The trigger logic for the array is then examined. The triggers for the Gamma Ray and the Neutrino portions of the array are treated separately. (orig.)

  1. ISS Solar Array Management

    Science.gov (United States)

    Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel

    2010-01-01

    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.

  2. Extent of cortical involvement in amyotrophic lateral sclerosis--an analysis based on cortical thickness.

    Science.gov (United States)

    Thorns, Johannes; Jansma, Henk; Peschel, Thomas; Grosskreutz, Julian; Mohammadi, Bahram; Dengler, Reinhard; Münte, Thomas F

    2013-10-18

    Besides the defining involvement of upper and lower motor neurons, the involvement of extramotor structures has been increasingly acknowledged in amyotrophic lateral sclerosis (ALS). Here we investigated a group of 14 mildly to moderately affected ALS patients and 14 age-matched healthy control participants using cortical thickness analysis. Cortical thickness was determined from high resolution 3D T1 magnetic resonance images and involved semiautomatic segmentation in grey and white matter, cortical alignment and determination of thickness using the Laplace method. In addition to a whole-cortex analysis a region of interest approach was applied. ALS patients showed regions of significant cortical thinning in the pre- and postcentral gyri bilaterally. Further regions of cortical thinning included superior and inferior parietal lobule, angular and supramarginal gyrus, insula, superior frontal, temporal and occipital regions, thus further substantiating extramotor involvement in ALS. A relationship between cortical thickness of the right superior frontal cortex and clinical severity (assessed by the ALS functional rating scale) was also demonstrated. Cortical thickness is reduced in ALS not only in motor areas but in widespread non-motor cortical areas. Cortical thickness is related to clinical severity.

  3. The nucleoporin MEL-28 promotes RanGTP-dependent γ-tubulin recruitment and microtubule nucleation in mitotic spindle formation.

    Science.gov (United States)

    Yokoyama, Hideki; Koch, Birgit; Walczak, Rudolf; Ciray-Duygu, Fulya; González-Sánchez, Juan Carlos; Devos, Damien P; Mattaj, Iain W; Gruss, Oliver J

    2014-01-01

    The GTP-bound form of the Ran GTPase (RanGTP), produced around chromosomes, drives nuclear envelope and nuclear pore complex (NPC) re-assembly after mitosis. The nucleoporin MEL-28/ELYS binds chromatin in a RanGTP-regulated manner and acts to seed NPC assembly. Here we show that, upon mitotic NPC disassembly, MEL-28 dissociates from chromatin and re-localizes to spindle microtubules and kinetochores. MEL-28 directly binds microtubules in a RanGTP-regulated way via its C-terminal chromatin-binding domain. Using Xenopus egg extracts, we demonstrate that MEL-28 is essential for RanGTP-dependent microtubule nucleation and spindle assembly, independent of its function in NPC assembly. Specifically, MEL-28 interacts with the γ-tubulin ring complex and recruits it to microtubule nucleation sites. Our data identify MEL-28 as a RanGTP target that functions throughout the cell cycle. Its cell cycle-dependent binding to chromatin or microtubules discriminates MEL-28 functions in interphase and mitosis, and ensures that spindle assembly occurs only after NPC breakdown.

  4. Cortical cytasters: a highly conserved developmental trait of Bilateria with similarities to Ctenophora

    Directory of Open Access Journals (Sweden)

    Salinas-Saavedra Miguel

    2011-12-01

    Full Text Available Abstract Background Cytasters (cytoplasmic asters are centriole-based nucleation centers of microtubule polymerization that are observable in large numbers in the cortical cytoplasm of the egg and zygote of bilaterian organisms. In both protostome and deuterostome taxa, cytasters have been described to develop during oogenesis from vesicles of nuclear membrane that move to the cortical cytoplasm. They become associated with several cytoplasmic components, and participate in the reorganization of cortical cytoplasm after fertilization, patterning the antero-posterior and dorso-ventral body axes. Presentation of the hypothesis The specific resemblances in the development of cytasters in both protostome and deuterostome taxa suggest that an independent evolutionary origin is unlikely. An assessment of published data confirms that cytasters are present in several protostome and deuterostome phyla, but are absent in the non-bilaterian phyla Cnidaria and Ctenophora. We hypothesize that cytasters evolved in the lineage leading to Bilateria and were already present in the most recent common ancestor shared by protostomes and deuterostomes. Thus, cytasters would be an ancient and highly conserved trait that is homologous across the different bilaterian phyla. The alternative possibility is homoplasy, that is cytasters have evolved independently in different lineages of Bilateria. Testing the hypothesis So far, available published information shows that appropriate observations have been made in eight different bilaterian phyla. All of them present cytasters. This is consistent with the hypothesis of homology and conservation. However, there are several important groups for which there are no currently available data. The hypothesis of homology predicts that cytasters should be present in these groups. Increasing the taxonomic sample using modern techniques uniformly will test for evolutionary patterns supporting homology, homoplasy, or secondary loss of

  5. Sensor array signal processing

    CERN Document Server

    Naidu, Prabhakar S

    2009-01-01

    Chapter One: An Overview of Wavefields 1.1 Types of Wavefields and the Governing Equations 1.2 Wavefield in open space 1.3 Wavefield in bounded space 1.4 Stochastic wavefield 1.5 Multipath propagation 1.6 Propagation through random medium 1.7 ExercisesChapter Two: Sensor Array Systems 2.1 Uniform linear array (ULA) 2.2 Planar array 2.3 Distributed sensor array 2.4 Broadband sensor array 2.5 Source and sensor arrays 2.6 Multi-component sensor array2.7 ExercisesChapter Three: Frequency Wavenumber Processing 3.1 Digital filters in the w-k domain 3.2 Mapping of 1D into 2D filters 3.3 Multichannel Wiener filters 3.4 Wiener filters for ULA and UCA 3.5 Predictive noise cancellation 3.6 Exercises Chapter Four: Source Localization: Frequency Wavenumber Spectrum4.1 Frequency wavenumber spectrum 4.2 Beamformation 4.3 Capon's w-k spectrum 4.4 Maximum entropy w-k spectrum 4.5 Doppler-Azimuth Processing4.6 ExercisesChapter Five: Source Localization: Subspace Methods 5.1 Subspace methods (Narrowband) 5.2 Subspace methods (B...

  6. Activation of Ran GTPase by a Legionella effector promotes microtubule polymerization, pathogen vacuole motility and infection.

    Directory of Open Access Journals (Sweden)

    Eva Rothmeier

    2013-09-01

    Full Text Available The causative agent of Legionnaires' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS to form in phagocytes a distinct "Legionella-containing vacuole" (LCV, which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila.

  7. Activation of Ran GTPase by a Legionella Effector Promotes Microtubule Polymerization, Pathogen Vacuole Motility and Infection

    Science.gov (United States)

    Rothmeier, Eva; Pfaffinger, Gudrun; Hoffmann, Christine; Harrison, Christopher F.; Grabmayr, Heinrich; Repnik, Urska; Hannemann, Mandy; Wölke, Stefan; Bausch, Andreas; Griffiths, Gareth; Müller-Taubenberger, Annette; Itzen, Aymelt; Hilbi, Hubert

    2013-01-01

    The causative agent of Legionnaires' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS) to form in phagocytes a distinct “Legionella-containing vacuole” (LCV), which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF) domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP) in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED) fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila. PMID:24068924

  8. Gravity resistance, another graviresponse in plants - role of microtubule-membrane-cell wall continuum

    Science.gov (United States)

    Hoson, T.; Saito, Y.; Usui, S.; Soga, K.; Wakabayashi, K.

    Resistance to the gravitational force has been a serious problem for plants to survive on land, after they first went ashore more than 400 million years ago. Thus, gravity resistance is the principal graviresponse in plants comparable to gravitropism. Nevertheless, only limited information has been obtained for this second gravity response. We have examined the mechanism of gravity resistance using hypergravity conditions produced by centrifugation. The results led a hypothesis on the mechanism of plant resistance to the gravitational force that the plant constructs a tough body by increasing the cell wall rigidity, which are brought about by modification of the cell wall metabolism and cell wall environment, especially pH. The hypothesis was further supported by space experiments during the Space Shuttle STS-95 mission. On the other hand, we have shown that gravity signal may be perceived by mechanoreceptors (mechanosensitive ion channels) on the plasma membrane and amyloplast sedimentation in statocytes is not involved in gravity resistance. Moreover, hypergravity treatment increased the expression levels of genes encoding alpha-tubulin, a component of microtubules and 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor of terpenoids such as membrane sterols. The expression of HMGR and alpha- and beta-tubulin genes increased within several hours after hypergravity treatment, depending on the magnitude of gravity. The determination of levels of gene products as well as the analysis with knockout mutants of these genes by T-DNA insertions in Arabidopsis supports the involvement of both membrane sterols and microtubules in gravity resistance. These results suggest that structural or physiological continuum of microtubule-cell membrane-cell wall is responsible for plant resistance to the gravitational force.

  9. Nonlinear dynamics of cortical responses to color in the human cVEP.

    Science.gov (United States)

    Nunez, Valerie; Shapley, Robert M; Gordon, James

    2017-09-01

    The main finding of this paper is that the human visual cortex responds in a very nonlinear manner to the color contrast of pure color patterns. We examined human cortical responses to color checkerboard patterns at many color contrasts, measuring the chromatic visual evoked potential (cVEP) with a dense electrode array. Cortical topography of the cVEPs showed that they were localized near the posterior electrode at position Oz, indicating that the primary cortex (V1) was the major source of responses. The choice of fine spatial patterns as stimuli caused the cVEP response to be driven by double-opponent neurons in V1. The cVEP waveform revealed nonlinear color signal processing in the V1 cortex. The cVEP time-to-peak decreased and the waveform's shape was markedly narrower with increasing cone contrast. Comparison of the linear dynamics of retinal and lateral geniculate nucleus responses with the nonlinear dynamics of the cortical cVEP indicated that the nonlinear dynamics originated in the V1 cortex. The nature of the nonlinearity is a kind of automatic gain control that adjusts cortical dynamics to be faster when color contrast is greater.

  10. Introduction to adaptive arrays

    CERN Document Server

    Monzingo, Bob; Haupt, Randy

    2011-01-01

    This second edition is an extensive modernization of the bestselling introduction to the subject of adaptive array sensor systems. With the number of applications of adaptive array sensor systems growing each year, this look at the principles and fundamental techniques that are critical to these systems is more important than ever before. Introduction to Adaptive Arrays, 2nd Edition is organized as a tutorial, taking the reader by the hand and leading them through the maze of jargon that often surrounds this highly technical subject. It is easy to read and easy to follow as fundamental concept

  11. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  12. Quantum walks in brain microtubules--a biomolecular basis for quantum cognition?

    Science.gov (United States)

    Hameroff, Stuart

    2014-01-01

    Cognitive decisions are best described by quantum mathematics. Do quantum information devices operate in the brain? What would they look like? Fuss and Navarro () describe quantum lattice registers in which quantum superpositioned pathways interact (compute/integrate) as 'quantum walks' akin to Feynman's path integral in a lattice (e.g. the 'Feynman quantum chessboard'). Simultaneous alternate pathways eventually reduce (collapse), selecting one particular pathway in a cognitive decision, or choice. This paper describes how quantum walks in a Feynman chessboard are conceptually identical to 'topological qubits' in brain neuronal microtubules, as described in the Penrose-Hameroff 'Orch OR' theory of consciousness. Copyright © 2013 Cognitive Science Society, Inc.

  13. GIT1/beta PIX signaling proteins and PAK1 kinase regulate microtubule nucleation

    Czech Academy of Sciences Publication Activity Database

    Černohorská, Markéta; Sulimenko, Vadym; Hájková, Zuzana; Sulimenko, Tetyana; Sládková, Vladimíra; Vinopal, Stanislav; Dráberová, Eduarda; Dráber, Pavel

    2016-01-01

    Roč. 1863, č. 6 (2016), s. 1282-1297 ISSN 0167-4889 R&D Projects: GA ČR GAP302/12/1673; GA ČR GA15-22194S; GA MŠk LH12050; GA MZd NT14467; GA ČR GA16-23702S Institutional support: RVO:68378050 Keywords : Centrosome * Microtubule nucleation * gamma-tubulin * GIT1/beta PIX signaling proteins * PAK1 kinase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.521, year: 2016

  14. XTACC3-XMAP215 association reveals an asymmetric interaction promoting microtubule elongation

    DEFF Research Database (Denmark)

    Mortuza, Gulnahar B; Cavazza, Tommaso; Garcia-Mayoral, Maria Flor

    2014-01-01

    215 (chTOG), dissecting the mechanism by which their interaction promotes microtubule elongation during spindle assembly. Using SAXS, we show that the TACC domain (TD) is an elongated structure that mediates the interaction with the C terminus of XMAP215. Our data suggest that one TD and two XMAP215...... molecules associate to form a four-helix coiled-coil complex. A hybrid methods approach was used to define the precise regions of the TACC heptad repeat and the XMAP215 C terminus required for assembly and functioning of the complex. We show that XTACC3 can induce the recruitment of larger amounts of XMAP...

  15. Assessment of cortical and sub-cortical function in neonates by electrophysiological monitoring

    NARCIS (Netherlands)

    Jennekens, W.

    2012-01-01

    The aim of this thesis was the assessment of cortical and sub-cortical function in neonates by electrophysiological monitoring, i.e. to evaluate the function of the neonatal cortex and brainstem through quantitative analysis of signals readily available in the NICU. These signals include

  16. Osmosis in Cortical Collecting Tubules

    Science.gov (United States)

    Schafer, James A.; Troutman, Susan L.; Andreoli, Thomas E.

    1974-01-01

    The present experiments were designed to evaluate the effects of varying the osmolality of luminal solutions on the antidiuretic hormone (ADH)-independent water and solute permeability properties of isolated rabbit cortical collecting tubules. In the absence of ADH, the osmotic water permeability coefficient (cm s–1) Pfl→b, computed from volume flows from hypotonic lumen to isotonic bath, was 20 ± 4 x 10–4 (SEM); the value of Pfb→l in the absence of ADH, computed from volume flows from isotonic bath to hypertonic lumen, was 88 ± 15 x 10–4 cm s–1. We also measured apparent urea permeability coefficients (cm s–1) from 14C-urea fluxes from lumen to bath (P DDurea l→b) and from bath to lumen (P DDurea b→l). For hypotonic luminal solutions and isotonic bathing solutions, P DDurea l→b was 0.045 ± 0.004 x 10–4 and was unaffected by ADH. The ADH-independent values of P DDurea l→b and P urea b→l were, respectively, 0.216 ± 0.022 x 10–4 cm s–1 and 0.033 ± 0.002 x 10–4 cm s–1 for isotonic bathing solutions and luminal solutions made hypertonic with urea, i.e., there was an absolute increase in urea permeability and asymmetry of urea fluxes. Significantly, P DDurea l→b did not rise when luminal hypertonicity was produced by sucrose; and, bathing fluid hypertonicity did not alter tubular permeability to water or to urea. We interpret these data to indicate that luminal hypertonicity increased the leakiness of tight junctions to water and urea but not sucrose. Since the value of Pfb→l in the absence of ADH, when tight junctions were open to urea, was approximately half of the value of Pfl→b in the presence of ADH, when tight junctions were closed to urea, we conclude that tight junctions are negligible paracellular shunts for lumen to bath osmosis with ADH. These findings, together with those in the preceding paper, are discussed in terms of a solubility-diffusion model for water permeation in which ADH increases water solubility in

  17. Neuronal plasticity in hibernation and the proposed role of the microtubule-associated protein tau as a "master switch" regulating synaptic gain in neuronal networks.

    Science.gov (United States)

    Arendt, Thomas; Bullmann, Torsten

    2013-09-01

    The present paper provides an overview of adaptive changes in brain structure and learning abilities during hibernation as a behavioral strategy used by several mammalian species to minimize energy expenditure under current or anticipated inhospitable environmental conditions. One cellular mechanism that contributes to the regulated suppression of metabolism and thermogenesis during hibernation is reversible phosphorylation of enzymes and proteins, which limits rates of flux through metabolic pathways. Reversible phosphorylation during hibernation also affects synaptic membrane proteins, a process known to be involved in synaptic plasticity. This mechanism of reversible protein phosphorylation also affects the microtubule-associated protein tau, thereby generating a condition that in the adult human brain is associated with aggregation of tau protein to paired helical filaments (PHFs), as observed in Alzheimer's disease. Here, we put forward the concept that phosphorylation of tau is a neuroprotective mechanism to escape NMDA-mediated hyperexcitability of neurons that would otherwise occur during slow gradual cooling of the brain. Phosphorylation of tau and its subsequent targeting to subsynaptic sites might, thus, work as a kind of "master switch," regulating NMDA receptor-mediated synaptic gain in a wide array of neuronal networks, thereby enabling entry into torpor. If this condition lasts too long, however, it may eventually turn into a pathological trigger, driving a cascade of events leading to neurodegeneration, as in Alzheimer's disease or other "tauopathies".

  18. Glucose regulated proteins 78 and 75 bind to the receptor for hyaluronan mediated motility in interphase microtubules

    International Nuclear Information System (INIS)

    Kuwabara, Hiroko; Yoneda, Masahiko; Hayasaki, Hana; Nakamura, Toshiya; Mori, Hiroshi

    2006-01-01

    The receptor for hyaluronan mediated motility (RHAMM), which is a hyaluronan-binding protein, is a centrosomal and microtubal protein. Here, we have identified two RHAMM-binding proteins, glucose regulated protein (GRP) 78 and GRP75, using co-immunoprecipitation analysis. These two proteins directly bound to glutathione-S-transferase-RHAMM fusion proteins. By double immunostaining, GRP78 and GRP75 colocalized with RHAMM in interphase microtubules, but were separated in mitotic spindles. Prevention of microtubule polymerization by TN-16 and vincristine sulfate induced RHAMM overexpression without a significant change in GRP78/75. Taken together, GRP78/75 and RHAMM complexes may stabilize microtubules in the interphase, associated with a downregulation of RHAMM. These results reveal a new biochemical activity of RHAMM

  19. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  20. Photonic Crystal Nanocavity Arrays

    National Research Council Canada - National Science Library

    Altug, Hatice; Vuckovic, Jelena

    2006-01-01

    We recently proposed two-dimensional coupled photonic crystal nanocavity arrays as a route to achieve a slow-group velocity of light in all crystal directions, thereby enabling numerous applications...

  1. Decreased prefrontal cortical dopamine transmission in alcoholism.

    Science.gov (United States)

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon

    2014-08-01

    Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.

  2. Anti-correlated cortical networks arise from spontaneous neuronal dynamics at slow timescales.

    Science.gov (United States)

    Kodama, Nathan X; Feng, Tianyi; Ullett, James J; Chiel, Hillel J; Sivakumar, Siddharth S; Galán, Roberto F

    2018-01-12

    In the highly interconnected architectures of the cerebral cortex, recurrent intracortical loops disproportionately outnumber thalamo-cortical inputs. These networks are also capable of generating neuronal activity without feedforward sensory drive. It is unknown, however, what spatiotemporal patterns may be solely attributed to intrinsic connections of the local cortical network. Using high-density microelectrode arrays, here we show that in the isolated, primary somatosensory cortex of mice, neuronal firing fluctuates on timescales from milliseconds to tens of seconds. Slower firing fluctuations reveal two spatially distinct neuronal ensembles, which correspond to superficial and deeper layers. These ensembles are anti-correlated: when one fires more, the other fires less and vice versa. This interplay is clearest at timescales of several seconds and is therefore consistent with shifts between active sensing and anticipatory behavioral states in mice.

  3. The Ndc80 internal loop is required for recruitment of the Ska complex to establish end-on microtubule attachment to kinetochores

    DEFF Research Database (Denmark)

    Zhang, Gang; Kelstrup, Christian D; Hu, Xiao-Wen

    2012-01-01

    The Ndc80 complex establishes end-on attachment of kinetochores to microtubules essential for chromosome segregation. The Ndc80 subunit is characterized by an N-terminal region, that binds directly to microtubules, and a long coiled-coil region that interacts with Nuf2. A loop region in Ndc80 tha...... chromosome segregation through the recruitment of specific proteins to the kinetochore....

  4. Carbon nanotube array actuators

    International Nuclear Information System (INIS)

    Geier, S; Mahrholz, T; Wierach, P; Sinapius, M

    2013-01-01

    Experimental investigations of highly vertically aligned carbon nanotubes (CNTs), also known as CNT-arrays, are the main focus of this paper. The free strain as result of an active material behavior is analyzed via a novel experimental setup. Previous test experiences of papers made of randomly oriented CNTs, also called Bucky-papers, reveal comparably low free strain. The anisotropy of aligned CNTs promises better performance. Via synthesis techniques like chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD), highly aligned arrays of multi-walled carbon nanotubes (MWCNTs) are synthesized. Two different types of CNT-arrays are analyzed, morphologically first, and optically tested for their active characteristics afterwards. One type of the analyzed arrays features tube lengths of 750–2000 μm with a large variety of diameters between 20 and 50 nm and a wave-like CNT-shape. The second type features a maximum, almost uniform, length of 12 μm and a constant diameter of 50 nm. Different CNT-lengths and array types are tested due to their active behavior. As result of the presented tests, it is reported that the quality of orientation is the most decisive property for excellent active behavior. Due to their alignment, CNT-arrays feature the opportunity to clarify the actuation mechanism of architectures made of CNTs. (paper)

  5. An antitubulin agent BCFMT inhibits proliferation of cancer cells and induces cell death by inhibiting microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Ankit Rai

    Full Text Available Using cell based screening assay, we identified a novel anti-tubulin agent (Z-5-((5-(4-bromo-3-chlorophenylfuran-2-ylmethylene-2-thioxothiazolidin-4-one (BCFMT that inhibited proliferation of human cervical carcinoma (HeLa (IC(50, 7.2 ± 1.8 µM, human breast adenocarcinoma (MCF-7 (IC(50, 10.0 ± 0.5 µM, highly metastatic breast adenocarcinoma (MDA-MB-231 (IC(50, 6.0 ± 1 µM, cisplatin-resistant human ovarian carcinoma (A2780-cis (IC(50, 5.8 ± 0.3 µM and multi-drug resistant mouse mammary tumor (EMT6/AR1 (IC(50, 6.5 ± 1 µM cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 µM, BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably state by 135% and reduced the dynamicity (dimer exchange per unit time of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3 ± 1.8 µM, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (K(i of 5.2 ± 1.5 µM suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2 at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug

  6. Duplication in the microtubule-actin cross-linking factor 1 gene causes a novel neuromuscular condition

    DEFF Research Database (Denmark)

    Jørgensen, Louise H; Mosbech, Mai-Britt; Færgeman, Nils J

    2014-01-01

    Spectrins and plakins are important communicators linking cytoskeletal components to each other and to cellular junctions. Microtubule-actin cross-linking factor 1 (MACF1) belongs to the spectraplakin family and is involved in control of microtubule dynamics. Complete knock out of MACF1 in mice...... muscles and diminished motor skills, with heterogeneous presentation among the affected family members. To corroborate these findings we used RNA interference to knock down the VAB-10 locus containing the MACF1 homologue in C. elegans, and we could show that this also causes movement disturbances...

  7. Coin Tossing Explains the Activity of Opposing Microtubule Motors on Phagosomes.

    Science.gov (United States)

    Sanghavi, Paulomi; D'Souza, Ashwin; Rai, Ashim; Rai, Arpan; Padinhatheeri, Ranjith; Mallik, Roop

    2018-05-07

    How the opposing activity of kinesin and dynein motors generates polarized distribution of organelles inside cells is poorly understood and hotly debated [1, 2]. Possible explanations include stochastic mechanical competition [3, 4], coordinated regulation by motor-associated proteins [5-7], mechanical activation of motors [8], and lipid-induced organization [9]. Here, we address this question by using phagocytosed latex beads to generate early phagosomes (EPs) that move bidirectionally along microtubules (MTs) in an in vitro assay [9]. Dynein/kinesin activity on individual EPs is recorded as real-time force generation of the motors against an optical trap. Activity of one class of motors frequently coincides with, or is rapidly followed by opposite motors. This leads to frequent and rapid reversals of EPs in the trap. Remarkably, the choice between dynein and kinesin can be explained by the tossing of a coin. Opposing motors therefore appear to function stochastically and independently of each other, as also confirmed by observing no effect on kinesin function when dynein is inhibited on the EPs. A simple binomial probability calculation based on the geometry of EP-microtubule contact explains the observed activity of dynein and kinesin on phagosomes. This understanding of intracellular transport in terms of a hypothetical coin, if it holds true for other cargoes, provides a conceptual framework to explain the polarized localization of organelles inside cells. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Microtubule-dependent association of AKAP350A and CCAR1 with RNA stress granules

    International Nuclear Information System (INIS)

    Kolobova, Elena; Efimov, Andrey; Kaverina, Irina; Rishi, Arun K.; Schrader, John W.; Ham, Amy-Joan; Larocca, M. Cecilia; Goldenring, James R.

    2009-01-01

    Recent investigations have highlighted the importance of subcellular localization of mRNAs to cell function. While AKAP350A, a multifunctional scaffolding protein, localizes to the Golgi apparatus and centrosomes, we have now identified a cytosolic pool of AKAP350A. Analysis of AKAP350A scaffolded complexes revealed two novel interacting proteins, CCAR1 and caprin-1. CCAR1, caprin-1 and AKAP350A along with G3BP, a stress granule marker, relocate to RNA stress granules after arsenite treatment. Stress also caused loss of AKAP350 from the Golgi and fragmentation of the Golgi apparatus. Disruption of microtubules with nocodazole altered stress granule formation and changed their morphology by preventing fusion of stress granules. In the presence of nocodazole, arsenite induced smaller granules with the vast majority of AKAP350A and CCAR1 separated from G3BP-containing granules. Similar to nocodazole treatment, reduction of AKAP350A or CCAR1 expression also altered the size and number of G3BP-containing stress granules induced by arsenite treatment. A limited set of 69 mRNA transcripts was immunoisolated with AKAP350A even in the absence of stress, suggesting the association of AKAP350A with mRNA transcripts. These results provide the first evidence for the microtubule dependent association of AKAP350A and CCAR1 with RNA stress granules

  9. Integrins Regulate Apical Constriction via Microtubule Stabilization in the Drosophila Eye Disc Epithelium

    Directory of Open Access Journals (Sweden)

    Vilaiwan M. Fernandes

    2014-12-01

    Full Text Available During morphogenesis, extracellular signals trigger actomyosin contractility in subpopulations of cells to coordinate changes in cell shape. To illuminate the link between signaling-mediated tissue patterning and cytoskeletal remodeling, we study the progression of the morphogenetic furrow (MF, the wave of apical constriction that traverses the Drosophila eye imaginal disc preceding photoreceptor neurogenesis. Apical constriction depends on actomyosin contractility downstream of the Hedgehog (Hh and bone morphogenetic protein (BMP pathways. We identify a role for integrin adhesion receptors in MF progression. We show that Hh and BMP regulate integrin expression, the loss of which disrupts apical constriction and slows furrow progression; conversely, elevated integrins accelerate furrow progression. We present evidence that integrins regulate MF progression by promoting microtubule stabilization, since reducing microtubule stability rescues integrin-mediated furrow acceleration. Thus, integrins act as a genetic link between tissue-level signaling events and morphological change at the cellular level, leading to morphogenesis and neurogenesis in the eye.

  10. Statistical mechanics provides novel insights into microtubule stability and mechanism of shrinkage.

    Directory of Open Access Journals (Sweden)

    Ishutesh Jain

    2015-02-01

    Full Text Available Microtubules are nano-machines that grow and shrink stochastically, making use of the coupling between chemical kinetics and mechanics of its constituent protofilaments (PFs. We investigate the stability and shrinkage of microtubules taking into account inter-protofilament interactions and bending interactions of intrinsically curved PFs. Computing the free energy as a function of PF tip position, we show that the competition between curvature energy, inter-PF interaction energy and entropy leads to a rich landscape with a series of minima that repeat over a length-scale determined by the intrinsic curvature. Computing Langevin dynamics of the tip through the landscape and accounting for depolymerization, we calculate the average unzippering and shrinkage velocities of GDP protofilaments and compare them with the experimentally known results. Our analysis predicts that the strength of the inter-PF interaction (E(s(m has to be comparable to the strength of the curvature energy (E(b(m such that E(s(m - E(b(m ≈ 1kBT, and questions the prevalent notion that unzippering results from the domination of bending energy of curved GDP PFs. Our work demonstrates how the shape of the free energy landscape is crucial in explaining the mechanism of MT shrinkage where the unzippered PFs will fluctuate in a set of partially peeled off states and subunit dissociation will reduce the length.

  11. Synthesis and biological evaluation of indolyl-pyridinyl-propenones having either methuosis or microtubule disruption activity.

    Science.gov (United States)

    Trabbic, Christopher J; Overmeyer, Jean H; Alexander, Evan M; Crissman, Emily J; Kvale, Heather M; Smith, Marcie A; Erhardt, Paul W; Maltese, William A

    2015-03-12

    Methuosis is a form of nonapoptotic cell death characterized by an accumulation of macropinosome-derived vacuoles with eventual loss of membrane integrity. Small molecules inducing methuosis could offer significant advantages compared to more traditional anticancer drug therapies that typically rely on apoptosis. Herein we further define the effects of chemical substitutions at the 2- and 5-indolyl positions on our lead compound 3-(5-methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propene-1-one (MOMIPP). We have identified a number of compounds that induce methuosis at similar potencies, including an interesting analogue having a hydroxypropyl substituent at the 2-position. In addition, we have discovered that certain substitutions on the 2-indolyl position redirect the mode of cytotoxicity from methuosis to microtubule disruption. This switch in activity is associated with an increase in potency as large as 2 orders of magnitude. These compounds appear to represent a new class of potent microtubule-active anticancer agents.

  12. Microtubule affinity-regulating kinases are potential druggable targets for Alzheimer's disease.

    Science.gov (United States)

    Annadurai, Narendran; Agrawal, Khushboo; Džubák, Petr; Hajdúch, Marián; Das, Viswanath

    2017-11-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects normal functions of the brain. Currently, AD is one of the leading causes of death in developed countries and the only one of the top ten diseases without a means to prevent, cure, or significantly slow down its progression. Therefore, newer therapeutic concepts are urgently needed to improve survival and the quality of life of AD patients. Microtubule affinity-regulating kinases (MARKs) regulate tau-microtubule binding and play a crucial role in neurons. However, their role in hyperphosphorylation of tau makes them potential druggable target for AD therapy. Despite the relevance of MARKs in AD pathogenesis, only a few small molecules are known to have anti-MARK activity and not much has been done to progress these compounds into therapeutic candidates. But given the diverse role of MARKs, the specificity of novel inhibitors is imperative for their successful translation from bench to bedside. In this regard, a recent co-crystal structure of MARK4 in association with a pyrazolopyrimidine-based inhibitor offers a potential scaffold for the development of more specific MARK inhibitors. In this manuscript, we review the biological role of MARKs in health and disease, and draw attention to the largely unexplored area of MARK inhibitors for AD.

  13. Inhibition of the Ras-Net (Elk-3) pathway by a novel pyrazole that affects microtubules.

    Science.gov (United States)

    Wasylyk, Christine; Zheng, Hong; Castell, Christelle; Debussche, Laurent; Multon, Marie-Christine; Wasylyk, Bohdan

    2008-03-01

    Net (Elk-3/SAP-2/Erp) is a transcription factor that is phosphorylated and activated by the Ras-extracellular signal-regulated kinase (Erk) signaling pathway and is involved in wound healing, angiogenesis, and tumor growth. In a cell-based screen for small molecule inhibitors of Ras activation of Net transcriptional activity, we identified a novel pyrazole, XRP44X. XRP44X inhibits fibroblast growth factor 2 (FGF-2)-induced Net phosphorylation by the Ras-Erk signaling upstream from Ras. It also binds to the colchicine-binding site of tubulin, depolymerizes microtubules, stimulates cell membrane blebbing, and affects the morphology of the actin skeleton. Interestingly, Combretastin-A4, which produces similar effects on the cytoskeleton, also inhibits FGF-2 Ras-Net signaling. This differs from other classes of agents that target microtubules, which have either little effect (vincristine) or no effect (docetaxel and nocodazole) on the Ras-Net pathway. XRP44X inhibits various cellular properties, including cell growth, cell cycle progression, and aortal sprouting, similar to other molecules that bind to the tubulin colchicine site. XRP44X has the potentially interesting property of connecting two important pathways involved in cell transformation and may thereby represent an interesting class of molecules that could be developed for cancer treatment.

  14. Disruption of Microtubules Post-Virus Entry Enhances Adeno-Associated Virus Vector Transduction

    Science.gov (United States)

    Xiao, Ping-Jie; Mitchell, Angela M.; Huang, Lu; Li, Chengwen; Samulski, R. Jude

    2016-01-01

    Perinuclear retention of viral particles is a poorly understood phenomenon observed during many virus infections. In this study, we investigated whether perinuclear accumulation acts as a barrier to limit recombinant adeno-associated virus (rAAV) transduction. After nocodazole treatment to disrupt microtubules at microtubule-organization center (MT-MTOC) after virus entry, we observed higher rAAV transduction. To elucidate the role of MT-MTOC in rAAV infection and study its underlying mechanisms, we demonstrated that rAAV's perinuclear localization was retained by MT-MTOC with fluorescent analysis, and enhanced rAAV transduction from MT-MTOC disruption was dependent on the rAAV capsid's nuclear import signals. Interestingly, after knocking down RhoA or inhibiting its downstream effectors (ROCK and Actin), MT-MTOC disruption failed to increase rAAV transduction or nuclear entry. These data suggest that enhancement of rAAV transduction is the result of increased trafficking to the nucleus via the RhoA-ROCK-Actin pathway. Ten-fold higher rAAV transduction was also observed by disrupting MT-MTOC in brain, liver, and tumor in vivo. In summary, this study indicates that virus perinuclear accumulation at MT-MTOC is a barrier-limiting parameter for effective rAAV transduction and defines a novel defense mechanism by which host cells restrain viral invasion. PMID:26942476

  15. Phosphorylation of the yeast γ-tubulin Tub4 regulates microtubule function

    DEFF Research Database (Denmark)

    Lin, Tien-chen; Gombos, Linda; Neuner, Annett

    2011-01-01

    The yeast ¿-tubulin Tub4 is assembled with Spc97 and Spc98 into the small Tub4 complex. The Tub4 complex binds via the receptor proteins Spc72 and Spc110 to the spindle pole body (SPB), the functional equivalent of the mammalian centrosome, where the Tub4 complex organizes cytoplasmic and nuclear...... microtubules. Little is known about the regulation of the Tub4 complex. Here, we isolated the Tub4 complex with the bound receptors from yeast cells. Analysis of the purified Tub4 complex by mass spectrometry identified more than 50 phosphorylation sites in Spc72, Spc97, Spc98, Spc110 and Tub4. To examine...... the functional relevance of the phosphorylation sites, phospho-mimicking and non-phosphorylatable mutations in Tub4, Spc97 and Spc98 were analyzed. Three phosphorylation sites in Tub4 were found to be critical for Tub4 stability and microtubule organization. One of the sites is highly conserved in ¿-tubulins...

  16. Development of other microtubule-stabilizer families: the epothilones and their derivatives.

    Science.gov (United States)

    Brogdon, Cynthia F; Lee, Francis Y; Canetta, Renzo M

    2014-05-01

    Chemotherapy is the mainstay of treatment for numerous cancer types, but resistance to chemotherapy remains a major clinical issue and is one of the driving influences underlying the development of new anticancer medications. One of the most important classes of chemotherapy agents is the taxanes, which target the cytoskeleton and spindle apparatus of tumor cells by binding to the microtubules, thereby disrupting key cellular mechanisms, including mitosis. Taxane resistance, however, limits treatment options and creates a major challenge for clinicians. Ongoing research has identified several newer classes of microtubule-targeting chemotherapies that may retain activity despite clinical resistance to taxanes. Among these classes, the epothilones have been studied most extensively in the clinical setting. Like taxanes, epothilones stabilize microtubulin turnover, and they have properties favoring their development as anticancer agents. The most clinically advanced epothilone analog is ixabepilone, which is currently the only approved epothilone derivative. Ixabepilone is indicated for the treatment of metastatic or locally advanced breast cancer in combination with capecitabine after failure of an anthracycline and a taxane, or as monotherapy after failure of an anthracycline, a taxane, and capecitabine. In phase II and III trials, ixabepilone showed efficacy in several patient subgroups and in various stages of breast cancer. Common adverse reactions include peripheral sensory neuropathy and asthenia. This paper will discuss the preclinical and clinical development of epothilones and their derivatives across a variety of cancer types.

  17. A 31-residue peptide induces aggregation of tau's microtubule-binding region in cells

    Science.gov (United States)

    Stöhr, Jan; Wu, Haifan; Nick, Mimi; Wu, Yibing; Bhate, Manasi; Condello, Carlo; Johnson, Noah; Rodgers, Jeffrey; Lemmin, Thomas; Acharya, Srabasti; Becker, Julia; Robinson, Kathleen; Kelly, Mark J. S.; Gai, Feng; Stubbs, Gerald; Prusiner, Stanley B.; Degrado, William F.

    2017-09-01

    The self-propagation of misfolded conformations of tau underlies neurodegenerative diseases, including Alzheimer's. There is considerable interest in discovering the minimal sequence and active conformational nucleus that defines this self-propagating event. The microtubule-binding region, spanning residues 244-372, reproduces much of the aggregation behaviour of tau in cells and animal models. Further dissection of the amyloid-forming region to a hexapeptide from the third microtubule-binding repeat resulted in a peptide that rapidly forms fibrils in vitro. We show that this peptide lacks the ability to seed aggregation of tau244-372 in cells. However, as the hexapeptide is gradually extended to 31 residues, the peptides aggregate more slowly and gain potent activity to induce aggregation of tau244-372 in cells. X-ray fibre diffraction, hydrogen-deuterium exchange and solid-state NMR studies map the beta-forming region to a 25-residue sequence. Thus, the nucleus for self-propagating aggregation of tau244-372 in cells is packaged in a remarkably small peptide.

  18. A novel spiroindoline targets cell cycle and migration via modulation of microtubule cytoskeleton.

    Science.gov (United States)

    Kumar, Naveen; Hati, Santanu; Munshi, Parthapratim; Sen, Subhabrata; Sehrawat, Seema; Singh, Shailja

    2017-05-01

    Natural product-inspired libraries of molecules with diverse architectures have evolved as one of the most useful tools for discovering lead molecules for drug discovery. In comparison to conventional combinatorial libraries, these molecules have been inferred to perform better in phenotypic screening against complicated targets. Diversity-oriented synthesis (DOS) is a forward directional strategy to access such multifaceted library of molecules. From a successful DOS campaign of a natural product-inspired library, recently a small molecule with spiroindoline motif was identified as a potent anti-breast cancer compound. Herein we report the subcellular studies performed for this molecule on breast cancer cells. Our investigation revealed that it repositions microtubule cytoskeleton and displaces AKAP9 located at the microtubule organization centre. DNA ladder assay and cell cycle experiments further established the molecule as an apoptotic agent. This work further substantiated the amalgamation of DOS-phenotypic screening-sub-cellular studies as a consolidated blueprint for the discovery of potential pharmaceutical drug candidates.

  19. ATX-2, the C. elegans Ortholog of Human Ataxin-2, Regulates Centrosome Size and Microtubule Dynamics.

    Directory of Open Access Journals (Sweden)

    Michael D Stubenvoll

    2016-09-01

    Full Text Available Centrosomes are critical sites for orchestrating microtubule dynamics, and exhibit dynamic changes in size during the cell cycle. As cells progress to mitosis, centrosomes recruit more microtubules (MT to form mitotic bipolar spindles that ensure proper chromosome segregation. We report a new role for ATX-2, a C. elegans ortholog of Human Ataxin-2, in regulating centrosome size and MT dynamics. ATX-2, an RNA-binding protein, forms a complex with SZY-20 in an RNA-independent fashion. Depleting ATX-2 results in embryonic lethality and cytokinesis failure, and restores centrosome duplication to zyg-1 mutants. In this pathway, SZY-20 promotes ATX-2 abundance, which inversely correlates with centrosome size. Centrosomes depleted of ATX-2 exhibit elevated levels of centrosome factors (ZYG-1, SPD-5, γ-Tubulin, increasing MT nucleating activity but impeding MT growth. We show that ATX-2 influences MT behavior through γ-Tubulin at the centrosome. Our data suggest that RNA-binding proteins play an active role in controlling MT dynamics and provide insight into the control of proper centrosome size and MT dynamics.

  20. PET in malformations of cortical development

    International Nuclear Information System (INIS)

    Bouilleret, V.; O'Brien, T.J.; Bouilleret, V.; Bouilleret, V.; Chiron, C.; Chiron, C.

    2009-01-01

    Within the group of malformations of cortical development, focal cortical dysplasia (FCD) are an increasingly recognized cause of intractable epilepsy that can be cured by surgery. The success of cortical resection for intractable epilepsy is highly dependent on the accurate pre-surgical delineation of the regions responsible for generating seizures. [ 18 F]-FDG PET, which images cerebral metabolism studying brain glucose uptake, is the most established functional imaging modality in the evaluation of patients with epilepsy. The aim of this article is to review [ 18 F]-FDG PET usefulness as a pre-surgical tool in the evaluation of medically refractory partial epilepsy. It has an established place in assisting in the localisation and definition of FCD in patients with no lesion, or only a subtle abnormality, on MRI. The role of FDG-PET in defining the extent of the surgical resection is still uncertain and needs to be the focus of future research. (authors)

  1. Paradiaphyseal calcific tendinitis with cortical bone erosion.

    Science.gov (United States)

    Fritz, P; Bardin, T; Laredo, J D; Ziza, J M; D'Anglejan, G; Lansaman, J; Bucki, B; Forest, M; Kuntz, D

    1994-05-01

    To determine the clinical, radiologic, and histologic features of calcific tendinitis with cortical bone erosion. The records of 6 patients with paradiaphyseal calcific tendinitis and adjacent bone cortex erosion were reviewed. Calcific tendinitis involved the linea aspera in 4 patients, the bicipital groove in 1 patient, and the deltoid insertion in another. Calcium deposits were associated with cortical bone erosions, revealed on plain radiographs in 4 patients and computed tomography scans in 2. Bone scans were performed in 2 patients and showed local hyperfixation of the isotope. In 4 patients, suspicion of a neoplasm led to a biopsy. Calcium deposits appeared to be surrounded by a foreign body reaction with numerous giant cells. Apatite crystals were identified by transmission electron microscopy and elemental analysis in 1 surgical sample. Paradiaphyseal calcific tendinitis with cortical bone erosion is an uncommon presentation of apatite deposition disease.

  2. Reduced cortical thickness in gambling disorder

    DEFF Research Database (Denmark)

    Grant, Jon E; Odlaug, Brian Lawrence; Chamberlain, Samuel R

    2015-01-01

    with significant reductions (average 15.8-19.9 %) in cortical thickness, versus controls, predominantly in right frontal cortical regions. Pronounced right frontal morphometric brain abnormalities occur in gambling disorder, supporting neurobiological overlap with substance disorders and its recent......Gambling disorder has recently been recognized as a prototype 'behavioral addiction' by virtue of its inclusion in the DSM-5 category of 'Substance-Related and Addictive Disorders.' Despite its newly acquired status and prevalence rate of 1-3 % globally, relatively little is known regarding...... the neurobiology of this disorder. The aim of this study was to explore cortical morphometry in untreated gambling disorder, for the first time. Subjects with gambling disorder (N = 16) free from current psychotropic medication or psychiatric comorbidities, and healthy controls (N = 17), were entered...

  3. Regulation of cortical contractility and spindle positioning by the protein phosphatase 6 PPH-6 in one-cell stage C. elegans embryos

    Science.gov (United States)

    Afshar, Katayoun; Werner, Michael E.; Tse, Yu Chung; Glotzer, Michael; Gönczy, Pierre

    2010-01-01

    Modulation of the microtubule and the actin cytoskeleton is crucial for proper cell division. Protein phosphorylation is known to be an important regulatory mechanism modulating these cytoskeletal networks. By contrast, there is a relative paucity of information regarding how protein phosphatases contribute to such modulation. Here, we characterize the requirements for protein phosphatase PPH-6 and its associated subunit SAPS-1 in one-cell stage C. elegans embryos. We establish that the complex of PPH-6 and SAPS-1 (PPH-6/SAPS-1) is required for contractility of the actomyosin network and proper spindle positioning. Our analysis demonstrates that PPH-6/SAPS-1 regulates the organization of cortical non-muscle myosin II (NMY-2). Accordingly, we uncover that PPH-6/SAPS-1 contributes to cytokinesis by stimulating actomyosin contractility. Furthermore, we demonstrate that PPH-6/SAPS-1 is required for the proper generation of pulling forces on spindle poles during anaphase. Our results indicate that this requirement is distinct from the role in organizing the cortical actomyosin network. Instead, we uncover that PPH-6/SAPS-1 contributes to the cortical localization of two positive regulators of pulling forces, GPR-1/2 and LIN-5. Our findings provide the first insights into the role of a member of the PP6 family of phosphatases in metazoan development. PMID:20040490

  4. Localization of the kinesin adaptor proteins trafficking kinesin proteins 1 and 2 in primary cultures of hippocampal pyramidal and cortical neurons.

    Science.gov (United States)

    Loss, Omar; Stephenson, F Anne

    2015-07-01

    Neuronal function requires regulated anterograde and retrograde trafficking of mitochondria along microtubules by using the molecular motors kinesin and dynein. Previous work has established that trafficking kinesin proteins (TRAKs),TRAK1 and TRAK2, are kinesin adaptor proteins that link mitochondria to kinesin motor proteins via an acceptor protein in the mitochondrial outer membrane, etc. the Rho GTPase Miro. Recent studies have shown that TRAK1 preferentially controls mitochondrial transport in axons of hippocampal neurons by virtue of its binding to both kinesin and dynein motor proteins, whereas TRAK2 controls mitochondrial transport in dendrites resulting from its binding to dynein. This study further investigates the subcellular localization of TRAK1 and TRAK2 in primary cultures of hippocampal and cortical neurons by using both commercial antibodies and anti-TRAK1 and anti-TRAK2 antibodies raised in our own laboratory (in-house). Whereas TRAK1 was prevalently localized in axons of hippocampal and cortical neurons, TRAK2 was more prevalent in dendrites of hippocampal neurons. In cortical neurons, TRAK2 was equally distributed between axons and dendrites. Some qualitative differences were observed between commercial and in-house-generated antibody immunostaining. © 2015 Wiley Periodicals, Inc.

  5. Rasmussen's encephalitis presenting as focal cortical dysplasia

    Directory of Open Access Journals (Sweden)

    D.J. O'Rourke

    2014-01-01

    Full Text Available Rasmussen's encephalitis is a rare syndrome characterized by intractable seizures, often associated with epilepsia partialis continua and symptoms of progressive hemispheric dysfunction. Seizures are usually the hallmark of presentation, but antiepileptic drug treatment fails in most patients and is ineffective against epilepsia partialis continua, which often requires surgical intervention. Co-occurrence of focal cortical dysplasia has only rarely been described and may have implications regarding pathophysiology and management. We describe a rare case of dual pathology of Rasmussen's encephalitis presenting as a focal cortical dysplasia (FCD and discuss the literature on this topic.

  6. Rasmussen's encephalitis presenting as focal cortical dysplasia

    Science.gov (United States)

    O'Rourke, D.J.; Bergin, A.; Rotenberg, A.; Peters, J.; Gorman, M.; Poduri, A.; Cryan, J.; Lidov, H.; Madsen, J.; Harini, C.

    2014-01-01

    Rasmussen's encephalitis is a rare syndrome characterized by intractable seizures, often associated with epilepsia partialis continua and symptoms of progressive hemispheric dysfunction. Seizures are usually the hallmark of presentation, but antiepileptic drug treatment fails in most patients and is ineffective against epilepsia partialis continua, which often requires surgical intervention. Co-occurrence of focal cortical dysplasia has only rarely been described and may have implications regarding pathophysiology and management. We describe a rare case of dual pathology of Rasmussen's encephalitis presenting as a focal cortical dysplasia (FCD) and discuss the literature on this topic. PMID:25667877

  7. Cortical Networks for Visual Self-Recognition

    Science.gov (United States)

    Sugiura, Motoaki

    This paper briefly reviews recent developments regarding the brain mechanisms of visual self-recognition. A special cognitive mechanism for visual self-recognition has been postulated based on behavioral and neuropsychological evidence, but its neural substrate remains controversial. Recent functional imaging studies suggest that multiple cortical mechanisms play self-specific roles during visual self-recognition, reconciling the existing controversy. Respective roles for the left occipitotemporal, right parietal, and frontal cortices in symbolic, visuospatial, and conceptual aspects of self-representation have been proposed.

  8. Cortical networks for visual self-recognition

    International Nuclear Information System (INIS)

    Sugiura, Motoaki

    2007-01-01

    This paper briefly reviews recent developments regarding the brain mechanisms of visual self-recognition. A special cognitive mechanism for visual self-recognition has been postulated based on behavioral and neuropsychological evidence, but its neural substrate remains controversial. Recent functional imaging studies suggest that multiple cortical mechanisms play self-specific roles during visual self-recognition, reconciling the existing controversy. Respective roles for the left occipitotemporal, right parietal, and frontal cortices in symbolic, visuospatial, and conceptual aspects of self-representation have been proposed. (author)

  9. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    Science.gov (United States)

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  10. Testing of focal plane arrays

    International Nuclear Information System (INIS)

    Merriam, J.D.

    1988-01-01

    Problems associated with the testing of focal plane arrays are briefly examined with reference to the instrumentation and measurement procedures. In particular, the approach and instrumentation used as the Naval Ocean Systems Center is presented. Most of the measurements are made with flooded illumination on the focal plane array. The array is treated as an ensemble of individual pixels, data being taken on each pixel and array averages and standard deviations computed for the entire array. Data maps are generated, showing the pixel data in the proper spatial position on the array and the array statistics

  11. Muscarinic contribution to the acute cortical effects of vagus nerve stimulation

    Science.gov (United States)

    Nichols, Justin A.

    2011-12-01

    Electrical stimulation of the vagus nerve (VNS) has been used to treat more than 60,000 patients with drug-resistant epilepsy and is under investigation as a treatment for several other neurological disorders and conditions. Among these, VNS increases memory performance and enhances recovery of motor and cognitive function in animal models of traumatic brain injury. Recent research indicates that pairing brief VNS with tones multiple-times a day for several weeks induces long-term, input specific cortical plasticity, which can be used to re-normalize the pathological cortical reorganization and eliminate a behavioral correlate of chronic tinnitus in noise exposed rats. Despite the therapeutic potential, the mechanisms of action of VNS remain speculative. In chapter 2 of this dissertation, the acute effects of VNS on cortical synchrony, excitability, and temporal processing are examined. In anesthetized rats implanted with multi-electrode arrays, VNS increased and decorrelated spontaneous multi-unit activity, and suppressed entrainment to repetitive noise burst stimulation at 6 to 8 Hz, but not after systemic administration of the muscarinic antagonist scopolamine. Chapter 3 focuses on VNS-tone pairing induced cortical plasticity. Pairing VNS with a tone one hundred times in anesthetized rats resulted in frequency specific plasticity in 31% of the auditory cortex sites. Half of these sites exhibited a frequency specific increase in firing rate and half exhibited a frequency specific decrease. Muscarinic receptor blockade with scopolamine almost entirely prevented the frequency specific increases, but not decreases. Collectively, these experiments demonstrate the capacity for VNS to not only acutely influence cortical synchrony, and excitability, but to also influence temporal and spectral tuning via muscarinic receptor activation. These results strengthen the hypothesis that acetylcholine and muscarinic receptors are involved in the mechanisms of action of VNS and

  12. Microtubule plus end-tracking proteins play critical roles in directional growth of hyphae by regulating the dynamics of cytoplasmic microtubules in Aspergillus nidulans.

    Science.gov (United States)

    Zeng, Cui J Tracy; Kim, Hye-Ryun; Vargas Arispuro, Irasema; Kim, Jung-Mi; Huang, An-Chi; Liu, Bo

    2014-11-01

    Cytoplasmic microtubules (MTs) serve as a rate-limiting factor for hyphal tip growth in the filamentous fungus Aspergillus nidulans. We hypothesized that this function depended on the MT plus end-tracking proteins (+TIPs) including the EB1 family protein EBA that decorated the MT plus ends undergoing polymerization. The ebAΔ mutation reduced colony growth and the mutant hyphae appeared in an undulating pattern instead of exhibiting unidirectional growth in the control. These phenotypes were enhanced by a mutation in another +TIP gene clipA. EBA was required for plus end-tracking of CLIPA, the Kinesin-7 motor KipA, and the XMAP215 homologue AlpA. In addition, cytoplasmic dynein also depended on EBA to track on most polymerizing MT plus ends, but not for its conspicuous appearance at the MT ends near the hyphal apex. The loss of EBA reduced the number of cytoplasmic MTs and prolonged dwelling times for MTs after reaching the hyphal apex. Finally, we found that colonies were formed in the absence of EBA, CLIPA, and NUDA together, suggesting that they were dispensable for fundamental functions of MTs. This study provided a comprehensive delineation of the relationship among different +TIPs and their contributions to MT dynamics and unidirectional hyphal expansion in filamentous fungi. © 2014 John Wiley & Sons Ltd.

  13. Joint cross-correlation analysis reveals complex, time-dependent functional relationship between cortical neurons and arm electromyograms

    Science.gov (United States)

    Zhuang, Katie Z.; Lebedev, Mikhail A.

    2014-01-01

    Correlation between cortical activity and electromyographic (EMG) activity of limb muscles has long been a subject of neurophysiological studies, especially in terms of corticospinal connectivity. Interest in this issue has recently increased due to the development of brain-machine interfaces with output signals that mimic muscle force. For this study, three monkeys were implanted with multielectrode arrays in multiple cortical areas. One monkey performed self-timed touch pad presses, whereas the other two executed arm reaching movements. We analyzed the dynamic relationship between cortical neuronal activity and arm EMGs using a joint cross-correlation (JCC) analysis that evaluated trial-by-trial correlation as a function of time intervals within a trial. JCCs revealed transient correlations between the EMGs of multiple muscles and neural activity in motor, premotor and somatosensory cortical areas. Matching results were obtained using spike-triggered averages corrected by subtracting trial-shuffled data. Compared with spike-triggered averages, JCCs more readily revealed dynamic changes in cortico-EMG correlations. JCCs showed that correlation peaks often sharpened around movement times and broadened during delay intervals. Furthermore, JCC patterns were directionally selective for the arm-reaching task. We propose that such highly dynamic, task-dependent and distributed relationships between cortical activity and EMGs should be taken into consideration for future brain-machine interfaces that generate EMG-like signals. PMID:25210153

  14. Simplified Classification of Focal Cortical Dysplasia

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-09-01

    Full Text Available Sections of cortex from 52 of 224 (23% patients with cortical dysplasia, operated on for drug-resistant partial epilepsy, were retrospectively re-examined histologically at Niguarda Hospital, and Istituto Nazionale Neurologico ‘C. Besta’, Milan, Italy.

  15. Stroke rehabilitation using noninvasive cortical stimulation: aphasia.

    Science.gov (United States)

    Mylius, Veit; Zouari, Hela G; Ayache, Samar S; Farhat, Wassim H; Lefaucheur, Jean-Pascal

    2012-08-01

    Poststroke aphasia results from the lesion of cortical areas involved in the motor production of speech (Broca's aphasia) or in the semantic aspects of language comprehension (Wernicke's aphasia). Such lesions produce an important reorganization of speech/language-specific brain networks due to an imbalance between cortical facilitation and inhibition. In fact, functional recovery is associated with changes in the excitability of the damaged neural structures and their connections. Two main mechanisms are involved in poststroke aphasia recovery: the recruitment of perilesional regions of the left hemisphere in case of small lesion and the acquisition of language processing ability in homotopic areas of the nondominant right hemisphere when left hemispheric language abilities are permanently lost. There is some evidence that noninvasive cortical stimulation, especially when combined with language therapy or other therapeutic approaches, can promote aphasia recovery. Cortical stimulation was mainly used to either increase perilesional excitability or reduce contralesional activity based on the concept of reciprocal inhibition and maladaptive plasticity. However, recent studies also showed some positive effects of the reinforcement of neural activities in the contralateral right hemisphere, based on the potential compensatory role of the nondominant hemisphere in stroke recovery.

  16. Brain cortical characteristics of lifetime cognitive ageing.

    Science.gov (United States)

    Cox, Simon R; Bastin, Mark E; Ritchie, Stuart J; Dickie, David Alexander; Liewald, Dave C; Muñoz Maniega, Susana; Redmond, Paul; Royle, Natalie A; Pattie, Alison; Valdés Hernández, Maria; Corley, Janie; Aribisala, Benjamin S; McIntosh, Andrew M; Wardlaw, Joanna M; Deary, Ian J

    2018-01-01

    Regional cortical brain volume is the product of surface area and thickness. These measures exhibit partially distinct trajectories of change across the brain's cortex in older age, but it is unclear which cortical characteristics at which loci are sensitive to cognitive ageing differences. We examine associations between change in intelligence from age 11 to 73 years and regional cortical volume, surface area, and thickness measured at age 73 years in 568 community-dwelling older adults, all born in 1936. A relative positive change in intelligence from 11 to 73 was associated with larger volume and surface area in selective frontal, temporal, parietal, and occipital regions (r cognitive ageing and a thinner cortex for any region. Interestingly, thickness and surface area were phenotypically independent across bilateral lateral temporal loci, whose surface area was significantly related to change in intelligence. These findings suggest that associations between regional cortical volume and cognitive ageing differences are predominantly driven by surface area rather than thickness among healthy older adults. Regional brain surface area has been relatively underexplored, and is a potentially informative biomarker for identifying determinants of cognitive ageing differences.

  17. Neuroimaging of malformation of cortical development

    International Nuclear Information System (INIS)

    Zlatareva, D.; Hadjidekov, V.; Tournev, I.; Rossi, A.

    2012-01-01

    Malformations of cortical development (MCD) are heterogeneous group of disease which result from disruption of 3 main stages of cortical development.The common clinical presentation is refractory epilepsy and or developmental delay. The aim of this paper is to describe and analyze magnetic resonance (MR) findings and to present protocol for examination. We analyze MR findings in 17 patients with MCD. The average age was 12,1 year (from 2 months - 57 years). The main indications from reference physician are epilepsy and developmental delay. In 12 patients 1.5T MR was performed, and in 5 - 0.5T. Subependymal heterotopias was found in 6 patients, focal cortical dysplasia - 3. polymicrogyria - 3, schizencephaly - 2, hemimegalencephaly -1, lizencephaly -1, tuberous sclerosis -1. The most common MCD are heterotopias, focal cortical dysplasia, polymicrogyria. schizencephaiy, pachygyria and lizencephaly. In our study the number of patients is not big enough to make a conclusion about frequency of the forms of MCD and our goal is to analyze MR findings which are not well studied in our country. MRI is the method of choice for diagnosis of MCD. The protocol should be different from routine brain protocol to interpret the images with good quality and not miss the pathology. Knowledge of MR findings in MCD would help for genetic counselling in some cases or can predict prognosis in some patients. (authors)

  18. Response variability in balanced cortical networks

    DEFF Research Database (Denmark)

    Lerchner, Alexander; Ursta, C.; Hertz, J.

    2006-01-01

    We study the spike statistics of neurons in a network with dynamically balanced excitation and inhibition. Our model, intended to represent a generic cortical column, comprises randomly connected excitatory and inhibitory leaky integrate-and-fire neurons, driven by excitatory input from an external...

  19. Cortical enhancement in chronic subdural hematoma

    International Nuclear Information System (INIS)

    Taguchi, Yoshio; Sato, Jun; Makita, Tadatoshi; Hayashi, Shigetoshi; Nakamura, Norio.

    1981-01-01

    In the CT findings of chronic subdural hematoma, brain enhancement adjacent to a subdural hematoma was seen occasionally after the injection of a contrast material. The authors called this finding ''cortical enhancement'', and 35 cases of chronic subdural hematoma were studied concerning cortical enhancement in relation to age, clinical signs and symptoms, hematoma density, and volume of the hematoma. Eight cases out of the 35 were subjected to measurements of the regional cerebral blood flow preoperatively by the method of the carotid injection of Xe-133. Cortical enhancement was apt to be seen in the cases which revealed intracranial hypertension or disturbance of consciousness, in isodensity or mixed-density hematomas, and in huge subdural hematomas. There was no specific correlation with age distribution. The pathogenesis of cortical enhancement seemed to be the result of cerebral compression with an increase in the contrast material per unit of volume and a prolonged venous outflow from the hemisphere, but no characteristic feature was detected in the average regional cerebral blood flow in our cases. (author)

  20. Spontaneously emerging cortical representations of visual attributes

    Science.gov (United States)

    Kenet, Tal; Bibitchkov, Dmitri; Tsodyks, Misha; Grinvald, Amiram; Arieli, Amos

    2003-10-01

    Spontaneous cortical activity-ongoing activity in the absence of intentional sensory input-has been studied extensively, using methods ranging from EEG (electroencephalography), through voltage sensitive dye imaging, down to recordings from single neurons. Ongoing cortical activity has been shown to play a critical role in development, and must also be essential for processing sensory perception, because it modulates stimulus-evoked activity, and is correlated with behaviour. Yet its role in the processing of external information and its relationship to internal representations of sensory attributes remains unknown. Using voltage sensitive dye imaging, we previously established a close link between ongoing activity in the visual cortex of anaesthetized cats and the spontaneous firing of a single neuron. Here we report that such activity encompasses a set of dynamically switching cortical states, many of which correspond closely to orientation maps. When such an orientation state emerged spontaneously, it spanned several hypercolumns and was often followed by a state corresponding to a proximal orientation. We suggest that dynamically switching cortical states could represent the brain's internal context, and therefore reflect or influence memory, perception and behaviour.

  1. Rehabilitation of cortical blindness secondary to stroke.

    Science.gov (United States)

    Gaber, Tarek A-Z K

    2010-01-01

    Cortical blindness is a rare complication of posterior circulation stroke. However, its complex presentation with sensory, physical, cognitive and behavioural impairments makes it one of the most challenging. Appropriate approach from a rehabilitation standpoint was never reported. Our study aims to discuss the rehabilitation methods and outcomes of a cohort of patients with cortical blindness. The notes of all patients with cortical blindness referred to a local NHS rehabilitation service in the last 6~years were examined. Patients' demographics, presenting symptoms, scan findings, rehabilitation programmes and outcomes were documented. Seven patients presented to our service, six of them were males. The mean age was 63. Patients 1, 2 and 3 had total blindness with severe cognitive and behavioural impairments, wandering and akathisia. All of them failed to respond to any rehabilitation effort and the focus was on damage limitation. Pharmacological interventions had a modest impact on behaviour and sleep pattern. The 3 patients were discharged to a nursing facility. Patients 4, 5, 6 and 7 had partial blindness with variable severity. All of them suffered from significant memory impairment. However, none suffered from any behavioural, physical or other cognitive impairment. Rehabilitation efforts on 3 patients were carried out collaboratively between brain injury occupational therapists and sensory disability officers. All patients experienced significant improvement in handicap and they all maintained community placements. This small cohort of patients suggests that the rehabilitation philosophy and outcomes of these 2 distinct groups of either total or partial cortical blindness differ significantly.

  2. Critical fluctuations in cortical models near instability

    NARCIS (Netherlands)

    Aburn, M.J.; Holmes, C.A.; Roberts, J.A.; Boonstra, T.W.; Breakspear, M.

    2012-01-01

    Computational studies often proceed from the premise that cortical dynamics operate in a linearly stable domain, where fluctuations dissipate quickly and show only short memory. Studies of human electroencephalography (EEG), however, have shown significant autocorrelation at time lags on the scale

  3. Visualisation of microtubules and actin filaments in fixed BY-2 suspension cells using an optimised whole mount immunolabelling protocol

    NARCIS (Netherlands)

    Szechynska-Hebda, M.; Wedzony, M.; Dubas, E.; Kieft, H.; Lammeren, van A.A.M.

    2006-01-01

    Excellent visualisation of microtubules and actin filaments was obtained in fixed tobacco BY-2 suspension cells after optimising a protocol for whole mount immunolabelling. The procedure is based on modification of fixation, cell wall digestion, dimethyl sulfoxide (DMSO) treatment, post fixation,

  4. The Microtubule Plus-End Tracking Protein CLASP2 Is Required for Hematopoiesis and Hematopoietic Stem Cell Maintenance

    Directory of Open Access Journals (Sweden)

    Ksenija Drabek

    2012-10-01

    Full Text Available Mammalian CLASPs are microtubule plus-end tracking proteins whose essential function as regulators of microtubule behavior has been studied mainly in cultured cells. We show here that absence of murine CLASP2 in vivo results in thrombocytopenia, progressive anemia, and pancytopenia, due to defects in megakaryopoiesis, in erythropoiesis, and in the maintenance of hematopoietic stem cell activity. Furthermore, microtubule stability and organization are affected upon attachment of Clasp2 knockout hematopoietic stem-cell-enriched populations, and these cells do not home efficiently toward their bone marrow niche. Strikingly, CLASP2-deficient hematopoietic stem cells contain severely reduced mRNA levels of c-Mpl, which encodes the thrombopoietin receptor, an essential factor for megakaryopoiesis and hematopoietic stem cell maintenance. Our data suggest that thrombopoietin signaling is impaired in Clasp2 knockout mice. We propose that the CLASP2-mediated stabilization of microtubules is required for proper attachment, homing, and maintenance of hematopoietic stem cells and that this is necessary to sustain c-Mpl transcription.

  5. Changes in DNa and microtubules during loss and re-establishment of desiccation tolerance in germinating Medicago truncatula seeds

    NARCIS (Netherlands)

    Faria, J.M.R.; Buitink, J.; Lammeren, van A.A.M.; Hilhorst, H.W.M.

    2005-01-01

    Desiccation tolerance (DT) in orthodox seeds is acquired during seed development and lost upon imbibition/germination, purportedly upon the resumption of DNA synthesis in the radicle cells. In the present study, flow cytometric analyses and visualization of microtubules (MTs) in radicle cells of

  6. Aggregation of SND1 in Stress Granules is Associated with the Microtubule Cytoskeleton During Heat Shock Stimulus.

    Science.gov (United States)

    Shao, Jie; Gao, Fei; Zhang, Bingbing; Zhao, Meng; Zhou, Yunli; He, Jinyan; Ren, Li; Yao, Zhi; Yang, Jie; Su, Chao; Gao, Xingjie

    2017-12-01

    Stress granules (SGs) are dynamic dense structures in the cytoplasm that form in response to a variety of environmental stress stimuli. Staphylococcal nuclease and Tudor domain containing 1 (SND1) is a type of RNA-binding protein and has been identified as a transcriptional co-activator. Our previous studies have shown that SND1 is a component of the stress granule, which forms under stress conditions. Here, we observed that SND1 granules were often surrounded by ɑ-tubulin-microtubules in 45°C-treated HeLa cells at 15 min or colocalized with microtubules at 30 or 45 min. Furthermore, Nocodazole-mediated microtubule depolymerization could significantly affect the efficient recruitment of SND1 proteins to the SGs during heat shock stress. In addition, the 45°C heat shock mediated the enhancement of eIF2α phosphorylation, which was not affected by treatment with Nocodazole, an agent that disrupts the cytoskeleton. The intact microtubule cytoskeletal tracks are important for the efficient assembly of SND1 granules under heat shock stress and may facilitate SND1 shuttling between cytoplasmic RNA foci. Anat Rec, 300:2192-2199, 2017. © 2017 The Authors The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists. Copyright © 2017 The Authors The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.

  7. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  8. Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation

    International Nuclear Information System (INIS)

    Fogliarini, Celine; Chaumoitre, Katia; Chapon, Frederique; Levrier, Olivier; Girard, Nadine; Fernandez, Carla; Figarella-Branger, Dominique

    2005-01-01

    Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa. (orig.)

  9. Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation

    Energy Technology Data Exchange (ETDEWEB)

    Fogliarini, Celine [Faculte Timone, Centre de Resonance Magnetique Biologique et Medicale, Marseille (France); Chaumoitre, Katia [Hopital Nord, Department of Radiology, Marseille (France); Chapon, Frederique; Levrier, Olivier; Girard, Nadine [Hopital Timone, Department of Neuroradiology, Marseille Cedex 5 (France); Fernandez, Carla; Figarella-Branger, Dominique [Hopital Timone, Department of Pathology, Marseille (France)

    2005-08-01

    Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa. (orig.)

  10. Trajectories of cortical surface area and cortical volume maturation in normal brain development

    Directory of Open Access Journals (Sweden)

    Simon Ducharme

    2015-12-01

    Full Text Available This is a report of developmental trajectories of cortical surface area and cortical volume in the NIH MRI Study of Normal Brain Development. The quality-controlled sample included 384 individual typically-developing subjects with repeated scanning (1–3 per subject, total scans n=753 from 4.9 to 22.3 years of age. The best-fit model (cubic, quadratic, or first-order linear was identified at each vertex using mixed-effects models, with statistical correction for multiple comparisons using random field theory. Analyses were performed with and without controlling for total brain volume. These data are provided for reference and comparison with other databases. Further discussion and interpretation on cortical developmental trajectories can be found in the associated Ducharme et al.׳s article “Trajectories of cortical thickness maturation in normal brain development – the importance of quality control procedures” (Ducharme et al., 2015 [1].

  11. Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine

    International Nuclear Information System (INIS)

    Rathinasamy, Krishnan; Jindal, Bhavya; Asthana, Jayant; Singh, Parminder; Balaji, Petety V; Panda, Dulal

    2010-01-01

    Griseofulvin, an antifungal drug, has recently been shown to inhibit proliferation of various types of cancer cells and to inhibit tumor growth in athymic mice. Due to its low toxicity, griseofulvin has drawn considerable attention for its potential use in cancer chemotherapy. This work aims to understand how griseofulvin suppresses microtubule dynamics in living cells and sought to elucidate the antimitotic and antiproliferative action of the drug. The effects of griseofulvin on the dynamics of individual microtubules in live MCF-7 cells were measured by confocal microscopy. Immunofluorescence microscopy, western blotting and flow cytometry were used to analyze the effects of griseofulvin on spindle microtubule organization, cell cycle progression and apoptosis. Further, interactions of purified tubulin with griseofulvin were studied in vitro by spectrophotometry and spectrofluorimetry. Docking analysis was performed using autodock4 and LigandFit module of Discovery Studio 2.1. Griseofulvin strongly suppressed the dynamic instability of individual microtubules in live MCF-7 cells by reducing the rate and extent of the growing and shortening phases. At or near half-maximal proliferation inhibitory concentration, griseofulvin dampened the dynamicity of microtubules in MCF-7 cells without significantly disrupting the microtubule network. Griseofulvin-induced mitotic arrest was associated with several mitotic abnormalities like misaligned chromosomes, multipolar spindles, misegregated chromosomes resulting in cells containing fragmented nuclei. These fragmented nuclei were found to contain increased concentration of p53. Using both computational and experimental approaches, we provided evidence suggesting that griseofulvin binds to tubulin in two different sites; one site overlaps with the paclitaxel binding site while the second site is located at the αβ intra-dimer interface. In combination studies, griseofulvin and vinblastine were found to exert synergistic

  12. Kinetics of cadmium accumulation and its effects on microtubule integrity and cell viability in the seagrass Cymodocea nodosa

    Energy Technology Data Exchange (ETDEWEB)

    Malea, Paraskevi, E-mail: malea@bio.auth.gr [Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki (Greece); Adamakis, Ioannis-Dimosthenis S. [Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki (Greece); Kevrekidis, Theodoros [Laboratory of Environmental Research and Education, Democritus University of Thrace, Nea Hili, GR-68100 Alexandroupolis (Greece)

    2013-11-15

    Highlights: •Cd effect on microtubules and viability of seagrass leaf cells was assessed. •The Michaelis–Menten equation satisfactorily dercribed the kinetics of Cd uptake. •Cd depolymerized MTs after 3–9 d of exposure, cell death occurred at later time. •Toxicity appeared to depend on Cd uptake rate rather than on tissue Cd content. •MTs can be used as biomarker of Cd stress and uptake rate for predicting effects. -- Abstract: The kinetics of cadmium accumulation and its effects on microtubule cytoskeleton and cell viability in leaf blades of the seagrass Cymodocea nodosa were investigated under laboratory conditions in exposure concentrations ranging from 0.5 to 40 mg L{sup −1}. An initial rapid accumulation of cadmium was followed by a steady state. The Michaelis–Menten model adequately described metal accumulation; equilibrium concentration and uptake velocity tended to increase, whereas bioconcentration factor at equilibrium to decrease, as the exposure concentration increased. Cadmium depolymerized microtubules after 3–9 d of exposure, depending on trace metal concentration, indicating that microtubules could be used as an early biomarker of cadmium stress; cell death, occurring at later time than microtubule disturbance, was also observed. Microtubule depolymerization expressed as percentage of reduction of fluorescence intensity and cell mortality expressed as percentage of live cells increased with time. The lowest experimental tissue concentration associated with the onset of microtubule depolymerization and cell death (98.5–128.9 μg g{sup −1} dry wt, 0.5 mg L{sup −1} treatment, 7th and 9th d) was within the wide range of reported cadmium concentrations in leaves of seagrass species from various geographical areas. This lowest tissue concentration was exceeded up to the 3rd d at higher exposure concentrations, but toxic effects were generally detected at later time. The time periods required for the onset of depolymerization and

  13. Cortical inactivation by cooling in small animals

    Directory of Open Access Journals (Sweden)

    Ben eCoomber

    2011-06-01

    Full Text Available Reversible inactivation of the cortex by surface cooling is a powerful method for studying the function of a particular area. Implanted cooling cryoloops have been used to study the role of individual cortical areas in auditory processing of awake-behaving cats. Cryoloops have also been used in rodents for reversible inactivation of the cortex, but recently there has been a concern that the cryoloop may also cool non-cortical structures either directly or via the perfusion of blood, cooled as it passed close to the cooling loop. In this study we have confirmed that the loop can inactivate most of the auditory cortex without causing a significant reduction in temperature of the auditory thalamus or other sub-cortical structures. We placed a cryoloop on the surface of the guinea pig cortex, cooled it to 2°C and measured thermal gradients across the neocortical surface. We found that the temperature dropped to 20-24°C among cells within a radius of about 2.5mm away from the loop. This temperature drop was sufficient to reduce activity of most cortical cells and led to the inactivation of almost the entire auditory region. When the temperature of thalamus, midbrain, and middle ear were measured directly during cortical cooling, there was a small drop in temperature (about 4°C but this was not sufficient to directly reduce neural activity. In an effort to visualise the extent of neural inactivation we measured the uptake of thallium ions following an intravenous injection. This confirmed that there was a large reduction of activity across much of the ipsilateral cortex and only a small reduction in subcortical structures.

  14. Comparative study on inorganic composition and crystallographic properties of cortical and cancellous bone.

    Science.gov (United States)

    Wang, Xiao-Yan; Zuo, Yi; Huang, Di; Hou, Xian-Deng; Li, Yu-Bao

    2010-12-01

    To comparatively investigate the inorganic composition and crystallographic properties of cortical and cancellous bone via thermal treatment under 700 °C. Thermogravimetric measurement, infrared spectrometer, X-ray diffraction, chemical analysis and X-ray photo-electron spectrometer were used to test the physical and chemical properties of cortical and cancellous bone at room temperature 250 °C, 450 °C, and 650 °C, respectively. The process of heat treatment induced an extension in the a-lattice parameter and changes of the c-lattice parameter, and an increase in the crystallinity reflecting lattice rearrangement after release of lattice carbonate and possible lattice water. The mineral content in cortical and cancellous bone was 73.2wt% and 71.5wt%, respectively. For cortical bone, the weight loss was 6.7% at the temperature from 60 °C to 250 °C, 17.4% from 250 °C to 450 °C, and 2.7% from 450 °C to 700 °C. While the weight loss for the cancellous bone was 5.8%, 19.9%, and 2.8 % at each temperature range, the Ca/P ratio of cortical bone was 1.69 which is higher than the 1.67 of stoichiometric HA due to the B-type CO₃²⁻ substitution in apatite lattice. The Ca/P ratio of cancellous bone was lower than 1.67, suggesting the presence of more calcium deficient apatite. The collagen fibers of cortical bone were arrayed more orderly than those of cancellous bone, while their mineralized fibers ollkded similar. The minerals in both cortical and cancellous bone are composed of poorly crystallized nano-size apatite crystals with lattice carbonate and possible lattice water. The process of heat treatment induces a change of the lattice parameter, resulting in lattice rearrangement after the release of lattice carbonate and lattice water and causing an increase in crystal size and crystallinity. This finding is helpful for future biomaterial design, preparation and application. Copyright © 2010 The Editorial Board of Biomedical and Environmental Sciences

  15. Direct Cytoplasmic Delivery and Nuclear Targeting Delivery of HPMA-MT Conjugates in a Microtubules Dependent Fashion.

    Science.gov (United States)

    Zhong, Jiaju; Zhu, Xi; Luo, Kui; Li, Lian; Tang, Manlin; Liu, Yanxi; Zhou, Zhou; Huang, Yuan

    2016-09-06

    As the hearts of tumor cells, the nucleus is the ultimate target of many chemotherapeutic agents and genes. However, nuclear drug delivery is always hampered by multiple intracellular obstacles, such as low efficiency of lysosome escape and insufficient nuclear trafficking. Herein, an N-(2-hydroxypropyl) methacrylamide (HPMA) polymer-based drug delivery system was designed, which could achieve direct cytoplasmic delivery by a nonendocytic pathway and transport into the nucleus in a microtubules dependent fashion. A special targeting peptide (MT), derived from an endogenic parathyroid hormone-related protein, was conjugated to the polymer backbone, which could accumulate into the nucleus a by microtubule-mediated pathway. The in vitro studies found that low temperature and NaN3 could not influence the cell internalization of the conjugates. Besides, no obvious overlay of the conjugates with lysosome demonstrated that the polymer conjugates could enter the tumor cell cytoplasm by a nonendocytic pathway, thus avoiding the drug degradation in the lysosome. Furthermore, after suppression of the microtubule dynamics with microtubule stabilizing docetaxel (DTX) and destabilizing nocodazole (Noc), the nuclear accumulation of polymeric conjugates was significantly inhibited. Living cells fluorescence recovery after photobleaching study found that the nuclear import rate of conjugates was 2-fold faster compared with the DTX and Noc treated groups. These results demonstrated that the conjugates transported into the nucleus in a microtubules dependent way. Therefore, in addition to direct cytoplasmic delivery, our peptide conjugated polymeric platform could simultaneously mediate nuclear drug accumulation, which may open a new path for further intracellular genes/peptides delivery.

  16. S. pombe CLASP needs dynein, not EB1 or CLIP170, to induce microtubule instability and slows polymerization rates at cell tips in a dynein-dependent manner

    Science.gov (United States)

    Grallert, Agnes; Beuter, Christoph; Craven, Rachel A.; Bagley, Steve; Wilks, Deepti; Fleig, Ursula; Hagan, Iain M.

    2006-01-01

    The Schizosaccharomyces pombe CLIP170-associated protein (CLASP) Peg1 was identified in a screen for mutants with spindle formation defects and a screen for molecules that antagonized EB1 function. The conditional peg1.1 mutant enabled us to identify key features of Peg1 function. First, Peg1 was required to form a spindle and astral microtubules, yet destabilized interphase microtubules. Second, Peg1 was required to slow the polymerization rate of interphase microtubules that establish end-on contact with the cortex at cell tips. Third, Peg1 antagonized the action of S. pombe CLIP170 (Tip1) and EB1 (Mal3). Fourth, although Peg1 resembled higher eukaryotic CLASPs by physically associating with both Mal3 and Tip1, neither Tip1 nor Mal3 was required for Peg1 to destabilize interphase microtubules or for it to associate with microtubules. Conversely, neither Mal3 nor Tip1 required Peg1 to associate with microtubules or cell tips. Consistently, while mal3.Δ and tip1.Δ disrupted linear growth, corrupting peg1 + did not. Fifth, peg1.1 phenotypes resembled those arising from deletion of the single heavy or both light chains of fission yeast dynein. Furthermore, all interphase phenotypes arising from peg1 + manipulation relied on dynein function. Thus, the impact of S. pombe CLASP on interphase microtubule behavior is more closely aligned to dynein than EB1 or CLIP170. PMID:16951255

  17. Centromere Protein (CENP)-W Interacts with Heterogeneous Nuclear Ribonucleoprotein (hnRNP) U and May Contribute to Kinetochore-Microtubule Attachment in Mitotic Cells

    Science.gov (United States)

    Chun, Younghwa; Kim, Raehyung; Lee, Soojin

    2016-01-01

    Background Recent studies have shown that heterogeneous nuclear ribonucleoprotein U (hnRNP U), a component of the hnRNP complex, contributes to stabilize the kinetochore-microtubule interaction during mitosis. CENP-W was identified as an inner centromere component that plays crucial roles in the formation of a functional kinetochore complex. Results We report that hnRNP U interacts with CENP-W, and the interaction between hnRNP U and CENP-W mutually increased each other’s protein stability by inhibiting the proteasome-mediated degradation. Further, their co-localization was observed chiefly in the nuclear matrix region and at the microtubule-kinetochore interface during interphase and mitosis, respectively. Both microtubule-stabilizing and microtubule-destabilizing agents significantly decreased the protein stability of CENP-W. Furthermore, loss of microtubules and defects in microtubule organization were observed in CENP-W-depleted cells. Conclusion Our data imply that CENP-W plays an important role in the attachment and interaction between microtubules and kinetochore during mitosis. PMID:26881882

  18. Spindle pole body-anchored Kar3 drives the nucleus along microtubules from another nucleus in preparation for nuclear fusion during yeast karyogamy.

    Science.gov (United States)

    Gibeaux, Romain; Politi, Antonio Z; Nédélec, François; Antony, Claude; Knop, Michael

    2013-02-01

    Nuclear migration during yeast karyogamy, termed nuclear congression, is required to initiate nuclear fusion. Congression involves a specific regulation of the microtubule minus end-directed kinesin-14 motor Kar3 and a rearrangement of the cytoplasmic microtubule attachment sites at the spindle pole bodies (SPBs). However, how these elements interact to produce the forces necessary for nuclear migration is less clear. We used electron tomography, molecular genetics, quantitative imaging, and first principles modeling to investigate how cytoplasmic microtubules are organized during nuclear congression. We found that Kar3, with the help of its light chain, Cik1, is anchored during mating to the SPB component Spc72 that also serves as a nucleator and anchor for microtubules via their minus ends. Moreover, we show that no direct microtubule-microtubule interactions are required for nuclear migration. Instead, SPB-anchored Kar3 exerts the necessary pulling forces laterally on microtubules emanating from the SPB of the mating partner nucleus. Therefore, a twofold symmetrical application of the core principle that drives nuclear migration in higher cells is used in yeast to drive nuclei toward each other before nuclear fusion.

  19. Widespread cortical thinning in patients with neuromyelitis optica spectrum disorder.

    Science.gov (United States)

    Kim, S-H; Kwak, K; Hyun, J-W; Jeong, I H; Jo, H-J; Joung, A; Kim, J-H; Lee, S H; Yun, S; Joo, J; Lee, J-M; Kim, H J

    2016-07-01

    Studies on cortical involvement and its relationship with cognitive function in patients with neuromyelitis optica spectrum disorder (NMOSD) remain scarce. The objective of this study was to compare cortical thickness on magnetic resonance imaging (MRI) between patients with NMOSD and multiple sclerosis (MS) and to investigate its relationship with clinical features and cognitive function. This observational clinical imaging study of 91 patients with NMOSD, 52 patients with MS and 44 healthy controls was conducted from 1 December 2013 to 30 April 2015 at the institutional referral center. Three tesla MRI of the brain and neuropsychological tests were performed. Cortical thickness was measured using three-dimensional surface-based analysis. Both sets of patients exhibited cortical thinning throughout the entire brain cortex. Patients with MS showed a significantly greater reduction in cortical thickness over broad regions of the bilateral frontal and parieto-temporal cortices and the left precuneus compared to those with NMOSD. Memory functions in patients with MS were correlated with broad regional cortical thinning, whereas no significant associations were observed between cortical thickness and cognitive function in patients with NMOSD. Widespread cortical thinning was observed in patients with NMOSD and MS, but the extent of cortical thinning was greater in patients with MS. The more severe cortical atrophy may contribute to memory impairment in patients with MS but not in those with NMOSD. These results provide in vivo evidence that the severity and clinical relevance of cortical thinning differ between NMOSD and MS. © 2016 EAN.

  20. Person identification based on multiscale matching of cortical images

    NARCIS (Netherlands)

    Kruizinga, P; Petkov, N; Hertzberger, B; Serazzi, G

    1995-01-01

    A set of so-called cortical images, motivated by the function of simple cells in the primary visual cortex of mammals, is computed from each of two input images and an image pyramid is constructed for each cortical image. The two sets of cortical image pyramids are matched synchronously and an

  1. Cortical gyrification is abnormal in children with prenatal alcohol exposure

    Directory of Open Access Journals (Sweden)

    Timothy J. Hendrickson

    2017-01-01

    Conclusions: Abnormalities in cortical development were seen across the brain in children with PAE compared to controls. Cortical gyrification and IQ were strongly correlated, suggesting that examining mechanisms by which alcohol disrupts cortical formation may yield clinically relevant insights and potential directions for early intervention.

  2. A review of array radars

    Science.gov (United States)

    Brookner, E.

    1981-10-01

    Achievements in the area of array radars are illustrated by such activities as the operational deployment of the large high-power, high-range-resolution Cobra Dane; the operational deployment of two all-solid-state high-power, large UHF Pave Paws radars; and the development of the SAM multifunction Patriot radar. This paper reviews the following topics: array radars steered in azimuth and elevation by phase shifting (phase-phase steered arrays); arrays steered + or - 60 deg, limited scan arrays, hemispherical coverage, and omnidirectional coverage arrays; array radars steering electronically in only one dimension, either by frequency or by phase steering; and array radar antennas which use no electronic scanning but instead use array antennas for achieving low antenna sidelobes.

  3. Cancer physics: diagnostics based on damped cellular elastoelectrical vibrations in microtubules.

    Science.gov (United States)

    Pokorný, Jiří; Vedruccio, Clarbruno; Cifra, Michal; Kučera, Ondřej

    2011-06-01

    This paper describes a proposed biophysical mechanism of a novel diagnostic method for cancer detection developed recently by Vedruccio. The diagnostic method is based on frequency selective absorption of electromagnetic waves by malignant tumors. Cancer is connected with mitochondrial malfunction (the Warburg effect) suggesting disrupted physical mechanisms. In addition to decreased energy conversion and nonutilized energy efflux, mitochondrial malfunction is accompanied by other negative effects in the cell. Diminished proton space charge layer and the static electric field around the outer membrane result in a lowered ordering level of cellular water and increased damping of microtubule-based cellular elastoelectrical vibration states. These changes manifest themselves in a dip in the amplitude of the signal with the fundamental frequency of the nonlinear microwave oscillator-the core of the diagnostic device-when coupled to the investigated cancerous tissue via the near-field. The dip is not present in the case of healthy tissue.

  4. Role of animal pole protuberance and microtubules during meiosis in sea cucumber Apostichopus japonicus oocytes

    Science.gov (United States)

    Pang, Zhenguo; Chang, Yaqing; Sun, Huiling; Yu, Jiaping

    2010-05-01

    Fully grown oocytes of Apostichopus japonicus have a cytoplasmic protuberance where the oocyte attaches to the follicle. The protuberance and the oolamina located on the opposite side of the oocyte indicate the animal-vegetal axis. Two pre-meiotic centrosomes are anchored to the protuberance by microtubules between centrosomes and protuberance. After meiosis reinitiation induced by DTT solution, the germinal vesicle (GV) migrates towards the protuberance. The GV breaks down after it migrates to the oocyte membrane on the protuberance side. The protuberance then contracts back into the oocyte and the first polar body extrudes from the site of the former protuberance. The second polar body forms beneath the first. Thus the oocyte protuberance indicates the presumptive animal pole well before maturation of the oocyte.

  5. Long-range cargo transport on crowded microtubules: The motor jamming mechanism

    Science.gov (United States)

    Rossi, Lucas W.; Radtke, Paul K.; Goldman, Carla

    2014-05-01

    The hopping model for cargo transport by molecular motors introduced in Goldman and Sena (2009), Goldman (2010) is extended here in order to incorporate the movement of cargo-motor complexes (C-MC). Hopping processes in this context express the possibility for cargo to be exchanged between neighboring motors at a microtubule where the transport takes place. Jamming of motors is essential for cargos to execute long-range movement in this way. Results from computer simulations accompanied by a mean-field analysis of the extended model confirm our previous analytical results and suggests that an interplay between cargo hopping and the movement of the C-MC’s would control the efficiency of cargo transfer and cargo delivery in these model systems.

  6. Mechanical splitting of microtubules into protofilament bundles by surface-bound kinesin-1.

    Science.gov (United States)

    VanDelinder, Virginia; Adams, Peter G; Bachand, George D

    2016-12-21

    The fundamental biophysics of gliding microtubule (MT) motility by surface-tethered kinesin-1 motor proteins has been widely studied, as well as applied to capture and transport analytes in bioanalytical microdevices. In these systems, phenomena such as molecular wear and fracture into shorter MTs have been reported due the mechanical forces applied on the MT during transport. In the present work, we show that MTs can be split longitudinally into protofilament bundles (PFBs) by the work performed by surface-bound kinesin motors. We examine the properties of these PFBs using several techniques (e.g., fluorescence microscopy, SEM, AFM), and show that the PFBs continue to be mobile on the surface and display very high curvature compared to MT. Further, higher surface density of kinesin motors and shorter kinesin-surface tethers promote PFB formation, whereas modifying MT with GMPCPP or higher paclitaxel concentrations did not affect PFB formation.

  7. Direct measurement of conformational strain energy in protofilaments curling outward from disassembling microtubule tips.

    Science.gov (United States)

    Driver, Jonathan W; Geyer, Elisabeth A; Bailey, Megan E; Rice, Luke M; Asbury, Charles L

    2017-06-19

    Disassembling microtubules can generate movement independently of motor enzymes, especially at kinetochores where they drive chromosome motility. A popular explanation is the 'conformational wave' model, in which protofilaments pull on the kinetochore as they curl outward from a disassembling tip. But whether protofilaments can work efficiently via this spring-like mechanism has been unclear. By modifying a previous assay to use recombinant tubulin and feedback-controlled laser trapping, we directly demonstrate the spring-like elasticity of curling protofilaments. Measuring their mechanical work output suggests they carry ~25% of the energy of GTP hydrolysis as bending strain, enabling them to drive movement with efficiency similar to conventional motors. Surprisingly, a β-tubulin mutant that dramatically slows disassembly has no effect on work output, indicating an uncoupling of disassembly speed from protofilament strain. These results show the wave mechanism can make a major contribution to kinetochore motility and establish a direct approach for measuring tubulin mechano-chemistry.

  8. TIP maker and TIP marker; EB1 as a master controller of microtubule plus ends.

    Science.gov (United States)

    Vaughan, Kevin T

    2005-10-24

    The EB1 protein is a member of the exciting and enigmatic family of microtubule (MT) tip-tracking proteins. EB1 acts as an exquisite marker of dynamic MT plus ends in some cases, whereas in others EB1 is thought to directly dictate the behavior of the plus ends. How EB1 differentiates between these two roles remains unclear; however, a growing list of interactions between EB1 and other MT binding proteins suggests there may be a single mechanism. Adding another layer of complexity to these interactions, two studies published in this issue implicate EB1 in cross-talk between mitotic MTs and between MTs and actin filaments (Goshima et al., p. 229; Wu et al., p. 201). These results raise the possibility that EB1 is a central player in MT-based transport, and that the activity of MT-binding proteins depends on their ability or inability to interact with EB1.

  9. Duplication and Nuclear Envelope Insertion of the Yeast Microtubule Organizing Centre, the Spindle Pole Body

    Directory of Open Access Journals (Sweden)

    Diana Rüthnick

    2018-05-01

    Full Text Available The main microtubule organizing centre in the unicellular model organisms Saccharomyces cerevisiae and Schizosaccharomyces pompe is the spindle pole body (SPB. The SPB is a multilayer structure, which duplicates exactly once per cell cycle. Unlike higher eukaryotic cells, both yeast model organisms undergo mitosis without breakdown of the nuclear envelope (NE, a so-called closed mitosis. Therefore, in order to simultaneously nucleate nuclear and cytoplasmic MTs, it is vital to embed the SPB into the NE at least during mitosis, similarly to the nuclear pore complex (NPC. This review aims to embrace the current knowledge of the SPB duplication cycle with special emphasis on the critical step of the insertion of the new SPB into the NE.

  10. Detector array and method

    International Nuclear Information System (INIS)

    Timothy, J.G.; Bybee, R.L.

    1978-01-01

    A detector array and method are described in which sets of electrode elements are provided. Each set consists of a number of linear extending parallel electrodes. The sets of electrode elements are disposed at an angle (preferably orthogonal) with respect to one another so that the individual elements intersect and overlap individual elements of the other sets. Electrical insulation is provided between the overlapping elements. The detector array is exposed to a source of charged particles which in accordance with one embodiment comprise electrons derived from a microchannel array plate exposed to photons. Amplifier and discriminator means are provided for each individual electrode element. Detection means are provided to sense pulses on individual electrode elements in the sets, with coincidence of pulses on individual intersecting electrode elements being indicative of charged particle impact at the intersection of the elements. Electronic readout means provide an indication of coincident events and the location where the charged particle or particles impacted. Display means are provided for generating appropriate displays representative of the intensity and locaton of charged particles impacting on the detector array

  11. Diode lasers and arrays

    International Nuclear Information System (INIS)

    Streifer, W.

    1988-01-01

    This paper discusses the principles of operation of III-V semiconductor diode lasers, the use of distributed feedback, and high power laser arrays. The semiconductor laser is a robust, miniature, versatile device, which directly converts electricity to light with very high efficiency. Applications to pumping solid-state lasers and to fiber optic and point-to-point communications are reviewed

  12. Array Theory and Nial

    DEFF Research Database (Denmark)

    Falster, Peter; Jenkins, Michael

    1999-01-01

    This report is the result of collaboration between the authors during the first 8 months of 1999 when M. Jenkins was visiting professor at DTU. The report documents the development of a tool for the investigation of array theory concepts and in particular presents various approaches to choose...

  13. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Conchouso Gonzalez, David; Castro, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT

  14. Short-term memory in networks of dissociated cortical neurons.

    Science.gov (United States)

    Dranias, Mark R; Ju, Han; Rajaram, Ezhilarasan; VanDongen, Antonius M J

    2013-01-30

    Short-term memory refers to the ability to store small amounts of stimulus-specific information for a short period of time. It is supported by both fading and hidden memory processes. Fading memory relies on recurrent activity patterns in a neuronal network, whereas hidden memory is encoded using synaptic mechanisms, such as facilitation, which persist even when neurons fall silent. We have used a novel computational and optogenetic approach to investigate whether these same memory processes hypothesized to support pattern recognition and short-term memory in vivo, exist in vitro. Electrophysiological activity was recorded from primary cultures of dissociated rat cortical neurons plated on multielectrode arrays. Cultures were transfected with ChannelRhodopsin-2 and optically stimulated using random dot stimuli. The pattern of neuronal activity resulting from this stimulation was analyzed using classification algorithms that enabled the identification of stimulus-specific memories. Fading memories for different stimuli, encoded in ongoing neural activity, persisted and could be distinguished from each other for as long as 1 s after stimulation was terminated. Hidden memories were detected by altered responses of neurons to additional stimulation, and this effect persisted longer than 1 s. Interestingly, network bursts seem to eliminate hidden memories. These results are similar to those that have been reported from similar experiments in vivo and demonstrate that mechanisms of information processing and short-term memory can be studied using cultured neuronal networks, thereby setting the stage for therapeutic applications using this platform.

  15. Ethanol exposure disrupts extraembryonic microtubule cytoskeleton and embryonic blastomere cell adhesion, producing epiboly and gastrulation defects

    Directory of Open Access Journals (Sweden)

    Swapnalee Sarmah

    2013-08-01

    Fetal alcohol spectrum disorder (FASD occurs when pregnant mothers consume alcohol, causing embryonic ethanol exposure and characteristic birth defects that include craniofacial, neural and cardiac defects. Gastrulation is a particularly sensitive developmental stage for teratogen exposure, and zebrafish is an outstanding model to study gastrulation and FASD. Epiboly (spreading blastomere cells over the yolk cell, prechordal plate migration and convergence/extension cell movements are sensitive to early ethanol exposure. Here, experiments are presented that characterize mechanisms of ethanol toxicity on epiboly and gastrulation. Epiboly mechanisms include blastomere radial intercalation cell movements and yolk cell microtubule cytoskeleton pulling the embryo to the vegetal pole. Both of these processes were disrupted by ethanol exposure. Ethanol effects on cell migration also indicated that cell adhesion was affected, which was confirmed by cell aggregation assays. E-cadherin cell adhesion molecule expression was not affected by ethanol exposure, but E-cadherin distribution, which controls epiboly and gastrulation, was changed. E-cadherin was redistributed into cytoplasmic aggregates in blastomeres and dramatically redistributed in the extraembryonic yolk cell. Gene expression microarray analysis was used to identify potential causative factors for early development defects, and expression of the cell adhesion molecule protocadherin-18a (pcdh18a, which controls epiboly, was significantly reduced in ethanol exposed embryos. Injecting pcdh18a synthetic mRNA in ethanol treated embryos partially rescued epiboly cell movements, including enveloping layer cell shape changes. Together, data show that epiboly and gastrulation defects induced by ethanol are multifactorial, and include yolk cell (extraembryonic tissue microtubule cytoskeleton disruption and blastomere adhesion defects, in part caused by reduced pcdh18a expression.

  16. Chromosome Bridges Maintain Kinetochore-Microtubule Attachment throughout Mitosis and Rarely Break during Anaphase.

    Science.gov (United States)

    Pampalona, Judit; Roscioli, Emanuele; Silkworth, William T; Bowden, Brent; Genescà, Anna; Tusell, Laura; Cimini, Daniela

    2016-01-01

    Accurate chromosome segregation during cell division is essential to maintain genome stability, and chromosome segregation errors are causally linked to genetic disorders and cancer. An anaphase chromosome bridge is a particular chromosome segregation error observed in cells that enter mitosis with fused chromosomes/sister chromatids. The widely accepted Breakage/Fusion/Bridge cycle model proposes that anaphase chromosome bridges break during mitosis to generate chromosome ends that will fuse during the following cell cycle, thus forming new bridges that will break, and so on. However, various studies have also shown a link between chromosome bridges and aneuploidy and/or polyploidy. In this study, we investigated the behavior and properties of chromosome bridges during mitosis, with the idea to gain insight into the potential mechanism underlying chromosome bridge-induced aneuploidy. We find that only a small number of chromosome bridges break during anaphase, whereas the rest persist through mitosis into the subsequent cell cycle. We also find that the microtubule bundles (k-fibers) bound to bridge kinetochores are not prone to breakage/detachment, thus supporting the conclusion that k-fiber detachment is not the cause of chromosome bridge-induced aneuploidy. Instead, our data suggest that while the