WorldWideScience

Sample records for cortical inhibition deficits

  1. Reduced short interval cortical inhibition correlates with atomoxetine response in children with attention-deficit hyperactivity disorder (ADHD).

    Science.gov (United States)

    Chen, Tina H; Wu, Steve W; Welge, Jeffrey A; Dixon, Stephan G; Shahana, Nasrin; Huddleston, David A; Sarvis, Adam R; Sallee, Floyd R; Gilbert, Donald L

    2014-12-01

    Clinical trials in children with attention-deficit hyperactivity disorder (ADHD) show variability in behavioral responses to the selective norepinephrine reuptake inhibitor atomoxetine. The objective of this study was to determine whether transcranial magnetic stimulation-evoked short interval cortical inhibition might be a biomarker predicting, or correlating with, clinical atomoxetine response. At baseline and after 4 weeks of atomoxetine treatment in 7- to 12-year-old children with ADHD, transcranial magnetic stimulation short interval cortical inhibition was measured, blinded to clinical improvement. Primary analysis was by multivariate analysis of covariance. Baseline short interval cortical inhibition did not predict clinical responses. However, paradoxically, after 4 weeks of atomoxetine, mean short interval cortical inhibition was reduced 31.9% in responders and increased 6.1% in nonresponders (analysis of covariance t 41 = 2.88; P = .0063). Percentage reductions in short interval cortical inhibition correlated with reductions in the ADHD Rating Scale (r = 0.50; P = .0005). In children ages 7 to 12 years with ADHD treated with atomoxetine, improvements in clinical symptoms are correlated with reductions in motor cortex short interval cortical inhibition. © The Author(s) 2014.

  2. Clozapine potentiation of GABA mediated cortical inhibition in treatment resistant schizophrenia.

    Science.gov (United States)

    Kaster, Tyler S; de Jesus, Danilo; Radhu, Natasha; Farzan, Faranak; Blumberger, Daniel M; Rajji, Tarek K; Fitzgerald, Paul B; Daskalakis, Zafiris J

    2015-07-01

    Cortical inhibition (CI) deficits have been demonstrated in schizophrenia using transcranial magnetic stimulation (TMS). These CI deficits may be related to decreased GABA activity which may be involved in schizophrenia pathophysiology. Previous cross-sectional studies have also demonstrated greater CI in patients treated with clozapine than other typical/atypical antipsychotics. However, it is not clear if these differences in CI are a result of treatment-resistant illness which necessitates clozapine or are related to clozapine treatment. TMS measures of CI (i.e., cortical silent period (CSP) and short-interval cortical inhibition (SICI)) were measured over the motor cortex in 16 patients with schizophrenia before starting clozapine, then 6 weeks and 6 months after starting clozapine. CSP was significantly longer after 6 weeks of treatment with clozapine (p=0.014). From 6 weeks to 6 months, there was no significant difference in CSP (p>0.05). Short-interval cortical inhibition (SICI) was not significantly different at any time after treatment with clozapine (p>0.05). This prospective-longitudinal study demonstrates that treatment with clozapine is associated with an increase in GABAB mediated inhibitory neurotransmission. Potentiation of GABAB may be a novel neurotransmitter mechanism that is involved in the pathophysiology and treatment of schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Altered cortical processing of motor inhibition in schizophrenia.

    Science.gov (United States)

    Lindberg, Påvel G; Térémetz, Maxime; Charron, Sylvain; Kebir, Oussama; Saby, Agathe; Bendjemaa, Narjes; Lion, Stéphanie; Crépon, Benoît; Gaillard, Raphaël; Oppenheim, Catherine; Krebs, Marie-Odile; Amado, Isabelle

    2016-12-01

    Inhibition is considered a key mechanism in schizophrenia. Short-latency intracortical inhibition (SICI) in the motor cortex is reduced in schizophrenia and is considered to reflect locally deficient γ-aminobutyric acid (GABA)-ergic modulation. However, it remains unclear how SICI is modulated during motor inhibition and how it relates to neural processing in other cortical areas. Here we studied motor inhibition Stop signal task (SST) in stabilized patients with schizophrenia (N = 28), healthy siblings (N = 21) and healthy controls (n = 31) matched in general cognitive status and educational level. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) were used to investigate neural correlates of motor inhibition. SST performance was similar in patients and controls. SICI was modulated by the task as expected in healthy controls and siblings but was reduced in patients with schizophrenia during inhibition despite equivalent motor inhibition performance. fMRI showed greater prefrontal and premotor activation during motor inhibition in schizophrenia. Task-related modulation of SICI was higher in subjects who showed less inhibition-related activity in pre-supplementary motor area (SMA) and cingulate motor area. An exploratory genetic analysis of selected markers of inhibition (GABRB2, GAD1, GRM1, and GRM3) did not explain task-related differences in SICI or cortical activation. In conclusion, this multimodal study provides direct evidence of a task-related deficiency in SICI modulation in schizophrenia likely reflecting deficient GABA-A related processing in motor cortex. Compensatory activation of premotor areas may explain similar motor inhibition in patients despite local deficits in intracortical processing. Task-related modulation of SICI may serve as a useful non-invasive GABAergic marker in development of therapeutic strategies in schizophrenia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Deficits in Beam-Walking After Neonatal Motor Cortical Lesions are not Spared by Fetal Cortical Transplants in Rats

    OpenAIRE

    Swenson, R. S.; Danielsen, E. H.; Klausen, B. S.; Erlich, E.; Zimmer, J.; Castro, A. J.

    1989-01-01

    Adult rats that sustained unilateral motor cortical lesions at birth demonstrated deficits in traversing an elevated narrow beam. These deficits, manifested by hindlimb slips off the edge of the beam, were not spared in animals that received fetal cortical transplants into the lesion cavity immediately after lesion placement.

  5. Somatostatin-Positive Gamma-Aminobutyric Acid Interneuron Deficits in Depression: Cortical Microcircuit and Therapeutic Perspectives.

    Science.gov (United States)

    Fee, Corey; Banasr, Mounira; Sibille, Etienne

    2017-10-15

    The functional integration of external and internal signals forms the basis of information processing and is essential for higher cognitive functions. This occurs in finely tuned cortical microcircuits whose functions are balanced at the cellular level by excitatory glutamatergic pyramidal neurons and inhibitory gamma-aminobutyric acidergic (GABAergic) interneurons. The balance of excitation and inhibition, from cellular processes to neural network activity, is characteristically disrupted in multiple neuropsychiatric disorders, including major depressive disorder (MDD), bipolar disorder, anxiety disorders, and schizophrenia. Specifically, nearly 3 decades of research demonstrate a role for reduced inhibitory GABA level and function across disorders. In MDD, recent evidence from human postmortem and animal studies suggests a selective vulnerability of GABAergic interneurons that coexpress the neuropeptide somatostatin (SST). Advances in cell type-specific molecular genetics have now helped to elucidate several important roles for SST interneurons in cortical processing (regulation of pyramidal cell excitatory input) and behavioral control (mood and cognition). Here, we review evidence for altered inhibitory function arising from GABAergic deficits across disorders and specifically in MDD. We then focus on properties of the cortical microcircuit, where SST-positive GABAergic interneuron deficits may disrupt functioning in several ways. Finally, we discuss the putative origins of SST cell deficits, as informed by recent research, and implications for therapeutic approaches. We conclude that deficits in SST interneurons represent a contributing cellular pathology and therefore a promising target for normalizing altered inhibitory function in MDD and other disorders with reduced SST cell and GABA functions. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Altered brain structural networks in attention deficit/hyperactivity disorder children revealed by cortical thickness.

    Science.gov (United States)

    Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue

    2017-07-04

    This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.

  7. Lateralized occipital degeneration in posterior cortical atrophy predicts visual field deficits.

    Science.gov (United States)

    Millington, Rebecca S; James-Galton, Merle; Maia Da Silva, Mari N; Plant, Gordon T; Bridge, Holly

    2017-01-01

    Posterior cortical atrophy (PCA), the visual variant of Alzheimer's disease, leads to high-level visual deficits such as alexia or agnosia. Visual field deficits have also been identified, but often inconsistently reported. Little is known about the pattern of visual field deficits or the underlying cortical changes leading to this visual loss. Multi-modal magnetic resonance imaging was used to investigate differences in gray matter volume, cortical thickness, white matter microstructure and functional activity in patients with PCA compared to age-matched controls. Additional analyses investigated hemispheric asymmetries in these metrics according to the visual field most affected by the disease. Analysis of structural data indicated considerable loss of gray matter in the occipital and parietal cortices, lateralized to the hemisphere contralateral to the visual loss. This lateralized pattern of gray matter loss was also evident in the hippocampus and parahippocampal gyrus. Diffusion-weighted imaging showed considerable effects of PCA on white matter microstructure in the occipital cortex, and in the corpus callosum. The change in white matter was only lateralized in the occipital lobe, however, with greatest change in the optic radiation contralateral to the visual field deficit. Indeed, there was a significant correlation between the laterality of the optic radiation microstructure and visual field loss. Detailed brain imaging shows that the asymmetric visual field deficits in patients with PCA reflect the pattern of degeneration of both white and gray matter in the occipital lobe. Understanding the nature of both visual field deficits and the neurodegenerative brain changes in PCA may improve diagnosis and understanding of this disease.

  8. Deficits in novelty exploration after controlled cortical impact.

    Science.gov (United States)

    Wagner, Amy K; Postal, Brett A; Darrah, Shaun D; Chen, Xiangbai; Khan, Amina S

    2007-08-01

    Experimental models of traumatic brain injury (TBI) have been utilized to characterize the behavioral derangements associated with brain trauma. Several studies exist characterizing motor function in the controlled cortical impact (CCI) injury model of TBI, but less research has focused on how CCI affects exploratory behavior. The goal of this study was to characterize deficits in three novelty exploration tasks after the CCI. Under anesthesia, 37 adult male Sprague Dawley rats received CCI (2.7 mm and 2.9 mm; 4 m/sec) over the right parietal cortex or sham surgery. For days 1-6 post-surgery, the beam balance and beam walking tasks were used to assess motor deficits. The Open Field, Y-Maze, and Free Choice Novelty (FCN) tasks were used to measure exploratory deficits from days 7-14 post-surgery. Injured rats displayed a significant, but transient, deficit on each motor task (p Open Field results showed that injured rats had lower activity levels than shams (p time in the novel arm versus the familiar arms when compared to shams (p time and had fewer interactions with objects in the novel environment compared to shams (p < 0.05). These results suggest that several ethological factors contribute to exploratory deficits after CCI and can be effectively characterized with the behavioral tasks described. Future work will utilize these tasks to evaluate the neural substrates underlying exploratory deficits after TBI.

  9. Persistent spatial working memory deficits in rats with bilateral cortical microgyria

    Directory of Open Access Journals (Sweden)

    Rosen Glenn D

    2008-10-01

    Full Text Available Abstract Background Anomalies of cortical neuronal migration (e.g., microgyria (MG and/or ectopias are associated with a variety of language and cognitive deficits in human populations. In rodents, postnatal focal freezing lesions lead to the formation of cortical microgyria similar to those seen in human dyslexic brains, and also cause subsequent deficits in rapid auditory processing similar to those reported in human language impaired populations. Thus convergent findings support the ongoing study of disruptions in neuronal migration in rats as a putative model to provide insight on human language disability. Since deficits in working memory using both verbal and non-verbal tasks also characterize dyslexic populations, the present study examined the effects of neonatally induced bilateral cortical microgyria (MG on working memory in adult male rats. Methods A delayed match-to-sample radial water maze task, in which the goal arm was altered among eight locations on a daily basis, was used to assess working memory performance in MG (n = 8 and sham (n = 10 littermates. Results Over a period of 60 sessions of testing (each session comprising one pre-delay sample trial, and one post-delay test trial, all rats showed learning as evidenced by a significant decrease in overall test errors. However, MG rats made significantly more errors than shams during initial testing, and this memory deficit was still evident after 60 days (12 weeks of testing. Analyses performed on daily error patterns showed that over the course of testing, MG rats utilized a strategy similar to shams (but with less effectiveness, as indicated by more errors. Conclusion These results indicate persistent abnormalities in the spatial working memory system in rats with induced disruptions of neocortical neuronal migration.

  10. Cortical Inhibition in Attention Deficit Hyperactivity Disorder: New Insights from the Electroencephalographic Response to Transcranial Magnetic Stimulation

    Science.gov (United States)

    Bruckmann, Sarah; Hauk, Daniela; Roessner, Veit; Resch, Franz; Freitag, Christine M.; Kammer, Thomas; Ziemann, Ulf; Rothenberger, Aribert; Weisbrod, Matthias; Bender, Stephan

    2012-01-01

    Attention deficit hyperactivity disorder is one of the most frequent neuropsychiatric disorders in childhood. Transcranial magnetic stimulation studies based on muscle responses (motor-evoked potentials) suggested that reduced motor inhibition contributes to hyperactivity, a core symptom of the disease. Here we employed the N100 component of the…

  11. Prepotent response inhibition predicts treatment outcome in attention deficit/hyperactivity disorder

    NARCIS (Netherlands)

    van der Oord, S.; Geurts, H.M.; Prins, P.J.M.; Emmelkamp, P.M.G.; Oosterlaan, J.

    2012-01-01

    Objective: Inhibition deficits, including deficits in prepotent response inhibition and interference control, are core deficits in ADHD. The predictive value of prepotent response inhibition and interference control was assessed for outcome in a 10-week treatment trial with methylphenidate. Methods:

  12. Scrupulosity and contamination OCD are not associated with deficits in response inhibition.

    Science.gov (United States)

    Rasmussen, Jessica; Siev, Jedidiah; Abramovitch, Amitai; Wilhelm, Sabine

    2016-03-01

    Prior research has indicated a number of neuropsychological deficits in patients with OCD consistent with the cortico-striato-thalamo-cortical model of the disorder. Response inhibition (RI), defined as the inability to inhibit a prepotent response, has been identified as a possible candidate endophenotype for OCD. However, the results from previous studies of RI in OCD patients have been mixed, suggesting the possibility that some OCD dimensions may be associated with deficits in RI while others may not. The present study aimed to examine RI using a Go/No-Go (GNG) task in two OCD symptom dimensions, one of which, scrupulosity, has never been subject to neuropsychological investigation. A total of 63 individuals, consisting of scrupulous OCD (n = 26), contamination OCD (n = 18) and non-psychiatric controls (n = 19) completed study measures. Controlling for depression symptoms, no significant performance differences were found between the groups on the GNG test, indicating no deficits in RI among contamination or scrupulous OCD. Results are consistent with several prior studies of RI in OCD that found no differences as compared to non-psychiatric controls, especially on GNG tests, and with more recent suggestions that RI may not constitute a clinical significant impaired domain in OCD. Limitations included a primarily highly educated and Caucasian sample. Additional conclusions include careful consideration of the RI measures selected for future studies, as well as the need for further investigation into the neuropsychological and neurobiological nature of scrupulous OCD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Poor response inhibition: at the nexus between substance abuse and attention deficit/hyperactivity disorder.

    Science.gov (United States)

    Groman, Stephanie M; James, Alex S; Jentsch, J David

    2009-05-01

    The co-morbidity between attention deficit hyperactivity disorder (ADHD) and substance abuse and dependence disorders may have multiple causes and consequences. In this review, we will describe neurobehavioral, genetic and animal model studies that support the notion that a common, genetically determined failure of response inhibition function is an endophenotype for both disorders. Through an impairment in the ability to cognitively control pre-potent behaviors, subjects can exhibit a collection of ADHD-like traits (impulsivity and hyperactivity), as well as susceptibility for the initiation of drug taking and its ultimate progression to an inflexible, uncontrollable form. At the neural level, dysfunction within circuitry that includes the ventrolateral frontal and cingulate cortices, as well as in associated basal ganglia zones, contributes to a common pattern of behavioral impairment, explaining aspects of co-morbidity. Animal models of substance abuse/dependence and ADHD that exhibit deficits in response inhibition have substantiated the role of this endophenotype in both disorders and their co-morbidity and should provide a testing ground for interventions targeting it. New directions for research that will further explore this hypothesis and begin to reveal the underlying biological mechanisms will be proposed.

  14. Inhibition deficits in individuals with intellectual disability: a meta-regression analysis

    NARCIS (Netherlands)

    Bexkens, A.; Ruzzano, L.; Collot D'Escury-Koenigs, A.M.L.; van der Molen, M.W.; Huizenga, H.M.

    2014-01-01

    Background: Individuals with intellectual disabilities (ID) are characterised by inhibition deficits; however, the magnitude of these deficits is still subject to debate. This meta-analytic study therefore has two aims: first to assess the magnitude of inhibition deficits in ID, and second to

  15. Scaling Up Cortical Control Inhibits Pain

    Directory of Open Access Journals (Sweden)

    Jahrane Dale

    2018-05-01

    Full Text Available Summary: Acute pain evokes protective neural and behavioral responses. Chronic pain, however, disrupts normal nociceptive processing. The prefrontal cortex (PFC is known to exert top-down regulation of sensory inputs; unfortunately, how individual PFC neurons respond to an acute pain signal is not well characterized. We found that neurons in the prelimbic region of the PFC increased firing rates of the neurons after noxious stimulations in free-moving rats. Chronic pain, however, suppressed both basal spontaneous and pain-evoked firing rates. Furthermore, we identified a linear correlation between basal and evoked firing rates of PFC neurons, whereby a decrease in basal firing leads to a nearly 2-fold reduction in pain-evoked response in chronic pain states. In contrast, enhancing basal PFC activity with low-frequency optogenetic stimulation scaled up prefrontal outputs to inhibit pain. These results demonstrate a cortical gain control system for nociceptive regulation and establish scaling up prefrontal outputs as an effective neuromodulation strategy to inhibit pain. : Dale et al. find that acute pain increases activity levels in the prefrontal cortex. Chronic pain reduces both basal spontaneous and pain-evoked activity in this region, whereas neurostimulation to restore basal activities can in turn enhance nociception-evoked prefrontal activities to inhibit pain. Keywords: chronic pain, neuromodulation, prefrontal cortex, PFC, cortical gain control

  16. Prepulse inhibition of auditory change-related cortical responses

    Directory of Open Access Journals (Sweden)

    Inui Koji

    2012-10-01

    Full Text Available Abstract Background Prepulse inhibition (PPI of the startle response is an important tool to investigate the biology of schizophrenia. PPI is usually observed by use of a startle reflex such as blinking following an intense sound. A similar phenomenon has not been reported for cortical responses. Results In 12 healthy subjects, change-related cortical activity in response to an abrupt increase of sound pressure by 5 dB above the background of 65 dB SPL (test stimulus was measured using magnetoencephalography. The test stimulus evoked a clear cortical response peaking at around 130 ms (Change-N1m. In Experiment 1, effects of the intensity of a prepulse (0.5 ~ 5 dB on the test response were examined using a paired stimulation paradigm. In Experiment 2, effects of the interval between the prepulse and test stimulus were examined using interstimulus intervals (ISIs of 50 ~ 350 ms. When the test stimulus was preceded by the prepulse, the Change-N1m was more strongly inhibited by a stronger prepulse (Experiment 1 and a shorter ISI prepulse (Experiment 2. In addition, the amplitude of the test Change-N1m correlated positively with both the amplitude of the prepulse-evoked response and the degree of inhibition, suggesting that subjects who are more sensitive to the auditory change are more strongly inhibited by the prepulse. Conclusions Since Change-N1m is easy to measure and control, it would be a valuable tool to investigate mechanisms of sensory gating or the biology of certain mental diseases such as schizophrenia.

  17. Thalamo-Cortical Disruption Contributes to Short-Term Memory Deficits in Patients with Medial Temporal Lobe Damage.

    Science.gov (United States)

    Voets, Natalie L; Menke, Ricarda A L; Jbabdi, Saad; Husain, Masud; Stacey, Richard; Carpenter, Katherine; Adcock, Jane E

    2015-11-01

    Short-term (STM) and long-term memory (LTM) have largely been considered as separate brain systems reflecting fronto-parietal and medial temporal lobe (MTL) functions, respectively. This functional dichotomy has been called into question by evidence of deficits on aspects of working memory in patients with MTL damage, suggesting a potentially direct hippocampal contribution to STM. As the hippocampus has direct anatomical connections with the thalamus, we tested the hypothesis that damage to thalamic nuclei regulating cortico-cortical interactions may contribute to STM deficits in patients with hippocampal dysfunction. We used diffusion-weighted magnetic resonance imaging-based tractography to identify anatomical subdivisions in patients with MTL epilepsy. From these, we measured resting-state functional connectivity with detailed cortical divisions of the frontal, temporal, and parietal lobes. Whereas thalamo-temporal functional connectivity reflected LTM performance, thalamo-prefrontal functional connectivity specifically predicted STM performance. Notably, patients with hippocampal volume loss showed thalamic volume loss, most prominent in the pulvinar region, not detected in patients with normal hippocampal volumes. Aberrant thalamo-cortical connectivity in the epileptic hemisphere was mirrored in a loss of behavioral association with STM performance specifically in patients with hippocampal atrophy. These findings identify thalamo-cortical disruption as a potential mechanism contributing to STM deficits in the context of MTL damage. © The Author 2015. Published by Oxford University Press.

  18. Laminar thickness alterations in the fronto-parietal cortical mantle of patients with attention-deficit/hyperactivity disorder.

    Directory of Open Access Journals (Sweden)

    Elseline Hoekzema

    Full Text Available Although Attention-Deficit/Hyperactivity Disorder (ADHD was initially regarded as a disorder exclusive to childhood, nowadays its prevalence in adulthood is well established. The development of novel techniques for quantifying the thickness of the cerebral mantle allows the further exploration of the neuroanatomical profiles underlying the child and adult form of the disorder. To examine the cortical mantle in children and adults with ADHD, we applied a vertex-wise analysis of cortical thickness to anatomical brain MRI scans acquired from children with (n = 43 and without ADHD (n = 41, as well as a group of adult neurotypical individuals (n = 31, adult patients with a history of stimulant treatment (n = 31 and medication-naïve adults with ADHD (n = 24. We observed several clusters of reduced laminar cortical thickness in ADHD patients in comparison to neurotypical individuals. These differences were primarily located in the dorsal attention network, including the bilateral inferior and superior parietal cortex and a section of the frontal cortex (centered on the superior frontal and precentral gyrus bilaterally. Further laminar thickness deficits were observed in the bilateral orbitofrontal cortex and medial occipital cortex. The deficits in the cortical surface were especially pronounced in the child sample, while adult patients showed a more typical laminar thickness across the cerebral mantle. These findings show that the neuroanatomical profile of ADHD, especially the childhood form of the disorder, involves robust alterations in the cortical mantle, which are most prominent in brain regions subserving attentional processing.

  19. Widespread Cortical Thinning Is a Robust Anatomical Marker for Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Narr, Katherine L.; Woods, Roger P.; Lin, James; Kim, John; Phillips, Owen R.; Del'Homme, Melissa; Caplan, Rochelle; Toga, Arthur W.; McCracken, James T.; Levitt, Jennifer G.

    2009-01-01

    Objective: This cross-sectional study sought to confirm the presence and regional profile of previously reported changes in laminar cortical thickness in children and adolescents with attention-deficit/hyperactivity disorder (ADHD) compared with typically developing control subjects. Method: High-resolution magnetic resonance images were obtained…

  20. Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning

    Science.gov (United States)

    Krukowski, A. E.; Miller, K. D.

    2001-01-01

    Cells in cerebral cortex fail to respond to fast-moving stimuli that evoke strong responses in the thalamic nuclei innervating the cortex. The reason for this behavior has remained a mystery. We study an experimentally motivated model of the thalamic input-recipient layer of cat primary visual cortex that accounts for many aspects of cortical orientation tuning. In this circuit, inhibition dominates over excitation, but temporal modulations of excitation and inhibition occur out of phase with one another, allowing excitation to transiently drive cells. We show that this circuit provides a natural explanation of cortical low-pass temporal frequency tuning, provided N-methyl-D-aspartate (NMDA) receptors are present in thalamocortical synapses in proportions measured experimentally. This suggests a new and unanticipated role for NMDA conductances in shaping the temporal response properties of cortical cells, and suggests that common cortical circuit mechanisms underlie both spatial and temporal response tuning.

  1. Sensory experience regulates cortical inhibition by inducing IGF1 in VIP neurons.

    Science.gov (United States)

    Mardinly, A R; Spiegel, I; Patrizi, A; Centofante, E; Bazinet, J E; Tzeng, C P; Mandel-Brehm, C; Harmin, D A; Adesnik, H; Fagiolini, M; Greenberg, M E

    2016-03-17

    Inhibitory neurons regulate the adaptation of neural circuits to sensory experience, but the molecular mechanisms by which experience controls the connectivity between different types of inhibitory neuron to regulate cortical plasticity are largely unknown. Here we show that exposure of dark-housed mice to light induces a gene program in cortical vasoactive intestinal peptide (VIP)-expressing neurons that is markedly distinct from that induced in excitatory neurons and other subtypes of inhibitory neuron. We identify Igf1 as one of several activity-regulated genes that are specific to VIP neurons, and demonstrate that IGF1 functions cell-autonomously in VIP neurons to increase inhibitory synaptic input onto these neurons. Our findings further suggest that in cortical VIP neurons, experience-dependent gene transcription regulates visual acuity by activating the expression of IGF1, thus promoting the inhibition of disinhibitory neurons and affecting inhibition onto cortical pyramidal neurons.

  2. Do motivational incentives reduce the inhibition deficit in ADHD?

    Science.gov (United States)

    Shanahan, Michelle A; Pennington, Bruce F; Willcutt, Erik W

    2008-01-01

    The primary goal of this study was to test three competing theories of ADHD: the inhibition theory, the motivational theory, and a dual deficit theory. Previous studies have produced conflicting findings about the effects of incentives on executive processes in ADHD. In the present study of 25 children with ADHD and 30 typically developing controls, motivation was manipulated within the Stop Task. Stop signal reaction time was examined, as well as reaction time, its variability, and the number of errors in the primary choice reaction time task. Overall, the pattern of results supported the inhibition theory over the motivational or dual deficit hypotheses, as main effects of group were found for most key variables (ADHD group was worse), whereas the group by reward interaction predicted by the motivational and dual deficit accounts was not found. Hence, as predicted by the inhibition theory, children with ADHD performed worse than controls irrespective of incentives.

  3. Cortical topography of intracortical inhibition influences the speed of decision making.

    Science.gov (United States)

    Wilimzig, Claudia; Ragert, Patrick; Dinse, Hubert R

    2012-02-21

    The neocortex contains orderly topographic maps; however, their functional role remains controversial. Theoretical studies have suggested a role in minimizing computational costs, whereas empirical studies have focused on spatial localization. Using a tactile multiple-choice reaction time (RT) task before and after the induction of perceptual learning through repetitive sensory stimulation, we extend the framework of cortical topographies by demonstrating that the topographic arrangement of intracortical inhibition contributes to the speed of human perceptual decision-making processes. RTs differ among fingers, displaying an inverted U-shaped function. Simulations using neural fields show the inverted U-shaped RT distribution as an emergent consequence of lateral inhibition. Weakening inhibition through learning shortens RTs, which is modeled through topographically reorganized inhibition. Whereas changes in decision making are often regarded as an outcome of higher cortical areas, our data show that the spatial layout of interaction processes within representational maps contributes to selection and decision-making processes.

  4. Physiological slowing and upregulation of inhibition in cortex are correlated with behavioral deficits in protein malnourished rats.

    Directory of Open Access Journals (Sweden)

    Rahul Chaudhary

    Full Text Available Protein malnutrition during early development has been correlated with cognitive and learning disabilities in children, but the neuronal deficits caused by long-term protein deficiency are not well understood. We exposed rats from gestation up to adulthood to a protein-deficient (PD diet, to emulate chronic protein malnutrition in humans. The offspring exhibited significantly impaired performance on the 'Gap-crossing' (GC task after reaching maturity, a behavior that has been shown to depend on normal functioning of the somatosensory cortex. The physiological state of the somatosensory cortex was examined to determine neuronal correlates of the deficits in behavior. Extracellular multi-unit recording from layer 4 (L4 neurons that receive direct thalamocortical inputs and layers 2/3 (L2/3 neurons that are dominated by intracortical connections in the whisker-barrel cortex of PD rats exhibited significantly low spontaneous activity and depressed responses to whisker stimulation. L4 neurons were more severely affected than L2/3 neurons. The response onset was significantly delayed in L4 cells. The peak response latency of L4 and L2/3 neurons was delayed significantly. In L2/3 and L4 of the barrel cortex there was a substantial increase in GAD65 (112% over controls and much smaller increase in NMDAR1 (12-20%, suggesting enhanced inhibition in the PD cortex. These results show that chronic protein deficiency negatively affects both thalamo-cortical and cortico-cortical transmission during somatosensory information processing. The findings support the interpretation that sustained protein deficiency interferes with features of cortical sensory processing that are likely to underlie the cognitive impairments reported in humans who have suffered from prolonged protein deficiency.

  5. Inhibition of the striatal specific phosphodiesterase PDE10A ameliorates striatal and cortical pathology in R6/2 mouse model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Carmela Giampà

    2010-10-01

    Full Text Available Huntington's disease is a devastating neurodegenerative condition for which there is no therapy to slow disease progression. The particular vulnerability of striatal medium spiny neurons to Huntington's pathology is hypothesized to result from transcriptional dysregulation within the cAMP and CREB signaling cascades in these neurons. To test this hypothesis, and a potential therapeutic approach, we investigated whether inhibition of the striatal-specific cyclic nucleotide phosphodiesterase PDE10A would alleviate neurological deficits and brain pathology in a highly utilized model system, the R6/2 mouse.R6/2 mice were treated with the highly selective PDE10A inhibitor TP-10 from 4 weeks of age until euthanasia. TP-10 treatment significantly reduced and delayed the development of the hind paw clasping response during tail suspension, deficits in rotarod performance, and decrease in locomotor activity in an open field. Treatment prolonged time to loss of righting reflex. These effects of PDE10A inhibition on neurological function were reflected in a significant amelioration in brain pathology, including reduction in striatal and cortical cell loss, the formation of striatal neuronal intranuclear inclusions, and the degree of microglial activation that occurs in response to the mutant huntingtin-induced brain damage. Striatal and cortical levels of phosphorylated CREB and BDNF were significantly elevated.Our findings provide experimental support for targeting the cAMP and CREB signaling pathways and more broadly transcriptional dysregulation as a therapeutic approach to Huntington's disease. It is noteworthy that PDE10A inhibition in the R6/2 mice reduces striatal pathology, consistent with the localization of the enzyme in medium spiny neurons, and also cortical pathology and the formation of neuronal nuclear inclusions. These latter findings suggest that striatal pathology may be a primary driver of these secondary pathological events. More

  6. Deficit in rewarding mechanisms and prefrontal left/right cortical effect in vulnerability for internet addiction.

    Science.gov (United States)

    Balconi, Michela; Finocchiaro, Roberta

    2016-10-01

    The present research explored the cortical correlates of rewarding mechanisms and cortical 'unbalance' effect in internet addiction (IA) vulnerability. Internet Addiction Inventory (IAT) and personality trait (Behavioural Inhibition System, BIS; Behavioural Activation System, BAS) were applied to 28 subjects. Electroencephalographic (EEG, alpha frequency band) and response times (RTs) were registered during a Go-NoGo task execution in response to different online stimuli: gambling videos, videogames or neutral stimuli. Higher-IAT (more than 50 score, with moderate or severe internet addiction) and lower-IAT (internet addiction). Alpha band and RTs were affected by IAT, with significant bias (reduced RTs) for high-IAT in response to gambling videos and videogames; and by BAS, BAS-Reward subscale (BAS-R), since not only higher-IAT, but also BAS and BAS-R values determined an increasing of left prefrontal cortex (PFC) activity (alpha reduction) in response to videogames and gambling stimuli for both Go and NoGo conditions, in addition to decreased RTs for these stimuli categories. The increased PFC responsiveness and the lateralisation (left PFC hemisphere) effect in NoGo condition was explained on the basis of a 'rewarding bias' towards more rewarding cues and a deficit in inhibitory control in higher-IAT and higher-BAS subjects. In contrast lower-IAT and lower-BAS predicted a decreased PFC response and increased RTs for NoGo (inhibitory mechanism). These results may support the significance of personality (BAS) and IAT measures for explaining future internet addiction behaviour based on this observed 'vulnerability'.

  7. Effects of Methylphenidate and Atomoxetine on Cortical Inhibition in ADHD

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-09-01

    Full Text Available The effects of methylphenidate (MPH, a psychostimulant, and atomoxetine (ATX, a selective norepinephrine reuptake inhibitor, on short interval-cortical inhibition (SICI were measured in motor cortex with transcranial magnetic stimulation, in a study at Cincinnati Children’s Medical Center, OH, and other centers.

  8. Altered cortical thickness and attentional deficits in adolescent girls and women with bulimia nervosa.

    Science.gov (United States)

    Berner, Laura A; Stefan, Mihaela; Lee, Seonjoo; Wang, Zhishun; Terranova, Kate; Attia, Evelyn; Marsh, Rachel

    2018-05-01

    Frontostriatal and frontoparietal abnormalities likely contribute to deficits in control and attentional processes in individuals with bulimia nervosa and to the persistence of dysregulated eating across development. This study assessed these processes and cortical thickness in a large sample of adolescent girls and women with bulimia nervosa compared with healthy controls. We collected anatomical MRI data from adolescent girls and women (ages 12-38 yr) with full or subthreshold bulimia nervosa and age-matched healthy controls who also completed the Conners Continuous Performance Test-II (CPT-II). Groups were compared on task performance and cortical thickness. Mediation analyses explored associations among cortical thickness, CPT-II variables, bulimia nervosa symptoms and age. We included 60 girls and women with bulimia nervosa and 54 controls in the analyses. Compared with healthy participants, those with bulimia nervosa showed increased impulsivity and inattention on the CPT-II, along with reduced thickness of the right pars triangularis, right superior parietal and left dorsal posterior cingulate cortices. In the bulimia nervosa group, exploratory analyses revealed that binge eating frequency correlated inversely with cortical thickness of frontoparietal and insular regions and that reduced frontoparietal thickness mediated the association between age and increased symptom severity and inattention. Binge eating frequency also mediated the association between age and lower prefrontal cortical thickness. These findings are applicable to only girls and women with bulimia nervosa, and our cross-sectional design precludes understanding of whether cortical thickness alterations precede or result from bulimia nervosa symptoms. Structural abnormalities in the frontoparietal and posterior cingulate regions comprising circuits that support control and attentional processes should be investigated as potential contributors to the maintenance of bulimia nervosa and useful

  9. Altered cortical thickness and attentional deficits in adolescent girls and women with bulimia nervosa.

    Science.gov (United States)

    Berner, Laura A; Stefan, Mihaela; Lee, Seonjoo; Wang, Zhishun; Terranova, Kate; Attia, Evelyn; Marsh, Rachel

    2018-01-12

    Frontostriatal and frontoparietal abnormalities likely contribute to deficits in control and attentional processes in individuals with bulimia nervosa and to the persistence of dysregulated eating across development. This study assessed these processes and cortical thickness in a large sample of adolescent girls and women with bulimia nervosa compared with healthy controls. We collected anatomical MRI data from adolescent girls and women (ages 12-38 yr) with full or subthreshold bulimia nervosa and age-matched healthy controls who also completed the Conners Continuous Performance Test-II (CPT-II). Groups were compared on task performance and cortical thickness. Mediation analyses explored associations among cortical thickness, CPT-II variables, bulimia nervosa symptoms and age. We included 60 girls and women with bulimia nervosa and 54 controls in the analyses. Compared with healthy participants, those with bulimia nervosa showed increased impulsivity and inattention on the CPT-II, along with reduced thickness of the right pars triangularis, right superior parietal and left dorsal posterior cingulate cortices. In the bulimia nervosa group, exploratory analyses revealed that binge eating frequency correlated inversely with cortical thickness of frontoparietal and insular regions and that reduced frontoparietal thickness mediated the association between age and increased symptom severity and inattention. Binge eating frequency also mediated the association between age and lower prefrontal cortical thickness. These findings are applicable to only girls and women with bulimia nervosa, and our cross-sectional design precludes understanding of whether cortical thickness alterations precede or result from bulimia nervosa symptoms. Structural abnormalities in the frontoparietal and posterior cingulate regions comprising circuits that support control and attentional processes should be investigated as potential contributors to the maintenance of bulimia nervosa and useful

  10. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    Science.gov (United States)

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.

  11. Baroreflex sensitivity during rest and executive functioning in attention-deficit/hyperactivity disorder. The TRAILS study

    NARCIS (Netherlands)

    Dietrich, A.; Althaus, M.; Hartman, C.A.; Buitelaar, J.K.; Minderaa, R.B.; van den Hoofdakker, B.J.; Hoekstra, P.J.

    Children with attention-deficit/hyperactivity disorder (ADHD) often show executive function (EF) problems and neurophysiological hypoarousal. Baroreceptor activation, as part of the baroreflex short-term blood pressure regulatory mechanism, has been linked to cortical inhibition and attenuated

  12. Baroreflex sensitivity during rest and executive functioning in attention-deficit/hyperactivity disorder. The TRAILS study.

    NARCIS (Netherlands)

    Dietrich, A.; Althaus, M.; Hartman, C.A.; Buitelaar, J.K.; Mindera, R.B.; Hoofdakker, B.J. van den; Hoekstra, P.J.

    2012-01-01

    Children with attention-deficit/hyperactivity disorder (ADHD) often show executive function (EF) problems and neurophysiological hypoarousal. Baroreceptor activation, as part of the baroreflex short-term blood pressure regulatory mechanism, has been linked to cortical inhibition and attenuated

  13. Reduced GABAergic inhibition explains cortical hyperexcitability in the wobbler mouse model of ALS

    DEFF Research Database (Denmark)

    Nieto-Gonzalez, Jose Luis; Moser, Jakob; Lauritzen, Martin

    2011-01-01

    mice. Also, miniature inhibitory postsynaptic currents recorded under blockade of action potentials were decreased by 64%. Tonic inhibition mediated by extrasynaptic GABA(A) receptors was reduced by 87%. In agreement, we found a decreased density of parvalbumin- and somatostatin-positive inhibitory...... inhibition, which might explain the cortical hyperexcitability in wobbler mice....

  14. Altered cortical thickness and attentional deficits in adolescent girls and women with bulimia nervosa

    Science.gov (United States)

    Stefan, Mihaela; Lee, Seonjoo; Wang, Zhishun; Terranova, Kate; Attia, Evelyn; Marsh, Rachel

    2018-01-01

    Background Frontostriatal and frontoparietal abnormalities likely contribute to deficits in control and attentional processes in individuals with bulimia nervosa and to the persistence of dysregulated eating across development. This study assessed these processes and cortical thickness in a large sample of adolescent girls and women with bulimia nervosa compared with healthy controls. Methods We collected anatomical MRI data from adolescent girls and women (ages 12–38 yr) with full or subthreshold bulimia nervosa and age-matched healthy controls who also completed the Conners Continuous Performance Test-II (CPT-II). Groups were compared on task performance and cortical thickness. Mediation analyses explored associations among cortical thickness, CPT-II variables, bulimia nervosa symptoms and age. Results We included 60 girls and women with bulimia nervosa and 54 controls in the analyses. Compared with healthy participants, those with bulimia nervosa showed increased impulsivity and inattention on the CPT-II, along with reduced thickness of the right pars triangularis, right superior parietal and left dorsal posterior cingulate cortices. In the bulimia nervosa group, exploratory analyses revealed that binge eating frequency correlated inversely with cortical thickness of frontoparietal and insular regions and that reduced frontoparietal thickness mediated the association between age and increased symptom severity and inattention. Binge eating frequency also mediated the association between age and lower prefrontal cortical thickness. Limitations These findings are applicable to only girls and women with bulimia nervosa, and our cross-sectional design precludes understanding of whether cortical thickness alterations precede or result from bulimia nervosa symptoms. Conclusion Structural abnormalities in the frontoparietal and posterior cingulate regions comprising circuits that support control and attentional processes should be investigated as potential

  15. Caffeine/nutrition interaction in the rat brain: Influence on latent inhibition and cortical spreading depression.

    Science.gov (United States)

    de Aguiar, Márlison José Lima; de Aguiar, Cilene Rejane Ramos Alves; Guedes, Rubem Carlos Araújo

    2011-01-10

    Caffeine, like malnutrition, can produce behavioral and electrophysiological alterations. However, the interaction of both factors remains unclear. Here this interaction has been studied in male Wistar rats previously malnourished during the lactation period by feeding their dams the "regional basic diet" of Northeast Brazil, containing about 8% protein, predominantly from vegetable sources (RBD(8)). At 70-75days of life, a subset of the pups was treated intraperitoneally with 30mg/kg caffeine for 4days while being tested according to the behavioral model of latent inhibition. Another group was subjected to an electrophysiological recording of the phenomenon known as cortical spreading depression, and the effects of caffeine injected during the recording session were evaluated. Caffeine did not affect cortical spreading depression, but antagonized latent inhibition in both the RBD(8)-malnourished rats and in the well-nourished control group fed a chow diet with 22% protein. This effect of caffeine was not seen in malnourished rats fed a protein-supplemented RBD (protein increased to 22% by increasing the proportion of foodstuffs from vegetable origin; RBD(22) group), suggesting that the amino acid imbalance of this diet may modulate the caffeine effects on latent inhibition. The results indicate a differential effect of caffeine in the latent inhibition behavioral model, as compared to the cortical spreading depression phenomenon, and this effect is influenced by the early nutritional status of the animal. We suggest that caffeine may modulate dopaminergic subcortical receptors participating in attention processes, but does not interact at the cortical level, in a way that would affect cortical spreading depression. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Spatial localization deficits and auditory cortical dysfunction in schizophrenia

    Science.gov (United States)

    Perrin, Megan A.; Butler, Pamela D.; DiCostanzo, Joanna; Forchelli, Gina; Silipo, Gail; Javitt, Daniel C.

    2014-01-01

    Background Schizophrenia is associated with deficits in the ability to discriminate auditory features such as pitch and duration that localize to primary cortical regions. Lesions of primary vs. secondary auditory cortex also produce differentiable effects on ability to localize and discriminate free-field sound, with primary cortical lesions affecting variability as well as accuracy of response. Variability of sound localization has not previously been studied in schizophrenia. Methods The study compared performance between patients with schizophrenia (n=21) and healthy controls (n=20) on sound localization and spatial discrimination tasks using low frequency tones generated from seven speakers concavely arranged with 30 degrees separation. Results For the sound localization task, patients showed reduced accuracy (p=0.004) and greater overall response variability (p=0.032), particularly in the right hemifield. Performance was also impaired on the spatial discrimination task (p=0.018). On both tasks, poorer accuracy in the right hemifield was associated with greater cognitive symptom severity. Better accuracy in the left hemifield was associated with greater hallucination severity on the sound localization task (p=0.026), but no significant association was found for the spatial discrimination task. Conclusion Patients show impairments in both sound localization and spatial discrimination of sounds presented free-field, with a pattern comparable to that of individuals with right superior temporal lobe lesions that include primary auditory cortex (Heschl’s gyrus). Right primary auditory cortex dysfunction may protect against hallucinations by influencing laterality of functioning. PMID:20619608

  17. Cortical deficits of emotional face processing in adults with ADHD: its relation to social cognition and executive function.

    Science.gov (United States)

    Ibáñez, Agustin; Petroni, Agustin; Urquina, Hugo; Torrente, Fernando; Torralva, Teresa; Hurtado, Esteban; Guex, Raphael; Blenkmann, Alejandro; Beltrachini, Leandro; Muravchik, Carlos; Baez, Sandra; Cetkovich, Marcelo; Sigman, Mariano; Lischinsky, Alicia; Manes, Facundo

    2011-01-01

    Although it has been shown that adults with attention-deficit hyperactivity disorder (ADHD) have impaired social cognition, no previous study has reported the brain correlates of face valence processing. This study looked for behavioral, neuropsychological, and electrophysiological markers of emotion processing for faces (N170) in adult ADHD compared to controls matched by age, gender, educational level, and handedness. We designed an event-related potential (ERP) study based on a dual valence task (DVT), in which faces and words were presented to test the effects of stimulus type (faces, words, or face-word stimuli) and valence (positive versus negative). Individual signatures of cognitive functioning in participants with ADHD and controls were assessed with a comprehensive neuropsychological evaluation, including executive functioning (EF) and theory of mind (ToM). Compared to controls, the adult ADHD group showed deficits in N170 emotion modulation for facial stimuli. These N170 impairments were observed in the absence of any deficit in facial structural processing, suggesting a specific ADHD impairment in early facial emotion modulation. The cortical current density mapping of N170 yielded a main neural source of N170 at posterior section of fusiform gyrus (maximum at left hemisphere for words and right hemisphere for faces and simultaneous stimuli). Neural generators of N170 (fusiform gyrus) were reduced in ADHD. In those patients, N170 emotion processing was associated with performance on an emotional inference ToM task, and N170 from simultaneous stimuli was associated with EF, especially working memory. This is the first report to reveal an adult ADHD-specific impairment in the cortical modulation of emotion for faces and an association between N170 cortical measures and ToM and EF.

  18. Prepulse Inhibition of Auditory Cortical Responses in the Caudolateral Superior Temporal Gyrus in Macaca mulatta.

    Science.gov (United States)

    Chen, Zuyue; Parkkonen, Lauri; Wei, Jingkuan; Dong, Jin-Run; Ma, Yuanye; Carlson, Synnöve

    2018-04-01

    Prepulse inhibition (PPI) refers to a decreased response to a startling stimulus when another weaker stimulus precedes it. Most PPI studies have focused on the physiological startle reflex and fewer have reported the PPI of cortical responses. We recorded local field potentials (LFPs) in four monkeys and investigated whether the PPI of auditory cortical responses (alpha, beta, and gamma oscillations and evoked potentials) can be demonstrated in the caudolateral belt of the superior temporal gyrus (STGcb). We also investigated whether the presence of a conspecific, which draws attention away from the auditory stimuli, affects the PPI of auditory cortical responses. The PPI paradigm consisted of Pulse-only and Prepulse + Pulse trials that were presented randomly while the monkey was alone (ALONE) and while another monkey was present in the same room (ACCOMP). The LFPs to the Pulse were significantly suppressed by the Prepulse thus, demonstrating PPI of cortical responses in the STGcb. The PPI-related inhibition of the N1 amplitude of the evoked responses and cortical oscillations to the Pulse were not affected by the presence of a conspecific. In contrast, gamma oscillations and the amplitude of the N1 response to Pulse-only were suppressed in the ACCOMP condition compared to the ALONE condition. These findings demonstrate PPI in the monkey STGcb and suggest that the PPI of auditory cortical responses in the monkey STGcb is a pre-attentive inhibitory process that is independent of attentional modulation.

  19. The cortical signature of impaired gesturing: Findings from schizophrenia

    Directory of Open Access Journals (Sweden)

    Petra Verena Viher

    2018-01-01

    Full Text Available Schizophrenia is characterized by deficits in gesturing that is important for nonverbal communication. Research in healthy participants and brain-damaged patients revealed a left-lateralized fronto-parieto-temporal network underlying gesture performance. First evidence from structural imaging studies in schizophrenia corroborates these results. However, as of yet, it is unclear if cortical thickness abnormalities contribute to impairments in gesture performance. We hypothesized that patients with deficits in gesture production show cortical thinning in 12 regions of interest (ROIs of a gesture network relevant for gesture performance and recognition. Forty patients with schizophrenia and 41 healthy controls performed hand and finger gestures as either imitation or pantomime. Group differences in cortical thickness between patients with deficits, patients without deficits, and controls were explored using a multivariate analysis of covariance. In addition, the relationship between gesture recognition and cortical thickness was investigated. Patients with deficits in gesture production had reduced cortical thickness in eight ROIs, including the pars opercularis of the inferior frontal gyrus, the superior and inferior parietal lobes, and the superior and middle temporal gyri. Gesture recognition correlated with cortical thickness in fewer, but mainly the same, ROIs within the patient sample. In conclusion, our results show that impaired gesture production and recognition in schizophrenia is associated with cortical thinning in distinct areas of the gesture network.

  20. Development of cortical asymmetry in typically developing children and its disruption in attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Shaw, Philip; Lalonde, Francois; Lepage, Claude; Rabin, Cara; Eckstrand, Kristen; Sharp, Wendy; Greenstein, Deanna; Evans, Alan; Giedd, J N; Rapoport, Judith

    2009-08-01

    Just as typical development of anatomical asymmetries in the human brain has been linked with normal lateralization of motor and cognitive functions, disruption of asymmetry has been implicated in the pathogenesis of neurodevelopmental disorders such as attention-deficit/hyperactivity disorder (ADHD). No study has examined the development of cortical asymmetry using longitudinal neuroanatomical data. To delineate the development of cortical asymmetry in children with and without ADHD. Longitudinal study. Government Clinical Research Institute. A total of 218 children with ADHD and 358 typically developing children, from whom 1133 neuroanatomical magnetic resonance images were acquired prospectively. Cortical thickness was estimated at 40 962 homologous points in the left and right hemispheres, and the trajectory of change in asymmetry was defined using mixed-model regression. In right-handed typically developing individuals, a mean (SE) increase in the relative thickness of the right orbitofrontal and inferior frontal cortex with age of 0.011 (0.0018) mm per year (t(337) = 6.2, P left-hemispheric increase in the occipital cortical regions of 0.013 (0.0015) mm per year (t(337) = 8.1, P right-handed typically developing individuals was less extensive and was localized to different cortical regions. In ADHD, the posterior component of this evolving asymmetry was intact, but the prefrontal component was lost. These findings explain the way that, in typical development, the increased dimensions of the right frontal and left occipital cortical regions emerge in adulthood from the reversed pattern of childhood cortical asymmetries. Loss of the prefrontal component of this evolving asymmetry in ADHD is compatible with disruption of prefrontal function in the disorder and demonstrates the way that disruption of typical processes of asymmetry can inform our understanding of neurodevelopmental disorders.

  1. Cortical organization of inhibition-related functions and modulation by psychopathology.

    Science.gov (United States)

    Warren, Stacie L; Crocker, Laura D; Spielberg, Jeffery M; Engels, Anna S; Banich, Marie T; Sutton, Bradley P; Miller, Gregory A; Heller, Wendy

    2013-01-01

    Individual differences in inhibition-related functions have been implicated as risk factors for a broad range of psychopathology, including anxiety and depression. Delineating neural mechanisms of distinct inhibition-related functions may clarify their role in the development and maintenance of psychopathology. The present study tested the hypothesis that activity in common and distinct brain regions would be associated with an ecologically sensitive, self-report measure of inhibition and a laboratory performance measure of prepotent response inhibition. Results indicated that sub-regions of DLPFC distinguished measures of inhibition, whereas left inferior frontal gyrus and bilateral inferior parietal cortex were associated with both types of inhibition. Additionally, co-occurring anxiety and depression modulated neural activity in select brain regions associated with response inhibition. Results imply that specific combinations of anxiety and depression dimensions are associated with failure to implement top-down attentional control as reflected in inefficient recruitment of posterior DLPFC and increased activation in regions associated with threat (MTG) and worry (BA10). Present findings elucidate possible neural mechanisms of interference that could help explain executive control deficits in psychopathology.

  2. Cortical organization of inhibition-related functions and modulation by psychopathology

    Directory of Open Access Journals (Sweden)

    Stacie L. Warren

    2013-06-01

    Full Text Available Individual differences in inhibition-related functions have been implicated as risk factors for a broad range of psychopathology, including anxiety and depression. Delineating neural mechanisms of distinct inhibition-related functions may clarify their role in the development and maintenance of psychopathology. The present study tested the hypothesis that activity in common and distinct brain regions would be associated with an ecologically sensitive, self-report measure of inhibition and a laboratory performance measure of prepotent response inhibition. Results indicated that sub-regions of DLPFC distinguished measures of inhibition, whereas left inferior frontal gyrus and bilateral inferior parietal cortex were associated with both types of inhibition. Additionally, co-occurring anxiety and depression modulated neural activity in select brain regions associated with response inhibition. Results imply that specific combinations of anxiety and depression dimensions are associated with failure to implement top-down attentional control as reflected in inefficient recruitment of posterior DLPFC and increased activation in regions associated with threat (MTG and worry (BA10. Present findings elucidate possible neural mechanisms of interference that could help explain executive control deficits in psychopathology.

  3. Deficits in Response Inhibition in Patients with Attention-Deficit/Hyperactivity Disorder: The Impaired Self-Protection System Hypothesis

    Directory of Open Access Journals (Sweden)

    Thales Vianna Coutinho

    2018-01-01

    Full Text Available Problems in inhibitory control are regarded in Psychology as a key problem associated with attention-deficit/hyperactivity disorder (ADHD. They, however, might not be primary deficits, but instead a consequence of inattention. At least two components have been identified and dissociated in studies in regards to inhibitory control: interference suppression, responsible for controlling interference by resisting irrelevant or misleading information, and response inhibition, referring to withholding a response or overriding an ongoing behavior. Poor error awareness and self-monitoring undermine an individual’s ability to inhibit inadequate responses and change course of action. In non-social contexts, an individual depends on his own cognition to regulate his mistakes. In social contexts, however, there are many social cues that should help that individual to perceive his mistakes and inhibit inadequate responses. The processes involved in perceiving and interpreting those social cues are arguably part of a self-protection system (SPS. Individuals with ADHD not only present impulsive behaviors in social contexts, but also have difficulty perceiving their inadequate responses and overriding ongoing actions toward more appropriate ones. In this paper, we discuss that those difficulties are arguably a consequence of an impaired SPS, due to visual attention deficits and subsequent failure in perceiving and recognizing accurately negative emotions in facial expressions, especially anger. We discuss evidence that children with ADHD exhibit problems in a series of components involved in the activation of that system and advocate that the inability to identify the anger expressed by others, and thus, not experiencing the fear response that should follow, is, ultimately, what prevents them from inhibiting the ongoing inappropriate behavior, since a potential threat is not registered. Getting involved in high-risk situations, such as reckless driving, could

  4. Inhibition of synaptically evoked cortical acetylcholine release by adenosine: an in vivo microdialysis study in the rat.

    Science.gov (United States)

    Materi, L M; Rasmusson, D D; Semba, K

    2000-01-01

    The release of cortical acetylcholine from the intracortical axonal terminals of cholinergic basal forebrain neurons is closely associated with electroencephalographic activity. One factor which may act to reduce cortical acetylcholine release and promote sleep is adenosine. Using in vivo microdialysis, we examined the effect of adenosine and selective adenosine receptor agonists and antagonists on cortical acetylcholine release evoked by electrical stimulation of the pedunculopontine tegmental nucleus in urethane anesthetized rats. All drugs were administered locally within the cortex by reverse dialysis. None of the drugs tested altered basal release of acetylcholine in the cortex. Adenosine significantly reduced evoked cortical acetylcholine efflux in a concentration-dependent manner. This was mimicked by the adenosine A(1) receptor selective agonist N(6)-cyclopentyladenosine and blocked by the selective A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). The A(2A) receptor agonist 2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoadenosi ne hydrochloride (CGS 21680) did not alter evoked cortical acetylcholine release even in the presence of DPCPX. Administered alone, neither DPCPX nor the non-selective adenosine receptor antagonist caffeine affected evoked cortical acetylcholine efflux. Simultaneous delivery of the adenosine uptake inhibitors dipyridamole and S-(4-nitrobenzyl)-6-thioinosine significantly reduced evoked cortical acetylcholine release, and this effect was blocked by the simultaneous administration of caffeine. These data indicate that activation of the A(1) adenosine receptor inhibits acetylcholine release in the cortex in vivo while the A(2A) receptor does not influence acetylcholine efflux. Such inhibition of cortical acetylcholine release by adenosine may contribute to an increased propensity to sleep during prolonged wakefulness.

  5. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons.

    Science.gov (United States)

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew Cn; Swindale, Nicholas V; Murphy, Timothy H

    2017-02-04

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps.

  6. Alterations of cortical GABA neurons and network oscillations in schizophrenia.

    Science.gov (United States)

    Gonzalez-Burgos, Guillermo; Hashimoto, Takanori; Lewis, David A

    2010-08-01

    The hypothesis that alterations of cortical inhibitory gamma-aminobutyric acid (GABA) neurons are a central element in the pathology of schizophrenia has emerged from a series of postmortem studies. How such abnormalities may contribute to the clinical features of schizophrenia has been substantially informed by a convergence with basic neuroscience studies revealing complex details of GABA neuron function in the healthy brain. Importantly, activity of the parvalbumin-containing class of GABA neurons has been linked to the production of cortical network oscillations. Furthermore, growing knowledge supports the concept that gamma band oscillations (30-80 Hz) are an essential mechanism for cortical information transmission and processing. Herein we review recent studies further indicating that inhibition from parvalbumin-positive GABA neurons is necessary to produce gamma oscillations in cortical circuits; provide an update on postmortem studies documenting that deficits in the expression of glutamic acid decarboxylase67, which accounts for most GABA synthesis in the cortex, are widely observed in schizophrenia; and describe studies using novel, noninvasive approaches directly assessing potential relations between alterations in GABA, oscillations, and cognitive function in schizophrenia.

  7. Response Inhibition in Adults with Autism Spectrum Disorder Compared to Attention Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Johnston, Kate; Madden, Anya K.; Bramham, Jessica; Russell, Ailsa J.

    2011-01-01

    Autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) are hypothesised to involve core deficits in executive function. Previous studies have found evidence of a double dissociation between the disorders on specific executive functions (planning and response inhibition). To date most research has been conducted with…

  8. Huperzine A prophylaxis against pentylenetetrazole-induced seizures in rats is associated with increased cortical inhibition.

    Science.gov (United States)

    Gersner, R; Ekstein, D; Dhamne, S C; Schachter, S C; Rotenberg, A

    2015-11-01

    Huperzine A (HupA) is a naturally occurring compound found in the firmoss Huperzia serrata. While HupA is a potent acetylcholinesterase inhibitor, its full pharmacologic profile is incompletely described. Since previous works suggested a capacity for HupA to prophylax against seizures, we tested the HupA antiepileptic potential in pentylenetetrazole (PTZ) rat epilepsy model and explored its mechanism of action by spectral EEG analysis and by paired-pulse transcranial magnetic stimulation (ppTMS), a measure of GABA-mediated intracortical inhibition. We tested whether HupA suppresses seizures in the rat PTZ acute seizure model, and quantified latency to first myoclonus and to generalized tonic-clonic seizure, and spike frequency on EEG. Additionally, we measured power in the EEG gamma frequency band which is associated with GABAergic cortical interneuron activation. Then, as a step toward further examining the HupA antiepileptic mechanism of action, we tested long-interval intracortical inhibition (LICI) using ppTMS coupled with electromyography to assess whether HupA augments GABA-mediated paired-pulse inhibition of the motor evoked potential. We also tested whether the HupA effect on paired-pulse inhibition was central or peripheral by comparison of outcomes following administration of HupA or the peripheral acetylcholinesterase inhibitor pyridostigmine. We also tested whether the HupA effect was dependent on central muscarinic or GABAA receptors by co-administration of HupA and atropine or PTZ, respectively. In tests of antiepileptic potential, HupA suppressed seizures and epileptic spikes on EEG. Spectral EEG analysis also revealed enhanced gamma frequency band power with HupA treatment. By ppTMS we found that HupA increases intracortical inhibition and blocks PTZ-induced cortical excitation. Atropine co-administration with HupA did not alter HupA-induced intracortical inhibition suggesting independent of muscarinic acetylcholine receptors mechanism in this model

  9. Association of Autism Spectrum Disorder with Obsessive-Compulsive and Attention-Deficit/ Hyperactivity Traits and Response Inhibition in a Community Sample

    Science.gov (United States)

    van der Plas, Ellen; Dupuis, Annie; Arnold, Paul; Crosbie, Jennifer; Schachar, Russell

    2016-01-01

    We examined co-occurrence of autism spectrum disorder (ASD) with (traits of) attention-deficit/hyperactivity (ADHD), obsessive-compulsive (OCD) and inhibition deficits in a community sample (n = 16,676) and tested whether having a sibling with ASD manifested in increased features of ADHD, OCD or inhibition deficits. Individuals with ASD had…

  10. Functional brain correlates of motor response inhibition in children with developmental coordination disorder and attention deficit/hyperactivity disorder.

    Science.gov (United States)

    Thornton, Siobhan; Bray, Signe; Langevin, Lisa Marie; Dewey, Deborah

    2018-06-01

    Motor impairment is associated with developmental coordination disorder (DCD), and to a lesser extent with attention-deficit/hyperactivity disorder (ADHD). Previous functional imaging studies investigated children with DCD or ADHD only; however, these two disorders co-occur in up to 50% of cases, suggesting that similar neural correlates are associated with these disorders. This study compared functional brain activation in children and adolescents (age range 8-17, M = 11.73, SD = 2.88) with DCD (n = 9), ADHD (n = 20), co-occurring DCD and ADHD (n = 18) and typically developing (TD) controls (n = 20). When compared to TD controls, children with co-occurring DCD/ADHD showed decreased activation during response inhibition in primary motor and sensory cortices. These findings suggest that children with co-occurring DCD and ADHD display significant functional changes in brain activation that could interfere with inhibition of erroneous motor responses. In contrast to previous studies, significant alterations in brain activation relative to TD controls, were not found in children with isolated DCD or ADHD. These findings highlight the importance of considering co-occurring disorders when investigating brain function in children with neurodevelopmental disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Locally formed dopamine inhibits Na+-K+-ATPase activity in rat renal cortical tubule cells

    International Nuclear Information System (INIS)

    Seri, I.; Kone, B.C.; Gullans, S.R.; Aperia, A.; Brenner, B.M.; Ballermann, B.J.

    1988-01-01

    Dopamine, generated locally from L-dopa, inhibits Na + -K + -ATPase in permeabilized rat proximal tubules under maximum transport rate conditions for sodium. To determine whether locally formed dopamine inhibits Na + -K + -ATPase activity in intact cortical tubule cells we studied the effect of L-dopa on ouabain-sensitive oxygen consumption rate (Qo 2 ) and 86 Rb uptake in renal cortical tubule cell suspensions. L-Dopa did not affect ouabain-insensitive Qo 2 or mitochondrial respiration. However, L-dopa inhibited ouabain-sensitive Qo 2 in a concentration-dependent manner, with half-maximal inhibition (K 0.5 ) of 5 x 10 -7 M and a maximal inhibition of 14.1 ± 1.5% at 10 -4 M. L-Dopa also blunted the nystatin-stimulated Qo 2 in a concentration-dependent manner, indicating the L-dopa directly inhibits Na + -K + -ATPase activity and not sodium entry. Ouabain-sensitive 86 Rb uptake was also inhibited by L-dopa. Carbidopa, an inhibitor of the conversion of L-dopa to dopamine, eliminated the effect of L-dopa on ouabain-sensitive Qo 2 and 86 Rb uptake, indicating that dopamine rather than L-dopa was the active agent. The finding that the L-dopa concentration-response curve was shifted to the left by one order of magnitude in the presence of nystatin suggests that the inhibitory effect is enhanced when the intracellular sodium concentration is increased. By studying the effect of L-dopa on ouabain-sensitive Qo 2 at increasing extracellular sodium concentrations in the presence of nystatin, the authors demonstrated that the inhibitory effect of locally formed dopamine on the Na + -K + -ATPase is indeed dependent on the sodium available for the enzyme and occurs in an uncompetitive manner

  12. Cortical feedback control of olfactory bulb circuits.

    Science.gov (United States)

    Boyd, Alison M; Sturgill, James F; Poo, Cindy; Isaacson, Jeffry S

    2012-12-20

    Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Cortical Thickness and Episodic Memory Impairment in Systemic Lupus Erythematosus.

    Science.gov (United States)

    Bizzo, Bernardo Canedo; Sanchez, Tiago Arruda; Tukamoto, Gustavo; Zimmermann, Nicolle; Netto, Tania Maria; Gasparetto, Emerson Leandro

    2017-01-01

    The purpose of this study was to investigate differences in brain cortical thickness of systemic lupus erythematosus (SLE) patients with and without episodic memory impairment and healthy controls. We studied 51 patients divided in 2 groups (SLE with episodic memory deficit, n = 17; SLE without episodic memory deficit, n = 34) by the Rey Auditory Verbal Learning Test and 34 healthy controls. Groups were paired based on sex, age, education, Mini-Mental State Examination score, and accumulation of disease burden. Cortical thickness from magnetic resonance imaging scans was determined using the FreeSurfer software package. SLE patients with episodic memory deficits presented reduced cortical thickness in the left supramarginal cortex and superior temporal gyrus when compared to the control group and in the right superior frontal, caudal, and rostral middle frontal and precentral gyri when compared to the SLE group without episodic memory impairment considering time since diagnosis of SLE as covaried. There were no significant differences in the cortical thickness between the SLE without episodic memory and control groups. Different memory-related cortical regions thinning were found in the episodic memory deficit group when individually compared to the groups of patients without memory impairment and healthy controls. Copyright © 2016 by the American Society of Neuroimaging.

  14. Response inhibition deficits in externalizing child psychiatric disorders: An ERP-study with the Stop-task

    Directory of Open Access Journals (Sweden)

    Heinrich Hartmut

    2005-12-01

    Full Text Available Abstract Background Evidence from behavioural studies suggests that impaired motor response inhibition may be common to several externalizing child psychiatric disorders, although it has been proposed to be the core-deficit in AD/HD. Since similar overt behaviour may be accompanied by different covert brain activity, the aim of this study was to investigate both brain-electric-activity and performance measures in three groups of children with externalizing child psychiatric disorders and a group of normal controls. Methods A Stop-task was used to measure specific aspects of response inhibition in 10 children with attention-deficit hyperactivity disorder (AD/HD, 8 children with oppositional defiant disorder/conduct disorder (ODD/CD, 11 children with comorbid AD/HD+ODD/CD and 11 normal controls. All children were between 8 and 14 years old. Event-related potentials and behavioural responses were recorded. An initial go-signal related microstate, a subsequent Stop-signal related N200, and performance measures were analyzed using ANCOVA with age as covariate. Results Groups did not differ in accuracy or reaction time to the Go-stimuli. However, all clinical groups displayed reduced map strength in a microstate related to initial processing of the Go-stimulus compared to normal controls, whereas topography did not differ. Concerning motor response inhibition, the AD/HD-only and the ODD/CD-only groups displayed slower Stop-signal reaction times (SSRT and Stop-failure reaction time compared to normal controls. In children with comorbid AD/HD+ODD/CD, Stop-failure reaction-time was longer than in controls, but their SSRT was not slowed. Moreover, SSRT in AD/HD+ODD/CD was faster than in AD/HD-only or ODD/CD-only. The AD/HD-only and ODD/CD-only groups displayed reduced Stop-N200 mean amplitude over right-frontal electrodes. This effect reached only a trend for comorbid AD/HD+ODD/CD. Conclusion Following similar attenuations in initial processing of the Go

  15. Are the deficits in navigational abilities present in the Williams syndrome related to deficits in the backward inhibition?

    Directory of Open Access Journals (Sweden)

    Francesca eFoti

    2015-03-01

    Full Text Available Williams syndrome (WS is associated with a distinct profile of relatively proficient skills within the verbal domain compared to the severe impairment of visuo-spatial processing. Abnormalities in executive functions and deficits in planning ability and spatial working memory have been described. However, to date little is known about the influence of executive function deficits on navigational abilities in WS. This study aimed at analyzing in WS individuals a specific executive function, the backward inhibition (BI that allows individuals to flexibly adapt to continuously changing environments. A group of WS individuals and a mental age- and gender-matched group of typically developing (TD children were subjected to three task-switching experiments requiring visuospatial or verbal material to be processed. Results showed that WS individuals exhibited clear BI deficits during visuospatial task-switching paradigms and normal BI effect during verbal task-switching paradigm. Overall, the present results suggest that the BI involvement in updating environment representations during navigation may influence WS navigational abilities.

  16. Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition.

    Science.gov (United States)

    Bast, Tobias; Pezze, Marie; McGarrity, Stephanie

    2017-10-01

    We review recent evidence concerning the significance of inhibitory GABA transmission and of neural disinhibition, that is, deficient GABA transmission, within the prefrontal cortex and the hippocampus, for clinically relevant cognitive functions. Both regions support important cognitive functions, including attention and memory, and their dysfunction has been implicated in cognitive deficits characterizing neuropsychiatric disorders. GABAergic inhibition shapes cortico-hippocampal neural activity, and, recently, prefrontal and hippocampal neural disinhibition has emerged as a pathophysiological feature of major neuropsychiatric disorders, especially schizophrenia and age-related cognitive decline. Regional neural disinhibition, disrupting spatio-temporal control of neural activity and causing aberrant drive of projections, may disrupt processing within the disinhibited region and efferent regions. Recent studies in rats showed that prefrontal and hippocampal neural disinhibition (by local GABA antagonist microinfusion) dysregulates burst firing, which has been associated with important aspects of neural information processing. Using translational tests of clinically relevant cognitive functions, these studies showed that prefrontal and hippocampal neural disinhibition disrupts regional cognitive functions (including prefrontal attention and hippocampal memory function). Moreover, hippocampal neural disinhibition disrupted attentional performance, which does not require the hippocampus but requires prefrontal-striatal circuits modulated by the hippocampus. However, some prefrontal and hippocampal functions (including inhibitory response control) are spared by regional disinhibition. We consider conceptual implications of these findings, regarding the distinct relationships of distinct cognitive functions to prefrontal and hippocampal GABA tone and neural activity. Moreover, the findings support the proposition that prefrontal and hippocampal neural disinhibition

  17. Impaired response inhibition and excess cortical thickness as candidate endophenotypes for trichotillomania

    DEFF Research Database (Denmark)

    Odlaug, Brian Lawrence; Chamberlain, Samuel R; Derbyshire, Katie L

    2014-01-01

    occupying an intermediate position. Permutation cluster analysis revealed significant excesses of cortical thickness in patients and their relatives compared to controls, in right inferior/middle frontal gyri (Brodmann Area, BA 47 & 11), right lingual gyrus (BA 18), left superior temporal cortex (BA 21......Trichotillomania is characterized by repetitive pulling out of one's own hair. Impaired response inhibition has been identified in patients with trichotillomania, along with gray matter density changes in distributed neural regions including frontal cortex. The objective of this study...

  18. No Effects of Bilateral tDCS over Inferior Frontal Gyrus on Response Inhibition and Aggression.

    Directory of Open Access Journals (Sweden)

    Franziska Dambacher

    Full Text Available Response inhibition is defined as the capacity to adequately withdraw pre-planned responses. It has been shown that individuals with deficits in inhibiting pre-planned responses tend to display more aggressive behaviour. The prefrontal cortex is involved in both, response inhibition and aggression. While response inhibition is mostly associated with predominantly right prefrontal activity, the neural components underlying aggression seem to be left-lateralized. These differences in hemispheric dominance are conceptualized in cortical asymmetry theories on motivational direction, which assign avoidance motivation (relevant to inhibit responses to the right and approach motivation (relevant for aggressive actions to the left prefrontal cortex. The current study aimed to directly address the inverse relationship between response inhibition and aggression by assessing them within one experiment. Sixty-nine healthy participants underwent bilateral transcranial Direct Current Stimulation (tDCS to the inferior frontal cortex. In one group we induced right-hemispheric fronto-cortical dominance by means of a combined right prefrontal anodal and left prefrontal cathodal tDCS montage. In a second group we induced left-hemispheric fronto-cortical dominance by means of a combined left prefrontal anodal and right prefrontal cathodal tDCS montage. A control group received sham stimulation. Response inhibition was assessed with a go/no-go task (GNGT and aggression with the Taylor Aggression Paradigm (TAP. We revealed that participants with poorer performance in the GNGT displayed more aggression during the TAP. No effects of bilateral prefrontal tDCS on either response inhibition or aggression were observed. This is at odds with previous brain stimulation studies applying unilateral protocols. Our results failed to provide evidence in support of the prefrontal cortical asymmetry model in the domain of response inhibition and aggression. The absence of t

  19. Evidence that the cortical motor command for the initiation of dynamic plantarflexion consists of excitation followed by inhibition

    DEFF Research Database (Denmark)

    Taube, Wolfgang; Lundbye-Jensen, Jesper; Schubert, Martin

    2011-01-01

    by conditioning the soleus H-reflex with different interstimulus intervals by cervicomedullary stimulation (CMS-conditioning) and transcranial magnetic stimulation (TMS) of M1 (M1-conditioning). This technique provides a precise time course of facilitation and inhibition. CMS- and M1-conditioning produced......At the onset of dynamic movements excitation of the motor cortex (M1) is spatially restricted to areas representing the involved muscles whereas adjacent areas are inhibited. The current study elucidates whether the cortical motor command for dynamic contractions is also restricted to a certain...... population of cortical neurons responsible for the fast corticospinal projections. Therefore, corticospinal transmission was assessed with high temporal resolution during dynamic contractions after both, magnetic stimulation over M1 and the brainstem. The high temporal resolution could be obtained...

  20. Comparable cortical activation with inferior performance in women during a novel cognitive inhibition task.

    Science.gov (United States)

    Halari, R; Kumari, V

    2005-03-07

    Men are hypothesised to perform better than women at tasks requiring cognitive inhibition. The present study applied whole-brain functional magnetic resonance imaging to investigate the neural correlates of cognitive inhibition using a novel task, requiring detection of numbers decreasing in numerical order, in relation to sex. The study involved 19 young healthy subjects (9 men, 10 women). Behavioural sex differences favouring men were found on the inhibition, but not on the automatization (i.e. detection of numbers increasing in numerical order), condition of the task. Significant areas of activation associated with cognitive inhibition included the right inferior prefrontal and bilateral dorsolateral prefrontal cortices, left inferior and superior parietal lobes, and bilateral temporal regions across men and women. No brain region was significantly differently activated in men and women. Our findings demonstrate that (a) cognitive inhibition is dependent on intact processes within frontal and parietal regions, and (b) women show inferior cognitive inhibition despite of comparable activation to men in relevant regions. Equated behavioural performance may elicit sex differences in brain activation.

  1. Altered inhibition in Tuberous Sclerosis and Type IIb cortical dysplasia

    Science.gov (United States)

    Talos, Delia M.; Sun, Hongyu; Kosaras, Bela; Joseph, Annelise; Folkerth, Rebecca D.; Poduri, Annapurna; Madsen, Joseph R.; Black, Peter M.; Jensen, Frances E.

    2012-01-01

    Objective The most common neurological symptom of tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) is early-life refractory epilepsy. As previous studies have shown enhanced excitatory glutamatergic neurotransmission in TSC and FCD brains, we hypothesized that neurons associated with these lesions may also express altered GABAA receptor (GABAAR)-mediated inhibition. Methods Expression of the GABAAR subunitsα1 and α4, the Na+-K+-2Cl− (NKCC1), and the K+−Cl− (KCC2) transporters in human TSC and FCD Type II specimens were analyzed by Western blot and double label immunocytochemistry. GABAAR responses in dysplastic neurons from a single case of TSC were measured by perforated-patch recording and compared to normal-appearing cortical neurons from a non-TSC epilepsy case. Results TSC and FCD Type IIb lesions demonstrated decreased expression of the GABAAR α1, increased NKCC1 and decreased KCC2 levels. In contrast, FCD Type IIa lesions showed decreased α4, and increased expression of both NKCC1 and KCC2 transporters. Patch clamp recordings from dysplastic neurons in acute slices from TSC tubers demonstrated excitatory GABAAR responses that were significantly attenuated by the NKCC1 inhibitor bumetanide, in contrast to hyperpolarizing GABAAR-mediated currents in normal neurons from non-TSC cortical slices. Interpretation Expression and function of GABAARs in TSC and FCD IIb suggests the relative benzodiazepine insensitivity and more excitatory action of GABA compared to FCD IIa. These factors may contribute to resistance of seizure activity to anticonvulsants that increase GABAergic function, and may justify add-on trials of the NKCC1 inhibitor bumetanide for the treatment of TSC and FCD Type IIb related epilepsy. PMID:22447678

  2. Feedforward somatosensory inhibition is normal in cervical dystonia.

    Science.gov (United States)

    Ferrè, Elisa R; Ganos, Christos; Bhatia, Kailash P; Haggard, Patrick

    2015-03-01

    Insufficient cortical inhibition is a key pathophysiological finding in dystonia. Subliminal sensory stimuli were reported to transiently inhibit somatosensory processing. Here we investigated whether such subliminal feedforward inhibition is reduced in patients with cervical dystonia. Sixteen cervical dystonia patients and 16 matched healthy controls performed a somatosensory detection task. We measured the drop in sensitivity to detect a threshold-level digital nerve shock when it was preceded by a subliminal conditioning shock, compared to when it was not. Subliminal conditioning shocks reduced sensitivity to threshold stimuli to a similar extent in both patients and controls, suggesting that somatosensory subliminal feedforward inhibition is normal in cervical dystonia. Somatosensory feedforward inhibition was normal in this group of cervical dystonia patients. Our results qualify previous concepts of a general dystonic deficit in sensorimotor inhibitory processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. No Association between Cortical Gyrification or Intrinsic Curvature and Attention-deficit/Hyperactivity Disorder in Adolescents and Young Adults

    Directory of Open Access Journals (Sweden)

    Natalie J. Forde

    2017-04-01

    Full Text Available Magnetic resonance imaging (MRI studies have highlighted subcortical, cortical, and structural connectivity abnormalities associated with attention-deficit/hyperactivity disorder (ADHD. Gyrification investigations of the cortex have been inconsistent and largely negative, potentially due to a lack of sensitivity of the previously used morphological parameters. The innovative approach of applying intrinsic curvature analysis, which is predictive of gyrification pattern, to the cortical surface applied herein allowed us greater sensitivity to determine whether the structural connectivity abnormalities thus far identified at a centimeter scale also occur at a millimeter scale within the cortical surface. This could help identify neurodevelopmental processes that contribute to ADHD. Structural MRI datasets from the NeuroIMAGE project were used [n = 306 ADHD, n = 164 controls, and n = 148 healthy siblings of individuals with ADHD (age in years, mean(sd; 17.2 (3.4, 16.8 (3.2, and 17.7 (3.8, respectively]. Reconstructions of the cortical surfaces were computed with FreeSurfer. Intrinsic curvature (taken as a marker of millimeter-scale surface connectivity and local gyrification index were calculated for each point on the surface (vertex with Caret and FreeSurfer, respectively. Intrinsic curvature skew and mean local gyrification index were extracted per region; frontal, parietal, temporal, occipital, cingulate, and insula. A generalized additive model was used to compare the trajectory of these measures between groups over age, with sex, scanner site, total surface area of hemisphere, and familiality accounted for. After correcting for sex, scanner site, and total surface area no group differences were found in the developmental trajectory of intrinsic curvature or local gyrification index. Despite the increased sensitivity of intrinsic curvature, compared to gyrification measures, to subtle morphological abnormalities of the cortical surface we found

  4. Altered Regional Brain Cortical Thickness in Pediatric Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Paul M. Macey

    2018-01-01

    Full Text Available RationaleObstructive sleep apnea (OSA affects 2–5% of all children and is associated with cognitive and behavioral deficits, resulting in poor school performance. These psychological deficits may arise from brain injury, as seen in preliminary findings of lower gray matter volume among pediatric OSA patients. However, the psychological deficits in OSA are closely related to functions in the cortex, and such brain areas have not been specifically assessed. The objective was to determine whether cortical thickness, a marker of possible brain injury, is altered in children with OSA.MethodsWe examined regional brain cortical thicknesses using high-resolution T1-weighted magnetic resonance images in 16 pediatric OSA patients (8 males; mean age ± SD = 8.4 ± 1.2 years; mean apnea/hypopnea index ± SD = 11 ± 6 events/h and 138 controls (8.3 ± 1.1 years; 62 male; 138 subjects from the NIH Pediatric MRI database to identify cortical thickness differences in pediatric OSA subjects.ResultsCortical thinning occurred in multiple regions including the superior frontal, ventral medial prefrontal, and superior parietal cortices. The left side showed greater thinning in the superior frontal cortex. Cortical thickening was observed in bilateral precentral gyrus, mid-to-posterior insular cortices, and left central gyrus, as well as right anterior insula cortex.ConclusionChanges in cortical thickness are present in children with OSA and likely indicate disruption to neural developmental processes, including maturational patterns of cortical volume increases and synaptic pruning. Regions with thicker cortices may reflect inflammation or astrocyte activation. Both the thinning and thickening associated with OSA in children may contribute to the cognitive and behavioral dysfunction frequently found in the condition.

  5. Psilocybin-Induced Deficits in Automatic and Controlled Inhibition are Attenuated by Ketanserin in Healthy Human Volunteers

    Science.gov (United States)

    Quednow, Boris B; Kometer, Michael; Geyer, Mark A; Vollenweider, Franz X

    2012-01-01

    The serotonin-2A receptor (5-HT2AR) has been implicated in the pathogenesis of schizophrenia and related inhibitory gating and behavioral inhibition deficits of schizophrenia patients. The hallucinogen psilocybin disrupts automatic forms of sensorimotor gating and response inhibition in humans, but it is unclear so far whether the 5-HT2AR or 5-HT1AR agonist properties of its bioactive metabolite psilocin account for these effects. Thus, we investigated whether psilocybin-induced deficits in automatic and controlled inhibition in healthy humans could be attenuated by the 5-HT2A/2CR antagonist ketanserin. A total of 16 healthy participants received placebo, ketanserin (40 mg p.o.), psilocybin (260 μg/kg p.o.), or psilocybin plus ketanserin in a double-blind, randomized, and counterbalanced order. Sensorimotor gating was measured by prepulse inhibition (PPI) of the acoustic startle response. The effects on psychopathological core dimensions and behavioral inhibition were assessed by the altered states of consciousness questionnaire (5D-ASC), and the Color-Word Stroop Test. Psilocybin decreased PPI at short lead intervals (30 ms), increased all 5D-ASC scores, and selectively increased errors in the interference condition of the Stroop Test. Stroop interference and Stroop effect of the response latencies were increased under psilocybin as well. Psilocybin-induced alterations were attenuated by ketanserin pretreatment, whereas ketanserin alone had no significant effects. These findings suggest that the disrupting effects of psilocybin on automatic and controlled inhibition processes are attributable to 5-HT2AR stimulation. Sensorimotor gating and attentional control deficits of schizophrenia patients might be due to changes within the 5-HT2AR system. PMID:21956447

  6. Synaptic Changes in AMPA Receptor Subunit Expression in Cortical Parvalbumin Interneurons in the Stargazer Model of Absence Epilepsy

    Directory of Open Access Journals (Sweden)

    Nadia K. Adotevi

    2017-12-01

    Full Text Available Feedforward inhibition is essential to prevent run away excitation within the brain. Recent evidence suggests that a loss of feed-forward inhibition in the corticothalamocortical circuitry may underlie some absence seizures. However, it is unclear if this aberration is specifically linked to loss of synaptic excitation onto local fast-spiking parvalbumin-containing (PV+ inhibitory interneurons, which are responsible for mediating feedforward inhibition within cortical networks. We recently reported a global tissue loss of AMPA receptors (AMPARs, and a specific mistrafficking of these AMPARs in PV+ interneurons in the stargazer somatosensory cortex. The current study was aimed at investigating if cellular changes in AMPAR expression were translated into deficits in receptors at specific synapses in the feedforward inhibitory microcircuit. Using western blot immunolabeling on biochemically isolated synaptic fractions, we demonstrate a loss of AMPAR GluA1–4 subunits in the somatosensory cortex of stargazers compared to non-epileptic control mice. Furthermore, using double post-embedding immunogold-cytochemistry, we show a loss of GluA1–4-AMPARs at excitatory synapses onto cortical PV+ interneurons. Altogether, these data indicate a loss of synaptic AMPAR-mediated excitation of cortical PV+ inhibitory neurons. As the cortex is considered the site of initiation of spike wave discharges (SWDs within the corticothalamocortical circuitry, loss of AMPARs at cortical PV+ interneurons likely impairs feed-forward inhibitory output, and contributes to the generation of SWDs and absence seizures in stargazers.

  7. Response inhibition and interference control in obsessive-compulsive spectrum disorders

    Directory of Open Access Journals (Sweden)

    Laura S van Velzen

    2014-06-01

    Full Text Available Over the past twenty years, motor response inhibition and interference control have received considerable scientific effort and attention, due to their important role in behavior and the development of neuropsychiatric disorders. Results of neuroimaging studies indicate that motor response inhibition and interference control are dependent on cortical-striatal-thalamic-cortical (CSTC circuits. Structural and functional abnormalities within the CSTC circuits have been reported for many neuropsychiatric disorders, including obsessive-compulsive disorder (OCD and related disorders, such as attention deficit hyperactivity disorder (ADHD, Tourette’s syndrome (TS and trichotillomania. These disorders also share impairments in motor response inhibition and interference control, which may underlie some of their behavioral and cognitive symptoms. Results of task-related neuroimaging studies on inhibitory functions in these disorders show that impaired task performance is related to altered recruitment of the CSTC circuits. Previous research has shown that inhibitory performance is dependent upon dopamine, noradrenaline and serotonin signaling, neurotransmitters that have been implicated in the pathophysiology of these disorders. In this review we discuss the common and disorder-specific pathophysiological mechanisms of inhibition-related dysfunction in OCD and related disorders.

  8. Cortical bone deficit and fat infiltration of bone marrow and skeletal muscle in ambulatory children with mild spastic cerebral palsy.

    Science.gov (United States)

    Whitney, Daniel G; Singh, Harshvardhan; Miller, Freeman; Barbe, Mary F; Slade, Jill M; Pohlig, Ryan T; Modlesky, Christopher M

    2017-01-01

    Nonambulatory children with severe cerebral palsy (CP) have underdeveloped bone architecture, low bone strength and a high degree of fat infiltration in the lower extremity musculature. The present study aims to determine if such a profile exists in ambulatory children with mild CP and if excess fat infiltration extends into the bone marrow. Ambulatory children with mild spastic CP and typically developing children (4 to 11years; 12/group) were compared. Magnetic resonance imaging was used to estimate cortical bone, bone marrow and total bone volume and width, bone strength [i.e., section modulus (Z) and polar moment of inertia (J)], and bone marrow fat concentration in the midtibia, and muscle volume, intermuscular, subfascial, and subcutaneous adipose tissue (AT) volume and intramuscular fat concentration in the midleg. Accelerometer-based activity monitors worn on the ankle were used to assess physical activity. There were no group differences in age, height, body mass, body mass percentile, BMI, BMI percentile or tibia length, but children with CP had lower height percentile (19th vs. 50th percentile) and total physical activity counts (44%) than controls (both pChildren with CP also had lower cortical bone volume (30%), cortical bone width in the posterior (16%) and medial (32%) portions of the shaft, total bone width in the medial-lateral direction (15%), Z in the medial-lateral direction (34%), J (39%) and muscle volume (39%), and higher bone marrow fat concentration (82.1±1.8% vs. 80.5±1.9%), subfascial AT volume (3.3 fold) and intramuscular fat concentration (25.0±8.0% vs. 16.1±3.3%) than controls (all pfat infiltration estimates, except posterior cortical bone width, were still present (all pchildren with CP compared to controls emerged (pchildren with mild spastic CP exhibit an underdeveloped bone architecture and low bone strength in the midtibia and a greater infiltration of fat in the bone marrow and surrounding musculature compared to typically

  9. HIV Infection Is Associated with Impaired Striatal Function during Inhibition with Normal Cortical Functioning on Functional MRI

    NARCIS (Netherlands)

    du Plessis, Stéfan; Vink, Matthijs; Joska, John A; Koutsilieri, Eleni; Bagadia, Asif; Stein, Dan J; Emsley, Robin

    2015-01-01

    The aim of the present study was to investigate the effect of HIV infection on cortical and subcortical regions of the frontal-striatal system involved in the inhibition of voluntary movement. Functional MRI (fMRI) studies suggest that human immunodeficiency virus (HIV) infection is associated with

  10. Cortisol responses in children and adults with attention deficit hyperactivity disorder (ADHD): a possible marker of inhibition deficits.

    Science.gov (United States)

    Corominas, M; Ramos-Quiroga, J A; Ferrer, M; Sáez-Francàs, N; Palomar, G; Bosch, R; Casas, M

    2012-06-01

    Attention deficit hyperactivity disorder (ADHD) is a heterogeneous disease whose neurobiological background is not completely understood. It has been proposed that deficits of the inhibitory function with an underactive behavioral inhibition system (BIS) may be in the core of ADHD. In this regard, this review summarizes all studies that examine the involvement of cortisol in ADHD. Differences in cortisol responses from different ADHD subtypes, hyperactive/impulsive, inattentive, and combined, are analyzed. In addition, we examine the role of comorbidities as confounding factors in the study of cortisol in ADHD, including comorbid disruptive behavioral disorder (DBD), as well as anxiety and depressive disorders. Because ADHD is a neurodevelopmental condition and approximately half of the children enter adulthood with the disorder, we review cortisol studies in adults and children separately. Two diverse patterns of cortisol have been reported both in children and adults with ADHD. Blunted cortisol responses to stress are associated with comorbid DBD, whereas high cortisol responses are associated to comorbid anxiety disorders. Nevertheless, the inhibitory deficits in ADHD do not appear to be related directly to cortisol deficits in either children or adults. This review increases our understanding of the heterogeneity of ADHD and could help in determining new strategies for the treatment of these patients. Future studies including gender and a more systematic methodology to study the cortisol response are needed.

  11. Psilocybin-induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers.

    Science.gov (United States)

    Quednow, Boris B; Kometer, Michael; Geyer, Mark A; Vollenweider, Franz X

    2012-02-01

    The serotonin-2A receptor (5-HT(2A)R) has been implicated in the pathogenesis of schizophrenia and related inhibitory gating and behavioral inhibition deficits of schizophrenia patients. The hallucinogen psilocybin disrupts automatic forms of sensorimotor gating and response inhibition in humans, but it is unclear so far whether the 5-HT(2A)R or 5-HT(1A)R agonist properties of its bioactive metabolite psilocin account for these effects. Thus, we investigated whether psilocybin-induced deficits in automatic and controlled inhibition in healthy humans could be attenuated by the 5-HT(2A/2C)R antagonist ketanserin. A total of 16 healthy participants received placebo, ketanserin (40 mg p.o.), psilocybin (260 μg/kg p.o.), or psilocybin plus ketanserin in a double-blind, randomized, and counterbalanced order. Sensorimotor gating was measured by prepulse inhibition (PPI) of the acoustic startle response. The effects on psychopathological core dimensions and behavioral inhibition were assessed by the altered states of consciousness questionnaire (5D-ASC), and the Color-Word Stroop Test. Psilocybin decreased PPI at short lead intervals (30 ms), increased all 5D-ASC scores, and selectively increased errors in the interference condition of the Stroop Test. Stroop interference and Stroop effect of the response latencies were increased under psilocybin as well. Psilocybin-induced alterations were attenuated by ketanserin pretreatment, whereas ketanserin alone had no significant effects. These findings suggest that the disrupting effects of psilocybin on automatic and controlled inhibition processes are attributable to 5-HT(2A)R stimulation. Sensorimotor gating and attentional control deficits of schizophrenia patients might be due to changes within the 5-HT(2A)R system.

  12. Depletion of rat cortical norepinephrine and the inhibition of [3H]norepinephrine uptake by xylamine does not require monoamine oxidase activity

    International Nuclear Information System (INIS)

    Dudley, M.W.

    1988-01-01

    Inhibition of monoamine oxidase A through pretreatment of rats with clorgyline or the pro-drug MDL 72,394 did not block the amine-depleting action of xylamine. Xylamine treatment resulted in a loss of approximately 60% of the control level of norepinephrine in the cerebral cortex. A 1-hr pretreatment, but not a 24-hr pretreatment, with the monoamine oxidase B inhibitor, L-deprenyl, prevented the depletion of norepinephrine by xylamine. In addition, pretreatment with MDL 72,974, a monoamine oxidase B inhibitor without amine-releasing or uptake - inhibiting effects, did not prevent cortical norepinephrine levels. Inhibition of monoamine oxidase by either MDL 72,974 or MDL 72,394 did not prevent the inhibition of [ 3 H]norepinephrine uptake into rat cortical synaptosomes by xylamine. These data indicate that monoamine oxidase does not mediate the amine-releasing or uptake inhibiting properties of xylamine. The protection afforded by L-deprenyl following a 1-hr pretreatment most probably was due to accumulation of its metabolite, L-amphetamine, which would inhibit the uptake carrier. A functional carrier is required for depletion since desipramine administered 1 hr prior to xylamine, was also able to prevent depletion of norepinephrine

  13. The Diversity of Cortical Inhibitory Synapses

    Directory of Open Access Journals (Sweden)

    Yoshiyuki eKubota

    2016-04-01

    Full Text Available The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their IPSP size is not uniform. Thus cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.

  14. Functional neural substrates of posterior cortical atrophy patients.

    Science.gov (United States)

    Shames, H; Raz, N; Levin, Netta

    2015-07-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome in which the most pronounced pathologic involvement is in the occipito-parietal visual regions. Herein, we aimed to better define the cortical reflection of this unique syndrome using a thorough battery of behavioral and functional MRI (fMRI) tests. Eight PCA patients underwent extensive testing to map their visual deficits. Assessments included visual functions associated with lower and higher components of the cortical hierarchy, as well as dorsal- and ventral-related cortical functions. fMRI was performed on five patients to examine the neuronal substrate of their visual functions. The PCA patient cohort exhibited stereopsis, saccadic eye movements and higher dorsal stream-related functional impairments, including simultant perception, image orientation, figure-from-ground segregation, closure and spatial orientation. In accordance with the behavioral findings, fMRI revealed intact activation in the ventral visual regions of face and object perception while more dorsal aspects of perception, including motion and gestalt perception, revealed impaired patterns of activity. In most of the patients, there was a lack of activity in the word form area, which is known to be linked to reading disorders. Finally, there was evidence of reduced cortical representation of the peripheral visual field, corresponding to the behaviorally assessed peripheral visual deficit. The findings are discussed in the context of networks extending from parietal regions, which mediate navigationally related processing, visually guided actions, eye movement control and working memory, suggesting that damage to these networks might explain the wide range of deficits in PCA patients.

  15. Impaired decision-making under risk is associated with gaming-specific inhibition deficits among college students with Internet gaming disorder.

    Science.gov (United States)

    Yao, Yuan-Wei; Wang, Ling-Jiao; Yip, Sarah W; Chen, Pin-Ru; Li, Song; Xu, Jiansong; Zhang, Jin-Tao; Deng, Lin-Yuan; Liu, Qin-Xue; Fang, Xiao-Yi

    2015-09-30

    A growing body of evidence indicates that both inhibition and decision-making deficits play essential roles in the development and maintenance of Internet gaming disorder (IGD). Clarifying whether impaired decision-making among individuals with IGD is related to poor inhibition will advance our understanding of IGD and contribute to intervention development. However, the relationship between these two functions remains unclear. In this study, we sought to systemically examine inhibitory processes, decision-making and the relationship between the two among individuals with IGD. Thirty-four individuals with IGD and 32 matched healthy controls (HCs) were recruited. In comparison to HCs, IGD subjects demonstrated inhibition deficits during performance of the gaming-related Go/No-Go task and impaired decision-making under risk. In addition, errors on No-Go trials during the gaming-related Go/No-Go task were positively associated with decision-making impairments under risk but not under ambiguity among IGD subjects. These results suggest individuals with IGD are impaired in some aspects of inhibition and decision-making functions, and that decision-making deficits under risk are linked to poor inhibition specifically related to gaming cues, which has implications for the development of novel intervention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Locally formed dopamine inhibits Na sup + -K sup + -ATPase activity in rat renal cortical tubule cells

    Energy Technology Data Exchange (ETDEWEB)

    Seri, I.; Kone, B.C.; Gullans, S.R.; Aperia, A.; Brenner, B.M.; Ballermann, B.J. (Harvard Medical School, Boston, MA (USA) Karolinska Institute, Stockholm (Sweden))

    1988-10-01

    Dopamine, generated locally from L-dopa, inhibits Na{sup +}-K{sup +}-ATPase in permeabilized rat proximal tubules under maximum transport rate conditions for sodium. To determine whether locally formed dopamine inhibits Na{sup +}-K{sup +}-ATPase activity in intact cortical tubule cells we studied the effect of L-dopa on ouabain-sensitive oxygen consumption rate ({dot Q}o{sub 2}) and {sup 86}Rb uptake in renal cortical tubule cell suspensions. L-Dopa did not affect ouabain-insensitive {dot Q}o{sub 2} or mitochondrial respiration. However, L-dopa inhibited ouabain-sensitive {dot Q}o{sub 2} in a concentration-dependent manner, with half-maximal inhibition (K{sub 0.5}) of 5 {times} 10{sup {minus}7} M and a maximal inhibition of 14.1 {plus minus} 1.5% at 10{sup {minus}4}M. L-Dopa also blunted the nystatin-stimulated {dot Q}o{sub 2} in a concentration-dependent manner, indicating the L-dopa directly inhibits Na{sup +}-K{sup +}-ATPase activity and not sodium entry. Ouabain-sensitive {sup 86}Rb uptake was also inhibited by L-dopa. Carbidopa, an inhibitor of the conversion of L-dopa to dopamine, eliminated the effect of L-dopa on ouabain-sensitive {dot Q}o{sub 2} and {sup 86}Rb uptake, indicating that dopamine rather than L-dopa was the active agent. The finding that the L-dopa concentration-response curve was shifted to the left by one order of magnitude in the presence of nystatin suggests that the inhibitory effect is enhanced when the intracellular sodium concentration is increased. By studying the effect of L-dopa on ouabain-sensitive {dot Q}o{sub 2} at increasing extracellular sodium concentrations in the presence of nystatin, the authors demonstrated that the inhibitory effect of locally formed dopamine on the Na{sup +}-K{sup +}-ATPase is indeed dependent on the sodium available for the enzyme and occurs in an uncompetitive manner.

  17. Go/No Go task performance predicts cortical thickness in the caudal inferior frontal gyrus in young adults with and without ADHD.

    Science.gov (United States)

    Newman, Erik; Jernigan, Terry L; Lisdahl, Krista M; Tamm, Leanne; Tapert, Susan F; Potkin, Steven G; Mathalon, Daniel; Molina, Brooke; Bjork, James; Castellanos, F Xavier; Swanson, James; Kuperman, Joshua M; Bartsch, Hauke; Chen, Chi-Hua; Dale, Anders M; Epstein, Jeffery N; Group, Mta Neuroimaging

    2016-09-01

    Response inhibition deficits are widely believed to be at the core of Attention-Deficit Hyperactivity Disorder (ADHD). Several studies have examined neural architectural correlates of ADHD, but research directly examining structural correlates of response inhibition is lacking. Here we examine the relationship between response inhibition as measured by a Go/No Go task, and cortical surface area and thickness of the caudal inferior frontal gyrus (cIFG), a region implicated in functional imaging studies of response inhibition, in a sample of 114 young adults with and without ADHD diagnosed initially during childhood. We used multiple linear regression models to test the hypothesis that Go/No Go performance would be associated with cIFG surface area or thickness. Results showed that poorer Go/No Go performance was associated with thicker cIFG cortex, and this effect was not mediated by ADHD status or history of substance use. However, independent of Go/No Go performance, persistence of ADHD symptoms and more frequent cannabis use were associated with thinner cIFG. Go/No Go performance was not associated with cortical surface area. The association between poor inhibitory functioning and thicker cIFG suggests that maturation of this region may differ in low performing participants. An independent association of persistent ADHD symptoms and frequent cannabis use with thinner cIFG cortex suggests that distinct neural mechanisms within this region may play a role in inhibitory function, broader ADHD symptomatology, and cannabis use. These results contribute to Research Domain Criteria (RDoC) by revealing novel associations between neural architectural phenotypes and basic neurobehavioral processes measured dimensionally.

  18. A Preliminary Transcranial Magnetic Stimulation Study of Cortical Inhibition and Excitability in High-Functioning Autism and Asperger Disorder

    Science.gov (United States)

    Enticott, Peter G.; Rinehart, Nicole J.; Tonge, Bruce J.; Bradshaw, John L.; Fitzgerald, Paul B.

    2010-01-01

    Aim: Controversy surrounds the distinction between high-functioning autism (HFA) and Asperger disorder, but motor abnormalities are associated features of both conditions. This study examined motor cortical inhibition and excitability in HFA and Asperger disorder using transcranial magnetic stimulation (TMS). Method: Participants were diagnosed by…

  19. Cortical hemorrhage-associated neurological deficits and tissue damage in mice are ameliorated by therapeutic treatment with nicotine.

    Science.gov (United States)

    Anan, Junpei; Hijioka, Masanori; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Katsuki, Hiroshi

    2017-09-01

    Intracerebral hemorrhage (ICH) is associated with diverse sets of neurological symptoms and prognosis, depending on the site of bleeding. Relative rate of hemorrhage occurring in the cerebral cortex (lobar hemorrhage) has been increasing, but there is no report on effective pharmacotherapeutic approaches for cortical hemorrhage either in preclinical or clinical studies. The present study aimed to establish an experimental model of cortical hemorrhage in mice for evaluation of effects of therapeutic drug candidates. Type VII collagenase at 0.015 U, injected into the parietal cortex, induced hemorrhage expanding into the whole layer of the posterior parts of the sensorimotor cortex in male C57BL/6 mice. Mice with ICH under these conditions exhibited significant motor deficits as revealed by beam-walking test. Daily administration of nicotine (1 and 2 mg/kg), with the first injection given at 3 hr after induction of ICH, improved motor performance of mice in a dose-dependent manner, although nicotine did not alter the volume of hematoma. Immunohistochemical examinations revealed that the number of neurons was drastically decreased within the hematoma region. Nicotine at 2 mg/kg partially but significantly increased the number of remaining neurons within the hematoma at 3 days after induction of ICH. ICH also resulted in inflammatory activation of microglia/macrophages in the perihematoma region, and nicotine (1 and 2 mg/kg) significantly attenuated the increase of microglia. These results suggest that nicotine can provide a therapeutic effect on cortical hemorrhage, possibly via its neuroprotective and anti-inflammatory actions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Maximizing the effect of an α7 nicotinic receptor PAM in a mouse model of schizophrenia-like sensory inhibition deficits.

    Science.gov (United States)

    Stevens, Karen E; Zheng, Lijun; Floyd, Kirsten L; Stitzel, Jerry A

    2015-06-22

    Positive allosteric modulators (PAMs) for the α7 nicotinic receptor hold promise for the treatment of sensory inhibition deficits observed in schizophrenia patients. Studies of these compounds in the DBA/2 mouse, which models the schizophrenia-related deficit in sensory inhibition, have shown PAMs to be effective in improving the deficit. However, the first published clinical trial of a PAM for both sensory inhibition deficits and related cognitive difficulties failed, casting a shadow on this therapeutic approach. The present study used both DBA/2 mice, and C3H Chrna7 heterozygote mice to assess the ability of the α7 PAM, PNU-120596, to improve sensory inhibition. Both of these strains of mice have reduced hippocampal α7 nicotinic receptor numbers and deficient sensory inhibition similar to schizophrenia patients. Low doses of PNU-120596 (1 or 3.33mg/kg) were effective in the DBA/2 mouse but not the C3H Chrna7 heterozygote mouse. Moderate doses of the selective α7 nicotinic receptor agonist, choline chloride (10 or 33mg/kg), were also ineffective in improving sensory inhibition in the C3H Chrna7 heterozygote mouse. However, combining the lowest doses of both PNU-120596 and choline chloride in this mouse model did improve sensory inhibition. We propose here that the difference in efficacy of PNU-120596 between the 2 mouse strains is driven by differences in hippocampal α7 nicotinic receptor numbers, such that C3H Chrna7 heterozygote mice require additional direct stimulation of the α7 receptors. These data may have implications for further clinical testing of putative α7 nicotinic receptor PAMs. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Breaking the excitation-inhibition balance makes the cortical network’s space-time dynamics distinguish simple visual scenes

    DEFF Research Database (Denmark)

    Roland, Per E.; Bonde, Lars H.; Forsberg, Lars E.

    2017-01-01

    Brain dynamics are often taken to be temporal dynamics of spiking and membrane potentials in a balanced network. Almost all evidence for a balanced network comes from recordings of cell bodies of few single neurons, neglecting more than 99% of the cortical network. We examined the space......-time dynamics of excitation and inhibition simultaneously in dendrites and axons over four visual areas of ferrets exposed to visual scenes with stationary and moving objects. The visual stimuli broke the tight balance between excitation and inhibition such that the network exhibited longer episodes of net...... excitation subsequently balanced by net inhibition, in contrast to a balanced network. Locally in all four areas the amount of net inhibition matched the amount of net excitation with a delay of 125 ms. The space-time dynamics of excitation-inhibition evolved to reduce the complexity of neuron interactions...

  2. Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/ hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Manuel Tobias Munz

    2015-08-01

    Full Text Available Background: Behavioral inhibition, which is a later-developing executive function (EF and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD. While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM slow-wave sleep. Recently, slow oscillations (SO during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD. Objective: By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD. Methods: 14 boys (10-14 yrs diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task. Results: SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness and motor memory performance were not improved by so-tDCS. Conclusion: Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD.

  3. Unawareness of deficits in Alzheimer's disease: role of the cingulate cortex.

    Science.gov (United States)

    Amanzio, Martina; Torta, Diana M E; Sacco, Katiuscia; Cauda, Franco; D'Agata, Federico; Duca, Sergio; Leotta, Daniela; Palermo, Sara; Geminiani, Giuliano C

    2011-04-01

    Unawareness of deficits is a symptom of Alzheimer's disease that can be observed even in the early stages of the disease. The frontal hypoperfusion associated with reduced awareness of deficits has led to suggestions of the existence of a hypofunctioning prefrontal pathway involving the right dorsolateral prefrontal cortex, inferior parietal lobe, anterior cingulate gyri and limbic structures. Since this network plays an important role in response inhibition competence and patients with Alzheimer's disease who are unaware of their deficits exhibit impaired performance in response inhibition tasks, we predicted a relationship between unawareness of deficits and cingulate hypofunctionality. We tested this hypothesis in a sample of 29 patients with Alzheimer's disease (15 aware and 14 unaware of their disturbances), rating unawareness according to the Awareness of Deficit Questionnaire-Dementia scale. The cognitive domain was investigated by means of a wide battery including tests on executive functioning, memory and language. Neuropsychiatric aspects were investigated using batteries on behavioural mood changes, such as apathy and disinhibition. Cingulate functionality was assessed with functional magnetic resonance imaging, while patients performed a go/no-go task. In accordance with our hypotheses, unaware patients showed reduced task-sensitive activity in the right anterior cingulate area (Brodmann area 24) and in the rostral prefrontal cortex (Brodmann area 10). Unaware patients also showed reduced activity in the right post-central gyrus (Brodmann area 2), in the associative cortical areas such as the right parietotemporal-occipital junction (Brodmann area 39) and the left temporal gyrus (Brodmann areas 21 and 38), in the striatum and in the cerebellum. These findings suggest that the unawareness of deficits in early Alzheimer's disease is associated with reduced functional recruitment of the cingulofrontal and parietotemporal regions. Furthermore, in line with

  4. The Deficit Profile of Working Memory, Inhibition, and Updating in Chinese Children with Reading Difficulties

    Science.gov (United States)

    Peng, Peng; Sha, Tao; Li, Beilei

    2013-01-01

    This study investigated executive function deficits among Chinese children with reading difficulties. Verbal and numerical measures of working memory, inhibition, updating, and processing speed were examined among children with only reading difficulties (RD), children with reading and mathematics difficulties (RDMD), and typically developing peers…

  5. Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators

    Directory of Open Access Journals (Sweden)

    Lara J. Duffney

    2015-06-01

    Full Text Available Haploinsufficiency of the Shank3 gene, which encodes a scaffolding protein at glutamatergic synapses, is a highly prevalent and penetrant risk factor for autism. Using combined behavioral, electrophysiological, biochemical, imaging, and molecular approaches, we find that Shank3-deficient mice exhibit autism-like social deficits and repetitive behaviors, as well as the significantly diminished NMDA receptor (NMDAR synaptic function and synaptic distribution in prefrontal cortex. Concomitantly, Shank3-deficient mice have a marked loss of cortical actin filaments, which is associated with the reduced Rac1/PAK activity and increased activity of cofilin, the major actin depolymerizing factor. The social deficits and NMDAR hypofunction are rescued by inhibiting cofilin or activating Rac1 in Shank3-deficient mice and are induced by inhibiting PAK or Rac1 in wild-type mice. These results indicate that the aberrant regulation of synaptic actin filaments and loss of synaptic NMDARs contribute to the manifestation of autism-like phenotypes. Thus, targeting actin regulators provides a strategy for autism treatment.

  6. Tourette-like behaviors in the normal population are associated with hyperactive/impulsive ADHD-like behaviors but do not relate to deficits in conditioned inhibition or response inhibition

    Directory of Open Access Journals (Sweden)

    Nadja eHeym

    2014-09-01

    Full Text Available Attention-Deficit Hyperactivity Disorder (ADHD and Tourette Syndrome (TS present as distinct conditions clinically; however, comorbidity and inhibitory control deficits have been proposed for both. Whilst such deficits have been studied widely within clinical populations, findings are mixed – partly due to comorbidity and/or medication effects - and studies have rarely distinguished between subtypes of the disorders. Studies in the general population are sparse. Using a continuity approach, the present study examined (i the relationships between inattentive and hyperactive/impulsive aspects of ADHD and TS-like behaviors in the general population, and (ii their unique associations with automatic and executive inhibitory control, as well as (iii yawning (a proposed behavioral model of TS. One hundred and thirty-eight participants completed self-report measures for ADHD and TS-like behaviors as well as yawning, and a conditioned inhibition task to assess automatic inhibition. A sub-sample of fifty-four participants completed three executive inhibition tasks. An exploratory factor analysis of the TS behavior checklist supported a distinction between phonic and motor like pure TS behaviors. Whilst hyperactive/impulsive aspects of ADHD were associated with increased pure and compulsive TS-like behaviors, inattention in isolation was related to reduced obsessive-compulsive TS-like behaviors. TS-like behaviors were associated with yawning during situations of inactivity, and specifically motor TS was related to yawning during stress. Phonic TS and inattention aspects of ADHD were associated with yawning during concentration/activity. Whilst executive interference control deficits were linked to hyperactive/impulsive ADHD-like behaviors, this was not the case for inattentive ADHD or TS-like behaviors, which instead related to increased performance on some measures. No associations were observed for automatic conditioned inhibition.

  7. Hypothesis-driven methods to augment human cognition by optimizing cortical oscillations

    Directory of Open Access Journals (Sweden)

    Jörn M. Horschig

    2014-06-01

    Full Text Available Cortical oscillations have been shown to represent fundamental functions of a working brain, e.g. communication, stimulus binding, error monitoring, and inhibition, and are directly linked to behavior. Recent studies intervening with these oscillations have demonstrated effective modulation of both the oscillations and behavior. In this review, we collect evidence in favor of how hypothesis-driven methods can be used to augment cognition by optimizing cortical oscillations. We elaborate their potential usefulness for three target groups: healthy elderly, patients with attention deficit/hyperactivity disorder, and healthy young adults. We discuss the relevance of neuronal oscillations in each group and show how each of them can benefit from the manipulation of functionally-related oscillations. Further, we describe methods for manipulation of neuronal oscillations including direct brain stimulation as well as indirect task alterations. We also discuss practical considerations about the proposed techniques. In conclusion, we propose that insights from neuroscience should guide techniques to augment human cognition, which in turn can provide a better understanding of how the human brain works.

  8. Regulator of G protein signaling 5 (RGS5) inhibits sonic hedgehog function in mouse cortical neurons.

    Science.gov (United States)

    Liu, Chuanliang; Hu, Qiongqiong; Jing, Jia; Zhang, Yun; Jin, Jing; Zhang, Liulei; Mu, Lili; Liu, Yumei; Sun, Bo; Zhang, Tongshuai; Kong, Qingfei; Wang, Guangyou; Wang, Dandan; Zhang, Yao; Liu, Xijun; Zhao, Wei; Wang, Jinghua; Feng, Tao; Li, Hulun

    2017-09-01

    Regulator of G protein signaling 5 (RGS5) acts as a GTPase-activating protein (GAP) for the Gαi subunit and negatively regulates G protein-coupled receptor signaling. However, its presence and function in postmitotic differentiated primary neurons remains largely uncharacterized. During neural development, sonic hedgehog (Shh) signaling is involved in cell signaling pathways via Gαi activity. In particular, Shh signaling is essential for embryonic neural tube patterning, which has been implicated in neuronal polarization involving neurite outgrowth. Here, we examined whether RGS5 regulates Shh signaling in neurons. RGS5 transcripts were found to be expressed in cortical neurons and their expression gradually declined in a time-dependent manner in culture system. When an adenovirus expressing RGS5 was introduced into an in vitro cell culture model of cortical neurons, RGS5 overexpression significantly reduced neurite outgrowth and FM4-64 uptake, while cAMP-PKA signaling was also affected. These findings suggest that RGS5 inhibits Shh function during neurite outgrowth and the presynaptic terminals of primary cortical neurons mature via modulation of cAMP. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Do cognitive measures of response inhibition differentiate between attention deficit/hyperactivity disorder and borderline personality disorder?

    NARCIS (Netherlands)

    Dijk, F.E. van; Schellekens, A.F.A.; Broek, P.J.A. van den; Kan, C.C.; Verkes, R.J.; Buitelaar, J.K.

    2014-01-01

    This study examined whether cognitive measures of response inhibition derived from the AX-CPT are able to differentiate between adult attention deficit/hyperactivity disorder (ADHD), borderline personality disorder (BPD), and healthy controls (HC). Current DSM-IV-TR symptoms of ADHD and BPD were

  10. Histone Deacetylase Inhibition via RGFP966 Releases the Brakes on Sensory Cortical Plasticity and the Specificity of Memory Formation.

    Science.gov (United States)

    Bieszczad, Kasia M; Bechay, Kiro; Rusche, James R; Jacques, Vincent; Kudugunti, Shashi; Miao, Wenyan; Weinberger, Norman M; McGaugh, James L; Wood, Marcelo A

    2015-09-23

    Research over the past decade indicates a novel role for epigenetic mechanisms in memory formation. Of particular interest is chromatin modification by histone deacetylases (HDACs), which, in general, negatively regulate transcription. HDAC deletion or inhibition facilitates transcription during memory consolidation and enhances long-lasting forms of synaptic plasticity and long-term memory. A key open question remains: How does blocking HDAC activity lead to memory enhancements? To address this question, we tested whether a normal function of HDACs is to gate information processing during memory formation. We used a class I HDAC inhibitor, RGFP966 (C21H19FN4O), to test the role of HDAC inhibition for information processing in an auditory memory model of learning-induced cortical plasticity. HDAC inhibition may act beyond memory enhancement per se to instead regulate information in ways that lead to encoding more vivid sensory details into memory. Indeed, we found that RGFP966 controls memory induction for acoustic details of sound-to-reward learning. Rats treated with RGFP966 while learning to associate sound with reward had stronger memory and additional information encoded into memory for highly specific features of sounds associated with reward. Moreover, behavioral effects occurred with unusually specific plasticity in primary auditory cortex (A1). Class I HDAC inhibition appears to engage A1 plasticity that enables additional acoustic features to become encoded in memory. Thus, epigenetic mechanisms act to regulate sensory cortical plasticity, which offers an information processing mechanism for gating what and how much is encoded to produce exceptionally persistent and vivid memories. Significance statement: Here we provide evidence of an epigenetic mechanism for information processing. The study reveals that a class I HDAC inhibitor (Malvaez et al., 2013; Rumbaugh et al., 2015; RGFP966, chemical formula C21H19FN4O) alters the formation of auditory memory by

  11. Histone Deacetylase Inhibition via RGFP966 Releases the Brakes on Sensory Cortical Plasticity and the Specificity of Memory Formation

    Science.gov (United States)

    Bechay, Kiro; Rusche, James R.; Jacques, Vincent; Kudugunti, Shashi; Miao, Wenyan; Weinberger, Norman M.; McGaugh, James L.

    2015-01-01

    Research over the past decade indicates a novel role for epigenetic mechanisms in memory formation. Of particular interest is chromatin modification by histone deacetylases (HDACs), which, in general, negatively regulate transcription. HDAC deletion or inhibition facilitates transcription during memory consolidation and enhances long-lasting forms of synaptic plasticity and long-term memory. A key open question remains: How does blocking HDAC activity lead to memory enhancements? To address this question, we tested whether a normal function of HDACs is to gate information processing during memory formation. We used a class I HDAC inhibitor, RGFP966 (C21H19FN4O), to test the role of HDAC inhibition for information processing in an auditory memory model of learning-induced cortical plasticity. HDAC inhibition may act beyond memory enhancement per se to instead regulate information in ways that lead to encoding more vivid sensory details into memory. Indeed, we found that RGFP966 controls memory induction for acoustic details of sound-to-reward learning. Rats treated with RGFP966 while learning to associate sound with reward had stronger memory and additional information encoded into memory for highly specific features of sounds associated with reward. Moreover, behavioral effects occurred with unusually specific plasticity in primary auditory cortex (A1). Class I HDAC inhibition appears to engage A1 plasticity that enables additional acoustic features to become encoded in memory. Thus, epigenetic mechanisms act to regulate sensory cortical plasticity, which offers an information processing mechanism for gating what and how much is encoded to produce exceptionally persistent and vivid memories. SIGNIFICANCE STATEMENT Here we provide evidence of an epigenetic mechanism for information processing. The study reveals that a class I HDAC inhibitor (Malvaez et al., 2013; Rumbaugh et al., 2015; RGFP966, chemical formula C21H19FN4O) alters the formation of auditory memory by

  12. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs

    Energy Technology Data Exchange (ETDEWEB)

    Bello, Oscar Daniel; Cappa, Andrea Isabel; Paola, Matilde de; Zanetti, María Natalia [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Fukuda, Mitsunori [Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Fissore, Rafael A. [Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003 (United States); Mayorga, Luis S. [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Michaut, Marcela A., E-mail: mmichaut@gmail.com [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (Argentina)

    2016-09-10

    Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blot analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs. - Highlights: • Rab3A has a similar migration pattern to cortical granules in mouse oocytes. • Rab3A can be a marker of

  13. Altered neural connectivity during response inhibition in adolescents with attention-deficit/hyperactivity disorder and their unaffected siblings

    NARCIS (Netherlands)

    van Rooij, Daan; Hartman, Catharina A.; Mennes, Maarten; Oosterlaan, Jaap; Franke, Barbara; Rommelse, Nanda; Heslenfeld, Dirk; Faraone, Stephen V.; Buitelaar, Jan K.; Hoekstra, Pieter J.

    2015-01-01

    Introduction: Response inhibition is one of the executive functions impaired in attention-deficit/hyperactivity disorder (ADHD). Increasing evidence indicates that altered functional and structural neural connectivity are part of the neurobiological basis of ADHD. Here, we investigated if

  14. Defects in cortical microarchitecture among African-American women with type 2 diabetes.

    Science.gov (United States)

    Yu, E W; Putman, M S; Derrico, N; Abrishamanian-Garcia, G; Finkelstein, J S; Bouxsein, M L

    2015-02-01

    Patients with type 2 diabetes mellitus (DM2) have increased fracture risk. We found that African-American women with DM2 have increased cortical porosity and lower cortical bone density at the radius than non-diabetic controls. These cortical deficits are associated with hyperglycemia and may contribute to skeletal fragility associated with DM2. Fracture risk is increased in patients with type 2 diabetes mellitus (DM2) despite normal areal bone mineral density (aBMD). DM2 is more common in African-Americans than in Caucasians. It is not known whether African-American women with DM2 have deficits in bone microstructure. We measured aBMD at the spine and hip by DXA, and volumetric BMD (vBMD) and microarchitecture at the distal radius and tibia by HR-pQCT in 22 DM2 and 78 non-diabetic African-American women participating in the Study of Women Across the Nation (SWAN). We also measured fasting glucose and HOMA-IR. Age, weight, and aBMD at all sites were similar in both groups. At the radius, cortical porosity was 26% greater, while cortical vBMD and tissue mineral density were lower in women with DM2 than in controls. There were no differences in radius total vBMD or trabecular vBMD between groups. Despite inferior cortical bone properties at the radius, FEA-estimated failure load was similar between groups. Tibia vBMD and microarchitecture were also similar between groups. There were no significant associations between cortical parameters and duration of DM2 or HOMA-IR. However, among women with DM2, higher fasting glucose levels were associated with lower cortical vBMD (r=-0.54, p=0.018). DM2 and higher fasting glucose are associated with unfavorable cortical bone microarchitecture at the distal radius in African-American women. These structural deficits may contribute to the increased fracture risk among women with DM2. Further, our results suggest that hyperglycemia may be involved in mechanisms of skeletal fragility associated with DM2.

  15. My belief or yours? Differential theory of mind deficits in frontotemporal dementia and Alzheimer's disease.

    Science.gov (United States)

    Le Bouc, Raphaël; Lenfant, Pierre; Delbeuck, Xavier; Ravasi, Laura; Lebert, Florence; Semah, Franck; Pasquier, Florence

    2012-10-01

    Theory of mind reasoning-the ability to understand someone else's mental states, such as beliefs, intentions and desires-is crucial in social interaction. It has been suggested that a theory of mind deficit may account for some of the abnormalities in interpersonal behaviour that characterize patients affected by behavioural variant frontotemporal dementia. However, there are conflicting reports as to whether understanding someone else's mind is a key difference between behavioural variant frontotemporal dementia and other neurodegenerative conditions such as Alzheimer's disease. Literature data on the relationship between theory of mind abilities and executive functions are also contradictory. These disparities may be due to underestimation of the fractionation within theory of mind components. A recent theoretical framework suggests that taking someone else's mental perspective requires two distinct processes: inferring someone else's belief and inhibiting one's own belief, with involvement of the temporoparietal and right frontal cortices, respectively. Therefore, we performed a neuropsychological and neuroimaging study to investigate the hypothesis whereby distinct cognitive deficits could impair theory of mind reasoning in patients with Alzheimer's disease and patients with behavioural variant frontotemporal dementia. We used a three-option false belief task to assess theory of mind components in 11 patients with behavioural variant frontotemporal dementia, 12 patients with Alzheimer's disease and 20 healthy elderly control subjects. The patients with behavioural variant frontotemporal dementia and those with Alzheimer's disease were matched for age, gender, education and global cognitive impairment. [(18)F]-fluorodeoxyglucose-positron emission tomography imaging was used to investigate neural correlates of theory of mind reasoning deficits. Performance in the three-option false belief task revealed differential impairments in the components of theory of mind

  16. An Exploratory Study of Spectroscopic Glutamatergic Correlates of Cortical Excitability in Depressed Adolescents

    Directory of Open Access Journals (Sweden)

    Charles P. Lewis

    2016-11-01

    Full Text Available Introduction: Transcranial magnetic stimulation (TMS research has suggested dysfunction in cortical glutamatergic systems in depression, while proton magnetic resonance spectroscopy (1H-MRS studies have demonstrated deficits in concentrations of glutamatergic metabolites in depressed individuals in several cortical regions, including the anterior cingulate cortex (ACC. However, few studies have combined TMS and MRS methods to examine relationships between glutamatergic neurochemistry and excitatory and inhibitory neural functions, and none have utilized TMS-MRS methodology in clinical populations or in youth. This exploratory study aimed to examine relationships between TMS measures of cortical excitability and inhibition and concentrations of glutamatergic metabolites as measured by 1H-MRS in depressed adolescents. Methods: Twenty-four children and adolescents (aged 11-18 years with depressive symptoms underwent TMS testing, which included measures of the resting motor threshold (RMT, cortical silent period (CSP, short-interval intracortical inhibition (SICI, and intracortical facilitation (ICF. Fourteen participants from the same sample also completed 1H-MRS in a 3 T MRI scanner after TMS testing. Glutamate + glutamine (Glx concentrations were measured in medial ACC and left primary motor cortex voxels with a TE-optimized PRESS sequence. Metabolite concentrations were corrected for cerebrospinal fluid after tissue segmentation. Pearson product-moment and Spearman rank-order correlations were calculated to assess relationships between TMS measures and Glx. Results: In the left primary motor cortex voxel, Glx had a significant positive correlation with the RMT. In the medial ACC voxel, Glx had significant positive correlations with ICF at the 10-ms and 20-ms ISIs.Conclusions: These preliminary data implicate glutamate in cortical excitatory processes measured by TMS. Limitations included small sample size, lack of healthy control comparators

  17. Neuroanatomical phenotypes in mental illness: identifying convergent and divergent cortical phenotypes across autism, ADHD and schizophrenia.

    Science.gov (United States)

    Park, Min Tae M; Raznahan, Armin; Shaw, Philip; Gogtay, Nitin; Lerch, Jason P; Chakravarty, M Mallar

    2018-05-01

    There is evidence suggesting neuropsychiatric disorders share genomic, cognitive and clinical features. Here, we ask if autism-spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD) and schizophrenia share neuroanatomical variations. First, we used measures of cortical anatomy to estimate spatial overlap of neuroanatomical variation using univariate methods. Next, we developed a novel methodology to determine whether cortical deficits specifically target or are "enriched" within functional resting-state networks. We found cortical anomalies were preferentially enriched across functional networks rather than clustering spatially. Specifically, cortical thickness showed significant enrichment between patients with ASD and those with ADHD in the default mode network, between patients with ASD and those with schizophrenia in the frontoparietal and limbic networks, and between patients with ADHD and those with schizophrenia in the ventral attention network. Networks enriched in cortical thickness anomalies were also strongly represented in functional MRI results (Neurosynth; r = 0.64, p = 0.032). We did not account for variable symptom dimensions and severity in patient populations, and our cross-sectional design prevented longitudinal analyses of developmental trajectories. These findings suggest that common deficits across neuropsychiatric disorders cannot simply be characterized as arising out of local changes in cortical grey matter, but rather as entities of both local and systemic alterations targeting brain networks.

  18. Cortical cholinergic hypofunction and behaviorial impairment produced by basal forebrain lesions in the rat

    International Nuclear Information System (INIS)

    Lerer, B.E.; Friedman, E.; Gamzu, E.

    1986-01-01

    The authors confirm the cortical ChAT and passive avoidance deficits resulting from bilateral KA lesions of the magnocellular nuclei of the basal forebrain (MNBF). Because of reported passive avoidance deficits, the authors were interested in whether bilateral MNBF lesions would interfere with learning in an active avoidance paradigm. Samples of rat cortex were stored at -80 C until assayed. ChAT was assayed by a modification method under saturating conditions; 20 mM choline and 2 mM C 14-acetylcoenzyme. The behavioral deficits assumed to be indicative of learning and memory problems were accompanied by a 20% decrease in cortical ChAT

  19. Timed Synaptic Inhibition Shapes NMDA Spikes, Influencing Local Dendritic Processing and Global I/O Properties of Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Michael Doron

    2017-11-01

    Full Text Available The NMDA spike is a long-lasting nonlinear phenomenon initiated locally in the dendritic branches of a variety of cortical neurons. It plays a key role in synaptic plasticity and in single-neuron computations. Combining dynamic system theory and computational approaches, we now explore how the timing of synaptic inhibition affects the NMDA spike and its associated membrane current. When impinging on its early phase, individual inhibitory synapses strongly, but transiently, dampen the NMDA spike; later inhibition prematurely terminates it. A single inhibitory synapse reduces the NMDA-mediated Ca2+ current, a key player in plasticity, by up to 45%. NMDA spikes in distal dendritic branches/spines are longer-lasting and more resilient to inhibition, enhancing synaptic plasticity at these branches. We conclude that NMDA spikes are highly sensitive to dendritic inhibition; sparse weak inhibition can finely tune synaptic plasticity both locally at the dendritic branch level and globally at the level of the neuron’s output.

  20. A bimodal neurophysiological study of motor control in attention-deficit hyperactivity disorder: a step towards core mechanisms?

    Science.gov (United States)

    Heinrich, Hartmut; Hoegl, Thomas; Moll, Gunther H; Kratz, Oliver

    2014-04-01

    Knowledge about the core neural mechanisms of attention-deficit hyperactivity disorder, a pathophysiologically heterogeneous psychiatric disorder starting in childhood, is still limited. Progress may be achieved by combining different methods and levels of investigation. In the present study, we investigated neural mechanisms of motor control in 19 children with attention-deficit hyperactivity disorder (aged 9-14 years) and 21 age-matched typically developing children by relating neural markers of attention and response control (using event-related potentials) and measures of motor excitability/inhibition (evoked by transcranial magnetic stimulation). Thus, an interplay of processes at a subsecond scale could be studied. Using a monetary incentives-based cued Go/No-Go task, parameters that are well-known to be reduced in attention-deficit hyperactivity disorder were analysed: event-related potential components P3 (following cue stimuli; in Go and No-Go trials) and contingent negative variation as well as the transcranial magnetic stimulation-based short-interval intracortical inhibition measured at different latencies in Go and No-Go trials. For patient and control groups, different associations were obtained between performance, event-related potential and transcranial magnetic stimulation measures. In children with attention-deficit hyperactivity disorder, the P3 amplitude in Go trials was not correlated with reaction time measures but with short-interval intracortical inhibition at rest (r=0.56, P=0.01). In No-Go trials, P3 and short-interval intracortical inhibition after inhibiting the response (at 500 ms post-stimulus) were correlated in these children only (r=0.62; P=0.008). A classification rate of 90% was achieved when using short-interval intracortical inhibition (measured shortly before the occurrence of a Go or No-Go stimulus) and the amplitude of the P3 in cue trials as input features in a linear discriminant analysis. Findings indicate deviant neural

  1. Inhibition of the prostaglandin E2 receptor EP2 prevents status epilepticus-induced deficits in the novel object recognition task in rats

    Science.gov (United States)

    Rojas, Asheebo; Ganesh, Thota; Manji, Zahra; O’neill, Theon; Dingledine, Raymond

    2016-01-01

    Survivors of exposure to an organophosphorus nerve agent may develop a number of complications including long-term cognitive deficits (Miyaki et al., 2005; Nishiwaki et al., 2001). We recently demonstrated that inhibition of the prostaglandin E2 receptor, EP2, attenuates neuroinflammation and neurodegeneration caused by status epilepticus (SE) induced by the soman analog, diisopropylfluorophosphate (DFP), which manifest within hours to days of the initial insult. Here, we tested the hypothesis that DFP exposure leads to a loss of cognitive function in rats that is blocked by early, transient EP2 inhibition. Adult male Sprague-Dawley rats were administered vehicle or the competitive EP2 antagonist, TG6-10-1, (ip) at various times relative to DFP-induced SE. DFP administration resulted in prolonged seizure activity as demonstrated by cortical electroencephalography (EEG). A single intraperitoneal injection of TG6-10-1 or vehicle 1 h prior to DFP did not alter the development of seizures, the latency to SE or the duration of SE. Rats administered six injections of TG6-10-1 starting 90 min after the onset of DFP-induced SE could discriminate between a novel and familiar object 6–12 weeks after SE, unlike vehicle treated rats which showed no preference for the novel object. By contrast, behavioral changes in the light-dark box and open field assays were not affected by TG6-10-1. Delayed mortality after DFP was also unaffected by TG6-10-1. Thus, selective inhibition of the EP2 receptor may prevent SE-induced memory impairment in rats caused by exposure to a high dose of DFP. PMID:27477533

  2. Cotinine improves visual recognition memory and decreases cortical Tau phosphorylation in the Tg6799 mice.

    Science.gov (United States)

    Grizzell, J Alex; Patel, Sagar; Barreto, George E; Echeverria, Valentina

    2017-08-01

    Alzheimer's disease (AD) is associated with the progressive aggregation of hyperphosphorylated forms of the microtubule associated protein Tau in the central nervous system. Cotinine, the main metabolite of nicotine, reduced working memory deficits, synaptic loss, and amyloid β peptide aggregation into oligomers and plaques as well as inhibited the cerebral Tau kinase, glycogen synthase 3β (GSK3β) in the transgenic (Tg)6799 (5XFAD) mice. In this study, the effect of cotinine on visual recognition memory and cortical Tau phosphorylation at the GSK3β sites Serine (Ser)-396/Ser-404 and phospho-CREB were investigated in the Tg6799 and non-transgenic (NT) littermate mice. Tg mice showed short-term visual recognition memory impairment in the novel object recognition test, and higher levels of Tau phosphorylation when compared to NT mice. Cotinine significantly improved visual recognition memory performance increased CREB phosphorylation and reduced cortical Tau phosphorylation. Potential mechanisms underlying theses beneficial effects are discussed. Copyright © 2017. Published by Elsevier Inc.

  3. Abnormal Development of the Earliest Cortical Circuits in a Mouse Model of Autism Spectrum Disorder.

    Science.gov (United States)

    Nagode, Daniel A; Meng, Xiangying; Winkowski, Daniel E; Smith, Ed; Khan-Tareen, Hamza; Kareddy, Vishnupriya; Kao, Joseph P Y; Kanold, Patrick O

    2017-01-31

    Autism spectrum disorder (ASD) involves deficits in speech and sound processing. Cortical circuit changes during early development likely contribute to such deficits. Subplate neurons (SPNs) form the earliest cortical microcircuits and are required for normal development of thalamocortical and intracortical circuits. Prenatal valproic acid (VPA) increases ASD risk, especially when present during a critical time window coinciding with SPN genesis. Using optical circuit mapping in mouse auditory cortex, we find that VPA exposure on E12 altered the functional excitatory and inhibitory connectivity of SPNs. Circuit changes manifested as "patches" of mostly increased connection probability or strength in the first postnatal week and as general hyper-connectivity after P10, shortly after ear opening. These results suggest that prenatal VPA exposure severely affects the developmental trajectory of cortical circuits and that sensory-driven activity may exacerbate earlier, subtle connectivity deficits. Our findings identify the subplate as a possible common pathophysiological substrate of deficits in ASD. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Evidence for increased glutamatergic cortical facilitation in children and adolescents with major depressive disorder.

    Science.gov (United States)

    Croarkin, Paul E; Nakonezny, Paul A; Husain, Mustafa M; Melton, Tabatha; Buyukdura, Jeylan S; Kennard, Betsy D; Emslie, Graham J; Kozel, F Andrew; Daskalakis, Zafiris J

    2013-03-01

    Converging lines of evidence implicate the glutamate and γ-aminobutyric acid neurotransmitter systems in the pathophysiology of major depressive disorder. Transcranial magnetic stimulation cortical excitability and inhibition paradigms have been used to assess cortical glutamatergic and γ-aminobutyric acid-mediated tone in adults with major depressive disorder, but not in children and adolescents. To compare measures of cortical excitability and inhibition with 4 different paradigms in a group of children and adolescents with major depressive disorder vs healthy controls. Cross-sectional study examining medication-free children and adolescents (aged 9-17 years) with major depressive disorder compared with healthy controls. Cortical excitability was assessed with motor threshold and intracortical facilitation measures. Cortical inhibition was measured with cortical silent period and intracortical inhibition paradigms. University-based child and adolescent psychiatry clinic and neurostimulation laboratory. Twenty-four participants with major depressive disorder and 22 healthy controls matched for age and sex. Patients with major depressive disorder were medication naive and had moderate to severe symptoms based on an evaluation with a child and adolescent psychiatrist and scores on the Children's Depression Rating Scale-Revised. Motor threshold, intracortical facilitation, cortical silent period, and intracortical inhibition. Compared with healthy controls, depressed patients had significantly increased intracortical facilitation at interstimulus intervals of 10 and 15 milliseconds bilaterally. There were no significant group differences in cortical inhibition measures. These findings suggest that major depressive disorder in children and adolescents is associated with increased intracortical facilitation and excessive glutamatergic activity.

  5. Inhibiting corticosterone synthesis during fear memory formation exacerbates cued fear extinction memory deficits within the single prolonged stress model.

    Science.gov (United States)

    Keller, Samantha M; Schreiber, William B; Stanfield, Briana R; Knox, Dayan

    2015-01-01

    Using the single prolonged stress (SPS) animal model of post-traumatic stress disorder (PTSD), previous studies suggest that enhanced glucocorticoid receptor (GR) expression leads to cued fear extinction retention deficits. However, it is unknown how the endogenous ligand of GRs, corticosterone (CORT), may contribute to extinction retention deficits in the SPS model. Given that CORT synthesis during fear learning is critical for fear memory consolidation and SPS enhances GR expression, CORT synthesis during fear memory formation could strengthen fear memory in SPS rats by enhancing GR activation during fear learning. In turn, this could lead to cued fear extinction retention deficits. We tested the hypothesis that CORT synthesis during fear learning leads to cued fear extinction retention deficits in SPS rats by administering the CORT synthesis inhibitor metyrapone to SPS and control rats prior to fear conditioning, and observed the effect this had on extinction memory. Inhibiting CORT synthesis during fear memory formation in control rats tended to decrease cued freezing, though this effect never reached statistical significance. Contrary to our hypothesis, inhibiting CORT synthesis during fear memory formation disrupted extinction retention in SPS rats. This finding suggests that even though SPS exposure leads to cued fear extinction memory deficits, CORT synthesis during fear memory formation enhances extinction retention in SPS rats. This suggests that stress-induced CORT synthesis in previously stressed rats can be beneficial. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Shortened cortical silent period in adductor spasmodic dysphonia: evidence for widespread cortical excitability.

    Science.gov (United States)

    Samargia, Sharyl; Schmidt, Rebekah; Kimberley, Teresa Jacobson

    2014-02-07

    The purpose of this study was to compare cortical inhibition in the hand region of the primary motor cortex between subjects with focal hand dystonia (FHD), adductor spasmodic dysphonia (AdSD), and healthy controls. Data from 28 subjects were analyzed (FHD n=11, 53.25 ± 8.74 y; AdSD: n=8, 56.38 ± 7.5 y; and healthy controls: n=941.67 ± 10.85 y). All subjects received single pulse TMS to the left motor cortex to measure cortical silent period (CSP) in the right first dorsal interosseus (FDI) muscle. Duration of the CSP was measured and compared across groups. A one-way ANCOVA with age as a covariate revealed a significant group effect (p<0.001). Post hoc analysis revealed significantly longer CSP duration in the healthy group vs. AdSD group (p<0.001) and FHD group (p<0.001). These results suggest impaired intracortical inhibition is a neurophysiologic characteristic of FHD and AdSD. In addition, the shortened CSP in AdSD provides evidence to support a widespread decrease in cortical inhibition in areas of the motor cortex that represent an asymptomatic region of the body. These findings may inform future investigations of differential diagnosis as well as alternative treatments for focal dystonias. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Disruptions of working memory and inhibition mediate the association between exposure to institutionalization and symptoms of attention deficit hyperactivity disorder.

    Science.gov (United States)

    Tibu, F; Sheridan, M A; McLaughlin, K A; Nelson, C A; Fox, N A; Zeanah, C H

    2016-02-01

    Young children raised in institutions are exposed to extreme psychosocial deprivation that is associated with elevated risk for psychopathology and other adverse developmental outcomes. The prevalence of attention deficit hyperactivity disorder (ADHD) is particularly high in previously institutionalized children, yet the mechanisms underlying this association are poorly understood. We investigated whether deficits in executive functioning (EF) explain the link between institutionalization and ADHD. A sample of 136 children (aged 6-30 months) was recruited from institutions in Bucharest, Romania, and 72 never institutionalized community children matched for age and gender were recruited through general practitioners' offices. At 8 years of age, children's performance on a number of EF components (working memory, response inhibition and planning) was evaluated. Teachers completed the Health and Behavior Questionnaire, which assesses two core features of ADHD, inattention and impulsivity. Children with history of institutionalization had higher inattention and impulsivity than community controls, and exhibited worse performance on working memory, response inhibition and planning tasks. Lower performances on working memory and response inhibition, but not planning, partially mediated the association between early institutionalization and inattention and impulsivity symptom scales at age 8 years. Institutionalization was associated with decreased EF performance and increased ADHD symptoms. Deficits in working memory and response inhibition were specific mechanisms leading to ADHD in previously institutionalized children. These findings suggest that interventions that foster the development of EF might reduce risk for psychiatric problems in children exposed to early deprivation.

  8. The executive control network and symptomatic improvement in attention-deficit/hyperactivity disorder

    NARCIS (Netherlands)

    Francx, Winke; Oldehinkel, Marianne; Oosterlaan, Jaap; Heslenfeld, Dirk; Hartman, Catharina A.; Hoekstra, Pieter J.; Franke, Barbara; Beckmann, Christian F.; Buitelaar, Jan K.; Mennes, Maarten

    2015-01-01

    Background: One neurodevelopmental theory hypothesizes remission of attention-deficit/hyperactivity disorder (ADHD) to result from improved prefrontal top-down control, while ADHD, independent of the current diagnosis, is characterized by stable non-cortical deficits (Halperin & Schulz, 2006). We

  9. Aphasia with left occipitotemporal hypometabolism: a novel presentation of posterior cortical atrophy?

    Science.gov (United States)

    Wicklund, Meredith R; Duffy, Joseph R; Strand, Edythe A; Whitwell, Jennifer L; Machulda, Mary M; Josephs, Keith A

    2013-09-01

    Alzheimer's disease is a common neurodegenerative disease often characterized by initial episodic memory loss. Atypical focal cortical presentations have been described, including the logopenic variant of primary progressive aphasia (lvPPA) which presents with language impairment, and posterior cortical atrophy (PCA) which presents with prominent visuospatial deficits. Both lvPPA and PCA are characterized by specific patterns of hypometabolism: left temporoparietal in lvPPA and bilateral parietoccipital in PCA. However, not every patient fits neatly into these categories. We retrospectively identified two patients with progressive aphasia and visuospatial deficits from a speech and language based disorders study. The patients were further characterized by MRI, fluorodeoxyglucose F18 and Pittsburgh Compound B (PiB) positron emission tomography. Two women, aged 62 and 69, presented with a history of a few years of progressive aphasia characterized by fluent output with normal grammar and syntax, anomia without loss of word meaning, and relatively spared repetition. They demonstrated striking deficits in visuospatial function for which they were lacking insight. Prominent hypometabolism was noted in the left occipitotemporal region and diffuse retention of PiB was noted. Posterior cortical atrophy may present focally with left occipitotemporal metabolism characterized clinically with a progressive fluent aphasia and prominent ventral visuospatial deficits with loss of insight. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Interaction between DRD2 and lead exposure on the cortical thickness of the frontal lobe in youth with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Kim, Johanna Inhyang; Kim, Jae-Won; Lee, Jong-Min; Yun, Hyuk Jin; Sohn, Chul-Ho; Shin, Min-Sup; Kim, Bongseog; Chae, Jonghee; Roh, Jaewoo; Kim, Bung-Nyun

    2018-03-02

    The dopamine receptor D2 receptor (DRD2) gene and lead exposure are both thought to contribute to the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). ADHD is characterized by delay in brain maturation, most prominent in the prefrontal cortex (PFC). The D2 receptor is also mainly located in the PFC, and animal studies show that lead exposure affects the dopaminergic system of the frontal lobe, indicating an overlap in neural correlates of ADHD, DRD2, and lead exposure. We examined the interaction effects of DRD2 rs1800497 and lead exposure on the cortical thickness of the frontal lobe in patients with ADHD. A 1:1 age- and gender-matched sample of 75 participants with ADHD and 75 healthy participants was included in the analysis. The interaction effects of DRD2 and lead exposure on the cortical thickness of 12 regions of interest in the frontal lobe were examined by multivariable linear regression analyses. When we investigated the DRD2×lead effects in the ADHD and HC groups separately, significant DRD2×lead effects were found in the ADHD group, but not in the healthy control group in multiple ROIs of the frontal lobe. There was a significant negative correlation between the cortical thickness of the right superior frontal gyrus and inattention scores. The present findings demonstrated significant interaction effects of DRD2 and lead exposure on the cortical thickness of the frontal lobe in ADHD. Replication studies with larger sample sizes, using a prospective design, are warranted to confirm these findings. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Cerebellar Shaping of Motor Cortical Firing Is Correlated with Timing of Motor Actions

    Directory of Open Access Journals (Sweden)

    Abdulraheem Nashef

    2018-05-01

    Full Text Available Summary: In higher mammals, motor timing is considered to be dictated by cerebellar control of motor cortical activity, relayed through the cerebellar-thalamo-cortical (CTC system. Nonetheless, the way cerebellar information is integrated with motor cortical commands and affects their temporal properties remains unclear. To address this issue, we activated the CTC system in primates and found that it efficiently recruits motor cortical cells; however, the cortical response was dominated by prolonged inhibition that imposed a directional activation across the motor cortex. During task performance, cortical cells that integrated CTC information fired synchronous bursts at movement onset. These cells expressed a stronger correlation with reaction time than non-CTC cells. Thus, the excitation-inhibition interplay triggered by the CTC system facilitates transient recruitment of a cortical subnetwork at movement onset. The CTC system may shape neural firing to produce the required profile to initiate movements and thus plays a pivotal role in timing motor actions. : Nashef et al. identified a motor cortical subnetwork recruited by cerebellar volley that was transiently synchronized at movement onset. Cerebellar control of cortical firing was dominated by inhibition that shaped task-related firing of neurons and may dictate motor timing. Keywords: motor control, primates, cerebellar-thalamo-cortical, synchrony, noise correlation, reaction time

  12. Reinforcement and stimulant medication ameliorate deficient response inhibition in children with Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Rosch, Keri S.; Fosco, Whitney D.; Pelham, William E.; Waxmonsky, James G.; Bubnik, Michelle G.; Hawk, Larry W.

    2015-01-01

    This study examined the degree to which reinforcement, stimulant medication, and their combination impact response inhibition in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Across three studies, participants with ADHD (n=111, 25 girls) and typically-developing (TD) controls (n=33, 6 girls) completed a standard version of the stop signal task (SST) and/or a reinforcement-manipulation SST with performance-contingent points. In two of these studies, these tasks were performed under placebo or 0.3 and 0.6 mg/kg methylphenidate (MPH) conditions. Cross-study comparisons were conducted to test hypotheses regarding the separate and combined effects of reinforcement and methylphenidate on response inhibition among children with ADHD relative to TD controls. Baseline response inhibition was worse among children with ADHD compared to controls. MPH produced dose-related improvements in response inhibition in children with ADHD; compared to non-medicated TD controls, 0.3 mg/kg MPH normalized deficient response inhibition, and 0.6 mg/kg MPH resulted in better inhibition in children with ADHD. Reinforcement improved response inhibition to a greater extent for children with ADHD than for TD children, normalizing response inhibition. The combination of MPH and reinforcement improved response inhibition among children with ADHD compared to reinforcement alone and MPH alone, also resulting in normalization of response inhibition despite repeated task exposure. Deficient response inhibition commonly observed in children with ADHD is significantly improved with MPH and/or reinforcement, normalizing inhibition relative to TD children tested under standard conditions. PMID:25985978

  13. Functional specialisation within the cortical language network: effects of cortical dysfunction.

    Science.gov (United States)

    Vandenberghe, R

    2007-01-01

    In the 1990's neuroanatomical models of language and semantic memory have been mainly based on functional neuroimaging studies of brain activity in healthy volunteers and correlational studies between structural lesions in patients and behavioral deficits. In this paper we present a novel approach where we test models that have been developed in healthy volunteers by means of functional imaging in patients in combination with behavioral studies. Study populations consist of patients with focal cortical stroke (n = 2), amnestic mild cognitive impairment (n = 14) and primary progressive aphasia (n = 18). The experiments provide converging evidence that 1. the integrity of the right mid- and anterior fusiform gyrus is required for full and detailed retrieval of knowledge of visual attributes of concrete entities 2. the left posterior superior temporal sulcus is critically involved in lexical-semantic retrieval 3. the anterior temporal pole to the left functions as an associative structure that links the representations of meaning that are distribured over the cortical brain surface. Our experiments also provide us with new insight into the degradation and re-organisation of the language system in cortical neurodegenerative disease.

  14. Adults with attention-deficit/hyperactivity disorder - a brain magnetic resonance spectroscopy study

    DEFF Research Database (Denmark)

    Dramsdahl, Margaretha; Ersland, Lars; Plessen, Kerstin J

    2011-01-01

    Background: Impaired cognitive control in individuals with attention-deficit/hyperactivity disorder (ADHD) may be related to a prefrontal cortical glutamatergic deficit. We assessed the glutamate level in the left and the right midfrontal region including the anterior cingulate cortex in adults...

  15. Influence of DAT1 and COMT variants on neural activation during response inhibition in adolescents with attention-deficit/hyperactivity disorder and healthy controls

    NARCIS (Netherlands)

    van Rooij, D.; Hoekstra, P. J.; Bralten, J.; Hakobjan, M.; Oosterlaan, J.; Franke, B.; Rommelse, N.; Buitelaar, J. K.; Hartman, C. A.

    2015-01-01

    Background. Impairment of response inhibition has been implicated in attention-deficit/hyperactivity disorder (ADHD). Dopamine neurotransmission has been linked to the behavioural and neural correlates of response inhibition. The current study aimed to investigate the relationship of polymorphisms

  16. State-dependent intrinsic predictability of cortical network dynamics.

    Directory of Open Access Journals (Sweden)

    Leila Fakhraei

    Full Text Available The information encoded in cortical circuit dynamics is fleeting, changing from moment to moment as new input arrives and ongoing intracortical interactions progress. A combination of deterministic and stochastic biophysical mechanisms governs how cortical dynamics at one moment evolve from cortical dynamics in recently preceding moments. Such temporal continuity of cortical dynamics is fundamental to many aspects of cortex function but is not well understood. Here we study temporal continuity by attempting to predict cortical population dynamics (multisite local field potential based on its own recent history in somatosensory cortex of anesthetized rats and in a computational network-level model. We found that the intrinsic predictability of cortical dynamics was dependent on multiple factors including cortical state, synaptic inhibition, and how far into the future the prediction extends. By pharmacologically tuning synaptic inhibition, we obtained a continuum of cortical states with asynchronous population activity at one extreme and stronger, spatially extended synchrony at the other extreme. Intermediate between these extremes we observed evidence for a special regime of population dynamics called criticality. Predictability of the near future (10-100 ms increased as the cortical state was tuned from asynchronous to synchronous. Predictability of the more distant future (>1 s was generally poor, but, surprisingly, was higher for asynchronous states compared to synchronous states. These experimental results were confirmed in a computational network model of spiking excitatory and inhibitory neurons. Our findings demonstrate that determinism and predictability of network dynamics depend on cortical state and the time-scale of the dynamics.

  17. Inhibition in the Human Auditory Cortex.

    Directory of Open Access Journals (Sweden)

    Koji Inui

    Full Text Available Despite their indispensable roles in sensory processing, little is known about inhibitory interneurons in humans. Inhibitory postsynaptic potentials cannot be recorded non-invasively, at least in a pure form, in humans. We herein sought to clarify whether prepulse inhibition (PPI in the auditory cortex reflected inhibition via interneurons using magnetoencephalography. An abrupt increase in sound pressure by 10 dB in a continuous sound was used to evoke the test response, and PPI was observed by inserting a weak (5 dB increase for 1 ms prepulse. The time course of the inhibition evaluated by prepulses presented at 10-800 ms before the test stimulus showed at least two temporally distinct inhibitions peaking at approximately 20-60 and 600 ms that presumably reflected IPSPs by fast spiking, parvalbumin-positive cells and somatostatin-positive, Martinotti cells, respectively. In another experiment, we confirmed that the degree of the inhibition depended on the strength of the prepulse, but not on the amplitude of the prepulse-evoked cortical response, indicating that the prepulse-evoked excitatory response and prepulse-evoked inhibition reflected activation in two different pathways. Although many diseases such as schizophrenia may involve deficits in the inhibitory system, we do not have appropriate methods to evaluate them; therefore, the easy and non-invasive method described herein may be clinically useful.

  18. Impaired social interaction and enhanced sensitivity to phencyclidine-induced deficits in novel object recognition in rats with cortical cholinergic denervation.

    Science.gov (United States)

    Savage, S; Kehr, J; Olson, L; Mattsson, A

    2011-11-10

    Dysregulated cholinergic neurotransmission has been implicated in the pathophysiology of schizophrenia, particularly negative symptoms and cognitive deficits. The aim of the present study was to evaluate the role of neocortical cholinergic innervation and of the N-methyl-d-aspartate (NMDA) receptor antagonist phencyclidine (PCP) on social interaction and novel object recognition (NOR), a declarative memory task. The cholinergic corticopetal projection was lesioned by local infusion of the immunotoxin 192 IgG-saporin into nucleus basalis magnocellularis of adult male Lister hooded rats. Behavior was assessed 2.5 weeks later in a social interaction paradigm followed by the NOR task. We found that selective cholinergic denervation of neocortex led to a significant reduction in duration of social interaction, specifically active social interaction. Acute administration of PCP (1.0 mg/kg, s.c.) caused a marked decrease of active social interaction, such that there was no longer a difference between intact and denervated animals. Neither cholinergic denervation alone, nor PCP (1.0 mg/kg, s.c.) alone blocked the ability of rats to recognize a novel object. However, when animals lacking cortical cholinergic innervation were challenged by PCP, they were no longer able to recognize a novel object. This study indicates that rats lacking cholinergic innervation of neocortex have impaired social interaction and specifically that the duration of active contact is shortened. Animals with severe cortical cholinergic hypofunction maintain the ability to perform in a declarative memory test, although the task is carried out less intensively. However, a provocation of psychosis-like behavior by a dose of PCP that does not by itself impair performance in normal animals, will abolish the ability to recognize novel objects in animals lacking cortical cholinergic innervation. The present findings support a possible role for cortical cholinergic hypofunction in the negative and cognitive

  19. Aging Potentiates Lateral but Not Local Inhibition of Orientation Processing in Primary Visual Cortex

    Directory of Open Access Journals (Sweden)

    Zhengchun Wang

    2018-02-01

    Full Text Available Aging-related declines in vision can decrease well-being of the elderly. Concerning early sensory changes as in the primary visual cortex, physiological and behavioral reports seem contradictory. Neurophysiological studies on orientation tuning properties suggested that neuronal changes might come from decreased cortical local inhibition. However, behavioral results either showed no clear deficits in orientation processing in older adults, or proposed stronger surround suppression. Through psychophysical experiments and computational modeling, we resolved these discrepancies by suggesting that lateral inhibition increased in older adults while neuronal orientation tuning widths, related to local inhibition, stayed globally intact across age. We confirmed this later result by re-analyzing published neurophysiological data, which showed no systematic tuning width changes, but instead displayed a higher neuronal noise with aging. These results suggest a stronger lateral inhibition and mixed effects on local inhibition during aging, revealing a more complex picture of age-related effects in the central visual system than people previously thought.

  20. Dissociating distractor inhibition and episodic retrieval processes in children: No evidence for developmental deficits.

    Science.gov (United States)

    Giesen, Carina; Weissmann, Francesca; Rothermund, Klaus

    2018-02-01

    It is often assumed that children show reduced or absent inhibition of distracting material due to pending cognitive maturation, although empirical findings do not provide strong support for the idea of an "inhibitory deficit" in children. Most of this evidence, however, is based on findings from the negative priming paradigm, which confounds distractor inhibition and episodic retrieval processes. To resolve this confound, we adopted a sequential distractor repetition paradigm of Giesen, Frings, and Rothermund (2012), which provides independent estimates of distractor inhibition and episodic retrieval processes. Children (aged 7-9years) and young adults (aged 18-29years) identified centrally presented target fruit stimuli among two flanking distractor fruits that were always response incompatible. Children showed both reliable distractor inhibition effects as well as robust episodic retrieval effects of distractor-response bindings. Age group comparisons suggest that processes of distractor inhibition and episodic retrieval are already present and functionally intact in children and are comparable to those of young adults. The current findings highlight that the sequential distractor repetition paradigm of Giesen et al. (2012) is a versatile tool to investigate distractor inhibition and episodic retrieval separately and in an unbiased way and is also of merit for the examination of age differences with regard to these processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Sensory and cross-network contributions to response inhibition in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Matthew J. Hoptman

    Full Text Available Patients with schizophrenia show response inhibition deficits equal to or greater than those seen in impulse-control disorders, and these deficits contribute to poor outcome. However, little is known about the circuit abnormalities underlying this impairment. To address this, we examined stop signal task performance in 21 patients with schizophrenia and 21 healthy controls using event related potential (ERP and resting state functional connectivity. Patients showed prolonged stop signal reaction time (SSRT and reduced N1, N2, and P3 amplitudes compared to controls. Across groups, P3 amplitudes were maximal after SSRT (i.e., after the time associated with the decision to stop occurred, suggesting that this component indexed response monitoring. Multiple regression analyses showed that longer SSRTs were independently related to 1 patient status, 2 reduced N1 amplitude on successful stop trials and 3 reduced anticorrelated resting state functional connectivity between visual and frontoparietal cortical networks. This study used a combined multimodal imaging approach to better understand the network abnormalities that underlie response inhibition in schizophrenia. It is the first of its kind to specifically assess the brain's resting state functional architecture in combination with behavioral and ERP methods to investigate response inhibition in schizophrenia. Keywords: EEG, Stop signal task, Impulsivity, Schizophrenia, Resting state functional connectivity

  2. [The role of inhibition in obsessional-compulsive disorders].

    Science.gov (United States)

    Dupuy, M; Rouillon, F; Bungener, C

    2013-02-01

    and resolving ambiguous situations. Neurocognitive studies show that cingular anterior cortex and prefrontal lateral cortex are engaged in ambiguous and conflicting situations. These two regions are considered essential for inhibition of routine actions, adjustment to change and, more generally, for an efficient and flexible behaviour. Repetitive nature of verification rituals in OCD could be explained in terms of lack of relationship between two systems, leaving in action the one that regulates automatic activities. Therefore, the rituals are considered to be under particular influence of the system which, being in charge of automatic actions, has a deficit in disengagement. Another model of attention, described by Posner, gives a further explanation of OCD. Mental inhibition has the capacity to treat information, either by applying strategies to control it (i.e. trying not to remember an unpleasant event) or leaving it to automatic control (i.e. incapacity to experience an emotion in relation to a particular event). In this way, the effort to suppress an intrusive thought is considered as controlled and deliberate cognitive treatment of emotionally charged information. In OCD, in the context of heightened anxiety, the assumed negative valence of information would influence habitual suppression of thought during controlled treatment. As a result, controlled efforts to suppress obsessions in emotionally stressful situations, would lead to the production of repetitive thoughts, as controlled treatment of information has failed in this action. On a clinical and experimental level, these studies have led to a better understanding and conceptualization of OCD. In spite of some conflicting results, there are concordant data in favour of hypotheses of the role of sub-cortical and frontal regions and their function in inhibition/desinhibition implied in the onset and maintenance of OCD. Functional neuroimagery anomalies are also in favour of the role of sub-cortical

  3. Lateralized occipital degeneration in posterior cortical atrophy predicts visual field deficits

    Directory of Open Access Journals (Sweden)

    Rebecca S Millington

    2017-01-01

    Conclusions: Detailed brain imaging shows that the asymmetric visual field deficits in patients with PCA reflect the pattern of degeneration of both white and gray matter in the occipital lobe. Understanding the nature of both visual field deficits and the neurodegenerative brain changes in PCA may improve diagnosis and understanding of this disease.

  4. M-Stream Deficits and Reading-Related Visual Processes in Developmental Dyslexia

    Science.gov (United States)

    Boden, Catherine; Giaschi, Deborah

    2007-01-01

    Some visual processing deficits in developmental dyslexia have been attributed to abnormalities in the subcortical M stream and/or the cortical dorsal stream of the visual pathways. The nature of the relationship between these visual deficits and reading is unknown. The purpose of the present article was to characterize reading-related perceptual…

  5. Executive and attentional contributions to Theory of Mind deficit in attention deficit/hyperactivity disorder (ADHD).

    Science.gov (United States)

    Mary, Alison; Slama, Hichem; Mousty, Philippe; Massat, Isabelle; Capiau, Tatiana; Drabs, Virginie; Peigneux, Philippe

    2016-01-01

    Attention deficit/hyperactivity disorder (ADHD) in children has been associated with attentional and executive problems, but also with socioemotional difficulties possibly associated with deficits in Theory of Mind (ToM). Socioemotional problems in ADHD are associated with more negative prognoses, notably interpersonal, educational problems, and an increased risk of developing other psychiatric disorders that emphasize the need to clarify the nature of their ToM deficits. In this study, we hypothesized that ToM dysfunction in children with ADHD is largely attributable to their attentional and/or executive deficits. Thirty-one children with ADHD (8-12 years, IQ > 85) and 31 typically developing (TD) children were assessed using executive functions (inhibition, planning, and flexibility) and attentional tasks, as well as two advanced ToM tasks (Reading the Mind in the Eyes and Faux Pas) involving different levels of executive control. Children with ADHD performed more poorly than TD children in attentional, executive function, and ToM tasks. Linear regression analyses conducted in the ADHD group indicated that inhibition scores predicted performance on the "Faux Pas" task the best, while attention scores were the best for predicting performance on the Reading the Mind in the Eyes task. When controlled for inhibition and attentional variables, ToM performance in children with ADHD was actually similar to TD children. Contrarily, controlling for ToM scores did not normalize performance for inhibition and attentional tasks in children with ADHD. This unidirectional relationship suggests that deficits in the EF and attentional domains are responsible for ToM deficits in ADHD, which therefore may contribute to their socioemotional difficulties.

  6. Cortical oxygenation suggests increased effort during cognitive inhibition in ecstasy polydrug users.

    Science.gov (United States)

    Roberts, C A; Montgomery, Catharine

    2015-11-01

    It is understood that 3,4-methylenedioxymethamphetamine (ecstasy) causes serotonin dysfunction and deficits in executive functioning. When investigating executive function, functional neuroimaging allows the physiological changes underlying these deficits to be investigated. The present study investigated behavioural and brain indices of inhibition in ecstasy-polydrug users. Twenty ecstasy-polydrug users and 20 drug-naïve participants completed an inhibitory control task (Random Letter Generation (RLG)) while prefrontal haemodynamic response was assessed using functional near infrared spectroscopy (fNIRS). There were no group differences on background measures including sleep quality and mood state. There were also no behavioural differences between the two groups. However, ecstasy-polydrug users displayed significant increases in oxygenated haemoglobin (oxy-Hb) from baseline compared to controls at several voxels relating to areas of the inferior right medial prefrontal cortex, as well the right and left dorsolateral prefrontal cortex. Regression analysis revealed that recency of ecstasy use was a significant predictor of oxy-Hb increase at two voxels over the right hemisphere after controlling for alcohol and cannabis use indices. Ecstasy-polydrug users show increased neuronal activation in the prefrontal cortex compared to non-users. This is taken to be compensatory activation/recruitment of additional resources to attain similar performance levels on the task, which may be reversible with prolonged abstinence. © The Author(s) 2015.

  7. Response inhibition deficits in children with Fetal Alcohol Spectrum Disorder: Relationship between diffusion tensor imaging of the corpus callosum and eye movement control

    Directory of Open Access Journals (Sweden)

    Angelina Paolozza

    2014-01-01

    Full Text Available Response inhibition is the ability to suppress irrelevant impulses to enable goal-directed behavior. The underlying neural mechanisms of inhibition deficits are not clearly understood, but may be related to white matter connectivity, which can be assessed using diffusion tensor imaging (DTI. The goal of this study was to investigate the relationship between response inhibition during the performance of saccadic eye movement tasks and DTI measures of the corpus callosum in children with or without Fetal Alcohol Spectrum Disorder (FASD. Participants included 43 children with an FASD diagnosis (12.3 ± 3.1 years old and 35 typically developing children (12.5 ± 3.0 years old both aged 7–18, assessed at three sites across Canada. Response inhibition was measured by direction errors in an antisaccade task and timing errors in a delayed memory-guided saccade task. Manual deterministic tractography was used to delineate six regions of the corpus callosum and calculate fractional anisotropy (FA, mean diffusivity (MD, parallel diffusivity, and perpendicular diffusivity. Group differences in saccade measures were assessed using t-tests, followed by partial correlations between eye movement inhibition scores and corpus callosum FA and MD, controlling for age. Children with FASD made more saccade direction errors and more timing errors, which indicates a deficit in response inhibition. The only group difference in DTI metrics was significantly higher MD of the splenium in FASD compared to controls. Notably, direction errors in the antisaccade task were correlated negatively to FA and positively to MD of the splenium in the control, but not the FASD group, which suggests that alterations in connectivity between the two hemispheres of the brain may contribute to inhibition deficits in children with FASD.

  8. Impairment of GABA transporter GAT-1 terminates cortical recurrent network activity via enhanced phasic inhibition

    Directory of Open Access Journals (Sweden)

    Daniel Simon Razik

    2013-09-01

    Full Text Available In the central nervous system, GABA transporters (GATs very efficiently clear synaptically released GABA from the extracellular space, and thus exert a tight control on GABAergic inhibition. In neocortex, GABAergic inhibition is heavily recruited during recurrent phases of spontaneous action potential activity which alternate with neuronally quiet periods. Therefore, such activity should be quite sensitive to minute alterations of GAT function. Here, we explored the effects of a gradual impairment of GAT-1 and GAT-2/3 on spontaneous recurrent network activity – termed network bursts and silent periods – in organotypic slice cultures of rat neocortex. The GAT-1 specific antagonist NO-711 depressed activity already at nanomolar concentrations (IC50 for depression of spontaneous multiunit firing rate of 42 nM, reaching a level of 80% at 500-1000 nM. By contrast, the GAT-2/3 preferring antagonist SNAP-5114 had weaker and less consistent effects. Several lines of evidence pointed towards an enhancement of phasic GABAergic inhibition as the dominant activity-depressing mechanism: network bursts were drastically shortened, phasic GABAergic currents decayed slower, and neuronal excitability during ongoing activity was diminished. In silent periods, NO-711 had little effect on neuronal excitability or membrane resistance, quite in contrast to the effects of muscimol, a GABA mimetic which activates GABAA receptors tonically. Our results suggest that an enhancement of phasic GABAergic inhibition efficiently curtails cortical recurrent activity and may mediate antiepileptic effects of therapeutically relevant concentrations of GAT-1 antagonists.

  9. Olfactory identification deficits and associated response inhibition in obsessive-compulsive disorder: on the scent of the orbitofronto-striatal model.

    Science.gov (United States)

    Bersani, Giuseppe; Quartini, Adele; Ratti, Flavia; Pagliuca, Giulio; Gallo, Andrea

    2013-11-30

    Olfactory identification ability implicates the integrity of the orbitofrontal cortex (OFC). The fronto-striatal circuits including the OFC have been involved in the neuropathology of Obsessive Compulsive Disorder (OCD). However, only a few studies have examined olfactory function in patients with OCD. The Brief Smell Identification Test (B-SIT) and tests from the Cambridge Neuropsychological Automated Battery (CANTAB) were administered to 25 patients with OCD and to 21 healthy matched controls. OCD patients showed a significant impairment in olfactory identification ability as well as widely distributed cognitive deficits in visual memory, executive functions, attention, and response inhibition. The degree of behavioural impairment on motor impulsivity (prolonged response inhibition Stop-Signal Reaction Time) strongly correlated with the B-SIT score. Our study is the first to indicate a shared OFC pathological neural substrate underlying olfactory identification impairment, impulsivity, and OCD. Deficits in visual memory, executive functions and attention further indicate that regions outside of the orbitofronto-striatal loop may be involved in this disorder. Such results may help delineate the clinical complexity of OCD and support more targeted investigations and interventions. In this regard, research on the potential diagnostic utility of olfactory identification deficits in the assessment of OCD would certainly be useful. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Stroke rehabilitation using noninvasive cortical stimulation: aphasia.

    Science.gov (United States)

    Mylius, Veit; Zouari, Hela G; Ayache, Samar S; Farhat, Wassim H; Lefaucheur, Jean-Pascal

    2012-08-01

    Poststroke aphasia results from the lesion of cortical areas involved in the motor production of speech (Broca's aphasia) or in the semantic aspects of language comprehension (Wernicke's aphasia). Such lesions produce an important reorganization of speech/language-specific brain networks due to an imbalance between cortical facilitation and inhibition. In fact, functional recovery is associated with changes in the excitability of the damaged neural structures and their connections. Two main mechanisms are involved in poststroke aphasia recovery: the recruitment of perilesional regions of the left hemisphere in case of small lesion and the acquisition of language processing ability in homotopic areas of the nondominant right hemisphere when left hemispheric language abilities are permanently lost. There is some evidence that noninvasive cortical stimulation, especially when combined with language therapy or other therapeutic approaches, can promote aphasia recovery. Cortical stimulation was mainly used to either increase perilesional excitability or reduce contralesional activity based on the concept of reciprocal inhibition and maladaptive plasticity. However, recent studies also showed some positive effects of the reinforcement of neural activities in the contralateral right hemisphere, based on the potential compensatory role of the nondominant hemisphere in stroke recovery.

  11. Proneural Transcription Factors Regulate Different Steps of Cortical Neuron Migration through Rnd-Mediated Inhibition of RhoA Signaling

    Science.gov (United States)

    Pacary, Emilie; Heng, Julian; Azzarelli, Roberta; Riou, Philippe; Castro, Diogo; Lebel-Potter, Mélanie; Parras, Carlos; Bell, Donald M.; Ridley, Anne J.; Parsons, Maddy; Guillemot, François

    2011-01-01

    Summary Little is known of the intracellular machinery that controls the motility of newborn neurons. We have previously shown that the proneural protein Neurog2 promotes the migration of nascent cortical neurons by inducing the expression of the atypical Rho GTPase Rnd2. Here, we show that another proneural factor, Ascl1, promotes neuronal migration in the cortex through direct regulation of a second Rnd family member, Rnd3. Both Rnd2 and Rnd3 promote neuronal migration by inhibiting RhoA signaling, but they control distinct steps of the migratory process, multipolar to bipolar transition in the intermediate zone and locomotion in the cortical plate, respectively. Interestingly, these divergent functions directly result from the distinct subcellular distributions of the two Rnd proteins. Because Rnd proteins also regulate progenitor divisions and neurite outgrowth, we propose that proneural factors, through spatiotemporal regulation of Rnd proteins, integrate the process of neuronal migration with other events in the neurogenic program. PMID:21435554

  12. Effects of dopaminergic genes, prenatal adversities, and their interaction on attention-deficit/hyperactivity disorder and neural correlates of response inhibition

    NARCIS (Netherlands)

    van der Meer, Dennis; Hartman, Catharina A.; van Rooij, Daan; Franke, Barbara; Heslenfeld, Dirk J.; Oosterlaan, Jaap; Faraone, Stephen V.; Buitelaar, Jan K.; Hoekstra, Pieter J.

    2017-01-01

    Background: Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by impaired response inhibition; both have been associated with aberrant dopamine signalling. Given that prenatal exposure to alcohol or smoking is known to affect dopamine-rich brain regions, we hypothesized that

  13. Effects of dopaminergic genes, prenatal adversities, and their interaction on attention-deficit/hyperactivity disorder and neural correlates of response inhibition

    NARCIS (Netherlands)

    Meer, D. van der; Hartman, C.A.; Rooij, D. van; Franke, B.; Heslenfeld, D.J.; Oosterlaan, J.; Faraone, S.V; Buitelaar, J.K.; Hoekstra, P.J.

    2017-01-01

    BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by impaired response inhibition; both have been associated with aberrant dopamine signalling. Given that prenatal exposure to alcohol or smoking is known to affect dopamine-rich brain regions, we hypothesized that

  14. Effects of dopaminergic genes, prenatal adversities, and their interaction on attention-deficit/hyperactivity disorder and neural correlates of response inhibition

    NARCIS (Netherlands)

    van der Meer, Dennis; Hartman, Catharina A.; van Rooij, Daan; Franke, Barbara; Heslenfeld, Dirk J.; Oosterlaan, Jaap; Faraone, Stephen V.; Buitelaar, Jan K.; Hoekstra, Pieter J.

    Background Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by impaired response inhibition; both have been associated with aberrant dopamine signalling. Given that prenatal exposure to alcohol or smoking is known to affect dopamine-rich brain regions, we hypothesized that

  15. Prestimulus Inhibition of Saccades in Adults With and Without Attention-Deficit/Hyperactivity Disorder as an Index of Temporal Expectations.

    Science.gov (United States)

    Dankner, Yarden; Shalev, Lilach; Carrasco, Marisa; Yuval-Greenberg, Shlomit

    2017-07-01

    Knowing when to expect important events to occur is critical for preparing context-appropriate behavior. However, anticipation is inherently complicated to assess because conventional measurements of behavior, such as accuracy and reaction time, are available only after the predicted event has occurred. Anticipatory processes, which occur prior to target onset, are typically measured only retrospectively by these methods. In this study, we utilized a novel approach for assessing temporal expectations through the dynamics of prestimulus saccades. Results showed that saccades of neurotypical participants were inhibited prior to the onset of stimuli that appeared at predictable compared with less predictable times. No such inhibition was found in most participants with attention-deficit/hyperactivity disorder (ADHD), and particularly not in those who experienced difficulties in sustaining attention over time. These findings suggest that individuals with ADHD, especially those with sustained-attention deficits, have diminished ability to benefit from temporal predictability, and this could account for some of their context-inappropriate behaviors.

  16. Motor Cortical Plasticity to Training Started in Childhood: The Example of Piano Players.

    Directory of Open Access Journals (Sweden)

    Raffaella Chieffo

    Full Text Available Converging evidence suggest that motor training is associated with early and late changes of the cortical motor system. Transcranial magnetic stimulation (TMS offers the possibility to study plastic rearrangements of the motor system in physiological and pathological conditions. We used TMS to characterize long-term changes in upper limb motor cortical representation and interhemispheric inhibition associated with bimanual skill training in pianists who started playing in an early age. Ipsilateral silent period (iSP and cortical TMS mapping of hand muscles were obtained from 30 strictly right-handed subjects (16 pianists, 14 naïve controls, together with electromyographic recording of mirror movements (MMs to voluntary hand movements. In controls, motor cortical representation of hand muscles was larger on the dominant (DH than on the non-dominant hemisphere (NDH. On the contrary, pianists showed symmetric cortical output maps, being their DH less represented than in controls. In naïve subjects, the iSP was smaller on the right vs left abductor pollicis brevis (APB indicating a weaker inhibition from the NDH to the DH. In pianists, interhemispheric inhibition was more symmetric as their DH was better inhibited than in controls. Electromyographic MMs were observed only in naïve subjects (7/14 and only to voluntary movement of the non-dominant hand. Subjects with MM had a lower iSP area on the right APB compared with all the others. Our findings suggest a more symmetrical motor cortex organization in pianists, both in terms of muscle cortical representation and interhemispheric inhibition. Although we cannot disentangle training-related from preexisting conditions, it is possible that long-term bimanual practice may reshape motor cortical representation and rebalance interhemispheric interactions, which in naïve right-handed subjects would both tend to favour the dominant hemisphere.

  17. Visual form-processing deficits: a global clinical classification.

    Science.gov (United States)

    Unzueta-Arce, J; García-García, R; Ladera-Fernández, V; Perea-Bartolomé, M V; Mora-Simón, S; Cacho-Gutiérrez, J

    2014-10-01

    Patients who have difficulties recognising visual form stimuli are usually labelled as having visual agnosia. However, recent studies let us identify different clinical manifestations corresponding to discrete diagnostic entities which reflect a variety of deficits along the continuum of cortical visual processing. We reviewed different clinical cases published in medical literature as well as proposals for classifying deficits in order to provide a global perspective of the subject. Here, we present the main findings on the neuroanatomical basis of visual form processing and discuss the criteria for evaluating processing which may be abnormal. We also include an inclusive diagram of visual form processing deficits which represents the different clinical cases described in the literature. Lastly, we propose a boosted decision tree to serve as a guide in the process of diagnosing such cases. Although the medical community largely agrees on which cortical areas and neuronal circuits are involved in visual processing, future studies making use of new functional neuroimaging techniques will provide more in-depth information. A well-structured and exhaustive assessment of the different stages of visual processing, designed with a global view of the deficit in mind, will give a better idea of the prognosis and serve as a basis for planning personalised psychostimulation and rehabilitation strategies. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  18. Implications of CI therapy for Visual Deficit Training

    Directory of Open Access Journals (Sweden)

    Edward eTaub

    2014-10-01

    Full Text Available We address here the question of whether the techniques of CI therapy, a family of treatments that has been employed in the rehabilitation of movement and language after brain damage might apply to the rehabilitation of such visual deficits as unilateral spatial neglect and visual field deficits. CI therapy has been used successfully for the upper and lower extremities after chronic stroke, cerebral palsy (CP, multiple sclerosis (MS, other CNS degenerative conditions, resection of motor areas of the brain, focal hand dystonia, and aphasia. Treatments making use of similar methods have proven efficacious for amblyopia.The CI therapy approach consists of four major components: intensive training, training by shaping, a transfer package to facilitate the transfer of gains from the treatment setting to everyday activities, and strong discouragement of compensatory strategies.CI therapy is said to be effective because it overcomes learned nonuse, a learned inhibition of movement that follows injury to the CNS. In addition, CI therapy produces substantial increases in the grey matter of motor areas on both sides of the brain. We propose here that these mechanisms are examples of more general processes: learned nonuse being considered parallel to sensory nonuse following damage to sensory areas of the brain, with both having in common diminished neural connections (DNC in the nervous system as an underlying mechanism. CI therapy would achieve its therapeutic effect by strengthening the diminished neural connections. Use-dependent cortical reorganization is considered to be an example of the more general neuroplastic mechanism of brain structure repurposing (BSR. If the mechanisms involved in these broader categories are involved in each of the deficits being considered, then it may be the principles underlying efficacious treatment in each case may be similar. The lessons learned during CI therapy research might then prove useful for the treatment of

  19. Thinner Medial Temporal Cortex in Adolescents With Attention-Deficit/Hyperactivity Disorder and the Effects of Stimulants

    NARCIS (Netherlands)

    Schweren, Lizanne J. S.; Hartman, Catharina A.; Heslenfeld, Dirk J.; van der Meer, Dennis; Franke, Barbara; Oosterlaan, Jaap; Buitelaar, Jan K.; Faraone, Stephen V.; Hoekstra, Pieter J.

    Objective: Attention-deficit/hyperactivity disorder (ADHD) has been associated with widespread changes in cortical thickness (CT). Findings have been inconsistent, however, possibly due to age differences between samples. Cortical changes have also been suggested to be reduced or to disappear with

  20. Cortical serotonin-S2 receptor binding in Lewy body dementia, Alzheimer's and Parkinson's diseases.

    Science.gov (United States)

    Cheng, A V; Ferrier, I N; Morris, C M; Jabeen, S; Sahgal, A; McKeith, I G; Edwardson, J A; Perry, R H; Perry, E K

    1991-11-01

    The binding of the selective 5-HT2 antagonist [3H]ketanserin has been investigated in the temporal cortex of patients with Alzheimer's disease (SDAT), Parkinson's disease (PD), senile dementia of Lewy body type (SDLT) and neuropathologically normal subjects (control). 5-HT2 binding was reduced in SDAT, PD with dementia and SDLT. SDAT showed a 5-HT2 receptor deficit across most of the cortical layers. A significant decrease in 5-HT2 binding in the deep cortical layers was found in those SDLT cases without hallucinations. SDLT cases with hallucinations only showed a deficit in one upper layer. There was a significant difference in cortical layers III and V between SDLT without hallucinations and SDLT with hallucinations. The results confirm an abnormality of serotonin binding in various forms of dementia and suggest that preservation of 5-HT2 receptor in the temporal cortex may differentiate hallucinating from non-hallucinating cases of SDLT.

  1. GABA Neuron Alterations, Cortical Circuit Dysfunction and Cognitive Deficits in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Guillermo Gonzalez-Burgos

    2011-01-01

    Full Text Available Schizophrenia is a brain disorder associated with cognitive deficits that severely affect the patients' capacity for daily functioning. Whereas our understanding of its pathophysiology is limited, postmortem studies suggest that schizophrenia is associated with deficits of GABA-mediated synaptic transmission. A major role of GABA-mediated transmission may be producing synchronized network oscillations which are currently hypothesized to be essential for normal cognitive function. Therefore, cognitive deficits in schizophrenia may result from a GABA synapse dysfunction that disturbs neural synchrony. Here, we highlight recent studies further suggesting alterations of GABA transmission and network oscillations in schizophrenia. We also review current models for the mechanisms of GABA-mediated synchronization of neural activity, focusing on parvalbumin-positive GABA neurons, which are altered in schizophrenia and whose function has been strongly linked to the production of neural synchrony. Alterations of GABA signaling that impair gamma oscillations and, as a result, cognitive function suggest paths for novel therapeutic interventions.

  2. GABA neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia.

    Science.gov (United States)

    Gonzalez-Burgos, Guillermo; Fish, Kenneth N; Lewis, David A

    2011-01-01

    Schizophrenia is a brain disorder associated with cognitive deficits that severely affect the patients' capacity for daily functioning. Whereas our understanding of its pathophysiology is limited, postmortem studies suggest that schizophrenia is associated with deficits of GABA-mediated synaptic transmission. A major role of GABA-mediated transmission may be producing synchronized network oscillations which are currently hypothesized to be essential for normal cognitive function. Therefore, cognitive deficits in schizophrenia may result from a GABA synapse dysfunction that disturbs neural synchrony. Here, we highlight recent studies further suggesting alterations of GABA transmission and network oscillations in schizophrenia. We also review current models for the mechanisms of GABA-mediated synchronization of neural activity, focusing on parvalbumin-positive GABA neurons, which are altered in schizophrenia and whose function has been strongly linked to the production of neural synchrony. Alterations of GABA signaling that impair gamma oscillations and, as a result, cognitive function suggest paths for novel therapeutic interventions.

  3. Online Transcranial Magnetic Stimulation Protocol for Measuring Cortical Physiology Associated with Response Inhibition.

    Science.gov (United States)

    Guthrie, Michael D; Gilbert, Donald L; Huddleston, David A; Pedapati, Ernest V; Horn, Paul S; Mostofsky, Stewart H; Wu, Steve W

    2018-02-08

    We describe the development of a reproducible, child-friendly motor response inhibition task suitable for online Transcranial Magnetic Stimulation (TMS) characterization of primary motor cortex (M1) excitability and inhibition. Motor response inhibition prevents unwanted actions and is abnormal in several neuropsychiatric conditions. TMS is a non-invasive technology that can quantify M1 excitability and inhibition using single- and paired-pulse protocols and can be precisely timed to study cortical physiology with high temporal resolution. We modified the original Slater-Hammel (S-H) stop signal task to create a "racecar" version with TMS pulses time-locked to intra-trial events. This task is self-paced, with each trial initiating after a button push to move the racecar towards the 800 ms target. GO trials require a finger-lift to stop the racecar just before this target. Interspersed randomly are STOP trials (25%) during which the dynamically adjusted stop signal prompts subjects to prevent finger-lift. For GO trials, TMS pulses were delivered at 650 ms after trial onset; whereas, for STOP trials, the TMS pulses occurred 150 ms after the stop signal. The timings of the TMS pulses were decided based on electroencephalography (EEG) studies showing event-related changes in these time ranges during stop signal tasks. This task was studied in 3 blocks at two study sites (n=38) and we recorded behavioral performance and event-related motor-evoked potentials (MEP). Regression modelling was used to analyze MEP amplitudes using age as a covariate with multiple independent variables (sex, study site, block, TMS pulse condition [single- vs. paired-pulse], trial condition [GO, successful STOP, failed STOP]). The analysis showed that TMS pulse condition (p<0.0001) and its interaction with trial condition (p=0.009) were significant. Future applications for this online S-H/TMS paradigm include the addition of simultaneous EEG acquisition to measure TMS-evoked EEG potentials. A

  4. Inhibition of Cathepsins B Induces Neuroprotection Against Secondary Degeneration in Ipsilateral Substantia Nigra After Focal Cortical Infarction in Adult Male Rats

    Directory of Open Access Journals (Sweden)

    Xialin Zuo

    2018-05-01

    Full Text Available Stroke is the leading cause of adult disability in the world. In general, recovery from stroke is incomplete. Accumulating evidences have shown that focal cerebral infarction leads to dynamic trans-neuronal degeneration in non-ischemic remote brain regions, with the disruption of connections to synapsed neurons sustaining ischemic insults. Previously, we had reported that the ipsilateral striatum, thalamus degenerated in succession after permanent distal branch of middle cerebral artery occlusion (dMCAO in Sprague-Dawley (SD rats and cathepsin (Cath B was activated before these relay degeneration. Here, we investigate the role of CathB in the secondary degeneration of ipsilateral substantia nigra (SN after focal cortical infarction. We further examined whether the inhibition of CathB with L-3-trans-(Propyl-carbamoyloxirane-2-carbonyl-L-isoleucyl-L-proline methyl ester (CA-074Me would attenuate secondary degeneration through enhancing the cortico-striatum-nigral connections and contribute to the neuroprotective effects. Our results demonstrated that secondary degeneration in the ipsilateral SN occurred and CathB was upregulated in the ipsilateral SN after focal cortical infarction. The inhibition of CathB with CA-074Me reduced the neuronal loss and gliosis in the ipsilateral SN. Using biotinylated dextran amine (BDA or pseudorabies virus (PRV 152 as anterograde or retrograde tracer to trace striatum-nigral and cortico-nigral projections pathway, CA-074Me can effectively enhance the cortico-striatum-nigral connections and exert neuroprotection against secondary degeneration in the ipsilateral SN after cortical ischemia. Our study suggests that the lysosomal protease CathB mediates the secondary damage in the ipsilateral SN after dMCAO, thus it can be a promising neuroprotective target for the rehabilitation of stroke patients.

  5. Acetylcholinesterase inhibition ameliorates deficits in motivational drive

    Directory of Open Access Journals (Sweden)

    Martinowich Keri

    2012-03-01

    Full Text Available Abstract Background Apathy is frequently observed in numerous neurological disorders, including Alzheimer's and Parkinson's, as well as neuropsychiatric disorders including schizophrenia. Apathy is defined as a lack of motivation characterized by diminished goal-oriented behavior and self-initiated activity. This study evaluated a chronic restraint stress (CRS protocol in modeling apathetic behavior, and determined whether administration of an anticholinesterase had utility in attenuating CRS-induced phenotypes. Methods We assessed behavior as well as regional neuronal activity patterns using FosB immunohistochemistry after exposure to CRS for 6 h/d for a minimum of 21 d. Based on our FosB findings and recent clinical trials, we administered an anticholinesterase to evaluate attenuation of CRS-induced phenotypes. Results CRS resulted in behaviors that reflect motivational loss and diminished emotional responsiveness. CRS-exposed mice showed differences in FosB accumulation, including changes in the cholinergic basal forebrain system. Facilitating cholinergic signaling ameliorated CRS-induced deficits in initiation and motivational drive and rescued immediate early gene activation in the medial septum and nucleus accumbens. Conclusions Some CRS protocols may be useful for studying deficits in motivation and apathetic behavior. Amelioration of CRS-induced behaviors with an anticholinesterase supports a role for the cholinergic system in remediation of deficits in motivational drive.

  6. Attention-deficit hyperactivity disorder (ADHD) and tuberous sclerosis complex.

    Science.gov (United States)

    D'Agati, Elisa; Moavero, Romina; Cerminara, Caterina; Curatolo, Paolo

    2009-10-01

    The neurobiological basis of attention-deficit hyperactivity disorder (ADHD) in tuberous sclerosis complex is still largely unknown. Cortical tubers may disrupt several brain networks that control different types of attention. Frontal lobe dysfunction due to seizures or epileptiform electroencephalographic discharges may perturb the development of brain systems that underpin attentional and hyperactive functions during a critical early stage of brain maturation. Comorbidity of attention-deficit hyperactivity disorder (ADHD) with mental retardation and autism spectrum disorders is frequent in children with tuberous sclerosis. Attention-deficit hyperactivity disorder (ADHD) may also reflect a direct effect of the abnormal genetic program. Treatment of children with tuberous sclerosis complex with combined symptoms of attention-deficit hyperactivity disorder (ADHD) and epilepsy may represent a challenge for clinicians, because antiepileptic therapy and drugs used to treat attention-deficit hyperactivity disorder (ADHD) may aggravate the clinical picture of each other.

  7. Transcranial magnetic stimulation reveals cortical hyperexcitability in episodic cluster headache.

    Science.gov (United States)

    Cosentino, Guiseppe; Brighina, Filippo; Brancato, Sara; Valentino, Francesca; Indovino, Serena; Fierro, Brigida

    2015-01-01

    Evidence shows involvement of the cerebral cortex in the pathophysiology of cluster headache (CH). Here we investigated cortical excitability in episodic CH patients by using transcranial magnetic stimulation. In 25 patients with episodic CH and 13 healthy subjects we evaluated the motor cortical response to single-pulse (ie, motor threshold, input-output curves, cortical silent period) and paired-pulse (ie, intracortical facilitation, short intracortical inhibition) transcranial magnetic stimulation in both hemispheres. Thirteen patients were evaluated outside bout and the remaining 12 patients inside bout. Our results showed increased slope of the input-output curves after stimulation of both hemispheres in patients outside bout and in the hemisphere contralateral to the headache side in patients inside bout. Increased intracortical facilitation was observed in the hemisphere ipsilateral to the headache side in patients evaluated both outside and inside bout; reduced short intracortical inhibition was observed in patients inside bout ipsilateral to the side of pain. In conclusion, we provide evidence of increased cortical excitability in episodic CH both outside and inside bout, especially in the hemisphere ipsilateral to the side of headache attacks. Our results suggest that an abnormal regulation of cortical excitability could be involved in the pathophysiology of CH. We investigated cortical excitability in episodic cluster headache by using transcranial magnetic stimulation, providing evidence of cortical hyperexcitability in patients both inside and outside bout. We suggest that an abnormal state of cortical excitability could be involved in the pathophysiology of the disease. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  8. Brain differences between persistent and remitted attention deficit hyperactivity disorder.

    Science.gov (United States)

    Mattfeld, Aaron T; Gabrieli, John D E; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Kotte, Amelia; Kagan, Elana; Whitfield-Gabrieli, Susan

    2014-09-01

    Previous resting state studies examining the brain basis of attention deficit hyperactivity disorder have not distinguished between patients who persist versus those who remit from the diagnosis as adults. To characterize the neurobiological differences and similarities of persistence and remittance, we performed resting state functional magnetic resonance imaging in individuals who had been longitudinally and uniformly characterized as having or not having attention deficit hyperactivity disorder in childhood and again in adulthood (16 years after baseline assessment). Intrinsic functional brain organization was measured in patients who had a persistent diagnosis in childhood and adulthood (n = 13), in patients who met diagnosis in childhood but not in adulthood (n = 22), and in control participants who never had attention deficit hyperactivity disorder (n = 17). A positive functional correlation between posterior cingulate and medial prefrontal cortices, major components of the default-mode network, was reduced only in patients whose diagnosis persisted into adulthood. A negative functional correlation between medial and dorsolateral prefrontal cortices was reduced in both persistent and remitted patients. The neurobiological dissociation between the persistence and remittance of attention deficit hyperactivity disorder may provide a framework for the relation between the clinical diagnosis, which indicates the need for treatment, and additional deficits that are common, such as executive dysfunctions. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex.

    Science.gov (United States)

    Adesnik, Hillel

    2018-05-01

    Understanding the balance between synaptic excitation and inhibition in cortical circuits in the brain, and how this contributes to cortical rhythms, is fundamental to explaining information processing in the cortex. This study used cortical layer-specific optogenetic activation in mouse cortex to show that excitatory neurons in any cortical layer can drive powerful gamma rhythms, while inhibition balances excitation. The net impact of this is to keep activity within each layer in check, but simultaneously to promote the propagation of activity to downstream layers. The data show that rhythm-generating circuits exist in all principle layers of the cortex, and provide layer-specific balances of excitation and inhibition that affect the flow of information across the layers. Rhythmic activity can synchronize neural ensembles within and across cortical layers. While gamma band rhythmicity has been observed in all layers, the laminar sources and functional impacts of neuronal synchronization in the cortex remain incompletely understood. Here, layer-specific optogenetic stimulation demonstrates that populations of excitatory neurons in any cortical layer of the mouse's primary visual cortex are sufficient to powerfully entrain neuronal oscillations in the gamma band. Within each layer, inhibition balances excitation and keeps activity in check. Across layers, translaminar output overcomes inhibition and drives downstream firing. These data establish that rhythm-generating circuits exist in all principle layers of the cortex, but provide layer-specific balances of excitation and inhibition that may dynamically shape the flow of information through cortical circuits. These data might help explain how excitation/inhibition (E/I) balances across cortical layers shape information processing, and shed light on the diverse nature and functional impacts of cortical gamma rhythms. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  10. Verbal memory impairments in schizophrenia associated with cortical thinning

    Directory of Open Access Journals (Sweden)

    S. Guimond

    2016-01-01

    Full Text Available Verbal memory (VM represents one of the most affected cognitive domains in schizophrenia. Multiple studies have shown that schizophrenia is associated with cortical abnormalities, but it remains unclear whether these are related to VM impairments. Considering the vast literature demonstrating the role of the frontal cortex, the parahippocampal cortex, and the hippocampus in VM, we examined the cortical thickness/volume of these regions. We used a categorical approach whereby 27 schizophrenia patients with ‘moderate to severe’ VM impairments were compared to 23 patients with ‘low to mild’ VM impairments and 23 healthy controls. A series of between-group vertex-wise GLM on cortical thickness were performed for specific regions of interest defining the parahippocampal gyrus and the frontal cortex. When compared to healthy controls, patients with ‘moderate to severe’ VM impairments revealed significantly thinner cortex in the left frontal lobe, and the parahippocampal gyri. When compared to patients with ‘low to mild’ VM impairments, patients with ‘moderate to severe’ VM impairments showed a trend of thinner cortex in similar regions. Virtually no differences were observed in the frontal area of patients with ‘low to mild’ VM impairments relative to controls. No significant group differences were observed in the hippocampus. Our results indicate that patients with greater VM impairments demonstrate significant cortical thinning in regions known to be important in VM performance. Treating VM deficits in schizophrenia could have a positive effect on the brain; thus, subgroups of patients with more severe VM deficits should be a prioritized target in the development of new cognitive treatments.

  11. Prefrontal cortical GABA transmission modulates discrimination and latent inhibition of conditioned fear: relevance for schizophrenia.

    Science.gov (United States)

    Piantadosi, Patrick T; Floresco, Stan B

    2014-09-01

    Inhibitory gamma-aminobutyric acid (GABA) transmission within the prefrontal cortex (PFC) regulates numerous functions, and perturbations in GABAergic transmission within this region have been proposed to contribute to some of the cognitive and behavioral abnormalities associated with disorders such as schizophrenia. These abnormalities include deficits in emotional regulation and aberrant attributions of affective salience. Yet, how PFC GABA regulates these types of emotional processes are unclear. To address this issue, we investigated the contribution of PFC GABA transmission to different aspects of Pavlovian emotional learning in rats using translational discriminative fear conditioning and latent inhibition (LI) assays. Reducing prelimbic PFC GABAA transmission via infusions of the antagonist bicuculline before the acquisition or expression of fear conditioning eliminated the ability to discriminate between an aversive conditioned stimulus (CS+) paired with footshock vs a neutral CS-, resembling similar deficits observed in schizophrenic patients. In a separate experiment, blockade of PFC GABAA receptors before CS preexposure (PE) and conditioning did not affect subsequent expression of LI, but did enhance fear in rats that were not preexposed to the CS. In contrast, PFC GABA-blockade before a fear expression test disrupted the recall of learned irrelevance and abolished LI. These data suggest that normal PFC GABA transmission is critical for regulating and mitigating multiple aspects of aversive learning, including discrimination between fear vs safety signals and recall of information about the irrelevance of stimuli. Furthermore, they suggest that similar deficits in emotional regulation observed in schizophrenia may be driven in part by deficient PFC GABA activity.

  12. MicroRNA-338 Attenuates Cortical Neuronal Outgrowth by Modulating the Expression of Axon Guidance Genes.

    Science.gov (United States)

    Kos, Aron; Klein-Gunnewiek, Teun; Meinhardt, Julia; Loohuis, Nikkie F M Olde; van Bokhoven, Hans; Kaplan, Barry B; Martens, Gerard J; Kolk, Sharon M; Aschrafi, Armaz

    2017-07-01

    MicroRNAs (miRs) are small non-coding RNAs that confer robustness to gene networks through post-transcriptional gene regulation. Previously, we identified miR-338 as a modulator of axonal outgrowth in sympathetic neurons. In the current study, we examined the role of miR-338 in the development of cortical neurons and uncovered its downstream mRNA targets. Long-term inhibition of miR-338 during neuronal differentiation resulted in reduced dendritic complexity and altered dendritic spine morphology. Furthermore, monitoring axon outgrowth in cortical cells revealed that miR-338 overexpression decreased, whereas inhibition of miR-338 increased axonal length. To identify gene targets mediating the observed phenotype, we inhibited miR-338 in cortical neurons and performed whole-transcriptome analysis. Pathway analysis revealed that miR-338 modulates a subset of transcripts involved in the axonal guidance machinery by means of direct and indirect gene targeting. Collectively, our results implicate miR-338 as a novel regulator of cortical neuronal maturation by fine-tuning the expression of gene networks governing cortical outgrowth.

  13. Response variability in balanced cortical networks

    DEFF Research Database (Denmark)

    Lerchner, Alexander; Ursta, C.; Hertz, J.

    2006-01-01

    We study the spike statistics of neurons in a network with dynamically balanced excitation and inhibition. Our model, intended to represent a generic cortical column, comprises randomly connected excitatory and inhibitory leaky integrate-and-fire neurons, driven by excitatory input from an external...

  14. DYRK1A-mediated Cyclin D1 Degradation in Neural Stem Cells Contributes to the Neurogenic Cortical Defects in Down Syndrome

    Directory of Open Access Journals (Sweden)

    Sònia Najas

    2015-02-01

    Full Text Available Alterations in cerebral cortex connectivity lead to intellectual disability and in Down syndrome, this is associated with a deficit in cortical neurons that arises during prenatal development. However, the pathogenic mechanisms that cause this deficit have not yet been defined. Here we show that the human DYRK1A kinase on chromosome 21 tightly regulates the nuclear levels of Cyclin D1 in embryonic cortical stem (radial glia cells, and that a modest increase in DYRK1A protein in transgenic embryos lengthens the G1 phase in these progenitors. These alterations promote asymmetric proliferative divisions at the expense of neurogenic divisions, producing a deficit in cortical projection neurons that persists in postnatal stages. Moreover, radial glial progenitors in the Ts65Dn mouse model of Down syndrome have less Cyclin D1, and Dyrk1a is the triplicated gene that causes both early cortical neurogenic defects and decreased nuclear Cyclin D1 levels in this model. These data provide insights into the mechanisms that couple cell cycle regulation and neuron production in cortical neural stem cells, emphasizing that the deleterious effect of DYRK1A triplication in the formation of the cerebral cortex begins at the onset of neurogenesis, which is relevant to the search for early therapeutic interventions in Down syndrome.

  15. Impact of prenatal environmental stress on cortical development

    Directory of Open Access Journals (Sweden)

    Seiji eIshii

    2015-05-01

    Full Text Available Prenatal exposure of the developing brain to various types of environmental stress increases susceptibility to neuropsychiatric disorders such as autism, attention deficit hyperactivity disorder and schizophrenia. Given that even subtle perturbations by prenatal environmental stress in the cerebral cortex impair the cognitive and memory functions, this review focuses on underlying molecular mechanisms of pathological cortical development. We especially highlight recent works that utilized animal exposure models, human specimens or/and induced Pluripotent Stem (iPS cells to demonstrate: 1. molecular mechanisms shared by various types of environmental stressors, 2. the mechanisms by which the affected extracortical tissues indirectly impact the cortical development and function, and 3. interaction between prenatal environmental stress and the genetic predisposition of neuropsychiatric disorders. Finally, we discuss current challenges for achieving a comprehensive understanding of the role of environmentally disturbed molecular expressions in cortical maldevelopment, knowledge of which may eventually facilitate discovery of interventions for prenatal environment-linked neuropsychiatric disorders.

  16. Sensation-to-cognition cortical streams in attention-deficit/hyperactivity disorder

    NARCIS (Netherlands)

    Carmona, Susana; Hoekzema, E; Castellanos, Francisco X; García-García, David; Lage-Castellanos, Agustín; Van Dijk, Koene R A; Navas-Sánchez, Francisco J; Martínez, Kenia; Desco, Manuel; Sepulcre, Jorge

    We sought to determine whether functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits are atypical in attention-deficit/hyperactivity disorder (ADHD). We applied a graph-theory method to the resting-state functional magnetic resonance imaging data of 120

  17. The maternal immune activation (MIA) model of schizophrenia produces pre-pulse inhibition (PPI) deficits in both juvenile and adult rats but these effects are not associated with maternal weight loss.

    Science.gov (United States)

    Wolff, Amy R; Bilkey, David K

    2010-12-01

    The developmental onset of deficits in sensorimotor-gating was examined in the maternal immune activation (MIA) animal model of schizophrenia. Pre-pulse inhibition (PPI) deficits were evident in juvenile MIA rats. This parallels the sensorimotor-gating deficits observed in groups at high-risk of schizophrenia. PPI deficits were independent of maternal weight loss following the MIA manipulation, suggesting that this measure may not be a useful marker of treatment efficacy. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. Altered neural connectivity during response inhibition in adolescents with attention-deficit/hyperactivity disorder and their unaffected siblings.

    Science.gov (United States)

    van Rooij, Daan; Hartman, Catharina A; Mennes, Maarten; Oosterlaan, Jaap; Franke, Barbara; Rommelse, Nanda; Heslenfeld, Dirk; Faraone, Stephen V; Buitelaar, Jan K; Hoekstra, Pieter J

    2015-01-01

    Response inhibition is one of the executive functions impaired in attention-deficit/hyperactivity disorder (ADHD). Increasing evidence indicates that altered functional and structural neural connectivity are part of the neurobiological basis of ADHD. Here, we investigated if adolescents with ADHD show altered functional connectivity during response inhibition compared to their unaffected siblings and healthy controls. Response inhibition was assessed using the stop signal paradigm. Functional connectivity was assessed using psycho-physiological interaction analyses applied to BOLD time courses from seed regions within inferior- and superior frontal nodes of the response inhibition network. Resulting networks were compared between adolescents with ADHD (N = 185), their unaffected siblings (N = 111), and controls (N = 125). Control subjects showed stronger functional connectivity than the other two groups within the response inhibition network, while subjects with ADHD showed relatively stronger connectivity between default mode network (DMN) nodes. Stronger connectivity within the response inhibition network was correlated with lower ADHD severity, while stronger connectivity with the DMN was correlated with increased ADHD severity. Siblings showed connectivity patterns similar to controls during successful inhibition and to ADHD subjects during failed inhibition. Additionally, siblings showed decreased connectivity with the primary motor areas as compared to both participants with ADHD and controls. Subjects with ADHD fail to integrate activation within the response inhibition network and to inhibit connectivity with task-irrelevant regions. Unaffected siblings show similar alterations only during failed stop trials, as well as unique suppression of motor areas, suggesting compensatory strategies. These findings support the role of altered functional connectivity in understanding the neurobiology and familial transmission of ADHD.

  19. rab3 mediates cortical granule exocytosis in the sea urchin egg.

    Science.gov (United States)

    Conner, S; Wessel, G M

    1998-11-15

    Egg activation at fertilization in the sea urchin results in the exocytosis of approximately 15,000 cortical granules that are docked at the plasma membrane. Previously, we reported that several integral membrane proteins modeled in the SNARE hypothesis, synaptotagmin, VAMP, and syntaxin, in addition to a small GTPase of the ras superfamily, rab3, were present on cortical granules (Conner, S., Leaf, D., and Wessel, G., Mol. Reprod. Dev. 48, 1-13, 1997). Here we report that rab3 is associated with cortical granules throughout oogenesis, during cortical granule translocation, and while docked at the egg plasma membrane. Following cortical granule exocytosis, however, rab3 reassociates with a different population of vesicles, at least some of which are of endocytic origin. Because of its selective association with cortical granules in eggs and oocytes, we hypothesize that rab3 functions in cortical granule exocytosis. To test this hypothesis, we used a strategy of interfering with rab3 function by peptide competition with its effector domain, a conserved region within specific rab types. We first identified the effector domain sequence in Lytechinus variegatus eggs and find the sequence 94% identical to the effector domain of rab3 in Stronglocentrotus purpuratus. Then, with synthetic peptides to different regions of the rab3 protein, we find that cortical granule exocytosis is inhibited in eggs injected with effector domain peptides, but not with peptides from the hypervariable region or with a scrambled effector peptide. Additionally, effector-peptide-injected eggs injected with IP3 are blocked in their ability to exocytose cortical granules, suggesting that the inhibition is directly on the membrane fusion event and not the result of interference with the signal transduction mechanism leading to calcium release. We interpret these results to mean that rab3 functions in the regulation of cortical granule exocytosis following vesicle docking. Copyright 1998 Academic

  20. Subchronic and chronic PCP treatment produces temporally distinct deficits in attentional set shifting and prepulse inhibition in rats.

    Science.gov (United States)

    Egerton, Alice; Reid, Lee; McGregor, Sandie; Cochran, Susan M; Morris, Brian J; Pratt, Judith A

    2008-05-01

    We have previously demonstrated that subchronic (five daily administrations of 2.6 mg/kg PCP) and chronic intermittent administration of 2.6 mg/kg PCP to rats produces hypofrontality and other neurochemical changes akin to schizophrenia pathology (Cochran et al., Neuropsychopharmacology, 28:265-275, 2003). We sought to determine whether behavioral alterations related to discrete aspects of schizophrenia are also induced by these PCP treatment regimes. Following administration of vehicle or PCP according to the protocols described above, rats were assessed for attentional set shifting ability, prepulse inhibition (PPI), or social interaction and the locomotor response to a challenge dose of amphetamine. Ability to shift attentional set was impaired 72 h after the last PCP administration following the subchronic and chronic intermittent treatment regimes. PPI was disrupted after each acute administration of PCP in animals under the subchronic treatment regime. However, PPI deficits were not sustained 72 h after the last of five daily administrations. In subchronic and chronic PCP treated animals, no change was found in social interaction behavior, and there was little change in baseline or amphetamine-stimulated locomotor activity, employed as an indicator of dopaminergic hyperfunction. The temporally distinct behavioral effects of these PCP treatment regimes suggest that PPI deficits relate directly to acute NMDA receptor antagonism, whereas the more enduring set shifting deficits relate to the longer term consequences of NMDA receptor blockade. Therefore, these subchronic and chronic PCP treatment regimes produce hypofrontality (Cochran et al., Neuropsychopharmacology, 28:265-275, 2003) and associated prefrontal cortex-dependent deficits in behavioral flexibility which mirror core deficits in schizophrenia.

  1. Visual Dysfunction in Posterior Cortical Atrophy

    Science.gov (United States)

    Maia da Silva, Mari N.; Millington, Rebecca S.; Bridge, Holly; James-Galton, Merle; Plant, Gordon T.

    2017-01-01

    Posterior cortical atrophy (PCA) is a syndromic diagnosis. It is characterized by progressive impairment of higher (cortical) visual function with imaging evidence of degeneration affecting the occipital, parietal, and posterior temporal lobes bilaterally. Most cases will prove to have Alzheimer pathology. The aim of this review is to summarize the development of the concept of this disorder since it was first introduced. A critical discussion of the evolving diagnostic criteria is presented and the differential diagnosis with regard to the underlying pathology is reviewed. Emphasis is given to the visual dysfunction that defines the disorder, and the classical deficits, such as simultanagnosia and visual agnosia, as well as the more recently recognized visual field defects, are reviewed, along with the evidence on their neural correlates. The latest developments on the imaging of PCA are summarized, with special attention to its role on the differential diagnosis with related conditions. PMID:28861031

  2. Visual Dysfunction in Posterior Cortical Atrophy

    Directory of Open Access Journals (Sweden)

    Mari N. Maia da Silva

    2017-08-01

    Full Text Available Posterior cortical atrophy (PCA is a syndromic diagnosis. It is characterized by progressive impairment of higher (cortical visual function with imaging evidence of degeneration affecting the occipital, parietal, and posterior temporal lobes bilaterally. Most cases will prove to have Alzheimer pathology. The aim of this review is to summarize the development of the concept of this disorder since it was first introduced. A critical discussion of the evolving diagnostic criteria is presented and the differential diagnosis with regard to the underlying pathology is reviewed. Emphasis is given to the visual dysfunction that defines the disorder, and the classical deficits, such as simultanagnosia and visual agnosia, as well as the more recently recognized visual field defects, are reviewed, along with the evidence on their neural correlates. The latest developments on the imaging of PCA are summarized, with special attention to its role on the differential diagnosis with related conditions.

  3. [Transcranial magnetic stimulation (TMS), inhibition processes and attention deficit/hyperactivity disorder (ADHD) - an overview].

    Science.gov (United States)

    Hoegl, Thomas; Bender, Stephan; Buchmann, Johannes; Kratz, Oliver; Moll, Gunther H; Heinrich, Hartmut

    2014-11-01

    Motor system excitability can be tested by transcranial magnetic stimulation CFMS). In this article, an overview of recent methodological developments and research findings related to attention deficit/hyperactivity disorder (ADHD) is provided. Different TMS parameters that reflect the function of interneurons in the motor cortex may represent neurophysiological markers of inhibition in ADHD, particularly the so-called intracortical inhibition. In children with a high level of hyperactivity and impulsivity, intracortical inhibition was comparably low at rest as shortly before the execution of a movement. TMS-evoked potentials can also be measured in the EEG so that investigating processes of excitability is not restricted to motor areas in future studies. The effects of methylphenidate on motor system excitability may be interpreted in the sense of a 'fine-tuning' with these mainly dopaminergic effects also depending on genetic parameters (DAT1 transporter). A differentiated view on the organization of motor control can be achieved by a combined analysis of TMS parameters and event-related potentials. Applying this bimodal approach, strong evidence for a deviant implementation of motor control in children with ADHD and probably compensatory mechanisms (with involvement of the prefrontal cortex) was obtained. These findings, which contribute to a better understanding of hyperactivity/impulsivity, inhibitory processes and motor control in ADHD as well as the mechanisms of medication, underline the relevance of TMS as a neurophysiological method in ADHD research.

  4. The arcuate fasciculus network and verbal deficits in psychosis

    Directory of Open Access Journals (Sweden)

    Kenney Joanne P.M.

    2017-11-01

    Full Text Available Verbal learning (VL and fluency (VF are prominent cognitive deficits in psychosis, of which the precise neuroanatomical contributions are not fully understood. We investigated the arcuate fasciculus (AF and its associated cortical regions to identify structural abnormalities contributing to these verbal impairments in early stages of psychotic illness.

  5. Hyperactivity in boys with attention deficit/hyperactivity disorder (ADHD): the association between deficient behavioral inhibition, attentional processes, and objectively measured activity.

    Science.gov (United States)

    Alderson, R Matt; Rapport, Mark D; Kasper, Lisa J; Sarver, Dustin E; Kofler, Michael J

    2012-01-01

    Contemporary models of ADHD hypothesize that hyperactivity reflects a byproduct of inhibition deficits. The current study investigated the relationship between children's motor activity and behavioral inhibition by experimentally manipulating demands placed on the limited-resource inhibition system. Twenty-two boys (ADHD = 11, TD = 11) between the ages of 8 and 12 years completed a conventional stop-signal task, two choice-task variants (no-tone, ignore-tone), and control tasks while their motor activity was measured objectively by actigraphs placed on their nondominant wrist and ankles. All children exhibited significantly higher activity rates under all three experimental tasks relative to control conditions, and children with ADHD moved significantly more than typically developing children across conditions. No differences in activity level were observed between the inhibition and noninhibition experimental tasks for either group, indicating that activity level was primarily associated with basic attentional rather than behavioral inhibition processes.

  6. Deficits in LTP induction by 5-HT2A receptor antagonist in a mouse model for fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Zhao-hui Xu

    Full Text Available Fragile X syndrome is a common inherited form of mental retardation caused by the lack of fragile X mental retardation protein (FMRP because of Fmr1 gene silencing. Serotonin (5-HT is significantly increased in the null mutants of Drosophila Fmr1, and elevated 5-HT brain levels result in cognitive and behavioral deficits in human patients. The serotonin type 2A receptor (5-HT2AR is highly expressed in the cerebral cortex; it acts on pyramidal cells and GABAergic interneurons to modulate cortical functions. 5-HT2AR and FMRP both regulate synaptic plasticity. Therefore, the lack of FMRP may affect serotoninergic activity. In this study, we determined the involvement of FMRP in the 5-HT modulation of synaptic potentiation with the use of primary cortical neuron culture and brain slice recording. Pharmacological inhibition of 5-HT2AR by R-96544 or ketanserin facilitated long-term potentiation (LTP in the anterior cingulate cortex (ACC of WT mice. The prefrontal LTP induction was dependent on the activation of NMDARs and elevation of postsynaptic Ca(2+ concentrations. By contrast, inhibition of 5-HT2AR could not restore the induction of LTP in the ACC of Fmr1 knock-out mice. Furthermore, 5-HT2AR inhibition induced AMPA receptor GluR1 subtype surface insertion in the cultured ACC neurons of Fmr1 WT mice, however, GluR1 surface insertion by inhibition of 5-HT2AR was impaired in the neurons of Fmr1KO mice. These findings suggested that FMRP was involved in serotonin receptor signaling and contributed in GluR1 surface expression induced by 5-HT2AR inactivation.

  7. Contribution of dopamine to mitochondrial complex I inhibition and dopaminergic deficits caused by methylenedioxymethamphetamine in mice.

    Science.gov (United States)

    Barros-Miñones, L; Goñi-Allo, B; Suquia, V; Beitia, G; Aguirre, N; Puerta, E

    2015-06-01

    Methylenedioxymethamphetamine (MDMA) causes a persistent loss of dopaminergic cell bodies in the substantia nigra of mice. Current evidence indicates that MDMA-induced neurotoxicity is mediated by oxidative stress probably due to the inhibition of mitochondrial complex I activity. In this study we investigated the contribution of dopamine (DA) to such effects. For this, we modulated the dopaminergic system of mice at the synthesis, uptake or metabolism levels. Striatal mitochondrial complex I activity was decreased 1 h after MDMA; an effect not observed in the striatum of DA depleted mice or in the hippocampus, a dopamine spare region. The DA precursor, L-dopa, caused a significant reduction of mitochondrial complex I activity by itself and exacerbated the dopaminergic deficits when combined with systemic MDMA. By contrast, no damage was observed when L-dopa was combined with intrastriatal injections of MDMA. On the other hand, dopamine uptake blockade using GBR 12909, inhibited both, the acute inhibition of complex I activity and the long-term dopaminergic toxicity caused by MDMA. Moreover, the inhibition of DA metabolism with the monoamine oxidase (MAO) inhibitor, pargyline, afforded a significant protection against MDMA-induced complex I inhibition and neurotoxicity. Taken together, these findings point to the formation of hydrogen peroxide subsequent to DA metabolism by MAO, rather than a direct DA-mediated mitochondrial complex I inhibition, and the contribution of a peripheral metabolite of MDMA, as the key steps in the chain of biochemical events leading to DA neurotoxicity caused by MDMA in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Intra-operative multi-site stimulation: Expanding methodology for cortical brain mapping of language functions.

    Science.gov (United States)

    Gonen, Tal; Gazit, Tomer; Korn, Akiva; Kirschner, Adi; Perry, Daniella; Hendler, Talma; Ram, Zvi

    2017-01-01

    Direct cortical stimulation (DCS) is considered the gold-standard for functional cortical mapping during awake surgery for brain tumor resection. DCS is performed by stimulating one local cortical area at a time. We present a feasibility study using an intra-operative technique aimed at improving our ability to map brain functions which rely on activity in distributed cortical regions. Following standard DCS, Multi-Site Stimulation (MSS) was performed in 15 patients by applying simultaneous cortical stimulations at multiple locations. Language functioning was chosen as a case-cognitive domain due to its relatively well-known cortical organization. MSS, performed at sites that did not produce disruption when applied in a single stimulation point, revealed additional language dysfunction in 73% of the patients. Functional regions identified by this technique were presumed to be significant to language circuitry and were spared during surgery. No new neurological deficits were observed in any of the patients following surgery. Though the neuro-electrical effects of MSS need further investigation, this feasibility study may provide a first step towards sophistication of intra-operative cortical mapping.

  9. The Progression of Posterior Cortical Atrophy to Corticobasal Syndrome: Lumping or Splitting Neurodegenerative Diseases?

    Directory of Open Access Journals (Sweden)

    Maurizio Giorelli

    2014-06-01

    Full Text Available Background: Posterior cortical atrophy is a clinical syndrome that is characterized by the progressive loss of visuospatial integration and is associated with neurodegenerative conditions.Case Report: We describe a 60‐year‐old female with simultanagnosia, oculomotor apraxia, and optic ataxia for which she received an initial clinical diagnosis of posterior cortical atrophy. Three years later, she developed Balint's syndrome, Gerstmann's syndrome, left alien hand syndrome, smooth asymmetric (left rigidity, cortical sensory loss, and spontaneous myoclonic jerks of the left arm, which suggested a final diagnosis of corticobasal syndrome.Discussion: This case report indicates that corticobasal syndrome may present with visuospatial deficits.

  10. Is cortical bone hip? What determines cortical bone properties?

    Science.gov (United States)

    Epstein, Sol

    2007-07-01

    Increased bone turnover may produce a disturbance in bone structure which may result in fracture. In cortical bone, both reduction in turnover and increase in hip bone mineral density (BMD) may be necessary to decrease hip fracture risk and may require relatively greater proportionate changes than for trabecular bone. It should also be noted that increased porosity produces disproportionate reduction in bone strength, and studies have shown that increased cortical porosity and decreased cortical thickness are associated with hip fracture. Continued studies for determining the causes of bone strength and deterioration show distinct promise. Osteocyte viability has been observed to be an indicator of bone strength, with viability as the result of maintaining physiological levels of loading and osteocyte apoptosis as the result of a decrease in loading. Osteocyte apoptosis and decrease are major factors in the bone loss and fracture associated with aging. Both the osteocyte and periosteal cell layer are assuming greater importance in the process of maintaining skeletal integrity as our knowledge of these cells expand, as well being a target for pharmacological agents to reduce fracture especially in cortical bone. The bisphosphonate alendronate has been seen to have a positive effect on cortical bone by allowing customary periosteal growth, while reducing the rate of endocortical bone remodeling and slowing bone loss from the endocortical surface. Risedronate treatment effects were attributed to decrease in bone resorption and thus a decrease in fracture risk. Ibandronate has been seen to increase BMD as the spine and femur as well as a reduced incidence of new vertebral fractures and non vertebral on subset post hoc analysis. And treatment with the anabolic agent PTH(1-34) documented modeling and remodelling of quiescent and active bone surfaces. Receptor activator of nuclear factor kappa B ligand (RANKL) plays a key role in bone destruction, and the human monoclonal

  11. Severe energy deficit at high altitude inhibits skeletal muscle mTORC1-mediated anabolic signaling without increased ubiquitin proteasome activity.

    Science.gov (United States)

    Margolis, Lee M; Carbone, John W; Berryman, Claire E; Carrigan, Christopher T; Murphy, Nancy E; Ferrando, Arny A; Young, Andrew J; Pasiakos, Stefan M

    2018-06-07

    Muscle loss at high altitude (HA) is attributable to energy deficit and a potential dysregulation of anabolic signaling. Exercise and protein ingestion can attenuate the effects of energy deficit on muscle at sea level (SL). Whether these effects are observed when energy deficit occurs at HA is unknown. To address this, muscle obtained from lowlanders ( n = 8 males) at SL, acute HA (3 h, 4300 m), and chronic HA (21 d, -1766 kcal/d energy balance) before [baseline (Base)] and after 80 min of aerobic exercise followed by a 2-mile time trial [postexercise (Post)] and 3 h into recovery (Rec) after ingesting whey protein (25 g) were analyzed using standard molecular techniques. At SL, Post, and REC, p-mechanistic target of rapamycin (mTOR) Ser2448 , p-p70 ribosomal protein S6 kinase (p70S6K) Ser424/421 , and p-ribosomal protein S6 (rpS6) Ser235/236 were similar and higher ( P anabolic resistance that is exacerbated by energy deficit during acclimatization, with no change in proteolysis.-Margolis, L. M., Carbone, J. W., Berryman, C. E., Carrigan, C. T., Murphy, N. E., Ferrando, A. A., Young, A. J., Pasiakos, S. M. Severe energy deficit at high altitude inhibits skeletal muscle mTORC1-mediated anabolic signaling without increased ubiquitin proteasome activity.

  12. Spectrotemporal dynamics of auditory cortical synaptic receptive field plasticity.

    Science.gov (United States)

    Froemke, Robert C; Martins, Ana Raquel O

    2011-09-01

    The nervous system must dynamically represent sensory information in order for animals to perceive and operate within a complex, changing environment. Receptive field plasticity in the auditory cortex allows cortical networks to organize around salient features of the sensory environment during postnatal development, and then subsequently refine these representations depending on behavioral context later in life. Here we review the major features of auditory cortical receptive field plasticity in young and adult animals, focusing on modifications to frequency tuning of synaptic inputs. Alteration in the patterns of acoustic input, including sensory deprivation and tonal exposure, leads to rapid adjustments of excitatory and inhibitory strengths that collectively determine the suprathreshold tuning curves of cortical neurons. Long-term cortical plasticity also requires co-activation of subcortical neuromodulatory control nuclei such as the cholinergic nucleus basalis, particularly in adults. Regardless of developmental stage, regulation of inhibition seems to be a general mechanism by which changes in sensory experience and neuromodulatory state can remodel cortical receptive fields. We discuss recent findings suggesting that the microdynamics of synaptic receptive field plasticity unfold as a multi-phase set of distinct phenomena, initiated by disrupting the balance between excitation and inhibition, and eventually leading to wide-scale changes to many synapses throughout the cortex. These changes are coordinated to enhance the representations of newly-significant stimuli, possibly for improved signal processing and language learning in humans. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Role of IGF-1 in cortical plasticity and functional deficit induced by sensorimotor restriction.

    Science.gov (United States)

    Mysoet, Julien; Dupont, Erwan; Bastide, Bruno; Canu, Marie-Hélène

    2015-09-01

    In the adult rat, sensorimotor restriction by hindlimb unloading (HU) is known to induce impairments in motor behavior as well as a disorganization of somatosensory cortex (shrinkage of the cortical representation of the hindpaw, enlargement of the cutaneous receptive fields, decreased cutaneous sensibility threshold). Recently, our team has demonstrated that IGF-1 level was decreased in the somatosensory cortex of rats submitted to a 14-day period of HU. To determine whether IGF-1 is involved in these plastic mechanisms, a chronic cortical infusion of this substance was performed by means of osmotic minipump. When administered in control rats, IGF-1 affects the size of receptive fields and the cutaneous threshold, but has no effect on the somatotopic map. In addition, when injected during the whole HU period, IGF-1 is interestingly implied in cortical changes due to hypoactivity: the shrinkage of somatotopic representation of hindlimb is prevented, whereas the enlargement of receptive fields is reduced. IGF-1 has no effect on the increase in neuronal response to peripheral stimulation. We also explored the functional consequences of IGF-1 level restoration on tactile sensory discrimination. In HU rats, the percentage of paw withdrawal after a light tactile stimulation was decreased, whereas it was similar to control level in HU-IGF-1 rats. Taken together, the data clearly indicate that IGF-1 plays a key-role in cortical plastic mechanisms and in behavioral alterations induced by a decrease in sensorimotor activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Neuroglobin overexpression inhibits oxygen-glucose deprivation-induced mitochondrial permeability transition pore opening in primary cultured mouse cortical neurons.

    Science.gov (United States)

    Yu, Zhanyang; Liu, Ning; Li, Yadan; Xu, Jianfeng; Wang, Xiaoying

    2013-08-01

    Neuroglobin (Ngb) is an endogenous neuroprotective molecule against hypoxic/ischemic brain injury, but the underlying mechanisms remain largely undefined. Our recent study revealed that Ngb can bind to voltage-dependent anion channel (VDAC), a regulator of mitochondria permeability transition (MPT). In this study we examined the role of Ngb in MPT pore (mPTP) opening following oxygen-glucose deprivation (OGD) in primary cultured mouse cortical neurons. Co-immunoprecipitation (Co-IP) and immunocytochemistry showed that the binding between Ngb and VDAC was increased after OGD compared to normoxia, indicating the OGD-enhanced Ngb-VDAC interaction. Ngb overexpression protected primary mouse cortical neurons from OGD-induced neuronal death, to an extent comparable to mPTP opening inhibitor, cyclosporine A (CsA) pretreatment. We further measured the role of Ngb in OGD-induced mPTP opening using Ngb overexpression and knockdown approaches in primary cultured neurons, and recombinant Ngb exposure to isolated mitochondria. Same as CsA pretreatment, Ngb overexpression significantly reduced OGD-induced mPTP opening markers including mitochondria swelling, mitochondrial NAD(+) release, and cytochrome c (Cyt c) release in primary cultured neurons. Recombinant Ngb incubation significantly reduced OGD-induced NAD(+) release and Cyt c release from isolated mitochondria. In contrast, Ngb knockdown significantly increased OGD-induced neuron death, and increased OGD-induced mitochondrial NAD(+) release and Cyt c release as well, and these outcomes could be rescued by CsA pretreatment. In summary, our results demonstrated that Ngb overexpression can inhibit OGD-induced mPTP opening in primary cultured mouse cortical neurons, which may be one of the molecular mechanisms of Ngb's neuroprotection. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. A New Role for Attentional Corticopetal Acetylcholine in Cortical Memory Dynamics

    Science.gov (United States)

    Fujii, Hiroshi; Kanamaru, Takashi; Aihara, Kazuyuki; Tsuda, Ichiro

    2011-09-01

    Although the role of corticopetal acetylcholine (ACh) in higher cognitive functions is increasingly recognized, the questions as (1) how ACh works in attention(s), memory dynamics and cortical state transitions, and also (2) why and how loss of ACh is involved in dysfunctions such as visual hallucinations in dementia with Lewy bodies and deficit of attention(s), are not well understood. From the perspective of a dynamical systems viewpoint, we hypothesize that transient ACh released under top-down attention serves to temporarily invoke attractor-like memories, while a background level of ACh reverses this process returning the dynamical nature of the memory structure back to attractor ruins (quasi-attractors). In fact, transient ACh loosens inhibitions of py ramidal neurons (PYRs) by P V+ fas t spiking (FS) i nterneurons, while a baseline ACh recovers inhibitory actions of P V+ FS. Attentional A Ch thus dynamically modifies brain's connectivity. Th e core of this process is in the depression of GABAergic inhibitory currents in PYRs due to muscarinic (probably M2 subtype) presyn aptic effects on GABAergic synapses of PV+ FS neurons

  16. Effect of Treating Anxiety Disorders on Cognitive Deficits and Behaviors Associated with Attention Deficit Hyperactivity Disorder: A Preliminary Study.

    Science.gov (United States)

    Denis, Isabelle; Guay, Marie-Claude; Foldes-Busque, Guillaume; BenAmor, Leila

    2016-06-01

    Twenty-five percent of children with ADHD also have an anxiety disorder (AD). As per Quay and in light of Barkley's model, anxiety may have a protective effect on cognitive deficits and behaviors associated with ADHD. This study aimed to evaluate the effect of treating AD on cognitive deficits and behaviors associated with ADHD in children with both disorders. Twenty-four children with ADHD and AD were divided into two groups: treatment for AD, and wait list. Participants were assessed at pre-treatment, post-treatment, and 6-month follow-up with the ADIS-C, the CBCL, and neuropsychological measures. The results revealed a significant improvement in automatic response inhibition and flexibility, and a decrease in inattention/hyperactivity behaviors following the treatment for AD. No significant differences were observed in motor response inhibition, working memory, or attention deficits. The results do not seem to support Quay's hypothesis: treating AD did not exacerbate cognitive deficits and behaviors associated with ADHD in our sample.

  17. Cortical thickness, surface area, and folding alterations in male youths with conduct disorder and varying levels of callous–unemotional traits

    Directory of Open Access Journals (Sweden)

    Graeme Fairchild

    2015-01-01

    Conclusions: Cortical thinning in the superior temporal gyrus may contribute to the social cognitive impairments displayed by youths with CD, whereas reduced OFC SA may lead to impairments in emotion regulation and reward processing in youths with CD. The increased cortical folding observed in the insula may reflect a maturational delay in this region and could mediate the link between CU traits and empathy deficits. Altered cortical folding was observed in childhood-onset and adolescence-onset forms of CD.

  18. Deficits in analogical reasoning in adolescents with traumatic brain injury.

    Science.gov (United States)

    Krawczyk, Daniel C; Hanten, Gerri; Wilde, Elisabeth A; Li, Xiaoqi; Schnelle, Kathleen P; Merkley, Tricia L; Vasquez, Ana C; Cook, Lori G; McClelland, Michelle; Chapman, Sandra B; Levin, Harvey S

    2010-01-01

    Individuals with traumatic brain injury (TBI) exhibit deficits in executive control, which may impact their reasoning abilities. Analogical reasoning requires working memory and inhibitory abilities. In this study, we tested adolescents with moderate to severe TBI and typically developing (TD) controls on a set of picture analogy problems. Three factors were varied: complexity (number of relations in the problems), distraction (distractor item present or absent), and animacy (living or non-living items in the problems). We found that TD adolescents performed significantly better overall than TBI adolescents. There was also an age effect present in the TBI group where older participants performed better than younger ones. This age effect was not observed in the TD group. Performance was affected by complexity and distraction. Further, TBI participants exhibited lower performance with distractors present than TD participants. The reasoning deficits exhibited by the TBI participants were correlated with measures of executive function that required working memory updating, attention, and attentional screening. Using MRI-derived measures of cortical thickness, correlations were carried out between task accuracy and cortical thickness. The TD adolescents showed negative correlations between thickness and task accuracy in frontal and temporal regions consistent with cortical maturation in these regions. This study demonstrates that adolescent TBI results in impairments in analogical reasoning ability. Further, TBI youth have difficulty effectively screening out distraction, which may lead to failures in comprehension of the relations among items in visual scenes. Lastly, TBI youth fail to show robust cortical-behavior correlations as observed in TD individuals.

  19. Deficits in analogical reasoning in adolescents with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Daniel C Krawczyk

    2010-08-01

    Full Text Available Individuals with traumatic brain injury (TBI exhibit deficits in executive control, which may impact their reasoning abilities. Analogical reasoning requires working memory and inhibitory abilities. In this study, we tested adolescents with moderate to severe TBI and typically-developing (TD controls on a set of picture analogy problems. Three factors were varied: complexity (number of relations in the problems, distraction (distractor item present or absent, and animacy (living or non-living items in the problems. We found that TD adolescents performed significantly better overall than TBI adolescents. There was also an age effect present in the TBI group where older participants performed better than younger ones. This age effect was not observed in the TD group. Performance was affected by complexity and distraction. Further, TBI participants exhibited lower performance with distractors present than TD participants. The reasoning deficits exhibited by the TBI participants were correlated with measures of executive function that required working memory updating, attention, and attentional screening. Using MRI-derived measures of cortical thickness, correlations were carried out between task accuracy and cortical thickness. The TD adolescents showed negative correlations between thickness and task accuracy in frontal and temporal regions consistent with cortical maturation in these regions. This study demonstrates that adolescent TBI results in impairments in analogical reasoning ability. Further, TBI youth have difficulty effectively screening out distraction, which may lead to failures in comprehension of the relations among items in visual scenes. Lastly, TBI youth fail to show robust cortical-behavior correlations as observed in TD individuals.

  20. Putative therapeutic targets for symptom subtypes of adult ADHD: D4 receptor agonism and COMT inhibition improve attention and response inhibition in a novel translational animal model.

    Science.gov (United States)

    Tomlinson, Anneka; Grayson, Ben; Marsh, Samuel; Hayward, Andrew; Marshall, Kay M; Neill, Joanna C

    2015-04-01

    Prefrontal cortical dopamine plays an important role in cognitive control, specifically in attention and response inhibition; the core deficits in ADHD. We have previously shown that methylphenidate and atomoxetine differentially improve these deficits dependent on baseline performance. The present study extends this work to investigate the effects of putative therapeutic targets in our model. A selective dopamine D4 receptor agonist (A-412997) and the catechol-O-methyl-transferase (COMT) inhibitor; tolcapone, were investigated in the combined subtype of adult ADHD (ADHD-C). Adult female rats were trained to criterion in the 5C-CPT (5-Choice Continuous Performance Task) and then separated into subgroups according to baseline levels of sustained attention, vigilance, and response disinhibition. The subgroups included: high-attentive (HA) and low-attentive with high response disinhibition (ADHD-C). The ADHD-C subgroup was selected to represent the combined subtype of adult ADHD. Effects of tolcapone (3.0, 10.0, 15.0mg/kg) and A-412997 (0.1, 0.3, 1.0µmol/kg) were tested by increasing the variable inter-trial-interval (ITI) duration in the 5C-CPT. Tolcapone (15mg/kg) significantly increased sustained attention, vigilance and response inhibition in ADHD-C animals, and impaired attention in HA animals. A-412997 (1.0µmol/kg) significantly increased vigilance and response inhibition in ADHD-C animals only, with no effect in HA animals. This is the first study to use the translational 5C-CPT to model the adult ADHD-C subtype in rats and to study new targets in this model. Both tolcapone and A-412997 increased vigilance and response inhibition in the ADHD-C subgroup. D4 and COMT are emerging as important potential therapeutic targets in adult ADHD that warrant further investigation. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  1. Alterations in Cortical Thickness and White Matter Integrity in Mild-to-Moderate Communicating Hydrocephalic School-Aged Children Measured by Whole-Brain Cortical Thickness Mapping and DTI

    Directory of Open Access Journals (Sweden)

    Siyu Zhang

    2017-01-01

    Full Text Available Follow-up observation is required for mild-to-moderate hydrocephalic patients because of the potential damage to brain. However, effects of mild-to-moderate hydrocephalus on gray and white matter remain unclear in vivo. Using structural MRI and diffusion tensor imaging (DTI, current study compared the cortical thickness and white matter integrity between children with mild-to-moderate communicating hydrocephalus and healthy controls. The relationships between cortical changes and intelligence quota were also examined in patients. We found that cortical thickness in the left middle temporal and left rostral middle frontal gyrus was significantly lower in the hydrocephalus group compared with that of controls. Fractional anisotropy in the right corpus callosum body was significantly lower in the hydrocephalus group compared with that of controls. In addition, there was no association of cortical thinning or white matter fractional anisotropy with intelligence quota in either group. Thus, our findings provide clues to that mild-to-moderate hydrocephalus could lead to structural brain deficits especially in the middle temporal and middle frontal gyrus prior to the behavior changes.

  2. Multimodal surface-based morphometry reveals diffuse cortical atrophy in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Sorenson Donna J

    2009-12-01

    Full Text Available Abstract Background Patients with traumatic brain injury (TBI often present with significant cognitive deficits without corresponding evidence of cortical damage on neuroradiological examinations. One explanation for this puzzling observation is that the diffuse cortical abnormalities that characterize TBI are difficult to detect with standard imaging procedures. Here we investigated a patient with severe TBI-related cognitive impairments whose scan was interpreted as normal by a board-certified radiologist in order to determine if quantitative neuroimaging could detect cortical abnormalities not evident with standard neuroimaging procedures. Methods Cortical abnormalities were quantified using multimodal surfaced-based morphometry (MSBM that statistically combined information from high-resolution structural MRI and diffusion tensor imaging (DTI. Normal values of cortical anatomy and cortical and pericortical DTI properties were quantified in a population of 43 healthy control subjects. Corresponding measures from the patient were obtained in two independent imaging sessions. These data were quantified using both the average values for each lobe and the measurements from each point on the cortical surface. The results were statistically analyzed as z-scores from the mean with a p Results The TBI patient showed significant regional abnormalities in cortical thickness, gray matter diffusivity and pericortical white matter integrity that replicated across imaging sessions. Consistent with the patient's impaired performance on neuropsychological tests of executive function, cortical abnormalities were most pronounced in the frontal lobes. Conclusions MSBM is a promising tool for detecting subtle cortical abnormalities with high sensitivity and selectivity. MSBM may be particularly useful in evaluating cortical structure in TBI and other neurological conditions that produce diffuse abnormalities in both cortical structure and tissue properties.

  3. Protein phosphatase 2ACα gene knock-out results in cortical atrophy through activating hippo cascade in neuronal progenitor cells.

    Science.gov (United States)

    Liu, Bo; Sun, Li-Hua; Huang, Yan-Fei; Guo, Li-Jun; Luo, Li-Shu

    2018-02-01

    Protein phosphatase 2ACα (PP2ACα), a vital member of the protein phosphatase family, has been studied primarily as a regulator for the development, growth and protein synthesis of a lot of cell types. Dysfunction of PP2ACα protein results in neurodegenerative disease; however, this finding has not been directly confirmed in the mouse model with PP2ACα gene knock-out. Therefore, in this study presented here, we generated the PP2ACα gene knock-out mouse model by the Cre-loxP targeting gene system, with the purpose to directly observe the regulatory role of PP2ACα gene in the development of mouse's cerebral cortex. We observe that knocking-out PP2ACα gene in the central nervous system (CNS) results in cortical neuronal shrinkage, synaptic plasticity impairments, and learning/memory deficits. Further study reveals that PP2ACα gene knock-out initiates Hippo cascade in cortical neuroprogenitor cells (NPCs), which blocks YAP translocation into the nuclei of NPCs. Notably, p73, directly targeted by Hippo cascade, can bind to the promoter of glutaminase2 (GLS2) that plays a dominant role in the enzymatic regulation of glutamate/glutamine cycle. Finally, we find that PP2ACα gene knock-out inhibits the glutamine synthesis through up-regulating the activity of phosphorylated-p73 in cortical NPCs. Taken together, it concludes that PP2ACα critically supports cortical neuronal growth and cognitive function via regulating the signaling transduction of Hippo-p73 cascade. And PP2ACα indirectly modulates the glutamine synthesis of cortical NPCs through targeting p73 that plays a direct transcriptional regulatory role in the gene expression of GLS2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Dopamine D1 receptor activation maintains motor coordination in injured rats but does not accelerate the recovery of the motor coordination deficit.

    Science.gov (United States)

    Avila-Luna, Alberto; Gálvez-Rosas, Arturo; Alfaro-Rodríguez, Alfonso; Reyes-Legorreta, Celia; Garza-Montaño, Paloma; González-Piña, Rigoberto; Bueno-Nava, Antonio

    2018-01-15

    The sensorimotor cortex and the striatum are interconnected by the corticostriatal pathway, suggesting that cortical injury alters the striatal function that is associated with skilled movements and motor learning, which are functions that may be modulated by dopamine (DA). In this study, we explored motor coordination and balance in order to investigate whether the activation of D 1 receptors (D 1 Rs) modulates functional recovery after cortical injury. The results of the beam-walking test showed motor deficit in the injured group at 24, 48 and 96h post-injury, and the recovery time was observed at 192h after cortical injury. In the sham and injured rats, systemic administration of the D 1 R antagonist SCH-23390 (1mg/kg) alone at 24, 48, 96 and 192h significantly (Pmotor deficit, while administration of the D 1 R agonist SKF-38393 alone (2, 3 and 4mg/kg) at 24, 48, 96 and 192h post-injury did not produce a significant difference; however, the co-administration of SKF-38393 and SCH-23390 prevented the antagonist-induced increase in the motor deficit. The cortical+striatal injury showed significantly increased the motor deficit at 24, 48, 96 and 192h post-injury (Pmotor recovery, but the activation of D 1 Rs maintained motor coordination, confirming that an intact striatum may be necessary for achieving recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Flow of cortical activity underlying a tactile decision in mice

    OpenAIRE

    Guo, Zengcai V.; Li, Nuo; Huber, Daniel; Ophir, Eran; Gutnisky, Diego; Ting, Jonathan T.; Feng, Guoping; Svoboda, Karel

    2013-01-01

    Perceptual decisions involve distributed cortical activity. Does information flow sequentially from one cortical area to another, or do networks of interconnected areas contribute at the same time? Here we delineate when and how activity in specific areas drives a whisker-based decision in mice. A short-term memory component temporally separated tactile “sensation” and “action” (licking). Using optogenetic inhibition (spatial resolution, 2 mm; temporal resolution, 100 ms), we surveyed the neo...

  6. Overexpression of Dyrk1A, a Down Syndrome Candidate, Decreases Excitability and Impairs Gamma Oscillations in the Prefrontal Cortex.

    Science.gov (United States)

    Ruiz-Mejias, Marcel; Martinez de Lagran, Maria; Mattia, Maurizio; Castano-Prat, Patricia; Perez-Mendez, Lorena; Ciria-Suarez, Laura; Gener, Thomas; Sancristobal, Belen; García-Ojalvo, Jordi; Gruart, Agnès; Delgado-García, José M; Sanchez-Vives, Maria V; Dierssen, Mara

    2016-03-30

    The dual-specificity tyrosine phosphorylation-regulated kinase DYRK1A is a serine/threonine kinase involved in neuronal differentiation and synaptic plasticity and a major candidate of Down syndrome brain alterations and cognitive deficits. DYRK1A is strongly expressed in the cerebral cortex, and its overexpression leads to defective cortical pyramidal cell morphology, synaptic plasticity deficits, and altered excitation/inhibition balance. These previous observations, however, do not allow predicting how the behavior of the prefrontal cortex (PFC) network and the resulting properties of its emergent activity are affected. Here, we integrate functional, anatomical, and computational data describing the prefrontal network alterations in transgenic mice overexpressingDyrk1A(TgDyrk1A). Usingin vivoextracellular recordings, we show decreased firing rate and gamma frequency power in the prefrontal network of anesthetized and awakeTgDyrk1Amice. Immunohistochemical analysis identified a selective reduction of vesicular GABA transporter punctae on parvalbumin positive neurons, without changes in the number of cortical GABAergic neurons in the PFC ofTgDyrk1Amice, which suggests that selective disinhibition of parvalbumin interneurons would result in an overinhibited functional network. Using a conductance-based computational model, we quantitatively demonstrate that this alteration could explain the observed functional deficits including decreased gamma power and firing rate. Our results suggest that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of Down syndrome. DYRK1Ais a major candidate gene in Down syndrome. Its overexpression results into altered cognitive abilities, explained by defective cortical microarchitecture and excitation/inhibition imbalance. An open question is how these deficits impact the functionality of the prefrontal cortex network. Combining functional, anatomical, and computational approaches, we identified

  7. Myosin-1 inhibition by PClP affects membrane shape, cortical actin distribution and lipid droplet dynamics in early Zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Prabuddha Gupta

    Full Text Available Myosin-1 (Myo1 represents a mechanical link between the membrane and actin-cytoskeleton in animal cells. We have studied the effect of Myo1 inhibitor PClP in 1-8 cell Zebrafish embryos. Our results indicate a unique involvement of Myo1 in early development of Zebrafish embryos. Inhibition of Myo1 (by PClP and Myo2 (by Blebbistatin lead to arrest in cell division. While Myo1 isoforms appears to be important for both the formation and the maintenance of cleavage furrows, Myo2 is required only for the formation of furrows. We found that the blastodisc of the embryo, which contains a thick actin cortex (~13 μm, is loaded with cortical Myo1. Myo1 appears to be crucial for maintaining the blastodisc morphology and the actin cortex thickness. In addition to cell division and furrow formation, inhibition of Myo1 has a drastic effect on the dynamics and distribution of lipid droplets (LDs in the blastodisc near the cleavage furrow. All these results above are effects of Myo1 inhibition exclusively; Myo2 inhibition by blebbistatin does not show such phenotypes. Therefore, our results demonstrate a potential role for Myo1 in the maintenance and formation of furrow, blastodisc morphology, cell-division and LD organization within the blastodisc during early embryogenesis.

  8. Role of nitric oxide and prostaglandin in the maintenance of cortical and renal medullary blood flow

    Directory of Open Access Journals (Sweden)

    S.I Gomez

    2008-02-01

    Full Text Available This study was undertaken in anesthetized dogs to evaluate the relative participation of prostaglandins (PGs and nitric oxide (NO in the maintenance of total renal blood flow (TRBF, and renal medullary blood flow (RMBF. It was hypothesized that the inhibition of NO should impair cortical and medullary circulation because of the synthesis of this compound in the endothelial cells of these two territories. In contrast, under normal conditions of perfusion pressure PG synthesis is confined to the renal medulla. Hence PG inhibition should predominantly impair the medullary circulation. The initial administration of 25 µM kg-1 min-1 NG-nitro-L-arginine methyl ester produced a significant 26% decrease in TRBF and a concomitant 34% fall in RMBF, while the subsequent inhibition of PGs with 5 mg/kg meclofenamate further reduced TRBF by 33% and RMBF by 89%. In contrast, the initial administration of meclofenamate failed to change TRBF, while decreasing RMBF by 49%. The subsequent blockade of NO decreased TRBF by 35% without further altering RMBF. These results indicate that initial PG synthesis inhibition predominantly alters the medullary circulation, whereas NO inhibition decreases both cortical and medullary flow. This latter change induced by NO renders cortical and RMBF susceptible to a further decrease by PG inhibition. However, the decrease in medullary circulation produced by NO inhibition is not further enhanced by subsequent PG inhibition.

  9. Improving response inhibition systems in frontotemporal dementia with citalopram.

    Science.gov (United States)

    Hughes, Laura E; Rittman, Timothy; Regenthal, Ralf; Robbins, Trevor W; Rowe, James B

    2015-07-01

    -based morphometry confirmed significant atrophy of inferior frontal gyrus, alongside insular, orbitofrontal and temporal cortex in our patient cohort. Together, these data suggest that the dysfunctional prefrontal cortical systems underlying response inhibition deficits in behavioural variant frontotemporal dementia can be partially restored by increasing serotonergic neurotransmission. The results support a translational neuroscience approach to impulsive neurological disorders and indicate the potential for symptomatic treatment of behavioural variant frontotemporal dementia including serotonergic strategies to improve disinhibition.media-1vid110.1093/brain/awv133_video_abstractawv133_video_abstract. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  10. Music-induced cortical plasticity and lateral inhibition in the human auditory cortex as foundations for tonal tinnitus treatment

    Directory of Open Access Journals (Sweden)

    Christo ePantev

    2012-06-01

    Full Text Available Over the past 15 years, we have studied plasticity in the human auditory cortex by means of magnetoencephalography (MEG. Two main topics nurtured our curiosity: the effects of musical training on plasticity in the auditory system, and the effects of lateral inhibition. One of our plasticity studies found that listening to notched music for three hours inhibited the neuronal activity in the auditory cortex that corresponded to the center-frequency of the notch, suggesting suppression of neural activity by lateral inhibition. Crucially, the overall effects of lateral inhibition on human auditory cortical activity were stronger than the habituation effects. Based on these results we developed a novel treatment strategy for tonal tinnitus - tailor-made notched music training (TMNMT. By notching the music energy spectrum around the individual tinnitus frequency, we intended to attract lateral inhibition to auditory neurons involved in tinnitus perception. So far, the training strategy has been evaluated in two studies. The results of the initial long-term controlled study (12 months supported the validity of the treatment concept: subjective tinnitus loudness and annoyance were significantly reduced after TMNMT but not when notching spared the tinnitus frequencies. Correspondingly, tinnitus-related auditory evoked fields (AEFs were significantly reduced after training. The subsequent short-term (5 days training study indicated that training was more effective in the case of tinnitus frequencies ≤ 8 kHz compared to tinnitus frequencies > 8 kHz, and that training should be employed over a long-term in order to induce more persistent effects. Further development and evaluation of TMNMT therapy are planned. A goal is to transfer this novel, completely non-invasive, and low-cost treatment approach for tonal tinnitus into routine clinical practice.

  11. Thalamocortical control of feed-forward inhibition in awake somatosensory 'barrel' cortex.

    OpenAIRE

    Swadlow, Harvey A

    2002-01-01

    Intracortical inhibition plays a role in shaping sensory cortical receptive fields and is mediated by both feed-forward and feedback mechanisms. Feed-forward inhibition is the faster of the two processes, being generated by inhibitory interneurons driven by monosynaptic thalamocortical (TC) input. In principle, feed-forward inhibition can prevent targeted cortical neurons from ever reaching threshold when TC input is weak. To do so, however, inhibitory interneurons must respond to TC input at...

  12. Cortical Auditory Disorders: A Case of Non-Verbal Disturbances Assessed with Event-Related Brain Potentials

    Directory of Open Access Journals (Sweden)

    Sönke Johannes

    1998-01-01

    Full Text Available In the auditory modality, there has been a considerable debate about some aspects of cortical disorders, especially about auditory forms of agnosia. Agnosia refers to an impaired comprehension of sensory information in the absence of deficits in primary sensory processes. In the non-verbal domain, sound agnosia and amusia have been reported but are frequently accompanied by language deficits whereas pure deficits are rare. Absolute pitch and musicians’ musical abilities have been associated with left hemispheric functions. We report the case of a right handed sound engineer with the absolute pitch who developed sound agnosia and amusia in the absence of verbal deficits after a right perisylvian stroke. His disabilities were assessed with the Seashore Test of Musical Functions, the tests of Wertheim and Botez (Wertheim and Botez, Brain 84, 1961, 19–30 and by event-related potentials (ERP recorded in a modified 'oddball paradigm’. Auditory ERP revealed a dissociation between the amplitudes of the P3a and P3b subcomponents with the P3b being reduced in amplitude while the P3a was undisturbed. This is interpreted as reflecting disturbances in target detection processes as indexed by the P3b. The findings that contradict some aspects of current knowledge about left/right hemispheric specialization in musical processing are discussed and related to the literature concerning cortical auditory disorders.

  13. Cortical auditory disorders: a case of non-verbal disturbances assessed with event-related brain potentials.

    Science.gov (United States)

    Johannes, Sönke; Jöbges, Michael E.; Dengler, Reinhard; Münte, Thomas F.

    1998-01-01

    In the auditory modality, there has been a considerable debate about some aspects of cortical disorders, especially about auditory forms of agnosia. Agnosia refers to an impaired comprehension of sensory information in the absence of deficits in primary sensory processes. In the non-verbal domain, sound agnosia and amusia have been reported but are frequently accompanied by language deficits whereas pure deficits are rare. Absolute pitch and musicians' musical abilities have been associated with left hemispheric functions. We report the case of a right handed sound engineer with the absolute pitch who developed sound agnosia and amusia in the absence of verbal deficits after a right perisylvian stroke. His disabilities were assessed with the Seashore Test of Musical Functions, the tests of Wertheim and Botez (Wertheim and Botez, Brain 84, 1961, 19-30) and by event-related potentials (ERP) recorded in a modified 'oddball paradigm'. Auditory ERP revealed a dissociation between the amplitudes of the P3a and P3b subcomponents with the P3b being reduced in amplitude while the P3a was undisturbed. This is interpreted as reflecting disturbances in target detection processes as indexed by the P3b. The findings that contradict some aspects of current knowledge about left/right hemispheric specialization in musical processing are discussed and related to the literature concerning cortical auditory disorders.

  14. Dose-Dependent Cortical Thinning After Partial Brain Irradiation in High-Grade Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Karunamuni, Roshan [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Bartsch, Hauke; White, Nathan S. [Department of Radiology, University of California San Diego, La Jolla, California (United States); Moiseenko, Vitali; Carmona, Ruben; Marshall, Deborah C.; Seibert, Tyler M. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); McDonald, Carrie R. [Department of Psychiatry, University of California San Diego, La Jolla, California (United States); Farid, Nikdokht; Krishnan, Anithapriya; Kuperman, Joshua [Department of Radiology, University of California San Diego, La Jolla, California (United States); Mell, Loren [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Brewer, James B.; Dale, Anders M. [Department of Radiology, University of California San Diego, La Jolla, California (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States)

    2016-02-01

    Purpose: Radiation-induced cognitive deficits may be mediated by tissue damage to cortical regions. Volumetric changes in cortex can be reliably measured using high-resolution magnetic resonance imaging (MRI). We used these methods to study the association between radiation therapy (RT) dose and change in cortical thickness in high-grade glioma (HGG) patients. Methods and Materials: We performed a voxel-wise analysis of MRI from 15 HGG patients who underwent fractionated partial brain RT. Three-dimensional MRI was acquired pre- and 1 year post RT. Cortex was parceled with well-validated segmentation software. Surgical cavities were censored. Each cortical voxel was assigned a change in cortical thickness between time points, RT dose value, and neuroanatomic label by lobe. Effects of dose, neuroanatomic location, age, and chemotherapy on cortical thickness were tested using linear mixed effects (LME) modeling. Results: Cortical atrophy was seen after 1 year post RT with greater effects at higher doses. Estimates from LME modeling showed that cortical thickness decreased by −0.0033 mm (P<.001) for every 1-Gy increase in RT dose. Temporal and limbic cortex exhibited the largest changes in cortical thickness per Gy compared to that in other regions (P<.001). Age and chemotherapy were not significantly associated with change in cortical thickness. Conclusions: We found dose-dependent thinning of the cerebral cortex, with varying neuroanatomical regional sensitivity, 1 year after fractionated partial brain RT. The magnitude of thinning parallels 1-year atrophy rates seen in neurodegenerative diseases and may contribute to cognitive decline following high-dose RT.

  15. A comprehensive assessment of memory, delay aversion, timing, inhibition, decision making and variability in attention deficit hyperactivity disorder: advancing beyond the three-pathway models.

    Science.gov (United States)

    Coghill, D R; Seth, S; Matthews, K

    2014-07-01

    Although attention deficit hyperactivity disorder (ADHD) has been associated with a broad range of deficits across various neuropsychological domains, most studies have assessed only a narrow range of neuropsychological functions. Direct cross-domain comparisons are rare, with almost all studies restricted to less than four domains. Therefore, the relationships between these various domains remain undefined. In addition, almost all studies included previously medicated participants, limiting the conclusions that can be drawn. We present the first study to compare a large cohort of medication-naive boys with ADHD with healthy controls on a broad battery of neuropsychological tasks, assessing six key domains of neuropsychological functioning. The neuropsychological functioning of 83 medication-naive boys with well-characterized ADHD (mean age 8.9 years) was compared with that of 66 typically developing (TYP) boys (mean age 9.0 years) on a broad battery of validated neuropsychological tasks. Data reduction using complementary factor analysis (CFA) confirmed six distinct neuropsychological domains: working memory, inhibition, delay aversion, decision making, timing and response variability. Boys with ADHD performed less well across all six domains although, for each domain, only a minority of boys with ADHD had a deficit [effect size (% with deficit) ADHD versus TYP: working memory 0.95 (30.1), inhibition 0.61 (22.9), delay aversion 0.82 (36.1), decision making 0.55 (20.5), timing 0.71 (31.3), response variability 0.37 (18.1)]. The clinical syndrome of ADHD is neuropsychologically heterogeneous. These data highlight the complexity of the relationships between the different neuropsychological profiles associated with ADHD and the clinical symptoms and functional impairment.

  16. Comparison of inhibition of N2 fixation and ureide accumulation under water deficit in four common bean genotypes of contrasting drought tolerance.

    Science.gov (United States)

    Coleto, I; Pineda, M; Rodiño, A P; De Ron, A M; Alamillo, J M

    2014-05-01

    Drought is the principal constraint on world production of legume crops. There is considerable variability among genotypes in sensitivity of nitrogen fixation to drought, which has been related to accumulation of ureides in soybean. The aim of this study was to search for genotypic differences in drought sensitivity and ureide accumulation in common bean (Phaseolus vulgaris) germplasm that may be useful in the improvement of tolerance to water deficit in common bean. Changes in response to water deficit of nitrogen fixation rates, ureide content and the expression and activity of key enzymes for ureide metabolism were measured in four P. vulgaris genotypes differing in drought tolerance. A variable degree of drought-induced nitrogen fixation inhibition was found among the bean genotypes. In addition to inhibition of nitrogen fixation, there was accumulation of ureides in stems and leaves of sensitive and tolerant genotypes, although this was higher in the leaves of the most sensitive ones. In contrast, there was no accumulation of ureides in the nodules or roots of stressed plants. In addition, the level of ureides in the most sensitive genotype increased after inhibition of nitrogen fixation, suggesting that ureides originate in vegetative tissues as a response to water stress, probably mediated by the induction of allantoinase. Variability of drought-induced inhibition of nitrogen fixation among the P. vulgaris genotypes was accompanied by subsequent accumulation of ureides in stems and leaves, but not in nodules. The results indicate that shoot ureide accumulation after prolonged exposure to drought could not be the cause of inhibition of nitrogen fixation, as has been suggested in soybean. Instead, ureides seem to be produced as part of a general response to stress, and therefore higher accumulation might correspond to higher sensitivity to the stressful conditions.

  17. GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia.

    Science.gov (United States)

    Gonzalez-Burgos, Guillermo; Lewis, David A

    2008-09-01

    Synchronization of neuronal activity in the neocortex may underlie the coordination of neural representations and thus is critical for optimal cognitive function. Because cognitive deficits are the major determinant of functional outcome in schizophrenia, identifying their neural basis is important for the development of new therapeutic interventions. Here we review the data suggesting that phasic synaptic inhibition mediated by specific subtypes of cortical gamma-aminobutyric acid (GABA) neurons is essential for the production of synchronized network oscillations. We also discuss evidence indicating that GABA neurotransmission is altered in schizophrenia and propose mechanisms by which such alterations can decrease the strength of inhibitory connections in a cell-type-specific manner. We suggest that some alterations observed in the neocortex of schizophrenia subjects may be compensatory responses that partially restore inhibitory synaptic efficacy. The findings of altered neural synchrony and impaired cognitive function in schizophrenia suggest that such compensatory responses are insufficient and that interventions aimed at augmenting the efficacy of GABA neurotransmission might be of therapeutic value.

  18. Deficits in latent inhibition induced by estradiol replacement are ameliorated by haloperidol treatment

    Directory of Open Access Journals (Sweden)

    Anne eAlmey

    2013-10-01

    Full Text Available There are sex differences in the symptomatology of schizophrenia, and in the response to antipsychotic treatments. One hallmark symptom of schizophrenia is a deficit in selective attention. Selective attention can be measured using a latent inhibition (LI paradigm in humans; LI can be measured in rodents, and is used as an animal model of the selective attention deficits observed in schizophrenia. In the current experiments LI was used to clarify whether selective attention differs between male rats and ovariectomized (OVX female rats receiving different estradiol (E2 replacement regimens. An additional aim was to determine whether haloperidol's facilitation of LI is enhanced by E2. Males and OVX female rats were trained in a conditioned emotional response LI paradigm. Females received no E2 replacement, a chronic low dose of E2 via silastic capsule, or a high phasic dose of E2 via silastic capsule accompanied by E2 (10 ug/kg SC injections every fourth day. Actual plasma levels of E2 were determined using an enzyme linked immunosorbent assay. Rats were also administered a vehicle treatment, a 0.05mg/kg, or a 0.1mg/kg IP injection of haloperidol. Males and OVX females that did not receive E2 replacement both exhibited LI, but LI was not observed in the low and high E2 replacement groups. Haloperidol restored LI at a lower dose in the females receiving high E2 replacement compared to females receiving low E2 replacement, indicating that E2 replacement facilitates haloperidol in restoring LI.

  19. Contribution of NMDA receptor hypofunction in prefrontal and cortical excitatory neurons to schizophrenia-like phenotypes.

    Directory of Open Access Journals (Sweden)

    Gregory R Rompala

    Full Text Available Pharmacological and genetic studies support a role for NMDA receptor (NMDAR hypofunction in the etiology of schizophrenia. We have previously demonstrated that NMDAR obligatory subunit 1 (GluN1 deletion in corticolimbic interneurons during early postnatal development is sufficient to confer schizophrenia-like phenotypes in mice. However, the consequence of NMDAR hypofunction in cortical excitatory neurons is not well delineated. Here, we characterize a conditional knockout mouse strain (CtxGluN1 KO mice, in which postnatal GluN1 deletion is largely confined to the excitatory neurons in layer II/III of the medial prefrontal cortex and sensory cortices, as evidenced by the lack of GluN1 mRNA expression in in situ hybridization immunocytochemistry as well as the lack of NMDA currents with in vitro recordings. Mutants were impaired in prepulse inhibition of the auditory startle reflex as well as object-based short-term memory. However, they did not exhibit impairments in additional hallmarks of schizophrenia-like phenotypes (e.g. spatial working memory, social behavior, saccharine preference, novelty and amphetamine-induced hyperlocomotion, and anxiety-related behavior. Furthermore, upon administration of the NMDA receptor antagonist, MK-801, there were no differences in locomotor activity versus controls. The mutant mice also showed negligible levels of reactive oxygen species production following chronic social isolation, and recording of miniature-EPSC/IPSCs from layer II/III excitatory neurons in medial prefrontal cortex suggested no alteration in GABAergic activity. All together, the mutant mice displayed cognitive deficits in the absence of additional behavioral or cellular phenotypes reflecting schizophrenia pathophysiology. Thus, NMDAR hypofunction in prefrontal and cortical excitatory neurons may recapitulate only a cognitive aspect of human schizophrenia symptoms.

  20. Contribution of NMDA receptor hypofunction in prefrontal and cortical excitatory neurons to schizophrenia-like phenotypes.

    Science.gov (United States)

    Rompala, Gregory R; Zsiros, Veronika; Zhang, Shuqin; Kolata, Stefan M; Nakazawa, Kazu

    2013-01-01

    Pharmacological and genetic studies support a role for NMDA receptor (NMDAR) hypofunction in the etiology of schizophrenia. We have previously demonstrated that NMDAR obligatory subunit 1 (GluN1) deletion in corticolimbic interneurons during early postnatal development is sufficient to confer schizophrenia-like phenotypes in mice. However, the consequence of NMDAR hypofunction in cortical excitatory neurons is not well delineated. Here, we characterize a conditional knockout mouse strain (CtxGluN1 KO mice), in which postnatal GluN1 deletion is largely confined to the excitatory neurons in layer II/III of the medial prefrontal cortex and sensory cortices, as evidenced by the lack of GluN1 mRNA expression in in situ hybridization immunocytochemistry as well as the lack of NMDA currents with in vitro recordings. Mutants were impaired in prepulse inhibition of the auditory startle reflex as well as object-based short-term memory. However, they did not exhibit impairments in additional hallmarks of schizophrenia-like phenotypes (e.g. spatial working memory, social behavior, saccharine preference, novelty and amphetamine-induced hyperlocomotion, and anxiety-related behavior). Furthermore, upon administration of the NMDA receptor antagonist, MK-801, there were no differences in locomotor activity versus controls. The mutant mice also showed negligible levels of reactive oxygen species production following chronic social isolation, and recording of miniature-EPSC/IPSCs from layer II/III excitatory neurons in medial prefrontal cortex suggested no alteration in GABAergic activity. All together, the mutant mice displayed cognitive deficits in the absence of additional behavioral or cellular phenotypes reflecting schizophrenia pathophysiology. Thus, NMDAR hypofunction in prefrontal and cortical excitatory neurons may recapitulate only a cognitive aspect of human schizophrenia symptoms.

  1. Tactile thermal oral stimulation increases the cortical representation of swallowing

    Directory of Open Access Journals (Sweden)

    Suntrup Sonja

    2009-06-01

    Full Text Available Abstract Background Dysphagia is a leading complication in stroke patients causing aspiration pneumonia, malnutrition and increased mortality. Current strategies of swallowing therapy involve on the one hand modification of eating behaviour or swallowing technique and on the other hand facilitation of swallowing with the use of pharyngeal sensory stimulation. Thermal tactile oral stimulation (TTOS is an established method to treat patients with neurogenic dysphagia especially if caused by sensory deficits. Little is known about the possible mechanisms by which this interventional therapy may work. We employed whole-head MEG to study changes in cortical activation during self-paced volitional swallowing in fifteen healthy subjects with and without TTOS. Data were analyzed by means of synthetic aperture magnetometry (SAM and the group analysis of individual SAM data was performed using a permutation test. Results Compared to the normal swallowing task a significantly increased bilateral cortical activation was seen after oropharyngeal stimulation. Analysis of the chronological changes during swallowing suggests facilitation of both the oral and the pharyngeal phase of deglutition. Conclusion In the present study functional cortical changes elicited by oral sensory stimulation could be demonstrated. We suggest that these results reflect short-term cortical plasticity of sensory swallowing areas. These findings facilitate our understanding of the role of cortical reorganization in dysphagia treatment and recovery.

  2. The endocannabinoid anandamide inhibits potassium conductance in rat cortical astrocytes

    Czech Academy of Sciences Publication Activity Database

    Vignali, M.; Benfenati, V.; Caprini, M.; Anděrová, Miroslava; Nobile, M.; Ferroni, S.

    2009-01-01

    Roč. 57, č. 7 (2009), s. 791-806 ISSN 0894-1491 R&D Projects: GA ČR GA305/06/1316; GA ČR GA305/06/1464; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50390512 Keywords : cortical astroglia * potassium conductance * endocannabinoids Subject RIV: FH - Neurology Impact factor: 4.932, year: 2009

  3. Functional networks in parallel with cortical development associate with executive functions in children.

    Science.gov (United States)

    Zhong, Jidan; Rifkin-Graboi, Anne; Ta, Anh Tuan; Yap, Kar Lai; Chuang, Kai-Hsiang; Meaney, Michael J; Qiu, Anqi

    2014-07-01

    Children begin performing similarly to adults on tasks requiring executive functions in late childhood, a transition that is probably due to neuroanatomical fine-tuning processes, including myelination and synaptic pruning. In parallel to such structural changes in neuroanatomical organization, development of functional organization may also be associated with cognitive behaviors in children. We examined 6- to 10-year-old children's cortical thickness, functional organization, and cognitive performance. We used structural magnetic resonance imaging (MRI) to identify areas with cortical thinning, resting-state fMRI to identify functional organization in parallel to cortical development, and working memory/response inhibition tasks to assess executive functioning. We found that neuroanatomical changes in the form of cortical thinning spread over bilateral frontal, parietal, and occipital regions. These regions were engaged in 3 functional networks: sensorimotor and auditory, executive control, and default mode network. Furthermore, we found that working memory and response inhibition only associated with regional functional connectivity, but not topological organization (i.e., local and global efficiency of information transfer) of these functional networks. Interestingly, functional connections associated with "bottom-up" as opposed to "top-down" processing were more clearly related to children's performance on working memory and response inhibition, implying an important role for brain systems involved in late childhood. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Glutamate-induced apoptosis in primary cortical neurons is inhibited by equine estrogens via down-regulation of caspase-3 and prevention of mitochondrial cytochrome c release

    Directory of Open Access Journals (Sweden)

    Zhang YueMei

    2005-02-01

    Full Text Available Abstract Background Apoptosis plays a key role in cell death observed in neurodegenerative diseases marked by a progressive loss of neurons as seen in Alzheimer's disease. Although the exact cause of apoptosis is not known, a number of factors such as free radicals, insufficient levels of nerve growth factors and excessive levels of glutamate have been implicated. We and others, have previously reported that in a stable HT22 neuronal cell line, glutamate induces apoptosis as indicated by DNA fragmentation and up- and down-regulation of Bax (pro-apoptotic, and Bcl-2 (anti-apoptotic genes respectively. Furthermore, these changes were reversed/inhibited by estrogens. Several lines of evidence also indicate that a family of cysteine proteases (caspases appear to play a critical role in neuronal apoptosis. The purpose of the present study is to determine in primary cultures of cortical cells, if glutamate-induced neuronal apoptosis and its inhibition by estrogens involve changes in caspase-3 protease and whether this process is mediated by Fas receptor and/or mitochondrial signal transduction pathways involving release of cytochrome c. Results In primary cultures of rat cortical cells, glutamate induced apoptosis that was associated with enhanced DNA fragmentation, morphological changes, and up-regulation of pro-caspase-3. Exposure of cortical cells to glutamate resulted in a time-dependent cell death and an increase in caspase-3 protein levels. Although the increase in caspase-3 levels was evident after 3 h, cell death was only significantly increased after 6 h. Treatment of cells for 6 h with 1 to 20 mM glutamate resulted in a 35 to 45% cell death that was associated with a 45 to 65% increase in the expression of caspase-3 protein. Pretreatment with caspase-3-protease inhibitor z-DEVD or pan-caspase inhibitor z-VAD significantly decreased glutamate-induced cell death of cortical cells. Exposure of cells to glutamate for 6 h in the presence or

  5. Inhibition of somatosensory-evoked cortical responses by a weak leading stimulus.

    Science.gov (United States)

    Nakagawa, Kei; Inui, Koji; Yuge, Louis; Kakigi, Ryusuke

    2014-11-01

    We previously demonstrated that auditory-evoked cortical responses were suppressed by a weak leading stimulus in a manner similar to the prepulse inhibition (PPI) of startle reflexes. The purpose of the present study was to investigate whether a similar phenomenon was present in the somatosensory system, and also whether this suppression reflected an inhibitory process. We recorded somatosensory-evoked magnetic fields following stimulation of the median nerve and evaluated the extent by which they were suppressed by inserting leading stimuli at an intensity of 2.5-, 1.5-, 1.1-, or 0.9-fold the sensory threshold (ST) in healthy participants (Experiment 1). The results obtained demonstrated that activity in the secondary somatosensory cortex in the hemisphere contralateral to the stimulated side (cSII) was significantly suppressed by a weak leading stimulus with the intensity larger than 1.1-fold ST. This result implied that the somatosensory system had an inhibitory process similar to that of PPI. We then presented two successive leading stimuli before the test stimulus, and compared the extent of suppression between the test stimulus-evoked responses and those obtained with the second prepulse alone and with two prepulses (first and second) (Experiment 2). When two prepulses were preceded, cSII responses to the second prepulse were suppressed by the first prepulse, whereas the ability of the second prepulse to suppress the test stimulus remained unchanged. These results suggested the presence of at least two individual pathways; response-generating and inhibitory pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Genetic influences on phase synchrony of brain oscillations supporting response inhibition.

    Science.gov (United States)

    Müller, Viktor; Anokhin, Andrey P; Lindenberger, Ulman

    2017-05-01

    Phase synchronization of neuronal oscillations is a fundamental mechanism underlying cognitive processing and behavior, including context-dependent response production and inhibition. Abnormalities in neural synchrony can lead to abnormal information processing and contribute to cognitive and behavioral deficits in neuropsychiatric disorders. However, little is known about genetic and environmental contributions to individual differences in cortical oscillatory dynamics underlying response inhibition. This study examined heritability of event-related phase synchronization of brain oscillations in 302 young female twins including 94 MZ and 57 DZ pairs performing a cued Go/No-Go version of the Continuous Performance Test (CPT). We used the Phase Locking Index (PLI) to assess inter-trial phase clustering (synchrony) in several frequency bands in two time intervals after stimulus onset (0-300 and 301-600ms). Response inhibition (i.e., successful response suppression in No-Go trials) was characterized by a transient increase in phase synchronization of delta- and theta-band oscillations in the fronto-central midline region. Genetic analysis showed significant heritability of the phase locking measures related to response inhibition, with 30 to 49% of inter-individual variability being accounted for by genetic factors. This is the first study providing evidence for heritability of task-related neural synchrony. The present results suggest that PLI can serve as an indicator of genetically transmitted individual differences in neural substrates of response inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Behavioural and ERP indices of response inhibition during a Stop-signal task in children with two subtypes of Attention-Deficit Hyperactivity Disorder.

    Science.gov (United States)

    Johnstone, Stuart J; Barry, Robert J; Clarke, Adam R

    2007-10-01

    Previous research has shown that children with Attention-Deficit Hyperactivity Disorder of the Combined Type (AD/HDcom) have problems with response inhibition, with poorer task performance and atypical inhibition-related ERPs relative to control subjects, while little is known about response inhibition in children with Attention-deficit Hyperactivity Disorder of the Predominantly Inattentive Type (AD/HDin). In this study children with AD/HDin (N=12), AD/HDcom (N=13) and age-matched controls (N=13) aged between 8 and 14 years completed a Stop-signal task, with visual Go and auditory Stop-signal stimuli, while EEG was recorded. The results indicated that the groups did not differ on any inhibitory task performance measure, but the AD/HD groups showed more errors of omission to Go stimuli than controls. ERPs to the visual Go stimuli differed between children with AD/HDin and controls (increased central N1 and N2, decreased central P2 and increased parietal P3), while the AD/HDcom group showed only minor scalp distribution differences for N2 and P3. The AD/HDin group showed amplitude differences from controls to Stop signals (larger central N1 and parietal P3; reduced midline N2) and did not show a Successful vs. Failed inhibition effect for P3. The AD/HDcom group showed reduced parietal P3 to Stop signals, with the Trial Type effect present for N2 but not P3. These data suggest that the apparent atypical inhibitory processing at N2 and P3 may stem, at least in part, from atypical early sensory/alerting processing of all stimuli in children with AD/HDin.

  8. Auditory cortical activation and plasticity after cochlear implantation measured by PET using fluorodeoxyglucose.

    Science.gov (United States)

    Łukaszewicz-Moszyńska, Zuzanna; Lachowska, Magdalena; Niemczyk, Kazimierz

    2014-01-01

    The purpose of this study was to evaluate possible relationships between duration of cochlear implant use and results of positron emission tomography (PET) measurements in the temporal lobes performed while subjects listened to speech stimuli. Other aspects investigated were whether implantation side impacts significantly on cortical representations of functions related to understanding speech (ipsi- or contralateral to the implanted side) and whether any correlation exists between cortical activation and speech therapy results. Objective cortical responses to acoustic stimulation were measured, using PET, in nine cochlear implant patients (age range: 15 to 50 years). All the patients suffered from bilateral deafness, were right-handed, and had no additional neurological deficits. They underwent PET imaging three times: immediately after the first fitting of the speech processor (activation of the cochlear implant), and one and two years later. A tendency towards increasing levels of activation in areas of the primary and secondary auditory cortex on the left side of the brain was observed. There was no clear effect of the side of implantation (left or right) on the degree of cortical activation in the temporal lobe. However, the PET results showed a correlation between degree of cortical activation and speech therapy results.

  9. Canonical Cortical Circuit Model Explains Rivalry, Intermittent Rivalry, and Rivalry Memory.

    Directory of Open Access Journals (Sweden)

    Shashaank Vattikuti

    2016-05-01

    Full Text Available It has been shown that the same canonical cortical circuit model with mutual inhibition and a fatigue process can explain perceptual rivalry and other neurophysiological responses to a range of static stimuli. However, it has been proposed that this model cannot explain responses to dynamic inputs such as found in intermittent rivalry and rivalry memory, where maintenance of a percept when the stimulus is absent is required. This challenges the universality of the basic canonical cortical circuit. Here, we show that by including an overlooked realistic small nonspecific background neural activity, the same basic model can reproduce intermittent rivalry and rivalry memory without compromising static rivalry and other cortical phenomena. The background activity induces a mutual-inhibition mechanism for short-term memory, which is robust to noise and where fine-tuning of recurrent excitation or inclusion of sub-threshold currents or synaptic facilitation is unnecessary. We prove existence conditions for the mechanism and show that it can explain experimental results from the quartet apparent motion illusion, which is a prototypical intermittent rivalry stimulus.

  10. The enemy within: propagation of aberrant corticostriatal learning to cortical function in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Jeff A Beeler

    2013-09-01

    Full Text Available Motor dysfunction in Parkinson’s disease is believed to arise primarily from pathophysiology in the dorsal striatum and its related corticostriatal and thalamostriatal circuits during progressive dopamine denervation. One function of these circuits is to provide a filter that selectively facilitates or inhibits cortical activity to optimize cortical processing, making motor responses rapid and efficient. Corticostriatal synaptic plasticity mediates the learning that underlies this performance-optimizing filter. Under dopamine denervation, corticostriatal plasticity is altered, resulting in aberrant learning that induces inappropriate basal ganglia filtering that impedes rather than optimizes cortical processing. Human imaging suggests that increased cortical activity may compensate for striatal dysfunction in PD patients. In this Perspective article, we consider how aberrant learning at corticostriatal synapses may impair cortical processing and learning and undermine potential cortical compensatory mechanisms. Blocking or remediating aberrant corticostriatal plasticity may protect cortical function and support cortical compensatory mechanisms mitigating the functional decline associated with progressive dopamine denervation.

  11. Randomized, double-blind, placebo-controlled, proof-of-concept study of the cortical spreading depression inhibiting agent tonabersat in migraine prophylaxis

    DEFF Research Database (Denmark)

    Goadsby, P J; Ferrari, M D; Csanyi, A

    2009-01-01

    Tonabersat is a novel putative migraine prophylactic agent with an unique stereospecific binding site in the brain. Tonabersat has been shown, in animal models, to inhibit experimentally induced cortical spreading depression, the likely underlying mechanism for migraine aura, and cerebrovascular...... the placebo (n = 65) and tonabersat (n = 58) groups. At the primary end-point there was a 1.0-day (95% confidence interval -0.33, 2.39; P = 0.14) difference in reduction in migraine days between tonabersat and placebo. There were 10 secondary efficacy end-points, of which two were statistically significant....... The good tolerability and promising efficacy results support further exploration of higher doses of tonabersat in larger controlled trials....

  12. Efficiency of the Prefrontal Cortex during Working Memory in Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Sheridan, Margaret A.; Hinshaw, Stephen; D'Esposito, Mark

    2007-01-01

    Objective: Previous research has demonstrated that during task conditions requiring an increase in inhibitory function or working memory, children and adults with attention-deficit/hyperactivity disorder (ADHD) exhibit greater and more varied prefrontal cortical(PFC) activation compared to age-matched control participants. This pattern may reflect…

  13. Pacific Ciguatoxin Induces Excitotoxicity and Neurodegeneration in the Motor Cortex Via Caspase 3 Activation: Implication for Irreversible Motor Deficit.

    Science.gov (United States)

    Asthana, Pallavi; Zhang, Ni; Kumar, Gajendra; Chine, Virendra Bhagawan; Singh, Kunal Kumar; Mak, Yim Ling; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie

    2018-01-18

    Consumption of fish containing ciguatera toxins or ciguatoxins (CTXs) causes ciguatera fish poisoning (CFP). In some patients, CFP recurrence occurs even years after exposure related to CTXs accumulation. Pacific CTX-1 (P-CTX-1) is one of the most potent natural substances known that causes predominantly neurological symptoms in patients; however, the underlying pathogenies of CFP remain unknown. Using clinically relevant neurobehavioral tests and electromyography (EMG) to assess effects of P-CTX-1 during the 4 months after exposure, recurrent motor strength deficit occurred in mice exposed to P-CTX-1. We detected irreversible motor strength deficits accompanied by reduced EMG activity, demyelination, and slowing of motor nerve conduction, whereas control unexposed mice fully recovered in 1 month after peripheral nerve injury. Finally, to uncover the mechanism underlying CFP, we detected reduction of spontaneous firing rate of motor cortical neurons even 6 months after exposure and increased number of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Increased numbers of motor cortical neuron apoptosis were detected by dUTP-digoxigenin nick end labeling assay along with activation of caspase 3. Taken together, our study demonstrates that persistence of P-CTX-1 in the nervous system induces irreversible motor deficit that correlates well with excitotoxicity and neurodegeneration detected in the motor cortical neurons.

  14. Executive dysfunction among children with reading comprehension deficits.

    Science.gov (United States)

    Locascio, Gianna; Mahone, E Mark; Eason, Sarah H; Cutting, Laurie E

    2010-01-01

    Emerging research supports the contribution of executive function (EF) to reading comprehension; however, a unique pattern has not been established for children who demonstrate comprehension difficulties despite average word recognition ability (specific reading comprehension deficit; S-RCD). To identify particular EF components on which children with S-RCD struggle, a range of EF skills was compared among 86 children, ages 10 to 14, grouped by word reading and comprehension abilities: 24 average readers, 44 with word recognition deficits (WRD), and 18 S-RCD. An exploratory principal components analysis of EF tests identified three latent factors, used in subsequent group comparisons: Planning/ Spatial Working Memory, Verbal Working Memory, and Response Inhibition. The WRD group exhibited deficits (relative to controls) on Verbal Working Memory and Inhibition factors; S-RCD children performed more poorly than controls on the Planning factor. Further analyses suggested the WRD group's poor performance on EF factors was a by-product of core deficits linked to WRD (after controlling for phonological processing, this group no longer showed EF deficits). In contrast, the S-RCD group's poor performance on the planning component remained significant after controlling for phonological processing. Findings suggest reading comprehension difficulties are linked to executive dysfunction; in particular, poor strategic planning/organizing may lead to reading comprehension problems.

  15. Piracetam ameliorated oxygen and glucose deprivation-induced injury in rat cortical neurons via inhibition of oxidative stress, excitatory amino acids release and P53/Bax.

    Science.gov (United States)

    He, Zhi; Hu, Min; Zha, Yun-hong; Li, Zi-cheng; Zhao, Bo; Yu, Ling-ling; Yu, Min; Qian, Ying

    2014-05-01

    Our previous work has demonstrated that piracetam inhibited the decrease in amino acid content induced by chronic hypoperfusion, ameliorated the dysfunction of learning and memory in a hypoperfusion rat model, down-regulated P53, and BAX protein, facilitated the synaptic plasticity, and may be helpful in the treatment of vascular dementia. To explore the precise mechanism, the present study further evaluated effects of piracetam on Oxygen and glucose deprivation (OGD)-induced neuronal damage in rat primary cortical cells. The addition of piracetam to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and lactate dehydrogenase release experiments. Piracetam also lowered the levels of malondialdehyde, nitrogen monoxidum, and xanthine oxidase which was increased in the OGD cells, and enhanced the activities of superoxide dismutase and glutathione peroxidase, which were decreased in the OGD cells. We also demonstrated that piracetam could decrease glutamate and aspartate release when cortical cells were subjected to OGD. Furthermore, Western blot study demonstrated that piracetam attenuated the increased expression of P53 and BAX protein in OGD cells. These observations demonstrated that piracetam reduced OGD-induced neuronal damage by inhibiting the oxidative stress and decreasing excitatory amino acids release and lowering P53/Bax protein expression in OGD cells.

  16. Oculomotor Anomalies in Attention-Deficit/Hyperactivity Disorder: Evidence for Deficits in Response Preparation and Inhibition

    Science.gov (United States)

    Mahone, E. Mark; Mostofsky, Stewart H.; Lasker, Adrian G.; Zee, David; Denckla, Martha B.

    2009-01-01

    Girls, but not boys, with attention deficit hyperactivity disorder (ADHD) have significantly longer visually guided saccades latencies. It is found that sex differences in children with ADHD extend beyond symptom presentation to the development of oculomotor control.

  17. Sensory cortex underpinnings of traumatic brain injury deficits.

    Directory of Open Access Journals (Sweden)

    Dasuni S Alwis

    Full Text Available Traumatic brain injury (TBI can result in persistent sensorimotor and cognitive deficits including long-term altered sensory processing. The few animal models of sensory cortical processing effects of TBI have been limited to examination of effects immediately after TBI and only in some layers of cortex. We have now used the rat whisker tactile system and the cortex processing whisker-derived input to provide a highly detailed description of TBI-induced long-term changes in neuronal responses across the entire columnar network in primary sensory cortex. Brain injury (n=19 was induced using an impact acceleration method and sham controls received surgery only (n=15. Animals were tested in a range of sensorimotor behaviour tasks prior to and up to 6 weeks post-injury when there were still significant sensorimotor behaviour deficits. At 8-10 weeks post-trauma, in terminal experiments, extracellular recordings were obtained from barrel cortex neurons in response to whisker motion, including motion that mimicked whisker motion observed in awake animals undertaking different tasks. In cortex, there were lamina-specific neuronal response alterations that appeared to reflect local circuit changes. Hyper-excitation was found only in supragranular layers involved in intra-areal processing and long-range integration, and only for stimulation with complex, naturalistic whisker motion patterns and not for stimulation with simple trapezoidal whisker motion. Thus TBI induces long-term directional changes in integrative sensory cortical layers that depend on the complexity of the incoming sensory information. The nature of these changes allow predictions as to what types of sensory processes may be affected in TBI and contribute to post-trauma sensorimotor deficits.

  18. Music-induced cortical plasticity and lateral inhibition in the human auditory cortex as foundations for tonal tinnitus treatment.

    Science.gov (United States)

    Pantev, Christo; Okamoto, Hidehiko; Teismann, Henning

    2012-01-01

    Over the past 15 years, we have studied plasticity in the human auditory cortex by means of magnetoencephalography (MEG). Two main topics nurtured our curiosity: the effects of musical training on plasticity in the auditory system, and the effects of lateral inhibition. One of our plasticity studies found that listening to notched music for 3 h inhibited the neuronal activity in the auditory cortex that corresponded to the center-frequency of the notch, suggesting suppression of neural activity by lateral inhibition. Subsequent research on this topic found that suppression was notably dependent upon the notch width employed, that the lower notch-edge induced stronger attenuation of neural activity than the higher notch-edge, and that auditory focused attention strengthened the inhibitory networks. Crucially, the overall effects of lateral inhibition on human auditory cortical activity were stronger than the habituation effects. Based on these results we developed a novel treatment strategy for tonal tinnitus-tailor-made notched music training (TMNMT). By notching the music energy spectrum around the individual tinnitus frequency, we intended to attract lateral inhibition to auditory neurons involved in tinnitus perception. So far, the training strategy has been evaluated in two studies. The results of the initial long-term controlled study (12 months) supported the validity of the treatment concept: subjective tinnitus loudness and annoyance were significantly reduced after TMNMT but not when notching spared the tinnitus frequencies. Correspondingly, tinnitus-related auditory evoked fields (AEFs) were significantly reduced after training. The subsequent short-term (5 days) training study indicated that training was more effective in the case of tinnitus frequencies ≤ 8 kHz compared to tinnitus frequencies >8 kHz, and that training should be employed over a long-term in order to induce more persistent effects. Further development and evaluation of TMNMT therapy

  19. Control of Somatosensory Cortical Processing by Thalamic Posterior Medial Nucleus: A New Role of Thalamus in Cortical Function.

    Directory of Open Access Journals (Sweden)

    Carlos Castejon

    Full Text Available Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1 in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane-anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas.

  20. Routine post-weaning handling of rats prevents isolation rearing-induced deficit in prepulse inhibition

    Directory of Open Access Journals (Sweden)

    M.L.N.M. Rosa

    2005-11-01

    Full Text Available Rats reared under isolation conditions from weaning present a number of behavioral changes compared to animals reared under social conditions (group housing. These changes include deficits in prepulse inhibition (PPI of the startle reflex to a loud sound. PPI refers to the reduction of the magnitude of the startle reflex when a relatively weak stimulus (the prepulse precedes by an appropriate time interval the intense startle-elicing stimulus (the pulse. PPI is useful for studying sensorimotor integration. The present study evaluated the effect of handling on the impairment of PPI induced by isolation-rearing. Male Wistar rats (N = 11-15/group were housed in groups (5 per cage and handled three times a week or isolated (housed individually since weaning (21 days for 10 weeks when they reach approximately 150 g. The isolated rats were divided into "minimally handled" animals (handled once a week for cleaning purposes only or "handled" animals (handled three times a week. This handling consisted of grasping the rat by the tail and moving it to a clean cage (approximately 5 s. A statistically significant reduction (52% in the PPI test was found only in the isolated group with minimal handling while no difference was seen between grouped animals and isolated handled animals. These results indicate that isolation rearing causes disruption in the PPI at adult age, which serves as an index of attention deficit. This change in the sensory processing of information induced by post-weaning isolation can be prevented by handling during the development of the animal.

  1. Routine post-weaning handling of rats prevents isolation rearing-induced deficit in prepulse inhibition.

    Science.gov (United States)

    Rosa, M L N M; Silva, R C B; Moura-de-Carvalho, F T; Brandão, M L; Guimarães, F S; Del Bel, E A

    2005-11-01

    Rats reared under isolation conditions from weaning present a number of behavioral changes compared to animals reared under social conditions (group housing). These changes include deficits in prepulse inhibition (PPI) of the startle reflex to a loud sound. PPI refers to the reduction of the magnitude of the startle reflex when a relatively weak stimulus (the prepulse) precedes by an appropriate time interval the intense startle-elicing stimulus (the pulse). PPI is useful for studying sensorimotor integration. The present study evaluated the effect of handling on the impairment of PPI induced by isolation-rearing. Male Wistar rats (N = 11-15/group) were housed in groups (5 per cage and handled three times a week) or isolated (housed individually) since weaning (21 days) for 10 weeks when they reach approximately 150 g. The isolated rats were divided into "minimally handled" animals (handled once a week for cleaning purposes only) or "handled" animals (handled three times a week). This handling consisted of grasping the rat by the tail and moving it to a clean cage (approximately 5 s). A statistically significant reduction (52%) in the PPI test was found only in the isolated group with minimal handling while no difference was seen between grouped animals and isolated handled animals. These results indicate that isolation rearing causes disruption in the PPI at adult age, which serves as an index of attention deficit. This change in the sensory processing of information induced by post-weaning isolation can be prevented by handling during the development of the animal.

  2. Inhibition of 5a-reductase in the nucleus accumbens counters sensorimotor gating deficits induced by dopaminergic activation

    Science.gov (United States)

    Devoto, Paola; Frau, Roberto; Bini, Valentina; Pillolla, Giuliano; Saba, Pierluigi; Flore, Giovanna; Corona, Marta; Marrosu, Francesco; Bortolato, Marco

    2012-01-01

    Summary Cogent evidence highlights a key role of neurosteroids and androgens in schizophrenia. We recently reported that inhibition of steroid 5α-reductase (5αR), the rate-limiting enzyme in neurosteroid synthesis and androgen metabolism, elicits antipsychotic-like effects in humans and animal models, without inducing extrapyramidal side effects. To elucidate the anatomical substrates mediating these effects, we investigated the contribution of peripheral and neural structures to the behavioral effects of the 5αR inhibitor finasteride (FIN) on the prepulse inhibition (PPI) of the acoustic startle reflex (ASR), a rat paradigm that dependably simulates the sensorimotor gating impairments observed in schizophrenia and other neuropsychiatric disorders. The potential effect of drug-induced ASR modifications on PPI was excluded by measuring this index both as percent (%PPI) and absolute values (ΔPPI). In both orchidectomized and sham-operated rats, FIN prevented the %PPI deficits induced by the dopamine (DA) receptor agonists apomorphine (APO, 0.25 mg/kg, SC) and d-amphetamine (AMPH, 2.5 mg/kg, SC), although the latter effect was not corroborated by ΔPPI analysis. Conversely, APO-induced PPI deficits were countered by FIN infusions in the brain ventricles (10 μg/1 μl) and in the nucleus accumbens (NAc) shell and core (0.5 μg/0.5 μl/side). No significant PPI-ameliorating effect was observed following FIN injections in other brain regions, including dorsal caudate, basolateral amygdala, ventral hippocampus and medial prefrontal cortex, although a statistical trend was observed for the latter region. The efflux of DA in NAc was increased by systemic, but not intracerebral FIN administration. Taken together, these findings suggest that the role of 5αR in gating regulation is based on post-synaptic mechanisms in the NAc, and is not directly related to alterations in DA efflux in this region. PMID:22029952

  3. Inhibition of GABA synthesis in the prefrontal cortex increases locomotor activity but does not affect attention in the 5-choice serial reaction time task.

    Science.gov (United States)

    Asinof, Samuel K; Paine, Tracie A

    2013-02-01

    Attention deficits are a core cognitive symptom of schizophrenia; the neuropathology underlying these deficits is not known. Attention is regulated, at least in part, by the prefrontal cortex (PFC), a brain area in which pathology of γ-aminobutyric acid (GABA) neurons has been consistently observed in post-mortem analysis of the brains of people with schizophrenia. Specifically, expression of the 67-kD isoform of the GABA synthesis enzyme glutamic acid decarboxylase (GAD67) is reduced in parvalbumin-containing fast-spiking GABA interneurons. Thus it is hypothesized that reduced cortical GABA synthesis and release may contribute to the attention deficits in schizophrenia. Here the effect of reducing cortical GABA synthesis with l-allylglycine (LAG) on attention was tested using three different versions of the 5-choice serial reaction time task (5CSRTT). Because 5CSRTT performance can be affected by locomotor activity, we also measured this behavior in an open field. Finally, the expression of Fos protein was used as an indirect measure of reduced GABA synthesis. Intra-cortical LAG (10 μg/0.5 μl/side) infusions increased Fos expression and resulted in hyperactivity in the open field. Intra-cortical LAG infusions did not affect attention in any version of the 5CSRTT. These results suggest that a general decrease in GABA synthesis is not sufficient to cause attention deficits. It remains to be tested whether a selective decrease in GABA synthesis in parvalbumin-containing GABA neurons could cause attention deficits. Decreased cortical GABA synthesis did increase locomotor activity; this may reflect the positive symptoms of schizophrenia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Central N-acetyl aspartylglutamate deficit: a possible pathogenesis of schizophrenia.

    Science.gov (United States)

    Tsai, Shih-Jen

    2005-09-01

    The "glutamate hypothesis" of schizophrenia has emerged from the finding that phencyclidine (PCP) induces psychotic-like behaviors in rodents, possibly by blocking the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor, thereby causing increased glutamate release. N-acetyl aspartylglutamate (NAAG), an endogenous peptide abundant in mammalian nervous systems, is localized in certain brain cells, including cortical and hippocampal pyramidal neurons. NAAG is synthesized from N-acetylaspartate (NAA) and glutamate, and NAA availability may limit the rate of NAAG synthesis. Although NAAG is known to have some neurotransmitter-like functions, NAA does not. NAAG is a highly selective agonist of the type 3 metabotropic glutamate receptor (mGluR3, a presynaptic autoreceptor) and can inhibit glutamate release. In addition, at low levels, NAAG is an NMDA receptor antagonist, and blocking of NMDA receptors may increase glutamate release. Taken together, low central NAAG levels may antagonize the effect of glutamate at NMDA receptors and decrease its agonistic effect on presynaptic mGluR3; both activities could increase glutamate release, similar to the increase demonstrated in the PCP model of schizophrenia. In this report, it is suggested that the central NAAG deficit, possibly through decreased synthesis or increased degradation of NAAG, may play a role in the pathogenesis of schizophrenia. Evidence is presented and discussed from magnetic resonance, postmortem, animal model, schizophrenia treatment, and genetic studies. The central NAAG deficit model of schizophrenia could explain the disease process, from the perspectives of both neurodevelopment and neurodegeneration, and may point to potential treatments for schizophrenia.

  5. Basal Forebrain Gating by Somatostatin Neurons Drives Prefrontal Cortical Activity.

    Science.gov (United States)

    Espinosa, Nelson; Alonso, Alejandra; Morales, Cristian; Espinosa, Pedro; Chávez, Andrés E; Fuentealba, Pablo

    2017-11-17

    The basal forebrain provides modulatory input to the cortex regulating brain states and cognitive processing. Somatostatin-expressing neurons constitute a heterogeneous GABAergic population known to functionally inhibit basal forebrain cortically projecting cells thus favoring sleep and cortical synchronization. However, it remains unclear if somatostatin cells can regulate population activity patterns in the basal forebrain and modulate cortical dynamics. Here, we demonstrate that somatostatin neurons regulate the corticopetal synaptic output of the basal forebrain impinging on cortical activity and behavior. Optogenetic inactivation of somatostatin neurons in vivo rapidly modified neural activity in the basal forebrain, with the consequent enhancement and desynchronization of activity in the prefrontal cortex, reflected in both neuronal spiking and network oscillations. Cortical activation was partially dependent on cholinergic transmission, suppressing slow waves and potentiating gamma oscillations. In addition, recruitment dynamics was cell type-specific, with interneurons showing similar temporal profiles, but stronger responses than pyramidal cells. Finally, optogenetic stimulation of quiescent animals during resting periods prompted locomotor activity, suggesting generalized cortical activation and increased arousal. Altogether, we provide physiological and behavioral evidence indicating that somatostatin neurons are pivotal in gating the synaptic output of the basal forebrain, thus indirectly controlling cortical operations via both cholinergic and non-cholinergic mechanisms. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Water Deficit and Abscisic Acid Cause Differential Inhibition of Shoot versus Root Growth in Soybean Seedlings 1

    Science.gov (United States)

    Creelman, Robert A.; Mason, Hugh S.; Bensen, Robert J.; Boyer, John S.; Mullet, John E.

    1990-01-01

    Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite. Images Figure 6 Figure 7 PMID:16667248

  7. A Mechanistic Link from GABA to Cortical Architecture and Perception.

    Science.gov (United States)

    Kolasinski, James; Logan, John P; Hinson, Emily L; Manners, Daniel; Divanbeighi Zand, Amir P; Makin, Tamar R; Emir, Uzay E; Stagg, Charlotte J

    2017-06-05

    Understanding both the organization of the human cortex and its relation to the performance of distinct functions is fundamental in neuroscience. The primary sensory cortices display topographic organization, whereby receptive fields follow a characteristic pattern, from tonotopy to retinotopy to somatotopy [1]. GABAergic signaling is vital to the maintenance of cortical receptive fields [2]; however, it is unclear how this fine-grain inhibition relates to measurable patterns of perception [3, 4]. Based on perceptual changes following perturbation of the GABAergic system, it is conceivable that the resting level of cortical GABAergic tone directly relates to the spatial specificity of activation in response to a given input [5-7]. The specificity of cortical activation can be considered in terms of cortical tuning: greater cortical tuning yields more localized recruitment of cortical territory in response to a given input. We applied a combination of fMRI, MR spectroscopy, and psychophysics to substantiate the link between the cortical neurochemical milieu, the tuning of cortical activity, and variability in perceptual acuity, using human somatosensory cortex as a model. We provide data that explain human perceptual acuity in terms of both the underlying cellular and metabolic processes. Specifically, higher concentrations of sensorimotor GABA are associated with more selective cortical tuning, which in turn is associated with enhanced perception. These results show anatomical and neurochemical specificity and are replicated in an independent cohort. The mechanistic link from neurochemistry to perception provides a vital step in understanding population variability in sensory behavior, informing metabolic therapeutic interventions to restore perceptual abilities clinically. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Should we stop thinking about inhibition? Searching for individual and age differences in inhibition ability.

    Science.gov (United States)

    Rey-Mermet, Alodie; Gade, Miriam; Oberauer, Klaus

    2018-04-01

    Inhibition is often conceptualized as a unitary construct reflecting the ability to ignore and suppress irrelevant information. At the same time, it has been subdivided into inhibition of prepotent responses (i.e., the ability to stop dominant responses) and resistance to distracter interference (i.e., the ability to ignore distracting information). The present study investigated the unity and diversity of inhibition as a psychometric construct, and tested the hypothesis of an inhibition deficit in older age. We measured inhibition in young and old adults with 11 established laboratory tasks: antisaccade, stop-signal, color Stroop, number Stroop, arrow flanker, letter flanker, Simon, global-local, positive and negative compatibility tasks, and n-2 repetition costs in task switching. In both age groups, the inhibition measures from individual tasks had good reliabilities, but correlated only weakly among each other. Structural equation modeling identified a 2-factor model with factors for inhibition of prepotent responses and resistance to distracter interference. Older adults scored worse in the inhibition of prepotent response, but better in the resistance to distracter interference. However, the model had low explanatory power. Together, these findings call into question inhibition as a psychometric construct and the hypothesis of an inhibition deficit in older age. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  9. Neuropsychological correlates of brain atrophy in Huntington's disease: a magnetic resonance imaging study

    International Nuclear Information System (INIS)

    Starkstein, S.E.; Brandt, J.; Bylsma, F.; Peyser, C.; Folstein, M.; Folstein, S.E.

    1992-01-01

    Magnetic resonance imaging and a comprehensive cognitive evaluation were carried out in a series of 29 patients with mild to moderate Huntington's disease (HD). A factor analysis of the neuropsychological test scores provided three factors: A memory/speed-of-processing factor, a 'frontal' factor, and a response inhibition factor. The memory/speed factor correlated significantly with measures of caudate atrophy, frontal atrophy, and atrophy of the left (but not the right) sylvian cistern. There were no significant correlations between the 'frontal' or response inhibition factors and measures of cortical or subcortical brain atrophy. Our findings confirm that subcortical atrophy is significantly correlated with specific cognitive deficits in HD, and demonstrate that cortical atrophy also has important association with the cognitive deficits of patients with HD. (orig.)

  10. Aging causes a reorganization of cortical and spinal control of posture

    Directory of Open Access Journals (Sweden)

    Selma ePapegaaij

    2014-03-01

    Full Text Available Classical studies in animal preparations suggest a strong role for spinal control of posture. In young adults it is now established that the cerebral cortex contributes to postural control of unperturbed and perturbed standing. The age-related degeneration and accompanying functional changes in the brain, reported so far mainly in conjunction with simple manual motor tasks, may also affect the mechanisms that control complex motor tasks involving posture. This review outlines the age-related structural and functional changes at spinal and cortical levels and provides a mechanistic analysis of how such changes may be linked to the behaviorally manifest postural deficits in old adults. The emerging picture is that the age-related reorganization in motor control during voluntary tasks, characterized by differential modulation of spinal reflexes, greater cortical activation and cortical disinhibition, is also present during postural tasks. We discuss the possibility that this reorganization underlies the increased coactivation and dual task interference reported in elderly. Finally, we propose a model for future studies to unravel the structure-function-behavior relations in postural control and aging.

  11. APC sets the Wnt tone necessary for cerebral cortical progenitor development.

    Science.gov (United States)

    Nakagawa, Naoki; Li, Jingjun; Yabuno-Nakagawa, Keiko; Eom, Tae-Yeon; Cowles, Martis; Mapp, Tavien; Taylor, Robin; Anton, E S

    2017-08-15

    Adenomatous polyposis coli (APC) regulates the activity of β-catenin, an integral component of Wnt signaling. However, the selective role of the APC-β-catenin pathway in cerebral cortical development is unknown. Here we genetically dissected the relative contributions of APC-regulated β-catenin signaling in cortical progenitor development, a necessary early step in cerebral cortical formation. Radial progenitor-specific inactivation of the APC-β-catenin pathway indicates that the maintenance of appropriate β-catenin-mediated Wnt tone is necessary for the orderly differentiation of cortical progenitors and the resultant formation of the cerebral cortex. APC deletion deregulates β-catenin, leads to high Wnt tone, and disrupts Notch1 signaling and primary cilium maintenance necessary for radial progenitor functions. β-Catenin deregulation directly disrupts cilium maintenance and signaling via Tulp3, essential for intraflagellar transport of ciliary signaling receptors. Surprisingly, deletion of β-catenin or inhibition of β-catenin activity in APC-null progenitors rescues the APC-null phenotype. These results reveal that APC-regulated β-catenin activity in cortical progenitors sets the appropriate Wnt tone necessary for normal cerebral cortical development. © 2017 Nakagawa et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Resveratrol protects primary cortical neuron cultures from transient oxygen-glucose deprivation by inhibiting MMP-9.

    Science.gov (United States)

    Gao, Dakuan; Huang, Tao; Jiang, Xiaofan; Hu, Shijie; Zhang, Lei; Fei, Zhou

    2014-06-01

    It was recently shown that resveratrol exerts neuroprotective effects against cerebral ischemia in mice. The aim of the present study was to further confirm these effects in in vitro primary cortical neuron cultures with transient oxygen-glucose deprivation (OGD), and to investigate whether these effects are due to the inhibition of matrix metalloproteinase-9 (MMP-9) and of cell apoptosis. Neuronal primary cultures of cerebral cortex were prepared from BALB/c mice embryos (13-15 days). Cells from 14- to 16-day cultures were subjected to OGD for 3 h, followed by 21 h of reoxygenation to simulate transient ischemia. Different doses of resveratrol were added into the culture medium during the simulation of transient ischemia. The effect of the extracellular signal-regulated kinase (ERK) inhibitor U0126 was studied by adding U0126 (5 µg/µl, 4 µl) into the culture medium during transient ischemia; as a control, we used treatment of cells with 50 µM of resveratrol. Cell viability was investigated using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) reduction assay. Cell apoptosis was assessed by flow cytometry. The effects of resveratrol on the expression of MMP-9 were analyzed by western blotting and reverse transcription-polymerase chain reaction (RT-PCR), while the levels of ERK, phosphorylated (p)-ERK, cleaved caspase-3, Bax and Bcl-2 were measured by western blotting. The results of the MTT assay showed that cell viability is significantly reduced by transient OGD. OGD induced cell apoptosis, the expression of Bax and the activation of caspase-3 and ERK, inhibited the expression of Bcl-2 and increased the expression of MMP-9, while these effects were reversed by treatment with resveratrol. The therapeutic efficacy of resveratrol was shown to be dose-dependent, with the most suitable dose range determined at 50-100 µM. Treatment with U0126 inhibited MMP-9 and Bax expression and caspase-3 activation, while it further promoted the

  13. The heterogeneity of attention-deficit/hyperactivity disorder symptoms and conduct problems: Cognitive inhibition, emotion regulation, emotionality, and disorganized attachment.

    Science.gov (United States)

    Forslund, Tommie; Brocki, Karin C; Bohlin, Gunilla; Granqvist, Pehr; Eninger, Lilianne

    2016-09-01

    This study examined the contributions of several important domains of functioning to attention-deficit/hyperactivity disorder (ADHD) symptoms and conduct problems. Specifically, we investigated whether cognitive inhibition, emotion regulation, emotionality, and disorganized attachment made independent and specific contributions to these externalizing behaviour problems from a multiple pathways perspective. The study included laboratory measures of cognitive inhibition and disorganized attachment in 184 typically developing children (M age = 6 years, 10 months, SD = 1.7). Parental ratings provided measures of emotion regulation, emotionality, and externalizing behaviour problems. Results revealed that cognitive inhibition, regulation of positive emotion, and positive emotionality were independently and specifically related to ADHD symptoms. Disorganized attachment and negative emotionality formed independent and specific relations to conduct problems. Our findings support the multiple pathways perspective on ADHD, with poor regulation of positive emotion and high positive emotionality making distinct contributions to ADHD symptoms. More specifically, our results support the proposal of a temperamentally based pathway to ADHD symptoms. The findings also indicate that disorganized attachment and negative emotionality constitute pathways specific to conduct problems rather than to ADHD symptoms. © 2016 The British Psychological Society.

  14. Pitch-Responsive Cortical Regions in Congenital Amusia.

    Science.gov (United States)

    Norman-Haignere, Sam V; Albouy, Philippe; Caclin, Anne; McDermott, Josh H; Kanwisher, Nancy G; Tillmann, Barbara

    2016-03-09

    Congenital amusia is a lifelong deficit in music perception thought to reflect an underlying impairment in the perception and memory of pitch. The neural basis of amusic impairments is actively debated. Some prior studies have suggested that amusia stems from impaired connectivity between auditory and frontal cortex. However, it remains possible that impairments in pitch coding within auditory cortex also contribute to the disorder, in part because prior studies have not measured responses from the cortical regions most implicated in pitch perception in normal individuals. We addressed this question by measuring fMRI responses in 11 subjects with amusia and 11 age- and education-matched controls to a stimulus contrast that reliably identifies pitch-responsive regions in normal individuals: harmonic tones versus frequency-matched noise. Our findings demonstrate that amusic individuals with a substantial pitch perception deficit exhibit clusters of pitch-responsive voxels that are comparable in extent, selectivity, and anatomical location to those of control participants. We discuss possible explanations for why amusics might be impaired at perceiving pitch relations despite exhibiting normal fMRI responses to pitch in their auditory cortex: (1) individual neurons within the pitch-responsive region might exhibit abnormal tuning or temporal coding not detectable with fMRI, (2) anatomical tracts that link pitch-responsive regions to other brain areas (e.g., frontal cortex) might be altered, and (3) cortical regions outside of pitch-responsive cortex might be abnormal. The ability to identify pitch-responsive regions in individual amusic subjects will make it possible to ask more precise questions about their role in amusia in future work. Copyright © 2016 the authors 0270-6474/16/362986-09$15.00/0.

  15. "The mute who can sing": a cortical stimulation study on singing.

    Science.gov (United States)

    Roux, Franck-Emmanuel; Borsa, Stefano; Démonet, Jean-François

    2009-02-01

    In an attempt to identify cortical areas involved in singing in addition to language areas, the authors used a singing task during direct cortical mapping in 5 patients who were amateur singers and had undergone surgery for brain tumors. The organization of the cortical areas involved in language and singing was analyzed in relation with these surgical data. One left-handed and 4 right-handed patients with brain tumors in left (2 cases) and right (3 cases) hemispheres and no significant language or singing deficits underwent surgery with the "awake surgery" technique. All patients had a special interest in singing and were involved in amateur singing activities. They were tested using naming, reading, and singing tasks. Outside primary sensorimotor areas, singing interferences were rare and were exclusively localized in small cortical areas (singing in the Broca region. In the Broca region, no singing interference was found in areas in which interference in naming and reading tasks were detected. Conversely, a specific singing interference was found in nondominant middle frontal gyri in one patient. This interference consisted of abrupt singing arrest without apparent face, mouth, and tongue contraction. Finally, nonspecific singing interferences were found in the right and left precentral gyri in all patients (probably by interference in final articulatory mechanisms of singing). Dissociations between speech and singing found outside primary sensorimotor areas showed that these 2 functions use, in some cortical stages, different cerebral pathways.

  16. Inhibition of histone deacetylase 3 via RGFP966 facilitates cortical plasticity underlying unusually accurate auditory associative cue memory for excitatory and inhibitory cue-reward associations.

    Science.gov (United States)

    Shang, Andrea; Bylipudi, Sooraz; Bieszczad, Kasia M

    2018-05-31

    Epigenetic mechanisms are key for regulating long-term memory (LTM) and are known to exert control on memory formation in multiple systems of the adult brain, including the sensory cortex. One epigenetic mechanism is chromatin modification by histone acetylation. Blocking the action of histone de-acetylases (HDACs) that normally negatively regulate LTM by repressing transcription, has been shown to enable memory formation. Indeed, HDAC-inhibition appears to facilitate memory by altering the dynamics of gene expression events important for memory consolidation. However less understood are the ways in which molecular-level consolidation processes alter subsequent memory to enhance storage or facilitate retrieval. Here we used a sensory perspective to investigate whether the characteristics of memory formed with HDAC inhibitors are different from naturally-formed memory. One possibility is that HDAC inhibition enables memory to form with greater sensory detail than normal. Because the auditory system undergoes learning-induced remodeling that provides substrates for sound-specific LTM, we aimed to identify behavioral effects of HDAC inhibition on memory for specific sound features using a standard model of auditory associative cue-reward learning, memory, and cortical plasticity. We found that three systemic post-training treatments of an HDAC3-inhibitor (RGPF966, Abcam Inc.) in rats in the early phase of training facilitated auditory discriminative learning, changed auditory cortical tuning, and increased the specificity for acoustic frequency formed in memory of both excitatory (S+) and inhibitory (S-) associations for at least 2 weeks. The findings support that epigenetic mechanisms act on neural and behavioral sensory acuity to increase the precision of associative cue memory, which can be revealed by studying the sensory characteristics of long-term associative memory formation with HDAC inhibitors. Published by Elsevier B.V.

  17. Case-control study of six genes asymmetrically expressed in the two cerebral hemispheres: association of BAIAP2 with attention-deficit/hyperactivity disorder

    DEFF Research Database (Denmark)

    Ribasés, Marta; Bosch, Rosa; Hervás, Amaia

    2009-01-01

    BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset neuropsychiatric disease that persists into adulthood in at least 30% of patients. There is evidence suggesting that abnormal left-right brain asymmetries in ADHD patients may be involved in a variety of ADHD......-related cognitive processes, including sustained attention, working memory, response inhibition and planning. Although mechanisms underlying cerebral lateralization are unknown, left-right cortical asymmetry has been associated with transcriptional asymmetry at embryonic stages and several genes differentially...... expressed between hemispheres have been identified. METHODS: We selected six functional candidate genes showing at least 1.9-fold differential expression between hemispheres (BAIAP2, DAPPER1, LMO4, NEUROD6, ATP2B3, and ID2) and performed a case-control association study in an initial Spanish sample of 587...

  18. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy.

    Science.gov (United States)

    Shakespeare, Timothy J; Kaski, Diego; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Ryan, Natalie S; Schott, Jonathan M; Crutch, Sebastian J

    2015-07-01

    whose frequency correlated significantly with generalized reductions in cortical thickness. Patients with both posterior cortical atrophy and typical Alzheimer's disease showed lower gain in smooth pursuit compared to controls. The current study establishes that eye movement abnormalities are near-ubiquitous in posterior cortical atrophy, and highlights multiple aspects of saccadic performance which distinguish posterior cortical atrophy from typical Alzheimer's disease. We suggest the posterior cortical atrophy oculomotor profile (e.g. exacerbation of the saccadic gap/overlap effect, preserved saccadic velocity) reflects weak input from degraded occipito-parietal spatial representations of stimulus location into a superior collicular spatial map for eye movement regulation. This may indicate greater impairment of identification of oculomotor targets rather than generation of oculomotor movements. The results highlight the critical role of spatial attention and object identification but also precise stimulus localization in explaining the complex real world perception deficits observed in posterior cortical atrophy and many other patients with dementia-related visual impairment. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  19. Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats.

    Science.gov (United States)

    Alaverdashvili, Mariam; Hackett, Mark J; Caine, Sally; Paterson, Phyllis G

    2017-04-01

    While protein-energy malnutrition in the adult has been reported to induce motor abnormalities and exaggerate motor deficits caused by stroke, it is not known if alterations in mature cortical neurons contribute to the functional deficits. Therefore, we explored if PEM in adult rats provoked changes in the biochemical profile of neurons in the forelimb and hindlimb regions of the motor cortex. Fourier transform infrared spectroscopic imaging using a synchrotron generated light source revealed for the first time altered lipid composition in neurons and subcellular domains (cytosol and nuclei) in a cortical layer and region-specific manner. This change measured by the area under the curve of the δ(CH 2 ) band may indicate modifications in membrane fluidity. These PEM-induced biochemical changes were associated with the development of abnormalities in forelimb use and posture. The findings of this study provide a mechanism by which PEM, if not treated, could exacerbate the course of various neurological disorders and diminish treatment efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Neural Correlates of Rewarded Response Inhibition in Youth at Risk for Problematic Alcohol Use

    Directory of Open Access Journals (Sweden)

    Brenden Tervo-Clemmens

    2017-11-01

    Full Text Available Risk for substance use disorder (SUD is associated with poor response inhibition and heightened reward sensitivity. During adolescence, incentives improve performance on response inhibition tasks and increase recruitment of cortical control areas (Geier et al., 2010 associated with SUD (Chung et al., 2011. However, it is unknown whether incentives moderate the relationship between response inhibition and trait-level psychopathology and personality features of substance use risk. We examined these associations in the current project using a rewarded antisaccade (AS task (Geier et al., 2010 in youth at risk for substance use. Participants were 116 adolescents and young adults (ages 12–21 from the University of Pittsburgh site of the National Consortium on Adolescent Neurodevelopment and Alcohol [NCANDA] study, with neuroimaging data collected at baseline and 1 year follow up visits. Building upon previous work using this task in normative developmental samples (Geier et al., 2010 and adolescents with SUD (Chung et al., 2011, we examined both trial-wise BOLD responses and those associated with individual task-epochs (cue presentation, response preparation, and response and associated them with multiple substance use risk factors (externalizing and internalizing psychopathology, family history of substance use, and trait impulsivity. Results showed that externalizing psychopathology and high levels of trait impulsivity (positive urgency, SUPPS-P were associated with general decreases in antisaccade performance. Accompanying this main effect of poor performance, positive urgency was associated with reduced recruitment of the frontal eye fields (FEF and inferior frontal gyrus (IFG in both a priori regions of interest and at the voxelwise level. Consistent with previous work, monetary incentive improved antisaccade behavioral performance and was associated with increased activation in the striatum and cortical control areas. However, incentives did

  1. Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X Syndrome.

    Science.gov (United States)

    Lovelace, Jonathan W; Wen, Teresa H; Reinhard, Sarah; Hsu, Mike S; Sidhu, Harpreet; Ethell, Iryna M; Binder, Devin K; Razak, Khaleel A

    2016-05-01

    Sensory processing deficits are common in autism spectrum disorders, but the underlying mechanisms are unclear. Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and autism. Electrophysiological responses in humans with FXS show reduced habituation with sound repetition and this deficit may underlie auditory hypersensitivity in FXS. Our previous study in Fmr1 knockout (KO) mice revealed an unusually long state of increased sound-driven excitability in auditory cortical neurons suggesting that cortical responses to repeated sounds may exhibit abnormal habituation as in humans with FXS. Here, we tested this prediction by comparing cortical event related potentials (ERP) recorded from wildtype (WT) and Fmr1 KO mice. We report a repetition-rate dependent reduction in habituation of N1 amplitude in Fmr1 KO mice and show that matrix metalloproteinase-9 (MMP-9), one of the known FMRP targets, contributes to the reduced ERP habituation. Our studies demonstrate a significant up-regulation of MMP-9 levels in the auditory cortex of adult Fmr1 KO mice, whereas a genetic deletion of Mmp-9 reverses ERP habituation deficits in Fmr1 KO mice. Although the N1 amplitude of Mmp-9/Fmr1 DKO recordings was larger than WT and KO recordings, the habituation of ERPs in Mmp-9/Fmr1 DKO mice is similar to WT mice implicating MMP-9 as a potential target for reversing sensory processing deficits in FXS. Together these data establish ERP habituation as a translation relevant, physiological pre-clinical marker of auditory processing deficits in FXS and suggest that abnormal MMP-9 regulation is a mechanism underlying auditory hypersensitivity in FXS. Fragile X Syndrome (FXS) is the leading known genetic cause of autism spectrum disorders. Individuals with FXS show symptoms of auditory hypersensitivity. These symptoms may arise due to sustained neural responses to repeated sounds, but the underlying mechanisms remain unclear. For the first time, this study shows deficits

  2. The cortical representation of sensory inputs arising from bone.

    Science.gov (United States)

    Ivanusic, Jason J; Sahai, Vineet; Mahns, David A

    2009-05-07

    In the present study, we show that sensory information from bone reaches the discriminative areas of the somatosensory cortices by electrically stimulating the nerve to the cat humerus and recording evoked potentials on the surface of the primary (SI) and secondary (SII) somatosensory cortex. The SI focus was located over the rostral part of the postcruciate cortex, caudal to the lateral aspect of the cruciate sulcus. The SII focus was identified on the anterior ectosylvian gyrus, lateral to the suprasylvian sulcus. These foci were located adjacent to, or within areas that responded to stimulation of the median, ulnar and/or musculocutaneous nerves. The latency (6-11 ms) to onset of cortical responses in SI and SII were indistinguishable (unpaired t-test; P>0.05), and were consistent with activation of A delta fibers in the peripheral nerve. The amplitudes of the cortical responses were graded as a function of stimulus intensity, and may reflect a mechanism for intensity coding. We did not observe long latency cortical responses (50-300 ms) that would be consistent with C fiber activation in the peripheral nerve, and provide evidence that this may be attributable to inhibition of cortical responsiveness following the initial A delta response. Our finding of discrete, short latency evoked potentials (presumably of A delta origin) in the primary and secondary somatosensory cortices, following stimulation of a nerve innervating bone, may reflect a mechanism for the discriminative component of bone pain.

  3. The effects of methylphenidate on prepulse inhibition during attended and ignored prestimuli among boys with attention-deficit hyperactivity disorder.

    Science.gov (United States)

    Hawk, Larry W; Yartz, Andrew R; Pelham, William E; Lock, Thomas M

    2003-01-01

    The present study investigated attentional modification of prepulse inhibition of startle among boys with and without attention-deficit hyperactivity disorder (ADHD). Two hypotheses were tested: (1) whether ADHD is associated with diminished prepulse inhibition during attended prestimuli, but not ignored prestimuli, and (2) whether methylphenidate selectively increases prepulse inhibition to attended prestimuli among boys with ADHD. Participants were 17 boys with ADHD and 14 controls. Participants completed a tone discrimination task in each of two sessions separated by 1 week. ADHD boys were administered methylphenidate (0.3 mg/kg) in one session and placebo in the other session in a randomized, double-blind fashion. During each series of 72 tones (75 dB; half 1200-Hz, half 400-Hz), participants were paid to attend to one pitch and ignore the other. Bilateral eyeblink electromyogram startle responses were recorded in response to acoustic probes (50-ms, 102-dB white noise) presented following the onset of two-thirds of tones, and during one-third of intertrial intervals. Relative to controls, boys with ADHD exhibited diminished prepulse inhibition 120 ms after onset of attended but not ignored prestimuli following placebo administration. Methylphenidate selectively increased prepulse inhibition to attended prestimuli at 120 ms among boys with ADHD to a level comparable to that of controls, who did not receive methylphenidate. These data are consistent with the hypothesis that ADHD involves diminished selective attention and suggest that methylphenidate ameliorates the symptoms of ADHD, at least in part, by altering an early attentional mechanism.

  4. [Schizophrenia and cortical GABA neurotransmission].

    Science.gov (United States)

    Hashimoto, Takanori; Matsubara, Takuro; Lewis, David A

    2010-01-01

    Individuals with schizophrenia show disturbances in a number of brain functions that regulate cognitive, affective, motor, and sensory processing. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related molecules. First, mRNA levels for the 67-kilodalton isoform of glutamic acid decarboxylase (GAD67), an enzyme principally responsible for GABA synthesis, and the GABA membrane transporter GAT1, which regulates the reuptake of synaptically released GABA, are decreased in a subset of GABA neurons. Second, affected GABA neurons include those that express the calcium-binding protein parvalbumin (PV), because PV mRNA levels are decreased in the prefrontal cortex of subjects with schizophrenia and GAD67 mRNA is undetectable in almost half of PV-containing neurons. These changes are accompanied by decreased GAT1 expression in the presynaptic terminals of PV-containing neurons and by increased postsynaptic GABA-A receptor alpha2 subunit expression at the axon initial segments of pyramidal neurons. These findings indicate decreased GABA synthesis/release by PV-containing GABA neurons and compensatory changes at synapses formed by these neurons. Third, another subset of GABA neurons that express the neuropeptide somatostatin (SST) also appear to be affected because their specific markers, SST and neuropeptide Y mRNAs, are decreased in a manner highly correlated with the decreases in GAD67 mRNA. Finally, mRNA levels for GABA-A receptor subunits for synaptic (alpha1 and gamma2) and extra-synaptic (delta) receptors are decreased, indicating alterations in both synaptic and extra-synaptic GABA neurotransmission. Together, this pattern of changes indicates that the altered GABA neurotransmission is specific to PV-containing and SST-containing GABA neuron subsets and involves both synaptic and extra

  5. Arctigenin isolated from the seeds of Arctium lappa ameliorates memory deficits in mice.

    Science.gov (United States)

    Lee, In-Ah; Joh, Eun-Ha; Kim, Dong-Hyun

    2011-09-01

    The seeds of Arctium lappa L. (AL, family Asteraceae), the main constituents of which are arctiin and arctigenin, have been used as an herbal medicine or functional food to treat inflammatory diseases. These main constituents were shown to inhibit acetylcholinesterase (AChE) activity. Arctigenin more potently inhibited AChE activity than arctiin. Arctigenin at doses of 30 and 60 mg/kg (p. o.) potently reversed scopolamine-induced memory deficits by 62 % and 73 %, respectively, in a passive avoidance test. This finding is comparable with that of tacrine (10 mg/kg p. o.). Arctigenin also significantly reversed scopolamine-induced memory deficits in the Y-maze and Morris water maze tests. On the basis of these findings, arctigenin may ameliorate memory deficits by inhibiting AChE. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Temporal changes in cortical activation during conditioned pain modulation (CPM), a LORETA study.

    Science.gov (United States)

    Moont, Ruth; Crispel, Yonatan; Lev, Rina; Pud, Dorit; Yarnitsky, David

    2011-07-01

    For most healthy subjects, both subjective pain ratings and pain-evoked potentials are attenuated under conditioned pain modulation (CPM; formerly termed diffuse noxious inhibitory controls, or DNIC). Although essentially spinal-bulbar, this inhibition is under cortical control. This is the first study to observe temporal as well as spatial changes in cortical activations under CPM. Specifically, we aimed to investigate the interplay of areas involved in the perception and processing of pain and those involved in controlling descending inhibition. We examined brief consecutive poststimulus time windows of 50 ms using a method of source-localization from pain evoked potentials, sLORETA. This enabled determination of dynamic changes in localized cortical generators evoked by phasic noxious heat stimuli to the left volar forearm in healthy young males, with and without conditioning hot-water pain to the right hand. We found a CPM effect characterized by an initial increased activation in the orbitofrontal cortex (OFC) and amygdala at 250-300 ms poststimulus, which was correlated with the extent of psychophysical pain reduction. This was followed by reduced activations in the primary and secondary somatosensory cortices, supplementary motor area, posterior insula, and anterior cingulate cortex from 400 ms poststimulus. Our findings show that the prefrontal pain-controlling areas of OFC and amygdala increase their activity in parallel with subjective pain reduction under CPM, and that this increased activity occurs prior to reductions in activations of the pain sensory areas. In conclusion, achieving pain inhibition by the CPM process seems to be under control of the OFC and the amygdala. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  7. Neuropsychological Functioning in Children with Tourette Syndrome with and without Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Sukhodolsky, Denis G.; Landeros-Weisenberger, Angeli; Scahill, Lawrence; Leckman, James F.; Schultz, Robert T.

    2010-01-01

    Objective: Neuropsychological functioning in children with Tourette syndrome (TS) has been characterized by subtle deficits in response inhibition, visual-motor integration, and fine-motor coordination. The association of these deficits with the tics of the TS versus co-occurring attention-deficit/hyperactivity disorder (ADHD) has not been well…

  8. Reduced cortical call to arms differentiates psychopathy from antisocial personality disorder.

    Science.gov (United States)

    Drislane, L E; Vaidyanathan, U; Patrick, C J

    2013-04-01

    Psychopathy and antisocial personality disorder (ASPD) are both characterized by impulsive, externalizing behaviors. Researchers have argued, however, that psychopathy is distinguished from ASPD by the presence of interpersonal-affective features that reflect an underlying deficit in emotional sensitivity. No study to date has tested for differential relations of these disorders with the brain's natural orienting response to sudden aversive events. Method Electroencephalography was used to assess cortical reactivity to abrupt noise probes presented during the viewing of pleasant, neutral and unpleasant pictures in 140 incarcerated males diagnosed using the Psychopathy Checklist - Revised and DSM-IV criteria for ASPD. The primary dependent measure was the P3 event-related potential response to the noise probes. Psychopaths showed significantly smaller amplitude of P3 response to noise probes across trials of all types compared with non-psychopaths. Follow-up analyses revealed that this overall reduction was attributable specifically to the affective-interpersonal features of psychopathy. By contrast, no group difference in general amplitude of probe P3 was evident for ASPD versus non-ASPD participants. The findings demonstrate a reduced cortical orienting response to abrupt aversive stimuli in participants exhibiting features of psychopathy that are distinct from ASPD. The specificity of the observed effect fits with the idea that these distinctive features of psychopathy reflect a deficit in defensive reactivity, or mobilization of the brain's defensive system, in the context of threat cues.

  9. Awake Craniotomy in Arteriovenous Malformation Surgery: The Usefulness of Cortical and Subcortical Mapping of Language Function in Selected Patients.

    Science.gov (United States)

    Gamble, Alexander J; Schaffer, Sarah G; Nardi, Dominic J; Chalif, David J; Katz, Jeffery; Dehdashti, Amir R

    2015-11-01

    Awake craniotomy for removal of intra-axial lesions is a well-established procedure. Few studies, however, have investigated the usefulness of this approach for resection of arteriovenous malformations adjacent to eloquent language areas. We demonstrate our experience by using cortical stimulation mapping and report for the first time on the usefulness of subcortical stimulation with interrogation of language function during resection of arteriovenous malformations (AVMs) located near language zones. Patients undergoing awake craniotomy for AVMs located in language zones and at least 5 mm away from the closest functional magnetic resonance imaging activation were analyzed. During surgery, cortical bipolar stimulation at 50 Hz, with an intensity of 2 mA, increased to a maximum of 10 mA was performed in the region around the AVM before claiming it negative for language function. In positive language site, the area was restimulated 3 times to confirm the functional deficit. The AVM resection was started based on cortical mapping findings. Further subcortical stimulation performed in concert with speech interrogation by the neuropsychologist continued at key points throughout the resection as feasible. The usefulness of cortical and subcortical stimulation in addition to patient outcomes was analyzed. Between March 2009 and September 2014, 42 brain AVM resections were performed. Four patients with left-sided language zone AVMs underwent awake craniotomy. The AVM locations were fronto-opercular in 2 patients and posterior temporal in 2. The AVM Spetzler-Martin grades were II (2 patients) and III (2 patients). In 1 patient, complete speech arrest was noticed during mapping of the peri-malformation zone, which was not breached during resection. In a second patient who initially demonstrated negative cortical mapping, a speech deficit was noticed during resection and subcortical stimulation. This guided the approach to protect and avoid the sensitive zone. This patient

  10. Adults with attention-deficit/hyperactivity disorder - a brain magnetic resonance spectroscopy study

    DEFF Research Database (Denmark)

    Dramsdahl, Margaretha; Ersland, Lars; Plessen, Kerstin J

    2011-01-01

    Background: Impaired cognitive control in individuals with attention-deficit/hyperactivity disorder (ADHD) may be related to a prefrontal cortical glutamatergic deficit. We assessed the glutamate level in the left and the right midfrontal region including the anterior cingulate cortex in adults...... groups. Results: The ADHD group showed a significant reduction of Glu/Cre in the left midfrontal region compared to the controls. Conclusion: The reduction of Glu/Cre in the left midfrontal region in the ADHD group may reflect a glutamatergic deficit in prefrontal neuronal circuitry in adults with ADHD...... with ADHD and healthy controls. Methods: Twenty-nine adults with ADHD and 38 healthy controls were included. We used Proton Magnetic Resonance Imaging with single voxel point-resolved spectroscopy to measure the ratio of glutamate to creatine (Glu/Cre) in the left and the right midfrontal region in the two...

  11. Chemokine receptors and cortical interneuron dysfunction in schizophrenia.

    Science.gov (United States)

    Volk, David W; Chitrapu, Anjani; Edelson, Jessica R; Lewis, David A

    2015-09-01

    Alterations in inhibitory (GABA) neurons, including deficiencies in the GABA synthesizing enzyme GAD67, in the prefrontal cortex in schizophrenia are pronounced in the subpopulations of neurons that contain the calcium-binding protein parvalbumin or the neuropeptide somatostatin. The presence of similar illness-related deficits in the transcription factor Lhx6, which regulates prenatal development of parvalbumin and somatostatin neurons, suggests that cortical GABA neuron dysfunction may be related to disturbances in utero. Since the chemokine receptors CXCR4 and CXCR7 guide the migration of cortical parvalbumin and somatostatin neurons from their birthplace in the medial ganglionic eminence to their final destination in the neocortex, we sought to determine whether altered CXCR4 and/or CXCR7 mRNA levels were associated with disturbances in GABA-related markers in schizophrenia. Quantitative PCR was used to quantify CXCR4 and CXCR7 mRNA levels in the prefrontal cortex of 62 schizophrenia and 62 healthy comparison subjects that were previously characterized for markers of parvalbumin and somatostatin neurons and in antipsychotic-exposed monkeys. We found elevated mRNA levels for CXCR7 (+29%; pschizophrenia subjects but not in antipsychotic-exposed monkeys. CXCR7 mRNA levels were inversely correlated with mRNA levels for GAD67, parvalbumin, somatostatin, and Lhx6 in schizophrenia but not in healthy subjects. These findings suggest that higher mRNA levels for CXCR7, and possibly CXCR4, may represent a compensatory mechanism to sustain the migration and correct positioning of cortical parvalbumin and somatostatin neurons in the face of other insults that disrupt the prenatal development of cortical GABA neurons in schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Effect of Psychostimulants on Distinct Attentional Parameters in Attentional Deficit/Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    JAVIER LÓPEZ

    2004-01-01

    Full Text Available Although there is extensive literature about the effects of stimulants on sustained attention tasks in attentional deficit/hyperactivity disorder (ADHD, little is known about the effect of these drugs on other attentional tasks involving different neural systems. In this study we measured the effect of stimulants on ADHD children, both in the electroencephalographic (EEG activity during sustained attentional tasks and in psychometric performance during selective attentional tasks. These tasks are known to rely on different cortical networks. Our results in children medicated with 10 mg of d-amphetamine administered 60 min before the study indicate (i a significant increase in amplitude but not latency of the P300 component of the event-related potential (ERP during the sustained attentional task and (ii a significant improvement in the reaction times and correct responses in the selective attentional task. In addition to supporting the use of stimulants in children with attentional deficit/hyperactivity disorder, these results show a multifocal activity improvement of cortical structures linked to dopamine, and interestingly, to attention. All these analyses are framed in a wider study of diverse attentional functions in this syndrome.

  13. Degraded attentional modulation of cortical neural populations in strabismic amblyopia.

    Science.gov (United States)

    Hou, Chuan; Kim, Yee-Joon; Lai, Xin Jie; Verghese, Preeti

    2016-01-01

    Behavioral studies have reported reduced spatial attention in amblyopia, a developmental disorder of spatial vision. However, the neural populations in the visual cortex linked with these behavioral spatial attention deficits have not been identified. Here, we use functional MRI-informed electroencephalography source imaging to measure the effect of attention on neural population activity in the visual cortex of human adult strabismic amblyopes who were stereoblind. We show that compared with controls, the modulatory effects of selective visual attention on the input from the amblyopic eye are substantially reduced in the primary visual cortex (V1) as well as in extrastriate visual areas hV4 and hMT+. Degraded attentional modulation is also found in the normal-acuity fellow eye in areas hV4 and hMT+ but not in V1. These results provide electrophysiological evidence that abnormal binocular input during a developmental critical period may impact cortical connections between the visual cortex and higher level cortices beyond the known amblyopic losses in V1 and V2, suggesting that a deficit of attentional modulation in the visual cortex is an important component of the functional impairment in amblyopia. Furthermore, we find that degraded attentional modulation in V1 is correlated with the magnitude of interocular suppression and the depth of amblyopia. These results support the view that the visual suppression often seen in strabismic amblyopia might be a form of attentional neglect of the visual input to the amblyopic eye.

  14. 3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective

    Science.gov (United States)

    Gillebert, Céline R.; Schaeverbeke, Jolien; Bastin, Christine; Neyens, Veerle; Bruffaerts, Rose; De Weer, An-Sofie; Seghers, Alexandra; Sunaert, Stefan; Van Laere, Koen; Versijpt, Jan; Vandenbulcke, Mathieu; Salmon, Eric; Todd, James T.; Orban, Guy A.

    2015-01-01

    Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. SIGNIFICANCE STATEMENT Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial

  15. 3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective.

    Science.gov (United States)

    Gillebert, Céline R; Schaeverbeke, Jolien; Bastin, Christine; Neyens, Veerle; Bruffaerts, Rose; De Weer, An-Sofie; Seghers, Alexandra; Sunaert, Stefan; Van Laere, Koen; Versijpt, Jan; Vandenbulcke, Mathieu; Salmon, Eric; Todd, James T; Orban, Guy A; Vandenberghe, Rik

    2015-09-16

    Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial temporal system. We applied

  16. Root cortical aerenchyma inhibits radial nutrient transport in maize (Zea mays).

    Science.gov (United States)

    Hu, Bo; Henry, Amelia; Brown, Kathleen M; Lynch, Jonathan P

    2014-01-01

    Formation of root cortical aerenchyma (RCA) can be induced by nutrient deficiency. In species adapted to aerobic soil conditions, this response is adaptive by reducing root maintenance requirements, thereby permitting greater soil exploration. One trade-off of RCA formation may be reduced radial transport of nutrients due to reduction in living cortical tissue. To test this hypothesis, radial nutrient transport in intact roots of maize (Zea mays) was investigated in two radiolabelling experiments employing genotypes with contrasting RCA. In the first experiment, time-course dynamics of phosphate loading into the xylem were measured from excised nodal roots that varied in RCA formation. In the second experiment, uptake of phosphate, calcium and sulphate was measured in seminal roots of intact young plants in which variation in RCA was induced by treatments altering ethylene action or genetic differences. In each of three paired genotype comparisons, the rate of phosphate exudation of high-RCA genotypes was significantly less than that of low-RCA genotypes. In the second experiment, radial nutrient transport of phosphate and calcium was negatively correlated with the extent of RCA for some genotypes. The results support the hypothesis that RCA can reduce radial transport of some nutrients in some genotypes, which could be an important trade-off of this trait.

  17. Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer's disease.

    Science.gov (United States)

    Biscaro, Barbara; Lindvall, Olle; Tesco, Giuseppina; Ekdahl, Christine T; Nitsch, Roger M

    2012-01-01

    Activated microglia with macrophage-like functions invade and surround β-amyloid (Aβ) plaques in Alzheimer's disease (AD), possibly contributing to the turnover of Aβ, but they can also secrete proinflammatory factors that may be involved in the pathogenesis of AD. Microglia are known to modulate adult hippocampal neurogenesis. To determine the role of microglia on neurogenesis in brains with Aβ pathology, we inhibited microglial activation with the tetracycline derivative minocycline in doubly transgenic mice expressing mutant human amyloid precursor protein (APP) and mutant human presenilin-1 (PS1). Minocycline increased the survival of new dentate granule cells in APP/PS1 mice indicated by more BrdU+/NeuN+ cells as compared to vehicle-treated transgenic littermates, accompanied by improved behavioral performance in a hippocampus-dependent learning task. Both brain levels of Aβ and Aβ-related morphological deficits in the new neurons labeled with GFP-expressing retrovirus were unaffected in minocycline-treated mice. These results suggest a role for microglia in Aβ-related functional deficits and in suppressing the survival of new neurons, and show that modulation of microglial function with minocycline can protect hippocampal neurogenesis in the presence of Aβ pathology. Copyright © 2012 S. Karger AG, Basel.

  18. Neural Synchrony during Response Production and Inhibition

    Science.gov (United States)

    Müller, Viktor; Anokhin, Andrey P.

    2012-01-01

    Inhibition of irrelevant information (conflict monitoring) and/or of prepotent actions is an essential component of adaptive self-organized behavior. Neural dynamics underlying these functions has been studied in humans using event-related brain potentials (ERPs) elicited in Go/NoGo tasks that require a speeded motor response to the Go stimuli and withholding a prepotent response when a NoGo stimulus is presented. However, averaged ERP waveforms provide only limited information about the neuronal mechanisms underlying stimulus processing, motor preparation, and response production or inhibition. In this study, we examine the cortical representation of conflict monitoring and response inhibition using time-frequency analysis of electroencephalographic (EEG) recordings during continuous performance Go/NoGo task in 50 young adult females. We hypothesized that response inhibition would be associated with a transient boost in both temporal and spatial synchronization of prefrontal cortical activity, consistent with the role of the anterior cingulate and lateral prefrontal cortices in cognitive control. Overall, phase synchronization across trials measured by Phase Locking Index and phase synchronization between electrode sites measured by Phase Coherence were the highest in the Go and NoGo conditions, intermediate in the Warning condition, and the lowest under Neutral condition. The NoGo condition was characterized by significantly higher fronto-central synchronization in the 300–600 ms window, whereas in the Go condition, delta- and theta-band synchronization was higher in centro-parietal regions in the first 300 ms after the stimulus onset. The present findings suggest that response production and inhibition is supported by dynamic functional networks characterized by distinct patterns of temporal and spatial synchronization of brain oscillations. PMID:22745691

  19. Neural synchrony during response production and inhibition.

    Directory of Open Access Journals (Sweden)

    Viktor Müller

    Full Text Available Inhibition of irrelevant information (conflict monitoring and/or of prepotent actions is an essential component of adaptive self-organized behavior. Neural dynamics underlying these functions has been studied in humans using event-related brain potentials (ERPs elicited in Go/NoGo tasks that require a speeded motor response to the Go stimuli and withholding a prepotent response when a NoGo stimulus is presented. However, averaged ERP waveforms provide only limited information about the neuronal mechanisms underlying stimulus processing, motor preparation, and response production or inhibition. In this study, we examine the cortical representation of conflict monitoring and response inhibition using time-frequency analysis of electroencephalographic (EEG recordings during continuous performance Go/NoGo task in 50 young adult females. We hypothesized that response inhibition would be associated with a transient boost in both temporal and spatial synchronization of prefrontal cortical activity, consistent with the role of the anterior cingulate and lateral prefrontal cortices in cognitive control. Overall, phase synchronization across trials measured by Phase Locking Index and phase synchronization between electrode sites measured by Phase Coherence were the highest in the Go and NoGo conditions, intermediate in the Warning condition, and the lowest under Neutral condition. The NoGo condition was characterized by significantly higher fronto-central synchronization in the 300-600 ms window, whereas in the Go condition, delta- and theta-band synchronization was higher in centro-parietal regions in the first 300 ms after the stimulus onset. The present findings suggest that response production and inhibition is supported by dynamic functional networks characterized by distinct patterns of temporal and spatial synchronization of brain oscillations.

  20. Assessment of cortical dysfunction in human strabismic amblyopia using magnetoencephalography (MEG)

    International Nuclear Information System (INIS)

    Anderson, S.J.; Holliday, I.E.; Harding, G.F.A.

    1999-01-01

    The aim of this study was to use the technique of magnetoencephalography (MEG) to determine the effects of strabismic amblyopia on the processing of spatial information within the occipital cortex of humans. We recorded evoked magnetic responses to the onset of a chromatic (red/green) sinusoidal grating of periodicity 0.5-4.0 c deg -1 using a 19-channel SQUID-based neuromagnetometer. Evoked responses were recorded monocularly on six amblyopes and six normally-sighted controls, the stimuli being positioned near the fovea in the lower right visual field of each observer. For comparison, the spatial contrast sensitivity function (CSF) for the detection of chromatic gratings was measured for one amblyope and one control using a two alternate forced-choice psychophysical procedure. We chose red/green sinusoids as our stimuli because they evoke strong magnetic responses from the occipital cortex in adult humans (Fylan, Holliday, Singh, Anderson and Harding. (1997). Neuroimage, 6, 47-57). Magnetic field strength was plotted as a function of stimulus spatial frequency for each eye of each subject. Interocular differences were only evident within the amblyopic group: for stimuli of 1-2 c deg -1 , the evoked responses had significantly longer latencies and reduced amplitudes through the amblyopic eye (P<0.05). Importantly, the extent of the deficit was uncorrelated with either Snellen acuity or contrast sensitivity. Localization of the evoked responses was performed using a single equivalent current dipole model. Source localizations, for both normal and amblyopic subjects, were consistent with neural activity at the occipital pole near the V1/V2 border. We conclude that MEG is sensitive to the deficit in cortical processing associated with human amblyopia, and can be used to make quantitative neurophysiological measurements. The nature of the cortical deficit is discussed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Cortical Signatures of Dyslexia and Remediation: An Intrinsic Functional Connectivity Approach

    Science.gov (United States)

    Koyama, Maki S.; Di Martino, Adriana; Kelly, Clare; Jutagir, Devika R.; Sunshine, Jessica; Schwartz, Susan J.; Castellanos, Francisco X.; Milham, Michael P.

    2013-01-01

    This observational, cross-sectional study investigates cortical signatures of developmental dyslexia, particularly from the perspective of behavioral remediation. We employed resting-state fMRI, and compared intrinsic functional connectivity (iFC) patterns of known reading regions (seeds) among three dyslexia groups characterized by (a) no remediation (current reading and spelling deficits), (b) partial remediation (only reading deficit remediated), and (c) full remediation (both reading and spelling deficits remediated), and a group of age- and IQ-matched typically developing children (TDC) (total N = 44, age range = 7–15 years). We observed significant group differences in iFC of two seeds located in the left posterior reading network – left intraparietal sulcus (L.IPS) and left fusiform gyrus (L.FFG). Specifically, iFC between L.IPS and left middle frontal gyrus was significantly weaker in all dyslexia groups, irrespective of remediation status/literacy competence, suggesting that persistent dysfunction in the fronto-parietal attention network characterizes dyslexia. Additionally, relative to both TDC and the no remediation group, the remediation groups exhibited stronger iFC between L.FFG and right middle occipital gyrus (R.MOG). The full remediation group also exhibited stronger negative iFC between the same L.FFG seed and right medial prefrontal cortex (R.MPFC), a core region of the default network These results suggest that behavioral remediation may be associated with compensatory changes anchored in L.FFG, which reflect atypically stronger coupling between posterior visual regions (L.FFG-R.MOG) and greater functional segregation between task-positive and task-negative regions (L.FFG-R.MPFC). These findings were bolstered by significant relationships between the strength of the identified functional connections and literacy scores. We conclude that examining iFC can reveal cortical signatures of dyslexia with particular promise for monitoring

  2. Mesenchymal Stem Cells Inhibit Transmission of α-Synuclein by Modulating Clathrin-Mediated Endocytosis in a Parkinsonian Model

    Directory of Open Access Journals (Sweden)

    Se Hee Oh

    2016-02-01

    Full Text Available Ample evidence suggests that α-synuclein is released from cells and propagated from one area of the brain to others via cell-to-cell transmission. In terms of their prion-like behavior, α-synuclein propagation plays key roles in the pathogenesis and progression of α-synucleinopathies. Using α-synuclein-enriched models, we show that mesenchymal stem cells (MSCs inhibited α-synuclein transmission by blocking the clathrin-mediated endocytosis of extracellular α-synuclein via modulation of the interaction with N-methyl-D-aspartate receptors, which led to a prosurvival effect on cortical and dopaminergic neurons with functional improvement of motor deficits in α-synuclein-enriched models. Furthermore, we identify that galectin-1, a soluble factor derived from MSCs, played an important role in the transmission control of aggregated α-synuclein in these models. The present data indicated that MSCs exert neuroprotective properties through inhibition of extracellular α-synuclein transmission, suggesting that the property of MSCs may act as a disease-modifying therapy in subjects with α-synucleinopathies.

  3. Deficits in response inhibition correlate with oculomotor control in children with fetal alcohol spectrum disorder and prenatal alcohol exposure.

    Science.gov (United States)

    Paolozza, Angelina; Rasmussen, Carmen; Pei, Jacqueline; Hanlon-Dearman, Ana; Nikkel, Sarah M; Andrew, Gail; McFarlane, Audrey; Samdup, Dawa; Reynolds, James N

    2014-02-01

    Children with fetal alcohol spectrum disorder (FASD) or prenatal alcohol exposure (PAE) frequently exhibit impairment on tasks measuring inhibition. The objective of this study was to determine if a performance-based relationship exists between psychometric tests and eye movement tasks in children with FASD. Participants for this dataset were aged 5-17 years and included those diagnosed with an FASD (n=72), those with PAE but no clinical FASD diagnosis (n=21), and typically developing controls (n=139). Participants completed a neurobehavioral test battery, which included the NEPSY-II subtests of auditory attention, response set, and inhibition. Each participant completed a series of saccadic eye movement tasks, which included the antisaccade and memory-guided tasks. Both the FASD and the PAE groups performed worse than controls on the subtest measures of attention and inhibition. Compared with controls, the FASD group made more errors on the antisaccade and memory-guided tasks. Among the combined FASD/PAE group, inhibition and switching errors were negatively correlated with direction errors on the antisaccade task but not on the memory-guided task. There were no significant correlations in the control group. These data suggests that response inhibition deficits in children with FASD/PAE are associated with difficulty controlling saccadic eye movements which may point to overlapping brain regions damaged by prenatal alcohol exposure. The results of this study demonstrate that eye movement control tasks directly relate to outcome measures obtained with psychometric tests that are used during FASD diagnosis, and may therefore help with early identification of children who would benefit from a multidisciplinary diagnostic assessment. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Plasticity of cortical excitatory-inhibitory balance.

    Science.gov (United States)

    Froemke, Robert C

    2015-07-08

    Synapses are highly plastic and are modified by changes in patterns of neural activity or sensory experience. Plasticity of cortical excitatory synapses is thought to be important for learning and memory, leading to alterations in sensory representations and cognitive maps. However, these changes must be coordinated across other synapses within local circuits to preserve neural coding schemes and the organization of excitatory and inhibitory inputs, i.e., excitatory-inhibitory balance. Recent studies indicate that inhibitory synapses are also plastic and are controlled directly by a large number of neuromodulators, particularly during episodes of learning. Many modulators transiently alter excitatory-inhibitory balance by decreasing inhibition, and thus disinhibition has emerged as a major mechanism by which neuromodulation might enable long-term synaptic modifications naturally. This review examines the relationships between neuromodulation and synaptic plasticity, focusing on the induction of long-term changes that collectively enhance cortical excitatory-inhibitory balance for improving perception and behavior.

  5. Chronic mild stress impairs latent inhibition and induces region-specific neural activation in CHL1-deficient mice, a mouse model of schizophrenia.

    Science.gov (United States)

    Buhusi, Mona; Obray, Daniel; Guercio, Bret; Bartlett, Mitchell J; Buhusi, Catalin V

    2017-08-30

    Schizophrenia is a neurodevelopmental disorder characterized by abnormal processing of information and attentional deficits. Schizophrenia has a high genetic component but is precipitated by environmental factors, as proposed by the 'two-hit' theory of schizophrenia. Here we compared latent inhibition as a measure of learning and attention, in CHL1-deficient mice, an animal model of schizophrenia, and their wild-type littermates, under no-stress and chronic mild stress conditions. All unstressed mice as well as the stressed wild-type mice showed latent inhibition. In contrast, CHL1-deficient mice did not show latent inhibition after exposure to chronic stress. Differences in neuronal activation (c-Fos-positive cell counts) were noted in brain regions associated with latent inhibition: Neuronal activation in the prelimbic/infralimbic cortices and the nucleus accumbens shell was affected solely by stress. Neuronal activation in basolateral amygdala and ventral hippocampus was affected independently by stress and genotype. Most importantly, neural activation in nucleus accumbens core was affected by the interaction between stress and genotype. These results provide strong support for a 'two-hit' (genes x environment) effect on latent inhibition in CHL1-deficient mice, and identify CHL1-deficient mice as a model of schizophrenia-like learning and attention impairments. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Contrasting neural effects of aging on proactive and reactive response inhibition

    NARCIS (Netherlands)

    Bloemendaal, Mirjam; Zandbelt, Bram; Wegman, Joost; Rest, van de O.; Cools, Roshan; Aarts, Esther

    2016-01-01

    Two distinct forms of response inhibition may underlie observed deficits in response inhibition in aging. We assessed whether age-related neurocognitive impairments in response inhibition reflect deficient reactive inhibition (outright stopping) or also deficient proactive inhibition

  7. Age effects on cortical thickness in young Down's syndrome subjects: a cross-sectional gender study

    International Nuclear Information System (INIS)

    Romano, Andrea; Moraschi, Marta; Cornia, Riccardo; Stella, Giacomo; Bozzao, Alessandro; Gagliardo, Olga; Chiacchiararelli, Laura; Iani, Cristina; Albertini, Giorgio; Pierallini, Alberto

    2015-01-01

    The aim of this study was to determine differences in the characteristic pattern of age-related cortical thinning in men and women with Down's syndrome (DS) by means of MRI and automatic cortical thickness measurements and a cross-sectional design, in a large cohort of young subjects. Eighty-four subjects with DS, 30 females (11-35 years, mean age ± SD = 22.8 ± 5.9) and 54 males (11-35 years, mean age ± SD = 21.5 ± 6.5), were examined using a 1.5-T scanner. MRI-based quantification of cortical thickness was performed using FreeSurfer software package. For all subjects participating in the study, the Pearson product-moment correlation coefficient between age and mean cortical thickness values has been evaluated. A significant negative correlation between cortical thickness and age was found in female DS subjects, predominantly in frontal and parietal lobes, bilaterally. In male DS subjects, a significant negative correlation between cortical thickness and age was found in the right fronto-temporal lobes and cingulate regions. Whole brain mean cortical thickness values were significantly negative correlated with age only in female DS subjects. Females with Down's syndrome showed a strong correlation between cortical thickness and age, already in early age. We suggest that the cognitive impairment due to hormonal deficit in the postmenopausal period could be emphasized by the early structural decline of gray matter in female DS subjects. (orig.)

  8. Age effects on cortical thickness in young Down's syndrome subjects: a cross-sectional gender study

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Andrea; Moraschi, Marta [San Raffaele Foundation Rome, Rehabilitation Facility Ceglie Messapica, Rome (Italy); Cornia, Riccardo; Stella, Giacomo [University of Modena and Reggio Emilia, Department of Education and Human Sciences, Emilia-Romagna (Italy); Bozzao, Alessandro; Gagliardo, Olga [University Sapienza, NESMOS, Department of Neuroradiology, S. Andrea Hospital, Rome (Italy); Chiacchiararelli, Laura [University Sapienza, Department of Medical Physics, S. Andrea Hospital, Rome (Italy); Iani, Cristina [University of Modena and Reggio Emilia, Department of Communication and Economy, Emilia-Romagna (Italy); Albertini, Giorgio [IRCSS San Raffaele Pisana, Department of Paediatrics, Rome (Italy); Pierallini, Alberto [IRCSS San Raffaele Pisana, Department of Radiology, Rome (Italy)

    2015-04-01

    The aim of this study was to determine differences in the characteristic pattern of age-related cortical thinning in men and women with Down's syndrome (DS) by means of MRI and automatic cortical thickness measurements and a cross-sectional design, in a large cohort of young subjects. Eighty-four subjects with DS, 30 females (11-35 years, mean age ± SD = 22.8 ± 5.9) and 54 males (11-35 years, mean age ± SD = 21.5 ± 6.5), were examined using a 1.5-T scanner. MRI-based quantification of cortical thickness was performed using FreeSurfer software package. For all subjects participating in the study, the Pearson product-moment correlation coefficient between age and mean cortical thickness values has been evaluated. A significant negative correlation between cortical thickness and age was found in female DS subjects, predominantly in frontal and parietal lobes, bilaterally. In male DS subjects, a significant negative correlation between cortical thickness and age was found in the right fronto-temporal lobes and cingulate regions. Whole brain mean cortical thickness values were significantly negative correlated with age only in female DS subjects. Females with Down's syndrome showed a strong correlation between cortical thickness and age, already in early age. We suggest that the cognitive impairment due to hormonal deficit in the postmenopausal period could be emphasized by the early structural decline of gray matter in female DS subjects. (orig.)

  9. Cortical hypometabolism and its recovery following nucleus basalis lesions in baboons: a PET study

    International Nuclear Information System (INIS)

    Kiyosawa, M.; Pappata, S.; Duverger, D.

    1987-01-01

    The cerebral metabolic rate for glucose was measured serially with positron emission tomography and [ 18 F]fluorodeoxyglucose in five baboons with stereotactic electrocoagulation of the left nucleus basalis of Meynert (NbM). Four days after lesion, a significant metabolic depression was present in the ipsilateral cerebral cortex, most marked in the frontotemporal region, and which recovered progressively within 6-13 weeks. These data demonstrate that adaptive mechanisms efficiently compensate for the cortical metabolic effects of NbM-lesion-induced cholinergic deafferentation. Moreover, unilateral NbM lesions also induced a transient reduction in contralateral cortical metabolic rate, the mechanisms of which are discussed. Explanation of these effects of cholinergic deafferentation in the primate could further our understanding of the metabolic deficits observed in dementia of the Alzheimer's type

  10. Attention-deficit/hyperactivity disorder: the impact of methylphenidate on working memory, inhibition capacity and mental flexibility.

    Science.gov (United States)

    Bolfer, Cristiana; Pacheco, Sandra Pasquali; Tsunemi, Miriam Harumi; Carreira, Walter Souza; Casella, Beatriz Borba; Casella, Erasmo Barbante

    2017-04-01

    To compare children with attention-deficit/hyperactivity disorder (ADHD), before and after the use of methylphenidate, and a control group, using tests of working memory, inhibition capacity and mental flexibility. Neuropsychological tests were administrated to 53 boys, 9-12 years old: the WISC-III digit span backward, and arithmetic; Stroop Color; and Trail Making Tests. The case group included 23 boys with ADHD, who were combined type, treatment-naive, and with normal intelligence without comorbidities. The control group (n = 30) were age and gender matched. After three months on methylphenidate, the ADHD children were retested. The control group was also retested after three months. Before treatment, ADHD children had lower scores than the control group on the tests (p ≤ 0.001) and after methylphenidate had fewer test errors than before (p ≤ 0.001). Methylphenidate treatment improves the working memory, inhibitory control and mental flexibility of ADHD boys.

  11. Allopregnanolone suppresses diabetes-induced neuropathic pain and motor deficit through inhibition of GABAA receptor down-regulation in the spinal cord of diabetic rats

    Directory of Open Access Journals (Sweden)

    Samira Afrazi

    2014-05-01

    Full Text Available Objective(s:Painful diabetic neuropathy is associated with hyperexcitability and hyperactivity of spinal cord neurons. However, its underlying pathophysiological mechanisms have not been fully clarified. Induction of excitatory/inhibitory neurotransmission imbalance at the spinal cord seems to account for the abnormal neuronal activity in diabetes. Protective properties of neurosteroids have been demonstrated in numerous cellular and animal models of neurodegeneration. Materials and Methods: Here, the protective effects of allopregnanolone, a neurosteroid were investigated in an in vivo model of diabetic neuropathy. The tail-flick test was used to assess the nociceptive threshold. Diabetes was induced by injection of 50 mg/kg (IP streptozotocin. Seven weeks after the induction of diabetes, the dorsal half of the lumbar spinal cord was assayed for the expression of γ2 subunit of GABAA receptor using semiquantitative RT-PCR. Results: The data shows that allopregnanolone (5 and 20 mg/kg markedly ameliorated diabetes-induced thermal hyperalgesia and motor deficit. The weights of diabetic rats that received 5 and 20 mg/kg allopregnanolone did not significantly reduce during the time course of study. Furthermore, this neurosteroid could inhibit GABAA receptor down-regulation induced by diabetes in the rat spinal cord. Conclusion: The data revealed that allopregnanolone has preventive effects against hyperglycemic-induced neuropathic pain and motor deficit which are related to the inhibition of GABAA receptor down-regulation.

  12. Pragmatic Ability Deficit in Schizophrenia and Associated Theory of Mind and Executive Function

    Directory of Open Access Journals (Sweden)

    Xiaoming Li

    2017-12-01

    Full Text Available Deficits in pragmatic abilities have frequently been observed in patients with schizophrenia. The objective of the study was to investigate the relationship between pragmatic deficits, ToM deficits and executive dysfunctions in schizophrenia. A group of 42 schizophrenic patients and 42 healthy controls were assessed on irony task (one type of pragmatic language, two subcomponents of ToM (cognitive and affective, and three subcomponents of EF (inhibition, updating, and switching. The clinical symptoms in schizophrenia were assessed using the positive and negative symptoms of schizophrenia. The schizophrenia group exhibited significant impairments in all above tasks compared to the control group. Correlation results found that irony scores were correlated with the two subcomponents of ToM and two of the three subcomponents of EF (inhibition and updating. The regression analysis revealed that the cognitive ToM and inhibition predicted 9.2% and 29.9% of the variance of irony comprehension in the patient group, and inhibition was the best predictor for performance on irony task. Irony understanding was related to positive symptoms, but not to negative symptoms. The results suggest that the ability to interpret pragmatic language depends on schizophrenic patients’ ability to infer mental states and the ability of inhibition. It provides empirical evidence for a particular target of inhibition for rehabilitation and intervention programs developed for schizophrenic patients.

  13. Decision-making deficit of a patient with axonal damage after traumatic brain injury.

    Science.gov (United States)

    Yasuno, Fumihiko; Matsuoka, Kiwamu; Kitamura, Soichiro; Kiuchi, Kuniaki; Kosaka, Jun; Okada, Koji; Tanaka, Syohei; Shinkai, Takayuki; Taoka, Toshiaki; Kishimoto, Toshifumi

    2014-02-01

    Patients with traumatic brain injury (TBI) were reported to have difficulty making advantageous decisions, but the underlying deficits of the network of brain areas involved in this process were not directly examined. We report a patient with TBI who demonstrated problematic behavior in situations of risk and complexity after cerebral injury from a traffic accident. The Iowa gambling task (IGT) was used to reveal his deficits in the decision-making process. To examine underlying deficits of the network of brain areas, we examined T1-weighted structural MRI, diffusion tensor imaging (DTI) and Tc-ECD SPECT in this patient. The patient showed abnormality in IGT. DTI-MRI results showed a significant decrease in fractional anisotropy (FA) in the fasciculus between the brain stem and cortical regions via the thalamus. He showed significant decrease in gray matter volumes in the bilateral insular cortex, hypothalamus, and posterior cingulate cortex, possibly reflecting Wallerian degeneration secondary to the fasciculus abnormalities. SPECT showed significant blood flow decrease in the broad cortical areas including the ventromedial prefrontal cortex (VM). Our study showed that the patient had dysfunctional decision-making process. Microstructural abnormality in the fasciculus, likely from the traffic accident, caused reduced afferent feedback to the brain, resulting in less efficient decision-making. Our findings support the somatic-marker hypothesis (SMH), where somatic feedback to the brain influences the decision-making process. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Curcumin protects microglia and primary rat cortical neurons against HIV-1 gp120-mediated inflammation and apoptosis.

    Directory of Open Access Journals (Sweden)

    Luyan Guo

    Full Text Available Curcumin is a molecule found in turmeric root that has anti-inflammatory, antioxidant, and anti-tumor properties and has been widely used as both an herbal drug and a food additive to treat or prevent neurodegenerative diseases. To explore whether curcumin is able to ameliorate HIV-1-associated neurotoxicity, we treated a murine microglial cell line (N9 and primary rat cortical neurons with curcumin in the presence or absence of neurotoxic HIV-1 gp120 (V3 loop protein. We found that HIV-1 gp120 profoundly induced N9 cells to produce reactive oxygen species (ROS, tumor necrosis factor-α (TNF-α and monocyte chemoattractant protein-1 (MCP-1. HIV-1 gp120 also induced apoptosis of primary rat cortical neurons. Curcumin exerted a powerful inhibitory effect against HIV-1 gp120-induced neuronal damage, reducing the production of ROS, TNF-α and MCP-1 by N9 cells and inhibiting apoptosis of primary rat cortical neurons. Curcumin may exert its biological activities through inhibition of the delayed rectification and transient outward potassium (K(+ current, as curcumin effectively reduced HIV-1 gp120-mediated elevation of the delayed rectification and transient outward K(+ channel current in neurons. We conclude that HIV-1 gp120 increases ROS, TNF-α and MCP-1 production in microglia, and induces cortical neuron apoptosis by affecting the delayed rectification and transient outward K(+ channel current. Curcumin reduces production of ROS and inflammatory mediators in HIV-1-gp120-stimulated microglia, and protects cortical neurons against HIV-1-mediated apoptosis, most likely through inhibition of HIV-1 gp120-induced elevation of the delayed rectification and transient outward K(+ current.

  15. Loss of inhibition in sensorimotor networks in focal hand dystonia

    Directory of Open Access Journals (Sweden)

    Cecile Gallea

    2018-01-01

    Interpretation: Impairments of GABAergic neurotransmission in the cerebellum and the sensorimotor cortical areas could explain different aspects of loss of inhibitory control in FHD, the former being involved in maladaptive plasticity, the latter in surround inhibition. Reorganization of the inferior prefrontal cortices, part of the associative network, might be compensatory for the loss of inhibitory control in sensorimotor circuits. These findings suggest that cerebellar and cerebral GABAergic abnormalities could play a role in the functional imbalance of striato-cerebello-cortical loops in dystonia.

  16. Conditional Deletion of PDK1 in the Forebrain Causes Neuron Loss and Increased Apoptosis during Cortical Development

    Directory of Open Access Journals (Sweden)

    Congyu Xu

    2017-10-01

    Full Text Available Decreased expression but increased activity of PDK1 has been observed in neurodegenerative disease. To study in vivo function of PDK1 in neuron survival during cortical development, we generate forebrain-specific PDK1 conditional knockout (cKO mice. We demonstrate that PDK1 cKO mice display striking neuron loss and increased apoptosis. We report that PDK1 cKO mice exhibit deficits on several behavioral tasks. Moreover, PDK1 cKO mice show decreased activities for Akt and mTOR. These results highlight an essential role of endogenous PDK1 in the maintenance of neuronal survival during cortical development.

  17. The pharmacology of visuospatial attention and inhibition

    NARCIS (Netherlands)

    Logemann, H.N.A.

    2013-01-01

    Attention and inhibition are of vital importance in everyday functioning. Problems of attention and inhibition are central to disorders such as Attention Deficit/Hyperactivity Disorder (ADHD). Both bias and disengagement key components of visuospatial attention. Bias refers to neuronal signals that

  18. GDNF/GFRα1 Complex Abrogates Self-Renewing Activity of Cortical Neural Precursors Inducing Their Differentiation

    Directory of Open Access Journals (Sweden)

    Antonela Bonafina

    2018-03-01

    Full Text Available Summary: The balance between factors leading to proliferation and differentiation of cortical neural precursors (CNPs determines the correct cortical development. In this work, we show that GDNF and its receptor GFRα1 are expressed in the neocortex during the period of cortical neurogenesis. We show that the GDNF/GFRα1 complex inhibits the self-renewal capacity of mouse CNP cells induced by fibroblast growth factor 2 (FGF2, promoting neuronal differentiation. While GDNF leads to decreased proliferation of cultured cortical precursor cells, ablation of GFRα1 in glutamatergic cortical precursors enhances its proliferation. We show that GDNF treatment of CNPs promoted morphological differentiation even in the presence of the self-renewal-promoting factor, FGF2. Analysis of GFRα1-deficient mice shows an increase in the number of cycling cells during cortical development and a reduction in dendrite development of cortical GFRα1-expressing neurons. Together, these results indicate that GDNF/GFRα1 signaling plays an essential role in regulating the proliferative condition and the differentiation of cortical progenitors. : In this article, Ledda and colleagues show that GDNF acting through its receptor GFRα1 plays a critical role in the maturation of cortical progenitors by counteracting FGF2 self-renewal activity on neural stem cells and promoting neuronal differentiation. Keywords: GDNF, GFRα1, cortical precursors, proliferation, postmitotic neurons, neuronal differentiation

  19. Cortical visual impairment

    OpenAIRE

    Koželj, Urša

    2013-01-01

    In this thesis we discuss cortical visual impairment, diagnosis that is in the developed world in first place, since 20 percent of children with blindness or low vision are diagnosed with it. The objectives of the thesis are to define cortical visual impairment and the definition of characters suggestive of the cortical visual impairment as well as to search for causes that affect the growing diagnosis of cortical visual impairment. There are a lot of signs of cortical visual impairment. ...

  20. Distinct roles of SOM and VIP interneurons during cortical Up states

    Directory of Open Access Journals (Sweden)

    Garrett T. Neske

    2016-07-01

    Full Text Available During cortical network activity, recurrent synaptic excitation among pyramidal neurons is approximately balanced by synaptic inhibition, which is provided by a vast diversity of inhibitory interneurons. The relative contributions of different interneuron subtypes to inhibitory tone during cortical network activity is not well understood. We previously showed that many of the major interneuron subtypes in mouse barrel cortex are highly active during Up states (Neske et al., 2015; while fast-spiking (FS, parvalbumin (PV-positive cells were the most active interneuron subtype, many non-fast-spiking (NFS, PV-negative interneurons were as active or more active than neighboring pyramidal cells. This suggests that the NFS cells could play a role in maintaining or modulating Up states. Here, using optogenetic techniques, we further dissected the functional roles during Up states of two major NFS, PV-negative interneuron subtypes: somatostatin (SOM-positive cells and vasoactive intestinal peptide (VIP-positive cells. We found that while pyramidal cell excitability during Up states significantly increased when SOM cells were optogenetically silenced, VIP cells did not influence pyramidal cell excitability either upon optogenetic silencing or activation. VIP cells failed to contribute to Up states despite their ability to inhibit SOM cells strongly. We suggest that the contribution of VIP cells to the excitability of pyramidal cells may vary with cortical state.

  1. Neuroscience of inhibition for addiction medicine: from prediction of initiation to prediction of relapse.

    Science.gov (United States)

    Moeller, Scott J; Bederson, Lucia; Alia-Klein, Nelly; Goldstein, Rita Z

    2016-01-01

    A core deficit in drug addiction is the inability to inhibit maladaptive drug-seeking behavior. Consistent with this deficit, drug-addicted individuals show reliable cross-sectional differences from healthy nonaddicted controls during tasks of response inhibition accompanied by brain activation abnormalities as revealed by functional neuroimaging. However, it is less clear whether inhibition-related deficits predate the transition to problematic use, and, in turn, whether these deficits predict the transition out of problematic substance use. Here, we review longitudinal studies of response inhibition in children/adolescents with little substance experience and longitudinal studies of already addicted individuals attempting to sustain abstinence. Results show that response inhibition and its underlying neural correlates predict both substance use outcomes (onset and abstinence). Neurally, key roles were observed for multiple regions of the frontal cortex (e.g., inferior frontal gyrus, dorsal anterior cingulate cortex, and dorsolateral prefrontal cortex). In general, less activation of these regions during response inhibition predicted not only the onset of substance use, but interestingly also better abstinence-related outcomes among individuals already addicted. The role of subcortical areas, although potentially important, is less clear because of inconsistent results and because these regions are less classically reported in studies of healthy response inhibition. Overall, this review indicates that response inhibition is not simply a manifestation of current drug addiction, but rather a core neurocognitive dimension that predicts key substance use outcomes. Early intervention in inhibitory deficits could have high clinical and public health relevance. © 2016 Elsevier B.V. All rights reserved.

  2. Measuring Early Cortical Visual Processing in the Clinic

    Directory of Open Access Journals (Sweden)

    Linda Bowns

    2017-05-01

    Full Text Available We describe a mobile app that measures early cortical visual processing suitable for use in clinics. The app is called Component Extraction and Motion Integration Test (CEMIT. Observers are asked to respond to the direction of translating plaids that move in one of two very different directions. The plaids have been selected so that the plaid components move in one of the directions and the plaid pattern moves in the other direction. In addition to correctly responding to the pattern motion, observers demonstrate their ability to correctly extract the movement (and therefore the orientation of the underlying components at specific spatial frequencies. We wanted to test CEMIT by seeing if we could replicate the broader tuning observed at low spatial frequencies for this type of plaid. Results from CEMIT were robust and successfully replicated this result for 50 typical observers. We envisage that it will be of use to researchers and clinicians by allowing them to investigate specific deficits at this fundamental level of cortical visual processing. CEMIT may also be used for screening purposes where visual information plays an important role, for example, air traffic controllers.

  3. Disturbed cortico-amygdalar functional connectivity as pathophysiological correlate of working memory deficits in bipolar affective disorder.

    Science.gov (United States)

    Stegmayer, Katharina; Usher, Juliana; Trost, Sarah; Henseler, Ilona; Tost, Heike; Rietschel, Marcella; Falkai, Peter; Gruber, Oliver

    2015-06-01

    Patients suffering from bipolar affective disorder show deficits in working memory functions. In a previous functional magnetic resonance imaging study, we observed an abnormal hyperactivity of the amygdala in bipolar patients during articulatory rehearsal in verbal working memory. In the present study, we investigated the dynamic neurofunctional interactions between the right amygdala and the brain systems that underlie verbal working memory in both bipolar patients and healthy controls. In total, 18 euthymic bipolar patients and 18 healthy controls performed a modified version of the Sternberg item-recognition (working memory) task. We used the psychophysiological interaction approach in order to assess functional connectivity between the right amygdala and the brain regions involved in verbal working memory. In healthy subjects, we found significant negative functional interactions between the right amygdala and multiple cortical brain areas involved in verbal working memory. In comparison with the healthy control subjects, bipolar patients exhibited significantly reduced functional interactions of the right amygdala particularly with the right-hemispheric, i.e., ipsilateral, cortical regions supporting verbal working memory. Together with our previous finding of amygdala hyperactivity in bipolar patients during verbal rehearsal, the present results suggest that a disturbed right-hemispheric "cognitive-emotional" interaction between the amygdala and cortical brain regions underlying working memory may be responsible for amygdala hyperactivation and affects verbal working memory (deficits) in bipolar patients.

  4. Patterns of Neuropsychological Profile and Cortical Thinning in Parkinson's Disease with Punding.

    Directory of Open Access Journals (Sweden)

    Han Soo Yoo

    Full Text Available Punding, one of dopamine replacement treatment related complications, refers to aimless and stereotyped behaviors. To identify possible neural correlates of punding behavior in patients with Parkinson's disease (PD, we investigated the patterns of cognitive profiles and cortical thinning.Of the 186 subjects with PD screened during the study period, we prospectively enrolled 10 PD patients with punding and 43 without punding on the basis of a structured interview. We performed comprehensive neuropsychological tests and voxel-based and regions-of-interest (ROIs-based cortical thickness analysis between PD patients with and without punding.The prevalence of punding in patients with PD was 5.4%. Punding behaviors were closely related to previous occupations or hobbies and showed a temporal relationship to changes of levodopa-equivalent dose (LED. Significant predisposing factors were a long duration of PD and intake of medications of PD, high total daily LED, dyskinesia, and impulse control disorder. Punding severity was correlated with LED (p = 0.029. The neurocognitive assessment revealed that PD patients with punding showed more severe cognitive deficits in the color Stroop task than did those without punding (p = 0.022. Voxel-based analysis showed that PD-punders had significant cortical thinning in the dorsolateral prefrontal area relative to controls. Additionally, ROI-based analysis revealed that cortical thinning in PD-punders relative to PD-nonpunders was localized in the prefrontal cortices, extending into orbitofrontal area.We demonstrated that PD patients with punding performed poorly on cognitive tasks in frontal executive functions and showed severe cortical thinning in the dorsolateral prefrontal and orbitofrontal areas. These findings suggest that prefrontal modulation may be an essential component in the development of punding behavior in patients with PD.

  5. Mouse embryonic retina delivers information controlling cortical neurogenesis.

    Directory of Open Access Journals (Sweden)

    Ciro Bonetti

    2010-12-01

    Full Text Available The relative contribution of extrinsic and intrinsic mechanisms to cortical development is an intensely debated issue and an outstanding question in neurobiology. Currently, the emerging view is that interplay between intrinsic genetic mechanisms and extrinsic information shape different stages of cortical development. Yet, whereas the intrinsic program of early neocortical developmental events has been at least in part decoded, the exact nature and impact of extrinsic signaling are still elusive and controversial. We found that in the mouse developing visual system, acute pharmacological inhibition of spontaneous retinal activity (retinal waves-RWs during embryonic stages increase the rate of corticogenesis (cell cycle withdrawal. Furthermore, early perturbation of retinal spontaneous activity leads to changes of cortical layer structure at a later time point. These data suggest that mouse embryonic retina delivers long-distance information capable of modulating cell genesis in the developing visual cortex and that spontaneous activity is the candidate long-distance acting extrinsic cue mediating this process. In addition, these data may support spontaneous activity to be a general signal coordinating neurogenesis in other developing sensory pathways or areas of the central nervous system.

  6. Altered cortical GABA neurotransmission in schizophrenia: insights into novel therapeutic strategies.

    Science.gov (United States)

    Stan, Ana D; Lewis, David A

    2012-06-01

    Altered markers of cortical GABA neurotransmission are among the most consistently observed abnormalities in postmortem studies of schizophrenia. The altered markers are particularly evident between the chandelier class of GABA neurons and their synaptic targets, the axon initial segment (AIS) of pyramidal neurons. For example, in the dorsolateral prefrontal cortex of subjects with schizophrenia immunoreactivity for the GABA membrane transporter is decreased in presynaptic chandelier neuron axon terminals, whereas immunoreactivity for the GABAA receptor α2 subunit is increased in postsynaptic AIS. Both of these molecular changes appear to be compensatory responses to a presynaptic deficit in GABA synthesis, and thus could represent targets for novel therapeutic strategies intended to augment the brain's own compensatory mechanisms. Recent findings that GABA inputs from neocortical chandelier neurons can be powerfully excitatory provide new ideas about the role of these neurons in the pathophysiology of cortical dysfunction in schizophrenia, and consequently in the design of pharmacological interventions.

  7. Long-term exposure to noise impairs cortical sound processing and attention control.

    Science.gov (United States)

    Kujala, Teija; Shtyrov, Yury; Winkler, Istvan; Saher, Marieke; Tervaniemi, Mari; Sallinen, Mikael; Teder-Sälejärvi, Wolfgang; Alho, Kimmo; Reinikainen, Kalevi; Näätänen, Risto

    2004-11-01

    Long-term exposure to noise impairs human health, causing pathological changes in the inner ear as well as other anatomical and physiological deficits. Numerous individuals are daily exposed to excessive noise. However, there is a lack of systematic research on the effects of noise on cortical function. Here we report data showing that long-term exposure to noise has a persistent effect on central auditory processing and leads to concurrent behavioral deficits. We found that speech-sound discrimination was impaired in noise-exposed individuals, as indicated by behavioral responses and the mismatch negativity brain response. Furthermore, irrelevant sounds increased the distractibility of the noise-exposed subjects, which was shown by increased interference in task performance and aberrant brain responses. These results demonstrate that long-term exposure to noise has long-lasting detrimental effects on central auditory processing and attention control.

  8. Plasticity during Sleep Is Linked to Specific Regulation of Cortical Circuit Activity

    Directory of Open Access Journals (Sweden)

    Niels Niethard

    2017-09-01

    Full Text Available Sleep is thought to be involved in the regulation of synaptic plasticity in two ways: by enhancing local plastic processes underlying the consolidation of specific memories and by supporting global synaptic homeostasis. Here, we briefly summarize recent structural and functional studies examining sleep-associated changes in synaptic morphology and neural excitability. These studies point to a global down-scaling of synaptic strength across sleep while a subset of synapses increases in strength. Similarly, neuronal excitability on average decreases across sleep, whereas subsets of neurons increase firing rates across sleep. Whether synapse formation and excitability is down or upregulated across sleep appears to partly depend on the cell’s activity level during wakefulness. Processes of memory-specific upregulation of synapse formation and excitability are observed during slow wave sleep (SWS, whereas global downregulation resulting in elimination of synapses and decreased neural firing is linked to rapid eye movement sleep (REM sleep. Studies of the excitation/inhibition balance in cortical circuits suggest that both processes are connected to a specific inhibitory regulation of cortical principal neurons, characterized by an enhanced perisomatic inhibition via parvalbumin positive (PV+ cells, together with a release from dendritic inhibition by somatostatin positive (SOM+ cells. Such shift towards increased perisomatic inhibition of principal cells appears to be a general motif which underlies the plastic synaptic changes observed during sleep, regardless of whether towards up or downregulation.

  9. Cortical brain structure and sexual orientation in adult females with bipolar disorder or attention deficit hyperactivity disorder.

    Science.gov (United States)

    Abé, Christoph; Rahman, Qazi; Långström, Niklas; Rydén, Eleonore; Ingvar, Martin; Landén, Mikael

    2018-05-29

    Nonheterosexual individuals have higher risk of psychiatric morbidity. Together with growing evidence for sexual orientation-related brain differences, this raises the concern that sexual orientation may be an important factor to control for in neuroimaging studies of neuropsychiatric disorders. We studied sexual orientation in adult psychiatric patients with bipolar disorder (BD) or ADHD in a large clinical cohort (N = 154). We compared cortical brain structure in exclusively heterosexual women (HEW, n = 29) with that of nonexclusively heterosexual women (nHEW, n = 37) using surface-based reconstruction techniques provided by FreeSurfer. The prevalence of nonheterosexual sexual orientation was tentatively higher than reported in general population samples. Consistent with previously reported cross-sex shifted brain patterns among homosexual individuals, nHEW patients showed significantly larger cortical volumes than HEW in medial occipital brain regions. We found evidence for a sex-reversed difference in cortical volume among nonheterosexual female patients, which provides insights into the neurobiology of sexual orientation, and may provide the first clues toward a better neurobiological understanding of the association between sexual orientation and mental health. We also suggest that sexual orientation is an important factor to consider in future neuroimaging studies of populations with certain mental health disorders. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

  10. The association of Internet addiction symptoms with impulsiveness, loneliness, novelty seeking and behavioral inhibition system among adults with attention-deficit/hyperactivity disorder (ADHD).

    Science.gov (United States)

    Li, Wendi; Zhang, Wei; Xiao, Lin; Nie, Jia

    2016-09-30

    The aims of this study were to test the associations of the Internet addiction symptoms with impulsiveness, loneliness, novelty seeking and behavioral inhibition systems among adults with attention-deficit/hyperactivity disorder (ADHD) and adults with non-ADHD. A total of 146 adults aged between 19 and 33 years involved in this study. Participants were assessed with the Chinese version of the adult ADHD Self-report scale (ASRS), the Revised Chen Internet Addiction Scale (CIAS-R), the Barratt Impulsiveness Scale 11 (BIS-11), the Tridimensional Personality Questionnaire (TPQ), the UCLA loneliness scale, and the Behavioral Inhibition System and Behavioral Activation System Scale (BIS/BAS Scale). The results of hierarchical regression analysis indicated that impulsiveness, loneliness, and behavioral inhibition system were significant predictors of Internet addition among adults with ADHD. Higher loneliness was significantly associated with more severe Internet addition symptoms among the non-ADHD group. Adults with high impulsiveness, loneliness, and BIS should be treated with caution for preventing Internet addiction. In addition, adults with and without ADHD should be provided with different preventative strategies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Anxiety Impacts Cognitive Inhibition in Remitted Anorexia Nervosa.

    Science.gov (United States)

    Ely, Alice V; Wierenga, Christina E; Kaye, Walter H

    2016-07-01

    Eating disorders are complex psychiatric disorders, associated with alterations in neural and cognitive functioning. Research suggests inhibition and set-shifting deficits in anorexia nervosa (AN), but less is known about the persistence of these deficits after recovery, or their relationship to comorbid psychiatric symptoms. Women aged 19-45 remitted from AN (RAN, N = 47) and controls (CW, N = 24) completed the Delis-Kaplan Executive Function System Color-Word Interference Test. It was hypothesized that RAN, and those with higher anxiety or depression, would demonstrate worse Inhibition and Switching task performance than CW. Differences in performance between groups trended toward significance on Inhibition Ratio (p = 0.08) but were nonsignificant on Inhibition/Switching Ratio (p = 0.93). A model including State Anxiety and diagnosis revealed a significant independent effect of State Anxiety (p = 0.026), but not of diagnosis nor their interaction. Regressing State Anxiety on Color-Word Interference Test Inhibition among just the RAN group was significant [β = 0.37, t(46) = 2.63, p = 0.012] but among just CW was not (p = 0.54). Interference control for neutral stimuli is influenced by anxiety in women with a history of AN. Anxiety is linked with greater symptom severity among AN individuals, and state anxiety may account for larger deficits seen on tasks using disorder-specific stimuli. Future research is warranted to elucidate the nature of neuropsychological deficits in eating disorders. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.

  12. Deficits in social cognition and response flexibility in pediatric bipolar disorder.

    Science.gov (United States)

    McClure, Erin B; Treland, Julia E; Snow, Joseph; Schmajuk, Mariana; Dickstein, Daniel P; Towbin, Kenneth E; Charney, Dennis S; Pine, Daniel S; Leibenluft, Ellen

    2005-09-01

    Little is known about neuropsychological and social-cognitive function in patients with pediatric bipolar disorder. Identification of specific deficits and strengths that characterize pediatric bipolar disorder would facilitate advances in diagnosis, treatment, and research on pathophysiology. The purpose of this study was to test the hypothesis that youths with bipolar disorder would perform more poorly than matched healthy comparison subjects on measures of social cognition, motor inhibition, and response flexibility. Forty outpatients with pediatric bipolar disorder and 22 comparison subjects (no differences in age, gender, and IQ) completed measures of social cognition (the pragmatic judgment subtest of the Comprehensive Assessment of Spoken Language, facial expression recognition subtests of the Diagnostic Analysis of Nonverbal Accuracy Scale, the oral expression subtest of the Test of Language Competence), inhibition and response flexibility (stop and stop-change tasks), and motor inhibition (continuous performance tasks). Pediatric bipolar disorder patients performed more poorly than comparison subjects on social-cognitive measures (pragmatic judgment of language, facial expression recognition) and on a task requiring response flexibility. These deficits were present in euthymic patients. Differences between patients and comparison subjects could not be attributed to comorbid attention deficit hyperactivity disorder. Findings of impaired social cognition and response flexibility in youths with pediatric bipolar disorder suggest continuity between pediatric bipolar disorder and adult bipolar disorder. These findings provide a foundation for neurocognitive research designed to identify the neural mechanisms underlying these deficits.

  13. Impaired inhibition and working memory in response to internet-related words among adolescents with internet addiction: A comparison with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Nie, Jia; Zhang, Wei; Chen, Jia; Li, Wendi

    2016-02-28

    Impairments in response inhibition and working memory functions have been found to be closely associated with internet addiction (IA) symptoms and attention-deficit/hyperactivity disorder (ADHD) symptoms. In this study, we examined response inhibition and working memory processes with two different materials (internet-related and internet-unrelated stimuli) among adolescents with IA, ADHD and co-morbid IA/ADHD. Twenty-four individuals with IA, 28 individuals with ADHD, 17 individuals with IA/ADHD, and 26 matched normal controls (NC) individuals were recruited. All participants were measured with a Stop-Signal Task and 2-Back Task under the same experimental conditions. In comparison to the NC group, subjects with IA, ADHD and IA/ADHD demonstrated impaired inhibition and working memory. In addition, in comparison to internet-unrelated conditions, IA and co-morbid subjects performed worse on the internet-related condition in the Stop trials during the stop-signal task, and they showed better working memory on the internet-related condition in the 2-Back Task. The findings of our study suggest individuals with IA and IA/ADHD may be impaired in inhibition and working memory functions that might be linked to poor inhibition specifically related to internet-related stimuli, which will advance our understanding of IA and contribute to prevention and intervention strategies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Effects of different deficit irrigation on sugar accumulation of pineapple during development

    Science.gov (United States)

    Feng, Haiyan; Du, Liqing; Liu, Shenghui; Zhang, Xiumei

    2017-08-01

    The potted pineapple cultivar ‘Comte de paris’ was used to study the influence of deficit irrigation on fruit sugar accumulation in greenhouse during the fruit enlargement period. The study included a control (normal irrigation) and two treatment groups, moderate deficit (50% of the control irrigation) and severe deficit (25% of the control irrigation). The results indicated that the deficit irrigation significantly decreased the sucrose accumulation. The sucrose content in the fruits of moderate deficit irrigation was the lowest. During the mature period, the deficit irrigation decreased the sucrose phosophate synthase activity(SPS) an increased the sucrose synthase (SS) and neutral invertase (NI). The moderate deficit irrigation significantly improved the acid invertase activity(AI). However, it was inhibited by the severe deficit irrigation. In general, the moderate treatment reduced the SPS activity and enhanced the NI and AI activities, while the severe treatment decreased the SPS and AI activities.

  15. Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients' fluency performance in a lateralised manner

    Directory of Open Access Journals (Sweden)

    Olivia Geisseler

    2016-01-01

    Full Text Available Cognitive impairment is as an important feature of Multiple Sclerosis (MS, and might be even more relevant to patients than mobility restrictions. Compared to the multitude of studies investigating memory deficits or basic cognitive slowing, executive dysfunction is a rarely studied cognitive domain in MS, and its neural correlates remain largely unexplored. Even rarer are topological studies on specific cognitive functions in MS. Here we used several structural MRI parameters – including cortical thinning and T2 lesion load – to investigate neural correlates of executive dysfunction, both on a global and a regional level by means of voxel- and vertex-wise analyses. Forty-eight patients with relapsing-remitting MS and 48 healthy controls participated in the study. Five executive functions were assessed, i.e. verbal and figural fluency, working memory, interference control and set shifting. Patients scored lower than controls in verbal and figural fluency only, and displayed widespread cortical thinning. On a global level, cortical thickness independently predicted verbal fluency performance, when controlling for lesion volume and central brain atrophy estimates. On a regional level, cortical thinning in the anterior cingulate region correlated with deficits in verbal and figural fluency and did so in a lateralised manner: Left-sided thinning was related to reduced verbal – but not figural – fluency, whereas the opposite pattern was observed for right-sided thinning. We conclude that executive dysfunction in MS patients can specifically affect verbal and figural fluency. The observed lateralised clinico-anatomical correlation has previously been described in brain-damaged patients with large focal lesions only, for example after stroke. Based on focal grey matter atrophy, we here show for the first time comparable lateralised findings in a white matter disease with widespread pathology.

  16. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders

    Science.gov (United States)

    Kana, Rajesh K.; Libero, Lauren E.; Moore, Marie S.

    2011-12-01

    Recent findings of neurological functioning in autism spectrum disorder (ASD) point to altered brain connectivity as a key feature of its pathophysiology. The cortical underconnectivity theory of ASD (Just et al., 2004) provides an integrated framework for addressing these new findings. This theory suggests that weaker functional connections among brain areas in those with ASD hamper their ability to accomplish complex cognitive and social tasks successfully. We will discuss this theory, but will modify the term underconnectivity to ‘disrupted cortical connectivity’ to capture patterns of both under- and over-connectivity in the brain. In this paper, we will review the existing literature on ASD to marshal supporting evidence for hypotheses formulated on the disrupted cortical connectivity theory. These hypotheses are: 1) underconnectivity in ASD is manifested mainly in long-distance cortical as well as subcortical connections rather than in short-distance cortical connections; 2) underconnectivity in ASD is manifested only in complex cognitive and social functions and not in low-level sensory and perceptual tasks; 3) functional underconnectivity in ASD may be the result of underlying anatomical abnormalities, such as problems in the integrity of white matter; 4) the ASD brain adapts to underconnectivity through compensatory strategies such as overconnectivity mainly in frontal and in posterior brain areas. This may be manifested as deficits in tasks that require frontal-parietal integration. While overconnectivity can be tested by examining the cortical minicolumn organization, long-distance underconnectivity can be tested by cognitively demanding tasks; and 5) functional underconnectivity in brain areas in ASD will be seen not only during complex tasks but also during task-free resting states. We will also discuss some empirical predictions that can be tested in future studies, such as: 1) how disrupted connectivity relates to cognitive impairments in skills

  17. Inhibition Performance in Children with Math Disabilities

    OpenAIRE

    Winegar, Kathryn Lileth

    2013-01-01

    This study examined the inhibition deficit hypothesis in children with math disabilities (MD). Children with and without MD were compared on two inhibition tasks that included the random generation of numbers and letters. The results addressed three hypotheses. Weak support was found for the first hypothesis which stated difficulties related to inhibition are significantly related to math performance. I found partial support for this hypothesis in that inhibition was related to math problem s...

  18. Electrophysiological correlates of reading in children with attention deficit hyperactivity disorder.

    Science.gov (United States)

    Gonzalez-Perez, P A; Hernandez-Exposito, S; Perez, J; Ramirez, G; Dominguez, A

    2018-03-16

    To investigate whether or not the deficits in executive functions in the attention deficit hyperactivity disorder (ADHD) affect reading comprehension and identify a potential biological marker of this neuropsychological endophenotype through event-related potentials (ERP). The phenotypic association between reading comprehension and the specific functions of inhibition and working memory is studied. The sample consisted of 52 children with ADHD (8-13 years) divided in two groups according to the presence (TDAH-; n = 27; percentile TDAH+; n = 25; percentile > 50) of reading comprehension deficits and a control group (n = 27). The executive functions were evaluated. The ERPs were assessed during a task in which anaphoric sentences of different lengths were presented, recording the ERP in the last adjective of the sentence that required a gender agreement. Working memory and inhibition were associated to reading comprehension performance. The ADHD+ group and the control group seem to detect the disagreement at 100 ms, while the ADHD- group does not activate its working memory until 250 ms. The delay in the implementation of the working memory mechanisms helps us to understand the deficits in reading comprehension of the ADHD- group.

  19. Parvalbumin- and vasoactive intestinal polypeptide-expressing neocortical interneurons impose differential inhibition on Martinotti cells

    NARCIS (Netherlands)

    Walker, F.; Mock, M.; Feyerabend, M.; Guy, J.; Wagener, R.J.; Schubert, D.; Staiger, J.F.; Witte, M. de

    2016-01-01

    Disinhibition of cortical excitatory cell gate information flow through and between cortical columns. The major contribution of Martinotti cells (MC) is providing dendritic inhibition to excitatory neurons and therefore they are a main component of disinhibitory connections. Here we show by means of

  20. Persistent neurological deficit from iodinated contrast encephalopathy following intracranial aneurysm coiling. A case report and review of the literature.

    LENUS (Irish Health Repository)

    Leong, S

    2012-03-01

    Neurotoxicity from iodinated contrast agents is a known but rare complication of angiography and neurovascular intervention. Neurotoxicity results from contrast penetrating the blood-brain barrier with resultant cerebral oedema and altered neuronal excitability. Clinical effects include encephalopathy, seizures, cortical blindness and focal neurological deficits. Contrast induced encephalopathy is extensively reported as a transient and reversible phenomenon. We describe a patient with a persistent motor deficit due to an encephalopathy from iodinated contrast media administered during cerebral aneurysm coiling. This observation and a review of the literature highlights that contrast-induced encephalopathy may not always have a benign outcome and can cause permanent deficits. This potential harmful effect should be recognised by the angiographer and the interventionalist.

  1. Do Chinese Children With Math Difficulties Have a Deficit in Executive Functioning?

    Directory of Open Access Journals (Sweden)

    Xiaochen Wang

    2018-06-01

    Full Text Available Several studies have shown that Executive Functioning (EF is a unique predictor of mathematics performance. However, whether or not children with mathematics difficulties (MD experience deficits in EF remains unclear. Thus, the purpose of this study was to examine if Chinese children with MD experience deficits in EF. We assessed 23 children with MD (9 girls, mean age = 10.40 years, 30 children with reading difficulties and MD (RDMD; 12 girls, mean age = 10.82 years, and 31 typically-developing (TD peers (16 girls, mean age = 10.41 years on measures of inhibition (Color-Word Stroop, Inhibition, shifting of attention (Planned Connections, Rapid Alternating Stimuli, working memory (Digit Span Backwards, Listening Span, processing speed (Visual Matching, Planned Search, reading (Character Recognition, Sentence Verification, and mathematics (Addition and Subtraction Fluency, Math Standard Achievement Test. The results of MANOVA analyses showed first that the performance of the MD children in all EF tasks was worse than their TD peers. Second, with the exception of the shifting tasks in which the MD children performed better than the RDMD children, the performance of the two groups was similar in all measures of working memory and inhibition. Finally, covarying for the effects of processing speed eliminated almost all differences between the TD and MD groups (the only exception was Listening Span as well as the differences between the MD and RDMD groups in shifting of attention. Taken together, our findings suggest that although Chinese children with MD (with or without comorbid reading difficulties experience significant deficits in all EF skills, most of their deficits can be accounted by lower-level deficits in processing speed.

  2. Recent advancements in diffusion MRI for investigating cortical development after preterm birth—potential and pitfalls

    OpenAIRE

    Dudink, J.; Pieterman, K.; Leemans, A.; Kleinnijenhuis, M.; van Cappellen van Walsum, A. M.; Hoebeek, F. E.

    2015-01-01

    Preterm infants are born during a critical period of brain maturation, in which even subtle events can result in substantial behavioral, motor and cognitive deficits, as well as psychiatric diseases. Recent evidence shows that the main source for these devastating disabilities is not necessarily white matter (WM) damage but could also be disruptions of cortical microstructure. Animal studies showed how moderate hypoxic-ischemic conditions did not result in significant neuronal loss in the dev...

  3. Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice

    Directory of Open Access Journals (Sweden)

    Michiel M. ten Brinke

    2015-12-01

    Full Text Available Three decades of electrophysiological research on cerebellar cortical activity underlying Pavlovian conditioning have expanded our understanding of motor learning in the brain. Purkinje cell simple spike suppression is considered to be crucial in the expression of conditional blink responses (CRs. However, trial-by-trial quantification of this link in awake behaving animals is lacking, and current hypotheses regarding the underlying plasticity mechanisms have diverged from the classical parallel fiber one to the Purkinje cell synapse LTD hypothesis. Here, we establish that acquired simple spike suppression, acquired conditioned stimulus (CS-related complex spike responses, and molecular layer interneuron (MLI activity predict the expression of CRs on a trial-by-trial basis using awake behaving mice. Additionally, we show that two independent transgenic mouse mutants with impaired MLI function exhibit motor learning deficits. Our findings suggest multiple cerebellar cortical plasticity mechanisms underlying simple spike suppression, and they implicate the broader involvement of the olivocerebellar module within the interstimulus interval.

  4. Dominant hemisphere lateralization of cortical parasympathetic control as revealed by frontotemporal dementia

    Science.gov (United States)

    Guo, Christine C.; Sturm, Virginia E.; Zhou, Juan; Gennatas, Efstathios D.; Trujillo, Andrew J.; Hua, Alice Y.; Crawford, Richard; Stables, Lara; Kramer, Joel H.; Rankin, Katherine; Levenson, Robert W.; Rosen, Howard J.; Miller, Bruce L.; Seeley, William W.

    2016-01-01

    The brain continuously influences and perceives the physiological condition of the body. Related cortical representations have been proposed to shape emotional experience and guide behavior. Although previous studies have identified brain regions recruited during autonomic processing, neurological lesion studies have yet to delineate the regions critical for maintaining autonomic outflow. Even greater controversy surrounds hemispheric lateralization along the parasympathetic–sympathetic axis. The behavioral variant of frontotemporal dementia (bvFTD), featuring progressive and often asymmetric degeneration that includes the frontoinsular and cingulate cortices, provides a unique lesion model for elucidating brain structures that control autonomic tone. Here, we show that bvFTD is associated with reduced baseline cardiac vagal tone and that this reduction correlates with left-lateralized functional and structural frontoinsular and cingulate cortex deficits and with reduced agreeableness. Our results suggest that networked brain regions in the dominant hemisphere are critical for maintaining an adaptive level of baseline parasympathetic outflow. PMID:27071080

  5. Caspase-9 mediates synaptic plasticity and memory deficits of Danish dementia knock-in mice: caspase-9 inhibition provides therapeutic protection

    Directory of Open Access Journals (Sweden)

    Tamayev Robert

    2012-12-01

    Full Text Available Abstract Background Mutations in either Aβ Precursor protein (APP or genes that regulate APP processing, such as BRI2/ITM2B and PSEN1/PSEN2, cause familial dementias. Although dementias due to APP/PSEN1/PSEN2 mutations are classified as familial Alzheimer disease (FAD and those due to mutations in BRI2/ITM2B as British and Danish dementias (FBD, FDD, data suggest that these diseases have a common pathogenesis involving toxic APP metabolites. It was previously shown that FAD mutations in APP and PSENs promote activation of caspases leading to the hypothesis that aberrant caspase activation could participate in AD pathogenesis. Results Here, we tested whether a similar mechanism applies to the Danish BRI2/ITM2B mutation. We have generated a genetically congruous mouse model of FDD, called FDDKI, which presents memory and synaptic plasticity deficits. We found that caspase-9 is activated in hippocampal synaptic fractions of FDDKI mice and inhibition of caspase-9 activity rescues both synaptic plasticity and memory deficits. Conclusion These data directly implicate caspase-9 in the pathogenesis of Danish dementia and suggest that reducing caspase-9 activity is a valid therapeutic approach to treating human dementias.

  6. Fundamental deficits of auditory perception in Wernicke's aphasia.

    Science.gov (United States)

    Robson, Holly; Grube, Manon; Lambon Ralph, Matthew A; Griffiths, Timothy D; Sage, Karen

    2013-01-01

    This work investigates the nature of the comprehension impairment in Wernicke's aphasia (WA), by examining the relationship between deficits in auditory processing of fundamental, non-verbal acoustic stimuli and auditory comprehension. WA, a condition resulting in severely disrupted auditory comprehension, primarily occurs following a cerebrovascular accident (CVA) to the left temporo-parietal cortex. Whilst damage to posterior superior temporal areas is associated with auditory linguistic comprehension impairments, functional-imaging indicates that these areas may not be specific to speech processing but part of a network for generic auditory analysis. We examined analysis of basic acoustic stimuli in WA participants (n = 10) using auditory stimuli reflective of theories of cortical auditory processing and of speech cues. Auditory spectral, temporal and spectro-temporal analysis was assessed using pure-tone frequency discrimination, frequency modulation (FM) detection and the detection of dynamic modulation (DM) in "moving ripple" stimuli. All tasks used criterion-free, adaptive measures of threshold to ensure reliable results at the individual level. Participants with WA showed normal frequency discrimination but significant impairments in FM and DM detection, relative to age- and hearing-matched controls at the group level (n = 10). At the individual level, there was considerable variation in performance, and thresholds for both FM and DM detection correlated significantly with auditory comprehension abilities in the WA participants. These results demonstrate the co-occurrence of a deficit in fundamental auditory processing of temporal and spectro-temporal non-verbal stimuli in WA, which may have a causal contribution to the auditory language comprehension impairment. Results are discussed in the context of traditional neuropsychology and current models of cortical auditory processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Effects of electroacupuncture on the cortical extracellular signal regulated kinase pathway in rats with cerebral ischaemia/reperfusion.

    Science.gov (United States)

    Wu, Chunxiao; Li, Chun; Zhou, Guoping; Yang, Lu; Jiang, Guimei; Chen, Jing; Li, Qiushi; Zhan, Zhulian; Xu, Xiuhong; Zhang, Xin

    2017-12-01

    To explore the effects of electroacupuncture (EA) on the phosphorylated extracellular signal regulated kinase (p-ERK) pathway of the cerebral cortex in a rat model of focal cerebral ischaemia/reperfusion (I/R). 160 adult Sprague-Dawley rats underwent middle carotid artery occlusion (MCAO) to establish I/R injury and were randomly divided into four groups (n=40 each) that remained untreated (I/R group) or received EA at LU5, LI4, ST36 and SP6 (I/R+EA group), the ERK inhibitor PD98059 (I/R+PD group), or both interventions (I/R+PD+EA groups). An additional 40 rats undergoing sham surgery formed a healthy control group. Eight rats from each group were sacrificed at the following time points: 2 hours, 6 hours, 1 day, 3 days and 1 week. Neurological function was assessed using neurological deficit scores, morphological examination was performed following haematoxylin-eosin staining of cortical tissues, and apoptotic indices were calculated after terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labelling. Cortical protein and mRNA expression of p-ERK and ERK were measured by immunohistochemistry and real-time quantitative PCR, respectively. Compared with the I/R group, neurological deficit scores and apoptotic indices were lower in the I/R+EA group at 1 and 3 days, whereas mRNA/protein expression of ERK/p-ERK was higher in the EA group at all time points studied. Our results suggest that EA can alleviate neurological deficits and reduce cortical apoptosis in rats with I/R injury. These anti-apoptotic effects may be due to upregulation of p-ERK. Moreover, apoptosis appeared to peak at 1 day after I/R injury, which might therefore represent the optimal time point for targeting of EA. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Magnified Neural Envelope Coding Predicts Deficits in Speech Perception in Noise.

    Science.gov (United States)

    Millman, Rebecca E; Mattys, Sven L; Gouws, André D; Prendergast, Garreth

    2017-08-09

    Verbal communication in noisy backgrounds is challenging. Understanding speech in background noise that fluctuates in intensity over time is particularly difficult for hearing-impaired listeners with a sensorineural hearing loss (SNHL). The reduction in fast-acting cochlear compression associated with SNHL exaggerates the perceived fluctuations in intensity in amplitude-modulated sounds. SNHL-induced changes in the coding of amplitude-modulated sounds may have a detrimental effect on the ability of SNHL listeners to understand speech in the presence of modulated background noise. To date, direct evidence for a link between magnified envelope coding and deficits in speech identification in modulated noise has been absent. Here, magnetoencephalography was used to quantify the effects of SNHL on phase locking to the temporal envelope of modulated noise (envelope coding) in human auditory cortex. Our results show that SNHL enhances the amplitude of envelope coding in posteromedial auditory cortex, whereas it enhances the fidelity of envelope coding in posteromedial and posterolateral auditory cortex. This dissociation was more evident in the right hemisphere, demonstrating functional lateralization in enhanced envelope coding in SNHL listeners. However, enhanced envelope coding was not perceptually beneficial. Our results also show that both hearing thresholds and, to a lesser extent, magnified cortical envelope coding in left posteromedial auditory cortex predict speech identification in modulated background noise. We propose a framework in which magnified envelope coding in posteromedial auditory cortex disrupts the segregation of speech from background noise, leading to deficits in speech perception in modulated background noise. SIGNIFICANCE STATEMENT People with hearing loss struggle to follow conversations in noisy environments. Background noise that fluctuates in intensity over time poses a particular challenge. Using magnetoencephalography, we demonstrate

  9. Cingulate, Frontal and Parietal Cortical Dysfunction in Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Bush, George

    2011-01-01

    Functional and structural neuroimaging have identified abnormalities of the brain that are likely to contribute to the neuropathophysiology of attention-deficit/hyperactivity disorder (ADHD). In particular, hypofunction of the brain regions comprising the cingulo-frontal-parietal (CFP) cognitive-attention network have been consistently observed across studies. These are major components of neural systems that are relevant to ADHD, including cognitive/attention networks, motor systems and reward/feedback-based processing systems. Moreover, these areas interact with other brain circuits that have been implicated in ADHD, such as the “default mode” resting state network. ADHD imaging data related to CFP network dysfunction will be selectively highlighted here to help facilitate its integration with the other information presented in this special issue. Together, these reviews will help shed light on the neurobiology of ADHD. PMID:21489409

  10. Cortical GABA markers identify a molecular subtype of psychotic and bipolar disorders.

    Science.gov (United States)

    Volk, D W; Sampson, A R; Zhang, Y; Edelson, J R; Lewis, D A

    2016-09-01

    Deficits in gamma aminobutyric acid (GABA) neuron-related markers, including the GABA-synthesizing enzyme GAD67, the calcium-binding protein parvalbumin, the neuropeptide somatostatin, and the transcription factor Lhx6, are most pronounced in a subset of schizophrenia subjects identified as having a 'low GABA marker' (LGM) molecular phenotype. Furthermore, schizophrenia shares degrees of genetic liability, clinical features and cortical circuitry abnormalities with schizoaffective disorder and bipolar disorder. Therefore, we determined the extent to which a similar LGM molecular phenotype may also exist in subjects with these disorders. Transcript levels for GAD67, parvalbumin, somatostatin, and Lhx6 were quantified using quantitative PCR in prefrontal cortex area 9 of 184 subjects with a diagnosis of schizophrenia (n = 39), schizoaffective disorder (n = 23) or bipolar disorder (n = 35), or with a confirmed absence of any psychiatric diagnoses (n = 87). A blinded clustering approach was employed to determine the presence of a LGM molecular phenotype across all subjects. Approximately 49% of the subjects with schizophrenia, 48% of the subjects with schizoaffective disorder, and 29% of the subjects with bipolar disorder, but only 5% of unaffected subjects, clustered in the cortical LGM molecular phenotype. These findings support the characterization of psychotic and bipolar disorders by cortical molecular phenotype which may help elucidate more pathophysiologically informed and personalized medications.

  11. Positron emission tomography studies of neuronal activity patterns during sensory and cognitive stimulations in Alzheimer's disease. A study of cortical attention sites in man

    International Nuclear Information System (INIS)

    Johannsen, Peter

    1997-01-01

    This Ph.D.-thesis describes different subtypes of attention, models for the organization of attention, and the attention deficits in Alzheimer's disease. The experimental part of the study is based on studies of sustained and divided attention to two different sensory modalities; a visual checkerboard stimulation reversing at 7 Hz, and a 110 Hz vibrotactile stimulation of the right hand in a group of healthy elderly subjects (n = 16) age-matched with a group of patients with mild to moderate Alzheimer's disease (n = 16). The cortical activations during the attention tasks have been mapped using O-15-water and positron emission tomography (PET) measurements of regional cerebral blood flow (rCBF) during rest and during performance of an attention task. After anatomical standardization and averaging over subjects, activation foci were assessed by a t-statistical evaluation of the differences of rCBF maps acquired before and during the execution of the attention tasks. The rCBF deficits in the Alzheimer patients were compared to rCBF pattern in the healthy elderly and assessed statistically on a voxel-by-voxel basis, revealing a distinct and localized pattern of rCBF deficits extending from the hippocampal area along the longitudinal fascicle to the temporo-parietal cortices with further deficits in the frontal regions. The resting rCBF deficits are distributed with the same pattern as described in neuropathological studies of lesions in Alzheimer's disease. In the healthy elderly, both sustained and divided attention elicited activation of the right inferior parietal lobule (Brodmann Area 19/40) and the right middle frontal gyrus (Brodmann Area 46). Divided attention favored activation of the right middle frontal gyrus and sustained attention activation of the right inferior parietal lobule. Both the frontal and the parietal attention sites were active during attention to both the visual and the vibrotactile stimuli. These results support a network hypothesis of

  12. Temporal Preparation and Inhibitory Deficit in Fibromyalgia Syndrome

    Science.gov (United States)

    Correa, Angel; Miro, Elena; Martinez, M. Pilar; Sanchez, Ana I.; Lupianez, Juan

    2011-01-01

    Cognitive deficits in fibromyalgia may be specifically related to controlled processes, such as those measured by working memory or executive function tasks. This hypothesis was tested here by measuring controlled temporal preparation (temporal orienting) during a response inhibition (go no-go) task. Temporal orienting effects (faster reaction…

  13. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis

    International Nuclear Information System (INIS)

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting; Zheng, Ruimao; Zhu, Shigong

    2014-01-01

    Highlights: • 14,15-EET inhibits OGD-induced apoptosis in cortical neurons. • Mitochondrial biogenesis of cortical neurons is promoted by 14,15-EET. • 14,15-EET preserves mitochondrial function of cortical neurons under OGD. • CREB mediates effect of 14,15-EET on mitochondrial biogenesis and function. - Abstract: 14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen–glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1

  14. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting [Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China); Zheng, Ruimao, E-mail: rmzheng@pku.edu.cn [Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China); Zhu, Shigong, E-mail: sgzhu@bjmu.edu.cn [Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China)

    2014-07-18

    Highlights: • 14,15-EET inhibits OGD-induced apoptosis in cortical neurons. • Mitochondrial biogenesis of cortical neurons is promoted by 14,15-EET. • 14,15-EET preserves mitochondrial function of cortical neurons under OGD. • CREB mediates effect of 14,15-EET on mitochondrial biogenesis and function. - Abstract: 14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen–glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1.

  15. c-Fos and Arc/Arg3.1 expression in auditory and visual cortices after hearing loss: Evidence of sensory crossmodal reorganization in adult rats.

    Science.gov (United States)

    Pernia, M; Estevez, S; Poveda, C; Plaza, I; Carro, J; Juiz, J M; Merchan, M A

    2017-08-15

    Cross-modal reorganization in the auditory and visual cortices has been reported after hearing and visual deficits mostly during the developmental period, possibly underlying sensory compensation mechanisms. However, there are very few data on the existence or nature and timeline of such reorganization events during sensory deficits in adulthood. In this study, we assessed long-term changes in activity-dependent immediate early genes c-Fos and Arc/Arg3.1 in auditory and neighboring visual cortical areas after bilateral deafness in young adult rats. Specifically, we analyzed qualitatively and quantitatively c-Fos and Arc/Arg3.1 immunoreactivity at 15 and 90 days after cochlea removal. We report extensive, global loss of c-Fos and Arc/Arg3.1 immunoreactive neurons in the auditory cortex 15 days after permanent auditory deprivation in adult rats, which is partly reversed 90 days after deafness. Simultaneously, the number and labeling intensity of c-Fos- and Arc/Arg3.1-immunoreactive neurons progressively increase in neighboring visual cortical areas from 2 weeks after deafness and these changes stabilize three months after inducing the cochlear lesion. These findings support plastic, compensatory, long-term changes in activity in the auditory and visual cortices after auditory deprivation in the adult rats. Further studies may clarify whether those changes result in perceptual potentiation of visual drives on auditory regions of the adult cortex. © 2017 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  16. Increased Cortical Inhibition in Autism-Linked Neuroligin-3R451C Mice Is Due in Part to Loss of Endocannabinoid Signaling.

    Science.gov (United States)

    Speed, Haley E; Masiulis, Irene; Gibson, Jay R; Powell, Craig M

    2015-01-01

    A single, maternally inherited, X-linked point mutation leading to an arginine to cysteine substitution at amino acid 451 (R451C) of Neuroligin 3 (NLGN3R451C) is a likely cause of autism in two brothers. Knockin mice expressing the Nlgn3R451C mutation in place of wild-type Nlgn3 demonstrate increased inhibitory synaptic strength in somatosensory cortex, resulting in an excitatory/inhibitory (E/I) imbalance that is potentially relevant for autism-associated behavioral deficits characteristic of these mice. We have replicated the increase in evoked inhibitory postsynaptic currents (eIPSCs) onto layer II/III cortical pyramidal neurons. We also find that increased frequency of spontaneous mIPSCs in Nlgn3R451C mice occurs in the absence of action potential-driven transmission. This suggests the E/I imbalance is due to changes at the synapse level, as opposed to the network level. Next, we use paired whole-cell recordings in an attempt to identify specific interneuron subtypes affected by the Nlgn3R451C mutation. Curiously, we observe no change in the amplitude of cell-to-cell, unitary IPSCs (uIPSCs) from parvalbumin-positive (PV) or somatostatin-positive (SOM) interneurons onto pyramidal neurons. We also observe no change in the number or density of PV and SOM interneurons in LII/III of somatosensory cortex. This effectively rules out a role for these particular interneurons in the increased inhibitory synaptic transmission, pointing to perhaps alternative interneuron subtypes. Lastly, impaired endocannabinoid signaling has been implicated in hippocampal synaptic dysfunction in Nlgn3R451C mice, but has not been investigated at cortical synapses. We find that bath application of the CB1 antagonist, AM 251 in WT mice eliminates the Nlgn3R451C increase in eIPSC amplitude and mIPSC frequency, indicating that increased inhibitory transmission in mutant mice is due, at least in part, to a loss of endocannabinoid signaling through CB1 receptors likely acting at interneurons

  17. Increased Cortical Inhibition in Autism-Linked Neuroligin-3R451C Mice Is Due in Part to Loss of Endocannabinoid Signaling.

    Directory of Open Access Journals (Sweden)

    Haley E Speed

    Full Text Available A single, maternally inherited, X-linked point mutation leading to an arginine to cysteine substitution at amino acid 451 (R451C of Neuroligin 3 (NLGN3R451C is a likely cause of autism in two brothers. Knockin mice expressing the Nlgn3R451C mutation in place of wild-type Nlgn3 demonstrate increased inhibitory synaptic strength in somatosensory cortex, resulting in an excitatory/inhibitory (E/I imbalance that is potentially relevant for autism-associated behavioral deficits characteristic of these mice. We have replicated the increase in evoked inhibitory postsynaptic currents (eIPSCs onto layer II/III cortical pyramidal neurons. We also find that increased frequency of spontaneous mIPSCs in Nlgn3R451C mice occurs in the absence of action potential-driven transmission. This suggests the E/I imbalance is due to changes at the synapse level, as opposed to the network level. Next, we use paired whole-cell recordings in an attempt to identify specific interneuron subtypes affected by the Nlgn3R451C mutation. Curiously, we observe no change in the amplitude of cell-to-cell, unitary IPSCs (uIPSCs from parvalbumin-positive (PV or somatostatin-positive (SOM interneurons onto pyramidal neurons. We also observe no change in the number or density of PV and SOM interneurons in LII/III of somatosensory cortex. This effectively rules out a role for these particular interneurons in the increased inhibitory synaptic transmission, pointing to perhaps alternative interneuron subtypes. Lastly, impaired endocannabinoid signaling has been implicated in hippocampal synaptic dysfunction in Nlgn3R451C mice, but has not been investigated at cortical synapses. We find that bath application of the CB1 antagonist, AM 251 in WT mice eliminates the Nlgn3R451C increase in eIPSC amplitude and mIPSC frequency, indicating that increased inhibitory transmission in mutant mice is due, at least in part, to a loss of endocannabinoid signaling through CB1 receptors likely acting at

  18. Anosognosia in mild cognitive impairment: Relationship to activation of cortical midline structures involved in self-appraisal

    Science.gov (United States)

    Ries, Michele L.; Jabbar, Britta M.; Schmitz, Taylor W.; Trivedi, Mehul A.; Gleason, Carey E.; Carlsson, Cynthia M.; Rowley, Howard A.; Asthana, Sanjay; Johnson, Sterling C.

    2009-01-01

    Awareness of cognitive dysfunction shown by individuals with Mild Cognitive Impairment (MCI), a condition conferring risk for Alzheimer’s disease (AD), is variable. Anosognosia, or unawareness of loss of function, is beginning to be recognized as an important clinical symptom of MCI. However, little is known about the brain substrates underlying this symptom. We hypothesized that MCI participants’ activation of cortical midline structures (CMS) during self-appraisal would covary with level of insight into cognitive difficulties (indexed by a discrepancy score between patient and informant ratings of cognitive decline in each MCI participant). To address this hypothesis, we first compared 16 MCI participants and 16 age-matched controls, examining brain regions showing conjoint or differential BOLD response during self-appraisal. Second, we used regression to investigate the relationship between awareness of deficit in MCI and BOLD activity during self-appraisal, controlling for extent of memory impairment. Between-group comparisons indicated that MCI participants show subtly attenuated CMS activity during self-appraisal. Regression analysis revealed a highly-significant relationship between BOLD response during self-appraisal and self-awareness of deficit in MCI. This finding highlights the level of anosognosia in MCI as an important predictor of response to self-appraisal in cortical midline structures, brain regions vulnerable to changes in early AD. PMID:17445294

  19. Non-traumatic cortical subarachnoid haemorrhage: diagnostic work-up and aetiological background

    Energy Technology Data Exchange (ETDEWEB)

    Spitzer, C.; Kosinski, C.M. [University Hospital of RWTH Aachen, Department of Neurology, Aachen (Germany); Mull, M. [University Hospital of RWTH Aachen, Department of Neuroradiology, Aachen (Germany); Rohde, V. [University Hospital of RWTH Aachen, Department of Neurosurgery, Aachen (Germany)

    2005-07-01

    Only 15% of all subarachnoid haemorrhages (SAHs) are not of aneurysmal origin. Among those, circumscribed SAHs along the cortical convexity are rare and have only been described in singular case reports so far. Here, we present a collection of 12 cases of SAH along the convexity, of non-traumatic origin. Over a period of 10 years, 12 cases of circumscribed SAH along the convexity were identified at our clinic. The clinical presentations, neuroradiological SAH characteristics, further diagnostic work-up to identify the underlying aetiologies, the therapy and clinical outcome were analysed. The patients' chief complaints were unspecific cephalgia, focal or generalised seizures and focal neurological deficits. Typical signs of basal SAH, such as nuchal rigidity, thunderclap-headache or alteration of consciousness, were rare. Magnetic resonance imaging (MRI) and digital subtraction angiography (DSA) revealed different aetiologies, namely postpartal posterior encephalopathy (three), cerebral vasculitis (two), dural sinus thrombosis (two), cortical venous thrombosis (one), intracerebral abscesses (one) and cerebral cavernoma (one). Two cases remained unresolved. Treatment of the underlying disease and symptomatic medication led to good clinical outcome in almost all cases. On the basis of these findings, we demonstrate that the clinical presentation, localisation and aetiology of cortical SAH differ clearly from other SAHs. A diagnostic work-up with MRI and eventually DSA is essential. Mostly, the causative disease can be identified, and specific treatment allows a favourable outcome. (orig.)

  20. Regional cortical hyper perfusion on perfusion CT during postical motor deficit: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Hye Jin [Dept. of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of)

    2013-08-15

    Postictal neurologic deficit is a well-known complication mimicking the manifestation of a stroke. We present a case of a patient with clinical evidence of Todd's paralysis correlating with reversible postictal parenchymal changes on perfusion CT and magnetic resonance (MR) imaging. In this case, perfusion CT and MR imaging were helpful in the differential diagnosis of stroke-mimicking conditions.

  1. Cortical tremor: a variant of cortical reflex myoclonus.

    Science.gov (United States)

    Ikeda, A; Kakigi, R; Funai, N; Neshige, R; Kuroda, Y; Shibasaki, H

    1990-10-01

    Two patients with action tremor that was thought to originate in the cerebral cortex showed fine shivering-like finger twitching provoked mainly by action and posture. Surface EMG showed relatively rhythmic discharge at a rate of about 9 Hz, which resembled essential tremor. However, electrophysiologic studies revealed giant somatosensory evoked potentials (SEPs) with enhanced long-loop reflex and premovement cortical spike by the jerk-locked averaging method. Treatment with beta-blocker showed no effect, but anticonvulsants such as clonazepam, valproate, and primidone were effective to suppress the tremor and the amplitude of SEPs. We call this involuntary movement "cortical tremor," which is in fact a variant of cortical reflex myoclonus.

  2. Positron emission tomography studies of neuronal activity patterns during sensory and cognitive stimulations in Alzheimer`s disease. A study of cortical attention sites in man

    Energy Technology Data Exchange (ETDEWEB)

    Johannsen, Peter

    1997-12-31

    This Ph.D.-thesis describes different subtypes of attention, models for the organization of attention, and the attention deficits in Alzheimer`s disease. The experimental part of the study is based on studies of sustained and divided attention to two different sensory modalities; a visual checkerboard stimulation reversing at 7 Hz, and a 110 Hz vibrotactile stimulation of the right hand in a group of healthy elderly subjects (n = 16) age-matched with a group of patients with mild to moderate Alzheimer`s disease (n = 16). The cortical activations during the attention tasks have been mapped using O-15-water and positron emission tomography (PET) measurements of regional cerebral blood flow (rCBF) during rest and during performance of an attention task. After anatomical standardization and averaging over subjects, activation foci were assessed by a t-statistical evaluation of the differences of rCBF maps acquired before and during the execution of the attention tasks. The rCBF deficits in the Alzheimer patients were compared to rCBF pattern in the healthy elderly and assessed statistically on a voxel-by-voxel basis, revealing a distinct and localized pattern of rCBF deficits extending from the hippocampal area along the longitudinal fascicle to the temporo-parietal cortices with further deficits in the frontal regions. The resting rCBF deficits are distributed with the same pattern as described in neuropathological studies of lesions in Alzheimer`s disease. In the healthy elderly, both sustained and divided attention elicited activation of the right inferior parietal lobule (Brodmann Area 19/40) and the right middle frontal gyrus (Brodmann Area 46). Divided attention favored activation of the right middle frontal gyrus and sustained attention activation of the right inferior parietal lobule. Both the frontal and the parietal attention sites were active during attention to both the visual and the vibrotactile stimuli. These results support a network hypothesis of

  3. Neuropsychological basic deficits in preschoolers at risk for ADHD: a meta-analysis.

    Science.gov (United States)

    Pauli-Pott, Ursula; Becker, Katja

    2011-06-01

    Widely accepted neuropsychological theories on attention deficit hyperactivity disorder (ADHD) assume that the complex symptoms of the disease arise from developmentally preceding neuropsychological basic deficits. These deficits in executive functions and delay aversion are presumed to emerge in the preschool period. The corresponding normative developmental processes include phases of relative stability and rapid change. These non-linear developmental processes might have implications for concurrent and predictive associations between basic deficits and ADHD symptoms. To derive a description of the nature and strength of these associations, a meta-analysis was conducted. It is assumed that weighted mean effect sizes differ between basic deficits and depend on age. The meta-analysis included 25 articles (n=3005 children) in which associations between assessments of basic deficits (i.e. response inhibition, interference control, delay aversion, working memory, flexibility, and vigilance/arousal) in the preschool period and concurrent or subsequent ADHD symptoms or diagnosis of ADHD had been analyzed. For response inhibition and delay aversion, mean effect sizes were of medium to large magnitude while the mean effect size for working memory was small. Meta-regression analyses revealed that effect sizes of delay aversion tasks significantly decreased with increasing age while effect sizes of interference control tasks and Continuous Performance Tests (CPTs) significantly increased. Depending on the normative maturational course of each skill, time windows might exist that allow for a more or less valid assessment of a specific deficit. In future research these time windows might help to describe early developing forms of ADHD and to identify children at risk. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Estimation of cortical silent period following transcranial magnetic stimulation using a computerised cumulative sum method.

    Science.gov (United States)

    King, Nicolas K K; Kuppuswamy, Annapoorna; Strutton, Paul H; Davey, Nick J

    2006-01-15

    The cortical silent period (CSP) following transcranial magnetic stimulation (TMS) of the motor cortex can be used to measure intra-cortical inhibition and changes in a number of important pathologies affecting the central nervous system. The main drawback of this technique has been the difficulty in accurately identifying the onset and offset of the cortical silent period leading to inter-observer variability. We developed an automated method based on the cumulative sum (Cusum) technique to improve the determination of the duration and area of the cortical silent period. This was compared with experienced raters and two other automated methods. We showed that the automated Cusum method reliably correlated with the experienced raters for both duration and area of CSP. Compared with the automated methods, the Cusum also showed the strongest correlation with the experienced raters. Our results show the Cusum method to be a simple, graphical and powerful method of detecting low-intensity CSP that can be easily automated using standard software.

  5. Olfactory deficits in Niemann-Pick type C1 (NPC1 disease.

    Directory of Open Access Journals (Sweden)

    Marina Hovakimyan

    Full Text Available BACKGROUND: Niemann-Pick type C disease (NPC is a rare autosomal recessive lipid storage disease characterized by progressive neurodegeneration. As only a few studies have been conducted on the impact of NPC on sensory systems, we used a mutant mouse model (NPC1(-/- to examine the effects of this disorder to morphologically distinct regions of the olfactory system, namely the olfactory epithelium (OE and olfactory bulb (OB. METHODOLOGY/PRINCIPAL FINDINGS: For structural and functional analysis immunohistochemistry, electron microscopy, western blotting, and electrophysiology have been applied. For histochemistry and western blotting, we used antibodies against a series of neuronal and glia marker proteins, as well as macrophage markers. NPC1(-/- animals present myelin-like lysosomal deposits in virtually all types of cells of the peripheral and central olfactory system. Especially supporting cells of the OE and central glia cells are affected, resulting in pronounced astrocytosis and microgliosis in the OB and other olfactory cortices. Up-regulation of Galectin-3, Cathepsin D and GFAP in the cortical layers of the OB underlines the critical role and location of the OB as a possible entrance gate for noxious substances. Unmyelinated olfactory afferents of the lamina propria seem less affected than ensheathing cells. Supporting the structural findings, electro-olfactometry of the olfactory mucosa suggests that NPC1(-/- animals exhibit olfactory and trigeminal deficits. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate a pronounced neurodegeneration and glia activation in the olfactory system of NPC1(-/-, which is accompanied by sensory deficits.

  6. Recovery of motor deficit, cerebellar serotonin and lipid peroxidation levels in the cortex of injured rats.

    Science.gov (United States)

    Bueno-Nava, Antonio; Gonzalez-Pina, Rigoberto; Alfaro-Rodriguez, Alfonso; Nekrassov-Protasova, Vladimir; Durand-Rivera, Alfredo; Montes, Sergio; Ayala-Guerrero, Fructuoso

    2010-10-01

    The sensorimotor cortex and the cerebellum are interconnected by the corticopontocerebellar (CPC) pathway and by neuronal groups such as the serotonergic system. Our aims were to determine the levels of cerebellar serotonin (5-HT) and lipid peroxidation (LP) after cortical iron injection and to analyze the motor function produced by the injury. Rats were divided into the following three groups: control, injured and recovering. Motor function was evaluated using the beam-walking test as an assessment of overall locomotor function and the footprint test as an assessment of gait. We also determined the levels of 5-HT and LP two and twenty days post-lesion. We found an increase in cerebellar 5-HT and a concomitant increase in LP in the pons and cerebellum of injured rats, which correlated with their motor deficits. Recovering rats showed normal 5-HT and LP levels. The increase of 5-HT in injured rats could be a result of serotonergic axonal injury after cortical iron injection. The LP and motor deficits could be due to impairments in neuronal connectivity affecting the corticospinal and CPC tracts and dysmetric stride could be indicative of an ataxic gait that involves the cerebellum.

  7. Abnormal cortical synaptic plasticity in primary motor area in progressive supranuclear palsy.

    Science.gov (United States)

    Conte, Antonella; Belvisi, Daniele; Bologna, Matteo; Ottaviani, Donatella; Fabbrini, Giovanni; Colosimo, Carlo; Williams, David R; Berardelli, Alfredo

    2012-03-01

    No study has yet investigated whether cortical plasticity in primary motor area (M1) is abnormal in patients with progressive supranuclear palsy (PSP). We studied M1 plasticity in 15 PSP patients and 15 age-matched healthy subjects. We used intermittent theta-burst stimulation (iTBS) to investigate long-term potentiation (LTP) and continuous TBS (cTBS) to investigate long-term depression (LTD)-like cortical plasticity in M1. Ten patients underwent iTBS again 1 year later. We also investigated short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in M1 with paired-pulse transcranial magnetic stimulation, tested H reflex from upper limb flexor muscles before and after iTBS, and measured motor evoked potential (MEP) input-output (I/O) curves before and after iTBS. iTBS elicited a significantly larger MEP facilitation after iTBS in patients than in healthy subjects. Whereas in healthy subjects, cTBS inhibited MEP, in patients it significantly facilitated MEPs. In patients, SICI was reduced, whereas ICF was normal. H reflex size remained unchanged after iTBS. Patients had steeper MEP I/O slopes than healthy subjects at baseline and became even more steeper after iTBS only in patients. The iTBS-induced abnormal MEP facilitation in PSP persisted at 1-year follow-up. In conclusion, patients with PSP have abnormal M1 LTP/LTD-like plasticity. The enhanced LTP-like cortical synaptic plasticity parallels disease progression.

  8. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders.

    Science.gov (United States)

    Kana, Rajesh K; Libero, Lauren E; Moore, Marie S

    2011-12-01

    Recent findings of neurological functioning in autism spectrum disorder (ASD) point to altered brain connectivity as a key feature of its pathophysiology. The cortical underconnectivity theory of ASD (Just et al., 2004) provides an integrated framework for addressing these new findings. This theory suggests that weaker functional connections among brain areas in those with ASD hamper their ability to accomplish complex cognitive and social tasks successfully. We will discuss this theory, but will modify the term underconnectivity to 'disrupted cortical connectivity' to capture patterns of both under- and over-connectivity in the brain. In this paper, we will review the existing literature on ASD to marshal supporting evidence for hypotheses formulated on the disrupted cortical connectivity theory. These hypotheses are: 1) underconnectivity in ASD is manifested mainly in long-distance cortical as well as subcortical connections rather than in short-distance cortical connections; 2) underconnectivity in ASD is manifested only in complex cognitive and social functions and not in low-level sensory and perceptual tasks; 3) functional underconnectivity in ASD may be the result of underlying anatomical abnormalities, such as problems in the integrity of white matter; 4) the ASD brain adapts to underconnectivity through compensatory strategies such as overconnectivity mainly in frontal and in posterior brain areas. This may be manifested as deficits in tasks that require frontal-parietal integration. While overconnectivity can be tested by examining the cortical minicolumn organization, long-distance underconnectivity can be tested by cognitively demanding tasks; and 5) functional underconnectivity in brain areas in ASD will be seen not only during complex tasks but also during task-free resting states. We will also discuss some empirical predictions that can be tested in future studies, such as: 1) how disrupted connectivity relates to cognitive impairments in skills such

  9. Regulation of dopamine synthesis and release in striatal and prefrontal cortical brain slices

    International Nuclear Information System (INIS)

    Wolf, M.E.

    1986-01-01

    Brain slices were used to investigate the role of nerve terminal autoreceptors in modulating dopamine (DA) synthesis and release in striatum and prefrontal cortex. Accumulation of dihydroxyphenylalanine (DOPA) was used as an index of tyrosine hydroxylation in vitro. Nomifensine, a DA uptake blocker, inhibited DOPA synthesis in striatal but not prefrontal slices. This effect was reversed by the DA antagonist sulpiride, suggesting it involved activation of DA receptors by elevated synaptic levels of DA. The autoreceptor-selective agonist EMD-23-448 also inhibited striatal but not prefrontal DOPA synthesis. DOPA synthesis was stimulated in both brain regions by elevated K + , however only striatal synthesis could be further enhanced by sulpiride. DA release was measured by following the efflux of radioactivity from brain slices prelabeled with [ 3 H]-DA. EMD-23-448 and apomorphine inhibited, while sulpiride enhanced, the K + -evoked overflow of radioactivity from both striatal and prefrontal cortical slices. These findings suggest that striatal DA nerve terminals possess autoreceptors which modulate tyrosine hydroxylation as well as autoreceptors which modulate release. Alternatively, one site may be coupled to both functions through distinct transduction mechanisms. In contrast, autoreceptors on prefrontal cortical terminals appear to regulate DA release but not DA synthesis

  10. Sensory disturbances, inhibitory deficits, and the P50 wave in schizophrenia

    Directory of Open Access Journals (Sweden)

    Vlcek P

    2014-07-01

    Full Text Available Premysl Vlcek,1 Petr Bob,1,2 Jiri Raboch1 1Center for Neuropsychiatric Research of Traumatic Stress, Department of Psychiatry and UHSL, First Faculty of Medicine, Charles University, Prague, Czech Republic; 2Central European Institute of Technology (CEITEC, Masaryk University, Brno, Czech Republic Abstract: Sensory gating disturbances in schizophrenia are often described as an inability to filter redundant sensory stimuli that typically manifest as inability to gate neuronal responses related to the P50 wave, characterizing a decreased ability of the brain to inhibit various responses to insignificant stimuli. It implicates various deficits of perceptual and attentional functions, and this inability to inhibit, or “gate”, irrelevant sensory inputs leads to sensory and information overload that also may result in neuronal hyperexcitability related to disturbances of habituation mechanisms. These findings seem to be particularly important in the context of modern electrophysiological and neuroimaging data suggesting that the filtering deficits in schizophrenia are likely related to deficits in the integrity of connections between various brain areas. As a consequence, this brain disintegration produces disconnection of information, disrupted binding, and disintegration of consciousness that in terms of modern neuroscience could connect original Bleuler’s concept of “split mind” with research of neural information integration. Keywords: event-related potential, information overload, inhibition, P50 wave, schizophrenia, splitting

  11. Deficits in long-term recognition memory reveal dissociated subtypes in congenital prosopagnosia.

    Directory of Open Access Journals (Sweden)

    Rainer Stollhoff

    Full Text Available The study investigates long-term recognition memory in congenital prosopagnosia (CP, a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs. In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception.

  12. Deficits in long-term recognition memory reveal dissociated subtypes in congenital prosopagnosia.

    Science.gov (United States)

    Stollhoff, Rainer; Jost, Jürgen; Elze, Tobias; Kennerknecht, Ingo

    2011-01-25

    The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception.

  13. Visuo-Spatial Imagery Impairment in Posterior Cortical Atrophy: A Cognitive and SPECT Study

    Directory of Open Access Journals (Sweden)

    Simona Gardini

    2011-01-01

    Full Text Available This study investigated the cognitive profile and the cerebral perfusion pattern in a highly educated 70 year old gentleman with posterior cortical atrophy (PCA. Visuo-perceptual abilities, spatial memory, spatial representation and navigation, visuo-spatial mental imagery, semantic and episodic-autobiographical memory were assessed. Regional cerebral blood flow (rCBF was imaged with SPECT. Cognitive testing showed visual-perceptual impairment, apperceptive visual and landmark agnosia, topographical disorientation with way-finding deficits, impaired map learning and poor mental image generation. Semantic memory was normal, while episodic-autobiographical memory was impaired. Reduced rCBF was found mainly in the right hemisphere, in the precentral gyrus, posterior cingulate and middle temporal gyri, cuneus and precuneus, in the left superior temporal and lingual gyri and in the parahippocampus bilaterally. Hypoperfusion in occipito-parietal regions was associated with visuo-spatial deficits, whereas deficits in visuo-spatial mental imagery might reflect dysfunction related to hypoperfusion in the parahippocampus and precuneus, structures which are responsible for spatial and imagery processing. Dissociating performance between preserved semantic memory and poor episodic-autobiographical recall is consistent with a pattern of normal perfusion in frontal and anterior temporal regions but abnormal rCBF in the parahippocampi. The present findings indicate that PCA involves visuo-spatial imagery deficits and provide further validation to current neuro-cognitive models of spatial representation and topographical disorientation.

  14. Effects of motivation and medication on electrophysiological markers of response inhibition in children with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Groom, Madeleine J; Scerif, Gaia; Liddle, Peter F; Batty, Martin J; Liddle, Elizabeth B; Roberts, Katherine L; Cahill, John D; Liotti, Mario; Hollis, Chris

    2010-04-01

    Theories of attention-deficit/hyperactivity disorder (ADHD) posit either executive deficits and/or alterations in motivational style and reward processing as core to the disorder. Effects of motivational incentives on electrophysiological correlates of inhibitory control and relationships between motivation and stimulant medication have not been explicitly tested. Children (9-15 years) with combined-type ADHD (n = 28) and matched typically developing children (CTRL) (n = 28) performed a go/no-go task. Electroencephalogram data were recorded. Amplitude of two event-related potentials, the N2 and P3 (markers of response conflict and attention), were measured. The ADHD children were all stimulant responders tested on and off their usual dose of methylphenidate; CTRLs were never medicated. All children performed the task under three motivational conditions: reward; response cost; and baseline, in which points awarded/deducted for inhibitory performance varied. There were effects of diagnosis (CTRL > ADHD unmedicated), medication (on > off), and motivation (reward and/or response cost > baseline) on N2 and P3 amplitude, although the N2 diagnosis effect did not reach statistical significance (p = .1). Interactions between motivation and diagnosis/medication were nonsignificant (p > .1). Motivational incentives increased amplitudes of electrophysiological correlates of response conflict and attention in children with ADHD, towards the baseline (low motivation) amplitudes of control subjects. These results suggest that, on these measures, motivational incentives have similar effects in children with ADHD as typically developing CTRLs and have additive effects with stimulant medication, enhancing stimulus salience and allocation of attentional resources during response inhibition. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Interhemispheric Cortical Inhibition Is Reduced in Young Adults With Developmental Coordination Disorder

    OpenAIRE

    Jason L. He; Ian Fuelscher; Peter G. Enticott; Wei-peng Teo; Pamela Barhoun; Christian Hyde

    2018-01-01

    IntroductionWhile the etiology of developmental coordination disorder (DCD) is yet to be established, brain-behavior modeling provides a cogent argument that neuropathology may subserve the motor difficulties typical of DCD. We argue that a number of the core behavioral features of the DCD profile (such as poor surround inhibition, compromised motor inhibition, and the presence of mirror movements) are consistent with difficulties regulating inhibition within the primary motor cortex (M1). Th...

  16. Cortical and Sensory Causes of Individual Differences in Selective Attention Ability Among Listeners With Normal Hearing Thresholds.

    Science.gov (United States)

    Shinn-Cunningham, Barbara

    2017-10-17

    This review provides clinicians with an overview of recent findings relevant to understanding why listeners with normal hearing thresholds (NHTs) sometimes suffer from communication difficulties in noisy settings. The results from neuroscience and psychoacoustics are reviewed. In noisy settings, listeners focus their attention by engaging cortical brain networks to suppress unimportant sounds; they then can analyze and understand an important sound, such as speech, amidst competing sounds. Differences in the efficacy of top-down control of attention can affect communication abilities. In addition, subclinical deficits in sensory fidelity can disrupt the ability to perceptually segregate sound sources, interfering with selective attention, even in listeners with NHTs. Studies of variability in control of attention and in sensory coding fidelity may help to isolate and identify some of the causes of communication disorders in individuals presenting at the clinic with "normal hearing." How well an individual with NHTs can understand speech amidst competing sounds depends not only on the sound being audible but also on the integrity of cortical control networks and the fidelity of the representation of suprathreshold sound. Understanding the root cause of difficulties experienced by listeners with NHTs ultimately can lead to new, targeted interventions that address specific deficits affecting communication in noise. http://cred.pubs.asha.org/article.aspx?articleid=2601617.

  17. Competing Core Processes in Attention-Deficit/Hyperactivity Disorder (ADHD): Do Working Memory Deficiencies Underlie Behavioral Inhibition Deficits?

    Science.gov (United States)

    Alderson, R. Matt; Rapport, Mark D.; Hudec, Kristen L.; Sarver, Dustin E.; Kofler, Michael J.

    2010-01-01

    The current study examined competing predictions of the working memory and behavioral inhibition models of ADHD. Behavioral inhibition was measured using a conventional stop-signal task, and central executive, phonological, and visuospatial working memory components (Baddeley 2007) were assessed in 14 children with ADHD and 13 typically developing…

  18. Extent of cortical involvement in amyotrophic lateral sclerosis--an analysis based on cortical thickness.

    Science.gov (United States)

    Thorns, Johannes; Jansma, Henk; Peschel, Thomas; Grosskreutz, Julian; Mohammadi, Bahram; Dengler, Reinhard; Münte, Thomas F

    2013-10-18

    Besides the defining involvement of upper and lower motor neurons, the involvement of extramotor structures has been increasingly acknowledged in amyotrophic lateral sclerosis (ALS). Here we investigated a group of 14 mildly to moderately affected ALS patients and 14 age-matched healthy control participants using cortical thickness analysis. Cortical thickness was determined from high resolution 3D T1 magnetic resonance images and involved semiautomatic segmentation in grey and white matter, cortical alignment and determination of thickness using the Laplace method. In addition to a whole-cortex analysis a region of interest approach was applied. ALS patients showed regions of significant cortical thinning in the pre- and postcentral gyri bilaterally. Further regions of cortical thinning included superior and inferior parietal lobule, angular and supramarginal gyrus, insula, superior frontal, temporal and occipital regions, thus further substantiating extramotor involvement in ALS. A relationship between cortical thickness of the right superior frontal cortex and clinical severity (assessed by the ALS functional rating scale) was also demonstrated. Cortical thickness is reduced in ALS not only in motor areas but in widespread non-motor cortical areas. Cortical thickness is related to clinical severity.

  19. Cortical Gene Expression After a Conditional Knockout of 67 kDa Glutamic Acid Decarboxylase in Parvalbumin Neurons.

    Science.gov (United States)

    Georgiev, Danko; Yoshihara, Toru; Kawabata, Rika; Matsubara, Takurou; Tsubomoto, Makoto; Minabe, Yoshio; Lewis, David A; Hashimoto, Takanori

    2016-07-01

    In the cortex of subjects with schizophrenia, expression of glutamic acid decarboxylase 67 (GAD67), the enzyme primarily responsible for cortical GABA synthesis, is reduced in the subset of GABA neurons that express parvalbumin (PV). This GAD67 deficit is accompanied by lower cortical levels of other GABA-associated transcripts, including GABA transporter-1, PV, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B, somatostatin, GABAA receptor α1 subunit, and KCNS3 potassium channel subunit mRNAs. In contrast, messenger RNA (mRNA) levels for glutamic acid decarboxylase 65 (GAD65), another enzyme for GABA synthesis, are not altered. We tested the hypothesis that this pattern of GABA-associated transcript levels is secondary to the GAD67 deficit in PV neurons by analyzing cortical levels of these GABA-associated mRNAs in mice with a PV neuron-specific GAD67 knockout. Using in situ hybridization, we found that none of the examined GABA-associated transcripts had lower cortical expression in the knockout mice. In contrast, PV, BDNF, KCNS3, and GAD65 mRNA levels were higher in the homozygous mice. In addition, our behavioral test battery failed to detect a change in sensorimotor gating or working memory, although the homozygous mice exhibited increased spontaneous activities. These findings suggest that reduced GAD67 expression in PV neurons is not an upstream cause of the lower levels of GABA-associated transcripts, or of the characteristic behaviors, in schizophrenia. In PV neuron-specific GAD67 knockout mice, increased levels of PV, BDNF, and KCNS3 mRNAs might be the consequence of increased neuronal activity secondary to lower GABA synthesis, whereas increased GAD65 mRNA might represent a compensatory response to increase GABA synthesis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Cortical thickness, surface area, and folding alterations in male youths with conduct disorder and varying levels of callous-unemotional traits.

    Science.gov (United States)

    Fairchild, Graeme; Toschi, Nicola; Hagan, Cindy C; Goodyer, Ian M; Calder, Andrew J; Passamonti, Luca

    2015-01-01

    Previous studies have reported changes in gray matter volume in youths with conduct disorder (CD), although these differences are difficult to interpret as they may have been driven by alterations in cortical thickness, surface area (SA), or folding. The objective of this study was to use surface-based morphometry (SBM) methods to compare male youths with CD and age and sex-matched healthy controls (HCs) in cortical thickness, SA, and folding. We also tested for structural differences between the childhood-onset and adolescence-onset subtypes of CD and performed regression analyses to assess for relationships between CD symptoms and callous-unemotional (CU) traits and SBM-derived measures. We acquired structural neuroimaging data from 20 HCs and 36 CD participants (18 with childhood-onset CD and 18 with adolescence-onset CD) and analyzed the data using FreeSurfer. Relative to HCs, youths with CD showed reduced cortical thickness in the superior temporal gyrus, reduced SA in the orbitofrontal cortex (OFC), and increased cortical folding in the insula. There were no significant differences between the childhood-onset and adolescence-onset CD subgroups in cortical thickness or SA, but several frontal and temporal regions showed increased cortical folding in childhood-onset relative to adolescence-onset CD participants. Both CD subgroups also showed increased cortical folding relative to HCs. CD symptoms were negatively correlated with OFC SA whereas CU traits were positively correlated with insula folding. Cortical thinning in the superior temporal gyrus may contribute to the social cognitive impairments displayed by youths with CD, whereas reduced OFC SA may lead to impairments in emotion regulation and reward processing in youths with CD. The increased cortical folding observed in the insula may reflect a maturational delay in this region and could mediate the link between CU traits and empathy deficits. Altered cortical folding was observed in childhood-onset and

  1. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R., E-mail: mundy.william@epa.gov

    2011-11-15

    There is a need for rapid, efficient and cost-effective alternatives to traditional in vivo developmental neurotoxicity testing. In vitro cell culture models can recapitulate many of the key cellular processes of nervous system development, including neurite outgrowth, and may be used as screening tools to identify potential developmental neurotoxicants. The present study compared primary rat cortical cultures and human embryonic stem cell-derived neural cultures in terms of: 1) reproducibility of high content image analysis based neurite outgrowth measurements, 2) dynamic range of neurite outgrowth measurements and 3) sensitivity to chemicals which have been shown to inhibit neurite outgrowth. There was a large increase in neurite outgrowth between 2 and 24 h in both rat and human cultures. Image analysis data collected across multiple cultures demonstrated that neurite outgrowth measurements in rat cortical cultures were more reproducible and had higher dynamic range as compared to human neural cultures. Human neural cultures were more sensitive than rat cortical cultures to chemicals previously shown to inhibit neurite outgrowth. Parallel analysis of morphological (neurite count, neurite length) and cytotoxicity (neurons per field) measurements were used to detect selective effects on neurite outgrowth. All chemicals which inhibited neurite outgrowth in rat cortical cultures did so at concentrations which did not concurrently affect the number of neurons per field, indicating selective effects on neurite outgrowth. In contrast, more than half the chemicals which inhibited neurite outgrowth in human neural cultures did so at concentrations which concurrently decreased the number of neurons per field, indicating that effects on neurite outgrowth were secondary to cytotoxicity. Overall, these data demonstrate that the culture models performed differently in terms of reproducibility, dynamic range and sensitivity to neurite outgrowth inhibitors. While human neural

  2. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    International Nuclear Information System (INIS)

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R.

    2011-01-01

    There is a need for rapid, efficient and cost-effective alternatives to traditional in vivo developmental neurotoxicity testing. In vitro cell culture models can recapitulate many of the key cellular processes of nervous system development, including neurite outgrowth, and may be used as screening tools to identify potential developmental neurotoxicants. The present study compared primary rat cortical cultures and human embryonic stem cell-derived neural cultures in terms of: 1) reproducibility of high content image analysis based neurite outgrowth measurements, 2) dynamic range of neurite outgrowth measurements and 3) sensitivity to chemicals which have been shown to inhibit neurite outgrowth. There was a large increase in neurite outgrowth between 2 and 24 h in both rat and human cultures. Image analysis data collected across multiple cultures demonstrated that neurite outgrowth measurements in rat cortical cultures were more reproducible and had higher dynamic range as compared to human neural cultures. Human neural cultures were more sensitive than rat cortical cultures to chemicals previously shown to inhibit neurite outgrowth. Parallel analysis of morphological (neurite count, neurite length) and cytotoxicity (neurons per field) measurements were used to detect selective effects on neurite outgrowth. All chemicals which inhibited neurite outgrowth in rat cortical cultures did so at concentrations which did not concurrently affect the number of neurons per field, indicating selective effects on neurite outgrowth. In contrast, more than half the chemicals which inhibited neurite outgrowth in human neural cultures did so at concentrations which concurrently decreased the number of neurons per field, indicating that effects on neurite outgrowth were secondary to cytotoxicity. Overall, these data demonstrate that the culture models performed differently in terms of reproducibility, dynamic range and sensitivity to neurite outgrowth inhibitors. While human neural

  3. Attentional set-shifting deficit in Parkinson's disease is associated with prefrontal dysfunction: an FDG-PET study.

    Directory of Open Access Journals (Sweden)

    Yoichi Sawada

    Full Text Available The attentional set-shifting deficit that has been observed in Parkinson's disease (PD has long been considered neuropsychological evidence of the involvement of meso-prefrontal and prefrontal-striatal circuits in cognitive flexibility. However, recent studies have suggested that non-dopaminergic, posterior cortical pathologies may also contribute to this deficit. Although several neuroimaging studies have addressed this issue, the results of these studies were confounded by the use of tasks that required other cognitive processes in addition to set-shifting, such as rule learning and working memory. In this study, we attempted to identify the neural correlates of the attentional set-shifting deficit in PD using a compound letter task and 18F-fluoro-deoxy-glucose (FDG positron emission tomography during rest. Shift cost, which is a measure of attentional set-shifting ability, was significantly correlated with hypometabolism in the right dorsolateral prefrontal cortex, including the putative human frontal eye field. Our results provide direct evidence that dysfunction in the dorsolateral prefrontal cortex makes a primary contribution to the attentional set-shifting deficit that has been observed in PD patients.

  4. Motor-cortical interaction in Gilles de la Tourette syndrome.

    Directory of Open Access Journals (Sweden)

    Stephanie Franzkowiak

    Full Text Available BACKGROUND: In Gilles de la Tourette syndrome (GTS increased activation of the primary motor cortex (M1 before and during movement execution followed by increased inhibition after movement termination was reported. The present study aimed at investigating, whether this activation pattern is due to altered functional interaction between motor cortical areas. METHODOLOGY/PRINCIPAL FINDINGS: 10 GTS-patients and 10 control subjects performed a self-paced finger movement task while neuromagnetic brain activity was recorded using Magnetoencephalography (MEG. Cerebro-cerebral coherence as a measure of functional interaction was calculated. During movement preparation and execution coherence between contralateral M1 and supplementary motor area (SMA was significantly increased at beta-frequency in GTS-patients. After movement termination no significant differences between groups were evident. CONCLUSIONS/SIGNIFICANCE: The present data suggest that increased M1 activation in GTS-patients might be due to increased functional interaction between SMA and M1 most likely reflecting a pathophysiological marker of GTS. The data extend previous findings of motor-cortical alterations in GTS by showing that local activation changes are associated with alterations of functional networks between premotor and primary motor areas. Interestingly enough, alterations were evident during preparation and execution of voluntary movements, which implies a general theme of increased motor-cortical interaction in GTS.

  5. Slow cortical potential and theta/beta neurofeedback training in adults: effects on attentional processes and motor system excitability

    OpenAIRE

    Studer, Petra; Kratz, Oliver; Gevensleben, Holger; Rothenberger, Aribert; Moll, Gunther H.; Hautzinger, Martin; Heinrich, Hartmut

    2014-01-01

    Neurofeedback (NF) is being successfully applied, among others, in children with attention deficit/hyperactivity disorder (ADHD) and as a peak performance training in healthy subjects. However, the neuronal mechanisms mediating a successful NF training have not yet been sufficiently uncovered for both theta/beta (T/B), and slow cortical potential (SCP) training, two protocols established in NF in ADHD. In the present, randomized, controlled investigation in adults without a clinical diagnosis...

  6. Cortical laminar necrosis in dengue encephalitis-a case report.

    Science.gov (United States)

    Garg, Ravindra Kumar; Rizvi, Imran; Ingole, Rajan; Jain, Amita; Malhotra, Hardeep Singh; Kumar, Neeraj; Batra, Dhruv

    2017-04-20

    Dengue encephalitis is a rare neurological manifestation of dengue fever. Its clinical presentation is similar to other viral encephalitides and encephalopathy. No single specific finding on magnetic resonance imaging of dengue encephalitis has yet been documented. They are highly variable and atypical. A 15-year boy presented with fever, the headache and altered sensorium of 12-day duration. On neurological examination, his Glasgow Coma Scale score was 10 (E3M4V3). There was no focal neurological deficit. Laboratory evaluation revealed leukopenia and marked thrombocytopenia. Dengue virus IgM antibody was positive both in serum and cerebrospinal fluid. Magnetic resonance imaging of the brain revealed signal changes in bilateral parietooccipital and left frontal regions (left hemisphere more involved than the right hemisphere). There was gyriform enhancement bilateral parietooccipital regions consistent with cortical laminar necrosis. Bilaterally diffuse subcortical white matter was also involved and subtle T2 hyperintensity involving both basal ganglia was noted. Gradient echo sequence revealed presence of hemorrhage in the subcortical white matter. Patient was treated conservatively and received platelet transfusion. Patient became fully conscious after 7 days. In a patient with highly suggestive dengue e\\ephalitis, we describe an unusual magnetic resonance imaging finding. This report is possibly the first instance of cortical laminar necrosis in such a setting.

  7. A Gap in Time: Extending our Knowledge of Temporal Processing Deficits in the HIV-1 Transgenic Rat.

    Science.gov (United States)

    McLaurin, Kristen A; Moran, Landhing M; Li, Hailong; Booze, Rosemarie M; Mactutus, Charles F

    2017-03-01

    Approximately 50 % of HIV-1 seropositive individuals develop HIV-1 associated neurocognitive disorders (HAND), which commonly include alterations in executive functions, such as inhibition, set shifting, and complex problem solving. Executive function deficits in HIV-1 are fairly well characterized, however, relatively few studies have explored the elemental dimensions of neurocognitive impairment in HIV-1. Deficits in temporal processing, caused by HIV-1, may underlie the symptoms of impairment in higher level cognitive processes. Translational measures of temporal processing, including cross-modal prepulse inhibition (PPI), gap-prepulse inhibition (gap-PPI), and gap threshold detection, were studied in mature (ovariectomized) female HIV-1 transgenic (Tg) rats, which express 7 of the 9 HIV-1 genes constitutively throughout development. Cross-modal PPI revealed a relative insensitivity to the manipulation of interstimulus interval (ISI) in HIV-1 Tg animals in comparison to control animals, extending previously reported temporal processing deficits in HIV-1 Tg rats to a more advanced age, suggesting the permanence of temporal processing deficits. In gap-PPI, HIV-1 Tg animals exhibited a relative insensitivity to the manipulation of ISI in comparison to control animals. In gap-threshold detection, HIV-1 Tg animals displayed a profound differential sensitivity to the manipulation of gap duration. Presence of the HIV-1 transgene was diagnosed with 91.1 % accuracy using gap threshold detection measures. Understanding the generality and permanence of temporal processing deficits in the HIV-1 Tg rat is vital to modeling neurocognitive deficits observed in HAND and provides a key target for the development of a diagnostic screening tool.

  8. Agonist-induced PIP(2) hydrolysis inhibits cortical actin dynamics: regulation at a global but not at a micrometer scale.

    Science.gov (United States)

    van Rheenen, Jacco; Jalink, Kees

    2002-09-01

    Phosphatidylinositol 4, 5-bisphosphate (PIP(2)) at the inner leaflet of the plasma membrane has been proposed to locally regulate the actin cytoskeleton. Indeed, recent studies that use GFP-tagged pleckstrin homology domains (GFP-PH) as fluorescent PIP(2) sensors suggest that this lipid is enriched in membrane microdomains. Here we report that this concept needs revision. Using three distinct fluorescent GFP-tagged pleckstrin homology domains, we show that highly mobile GFP-PH patches colocalize perfectly with various lipophilic membrane dyes and, hence, represent increased lipid content rather than PIP(2)-enriched microdomains. We show that bright patches are caused by submicroscopical folds and ruffles in the membrane that can be directly visualized at approximately 15 nm axial resolution with a novel numerically enhanced imaging method. F-actin motility is inhibited significantly by agonist-induced PIP(2) breakdown, and it resumes as soon as PIP(2) levels are back to normal. Thus, our data support a role for PIP(2) in the regulation of cortical actin, but they challenge a model in which spatial differences in PIP(2) regulation of the cytoskeleton exist at a micrometer scale.

  9. Functional roles of 10 Hz alpha-band power modulating engagement and disengagement of cortical networks in a complex visual motion task.

    Directory of Open Access Journals (Sweden)

    Kunjan D Rana

    Full Text Available Alpha band power, particularly at the 10 Hz frequency, is significantly involved in sensory inhibition, attention modulation, and working memory. However, the interactions between cortical areas and their relationship to the different functional roles of the alpha band oscillations are still poorly understood. Here we examined alpha band power and the cortico-cortical interregional phase synchrony in a psychophysical task involving the detection of an object moving in depth by an observer in forward self-motion. Wavelet filtering at the 10 Hz frequency revealed differences in the profile of cortical activation in the visual processing regions (occipital and parietal lobes and in the frontoparietal regions. The alpha rhythm driving the visual processing areas was found to be asynchronous with the frontoparietal regions. These findings suggest a decoupling of the 10 Hz frequency into separate functional roles: sensory inhibition in the visual processing regions and spatial attention in the frontoparietal regions.

  10. Cortico-cortical communication dynamics

    Directory of Open Access Journals (Sweden)

    Per E Roland

    2014-05-01

    Full Text Available IIn principle, cortico-cortical communication dynamics is simple: neurons in one cortical area communicate by sending action potentials that release glutamate and excite their target neurons in other cortical areas. In practice, knowledge about cortico-cortical communication dynamics is minute. One reason is that no current technique can capture the fast spatio-temporal cortico-cortical evolution of action potential transmission and membrane conductances with sufficient spatial resolution. A combination of optogenetics and monosynaptic tracing with virus can reveal the spatio-temporal cortico-cortical dynamics of specific neurons and their targets, but does not reveal how the dynamics evolves under natural conditions. Spontaneous ongoing action potentials also spread across cortical areas and are difficult to separate from structured evoked and intrinsic brain activity such as thinking. At a certain state of evolution, the dynamics may engage larger populations of neurons to drive the brain to decisions, percepts and behaviors. For example, successfully evolving dynamics to sensory transients can appear at the mesoscopic scale revealing how the transient is perceived. As a consequence of these methodological and conceptual difficulties, studies in this field comprise a wide range of computational models, large-scale measurements (e.g., by MEG, EEG, and a combination of invasive measurements in animal experiments. Further obstacles and challenges of studying cortico-cortical communication dynamics are outlined in this critical review.

  11. Inhibition errors in borderline personality disorder with psychotic-like symptoms.

    NARCIS (Netherlands)

    Grootens, K.P.; Luijtelaar, E.L.J.M. van; Buitelaar, J.K.; Laan, A. van der; Hummelen, J.W.; Verkes, R.J.

    2008-01-01

    BACKGROUND: The aim of this study was to examine whether patients with borderline personality disorder (BPD) have deficits in cognitive inhibition as measured with an anti-saccade eye task similar to patients with schizophrenia (Sz). Furthermore, we investigated whether these inhibition errors were

  12. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    Science.gov (United States)

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  13. MDM2 inhibition rescues neurogenic and cognitive deficits in a mouse model of fragile X syndrome.

    Science.gov (United States)

    Li, Yue; Stockton, Michael E; Bhuiyan, Ismat; Eisinger, Brian E; Gao, Yu; Miller, Jessica L; Bhattacharyya, Anita; Zhao, Xinyu

    2016-04-27

    Fragile X syndrome, the most common form of inherited intellectual disability, is caused by loss of the fragile X mental retardation protein (FMRP). However, the mechanism remains unclear, and effective treatment is lacking. We show that loss of FMRP leads to activation of adult mouse neural stem cells (NSCs) and a subsequent reduction in the production of neurons. We identified the ubiquitin ligase mouse double minute 2 homolog (MDM2) as a target of FMRP. FMRP regulates Mdm2 mRNA stability, and loss of FMRP resulted in elevated MDM2 mRNA and protein. Further, we found that increased MDM2 expression led to reduced P53 expression in adult mouse NSCs, leading to alterations in NSC proliferation and differentiation. Treatment with Nutlin-3, a small molecule undergoing clinical trials for treating cancer, specifically inhibited the interaction of MDM2 with P53, and rescued neurogenic and cognitive deficits in FMRP-deficient mice. Our data reveal a potential regulatory role for FMRP in the balance between adult NSC activation and quiescence, and identify a potential new treatment for fragile X syndrome. Copyright © 2016, American Association for the Advancement of Science.

  14. CORTICAL ENCODING OF SIGNALS IN NOISE: EFFECTS OF STIMULUS TYPE AND RECORDING PARADIGM

    Science.gov (United States)

    Billings, Curtis J.; Bennett, Keri O.; Molis, Michelle R.; Leek, Marjorie R.

    2010-01-01

    Objectives Perception-in-noise deficits have been demonstrated across many populations and listening conditions. Many factors contribute to successful perception of auditory stimuli in noise, including neural encoding in the central auditory system. Physiological measures such as cortical auditory evoked potentials can provide a view of neural encoding at the level of the cortex that may inform our understanding of listeners’ abilities to perceive signals in the presence of background noise. In order to understand signal-in-noise neural encoding better, we set out to determine the effect of signal type, noise type, and evoking paradigm on the P1-N1-P2 complex. Design Tones and speech stimuli were presented to nine individuals in quiet, and in three background noise types: continuous speech spectrum noise, interrupted speech spectrum noise, and four-talker babble at a signal-to-noise ratio of −3 dB. In separate sessions, cortical auditory evoked potentials were evoked by a passive homogenous paradigm (single repeating stimulus) and an active oddball paradigm. Results The results for the N1 component indicated significant effects of signal type, noise type, and evoking paradigm. While components P1 and P2 also had significant main effects of these variables, only P2 demonstrated significant interactions among these variables. Conclusions Signal type, noise type, and evoking paradigm all must be carefully considered when interpreting signal-in-noise evoked potentials. Furthermore, these data confirm the possible usefulness of CAEPs as an aid to understanding perception-in-noise deficits. PMID:20890206

  15. Disruption of Transient Serotonin Accumulation by Non-Serotonin-Producing Neurons Impairs Cortical Map Development

    Directory of Open Access Journals (Sweden)

    Xiaoning Chen

    2015-01-01

    Full Text Available Polymorphisms that alter serotonin transporter SERT expression and functionality increase the risks for autism and psychiatric traits. Here, we investigate how SERT controls serotonin signaling in developing CNS in mice. SERT is transiently expressed in specific sets of glutamatergic neurons and uptakes extrasynaptic serotonin during perinatal CNS development. We show that SERT expression in glutamatergic thalamocortical axons (TCAs dictates sensory map architecture. Knockout of SERT in TCAs causes lasting alterations in TCA patterning, spatial organizations of cortical neurons, and dendritic arborization in sensory cortex. Pharmacological reduction of serotonin synthesis during the first postnatal week rescues sensory maps in SERTGluΔ mice. Furthermore, knockdown of SERT expression in serotonin-producing neurons does not impair barrel maps. We propose that spatiotemporal SERT expression in non-serotonin-producing neurons represents a determinant in early life genetic programming of cortical circuits. Perturbing this SERT function could be involved in the origin of sensory and cognitive deficits associated with neurodevelopmental disorders.

  16. Effects of metal ions on agonist-stimulated accumulation of inositol phosphates in hippocampal and cortical slices

    International Nuclear Information System (INIS)

    Bonner, M.J.; Tilson, H.A.

    1990-01-01

    [ 3 H]-inositol was incorporated into rat hippocampal or cortical slices. Zinc chloride and three different forms of inorganic lead compounds, lead chloride, lead nitrate, and lead acetate were used to stimulate PI metabolism at concentrations between 10 -15 and 10 -9 M. At these concentrations, these metal ions did not produce any significant stimulation of IP release. In birth hippocampal and cortical slices, carbachol produced equal levels of IP release. Norepinephrine (NE) produced a 10-15% higher stimulation than carbachol. When the metal ions were added to hippocampal slices together with the agonists, there was a general suppression of carbachol- or NE-induced IP release. This general suppression was not observed in cortical slices. These data suggest that the trace metals used inhibit agonist-induced second messenger release in the hippocampus

  17. Hypo-and hyperthyroidism affect the ATP, ADP and AMP hydrolysis in rat hippocampal and cortical slices.

    Science.gov (United States)

    Bruno, Alessandra Nejar; Diniz, Gabriela Placoná; Ricachenevsky, Felipe Klein; Pochmann, Daniela; Bonan, Carla Denise; Barreto-Chaves, Maria Luiza M; Sarkis, João José Freitas

    2005-05-01

    The presence of severe neurological symptoms in thyroid diseases has highlighted the importance of thyroid hormones in the normal functioning of the mature brain. Since, ATP is an important excitatory neurotransmitter and adenosine acts as a neuromodulatory structure inhibiting neurotransmitters release in the central nervous system (CNS), the ectonucleotidase cascade that hydrolyzes ATP to adenosine, is also involved in the control of brain functions. Thus, we investigated the influence of hyper-and hypothyroidism on the ATP, ADP and AMP hydrolysis in hippocampal and cortical slices from adult rats. Hyperthyroidism was induced by daily injections of l-thyroxine (T4) 25 microg/100 g body weight, for 14 days. Hypothyroidism was induced by thyroidectomy and methimazole (0.05%) added to their drinking water for 14 days. Hypothyroid rats were hormonally replaced by daily injections of T4 (5 microg/100 g body weight, i.p.) for 5 days. Hyperthyroidism significantly inhibited the ATP, ADP and AMP hydrolysis in hippocampal slices. In brain cortical slices, hyperthyroidism inhibited the AMP hydrolysis. In contrast, hypothyroidism increased the ATP, ADP and AMP hydrolysis in both hippocampal and cortical slices and these effects were reverted by T4 replacement. Furthermore, hypothyroidism increased the expression of NTPDase1 and 5'-nucleotidase, whereas hyperthyroidism decreased the expression of 5'-nucleotidase in hippocampus of adult rats. These findings demonstrate that thyroid disorders may influence the enzymes involved in the complete degradation of ATP to adenosine and possibly affects the responses mediated by adenine nucleotides in the CNS of adult rats.

  18. Neural correlates of working memory deficits in schizophrenic patients. Ways to establish neurocognitive endophenotypes of psychiatric disorders

    International Nuclear Information System (INIS)

    Gruber, O.; Gruber, E.; Falkai, P.

    2005-01-01

    This article briefly reviews some methodological limitations of functional neuroimaging studies in psychiatric patients. We argue that the investigation of the neural substrates of cognitive deficits in psychiatric disorders requires a combination of functional neuroimaging studies in healthy subjects with corresponding behavioral experiments in patients. In order to exemplify this methodological approach we review recent findings regarding the functional neuroanatomy of distinct components of human working memory and provide evidence for selective dysfunctions of cortical networks that underlie specific working memory deficits in schizophrenia. This identification of subgroups of schizophrenic patients according to neurocognitive parameters may facilitate the establishment of behavioral and neurophysiological endophenotypes and the development of a neurobiological classification of psychiatric disorders. (orig.) [de

  19. Modeling neurodevelopment and cortical dysfunction in SPG11-linked hereditary spastic paraplegia using human induced pluripotent stem cells

    OpenAIRE

    Mishra, Himanshu Kumar

    2016-01-01

    Hereditary spastic paraplegias (HSPs) are a heterogeneous group of inherited motor neuron diseases characterized by progressive spasticity and weakness of the lower limbs. Mutations in the Spastic Paraplegia Gene11 (SPG11), encoding spatacsin, cause the most frequent form of autosomal recessive HSP. SPG11 patients are clinically distinguishable from most other HSPs, by severe cortical atrophy and presence of a thin corpus callosum (TCC), associated with cognitive deficits. Partly due to l...

  20. Memory Deficits Induced by Inflammation Are Regulated by α5-Subunit-Containing GABAA Receptors

    Directory of Open Access Journals (Sweden)

    Dian-Shi Wang

    2012-09-01

    Full Text Available Systemic inflammation causes learning and memory deficits through mechanisms that remain poorly understood. Here, we studied the pathogenesis of memory loss associated with inflammation and found that we could reverse memory deficits by pharmacologically inhibiting α5-subunit-containing γ-aminobutyric acid type A (α5GABAA receptors and deleting the gene associated with the α5 subunit. Acute inflammation reduces long-term potentiation, a synaptic correlate of memory, in hippocampal slices from wild-type mice, and this reduction was reversed by inhibition of α5GABAA receptor function. A tonic inhibitory current generated by α5GABAA receptors in hippocampal neurons was increased by the key proinflammatory cytokine interleukin-1β through a p38 mitogen-activated protein kinase signaling pathway. Interleukin-1β also increased the surface expression of α5GABAA receptors in the hippocampus. Collectively, these results show that α5GABAA receptor activity increases during inflammation and that this increase is critical for inflammation-induced memory deficits.

  1. Improvement in regional CBF by L-serine contributes to its neuroprotective effect in rats after focal cerebral ischemia.

    Directory of Open Access Journals (Sweden)

    Tao-Jie Ren

    Full Text Available To investigate the mechanisms underlying the neuroprotective effect of L-serine, permanent focal cerebral ischemia was induced by occlusion of the middle cerebral artery while monitoring cerebral blood flow (CBF. Rats were divided into control and L-serine-treated groups after middle cerebral artery occlusion. The neurological deficit score and brain infarct volume were assessed. Nissl staining was used to quantify the cortical injury. L-serine and D-serine levels in the ischemic cortex were analyzed with high performance liquid chromatography. We found that L-serine treatment: 1 reduced the neurological deficit score, infarct volume and cortical neuron loss in a dose-dependent manner; 2 improved CBF in the cortex, and this effect was inhibited in the presence of apamin plus charybdotoxin while the alleviation of both neurological deficit score and infarct volume was blocked; and 3 increased the amount of L-serine and D-serine in the cortex, and inhibition of the conversion of L-serine into D-serine by aminooxyacetic acid did not affect the reduction of neurological deficit score and infarct volume by L-serine. In conclusion, improvement in regional CBF by L-serine may contribute to its neuroprotective effect on the ischemic brain, potentially through vasodilation which is mediated by the small- and intermediate-conductance Ca(2+-activated K(+ channels on the cerebral blood vessel endothelium.

  2. Variation in serotonin neurotransmission genes affects neural activation during response inhibition in adolescents and young adults with ADHD and healthy controls

    NARCIS (Netherlands)

    Van Rooij, Daan; Hartman, Catharina A.; Van Donkelaar, Marjolein M. J.; Bralten, Janita; Von Rhein, Daniel; Hakobjan, Marina; Franke, Barbara; Heslenfeld, Dirk J.; Oosterlaan, Jaap; Rommelse, Nanda; Buitelaar, Jan K.; Hoekstra, Pieter J.

    2015-01-01

    Objectives. Deficits in response inhibition have been associated with attention-deficit/hyperactivity disorder (ADHD). Given the role of serotonin in ADHD and impulsivity, we postulated that genetic variants within the serotonin pathway might influence response inhibition. Methods. We measured

  3. Cortical Visual Impairment

    Science.gov (United States)

    ... resolves by one year of life. Is “cortical blindness” the same thing as CVI? Cortical blindness is ... What visual characteristics are associated with CVI? • Distinct color preferences • Variable level of vision loss, often demonstrating ...

  4. Combined small-molecule inhibition accelerates the derivation of functional, early-born, cortical neurons from human pluripotent stem cells

    Science.gov (United States)

    Qi, Yuchen; Zhang, Xin-Jun; Renier, Nicolas; Wu, Zhuhao; Atkin, Talia; Sun, Ziyi; Ozair, M. Zeeshan; Tchieu, Jason; Zimmer, Bastian; Fattahi, Faranak; Ganat, Yosif; Azevedo, Ricardo; Zeltner, Nadja; Brivanlou, Ali H.; Karayiorgou, Maria; Gogos, Joseph; Tomishima, Mark; Tessier-Lavigne, Marc; Shi, Song-Hai; Studer, Lorenz

    2017-01-01

    Considerable progress has been made in converting human pluripotent stem cells (hPSCs) into functional neurons. However, the protracted timing of human neuron specification and functional maturation remains a key challenge that hampers the routine application of hPSC-derived lineages in disease modeling and regenerative medicine. Using a combinatorial small-molecule screen, we previously identified conditions for the rapid differentiation of hPSCs into peripheral sensory neurons. Here we generalize the approach to central nervous system (CNS) fates by developing a small-molecule approach for accelerated induction of early-born cortical neurons. Combinatorial application of 6 pathway inhibitors induces post-mitotic cortical neurons with functional electrophysiological properties by day 16 of differentiation, in the absence of glial cell co-culture. The resulting neurons, transplanted at 8 days of differentiation into the postnatal mouse cortex, are functional and establish long-distance projections, as shown using iDISCO whole brain imaging. Accelerated differentiation into cortical neuron fates should facilitate hPSC-based strategies for disease modeling and cell therapy in CNS disorders. PMID:28112759

  5. Cortical Thickness, Surface Area and Subcortical Volume Differentially Contribute to Cognitive Heterogeneity in Parkinson's Disease.

    Science.gov (United States)

    Gerrits, Niels J H M; van Loenhoud, Anita C; van den Berg, Stan F; Berendse, Henk W; Foncke, Elisabeth M J; Klein, Martin; Stoffers, Diederick; van der Werf, Ysbrand D; van den Heuvel, Odile A

    2016-01-01

    Parkinson's disease (PD) is often associated with cognitive deficits, although their severity varies considerably between patients. Recently, we used voxel-based morphometry (VBM) to show that individual differences in gray matter (GM) volume relate to cognitive heterogeneity in PD. VBM does, however, not differentiate between cortical thickness (CTh) and surface area (SA), which might be independently affected in PD. We therefore re-analyzed our cohort using the surface-based method FreeSurfer, and investigated (i) CTh, SA, and (sub)cortical GM volume differences between 93 PD patients and 45 matched controls, and (ii) the relation between these structural measures and cognitive performance on six neuropsychological tasks within the PD group. We found cortical thinning in PD patients in the left pericalcarine gyrus, extending to cuneus, precuneus and lingual areas and left inferior parietal cortex, bilateral rostral middle frontal cortex, and right cuneus, and increased cortical surface area in the left pars triangularis. Within the PD group, we found negative correlations between (i) CTh of occipital areas and performance on a verbal memory task, (ii) SA and volume of the frontal cortex and visuospatial memory performance, and, (iii) volume of the right thalamus and scores on two verbal fluency tasks. Our primary findings illustrate that i) CTh and SA are differentially affected in PD, and ii) VBM and FreeSurfer yield non-overlapping results in an identical dataset. We argue that this discrepancy is due to technical differences and the subtlety of the PD-related structural changes.

  6. The inhibition of proactive interference among adults with Internet gaming disorder.

    Science.gov (United States)

    Ko, Chih-Hung; Wang, Peng-Wei; Liu, Tai-Ling; Yen, Cheng-Fang; Chen, Cheng-Sheng; Yen, Ju-Yu

    2015-06-01

    Cognitive control plays a pivotal role in the mechanism of addictive behavior. The aim of the study was to evaluate the deficit in inhibition of proactive interference of Internet gaming disorder (IGD) using a directed forgetting task among young adults. A total of 64 participants with IGD and 69 controls were recruited on a university campus. They completed the directed forgetting task for online gaming words and neutral words. The results demonstrated that the IGD group had a poorer performance on the directed forgetting task, and this represented a deficit in inhibition of proactive interference. They also had a higher tendency to remember online gaming words rather than neutral words in comparison with the control group. This demonstrated memory bias toward online gaming words. These results suggested that more attention should be paid to deficits in inhibition of proactive interference and memory bias toward gaming content when treating subjects with IGD. Furthermore, it is essential and practical to prevent exposure to online gaming-related cues when endeavoring to control online gaming behavior. © 2014 Wiley Publishing Asia Pty Ltd.

  7. The Fas/Fas ligand death receptor pathway contributes to phenylalanine-induced apoptosis in cortical neurons.

    Directory of Open Access Journals (Sweden)

    Xiaodong Huang

    Full Text Available Phenylketonuria (PKU, an autosomal recessive disorder of amino acid metabolism caused by mutations in the phenylalanine hydroxylase (PAH gene, leads to childhood mental retardation by exposing neurons to cytotoxic levels of phenylalanine (Phe. A recent study showed that the mitochondria-mediated (intrinsic apoptotic pathway is involved in Phe-induced apoptosis in cultured cortical neurons, but it is not known if the death receptor (extrinsic apoptotic pathway and endoplasmic reticulum (ER stress-associated apoptosis also contribute to neurodegeneration in PKU. To answer this question, we used specific inhibitors to block each apoptotic pathway in cortical neurons under neurotoxic levels of Phe. The caspase-8 inhibitor Z-IETD-FMK strongly attenuated apoptosis in Phe-treated neurons (0.9 mM, 18 h, suggesting involvement of the Fas receptor (FasR-mediated cell death receptor pathway in Phe toxicity. In addition, Phe significantly increased cell surface Fas expression and formation of the Fas/FasL complex. Blocking Fas/FasL signaling using an anti-Fas antibody markedly inhibited apoptosis caused by Phe. In contrast, blocking the ER stress-induced cell death pathway with salubrinal had no effect on apoptosis in Phe-treated cortical neurons. These experiments demonstrate that the Fas death receptor pathway contributes to Phe-induced apoptosis and suggest that inhibition of the death receptor pathway may be a novel target for neuroprotection in PKU patients.

  8. Sex Differences in the Relationship Between Conduct Disorder and Cortical Structure in Adolescents.

    Science.gov (United States)

    Smaragdi, Areti; Cornwell, Harriet; Toschi, Nicola; Riccelli, Roberta; Gonzalez-Madruga, Karen; Wells, Amy; Clanton, Roberta; Baker, Rosalind; Rogers, Jack; Martin-Key, Nayra; Puzzo, Ignazio; Batchelor, Molly; Sidlauskaite, Justina; Bernhard, Anka; Martinelli, Anne; Kohls, Gregor; Konrad, Kerstin; Baumann, Sarah; Raschle, Nora; Stadler, Christina; Freitag, Christine; Sonuga-Barke, Edmund J S; De Brito, Stephane; Fairchild, Graeme

    2017-08-01

    Previous studies have reported reduced cortical thickness and surface area and altered gyrification in frontal and temporal regions in adolescents with conduct disorder (CD). Although there is evidence that the clinical phenotype of CD differs between males and females, no studies have examined whether such sex differences extend to cortical and subcortical structure. As part of a European multisite study (FemNAT-CD), structural magnetic resonance imaging (MRI) data were collected from 48 female and 48 male participants with CD and from 104 sex-, age-, and pubertal-status-matched controls (14-18 years of age). Data were analyzed using surface-based morphometry, testing for effects of sex, diagnosis, and sex-by-diagnosis interactions, while controlling for age, IQ, scan site, and total gray matter volume. CD was associated with cortical thinning and higher gyrification in ventromedial prefrontal cortex in both sexes. Males with CD showed lower, and females with CD showed higher, supramarginal gyrus cortical thickness compared with controls. Relative to controls, males with CD showed higher gyrification and surface area in superior frontal gyrus, whereas the opposite pattern was seen in females. There were no effects of diagnosis or sex-by-diagnosis interactions on subcortical volumes. Results are discussed with regard to attention-deficit/hyperactivity disorder, depression, and substance abuse comorbidity, medication use, handedness, and CD age of onset. We found both similarities and differences between males and females in CD-cortical structure associations. This initial evidence that the pathophysiological basis of CD may be partly sex-specific highlights the need to consider sex in future neuroimaging studies and suggests that males and females may require different treatments. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Water Deficit and Abscisic Acid Cause Differential Inhibition of Shoot versus Root Growth in Soybean Seedlings : Analysis of Growth, Sugar Accumulation, and Gene Expression.

    Science.gov (United States)

    Creelman, R A; Mason, H S; Bensen, R J; Boyer, J S; Mullet, J E

    1990-01-01

    Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite.

  10. Cortical Abnormalities Associated With Pediatric and Adult Obsessive-Compulsive Disorder: Findings From the ENIGMA Obsessive-Compulsive Disorder Working Group.

    Science.gov (United States)

    Boedhoe, Premika S W; Schmaal, Lianne; Abe, Yoshinari; Alonso, Pino; Ameis, Stephanie H; Anticevic, Alan; Arnold, Paul D; Batistuzzo, Marcelo C; Benedetti, Francesco; Beucke, Jan C; Bollettini, Irene; Bose, Anushree; Brem, Silvia; Calvo, Anna; Calvo, Rosa; Cheng, Yuqi; Cho, Kang Ik K; Ciullo, Valentina; Dallaspezia, Sara; Denys, Damiaan; Feusner, Jamie D; Fitzgerald, Kate D; Fouche, Jean-Paul; Fridgeirsson, Egill A; Gruner, Patricia; Hanna, Gregory L; Hibar, Derrek P; Hoexter, Marcelo Q; Hu, Hao; Huyser, Chaim; Jahanshad, Neda; James, Anthony; Kathmann, Norbert; Kaufmann, Christian; Koch, Kathrin; Kwon, Jun Soo; Lazaro, Luisa; Lochner, Christine; Marsh, Rachel; Martínez-Zalacaín, Ignacio; Mataix-Cols, David; Menchón, José M; Minuzzi, Luciano; Morer, Astrid; Nakamae, Takashi; Nakao, Tomohiro; Narayanaswamy, Janardhanan C; Nishida, Seiji; Nurmi, Erika; O'Neill, Joseph; Piacentini, John; Piras, Fabrizio; Piras, Federica; Reddy, Y C Janardhan; Reess, Tim J; Sakai, Yuki; Sato, Joao R; Simpson, H Blair; Soreni, Noam; Soriano-Mas, Carles; Spalletta, Gianfranco; Stevens, Michael C; Szeszko, Philip R; Tolin, David F; van Wingen, Guido A; Venkatasubramanian, Ganesan; Walitza, Susanne; Wang, Zhen; Yun, Je-Yeon; Thompson, Paul M; Stein, Dan J; van den Heuvel, Odile A

    2018-05-01

    Brain imaging studies of structural abnormalities in OCD have yielded inconsistent results, partly because of limited statistical power, clinical heterogeneity, and methodological differences. The authors conducted meta- and mega-analyses comprising the largest study of cortical morphometry in OCD ever undertaken. T 1 -weighted MRI scans of 1,905 OCD patients and 1,760 healthy controls from 27 sites worldwide were processed locally using FreeSurfer to assess cortical thickness and surface area. Effect sizes for differences between patients and controls, and associations with clinical characteristics, were calculated using linear regression models controlling for age, sex, site, and intracranial volume. In adult OCD patients versus controls, we found a significantly lower surface area for the transverse temporal cortex and a thinner inferior parietal cortex. Medicated adult OCD patients also showed thinner cortices throughout the brain. In pediatric OCD patients compared with controls, we found significantly thinner inferior and superior parietal cortices, but none of the regions analyzed showed significant differences in surface area. However, medicated pediatric OCD patients had lower surface area in frontal regions. Cohen's d effect sizes varied from -0.10 to -0.33. The parietal cortex was consistently implicated in both adults and children with OCD. More widespread cortical thickness abnormalities were found in medicated adult OCD patients, and more pronounced surface area deficits (mainly in frontal regions) were found in medicated pediatric OCD patients. These cortical measures represent distinct morphological features and may be differentially affected during different stages of development and illness, and possibly moderated by disease profile and medication.

  11. GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression.

    Science.gov (United States)

    Yoon, Jong H; Maddock, Richard J; Rokem, Ariel; Silver, Michael A; Minzenberg, Michael J; Ragland, J Daniel; Carter, Cameron S

    2010-03-10

    The neural mechanisms underlying cognitive deficits in schizophrenia remain essentially unknown. The GABA hypothesis proposes that reduced neuronal GABA concentration and neurotransmission results in cognitive impairments in schizophrenia. However, few in vivo studies have directly examined this hypothesis. We used magnetic resonance spectroscopy (MRS) at high field to measure visual cortical GABA levels in 13 subjects with schizophrenia and 13 demographically matched healthy control subjects. We found that the schizophrenia group had an approximately 10% reduction in GABA concentration. We further tested the GABA hypothesis by examining the relationship between visual cortical GABA levels and orientation-specific surround suppression (OSSS), a behavioral measure of visual inhibition thought to be dependent on GABAergic synaptic transmission. Previous work has shown that subjects with schizophrenia exhibit reduced OSSS of contrast discrimination (Yoon et al., 2009). For subjects with both MRS and OSSS data (n = 16), we found a highly significant positive correlation (r = 0.76) between these variables. GABA concentration was not correlated with overall contrast discrimination performance for stimuli without a surround (r = -0.10). These results suggest that a neocortical GABA deficit in subjects with schizophrenia leads to impaired cortical inhibition and that GABAergic synaptic transmission in visual cortex plays a critical role in OSSS.

  12. Gamma-Aminobutyric Acid Concentration is Reduced in Visual Cortex in Schizophrenia and Correlates with Orientation-Specific Surround Suppression

    Science.gov (United States)

    Yoon, Jong H.; Maddock, Richard J.; Rokem, Ariel; Silver, Michael A.; Minzenberg, Michael J.; Ragland, J. Daniel; Carter, Cameron S.

    2010-01-01

    The neural mechanisms underlying cognitive deficits in schizophrenia remain largely unknown. The gamma-aminobutyric acid (GABA) hypothesis proposes that reduced neuronal GABA concentration and neurotransmission results in cognitive impairments in schizophrenia. However, few in vivo studies have directly examined this hypothesis. We employed magnetic resonance spectroscopy (MRS) at high field to measure visual cortical GABA levels in 13 subjects with schizophrenia and 13 demographically matched healthy control subjects. We found that the schizophrenia group had an approximately 10% reduction in GABA concentration. We further tested the GABA hypothesis by examining the relationship between visual cortical GABA levels and orientation-specific surround suppression (OSSS), a behavioral measure of visual inhibition thought to be dependent on GABAergic synaptic transmission. Previous work has shown that subjects with schizophrenia exhibit reduced OSSS of contrast discrimination (Yoon et al., 2009). For subjects with both MRS and OSSS data (n=16), we found a highly significant positive correlation (r=0.76) between these variables. GABA concentration was not correlated with overall contrast discrimination performance for stimuli without a surround (r=-0.10). These results suggest that a neocortical GABA deficit in subjects with schizophrenia leads to impaired cortical inhibition and that GABAergic synaptic transmission in visual cortex plays a critical role in OSSS. PMID:20220012

  13. Transcranial magnetic stimulation in patients with early cortical dementia: A pilot study.

    Science.gov (United States)

    Issac, Thomas Gregor; Chandra, S R; Nagaraju, B C

    2013-10-01

    The diagnostic accuracy of the currently available tools carries poor sensitivity resulting in significant delay in specific diagnosis of cortical dementias. Considering the properties of default mode networking of the brain it is highly probable that specific changes may be seen in frontotemporal dementias (FTDs) and Alzheimer's disease sufficiently early. The aim of this study is to look for changes in Transcranial Magnetic Stimulation (TMS) in cortical dementia. Evaluated with a single pulse TMS with the figure of eight coil and recorded from right first dorsal interossei (FDI). Resting Motor Threshold (RMT) was estimated on the opposite motor cortex (T1). Second site of stimulation was cervical spine at C7-T2. Central motor conduction time (CMCT) is equal toT1-T2. Silent Period (SP) identified by applying TMS pulse to contracting FDI. RMT was reduced in seven out of eight Alzheimer's dementias. CMCT was in the upper limit of normal in both patients with FTD. The most consistent observation was that SP was reduced and there were escape discharges noticed during the SP suggesting increased cortical excitability and decreased cortical inhibition. This suggests probable early asymptomatic changes in the gamma-aminobutyric acid (GABA) nergic and cholinergic system is taking place. This if confirmed may give some insight into early diagnosis and therapeutic role of GABA agonists in these disorders.

  14. Cortical neurogenesis in the absence of centrioles.

    Science.gov (United States)

    Insolera, Ryan; Bazzi, Hisham; Shao, Wei; Anderson, Kathryn V; Shi, Song-Hai

    2014-11-01

    Neuronal production in the mammalian cortex depends on extensive mitoses of radial glial progenitors (RGPs) residing in the ventricular zone (VZ). We examined the function of centrioles in RGPs during cortical neurogenesis in mice by conditional removal of SAS-4, a protein that is required for centriole biogenesis. SAS-4 deletion led to a progressive loss of centrioles, accompanied by RGP detachment from the VZ. Delocalized RGPs did not become outer subventricular zone RGPs (oRGs). Although they remained proliferative, ectopic RGPs, as well as those in the VZ, with a centrosomal deficit exhibited prolonged mitosis, p53 upregulation and apoptosis, resulting in neuronal loss and microcephaly. Simultaneous removal of p53 fully rescued RGP death and microcephaly, but not RGP delocalization and randomized mitotic spindle orientation. Our findings define the functions of centrioles in anchoring RGPs in the VZ and ensuring their efficient mitoses, and reveal the robust adaptability of RGPs in the developing cortex.

  15. Oridonin attenuates Aβ1-42-induced neuroinflammation and inhibits NF-κB pathway.

    Directory of Open Access Journals (Sweden)

    Sulei Wang

    Full Text Available Neuroinflammation induced by beta-amyloid (Aβ plays a critical role in the pathogenesis of Alzheimer's disease (AD, and inhibiting Aβ-induced neuroinflammation serves as a potential strategy for the treatment of AD. Oridonin (Ori, a compound of Rabdosia rubescens, has been shown to exert anti-inflammatory effects. In this study, we demonstrated that Ori inhibited glial activation and decreased the release of inflammatory cytokines in the hippocampus of Aβ1-42-induced AD mice. In addition, Ori inhibited the NF-κB pathway and Aβ1-42-induced apoptosis. Furthermore, Ori could attenuate memory deficits in Aβ1-42-induced AD mice. In conclusion, our study demonstrated that Ori inhibited the neuroinflammation and attenuated memory deficits induced by Aβ1-42, suggesting that Ori might be a promising candidate for AD treatment.

  16. Selective attentional deficit in essential tremor: Evidence from the attention network test.

    Science.gov (United States)

    Pauletti, Caterina; Mannarelli, Daniela; De Lucia, Maria Caterina; Locuratolo, Nicoletta; Currà, Antonio; Missori, Paolo; Marinelli, Lucio; Fattapposta, Francesco

    2015-11-01

    The traditional view of essential tremor (ET) as a monosymptomatic and benign disorder has been reconsidered after patients with ET have been shown to experience cognitive deficits that are also related to attention. The Attention Network Test (ANT) is a rapid, widely used test to measure the efficiency of three attentional networks, i.e. alerting, orienting and executive, by evaluating reaction times (RTs) in response to visual stimuli. The aim of this study was to investigate attentional functioning in ET patients by means of the ANT. 21 non-demented patients with ET and 21 age- and sex-matched healthy controls performed the ANT. RT was significantly longer in ET patients than in controls (p attention in ET patients, probably owing to a dysfunction in the cerebello-thalamo-cortical loop. These selective attentional deficits are not related to clinical motor symptoms, contributing to shed further light on the clinical picture of ET. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Minocycline Transiently Reduces Microglia/Macrophage Activation but Exacerbates Cognitive Deficits Following Repetitive Traumatic Brain Injury in the Neonatal Rat

    Science.gov (United States)

    Hanlon, Lauren A.; Huh, Jimmy W.

    2016-01-01

    Elevated microglial/macrophage-associated biomarkers in the cerebrospinal fluid of infant victims of abusive head trauma (AHT) suggest that these cells play a role in the pathophysiology of the injury. In a model of AHT in 11-day-old rats, 3 impacts (24 hours apart) resulted in spatial learning and memory deficits and increased brain microglial/macrophage reactivity, traumatic axonal injury, neuronal degeneration, and cortical and white-matter atrophy. The antibiotic minocycline has been effective in decreasing injury-induced microglial/macrophage activation while simultaneously attenuating cellular and functional deficits in models of neonatal hypoxic ischemia, but the potential for this compound to rescue deficits after impact-based trauma to the immature brain remains unexplored. Acute minocycline administration in this model of AHT decreased microglial/macrophage reactivity in the corpus callosum of brain-injured animals at 3 days postinjury, but this effect was lost by 7 days postinjury. Additionally, minocycline treatment had no effect on traumatic axonal injury, neurodegeneration, tissue atrophy, or spatial learning deficits. Interestingly, minocycline-treated animals demonstrated exacerbated injury-induced spatial memory deficits. These results contrast with previous findings in other models of brain injury and suggest that minocycline is ineffective in reducing microglial/macrophage activation and ameliorating injury-induced deficits following repetitive neonatal traumatic brain injury. PMID:26825312

  18. Sensorimotor gating deficits in multiple system atrophy

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Biernat, Heidi Bryde; Nikolic, Miki

    2014-01-01

    Prepulse inhibition (PPI) of the auditory blink reflex is a measure of sensorimotor gating, which reflects an organism's ability to filter out irrelevant sensory information. PPI has never been studied in patients with multiple system atrophy (MSA), although sensorimotor deficits are frequently a...... associated with synucleinopathies. We investigated whether alterations in PPI were more pronounced in MSA compared with Parkinson's disease (PD), idiopathic rapid eye movement sleep behavior disorder (iRBD) and healthy controls....

  19. Electro-acupuncture exerts beneficial effects against cerebral ischemia and promotes the proliferation of neural progenitor cells in the cortical peri-infarct area through the Wnt/β-catenin signaling pathway

    Science.gov (United States)

    CHEN, BIN; TAO, JING; LIN, YUKUN; LIN, RUHUI; LIU, WEILIN; CHEN, LIDIAN

    2015-01-01

    Electro-acupuncture (EA) is a novel therapy based on combining traditional acupuncture with modern electrotherapy, and it is currently being investigated as a treatment for ischemic stroke. In the present study, we aimed to investigate the mechanisms through which EA regulates the proliferation of neural progenitor cells (NPCs) in the cortical peri-infarct area after stroke. The neuroprotective effects of EA on ischemic rats were evaluated by determining the neurological deficit scores and cerebral infarct volumes. The proliferation of the NPCs and the activation of the Wnt/β-catenin signaling pathway in the cortical peri-infarct area were examined. Our results revealed that EA significantly alleviated neurological deficits, reduced the infarct volume and enhanced NPC proliferation [nestin/glial fibrillary acidic protein (GFAP)-double positive] in the cortex of rats subjected to middle cerebral artery occlusion (MCAO). Moreover, the Wnt1 and β-catenin mRNA and protein levels were increased, while glycogen synthase kinase-3 (GSK3) transcription was suppressed by EA. These results suggest that the upregulatory effects of EA on the Wnt/β-catenin signaling pathway may promote NPC proliferation in the cortical peri-infarct area after stroke, consequently providing a therapeutic effect against cerebral ischemia. PMID:26329606

  20. Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation

    Energy Technology Data Exchange (ETDEWEB)

    Fogliarini, Celine [Faculte Timone, Centre de Resonance Magnetique Biologique et Medicale, Marseille (France); Chaumoitre, Katia [Hopital Nord, Department of Radiology, Marseille (France); Chapon, Frederique; Levrier, Olivier; Girard, Nadine [Hopital Timone, Department of Neuroradiology, Marseille Cedex 5 (France); Fernandez, Carla; Figarella-Branger, Dominique [Hopital Timone, Department of Pathology, Marseille (France)

    2005-08-01

    Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa. (orig.)

  1. Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation

    International Nuclear Information System (INIS)

    Fogliarini, Celine; Chaumoitre, Katia; Chapon, Frederique; Levrier, Olivier; Girard, Nadine; Fernandez, Carla; Figarella-Branger, Dominique

    2005-01-01

    Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa. (orig.)

  2. The cortical signature of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Federica Agosta

    Full Text Available The aim of this study was to explore the pattern of regional cortical thickness in patients with non-familial amyotrophic lateral sclerosis (ALS and to investigate whether cortical thinning is associated with disease progression rate. Cortical thickness analysis was performed in 44 ALS patients and 26 healthy controls. Group differences in cortical thickness and the age-by-group effects were assessed using vertex-by-vertex and multivariate linear models. The discriminatory ability of MRI variables in distinguishing patients from controls was estimated using the Concordance Statistics (C-statistic within logistic regression analyses. Correlations between cortical thickness measures and disease progression rate were tested using the Pearson coefficient. Relative to controls, ALS patients showed a bilateral cortical thinning of the primary motor, prefrontal and ventral frontal cortices, cingulate gyrus, insula, superior and inferior temporal and parietal regions, and medial and lateral occipital areas. There was a significant age-by-group effect in the sensorimotor cortices bilaterally, suggesting a stronger association between age and cortical thinning in ALS patients compared to controls. The mean cortical thickness of the sensorimotor cortices distinguished patients with ALS from controls (C-statistic ≥ 0.74. Cortical thinning of the left sensorimotor cortices was related to a faster clinical progression (r = -0.33, p = 0.03. Cortical thickness measurements allowed the detection and quantification of motor and extramotor involvement in patients with ALS. Cortical thinning of the precentral gyrus might offer a marker of upper motor neuron involvement and disease progression.

  3. The cortical signature of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Agosta, Federica; Valsasina, Paola; Riva, Nilo; Copetti, Massimiliano; Messina, Maria Josè; Prelle, Alessandro; Comi, Giancarlo; Filippi, Massimo

    2012-01-01

    The aim of this study was to explore the pattern of regional cortical thickness in patients with non-familial amyotrophic lateral sclerosis (ALS) and to investigate whether cortical thinning is associated with disease progression rate. Cortical thickness analysis was performed in 44 ALS patients and 26 healthy controls. Group differences in cortical thickness and the age-by-group effects were assessed using vertex-by-vertex and multivariate linear models. The discriminatory ability of MRI variables in distinguishing patients from controls was estimated using the Concordance Statistics (C-statistic) within logistic regression analyses. Correlations between cortical thickness measures and disease progression rate were tested using the Pearson coefficient. Relative to controls, ALS patients showed a bilateral cortical thinning of the primary motor, prefrontal and ventral frontal cortices, cingulate gyrus, insula, superior and inferior temporal and parietal regions, and medial and lateral occipital areas. There was a significant age-by-group effect in the sensorimotor cortices bilaterally, suggesting a stronger association between age and cortical thinning in ALS patients compared to controls. The mean cortical thickness of the sensorimotor cortices distinguished patients with ALS from controls (C-statistic ≥ 0.74). Cortical thinning of the left sensorimotor cortices was related to a faster clinical progression (r = -0.33, p = 0.03). Cortical thickness measurements allowed the detection and quantification of motor and extramotor involvement in patients with ALS. Cortical thinning of the precentral gyrus might offer a marker of upper motor neuron involvement and disease progression.

  4. Cortical bone metastases

    International Nuclear Information System (INIS)

    Davis, T.M. Jr.; Rogers, L.F.; Hendrix, R.W.

    1986-01-01

    Twenty-five cases of bone metastases involving the cortex alone are reviewed. Seven patients had primary lung carcinoma, while 18 had primary tumors not previously reported to produce cortical bone metastases (tumors of the breast, kidney, pancreas, adenocarcinoma of unknown origin, multiple myeloma). Radiographically, these cortical lesions were well circumscribed, osteolytic, and produced soft-tissue swelling and occasional periosteal reaction. A recurrent pattern of metadiaphyseal involvement of the long bones of the lower extremity (particularly the femur) was noted, and is discussed. Findings reported in the literature, review, pathophysiology, and the role of skeletal radiographs, bone scans, and CT scans in evaluating cortical bone metastases are addressed

  5. Inattention Predicts Increased Thickness of Left Occipital Cortex in Men with Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Sörös, Peter; Bachmann, Katharina; Lam, Alexandra P; Kanat, Manuela; Hoxhaj, Eliza; Matthies, Swantje; Feige, Bernd; Müller, Helge H O; Thiel, Christiane; Philipsen, Alexandra

    2017-01-01

    Attention-deficit/hyperactivity disorder (ADHD) in adulthood is a serious and frequent psychiatric disorder with the core symptoms inattention, impulsivity, and hyperactivity. The principal aim of this study was to investigate associations between brain morphology, i.e., cortical thickness and volumes of subcortical gray matter, and individual symptom severity in adult ADHD. Surface-based brain morphometry was performed in 35 women and 29 men with ADHD using FreeSurfer. Linear regressions were calculated between cortical thickness and the volumes of subcortical gray matter and the inattention, hyperactivity, and impulsivity subscales of the Conners Adult ADHD Rating Scales (CAARS). Two separate analyses were performed. For the first analysis, age was included as additional regressor. For the second analysis, both age and severity of depression were included as additional regressors. Study participants were recruited between June 2012 and January 2014. Linear regression identified an area in the left occipital cortex of men, covering parts of the middle occipital sulcus and gyrus, in which the score on the CAARS inattention subscale predicted increased mean cortical thickness [ F (1,27) = 26.27, p  attentional networks in male adult ADHD patients.

  6. Coconut oil attenuates the effects of amyloid-β on cortical neurons in vitro.

    Science.gov (United States)

    Nafar, Firoozeh; Mearow, Karen M

    2014-01-01

    Dietary supplementation has been studied as an approach to ameliorating deficits associated with aging and neurodegeneration. We undertook this pilot study to investigate the effects of coconut oil supplementation directly on cortical neurons treated with amyloid-β (Aβ) peptide in vitro. Our results indicate that neuron survival in cultures co-treated with coconut oil and Aβ is rescued compared to cultures exposed only to Aβ. Coconut oil co-treatment also attenuates Aβ-induced mitochondrial alterations. The results of this pilot study provide a basis for further investigation of the effects of coconut oil, or its constituents, on neuronal survival focusing on mechanisms that may be involved.

  7. Visual orienting and attention deficits in 5- and 10-month-old preterm infants.

    Science.gov (United States)

    Ross-Sheehy, Shannon; Perone, Sammy; Macek, Kelsi L; Eschman, Bret

    2017-02-01

    Cognitive outcomes for children born prematurely are well characterized, including increased risk for deficits in memory, attention, processing speed, and executive function. However, little is known about deficits that appear within the first 12 months, and how these early deficits contribute to later outcomes. To probe for functional deficits in visual attention, preterm and full-term infants were tested at 5 and 10 months with the Infant Orienting With Attention task (IOWA; Ross-Sheehy, Schneegans and Spencer, 2015). 5-month-old preterm infants showed significant deficits in orienting speed and task related error. However, 10-month-old preterm infants showed only selective deficits in spatial attention, particularly reflexive orienting responses, and responses that required some inhibition. These emergent deficits in spatial attention suggest preterm differences may be related to altered postnatal developmental trajectories. Moreover, we found no evidence of a dose-response relation between increased gestational risk and spatial attention. These results highlight the critical role of postnatal visual experience, and suggest that visual orienting may be a sensitive measure of attentional delay. Results reported here both inform current theoretical models of early perceptual/cognitive development, and future intervention efforts. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The alterations of cortical volume, thickness, surface and density in the intermediate sporadic Parkinson's disease from the Han population of Mainland China

    Directory of Open Access Journals (Sweden)

    Xia Deng

    2016-08-01

    Full Text Available Many symptoms of sporadic Parkinson's disease (sPD can’t be completely explained by the lesion of simple typical extrapyramidal circuit between striatum and substantia nigra. Therefore, we investigated the alteration of cortical volume, thickness, surface and density in the intermediate sPD from the Han population of Mainland China in order to find the new pathological brain regions associated with the complex clinical manifestations of sPD. The cortical volume, thickness, surface and density were examined using the voxel-based cortical morphometry and corticometry on magnetic resonance image (MRI in 67 intermediate sPD and 35 controls, the multiple adjusted comparisons analysis of all MRI data were employed to assess the relationships between the cortical morphometric alteration in the specific brain regions and sPD. Results showed that a significantly shrunk volume, thinned thickness and enlarged or reduced surface of cortex in some specific brain regions were closely associated with sPD, but all cortical densities were not different. The majority of morphometric alteration of hemisphere cortex was symmetric, but that in the left hemisphere was more significant. The cortical morphometric alterations in the frontal, temporal, parietal, occipital and limbic lobe, cerebellum, caudate and thalamus were closely related to the clinical neural dysfunction (Clinical manifestations of sPD. Our data indicated that the deficits of extensive brain regions involved in the development of sPD, resulted in a series of correspondent complex clinical manifestations in the disease.

  9. No effects of bilateral tDCS over inferior frontal gyrus on response inhibition and aggression

    NARCIS (Netherlands)

    Dambacher, F.; Schuhmann, T.; Lobbestael, J.; Arntz, A.; Brugman, S.; Sack, A.T.

    2015-01-01

    Response inhibition is defined as the capacity to adequately withdraw pre-planned responses. It has been shown that individuals with deficits in inhibiting pre-planned responses tend to display more aggressive behaviour. The prefrontal cortex is involved in both, response inhibition and aggression.

  10. Neurocognitive impairment in deficit and non-deficit schizophrenia: a meta-analysis.

    Science.gov (United States)

    Bora, E; Binnur Akdede, B; Alptekin, K

    2017-10-01

    Most studies suggested that patients with deficit schizophrenia have more severe impairment compared with patients with non-deficit schizophrenia. However, it is not clear whether deficit and non-deficit schizophrenia are associated with differential neurocognitive profiles. The aim of this meta-analytic review was to compare cognitive performances of deficit and non-deficit patients with each other and with healthy controls. In the current meta-analysis, differences in cognitive abilities between 897 deficit and 1636 non-deficit patients with schizophrenia were examined. Cognitive performances of 899 healthy controls were also compared with 350 patients with deficit and 592 non-deficit schizophrenia. Both deficit (d = 1.04-1.53) and non-deficit (d = 0.68-1.19) schizophrenia were associated with significant deficits in all cognitive domains. Deficit patients underperformed non-deficit patients in all cognitive domains (d = 0.24-0.84) and individual tasks (d = 0.39-0.93). The relationship between deficit syndrome and impairment in olfaction, social cognition, verbal fluency, and speed-based cognitive tasks were relatively stronger. Our findings suggest that there is consistent evidence for a significant relationship between deficit syndrome and more severe cognitive impairment in schizophrenia.

  11. Methamphetamine induces heme oxygenase-1 expression in cortical neurons and glia to prevent its toxicity

    International Nuclear Information System (INIS)

    Huang, Y.-N.; Wu, C.-H.; Lin, T.-C.; Wang, J.-Y.

    2009-01-01

    The impairment of cognitive and motor functions in humans and animals caused by methamphetamine (METH) administration underscores the importance of METH toxicity in cortical neurons. The heme oxygenase-1 (HO-1) exerts a cytoprotective effect against various neuronal injures; however, it remains unclear whether HO-1 is involved in METH-induced toxicity. We used primary cortical neuron/glia cocultures to explore the role of HO-1 in METH-induced toxicity. Exposure of cultured cells to various concentrations of METH (0.1, 0.5, 1, 3, 5, and 10 mM) led to cytotoxicity in a concentration-dependent manner. A METH concentration of 5 mM, which caused 50% of neuronal death and glial activation, was chosen for subsequent experiments. RT-PCR and Western blot analysis revealed that METH significantly induced HO-1 mRNA and protein expression, both preceded cell death. Double and triple immunofluorescence staining further identified HO-1-positive cells as activated astrocytes, microglia, and viable neurons, but not dying neurons. Inhibition of the p38 mitogen-activated protein kinase pathway significantly blocked HO-1 induction by METH and aggravated METH neurotoxicity. Inhibition of HO activity using tin protoporphyrine IX significantly reduced HO activity and exacerbated METH neurotoxicity. However, prior induction of HO-1 using cobalt protoporphyrine IX partially protected neurons from METH toxicity. Taken together, our results suggest that induction of HO-1 by METH via the p38 signaling pathway may be protective, albeit insufficient to completely protect cortical neurons from METH toxicity.

  12. Phosphodiesterase 10A inhibition attenuates sleep deprivation-induced deficits in long-term fear memory.

    Science.gov (United States)

    Guo, Lengqiu; Guo, Zhuangli; Luo, Xiaoqing; Liang, Rui; Yang, Shui; Ren, Haigang; Wang, Guanghui; Zhen, Xuechu

    2016-12-02

    Sleep, particularly rapid eye movement (REM) sleep, is implicated in the consolidation of emotional memories. In the present study, we investigated the protective effects of a phosphodiesterase 10A (PDE10A) inhibitor MP-10 on deficits in long-term fear memory induced by REM sleep deprivation (REM-SD). REM-SD caused deficits in long-term fear memory, however, MP-10 administration ameliorated the deleterious effects of REM-SD on long term fear memory. Brain-derived neurotropic factor (BDNF) and phosphorylated cAMP response element-binding protein (pCREB) were altered in specific brain regions associated with learning and memory in REM-SD rats. Accordingly, REM-SD caused a significant decrease of pCREB in hippocampus and striatum and a significant decrease of BDNF in the hippocampus, striatum and amygdala, however, MP-10 reversed the effects of REM-SD in a dose-dependent manner. Our findings suggest that REM-SD disrupts the consolidation of long-term fear memory and that administration of MP-10 protects the REM-SD-induced deficits in fear memory, which may be due to the MP-10-induced expression of BDNF in the hippocampus, striatum and amygdala, and phosphorylation of CREB in the hippocampus and striatum. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Differential brain development with low and high IQ in attention-deficit/hyperactivity disorder.

    Directory of Open Access Journals (Sweden)

    Patrick de Zeeuw

    Full Text Available Attention-Deficit/Hyperactivity Disorder (ADHD and intelligence (IQ are both heritable phenotypes. Overlapping genetic effects have been suggested to influence both, with neuroimaging work suggesting similar overlap in terms of morphometric properties of the brain. Together, this evidence suggests that the brain changes characteristic of ADHD may vary as a function of IQ. This study investigated this hypothesis in a sample of 108 children with ADHD and 106 typically developing controls, who participated in a cross-sectional anatomical MRI study. A subgroup of 64 children also participated in a diffusion tensor imaging scan. Brain volumes, local cortical thickness and average cerebral white matter microstructure were analyzed in relation to diagnostic group and IQ. Dimensional analyses investigated possible group differences in the relationship between anatomical measures and IQ. Second, the groups were split into above and below median IQ subgroups to investigate possible differences in the trajectories of cortical development. Dimensionally, cerebral gray matter volume and cerebral white matter microstructure were positively associated with IQ for controls, but not for ADHD. In the analyses of the below and above median IQ subgroups, we found no differences from controls in cerebral gray matter volume in ADHD with below-median IQ, but a delay of cortical development in a number of regions, including prefrontal areas. Conversely, in ADHD with above-median IQ, there were significant reductions from controls in cerebral gray matter volume, but no local differences in the trajectories of cortical development.In conclusion, the basic relationship between IQ and neuroanatomy appears to be altered in ADHD. Our results suggest that there may be multiple brain phenotypes associated with ADHD, where ADHD combined with above median IQ is characterized by small, more global reductions in brain volume that are stable over development, whereas ADHD with

  14. Differential Brain Development with Low and High IQ in Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    de Zeeuw, Patrick; Schnack, Hugo G.; van Belle, Janna; Weusten, Juliette; van Dijk, Sarai; Langen, Marieke; Brouwer, Rachel M.; van Engeland, Herman; Durston, Sarah

    2012-01-01

    Attention-Deficit/Hyperactivity Disorder (ADHD) and intelligence (IQ) are both heritable phenotypes. Overlapping genetic effects have been suggested to influence both, with neuroimaging work suggesting similar overlap in terms of morphometric properties of the brain. Together, this evidence suggests that the brain changes characteristic of ADHD may vary as a function of IQ. This study investigated this hypothesis in a sample of 108 children with ADHD and 106 typically developing controls, who participated in a cross-sectional anatomical MRI study. A subgroup of 64 children also participated in a diffusion tensor imaging scan. Brain volumes, local cortical thickness and average cerebral white matter microstructure were analyzed in relation to diagnostic group and IQ. Dimensional analyses investigated possible group differences in the relationship between anatomical measures and IQ. Second, the groups were split into above and below median IQ subgroups to investigate possible differences in the trajectories of cortical development. Dimensionally, cerebral gray matter volume and cerebral white matter microstructure were positively associated with IQ for controls, but not for ADHD. In the analyses of the below and above median IQ subgroups, we found no differences from controls in cerebral gray matter volume in ADHD with below-median IQ, but a delay of cortical development in a number of regions, including prefrontal areas. Conversely, in ADHD with above-median IQ, there were significant reductions from controls in cerebral gray matter volume, but no local differences in the trajectories of cortical development. In conclusion, the basic relationship between IQ and neuroanatomy appears to be altered in ADHD. Our results suggest that there may be multiple brain phenotypes associated with ADHD, where ADHD combined with above median IQ is characterized by small, more global reductions in brain volume that are stable over development, whereas ADHD with below median IQ is

  15. Disuse exaggerates the detrimental effects of alcohol on cortical bone

    Science.gov (United States)

    Hefferan, Theresa E.; Kennedy, Angela M.; Evans, Glenda L.; Turner, Russell T.

    2003-01-01

    BACKGROUND: Alcohol abuse is associated with an increased risk for osteoporosis. However, comorbidity factors may play an important role in the pathogenesis of alcohol-related bone fractures. Suboptimal mechanical loading of the skeleton, an established risk factor for bone loss, may occur in some alcohol abusers due to reduced physical activity, muscle atrophy, or both. The effect of alcohol consumption and reduced physical activity on bone metabolism has not been well studied. The purpose of this study was to determine whether mechanical disuse alters bone metabolism in a rat model for chronic alcohol abuse. METHODS: Alcohol was administered in the diet (35% caloric intake) of 6-month-old male rats for 4 weeks. Rats were hindlimb-unloaded the final 2 weeks of the experiment to prevent dynamic weight bearing. Afterward, cortical bone histomorphometry was evaluated at the tibia-fibula synostosis. RESULTS: At the periosteal surface of the tibial diaphysis, alcohol and hindlimb unloading independently decreased the mineralizing perimeter, mineral apposition rate, and bone formation rate. In addition, alcohol, but not hindlimb unloading, increased endocortical bone resorption. The respective detrimental effects of alcohol and hindlimb unloading to inhibit bone formation were additive; there was no interaction between the two variables. CONCLUSIONS: Reduced weight bearing accentuates the detrimental effects of alcohol on cortical bone in adult male rats by further inhibiting bone formation. This finding suggests that reduced physical activity may be a comorbidity factor for osteoporosis in alcohol abusers.

  16. Simvastatin Attenuates Neurogenetic Damage and Improves Neurocongnitive Deficits Induced by Isoflurane in Neonatal Rats

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2018-03-01

    Full Text Available Background/Aims: Isoflurane inhibited neurogenesis and induced subsequent neurocognitive deficits in developing brain. Simvastatin exerts neuroprotection in a wide range of brain injury models. In the present study, we investigated whether simvastatin could attenuate neurogenetic inhibition and cognitive deficits induced by isoflurane exposure in neonatal rats. Methods: Sprague-Dawley rats at postnatal day (PND 7 and neural stem cells (NSCs were treated with either gas mixture, isoflurane, or simvastatin 60 min prior to isoflurane exposure, respectively. The rats were decapitated at PND 8 and PND 10 for detection of neurogenesis in the subventricular zone (SVZ and subgranular zone (SGZ of the hippocampus by immunostaining. NSC proliferation, viability and apoptosis were assessed by immunohistochemistry, CCK-8 and TUNEL, respectively. The protein expressions of caspase-3, p-Akt and p-GSK-3β both in vivo and vitro were assessed by western blotting. Cognitive functions were assessed by Morris Water Maze test and context fear conditioning test at the adult. Results: Isoflurane exposure inhibited neurogenesis in the SVZ and SGZ, decreased NSC proliferation and viability, promoted NSC apoptosis and led to late cognitive deficits. Furthermore, isoflurane increased caspase-3 expression and decreased protein expressions of p-Akt and p-GSK-3β both in vivo and in vitro. Pretreatment with simvastatin attenuated isoflurane-elicited changes in NSCs and cognitive function. Co-treatment with LY294002 reversed the effect of simvastatin on NSCs in vitro. Conclusion: We for the first time showed that simvastatin, by upregulating Akt/GSK-3β signaling pathway, alleviated isoflurane-induced neurogenetic damage and neurocognitive deficits in developing rat brain.

  17. Neuromuscular deficits after peripheral joint injury: a neurophysiological hypothesis.

    Science.gov (United States)

    Ward, Sarah; Pearce, Alan J; Pietrosimone, Brian; Bennell, Kim; Clark, Ross; Bryant, Adam L

    2015-03-01

    In addition to biomechanical disturbances, peripheral joint injuries (PJIs) can also result in chronic neuromuscular alterations due in part to loss of mechanoreceptor-mediated afferent feedback. An emerging perspective is that PJI should be viewed as a neurophysiological dysfunction, not simply a local injury. Neurophysiological and neuroimaging studies have provided some evidence for central nervous system (CNS) reorganization at both the cortical and spinal levels after PJI. The novel hypothesis proposed is that CNS reorganization is the underlying mechanism for persisting neuromuscular deficits after injury, particularly muscle weakness. There is a lack of direct evidence to support this hypothesis, but future studies utilizing force-matching tasks with superimposed transcranial magnetic stimulation may be help clarify this notion. © 2014 Wiley Periodicals, Inc.

  18. Differences in Executive Functioning in Children with Attention Deficit and Hyperactivity Disorder (ADHD).

    Science.gov (United States)

    Elosúa, M Rosa; Del Olmo, Sandra; Contreras, María José

    2017-01-01

    In recent years, the interest in Attention Deficit and Hyperactivity Disorder (ADHD) and its relation to deficits in working memory (WM) and more specifically the different executive functions (EFs) has grown, to the point of confirming that these are quite frequent in this disorder. The aim of this study was precisely to explore differences in executive functioning of WM in fourth grade Primary school children with and without ADHD (26 and 29 children, respectively), introducing rigorous control measures in the tests used. Four EFs were analyzed: divided attention, updating, attentional shifting and inhibition, measured through four tasks, the dual-task paradigm (digits and box-crossing), the N-Back task, the Trail Making Test and the Stroop task, respectively. The results showed that participants with ADHD, compared to children with typical development (TD), exhibited a smaller verbal memory span as well as deficits in the attentional shifting and updating functions. However, a similar performance for the EF of inhibition was found for both groups of participants. Finally, an unexpected result was obtained with regard to the role of divided attention, as children with ADHD were less impaired when performing the double task than participants in the TD group.

  19. Short-term immobilization influences use-dependent cortical plasticity and fine motor performance.

    Science.gov (United States)

    Opie, George M; Evans, Alexandra; Ridding, Michael C; Semmler, John G

    2016-08-25

    Short-term immobilization that reduces muscle use for 8-10h is known to influence cortical excitability and motor performance. However, the mechanisms through which this is achieved, and whether these changes can be used to modify cortical plasticity and motor skill learning, are not known. The purpose of this study was to investigate the influence of short-term immobilization on use-dependent cortical plasticity, motor learning and retention. Twenty-one adults were divided into control and immobilized groups, both of which underwent two experimental sessions on consecutive days. Within each session, transcranial magnetic stimulation (TMS) was used to assess motor-evoked potential (MEP) amplitudes, short- (SICI) and long-interval intracortical inhibition (LICI), and intracortical facilitation (ICF) before and after a grooved pegboard task. Prior to the second training session, the immobilized group underwent 8h of left hand immobilization targeting the index finger, while control subjects were allowed normal limb use. Immobilization produced a reduction in MEP amplitudes, but no change in SICI, LICI or ICF. While motor performance improved for both groups in each session, the level of performance was greater 24-h later in control, but not immobilized subjects. Furthermore, training-related MEP facilitation was greater after, compared with before, immobilization. These results indicate that immobilization can modulate use-dependent plasticity and the retention of motor skills. They also suggest that changes in intracortical excitability are unlikely to contribute to the immobilization-induced modification of cortical excitability. Copyright © 2016. Published by Elsevier Ltd.

  20. Transcranial magnetic stimulation in patients with early cortical dementia: A pilot study

    Directory of Open Access Journals (Sweden)

    Thomas Gregor Issac

    2013-01-01

    Full Text Available Context: The diagnostic accuracy of the currently available tools carries poor sensitivity resulting in significant delay in specific diagnosis of cortical dementias. Considering the properties of default mode networking of the brain it is highly probable that specific changes may be seen in frontotemporal dementias (FTDs and Alzheimer′s disease sufficiently early. Aim: The aim of this study is to look for changes in Transcranial Magnetic Stimulation (TMS in cortical dementia. Materials and Methods: Evaluated with a single pulse TMS with the figure of eight coil and recorded from right first dorsal interossei (FDI. Resting Motor Threshold (RMT was estimated on the opposite motor cortex (T1. Second site of stimulation was cervical spine at C7-T2. Central motor conduction time (CMCT is equal toT1-T2.Silent Period (SP identified by applying TMS pulse to contracting FDI. Conclusions: RMT was reduced in seven out of eight Alzheimer′s dementias. CMCT was in the upper limit of normal in both patients with FTD. The most consistent observation was that SP was reduced and there were escape discharges noticed during the SP suggesting increased cortical excitability and decreased cortical inhibition. This suggests probable early asymptomatic changes in the gamma-aminobutyric acid (GABA nergic and cholinergic system is taking place. This if confirmed may give some insight into early diagnosis and therapeutic role of GABA agonists in these disorders.

  1. Censoring distances based on labeled cortical distance maps in cortical morphometry.

    Science.gov (United States)

    Ceyhan, Elvan; Nishino, Tomoyuki; Alexopolous, Dimitrios; Todd, Richard D; Botteron, Kelly N; Miller, Michael I; Ratnanather, J Tilak

    2013-01-01

    It has been demonstrated that shape differences in cortical structures may be manifested in neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM) which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM) voxels with respect to GM/white matter (WM) surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information contained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs) of subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy control (Ctrl) subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface) for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  2. Censoring Distances Based on Labeled Cortical Distance Maps in Cortical Morphometry

    Directory of Open Access Journals (Sweden)

    Elvan eCeyhan

    2013-10-01

    Full Text Available It has been demonstrated that shape differences are manifested in cortical structures due to neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM voxels with respect to GM/white matter (WM surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information con-tained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs of subjects with major depressive disorder (MDD, subjects at high risk (HR of MDD, and healthy control (Ctrl subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  3. [Language and executive functioning skills of students with attention deficit/hyperactivity disorder (ADHD), and in reading comprehension difficulties (RCD)].

    Science.gov (United States)

    Miranda Casas, Ana; Fernández Andrés, María Inmaculada; García Castellar, Rosa; Roselló Miranda, Belén; Colomer Diago, Carla

    2011-11-01

    The aim of this work was to study the specificity of deficits in linguistic and executive functioning of students with ADHD and with RCD and to determine the profile of deficits in the comorbid group (ADHD+RCD). Participants in the study were 84 students, ages 12-16 years divided into four groups with an equal number of subjects (N= 21): ADHD, RCD, ADHD+RCD and comparison group (without ADHD and without RCD). We measured vocabulary, oral comprehension, lexical access, verbal and visual working memory, inhibition and attention. The results show that the ADHD+RCD group presents the most important linguistic deficits, followed by the RCD group. On the other hand, the three clinical groups (ADHD, RCD and ADHD+RCD) display greater performance problems in working memory than the comparison group, whereas the two groups with ADHD had more problems in attention and inhibition. These results suggest the dissociation of linguistic and executive deficits that affect the RCD group and ADHD group to a greater extent, respectively. Lastly, the comorbid group showed deficits both in language and in executive skills. We discuss the implications of these findings for designing interventions.

  4. Assessment of cortical and sub-cortical function in neonates by electrophysiological monitoring

    NARCIS (Netherlands)

    Jennekens, W.

    2012-01-01

    The aim of this thesis was the assessment of cortical and sub-cortical function in neonates by electrophysiological monitoring, i.e. to evaluate the function of the neonatal cortex and brainstem through quantitative analysis of signals readily available in the NICU. These signals include

  5. Visual discrimination training improves Humphrey perimetry in chronic cortically induced blindness.

    Science.gov (United States)

    Cavanaugh, Matthew R; Huxlin, Krystel R

    2017-05-09

    To assess if visual discrimination training improves performance on visual perimetry tests in chronic stroke patients with visual cortex involvement. 24-2 and 10-2 Humphrey visual fields were analyzed for 17 chronic cortically blind stroke patients prior to and following visual discrimination training, as well as in 5 untrained, cortically blind controls. Trained patients practiced direction discrimination, orientation discrimination, or both, at nonoverlapping, blind field locations. All pretraining and posttraining discrimination performance and Humphrey fields were collected with online eye tracking, ensuring gaze-contingent stimulus presentation. Trained patients recovered ∼108 degrees 2 of vision on average, while untrained patients spontaneously improved over an area of ∼16 degrees 2 . Improvement was not affected by patient age, time since lesion, size of initial deficit, or training type, but was proportional to the amount of training performed. Untrained patients counterbalanced their improvements with worsening of sensitivity over ∼9 degrees 2 of their visual field. Worsening was minimal in trained patients. Finally, although discrimination performance improved at all trained locations, changes in Humphrey sensitivity occurred both within trained regions and beyond, extending over a larger area along the blind field border. In adults with chronic cortical visual impairment, the blind field border appears to have enhanced plastic potential, which can be recruited by gaze-controlled visual discrimination training to expand the visible field. Our findings underscore a critical need for future studies to measure the effects of vision restoration approaches on perimetry in larger cohorts of patients. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  6. Medio-Frontal and Anterior Temporal abnormalities in children with attention deficit hyperactivity disorder (ADHD during an acoustic antisaccade task as revealed by electro-cortical source reconstruction

    Directory of Open Access Journals (Sweden)

    Rockstroh Brigitte

    2011-01-01

    Full Text Available Abstract Background Attention Deficit Hyperactivity Disorder (ADHD is one of the most prevalent disorders in children and adolescence. Impulsivity is one of three core symptoms and likely associated with inhibition difficulties. To date the neural correlate of the antisaccade task, a test of response inhibition, has not been studied in children with (or without ADHD. Methods Antisaccade responses to visual and acoustic cues were examined in nine unmedicated boys with ADHD (mean age 122.44 ± 20.81 months and 14 healthy control children (mean age 115.64 ± 22.87 months, three girls while an electroencephalogram (EEG was recorded. Brain activity before saccade onset was reconstructed using a 23-source-montage. Results When cues were acoustic, children with ADHD had a higher source activity than control children in Medio-Frontal Cortex (MFC between -230 and -120 ms and in the left-hemispheric Temporal Anterior Cortex (TAC between -112 and 0 ms before saccade onset, despite both groups performing similarly behaviourally (antisaccades errors and saccade latency. When visual cues were used EEG-activity preceding antisaccades did not differ between groups. Conclusion Children with ADHD exhibit altered functioning of the TAC and MFC during an antisaccade task elicited by acoustic cues. Children with ADHD need more source activation to reach the same behavioural level as control children.

  7. UP-DOWN cortical dynamics reflect state transitions in a bistable network.

    Science.gov (United States)

    Jercog, Daniel; Roxin, Alex; Barthó, Peter; Luczak, Artur; Compte, Albert; de la Rocha, Jaime

    2017-08-04

    In the idling brain, neuronal circuits transition between periods of sustained firing (UP state) and quiescence (DOWN state), a pattern the mechanisms of which remain unclear. Here we analyzed spontaneous cortical population activity from anesthetized rats and found that UP and DOWN durations were highly variable and that population rates showed no significant decay during UP periods. We built a network rate model with excitatory (E) and inhibitory (I) populations exhibiting a novel bistable regime between a quiescent and an inhibition-stabilized state of arbitrarily low rate. Fluctuations triggered state transitions, while adaptation in E cells paradoxically caused a marginal decay of E-rate but a marked decay of I-rate in UP periods, a prediction that we validated experimentally. A spiking network implementation further predicted that DOWN-to-UP transitions must be caused by synchronous high-amplitude events. Our findings provide evidence of bistable cortical networks that exhibit non-rhythmic state transitions when the brain rests.

  8. Nicotine ameliorates schizophrenia-like cognitive deficits induced by maternal LPS exposure: a study in rats

    Directory of Open Access Journals (Sweden)

    Uta Waterhouse

    2016-10-01

    Full Text Available Maternal exposure to infectious agents is a predisposing factor for schizophrenia with associated cognitive deficits in offspring. A high incidence of smoking in these individuals in adulthood might be, at least in part, due to the cognitive-enhancing effects of nicotine. Here, we have used prenatal exposure to maternal lipopolysaccharide (LPS, bacterial endotoxin at different time points as a model for cognitive deficits in schizophrenia to determine whether nicotine reverses any associated impairments. Pregnant rats were treated subcutaneously with LPS (0.5 mg/kg at one of three neurodevelopmental time periods [gestation days (GD 10-11, 15-16, 18-19]. Cognitive assessment in male offspring commenced in early adulthood [postnatal day (PND 60] and included: prepulse inhibition (PPI, latent inhibition (LI and delayed non-matching to sample (DNMTS. Following PND 100, daily nicotine injections (0.6 mg/kg, subcutaneously were administered, and animals were re-tested in the same tasks (PND 110. Only maternal LPS exposure early during fetal neurodevelopment (GD 10-11 resulted in deficits in all tests compared to animals that had been prenatally exposed to saline at the same gestational time point. Repeated nicotine treatment led to global (PPI and selective (LI improvements in performance. Early but not later prenatal LPS exposure induced consistent deficits in cognitive tests with relevance for schizophrenia. Nicotine reversed the LPS-induced deficits in selective attention (LI and induced a global enhancement of sensorimotor gating (PPI.

  9. Cortical inhibition effect in musicians and non-musicians using P300 with and without contralateral stimulation

    Directory of Open Access Journals (Sweden)

    Camila Maia Rabelo

    2015-02-01

    Full Text Available Introduction: Musicians have more robust and efficient neural responses in the cortical and sub-cortical regions, demonstrating that musical experience benefits the processing of both non-linguistic and linguistic stimuli. Objective: This study aimed to verify P300's latency and amplitude behavioral using contralateral stimulation in musicians and non-musicians. Methods: This was a case-control study. Subjects were divided in two groups: musicians, comprising 30 professional musicians, and non-musicians, comprising 25 subjects without musical experience. Results: The present study showed that the musicians had lower latencies and higher amplitudes than the non-musicians in the P300 without contralateral noise. For the P300 amplitude values, the difference between groups persisted, and the musicians presented significantly higher amplitude values compared with the non-musicians; additionally, the analysis of the noise effect on the P300 response showed that the latency values were significantly increased in the musicians. Conclusion: The central auditory nervous system of musicians presents peculiar characteristics of electrophysiological responses probably due to the plasticity imposed by musical practice.

  10. Tau reduction diminishes spatial learning and memory deficits after mild repetitive traumatic brain injury in mice.

    Directory of Open Access Journals (Sweden)

    Jason S Cheng

    Full Text Available OBJECTIVE: Because reduction of the microtubule-associated protein Tau has beneficial effects in mouse models of Alzheimer's disease and epilepsy, we wanted to determine whether this strategy can also improve the outcome of mild traumatic brain injury (TBI. METHODS: We adapted a mild frontal impact model of TBI for wildtype C57Bl/6J mice and characterized the behavioral deficits it causes in these animals. The Barnes maze, Y maze, contextual and cued fear conditioning, elevated plus maze, open field, balance beam, and forced swim test were used to assess different behavioral functions. Magnetic resonance imaging (MRI, 7 Tesla and histological analysis of brain sections were used to look for neuropathological alterations. We also compared the functional effects of this TBI model and of controlled cortical impact in mice with two, one or no Tau alleles. RESULTS: Repeated (2-hit, but not single (1-hit, mild frontal impact impaired spatial learning and memory in wildtype mice as determined by testing of mice in the Barnes maze one month after the injury. Locomotor activity, anxiety, depression and fear related behaviors did not differ between injured and sham-injured mice. MRI imaging did not reveal focal injury or mass lesions shortly after the injury. Complete ablation or partial reduction of tau prevented deficits in spatial learning and memory after repeated mild frontal impact. Complete tau ablation also showed a trend towards protection after a single controlled cortical impact. Complete or partial reduction of tau also reduced the level of axonopathy in the corpus callosum after repeated mild frontal impact. INTERPRETATION: Tau promotes or enables the development of learning and memory deficits and of axonopathy after mild TBI, and tau reduction counteracts these adverse effects.

  11. Sensation-to-cognition cortical streams in attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Carmona, Susana; Hoekzema, Elseline; Castellanos, Francisco X; García-García, David; Lage-Castellanos, Agustín; Van Dijk, Koene R A; Navas-Sánchez, Francisco J; Martínez, Kenia; Desco, Manuel; Sepulcre, Jorge

    2015-07-01

    We sought to determine whether functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits are atypical in attention-deficit/hyperactivity disorder (ADHD). We applied a graph-theory method to the resting-state functional magnetic resonance imaging data of 120 children with ADHD and 120 age-matched typically developing children (TDC). Starting in unimodal primary cortex-visual, auditory, and somatosensory-we used stepwise functional connectivity to calculate functional connectivity paths at discrete numbers of relay stations (or link-step distances). First, we characterized the functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits in TDC and found that systems do not reach the level of integration achieved by adults. Second, we searched for stepwise functional connectivity differences between children with ADHD and TDC. We found that, at the initial steps of sensory functional connectivity streams, patients display significant enhancements of connectivity degree within neighboring areas of primary cortex, while connectivity to attention-regulatory areas is reduced. Third, at subsequent link-step distances from primary sensory cortex, children with ADHD show decreased connectivity to executive processing areas and increased degree of connections to default mode regions. Fourth, in examining medication histories in children with ADHD, we found that children medicated with psychostimulants present functional connectivity streams with higher degree of connectivity to regions subserving attentional and executive processes compared to medication-naïve children. We conclude that predominance of local sensory processing and lesser influx of information to attentional and executive regions may reduce the ability to organize and control the balance between external and internal sources of information in ADHD. © 2015 Wiley Periodicals, Inc.

  12. Frontal cortical control of posterior sensory and association cortices through the claustrum.

    Science.gov (United States)

    White, Michael G; Mathur, Brian N

    2018-04-06

    The claustrum is a telencephalic gray matter nucleus that is richly interconnected with the neocortex. This structure subserves top-down executive functions that require frontal cortical control of posterior cortical regions. However, functional anatomical support for the claustrum allowing for long-range intercortical communication is lacking. To test this, we performed a channelrhodopsin-assisted long-circuit mapping strategy in mouse brain slices. We find that anterior cingulate cortex input to the claustrum is transiently amplified by claustrum neurons that, in turn, project to parietal association cortex or to primary and secondary visual cortices. Additionally, we observe that claustrum drive of cortical neurons in parietal association cortex is layer-specific, eliciting action potential generation briefly in layers II/III, IV, and VI but not V. These data are the first to provide a functional anatomical substrate through claustrum that may underlie top-down functions, such as executive attention or working memory, providing critical insight to this most interconnected and enigmatic nucleus.

  13. Inattention Predicts Increased Thickness of Left Occipital Cortex in Men with Attention-Deficit/Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Peter Sörös

    2017-09-01

    Full Text Available BackgroundAttention-deficit/hyperactivity disorder (ADHD in adulthood is a serious and frequent psychiatric disorder with the core symptoms inattention, impulsivity, and hyperactivity. The principal aim of this study was to investigate associations between brain morphology, i.e., cortical thickness and volumes of subcortical gray matter, and individual symptom severity in adult ADHD.MethodsSurface-based brain morphometry was performed in 35 women and 29 men with ADHD using FreeSurfer. Linear regressions were calculated between cortical thickness and the volumes of subcortical gray matter and the inattention, hyperactivity, and impulsivity subscales of the Conners Adult ADHD Rating Scales (CAARS. Two separate analyses were performed. For the first analysis, age was included as additional regressor. For the second analysis, both age and severity of depression were included as additional regressors. Study participants were recruited between June 2012 and January 2014.ResultsLinear regression identified an area in the left occipital cortex of men, covering parts of the middle occipital sulcus and gyrus, in which the score on the CAARS inattention subscale predicted increased mean cortical thickness [F(1,27 = 26.27, p < 0.001, adjusted R2 = 0.4744]. No significant associations were found between cortical thickness and the scores on CAARS subscales in women. No significant associations were found between the volumes of subcortical gray matter and the scores on CAARS subscales, neither in men nor in women. These results remained stable when severity of depression was included as additional regressor, together with age.ConclusionIncreased cortical thickness in the left occipital cortex may represent a mechanism to compensate for dysfunctional attentional networks in male adult ADHD patients.

  14. Semantic word category processing in semantic dementia and posterior cortical atrophy.

    Science.gov (United States)

    Shebani, Zubaida; Patterson, Karalyn; Nestor, Peter J; Diaz-de-Grenu, Lara Z; Dawson, Kate; Pulvermüller, Friedemann

    2017-08-01

    There is general agreement that perisylvian language cortex plays a major role in lexical and semantic processing; but the contribution of additional, more widespread, brain areas in the processing of different semantic word categories remains controversial. We investigated word processing in two groups of patients whose neurodegenerative diseases preferentially affect specific parts of the brain, to determine whether their performance would vary as a function of semantic categories proposed to recruit those brain regions. Cohorts with (i) Semantic Dementia (SD), who have anterior temporal-lobe atrophy, and (ii) Posterior Cortical Atrophy (PCA), who have predominantly parieto-occipital atrophy, performed a lexical decision test on words from five different lexico-semantic categories: colour (e.g., yellow), form (oval), number (seven), spatial prepositions (under) and function words (also). Sets of pseudo-word foils matched the target words in length and bi-/tri-gram frequency. Word-frequency was matched between the two visual word categories (colour and form) and across the three other categories (number, prepositions, and function words). Age-matched healthy individuals served as controls. Although broad word processing deficits were apparent in both patient groups, the deficit was strongest for colour words in SD and for spatial prepositions in PCA. The patterns of performance on the lexical decision task demonstrate (a) general lexicosemantic processing deficits in both groups, though more prominent in SD than in PCA, and (b) differential involvement of anterior-temporal and posterior-parietal cortex in the processing of specific semantic categories of words. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Inhibitory deficits for negative information in persons with major depressive disorder.

    Science.gov (United States)

    Lau, Mark A; Christensen, Bruce K; Hawley, Lance L; Gemar, Michael S; Segal, Zindel V

    2007-09-01

    Within Beck's cognitive model of depression, little is known about the mechanism(s) by which activated self-schemas result in the production of negative thoughts. Recent research has demonstrated that inhibitory dysfunction is present in depression, and this deficit is likely valence-specific. However, whether valence-specific inhibitory deficits are associated with increased negative cognition and whether such deficits are specific to depression per se remains unexamined. The authors posit the theory that inhibitory dysfunction may influence the degree to which activated self-schemas result in the production of depressive cognition. Individuals with major depressive disorder (MDD, n=43) versus healthy (n=36) and non-depressed anxious (n=32) controls were assessed on the Prose Distraction Task (PDT), a measure of cognitive inhibition, and the Stop-Signal Task (SST), a measure of motor response inhibition. These two tasks were modified in order to present emotionally valenced semantic stimuli (i.e. negative, neutral, positive). Participants with MDD demonstrated performance impairments on the PDT, which were most pronounced for negatively valenced adjectives, relative to both control groups. Moreover, these impairments correlated with self-report measures of negative thinking and rumination. Conversely, the performance of the MDD participants did not differ from either control group on the SST. Implications of these findings for understanding the mechanisms underlying the development and maintenance of depressive cognition are discussed.

  16. Inhibition and Shifting in Children with Learning Deficits in Arithmetic and Reading

    Science.gov (United States)

    van der Sluis, Sophie; de Jong, Peter F.; van der Leij, Aryan

    2004-01-01

    The executive functions of inhibition and shifting were studied in arithmetic-disabled children, reading-disabled children, reading plus arithmetic-disabled children, and controls (N = 74). Measures involved the rapid naming of objects, digits, letters, or quantities with or without additional task requirements that reflected inhibition or…

  17. Development of lucerne (Medicago sativa L.) treated with mineral fertilizer and manure at optimal and water deficit conditions.

    Science.gov (United States)

    Vasileva, V; Kostov, O; Vasilev, E

    2006-01-01

    A study on the effect of different rates of mineral fertilizer and manure on yield parameters of lucerne under optimal and water deficit conditions was carried out. Leached chernozem soil and lucerne cultivar Victoria were used. The soil was treated with ammonium nitrate and fully matured cattle manure. The plants were grown under optimum moisture content of 80% and 40% of field capacity. The water deficit stress decreased top and root biomass by 11-75% and 3-29% at mineral and organic fertilization, respectively. The applied mineral and organic N strongly depressed nodules development. Both mineral fertilizer and organic manure at dose of 210 mg N kg(-1) soil completely inhibited the appearance of nodules. Next to nitrogen, water deficit stress further inhibited the development of nodules. Nitrogen fertilization increased seed productivity in the two experimental moisture conditions. The water deficit stress decreased seed productivity by 18 to 33% as compared to optimum conditions. The plant treatments with manure were much more resistant to water deficit and recovering ability of plants was faster as compared to treatments with mineral fertilizer. The application of manure stimulates development of drought-stress tolerance in lucerne. However, the results obtained can be considered for the soil type and experimental conditions used.

  18. Functional imaging of neurocognitive dysfunction in attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Wolf, I.; Tost, H.; Ruf, M.; Ende, G.

    2005-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is a neurobiological disorder of early childhood onset. Defining symptoms are chronic impairments of attention, impulse control and motor hyperactivity that frequently persist until adulthood. Miscellaneous causes of the disorder have been discussed. Accumulating evidence from imaging- and molecular genetic studies strengthened the theory of ADHS being a predominantly inherited disorder of neurobiological origin. In the last 15 years, non-invasive brain imaging methods were successfully implemented in pediatric research. Functional magnetic resonance imaging studies gave major insight into the neurobiological correlates of executive malfunction, inhibitory deficits and psychomotoric soft signs. These findings are in good accordance with brain morphometric data indicating a significant volumetric decrease of major components of striato-thalamo-cortical feedback loops, primarily influencing prefrontal executive functioning (e.g. basal ganglia). Empirical evidence points to a broad array of associated behavioral disturbances like deficient visuomotor abilities and oculomotor dysfunctions. This paper reviews the current empirical evidence derived from prior imaging studies. Special emphasis is given to the relevance of oculomotor dysfunctions in clinical and research settings, as well as their assessment in the MR environment. (orig.) [de

  19. Trade-off of cerebello-cortical and cortico-cortical functional networks for planning in 6-year-old children.

    Science.gov (United States)

    Kipping, Judy A; Margulies, Daniel S; Eickhoff, Simon B; Lee, Annie; Qiu, Anqi

    2018-05-03

    Childhood is a critical period for the development of cognitive planning. There is a lack of knowledge on its neural mechanisms in children. This study aimed to examine cerebello-cortical and cortico-cortical functional connectivity in association with planning skills in 6-year-olds (n = 76). We identified the cerebello-cortical and cortico-cortical functional networks related to cognitive planning using activation likelihood estimation (ALE) meta-analysis on existing functional imaging studies on spatial planning, and data-driven independent component analysis (ICA) of children's resting-state functional MRI (rs-fMRI). We investigated associations of cerebello-cortical and cortico-cortical functional connectivity with planning ability in 6-year-olds, as assessed using the Stockings of Cambridge task. Long-range functional connectivity of two cerebellar networks (lobules VI and lateral VIIa) with the prefrontal and premotor cortex were greater in children with poorer planning ability. In contrast, cortico-cortical association networks were not associated with the performance of planning in children. These results highlighted the key contribution of the lateral cerebello-frontal functional connectivity, but not cortico-cortical association functional connectivity, for planning ability in 6-year-olds. Our results suggested that brain adaptation to the acquisition of planning ability during childhood is partially achieved through the engagement of the cerebello-cortical functional connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. A critical appraisal of the role of neuropsychological deficits in preschool ADHD.

    Science.gov (United States)

    Sjöwall, Douglas; Thorell, Lisa B

    2018-03-14

    The present study aimed at improving our understanding of the role of neuropsychological deficits in preschool Attention Deficit Hyperactivity Disorder (ADHD). The study included 52 children in the ADHD group and 72 controls (age 4-6 years). Both laboratory measures and teacher reports of executive deficits (i.e., working memory, inhibition, and shifting), delay-related behaviors (i.e., the preference for minimizing delay), and emotional functions (i.e., emotion recognition and regulation) were included. Variable-oriented analyses were complemented with person-oriented analyses (i.e., identifying the proportion of patients considered impaired). Results showed that the ADHD group differed from controls with regard to all measures of executive functioning and most measures of delay-related behaviors, but few differences were found for emotional functioning. A substantial subgroup (23%) of children with ADHD did not have a neuropsychological deficit in any domain. There were subgroups with executive or delay-related deficits only, but no pure emotional subgroup. The overlap between different neuropsychological deficits was much larger when teacher reports were used as opposed to laboratory measures. Regarding functional impairments, large mean differences were found between the ADHD group and controls. However, neuropsychological deficits were not able to explain individual variations in daily life functioning among children with ADHD. In conclusion, the present study identified some important methodological and theoretical issues regarding the role of neuropsychological functioning in preschool ADHD.

  1. Effects of music production on cortical plasticity within cognitive rehabilitation of patients with mild traumatic brain injury.

    Science.gov (United States)

    Vik, Berit Marie Dykesteen; Skeie, Geir Olve; Vikane, Eirik; Specht, Karsten

    2018-01-01

    We explored the effects of playing the piano on patients with cognitive impairment after mild traumatic brain injury (mTBI) and, addressed the question if this approach would stimulate neural networks in re-routing neural connections and link up cortical circuits that had been functional inhibited due to disruption of brain tissue. Functional neuroimaging scans (fMRI) and neuropsychological tests were performed pre-post intervention. Three groups participated, one mTBI group (n = 7), two groups of healthy participants, one with music training (n = 11), one baseline group without music (n = 12). The music groups participated in 8 weeks music-supported intervention. The patient group revealed training-related neuroplasticity in the orbitofrontal cortex. fMRI results fit well with outcome from neuropsychological tests with significant enhancement of cognitive performance in the music groups. Ninety per cent of mTBI group returned to work post intervention. Here, for the first time, we demonstrated behavioural improvements and functional brain changes after 8 weeks of playing piano on patients with mTBI having attention, memory and social interaction problems. We present evidence for a causal relationship between musical training and reorganisation of neural networks promoting enhanced cognitive performance. These results add a novel music-supported intervention within rehabilitation of patients with cognitive deficits following mTBI.

  2. Deficits in discrimination after experimental frontal brain injury are mediated by motivation and can be improved by nicotinamide administration.

    Science.gov (United States)

    Vonder Haar, Cole; Maass, William R; Jacobs, Eric A; Hoane, Michael R

    2014-10-15

    One of the largest challenges in experimental neurotrauma work is the development of models relevant to the human condition. This includes both creating similar pathophysiology as well as the generation of relevant behavioral deficits. Recent studies have shown that there is a large potential for the use of discrimination tasks in rats to detect injury-induced deficits. The literature on discrimination and TBI is still limited, however. The current study investigated motivational and motor factors that could potentially contribute to deficits in discrimination. In addition, the efficacy of a neuroprotective agent, nicotinamide, was assessed. Rats were trained on a discrimination task and motivation task, given a bilateral frontal controlled cortical impact TBI (+3.0 AP, 0.0 ML from bregma), and then reassessed. They were also assessed on motor ability and Morris water maze (MWM) performance. Experiment 1 showed that TBI resulted in large deficits in discrimination and motivation. No deficits were observed on gross motor measures; however, the vehicle group showed impairments in fine motor control. Both injured groups were impaired on the reference memory MWM, but only nicotinamide-treated rats were impaired on the working memory MWM. Nicotinamide administration improved performance on discrimination and motivation measures. Experiment 2 evaluated retraining on the discrimination task and suggested that motivation may be a large factor underlying discrimination deficits. Retrained rats improved considerably on the discrimination task. The tasks evaluated in this study demonstrate robust deficits and may improve the detection of pharmaceutical effects by being very sensitive to pervasive cognitive deficits that occur after frontal TBI.

  3. Ischemia may be the primary cause of the neurologic deficits in classic migraine

    International Nuclear Information System (INIS)

    Skyhoj Olsen, T.; Friberg, L.; Lassen, N.A.

    1987-01-01

    This study investigates whether the cerebral blood flow reduction occurring in attacks of classic migraine is sufficient to cause neurologic deficits. Regional cerebral blood flow measured with the xenon 133 intracarotid injection technique was analyzed in 11 patients in whom a low-flow area developed during attacks of classic migraine. When measured with this technique, regional cerebral blood flow in focal low-flow areas will be overestimated because of the effect of scattered radiation (Compton scatter) on the recordings. In this study, this effect was particularly taken into account when evaluating the degree of blood flow reduction. During attacks of classic migraine, cerebral blood flow reductions averaging 52% were observed focally in the 11 patients. Cerebral blood flow levels known to be insufficient for normal cortical function (less than 16 to 23 mL/100 g/min) were measured in seven patients during the attacks. This was probably also the case in the remaining four patients, but the effect of scattered radiation made a reliable evaluation of blood flow impossible. It is concluded that the blood flow reduction that occurs during attacks of classic migraine is sufficient to cause ischemia and neurologic deficits. Hence, this study suggests a vascular origin of the prodromal neurologic deficits that may accompany attacks of classic migraine

  4. Spatial integration and cortical dynamics.

    Science.gov (United States)

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-23

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.

  5. Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat

    Science.gov (United States)

    Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory

  6. Assessment of hearing threshold in adults with hearing loss using an automated system of cortical auditory evoked potential detection

    Directory of Open Access Journals (Sweden)

    Alessandra Spada Durante

    Full Text Available Abstract Introduction: The use of hearing aids by individuals with hearing loss brings a better quality of life. Access to and benefit from these devices may be compromised in patients who present difficulties or limitations in traditional behavioral audiological evaluation, such as newborns and small children, individuals with auditory neuropathy spectrum, autism, and intellectual deficits, and in adults and the elderly with dementia. These populations (or individuals are unable to undergo a behavioral assessment, and generate a growing demand for objective methods to assess hearing. Cortical auditory evoked potentials have been used for decades to estimate hearing thresholds. Current technological advances have lead to the development of equipment that allows their clinical use, with features that enable greater accuracy, sensitivity, and specificity, and the possibility of automated detection, analysis, and recording of cortical responses. Objective: To determine and correlate behavioral auditory thresholds with cortical auditory thresholds obtained from an automated response analysis technique. Methods: The study included 52 adults, divided into two groups: 21 adults with moderate to severe hearing loss (study group; and 31 adults with normal hearing (control group. An automated system of detection, analysis, and recording of cortical responses (HEARLab® was used to record the behavioral and cortical thresholds. The subjects remained awake in an acoustically treated environment. Altogether, 150 tone bursts at 500, 1000, 2000, and 4000 Hz were presented through insert earphones in descending-ascending intensity. The lowest level at which the subject detected the sound stimulus was defined as the behavioral (hearing threshold (BT. The lowest level at which a cortical response was observed was defined as the cortical electrophysiological threshold. These two responses were correlated using linear regression. Results: The cortical

  7. Assessment of hearing threshold in adults with hearing loss using an automated system of cortical auditory evoked potential detection.

    Science.gov (United States)

    Durante, Alessandra Spada; Wieselberg, Margarita Bernal; Roque, Nayara; Carvalho, Sheila; Pucci, Beatriz; Gudayol, Nicolly; de Almeida, Kátia

    The use of hearing aids by individuals with hearing loss brings a better quality of life. Access to and benefit from these devices may be compromised in patients who present difficulties or limitations in traditional behavioral audiological evaluation, such as newborns and small children, individuals with auditory neuropathy spectrum, autism, and intellectual deficits, and in adults and the elderly with dementia. These populations (or individuals) are unable to undergo a behavioral assessment, and generate a growing demand for objective methods to assess hearing. Cortical auditory evoked potentials have been used for decades to estimate hearing thresholds. Current technological advances have lead to the development of equipment that allows their clinical use, with features that enable greater accuracy, sensitivity, and specificity, and the possibility of automated detection, analysis, and recording of cortical responses. To determine and correlate behavioral auditory thresholds with cortical auditory thresholds obtained from an automated response analysis technique. The study included 52 adults, divided into two groups: 21 adults with moderate to severe hearing loss (study group); and 31 adults with normal hearing (control group). An automated system of detection, analysis, and recording of cortical responses (HEARLab ® ) was used to record the behavioral and cortical thresholds. The subjects remained awake in an acoustically treated environment. Altogether, 150 tone bursts at 500, 1000, 2000, and 4000Hz were presented through insert earphones in descending-ascending intensity. The lowest level at which the subject detected the sound stimulus was defined as the behavioral (hearing) threshold (BT). The lowest level at which a cortical response was observed was defined as the cortical electrophysiological threshold. These two responses were correlated using linear regression. The cortical electrophysiological threshold was, on average, 7.8dB higher than the

  8. Effects of Cannabinoid Drugs on the Deficit of Prepulse Inhibition of Startle in an Animal Model of Schizophrenia: the SHR Strain

    Directory of Open Access Journals (Sweden)

    Raquel eLevin

    2014-02-01

    Full Text Available Clinical and neurobiological findings suggest that the cannabinoids and the endocannabinoid system may be implicated in the pathophysiology and treatment of schizophrenia. We described that the Spontaneously Hypertensive Rats (SHR strain presents a schizophrenia behavioral phenotype that is specifically attenuated by antipsychotic drugs, and potentiated by proschizophrenia manipulations. Based on these findings, we have suggested this strain as an animal model of schizophrenia. The aim of this study was to evaluate the effects of cannabinoid drugs on the deficit of prepulse inhibition of startle (PPI, the main paradigm used to study sensorimotor gating impairment related to schizophrenia, presented by the SHR strain. The following drugs were used: 1 WIN55212,2 (cannabinoid agonist, 2 rimonabant (CB1 antagonist, 3 AM404 (anandamide uptake inhibitor, and 4 cannabidiol (indirect CB1/CB2 receptor antagonist, among other effects. Wistar rats (WR and SHRs were treated with vehicle or different doses of WIN55212 (0.3, 1 or 3 mg/kg, rimonabant (0.75, 1.5 or 3 mg/kg, AM404 (1, 5 or 10 mg/kg or cannabidiol (15, 30 or 60 mg/kg. Vehicle-treated SHRs showed a decreased PPI when compared to WRs. This PPI deficit was reversed by 1 mg/kg WIN and 30 mg/kg cannabidiol. Conversely, 0.75 mg/kg rimonabant decreased PPI in SHR strain, whereas AM404 did not modify it. Our results reinforce the role of the endocannabinoid system in the sensorimotor gating impairment related to schizophrenia, and point to cannabinoid drugs as potential therapeutic strategies.

  9. Cortical information flow in Parkinson's disease: a composite network/field model

    Directory of Open Access Journals (Sweden)

    Cliff C. Kerr

    2013-04-01

    Full Text Available The basal ganglia play a crucial role in the execution of movements, as demonstrated by the severe motor deficits that accompany Parkinson's disease (PD. Since motor commands originate in the cortex, an important question is how the basal ganglia influence cortical information flow, and how this influence becomes pathological in PD. To explore this, we developed a composite neuronal network/neural field model. The network model consisted of 4950 spiking neurons, divided into 15 excitatory and inhibitory cell populations in the thalamus and cortex. The field model consisted of the cortex, thalamus, striatum, subthalamic nucleus, and globus pallidus. Both models have been separately validated in previous work. Three field models were used: one with basal ganglia parameters based on data from healthy individuals, one based on data from individuals with PD, and one purely thalamocortical model. Spikes generated by these field models were then used to drive the network model. Compared to the network driven by the healthy model, the PD-driven network had lower firing rates, a shift in spectral power towards lower frequencies, and higher probability of bursting; each of these findings is consistent with empirical data on PD. In the healthy model, we found strong Granger causality in the beta and low gamma bands between cortical layers, but this was largely absent in the PD model. In particular, the reduction in Granger causality from the main "input" layer of the cortex (layer 4 to the main "output" layer (layer 5 was pronounced. This may account for symptoms of PD that seem to reflect deficits in information flow, such as bradykinesia. In general, these results demonstrate that the brain's large-scale oscillatory environment, represented here by the field model, strongly influences the information processing that occurs within its subnetworks. Hence, it may be preferable to drive spiking network models with physiologically realistic inputs rather than

  10. Discrimination of cortical laminae using MEG.

    Science.gov (United States)

    Troebinger, Luzia; López, José David; Lutti, Antoine; Bestmann, Sven; Barnes, Gareth

    2014-11-15

    Typically MEG source reconstruction is used to estimate the distribution of current flow on a single anatomically derived cortical surface model. In this study we use two such models representing superficial and deep cortical laminae. We establish how well we can discriminate between these two different cortical layer models based on the same MEG data in the presence of different levels of co-registration noise, Signal-to-Noise Ratio (SNR) and cortical patch size. We demonstrate that it is possible to make a distinction between superficial and deep cortical laminae for levels of co-registration noise of less than 2mm translation and 2° rotation at SNR > 11 dB. We also show that an incorrect estimate of cortical patch size will tend to bias layer estimates. We then use a 3D printed head-cast (Troebinger et al., 2014) to achieve comparable levels of co-registration noise, in an auditory evoked response paradigm, and show that it is possible to discriminate between these cortical layer models in real data. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Pilot study of brain morphometry in a sample of Brazilian children with attention deficit hyperactivity disorder: influence of clinical presentation.

    Science.gov (United States)

    Pastura, Giuseppe; Kubo, Tadeu Takao Almodovar; Gasparetto, Emerson Leandro; Figueiredo, Otavio; Mattos, Paulo; Prüfer Araújo, Alexandra

    2017-12-01

    Currently, the diagnosis of attention deficit hyperactivity disorder (ADHD) rests on clinical criteria. Nonetheless, neuroimaging studies have demonstrated that children with ADHD have different cortical thickness and volume measures to typically developing children (TDC). In general, studies do not evaluate the influence of clinical presentation in the brain morphometry of ADHD children. Our objective was to perform a pilot study in order to evaluate cortical thickness and brain volume in a sample of Brazilian ADHD children and compare these to those of TDC, taking into account the influence of clinical presentation. We performed an analytic study comparing 17 drug-naïve ADHD children of both genders, aged between 7 and 10, and 16 TDC. ADHD subjects were first considered as one group and further separated based on clinical presentation. The brain volume did not differ between patients and TDC. Smaller cortical thicknesses were identified on the left superior, medium and inferior temporal cortex, as well as in the left inferior parietal cortex. When compared to TDC, combined and inattentive ADHD presentations depicted smaller cortical thickness with high significance and power. The same magnitude of results was not observed when comparing inattentive ADHD and TDC. In this pilot study, ADHD is associated with abnormalities involving the cortical thickness of the posterior attentional system. The cortical thickness in the left superior, medium and inferior temporal cortex, as well as in the left inferior parietal cortex may differ according to ADHD presentations.

  12. Parallel prefrontal pathways reach distinct excitatory and inhibitory systems in memory-related rhinal cortices.

    Science.gov (United States)

    Bunce, Jamie G; Zikopoulos, Basilis; Feinberg, Marcia; Barbas, Helen

    2013-12-15

    To investigate how prefrontal cortices impinge on medial temporal cortices we labeled pathways from the anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) in rhesus monkeys to compare their relationship with excitatory and inhibitory systems in rhinal cortices. The ACC pathway terminated mostly in areas 28 and 35 with a high proportion of large terminals, whereas the pOFC pathway terminated mostly through small terminals in area 36 and sparsely in areas 28 and 35. Both pathways terminated in all layers. Simultaneous labeling of pathways and distinct neurochemical classes of inhibitory neurons, followed by analyses of appositions of presynaptic and postsynaptic fluorescent signal, or synapses, showed overall predominant association with spines of putative excitatory neurons, but also significant interactions with presumed inhibitory neurons labeled for calretinin, calbindin, or parvalbumin. In the upper layers of areas 28 and 35 the ACC pathway was associated with dendrites of neurons labeled with calretinin, which are thought to disinhibit neighboring excitatory neurons, suggesting facilitated hippocampal access. In contrast, in area 36 pOFC axons were associated with dendrites of calbindin neurons, which are poised to reduce noise and enhance signal. In the deep layers, both pathways innervated mostly dendrites of parvalbumin neurons, which strongly inhibit neighboring excitatory neurons, suggesting gating of hippocampal output to other cortices. These findings suggest that the ACC, associated with attention and context, and the pOFC, associated with emotional valuation, have distinct contributions to memory in rhinal cortices, in processes that are disrupted in psychiatric diseases. Copyright © 2013 Wiley Periodicals, Inc.

  13. Fluoxetine-induced inhibition of synaptosomal [3H]5-HT release: Possible Ca2+-channel inhibition

    International Nuclear Information System (INIS)

    Stauderman, K.A.; Gandhi, V.C.; Jones, D.J.

    1992-01-01

    Fluoxetine, a selective 5-Ht uptake inhibitor, inhibited 15 mM K + -induced [ 3 H]5-HT release from rat spinal cord and cortical synaptosomes at concentrations > 0.5 uM. This effect reflected a property shared by another selective 5-HT uptake inhibitor paroxetine but not by less selective uptake inhibitors such as amitriptyline, desipramine, imipramine or nortriptyline. Inhibition of release by fluoxetine was inversely related to both the concentration of K + used to depolarize the synaptosomes and the concentration of external Ca 2+ . Experiments aimed at determining a mechanism of action revealed that fluoxetine did not inhibit voltage-independent release of [ 3 H]5-HT release induced by the Ca 2+ -ionophore A 23187 or Ca 2+ -independent release induced by fenfluramine. Moreover the 5-HT autoreceptor antagonist methiothepin did not reverse the inhibitory actions of fluoxetine on K + -induced release. Further studies examined the effects of fluoxetine on voltage-dependent Ca 2+ channels and Ca 2+ entry

  14. Impact of Non-Invasively Induced Motor Deficits on Tibial Cortical Properties in Mutant Lurcher Mice.

    Directory of Open Access Journals (Sweden)

    Alena Jindrová

    Full Text Available It has been shown that Lurcher mutant mice have significantly altered motor abilities, regarding their motor coordination and muscular strength because of olivorecebellar degeneration. We assessed the response of the cross-sectional geometry and lacuno-canalicular network properties of the tibial mid-diaphyseal cortical bone to motor differences between Lurcher and wild-type (WT male mice from the B6CBA strain. The first data set used in the cross-sectional geometry analysis consists of 16 mice of 4 months of age and 32 mice of 9 months of age. The second data set used in the lacunar-canalicular network analysis consists of 10 mice of 4 months of age. We compared two cross-sectional geometry and four lacunar-canalicular properties by I-region using the maximum and minimum second moment of area and anatomical orientation as well as H-regions using histological differences within a cross section. We identified inconsistent differences in the studied cross-sectional geometry properties between Lurcher and WT mice. The biggest significant difference between Lurcher and WT mice is found in the number of canaliculi, whereas in the other studied properties are only limited. Lurcher mice exhibit an increased number of canaliculi (p < 0.01 in all studied regions compared with the WT controls. The number of canaliculi is also negatively correlated with the distance from the centroid in the Lurcher and positively correlated in the WT mice. When the Lurcher and WT sample is pooled, the number of canaliculi and lacunar volume is increased in the posterior Imax region, and in addition, midcortical H-region exhibit lower number of canaliculi, lacuna to lacuna distance and increased lacunar volume. Our results indicate, that the importance of precise sample selection within cross sections in future studies is highlighted because of the histological heterogeneity of lacunar-canalicular network properties within the I-region and H-region in the mouse cortical

  15. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy

    Science.gov (United States)

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J.; Yong, Keir X.X.; Paterson, Ross W.; Slattery, Catherine F.; Foulkes, Alexander J.M.; Rabinovici, Gil D.; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M.; Fox, Nick C.; Crutch, Sebastian J.

    2016-01-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer’s disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. PMID:27318138

  16. Trajectories of cortical surface area and cortical volume maturation in normal brain development

    Directory of Open Access Journals (Sweden)

    Simon Ducharme

    2015-12-01

    Full Text Available This is a report of developmental trajectories of cortical surface area and cortical volume in the NIH MRI Study of Normal Brain Development. The quality-controlled sample included 384 individual typically-developing subjects with repeated scanning (1–3 per subject, total scans n=753 from 4.9 to 22.3 years of age. The best-fit model (cubic, quadratic, or first-order linear was identified at each vertex using mixed-effects models, with statistical correction for multiple comparisons using random field theory. Analyses were performed with and without controlling for total brain volume. These data are provided for reference and comparison with other databases. Further discussion and interpretation on cortical developmental trajectories can be found in the associated Ducharme et al.׳s article “Trajectories of cortical thickness maturation in normal brain development – the importance of quality control procedures” (Ducharme et al., 2015 [1].

  17. Dopamine controls Parkinson's tremor by inhibiting the cerebellar thalamus.

    Science.gov (United States)

    Dirkx, Michiel F; den Ouden, Hanneke E M; Aarts, Esther; Timmer, Monique H M; Bloem, Bastiaan R; Toni, Ivan; Helmich, Rick C

    2017-03-01

    Parkinson's resting tremor is related to altered cerebral activity in the basal ganglia and the cerebello-thalamo-cortical circuit. Although Parkinson's disease is characterized by dopamine depletion in the basal ganglia, the dopaminergic basis of resting tremor remains unclear: dopaminergic medication reduces tremor in some patients, but many patients have a dopamine-resistant tremor. Using pharmacological functional magnetic resonance imaging, we test how a dopaminergic intervention influences the cerebral circuit involved in Parkinson's tremor. From a sample of 40 patients with Parkinson's disease, we selected 15 patients with a clearly tremor-dominant phenotype. We compared tremor-related activity and effective connectivity (using combined electromyography-functional magnetic resonance imaging) on two occasions: ON and OFF dopaminergic medication. Building on a recently developed cerebral model of Parkinson's tremor, we tested the effect of dopamine on cerebral activity associated with the onset of tremor episodes (in the basal ganglia) and with tremor amplitude (in the cerebello-thalamo-cortical circuit). Dopaminergic medication reduced clinical resting tremor scores (mean 28%, range -12 to 68%). Furthermore, dopaminergic medication reduced tremor onset-related activity in the globus pallidus and tremor amplitude-related activity in the thalamic ventral intermediate nucleus. Network analyses using dynamic causal modelling showed that dopamine directly increased self-inhibition of the ventral intermediate nucleus, rather than indirectly influencing the cerebello-thalamo-cortical circuit through the basal ganglia. Crucially, the magnitude of thalamic self-inhibition predicted the clinical dopamine response of tremor. Dopamine reduces resting tremor by potentiating inhibitory mechanisms in a cerebellar nucleus of the thalamus (ventral intermediate nucleus). This suggests that altered dopaminergic projections to the cerebello-thalamo-cortical circuit have a role

  18. Focal cortical dysplasia – review

    International Nuclear Information System (INIS)

    Kabat, Joanna; Król, Przemysław

    2012-01-01

    Focal cortical dysplasia is a malformation of cortical development, which is the most common cause of medically refractory epilepsy in the pediatric population and the second/third most common etiology of medically intractable seizures in adults. Both genetic and acquired factors are involved in the pathogenesis of cortical dysplasia. Numerous classifications of the complex structural abnormalities of focal cortical dysplasia have been proposed – from Taylor et al. in 1971 to the last modification of Palmini classification made by Blumcke in 2011. In general, three types of cortical dysplasia are recognized. Type I focal cortical dysplasia with mild symptomatic expression and late onset, is more often seen in adults, with changes present in the temporal lobe. Clinical symptoms are more severe in type II of cortical dysplasia usually seen in children. In this type, more extensive changes occur outside the temporal lobe with predilection for the frontal lobes. New type III is one of the above dysplasias with associated another principal lesion as hippocampal sclerosis, tumor, vascular malformation or acquired pathology during early life. Brain MRI imaging shows abnormalities in the majority of type II dysplasias and in only some of type I cortical dysplasias. The most common findings on MRI imaging include: focal cortical thickening or thinning, areas of focal brain atrophy, blurring of the gray-white junction, increased signal on T2- and FLAIR-weighted images in the gray and subcortical white matter often tapering toward the ventricle. On the basis of the MRI findings, it is possible to differentiate between type I and type II cortical dysplasia. A complete resection of the epileptogenic zone is required for seizure-free life. MRI imaging is very helpful to identify those patients who are likely to benefit from surgical treatment in a group of patients with drug-resistant epilepsy. However, in type I cortical dysplasia, MR imaging is often normal, and also in both

  19. Furosemide-131I-hippuran renography after angiotensin-converting enzyme inhibition for the diagnosis of renovascular hypertension

    International Nuclear Information System (INIS)

    Erbsloeh-Moeller, B.Du.; Dumas, A.; Roth, D.; Sfakianakis, G.N.; Bourgoignie, J.J.

    1991-01-01

    We have previously demonstrated the greater sensitivity of 131I-hippuran renography than 99mTC-DTPA scintigraphy to diagnose renovascular hypertension (RVH). This study assesses the predictive diagnostic value of furosemide-131I-hippuran renography after angiotensin-converting enzyme (ACE) inhibition in patients with and without RVH. All patients were investigated at the University of Miami/Jackson Memorial Medical Center. Twenty-eight patients had RVH and 22 did not. Twenty-eight patients had normal or minimally decreased renal function and 22 had renal insufficiency. Renography was performed 60 minutes after oral administration of 50 mg captopril or 10 minutes after intravenous injection of 40 micrograms/kg enalaprilat. Forty milligrams of furosemide were administered intravenously 2 minutes after injection of 131I-hippuran. The residual cortical activity (RCA) of 131I-hippuran was measured at 20 minutes. RVH was unlikely when RCA after ACE inhibition was less than 30% of peak cortical activity. Conversely, RVH was present when 131I-hippuran cortical activity steadily increased throughout the test to reach 100% at 20 minutes. In azotemic patients with RCA between 31% and 100%, RVH was differentiated from intrinsic renal disease by obtaining a baseline renogram without ACE inhibition and comparing RCA in that study and RCA after ACE inhibition. If RCA increased (indicating worsening renal function) after ACE inhibition, RVH was likely; whereas, intrinsic renal disease was more likely if RCA remained unchanged or decreased (indicating improved renal function) with ACE inhibition. The test had a specificity of 95% and a sensitivity of 96% in this population. There was a direct correlation between the results of angioplasty or surgery on high blood pressure and the changes in RCA before and after intervention (n = 20)

  20. Relative contributions of pituitary-adrenal hormones to the ontogeny of behavioral inhibition in the rat.

    Science.gov (United States)

    Takahashi, L K; Kim, H

    1995-04-01

    Recent investigations revealed that adrenalectomized (ADX) rat pups exhibit deficits in behavioral inhibition. Furthermore, administration of exogenous corticosterone (CORT) restores behavioral inhibition in ADX pups. Although these studies suggest that CORT has an important role in the development of behavioral inhibition, the relative behavioral effects of elevated pituitary hormone secretion induced by ADX are not known. Therefore, experiments were conducted to assess the potential behavioral effects of elevated adrenocorticotropin (ACTH) secretion induced by ADX and to further evaluate the contribution of endogenous CORT to the development of behavioral inhibition. In Experiment 1., we verified that 10-day-old ADX rats exhibit high levels of plasma ACTH throughout the preweaning period associated with the development of behavioral inhibition. In Experiment 2, 10-day-old pups were hypophysectomized (HYPOX) and ADX and were compared behaviorally to sham-operated controls on day 14. When tested in the presence of an anesthetized unfamiliar adult male rat, HYPOX + ADX pups exhibited low levels of freezing accompanied by ultrasonic vocalizations. These pups also had reduced concentrations of plasma ACTH and CORT. In Experiment 3, 10-day-old pups were HYPOX and tested for behavioral inhibition on day 14. In comparison to sham-operated controls, HYPOX rats exhibited significantly lower levels of freezing and had reduced plasma concentrations of ACTH and CORT. Results demonstrate clearly that deficits in freezing occur even in the presence of low plasma ACTH concentrations. Therefore, elevated secretion of pituitary hormones is not a major factor that contributes to the ADX-induced deficits in behavioral inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Cortical inhibition effect in musicians and non-musicians using P300 with and without contralateral stimulation.

    Science.gov (United States)

    Rabelo, Camila Maia; Neves-Lobo, Ivone Ferreira; Rocha-Muniz, Caroline Nunes; Ubiali, Thalita; Schochat, Eliane

    2015-01-01

    Musicians have more robust and efficient neural responses in the cortical and sub-cortical regions, demonstrating that musical experience benefits the processing of both non-linguistic and linguistic stimuli. This study aimed to verify P300's latency and amplitude behavioral using contralateral stimulation in musicians and non-musicians. This was a case-control study. Subjects were divided in two groups: musicians, comprising 30 professional musicians, and non-musicians, comprising 25 subjects without musical experience. The present study showed that the musicians had lower latencies and higher amplitudes than the non-musicians in the P300 without contralateral noise. For the P300 amplitude values, the difference between groups persisted, and the musicians presented significantly higher amplitude values compared with the non-musicians; additionally, the analysis of the noise effect on the P300 response showed that the latency values were significantly increased in the musicians. The central auditory nervous system of musicians presents peculiar characteristics of electrophysiological responses probably due to the plasticity imposed by musical practice. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  2. Differences in Executive Functioning in Children with Attention Deficit and Hyperactivity Disorder (ADHD

    Directory of Open Access Journals (Sweden)

    M. Rosa Elosúa

    2017-06-01

    Full Text Available In recent years, the interest in Attention Deficit and Hyperactivity Disorder (ADHD and its relation to deficits in working memory (WM and more specifically the different executive functions (EFs has grown, to the point of confirming that these are quite frequent in this disorder. The aim of this study was precisely to explore differences in executive functioning of WM in fourth grade Primary school children with and without ADHD (26 and 29 children, respectively, introducing rigorous control measures in the tests used. Four EFs were analyzed: divided attention, updating, attentional shifting and inhibition, measured through four tasks, the dual-task paradigm (digits and box-crossing, the N-Back task, the Trail Making Test and the Stroop task, respectively. The results showed that participants with ADHD, compared to children with typical development (TD, exhibited a smaller verbal memory span as well as deficits in the attentional shifting and updating functions. However, a similar performance for the EF of inhibition was found for both groups of participants. Finally, an unexpected result was obtained with regard to the role of divided attention, as children with ADHD were less impaired when performing the double task than participants in the TD group.

  3. Space-Time Dynamics of Membrane Currents Evolve to Shape Excitation, Spiking, and Inhibition in the Cortex at Small and Large Scales

    DEFF Research Database (Denmark)

    Roland, Per E.

    2017-01-01

    positions. After transition to active spiking states, larger structured zones with active spiking neurons appear, propagating through the cortical network, driving it into various forms of widespread excitation, and engaging the network from microscopic scales to whole cortical areas. At each engaged...... cortical site, the amount of excitation in the network, after a delay, becomes matched by an equal amount of space-time fine-tuned inhibition that might be instrumental in driving the dynamics toward perception and action....

  4. MEG event-related desynchronization and synchronization deficits during basic somatosensory processing in individuals with ADHD

    Directory of Open Access Journals (Sweden)

    Wang Frank

    2008-02-01

    Full Text Available Abstract Background Attention-Deficit/Hyperactivity Disorder (ADHD is a prevalent, complex disorder which is characterized by symptoms of inattention, hyperactivity, and impulsivity. Convergent evidence from neurobiological studies of ADHD identifies dysfunction in fronto-striatal-cerebellar circuitry as the source of behavioural deficits. Recent studies have shown that regions governing basic sensory processing, such as the somatosensory cortex, show abnormalities in those with ADHD suggesting that these processes may also be compromised. Methods We used event-related magnetoencephalography (MEG to examine patterns of cortical rhythms in the primary (SI and secondary (SII somatosensory cortices in response to median nerve stimulation, in 9 adults with ADHD and 10 healthy controls. Stimuli were brief (0.2 ms non-painful electrical pulses presented to the median nerve in two counterbalanced conditions: unpredictable and predictable stimulus presentation. We measured changes in strength, synchronicity, and frequency of cortical rhythms. Results Healthy comparison group showed strong event-related desynchrony and synchrony in SI and SII. By contrast, those with ADHD showed significantly weaker event-related desynchrony and event-related synchrony in the alpha (8–12 Hz and beta (15–30 Hz bands, respectively. This was most striking during random presentation of median nerve stimulation. Adults with ADHD showed significantly shorter duration of beta rebound in both SI and SII except for when the onset of the stimulus event could be predicted. In this case, the rhythmicity of SI (but not SII in the ADHD group did not differ from that of controls. Conclusion Our findings suggest that somatosensory processing is altered in individuals with ADHD. MEG constitutes a promising approach to profiling patterns of neural activity during the processing of sensory input (e.g., detection of a tactile stimulus, stimulus predictability and facilitating our

  5. Ascorbic acid ameliorates behavioural deficits and neuropathological alterations in rat model of Alzheimer's disease.

    Science.gov (United States)

    Olajide, Olayemi Joseph; Yawson, Emmanuel Olusola; Gbadamosi, Ismail Temitayo; Arogundade, Tolulope Timothy; Lambe, Ezra; Obasi, Kosisochukwu; Lawal, Ismail Tayo; Ibrahim, Abdulmumin; Ogunrinola, Kehinde Yomi

    2017-03-01

    Exploring the links between neural pathobiology and behavioural deficits in Alzheimer's disease (AD), and investigating substances with known therapeutic advantages over subcellular mechanisms underlying these dysfunctions could advance the development of potent therapeutic molecules for AD treatment. Here we investigated the efficacy of ascorbic acid (AA) in reversing aluminium chloride (AlCl 3 )-induced behavioural deficits and neurotoxic cascades within prefrontal cortex (PFC) and hippocampus of rats. A group of rats administered oral AlCl 3 (100mg/kg) daily for 15days showed degenerative changes characterised by significant weight loss, reduced exploratory/working memory, frontal-dependent motor deficits, cognitive decline, memory dysfunction and anxiety during behavioural assessments compared to control. Subsequent analysis showed that oxidative impairment-indicated by depleted superoxide dismutase and lipid peroxidation (related to glutathione-S-transferase activity), cholinergic deficits seen by increased neural acetylcholinesterase (AChE) expression and elevated lactate dehydrogenase underlie behavioural alterations. Furthermore, evidences of proteolysis were seen by reduced Nissl profiles in neuronal axons and dendrites which correspond to apoptotic changes observed in H&E staining of PFC and hippocampal sections. Interestingly, AA (100mg/kg daily for 15days) significantly attenuated behavioural deficits in rats through inhibition of molecular and cellular stressor proteins activated by AlCl 3. Our results showed that the primary mechanisms underlying AA therapeutic advantages relates closely with its abilities to scavenge free radicals, prevent membrane lipid peroxidation, modulate neuronal bioenergetics, act as AChE inhibitor and through its anti-proteolytic properties. These findings suggest that supplementing endogenous AA capacity through its pharmacological intake may inhibit progression of AD-related neurodegenerative processes and behavioural

  6. Communication and Wiring in the Cortical Connectome

    Directory of Open Access Journals (Sweden)

    Julian eBudd

    2012-10-01

    Full Text Available In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring principles underlying cortical connectivity. A popular explanation has been that axonal length is strictly minimized both within and between cortical regions. In contrast, we have hypothesized the existence of a multi-scale principle of cortical wiring where to optimise communication there is a trade-off between spatial (construction and temporal (routing costs. Here, using recent evidence concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local circuit, and pathway scales. We report three main conclusions. First, the axonal and dendritic arbor morphology of single neocortical neurons may be governed by a similar wiring principle, one that balances the conservation of cellular material and conduction delay. Second, the same principle may be observed for fibre tracts connecting cortical regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful assessment of the hypothesis at this scale of cortical organization. To avoid neglecting neuron and microcircuit levels of cortical organization, the connectome framework should incorporate more morphological description. In addition, structural analyses of temporal cost for cortical circuits should take account of both axonal conduction and neuronal integration delays, which appear mostly of the same order of magnitude. We conclude the hypothesized trade-off between spatial and temporal costs may potentially offer a powerful explanation for

  7. Perceptual learning and adult cortical plasticity.

    Science.gov (United States)

    Gilbert, Charles D; Li, Wu; Piech, Valentin

    2009-06-15

    The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.

  8. Altered modular organization of structural cortical networks in children with autism.

    Directory of Open Access Journals (Sweden)

    Feng Shi

    Full Text Available Autism is a complex developmental disability that characterized by deficits in social interaction, language skills, repetitive stereotyped behaviors and restricted interests. Although great heterogeneity exists, previous findings suggest that autism has atypical brain connectivity patterns and disrupted small-world network properties. However, the organizational alterations in the autistic brain network are still poorly understood. We explored possible organizational alterations of 49 autistic children and 51 typically developing controls, by investigating their brain network metrics that are constructed upon cortical thickness correlations. Three modules were identified in controls, including cortical regions associated with brain functions of executive strategic, spatial/auditory/visual, and self-reference/episodic memory. There are also three modules found in autistic children with similar patterns. Compared with controls, autism demonstrates significantly reduced gross network modularity, and a larger number of inter-module connections. However, the autistic brain network demonstrates increased intra- and inter-module connectivity in brain regions including middle frontal gyrus, inferior parietal gyrus, and cingulate, suggesting one underlying compensatory mechanism associated with brain functions of self-reference and episodic memory. Results also show that there is increased correlation strength between regions inside frontal lobe, as well as impaired correlation strength between frontotemporal and frontoparietal regions. This alteration of correlation strength may contribute to the organization alteration of network structures in autistic brains.

  9. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy.

    Science.gov (United States)

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Foulkes, Alexander J M; Rabinovici, Gil D; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M; Fox, Nick C; Crutch, Sebastian J

    2016-08-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer's disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Long-interval intracortical inhibition as biomarker for epilepsy : a transcranial magnetic stimulation study

    NARCIS (Netherlands)

    Bauer, Prisca R.; de Goede, Annika A.; Stern, William M.; Pawley, Adam D.; Chowdhury, Fahmida A.; Helling, Robert M.; Bouet, Romain; Kalitzin, Stiliyan N.; Visser, Gerhard H.; Sisodiya, Sanjay M.; Rothwell, John C.; Richardson, Mark P.; van Putten, Michel J.A.M.; Sander, Josemir W.

    2018-01-01

    Cortical excitability, as measured by transcranial magnetic stimulation combined with electromyography, is a potential biomarker for the diagnosis and follow-up of epilepsy. We report on long-interval intracortical inhibition data measured in four different centres in healthy controls (n = 95),

  11. Sall1 regulates cortical neurogenesis and laminar fate specification in mice: implications for neural abnormalities in Townes-Brocks syndrome

    Directory of Open Access Journals (Sweden)

    Susan J. Harrison

    2012-05-01

    Progenitor cells in the cerebral cortex undergo dynamic cellular and molecular changes during development. Sall1 is a putative transcription factor that is highly expressed in progenitor cells during development. In humans, the autosomal dominant developmental disorder Townes-Brocks syndrome (TBS is associated with mutations of the SALL1 gene. TBS is characterized by renal, anal, limb and auditory abnormalities. Although neural deficits have not been recognized as a diagnostic characteristic of the disease, ∼10% of patients exhibit neural or behavioral abnormalities. We demonstrate that, in addition to being expressed in peripheral organs, Sall1 is robustly expressed in progenitor cells of the central nervous system in mice. Both classical- and conditional-knockout mouse studies indicate that the cerebral cortex is particularly sensitive to loss of Sall1. In the absence of Sall1, both the surface area and depth of the cerebral cortex were decreased at embryonic day 18.5 (E18.5. These deficiencies are associated with changes in progenitor cell properties during development. In early cortical progenitor cells, Sall1 promotes proliferative over neurogenic division, whereas, at later developmental stages, Sall1 regulates the production and differentiation of intermediate progenitor cells. Furthermore, Sall1 influences the temporal specification of cortical laminae. These findings present novel insights into the function of Sall1 in the developing mouse cortex and provide avenues for future research into potential neural deficits in individuals with TBS.

  12. The amblyopic deficit for 2nd order processing: Generality and laterality.

    Science.gov (United States)

    Gao, Yi; Reynaud, Alexandre; Tang, Yong; Feng, Lixia; Zhou, Yifeng; Hess, Robert F

    2015-09-01

    A number of previous reports have suggested that the processing of second-order stimuli by the amblyopic eye (AE) is defective and that the fellow non-amblyopic eye (NAE) also exhibits an anomaly. Second-order stimuli involve extra-striate as well as striate processing and provide a means of exploring the extent of the cortical anomaly in amblyopia using psychophysics. We use a range of different second-order stimuli to investigate how general the deficit is for detecting second-order stimuli in adult amblyopes. We compare these results to our previously published adult normative database using the same stimuli and approach to determine the extent to which the detection of these stimuli is defective for both amblyopic and non-amblyopic eye stimulation. The results suggest that the second-order deficit affects a wide range of second-order stimuli, and by implication a large area of extra-striate cortex, both dorsally and ventrally. The NAE is affected only in motion-defined form judgments, suggesting a difference in the degree to which ocular dominance is disrupted in dorsal and ventral extra-striate regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Cortical delta-opioid receptors potentiate K+ homeostasis during anoxia and oxygen-glucose deprivation.

    Science.gov (United States)

    Chao, Dongman; Donnelly, David F; Feng, Yin; Bazzy-Asaad, Alia; Xia, Ying

    2007-02-01

    Central neurons are extremely vulnerable to hypoxic/ischemic insult, which is a major cause of neurologic morbidity and mortality as a consequence of neuronal dysfunction and death. Our recent work has shown that delta-opioid receptor (DOR) is neuroprotective against hypoxic and excitotoxic stress, although the underlying mechanisms remain unclear. Because hypoxia/ischemia disrupts ionic homeostasis with an increase in extracellular K(+), which plays a role in neuronal death, we asked whether DOR activation preserves K(+) homeostasis during hypoxic/ischemic stress. To test this hypothesis, extracellular recordings with K(+)-sensitive microelectrodes were performed in mouse cortical slices under anoxia or oxygen-glucose deprivation (OGD). The main findings in this study are that (1) DOR activation with [D-Ala(2), D-Leu(5)]-enkephalinamide attenuated the anoxia- and OGD-induced increase in extracellular K(+) and decrease in DC potential in cortical slices; (2) DOR inhibition with naltrindole, a DOR antagonist, completely abolished the DOR-mediated prevention of increase in extracellular K(+) and decrease in DC potential; (3) inhibition of protein kinase A (PKA) with N-(2-[p-bromocinnamylamino]-ethyl)-5-isoquinolinesulfonamide dihydrochloride had no effect on the DOR protection; and (4) inhibition of protein kinase C (PKC) with chelerythrine chloride reduced the DOR protection, whereas the PKC activator (phorbol 12-myristate 13-acetate) mimicked the effect of DOR activation on K(+) homeostasis. These data suggest that activation of DOR protects the cortex against anoxia- or ODG-induced derangement of potassium homeostasis, and this protection occurs via a PKC-dependent and PKA-independent pathway. We conclude that an important aspect of DOR-mediated neuroprotection is its early action against derangement of K(+) homeostasis during anoxia or ischemia.

  14. Inter-trial coherence as a marker of cortical phase synchrony in children with sensorineural hearing loss and auditory neuropathy spectrum disorder fitted with hearing aids and cochlear implants

    Science.gov (United States)

    Nash-Kille, Amy; Sharma, Anu

    2014-01-01

    Objective Although brainstem dys-synchrony is a hallmark of children with auditory neuropathy spectrum disorder (ANSD), little is known about how the lack of neural synchrony manifests at more central levels. We used time-frequency single-trial EEG analyses (i.e., inter-trial coherence; ITC), to examine cortical phase synchrony in children with normal hearing (NH), sensorineural hearing loss (SNHL) and ANSD. Methods Single trial time-frequency analyses were performed on cortical auditory evoked responses from 41 NH children, 91 children with ANSD and 50 children with SNHL. The latter two groups included children who received intervention via hearing aids and cochlear implants. ITC measures were compared between groups as a function of hearing loss, intervention type, and cortical maturational status. Results In children with SNHL, ITC decreased as severity of hearing loss increased. Children with ANSD revealed lower levels of ITC relative to children with NH or SNHL, regardless of intervention. Children with ANSD who received cochlear implants showed significant improvements in ITC with increasing experience with their implants. Conclusions Cortical phase coherence is significantly reduced as a result of both severe-to-profound SNHL and ANSD. Significance ITC provides a window into the brain oscillations underlying the averaged cortical auditory evoked response. Our results provide a first description of deficits in cortical phase synchrony in children with SNHL and ANSD. PMID:24360131

  15. Transcranial magnetic stimulation provides means to assess cortical plasticity and excitability in humans with fragile X syndrome and autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Lindsay M Oberman

    2010-06-01

    Full Text Available Fragile X Syndrome (FXS is the most common heritable cause of intellectual disability. In vitro electrophysiologic data from mouse models of FXS suggest that loss of Fragile X Mental Retardation Protein (FMRP affects intracortical excitability and synaptic plasticity. Specifically, the cortex appears hyperexcitable, and use-dependent long-term potentiation (LTP and long-term depression (LTD of synaptic strength are abnormal. Though animal models provide important information, FXS and other neurodevelopmental disorders are human diseases and as such translational research to evaluate cortical excitability and plasticity must be applied in the human. Transcranial magnetic stimulation (TMS paradigms have recently been developed to noninvasively investigate cortical excitability using paired-pulse stimulation, as well as LTP- and LTD-like synaptic plasticity in response to theta burst stimulation (TBS in vivo in the human. TBS applied on consecutive days can be used to measure metaplasticity (the ability of the synapse to undergo a second plastic change following a recent induction of plasticity. The current study investigated intracortical inhibition, plasticity and metaplasticity in full mutation females with FXS, participants with autism spectrum disorders (ASD, and neurotypical controls. Results suggest that intracortical inhibition is normal in participants with FXS, while plasticity and metaplasticity appear abnormal. ASD participants showed abnormalities in plasticity and metaplasticity, as well as heterogeneity in intracortical inhibition. Our findings highlight the utility of noninvasive neurophysiological measures to translate insights from animal models to humans with neurodevelopmental disorders, and thus provide direct confirmation of cortical dysfunction in patients with FXS and ASD.

  16. Furosemide- sup 131 I-hippuran renography after angiotensin-converting enzyme inhibition for the diagnosis of renovascular hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Erbsloeh-Moeller, B.Du.; Dumas, A.; Roth, D.; Sfakianakis, G.N.; Bourgoignie, J.J. (Univ. of Miami/Jackson Memorial Medical Center, FL (USA))

    1991-01-01

    We have previously demonstrated the greater sensitivity of 131I-hippuran renography than 99mTC-DTPA scintigraphy to diagnose renovascular hypertension (RVH). This study assesses the predictive diagnostic value of furosemide-131I-hippuran renography after angiotensin-converting enzyme (ACE) inhibition in patients with and without RVH. All patients were investigated at the University of Miami/Jackson Memorial Medical Center. Twenty-eight patients had RVH and 22 did not. Twenty-eight patients had normal or minimally decreased renal function and 22 had renal insufficiency. Renography was performed 60 minutes after oral administration of 50 mg captopril or 10 minutes after intravenous injection of 40 micrograms/kg enalaprilat. Forty milligrams of furosemide were administered intravenously 2 minutes after injection of 131I-hippuran. The residual cortical activity (RCA) of 131I-hippuran was measured at 20 minutes. RVH was unlikely when RCA after ACE inhibition was less than 30% of peak cortical activity. Conversely, RVH was present when 131I-hippuran cortical activity steadily increased throughout the test to reach 100% at 20 minutes. In azotemic patients with RCA between 31% and 100%, RVH was differentiated from intrinsic renal disease by obtaining a baseline renogram without ACE inhibition and comparing RCA in that study and RCA after ACE inhibition. If RCA increased (indicating worsening renal function) after ACE inhibition, RVH was likely; whereas, intrinsic renal disease was more likely if RCA remained unchanged or decreased (indicating improved renal function) with ACE inhibition. The test had a specificity of 95% and a sensitivity of 96% in this population. There was a direct correlation between the results of angioplasty or surgery on high blood pressure and the changes in RCA before and after intervention (n = 20).

  17. The effect of methylphenidate on three forms of response inhibition in boys with AD/HD

    NARCIS (Netherlands)

    Scheres, A.; Oosterlaan, J.; Swanson, J.; Morein-Zamir, S.; Meiran, N.; Schut, H.; Vlasveld, L.; Sergeant, J.A.

    2003-01-01

    The current study was aimed at (a) investigating the effect of three doses methylphenidate (MPH) and placebo on inhibition of a prepotent response, inhibition of an ongoing response, and interference control in Attention Deficit/Hyperactivity Disorder (AD/HD), and (b) studying dose-response

  18. Striatal dysfunction in attention deficit and hyperkinetic disorder

    International Nuclear Information System (INIS)

    Lou, H.C.; Henriksen, L.; Bruhn, P.; Borner, H.; Nielsen, J.B.

    1989-01-01

    We have previously reported that periventricular structures are hypoperfused in attention deficit and hyperactivity disorder (ADHD). This study has expanded the number of patients, who were divided into two groups: six patients with pure ADHD, and 13 patients with ADHD in combination with other neurologic symptoms. By using xenon 133 inhalation and emission tomography, the regional cerebral blood flow distribution was determined and compared with a control group. Striatal regions were found to be hypoperfused and, by inference, hypofunctional in both groups. This hypoperfusion was statistically significant in the right striatum in ADHD, and in both striatal regions in ADHD with other neuropsychologic and neurologic symptoms. The primary sensory and sensorimotor cortical regions were highly perfused. Methylphenidate increased flow to striatal and posterior periventricular regions, and tended to decrease flow to primary sensory regions. Low striatal activity, partially reversible with methylphenidate, appears to be a cardinal feature in ADHD

  19. Striatal dysfunction in attention deficit and hyperkinetic disorder

    Energy Technology Data Exchange (ETDEWEB)

    Lou, H.C.; Henriksen, L.; Bruhn, P.; Borner, H.; Nielsen, J.B.

    1989-01-01

    We have previously reported that periventricular structures are hypoperfused in attention deficit and hyperactivity disorder (ADHD). This study has expanded the number of patients, who were divided into two groups: six patients with pure ADHD, and 13 patients with ADHD in combination with other neurologic symptoms. By using xenon 133 inhalation and emission tomography, the regional cerebral blood flow distribution was determined and compared with a control group. Striatal regions were found to be hypoperfused and, by inference, hypofunctional in both groups. This hypoperfusion was statistically significant in the right striatum in ADHD, and in both striatal regions in ADHD with other neuropsychologic and neurologic symptoms. The primary sensory and sensorimotor cortical regions were highly perfused. Methylphenidate increased flow to striatal and posterior periventricular regions, and tended to decrease flow to primary sensory regions. Low striatal activity, partially reversible with methylphenidate, appears to be a cardinal feature in ADHD.

  20. Neurosteroids Reverse Tonic Inhibition Deficits in Fragile X Syndrome

    Science.gov (United States)

    2017-10-01

    decrease in phosphorylation of residues S408/409 of the b3 subunit following status epilepticus leading to an increase in GABAAR endocytosis and increased...A) receptors by intimately associated protein kinase C activity underlie compromised syn- aptic inhibition during status epilepticus . J. Neurosci. 28...genotype; Fig. 4B). Additionally, S408/9A mice entered status epilepticus at an earlier time point than WT controls (41.8 ± 4.3 vs. 61.5 ± 8.6 min for

  1. Ethanol extracts from Portulaca oleracea L. attenuated ischemia/reperfusion induced rat neural injury through inhibition of HMGB1 induced inflammation

    Science.gov (United States)

    Zheng, Chenggang; Liu, Chen; Wang, Wanyin; Tang, Gusheng; Dong, Liwei; Zhou, Juan; Zhong, Zhengrong

    2016-01-01

    It is well demonstrated that the high mobility group box 1 (HMGB1) mediated inflammation has been implicated as one of the important causes for brain damage induced by cerebral ischemia/reperfusion (I/R). In the present study, we assessed the neuro-protective and anti-inflammation effects of the ethanol extracts from Portulaca oleracea L. (EEPO) against cerebral I/R injury in the rat transient middle cerebral artery occlusion (tMCAO) model. Rats were administrated with their respective treatment for 7 days before the MCA occlusion. After that, rats were intraperitoneal injection with chloral hydrate and sacrificed by decapitation, then the serum and brain tissue were collected. The neurological deficit score, infarct size and brain edema were tested. The levels of serum cytokine as TNF-α, IL-1β, INF-γ, IL-6, and HMGB1 and LDH were detected. The protein level of tissue or nucleus HMGB1, IκB and p-p65 were tested, too. The results showed that pretreatment with EEPO significantly decreased the neurological deficit score, infarct size and brain edema. Moreover, EEPO decreased rat serum cytokine level and rat right cortices p-p65 and IκB protein level. In conclusion all these results suggested that pretreatment with EEFPO provided significant protection against cerebral I/R injury in rats might by virtue of its anti-inflammation property through inhibition of increase of neuleus HMGB1. PMID:27904702

  2. Cortical influences drive amyotrophic lateral sclerosis.

    Science.gov (United States)

    Eisen, Andrew; Braak, Heiko; Del Tredici, Kelly; Lemon, Roger; Ludolph, Albert C; Kiernan, Matthew C

    2017-11-01

    The early motor manifestations of sporadic amyotrophic lateral sclerosis (ALS), while rarely documented, reflect failure of adaptive complex motor skills. The development of these skills correlates with progressive evolution of a direct corticomotoneuronal system that is unique to primates and markedly enhanced in humans. The failure of this system in ALS may translate into the split hand presentation, gait disturbance, split leg syndrome and bulbar symptomatology related to vocalisation and breathing, and possibly diffuse fasciculation, characteristic of ALS. Clinical neurophysiology of the brain employing transcranial magnetic stimulation has convincingly demonstrated a presymptomatic reduction or absence of short interval intracortical inhibition, accompanied by increased intracortical facilitation, indicating cortical hyperexcitability. The hallmark of the TDP-43 pathological signature of sporadic ALS is restricted to cortical areas as well as to subcortical nuclei that are under the direct control of corticofugal projections. This provides anatomical support that the origins of the TDP-43 pathology reside in the cerebral cortex itself, secondarily in corticofugal fibres and the subcortical targets with which they make monosynaptic connections. The latter feature explains the multisystem degeneration that characterises ALS. Consideration of ALS as a primary neurodegenerative disorder of the human brain may incorporate concepts of prion-like spread at synaptic terminals of corticofugal axons. Further, such a concept could explain the recognised widespread imaging abnormalities of the ALS neocortex and the accepted relationship between ALS and frontotemporal dementia. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Cortical Correlates of Binaural Temporal Processing Deficits in Older Adults.

    Science.gov (United States)

    Eddins, Ann Clock; Eddins, David A

    This study was designed to evaluate binaural temporal processing in young and older adults using a binaural masking level difference (BMLD) paradigm. Using behavioral and electrophysiological measures within the same listeners, a series of stimulus manipulations was used to evaluate the relative contribution of binaural temporal fine-structure and temporal envelope cues. We evaluated the hypotheses that age-related declines in the BMLD task would be more strongly associated with temporal fine-structure than envelope cues and that age-related declines in behavioral measures would be correlated with cortical auditory evoked potential (CAEP) measures. Thirty adults participated in the study, including 10 young normal-hearing, 10 older normal-hearing, and 10 older hearing-impaired adults with bilaterally symmetric, mild-to-moderate sensorineural hearing loss. Behavioral and CAEP thresholds were measured for diotic (So) and dichotic (Sπ) tonal signals presented in continuous diotic (No) narrowband noise (50-Hz wide) maskers. Temporal envelope cues were manipulated by using two different narrowband maskers; Gaussian noise (GN) with robust envelope fluctuations and low-noise noise (LNN) with minimal envelope fluctuations. The potential to use temporal fine-structure cues was controlled by varying the signal frequency (500 or 4000 Hz), thereby relying on the natural decline in phase-locking with increasing frequency. Behavioral and CAEP thresholds were similar across groups for diotic conditions, while the masking release in dichotic conditions was larger for younger than for older participants. Across all participants, BMLDs were larger for GN than LNN and for 500-Hz than for 4000-Hz conditions, where envelope and fine-structure cues were most salient, respectively. Specific age-related differences were demonstrated for 500-Hz dichotic conditions in GN and LNN, reflecting reduced binaural temporal fine-structure coding. No significant age effects were observed for 4000

  4. Contrasting deficits on executive functions in Chinese delinquent adolescents with attention deficit and hyperactivity disorder symptoms and/or reading disability.

    Science.gov (United States)

    Poon, Kean; Ho, Connie S-H

    2014-11-01

    Many studies reported high prevalence of reading disability (RD) and attention deficit hyperactivity disorder (ADHD) among delinquent adolescents. Very few have examined their cognitive profile. The present study compared the executive functions (EFs) and severity of delinquency in delinquent adolescents with RD and/or ADHD symptoms (AS). Delinquents with AS (n=29), RD (n=24), comorbidity AS+RD (n=35) were recruited from juvenile institutions along with typically developing controls (n=29) from local schools; all completed EF assessments and self-report questionnaires on delinquency. Results showed that pure AS group exhibited impaired inhibition while the pure RD group was weak in processing speed and visual memory. The comorbidity group showed unique impairments in interference control and significantly higher delinquency severity. The present findings suggest that comorbidity AS+RD may influence delinquency severity. It also provides a more comprehensive picture of the unique EF deficits associated with different groups, allowing for better matching for future identification and intervention programme. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effects of Motivation and Medication on Electrophysiological Markers of Response Inhibition in Children with Attention-Deficit/Hyperactivity Disorder

    OpenAIRE

    Groom, Madeleine J.; Scerif, Gaia; Liddle, Peter F.; Batty, Martin J.; Liddle, Elizabeth B.; Roberts, Katherine L.; Cahill, John D.; Liotti, Mario; Hollis, Chris

    2010-01-01

    Background Theories of attention-deficit/hyperactivity disorder (ADHD) posit either executive deficits and/or alterations in motivational style and reward processing as core to the disorder. Effects of motivational incentives on electrophysiological correlates of inhibitory control and relationships between motivation and stimulant medication have not been explicitly tested. Methods Children (9?15 years) with combined-type ADHD (n = 28) and matched typically developing children (CTRL) (n = 28...

  6. GABA and primary motor cortex inhibition in young and older adults: a multimodal reliability study.

    Science.gov (United States)

    Mooney, Ronan A; Cirillo, John; Byblow, Winston D

    2017-07-01

    The effects of healthy aging on γ-aminobutyric acid (GABA) within primary motor cortex (M1) remain poorly understood. Studies have reported contrasting results, potentially due to limitations with the common assessment technique. The aim of the present study was to investigate the effect of healthy aging on M1 GABA concentration and neurotransmission using a multimodal approach. Fifteen young and sixteen older adults participated in this study. Magnetic resonance spectroscopy (MRS) was used to measure M1 GABA concentration. Single-pulse and threshold-tracking paired-pulse transcranial magnetic stimulation (TMS) protocols were used to examine cortical silent period duration, short- and long-interval intracortical inhibition (SICI and LICI), and late cortical disinhibition (LCD). The reliability of TMS measures was examined with intraclass correlation coefficient analyses. SICI at 1 ms was reduced in older adults (15.13 ± 2.59%) compared with young (25.66 ± 1.44%; P = 0.002). However, there was no age-related effect for cortical silent period duration, SICI at 3 ms, LICI, or LCD (all P > 0.66). The intersession reliability of threshold-tracking measures was good to excellent for both young (range 0.75-0.96) and older adults (range 0.88-0.93). Our findings indicate that extrasynaptic inhibition may be reduced with advancing age, whereas GABA concentration and synaptic inhibition are maintained. Furthermore, MRS and threshold-tracking TMS provide valid and reliable assessment of M1 GABA concentration and neurotransmission, respectively, in young and older adults. NEW & NOTEWORTHY γ-Aminobutyric acid (GABA) in primary motor cortex was assessed in young and older adults using magnetic resonance spectroscopy and threshold-tracking paired-pulse transcranial magnetic stimulation. Older adults exhibited reduced extrasynaptic inhibition (short-interval intracortical inhibition at 1 ms) compared with young, whereas GABA concentration and synaptic inhibition were

  7. Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism mediates inflammation-induced deficit in recognition memory.

    Science.gov (United States)

    Heisler, Jillian M; O'Connor, Jason C

    2015-11-01

    Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders. Published by Elsevier Inc.

  8. Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism mediates inflammation-induced deficit in recognition memory

    Science.gov (United States)

    Heisler, Jillian M.; O’Connor, Jason C.

    2015-01-01

    Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders. PMID:26130057

  9. Cortical myoclonus and cerebellar pathology

    NARCIS (Netherlands)

    Tijssen, MAJ; Thom, M; Ellison, DW; Wilkins, P; Barnes, D; Thompson, PD; Brown, P

    2000-01-01

    Objective To study the electrophysiologic and pathologic findings in three patients with cortical myoclonus. In two patients the myoclonic ataxic syndrome was associated with proven celiac disease. Background: The pathologic findings in conditions associated with cortical myoclonus commonly involve

  10. Cortical myoclonus and cerebellar pathology

    NARCIS (Netherlands)

    Tijssen, M. A.; Thom, M.; Ellison, D. W.; Wilkins, P.; Barnes, D.; Thompson, P. D.; Brown, P.

    2000-01-01

    OBJECTIVE: To study the electrophysiologic and pathologic findings in three patients with cortical myoclonus. In two patients the myoclonic ataxic syndrome was associated with proven celiac disease. BACKGROUND: The pathologic findings in conditions associated with cortical myoclonus commonly involve

  11. Potential protection of green tea polyphenols against 1800 MHz electromagnetic radiation-induced injury on rat cortical neurons.

    Science.gov (United States)

    Liu, Mei-Li; Wen, Jian-Qiang; Fan, Yu-Bo

    2011-10-01

    Radiofrequency electromagnetic fields (EMF) are harmful to public health, but the certain anti-irradiation mechanism is not clear yet. The present study was performed to investigate the possible protective effects of green tea polyphenols against electromagnetic radiation-induced injury in the cultured rat cortical neurons. In this study, green tea polyphenols were used in the cultured cortical neurons exposed to 1800 MHz EMFs by the mobile phone. We found that the mobile phone irradiation for 24 h induced marked neuronal cell death in the MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-tetrazolium bromide) and TUNEL (TdT mediated biotin-dUTP nicked-end labeling) assay, and protective effects of green tea polyphenols on the injured cortical neurons were demonstrated by testing the content of Bcl-2 Assaciated X protein (Bax) in the immunoprecipitation assay and Western blot assay. In our study results, the mobile phone irradiation-induced increases in the content of active Bax were inhibited significantly by green tea polyphenols, while the contents of total Bax had no marked changes after the treatment of green tea polyphenols. Our results suggested a neuroprotective effect of green tea polyphenols against the mobile phone irradiation-induced injury on the cultured rat cortical neurons.

  12. Unraveling the involvement of ABA in the water deficit-induced modulation of nitrogen metabolism in Medicago truncatula seedlings.

    Science.gov (United States)

    Planchet, Elisabeth; Rannou, Olivier; Ricoult, Claudie; Limami, Anis M

    2011-07-01

    Effects of water deficit and/or abscisic acid (ABA) were investigated on early seedling growth of Medicago truncatula, and on glutamate metabolism under dark conditions. Water deficit (simulated by polyethylene glycol, PEG), ABA and their combination resulted in a reduction in growth rate of the embryo axis, and also in a synergistic increase of free amino acid (AA) content. However, the inhibition of water uptake retention induced by water deficit seemed to occur in an ABA-independent manner. Expression of several genes involved in glutamate metabolism was induced during water deficit, whereas ABA, in combination or not with PEG, repressed them. The only exception came from a gene encoding 1-pyrroline-5-carboxylate synthetase (P5CS) which appeared to be induced in an ABA-dependent manner under water deficit. Our results demonstrate clearly the involvement of an ABA-dependent and an ABA-independent regulatory system, governing growth and glutamate metabolism under water deficit.

  13. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    International Nuclear Information System (INIS)

    Wu, Dong-mei; Lu, Jun; Zhang, Yan-qiu; Zheng, Yuan-lin; Hu, Bin; Cheng, Wei; Zhang, Zi-feng; Li, Meng-qiu

    2013-01-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders

  14. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dong-mei [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Lu, Jun, E-mail: lu-jun75@163.com [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Zhang, Yan-qiu [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zheng, Yuan-lin, E-mail: ylzheng@xznu.edu.cn [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Hu, Bin [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Cheng, Wei [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zhang, Zi-feng; Li, Meng-qiu [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China)

    2013-09-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.

  15. Cell-specific gain modulation by synaptically released zinc in cortical circuits of audition.

    Science.gov (United States)

    Anderson, Charles T; Kumar, Manoj; Xiong, Shanshan; Tzounopoulos, Thanos

    2017-09-09

    In many excitatory synapses, mobile zinc is found within glutamatergic vesicles and is coreleased with glutamate. Ex vivo studies established that synaptically released (synaptic) zinc inhibits excitatory neurotransmission at lower frequencies of synaptic activity but enhances steady state synaptic responses during higher frequencies of activity. However, it remains unknown how synaptic zinc affects neuronal processing in vivo. Here, we imaged the sound-evoked neuronal activity of the primary auditory cortex in awake mice. We discovered that synaptic zinc enhanced the gain of sound-evoked responses in CaMKII-expressing principal neurons, but it reduced the gain of parvalbumin- and somatostatin-expressing interneurons. This modulation was sound intensity-dependent and, in part, NMDA receptor-independent. By establishing a previously unknown link between synaptic zinc and gain control of auditory cortical processing, our findings advance understanding about cortical synaptic mechanisms and create a new framework for approaching and interpreting the role of the auditory cortex in sound processing.

  16. Potential Protection of Coeloglossum viride var. Bracteatum Extract against Oxidative Stress in Rat Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Zhe Guo

    2013-01-01

    Full Text Available The present study explored the neuroprotective effect of Coeloglossum viride var. bracteatum extract (CE against oxidative stress in rat cortical neurons. The results demonstrated that administration of CE inhibited hydrogen peroxide-induced neurotoxicity tested by MTT, LDH release, and TUNEL assays. We further found that CE inhibited the activation of caspase-3 (Csp3 induced by hydrogen peroxide. Moreover, CE was found to reverse the hydrogen peroxide-induced downregulation of active AKT and Bcl-2. We then showed that the neuroprotective effect of CE was blocked by adding the AKT inhibitor, Ly294002. Thus, our data strongly indicated that CE played a neuroprotective role against oxidative stress-induced neurotoxicity.

  17. Conjugated Linoleic Acid Administration Induces Amnesia in Male Sprague Dawley Rats and Exacerbates Recovery from Functional Deficits Induced by a Controlled Cortical Impact Injury.

    Directory of Open Access Journals (Sweden)

    Rastafa I Geddes

    Full Text Available Long-chain polyunsaturated fatty acids like conjugated linoleic acids (CLA are required for normal neural development and cognitive function and have been ascribed various beneficial functions. Recently, oral CLA also has been shown to increase testosterone (T biosynthesis, which is known to diminish traumatic brain injury (TBI-induced neuropathology and reduce deficits induced by stroke in adult rats. To test the impact of CLA on cognitive recovery following a TBI, 5-6 month old male Sprague Dawley rats received a focal injury (craniectomy + controlled cortical impact (CCI; n = 17 or Sham injury (craniectomy alone; n = 12 and were injected with 25 mg/kg body weight of Clarinol® G-80 (80% CLA in safflower oil; n = 16 or saline (n = 13 every 48 h for 4 weeks. Sham surgery decreased baseline plasma progesterone (P4 by 64.2% (from 9.5 ± 3.4 ng/mL to 3.4 ± 0.5 ng/mL; p = 0.068, T by 74.6% (from 5.9 ± 1.2 ng/mL to 1.5 ± 0.3 ng/mL; p 0.05 animals by post-injury day 29, but rapidly reversed by post-injury day 1 the hypoadrenalism in Sham (11-DOC: 372.6 ± 36.6 ng/mL; corticosterone: 202.6 ± 15.6 ng/mL and CCI-injured (11-DOC: 384.2 ± 101.3 ng/mL; corticosterone: 234.6 ± 43.8 ng/mL animals. In Sham surgery animals, CLA did not alter body weight, but did markedly increase latency to find the hidden Morris Water Maze platform (40.3 ± 13.0 s compared to saline treated Sham animals (8.8 ± 1.7 s. In CCI injured animals, CLA did not alter CCI-induced body weight loss, CCI-induced cystic infarct size, or deficits in rotarod performance. However, like Sham animals, CLA injections exacerbated the latency of CCI-injured rats to find the hidden MWM platform (66.8 ± 10.6 s compared to CCI-injured rats treated with saline (30.7 ± 5.5 s, p < 0.05. These results indicate that chronic treatment of CLA at a dose of 25 mg/kg body weight in adult male rats over 1-month 1 does not reverse craniectomy- and craniectomy + CCI-induced hypogonadism, but does reverse

  18. Intracortical inhibition is modulated by phase of prosthetic rehabilitation in transtibial amputees

    Directory of Open Access Journals (Sweden)

    Brenton eHordacre

    2015-05-01

    Full Text Available Reorganisation of primary motor cortex (M1 is well described in long-term lower limb amputees. In contrast cortical reorganisation during the rehabilitation period after amputation is poorly understood. Thirteen transtibial amputees and thirteen gender matched control participants of similar age were recruited. Transcranial magnetic stimulation was used to assess corticomotor and intracortical excitability of M1 bilaterally. Neurophysiological assessments were conducted at admission, prosthetic casting, first walk and discharge. Gait variability at discharge was assessed as a functional measure. Compared to controls, amputees had reduced short-latency intracortical inhibition for the ipsilateral M1 at admission (p=0.01. Analysis across rehabilitation revealed short-latency intracortical inhibition was reduced for the contralateral M1 at first walk compared to discharge (p=0.003. For the ipsilateral M1 both short and long-latency intracortical inhibition were reduced at admission (p<0.05 and prosthetic casting (p<0.02. Analysis of the neurophysiology and gait function revealed several interesting relationships. For the contralateral M1, reduced inhibition at admission (p=0.04 and first walk (p=0.05 was associated with better gait function. For the ipsilateral M1, reduced inhibition at discharge (p=0.05 was associated with poor gait function. This study characterised intracortical excitability in rehabilitating amputees. A dichotomous relationship between reduced intracortical inhibition for each M1 and gait function was observed at different times. Intracortical inhibition may be an appropriate cortical biomarker of gait function in lower limb amputees during rehabilitation, but requires further investigation. Understanding M1 intracortical excitability of amputees undertaking prosthetic rehabilitation provides insight into brain reorganisation in the sub-acute post amputation period and may guide future studies seeking to improve rehabilitation

  19. Playing and Listening to Tailor-Made Notched Music: Cortical Plasticity Induced by Unimodal and Multimodal Training in Tinnitus Patients

    Directory of Open Access Journals (Sweden)

    Janna Pape

    2014-01-01

    Full Text Available Background. The generation and maintenance of tinnitus are assumed to be based on maladaptive functional cortical reorganization. Listening to modified music, which contains no energy in the range of the individual tinnitus frequency, can inhibit the corresponding neuronal activity in the auditory cortex. Music making has been shown to be a powerful stimulator for brain plasticity, inducing changes in multiple sensory systems. Using magnetoencephalographic (MEG and behavioral measurements we evaluated the cortical plasticity effects of two months of (a active listening to (unisensory versus (b learning to play (multisensory tailor-made notched music in nonmusician tinnitus patients. Taking into account the fact that uni- and multisensory trainings induce different patterns of cortical plasticity we hypothesized that these two protocols will have different affects. Results. Only the active listening (unisensory group showed significant reduction of tinnitus related activity of the middle temporal cortex and an increase in the activity of a tinnitus-coping related posterior parietal area. Conclusions. These findings indicate that active listening to tailor-made notched music induces greater neuroplastic changes in the maladaptively reorganized cortical network of tinnitus patients while additional integration of other sensory modalities during training reduces these neuroplastic effects.

  20. Playing and listening to tailor-made notched music: cortical plasticity induced by unimodal and multimodal training in tinnitus patients.

    Science.gov (United States)

    Pape, Janna; Paraskevopoulos, Evangelos; Bruchmann, Maximilian; Wollbrink, Andreas; Rudack, Claudia; Pantev, Christo

    2014-01-01

    BACKGROUND. The generation and maintenance of tinnitus are assumed to be based on maladaptive functional cortical reorganization. Listening to modified music, which contains no energy in the range of the individual tinnitus frequency, can inhibit the corresponding neuronal activity in the auditory cortex. Music making has been shown to be a powerful stimulator for brain plasticity, inducing changes in multiple sensory systems. Using magnetoencephalographic (MEG) and behavioral measurements we evaluated the cortical plasticity effects of two months of (a) active listening to (unisensory) versus (b) learning to play (multisensory) tailor-made notched music in nonmusician tinnitus patients. Taking into account the fact that uni- and multisensory trainings induce different patterns of cortical plasticity we hypothesized that these two protocols will have different affects. RESULTS. Only the active listening (unisensory) group showed significant reduction of tinnitus related activity of the middle temporal cortex and an increase in the activity of a tinnitus-coping related posterior parietal area. CONCLUSIONS. These findings indicate that active listening to tailor-made notched music induces greater neuroplastic changes in the maladaptively reorganized cortical network of tinnitus patients while additional integration of other sensory modalities during training reduces these neuroplastic effects.

  1. Effect of ghrelin on the motor deficit caused by the ablation of nigrostriatal dopaminergic cells or the inhibition of striatal dopamine receptors.

    Science.gov (United States)

    Suda, Yukari; Kuzumaki, Naoko; Narita, Michiko; Hamada, Yusuke; Shibasaki, Masahiro; Tanaka, Kenichi; Tamura, Hideki; Kawamura, Takashi; Kondo, Takashige; Yamanaka, Akihiro; Narita, Minoru

    2018-02-19

    Ghrelin plays roles in a wide range of central functions by activating the growth hormone secretagogue receptor (GHSR). This receptor has recently been found in the substantia nigra (SN) to control dopamine (DA)-related physiological functions. The dysregulation of DA neurons in the SN pars compacta (SNc) and the consequent depletion of striatal DA are known to underlie the motor deficits observed in Parkinson's disease (PD). In the present study, we further investigated the role of the SN-ghrelin system in motor function under the stereotaxic injection of AAV-CMV-FLEX-diphtheria toxin A (DTA) into the SN of dopamine transporter (DAT)-Cre (DAT SN ::DTA) mice to expunge DA neurons of the SNc. First, we confirmed the dominant expression of GHSR1a, which is a functional GHSR, in tyrosine hydroxylase (TH)-positive DA neurons in the SNc of control mice. In DAT SN ::DTA mice, we clearly observed motor dysfunction using several behavioral tests. An immunohistochemical study revealed a dramatic loss of TH-positive DA neurons in the SNc and DAT-labeled axon terminals in the striatum, and an absence of mRNAs for TH and DAT in the SN of DAT SN ::DTA mice. The mRNA level of GHSR1a was drastically decreased in the SN of these mice. In normal mice, we also found the mRNA expression of GHSR1a within GABAergic neurons in the SN pars reticulata (SNr). Under these conditions, a single injection of ghrelin into the SN failed to improve the motor deficits caused by ablation of the nigrostriatal DA network using DAT SN ::DTA mice, whereas intra-SN injection of ghrelin suppressed the motor dysfunction caused by the administration of haloperidol, which is associated with the transient inhibition of DA transmission. These findings suggest that phasic activation of the SNc-ghrelin system could improve the dysregulation of nigrostriatal DA transmission related to the initial stage of PD, but not the motor deficits under the depletion of nigrostriatal DA. Although GHSRs are found in non

  2. Speeded Verbal Responding in Adults Who Stutter: Are There Deficits in Linguistic Encoding?

    Science.gov (United States)

    Hennessey, Neville W.; Nang, Charn Y.; Beilby, Janet M.

    2008-01-01

    Linguistic encoding deficits in people who stutter (PWS, n = 18) were investigated using auditory priming during picture naming and word vs. non-word comparisons during choice and simple verbal reaction time (RT) tasks. During picture naming, PWS did not differ significantly from normally fluent speakers (n = 18) in the magnitude of inhibition of…

  3. Electrophysiological Data and the Biophysical Modelling of Local Cortical Circuits

    Directory of Open Access Journals (Sweden)

    Dimitris Pinotsis

    2014-03-01

    empirical MEG data and looked for potential determinants of the spectral properties of an individual's gamma response, and how they relate to underlying visual cortex microcircuitry and excitation/inhibition balance. We found correlations between peak gamma frequency and cortical inhibition (parameterized by the excitatory drive to inhibitory cell populations over subjects. This constitutes a compelling illustration of how non-invasive data can provide quantitative estimates of the spatial properties of neural sources and explain systematic variations in the dynamics those sources generate. Furthermore, the conclusions fitted comfortably with studies of contextual interactions and orientation discrimination suggesting that local contextual interactions in V1 are weaker in individuals with a large V1 area [13, 14]. Finally, we will use dynamic causal modeling and neural fields to test specific hypotheses about precision and gain control based on predictive coding formulations of neuronal processing. We exploited finely sampled electrophysiological responses from awake-behaving monkeys and an experimental manipulation (the contrast of visual stimuli to look at changes in the gain and balance of excitatory and inhibitory influences. Our results suggest that increasing contrast effectively increases the sensitivity or gain of superficial pyramidal cells to inputs from spiny stellate populations. Furthermore, they are consistent with intriguing results showing that the receptive fields of V1 units shrinks with increasing visual contrast. The approach we will illustrate in this paper rests on neural field models that are optimized in relation to observed gamma responses from the visual cortex and are – crucially – compared in terms of their evidence. This provides a principled way to address questions about cortical structure, function and the architectures that underlie neuronal computations.

  4. A chaotic model of sustaining attention problem in attention deficit disorder

    Science.gov (United States)

    Baghdadi, G.; Jafari, S.; Sprott, J. C.; Towhidkhah, F.; Hashemi Golpayegani, M. R.

    2015-01-01

    The problem of keeping an attention level is one of the common symptoms of attention deficit disorder. Dopamine deficiency is introduced as one of the causes of this disorder. Based on some physiological facts about the attention control mechanism and chaos intermittency, a behavioral model is presented in this paper. This model represents the problem of undesired alternation of attention level, and can also suggest different valuable predictions about a possible cause of attention deficit disorder. The proposed model reveals that there is a possible interaction between different neurotransmitters which help the individual to adaptively inhibit the attention switching over time. The result of this study can be used to examine and develop a new practical and more appropriate treatment for the problem of sustaining attention.

  5. A Novel, Multi-Target Natural Drug Candidate, Matrine, Improves Cognitive Deficits in Alzheimer's Disease Transgenic Mice by Inhibiting Aβ Aggregation and Blocking the RAGE/Aβ Axis.

    Science.gov (United States)

    Cui, Lili; Cai, Yujie; Cheng, Wanwen; Liu, Gen; Zhao, Jianghao; Cao, Hao; Tao, Hua; Wang, Yan; Yin, Mingkang; Liu, Tingting; Liu, Yu; Huang, Pengru; Liu, Zhou; Li, Keshen; Zhao, Bin

    2017-04-01

    The treatment of AD is a topic that has puzzled researchers for many years. Current mainstream theories still consider Aβ to be the most important target for the cure of AD. In this study, we attempted to explore multiple targets for AD treatments with the aim of identifying a qualified compound that could both inhibit the aggregation of Aβ and block the RAGE/Aβ axis. We believed that a compound that targets both Aβ and RAGE may be a feasible strategy for AD treatment. A novel and small natural compound, Matrine (Mat), was identified by high-throughput screening of the main components of traditional Chinese herbs used to treat dementia. Various experimental techniques were used to evaluate the effect of Mat on these two targets both in vitro and in AD mouse model. Mat could inhibit Aβ42-induced cytotoxicity and suppress the Aβ/RAGE signaling pathway in vitro. Additionally, the results of in vivo evaluations of the effects of Mat on the two targets were consistent with the results of our in vitro studies. Furthermore, Mat reduced proinflammatory cytokines and Aβ deposition and attenuated the memory deficits of AD transgenic mice. We believe that this novel, multi-target strategy to inhibit both Aβ and RAGE, is worthy of further exploration. Therefore, our future studies will focus on identifying even more effective multi-target compounds for the treatment of AD based on the molecular structure of Mat.

  6. The Nitric Oxide Donor SNAP-Induced Amino Acid Neurotransmitter Release in Cortical Neurons. Effects of Blockers of Voltage-Dependent Sodium and Calcium Channels

    Science.gov (United States)

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    Background The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. Findings The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Conclusions Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons. PMID:24598811

  7. The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels.

    Science.gov (United States)

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons.

  8. The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels.

    Directory of Open Access Journals (Sweden)

    José Joaquín Merino

    Full Text Available The discovery that nitric oxide (NO functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated.The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated.Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons.

  9. Computational study of NMDA conductance and cortical oscillations in schizophrenia

    Directory of Open Access Journals (Sweden)

    Kubra eKomek Kirli

    2014-10-01

    Full Text Available N-methyl-D-aspartate (NMDA receptor hypofunction has been implicated in the pathophysiology of schizophrenia. The illness is also characterized by gamma oscillatory disturbances, which can be evaluated with precise frequency specificity employing auditory cortical entrainment paradigms. This computational study investigates how synaptic NMDA hypofunction may give rise to network level oscillatory deficits as indexed by entrainment paradigms. We developed a computational model of a local cortical circuit with pyramidal cells and fast-spiking interneurons (FSI, incorporating NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA, and γ-aminobutyric acid (GABA synaptic kinetics. We evaluated the effects of varying NMDA conductance on FSIs and pyramidal cells, as well as AMPA to NMDA ratio. We also examined the differential effects across a broad range of entrainment frequencies as a function of NMDA conductance. Varying NMDA conductance onto FSIs revealed an inverted-U relation with network gamma whereas NMDA conductance onto the pyramidal cells had a more monotonic relationship. Varying NMDA vs. AMPA conductance onto FSIs demonstrated the necessity of AMPA in the generation of gamma while NMDA receptors had a modulatory role. Finally, reducing NMDA conductance onto FSI and varying the stimulus input frequency reproduced the specific reductions in gamma range (~40 Hz as observed in schizophrenia studies. Our computational study showed that reductions in NMDA conductance onto FSIs can reproduce similar disturbances in entrainment to periodic stimuli within the gamma range as reported in schizophrenia studies. These findings provide a mechanistic account of how specific cellular level disturbances can give rise to circuitry level pathophysiologic disturbance in schizophrenia.

  10. Associations of unilateral whisker and olfactory signals induce synapse formation and memory cell recruitment in bilateral barrel cortices: cellular mechanism for unilateral training toward bilateral memory

    Directory of Open Access Journals (Sweden)

    Zilong Gao

    2016-12-01

    Full Text Available Somatosensory signals and operative skills learned by unilateral limbs can be retrieved bilaterally. In terms of cellular mechanism underlying this unilateral learning toward bilateral memory, we hypothesized that associative memory cells in bilateral cortices and synapse innervations between them were produced. In the examination of this hypothesis, we have observed that paired unilateral whisker and odor stimulations led to odorant-induced whisker motions in bilateral sides, which were attenuated by inhibiting the activity of barrel cortices. In the mice that showed bilateral cross-modal responses, the neurons in both sides of barrel cortices became to encode this new odor signal alongside the innate whisker signal. Axon projections and synapse formations from the barrel cortex, which was co-activated with the piriform cortex, toward its contralateral barrel cortex were upregulated. Glutamatergic synaptic transmission in bilateral barrel cortices was upregulated and GABAergic synaptic transmission was downregulated. The associative activations of the sensory cortices facilitate new axon projection, glutamatergic synapse formation and GABAergic synapse downregulation, which drive the neurons to be recruited as associative memory cells in the bilateral cortices. Our data reveals the productions of associative memory cells and synapse innervations in bilateral sensory cortices for unilateral training toward bilateral memory.

  11. Altered Gradients of Glutamate and Gamma-Aminobutyric Acid Transcripts in the Cortical Visuospatial Working Memory Network in Schizophrenia.

    Science.gov (United States)

    Hoftman, Gil D; Dienel, Samuel J; Bazmi, Holly H; Zhang, Yun; Chen, Kehui; Lewis, David A

    2018-04-15

    Visuospatial working memory (vsWM), which is impaired in schizophrenia, requires information transfer across multiple nodes in the cerebral cortex, including visual, posterior parietal, and dorsolateral prefrontal regions. Information is conveyed across these regions via the excitatory projections of glutamatergic pyramidal neurons located in layer 3, whose activity is modulated by local inhibitory gamma-aminobutyric acidergic (GABAergic) neurons. Key properties of these neurons differ across these cortical regions. Consequently, in schizophrenia, alterations in the expression of gene products regulating these properties could disrupt vsWM function in different ways, depending on the region(s) affected. Here, we quantified the expression of markers of glutamate and GABA neurotransmission selectively in layer 3 of four cortical regions in the vsWM network from 20 matched pairs of schizophrenia and unaffected comparison subjects. In comparison subjects, levels of glutamate transcripts tended to increase, whereas GABA transcript levels tended to decrease, from caudal to rostral, across cortical regions of the vsWM network. Composite measures across all transcripts revealed a significant effect of region, with the glutamate measure lowest in the primary visual cortex and highest in the dorsolateral prefrontal cortex, whereas the GABA measure showed the opposite pattern. In schizophrenia subjects, the expression levels of many of these transcripts were altered. However, this disease effect differed across regions, such that the caudal-to-rostral increase in the glutamate measure was blunted and the caudal-to-rostral decline in the GABA measure was enhanced in the illness. Differential alterations in layer 3 glutamate and GABA neurotransmission across cortical regions may contribute to vsWM deficits in schizophrenia. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Evolution of extra-nigral damage predicts behavioural deficits in a rat proteasome inhibitor model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Anthony C Vernon

    2011-02-01

    Full Text Available Establishing the neurological basis of behavioural dysfunction is key to provide a better understanding of Parkinson's disease (PD and facilitate development of effective novel therapies. For this, the relationships between longitudinal structural brain changes associated with motor behaviour were determined in a rat model of PD and validated by post-mortem immunohistochemistry. Rats bearing a nigrostriatal lesion induced by infusion of the proteasome inhibitor lactacystin into the left-medial forebrain bundle and saline-injected controls underwent magnetic resonance imaging (MRI at baseline (prior to surgery and 1, 3 and 5 weeks post-surgery with concomitant motor assessments consisting of forelimb grip strength, accelerating rotarod, and apormorphine-induced rotation. Lactacystin-injected rats developed early motor deficits alongside decreased ipsilateral cortical volumes, specifically thinning of the primary motor (M1 and somatosensory cortices and lateral ventricle hypertrophy (as determined by manual segmentation and deformation-based morphometry. Although sustained, motor dysfunction and nigrostriatal damage were maximal by 1 week post-surgery. Additional volume decreases in the ipsilateral ventral midbrain; corpus striatum and thalamus were only evident by week 3 and 5. Whilst cortical MRI volume changes best predicted the degree of motor impairment, post-mortem tyrosine hydroxylase immunoreactivity in the striatum was a better predictor of motor behaviour overall, with the notable exception of performance in the accelerating rotarod, in which, M1 cortical thickness remained the best predictor. These results highlight the importance of identifying extra-nigral regions of damage that impact on behavioural dysfunction from damage to the nigrostriatal system.

  13. Word and face recognition deficits following posterior cerebral artery stroke

    DEFF Research Database (Denmark)

    Kuhn, Christina D.; Asperud Thomsen, Johanne; Delfi, Tzvetelina

    2016-01-01

    Abstract Recent findings have challenged the existence of category specific brain areas for perceptual processing of words and faces, suggesting the existence of a common network supporting the recognition of both. We examined the performance of patients with focal lesions in posterior cortical...... areas to investigate whether deficits in recognition of words and faces systematically co-occur as would be expected if both functions rely on a common cerebral network. Seven right-handed patients with unilateral brain damage following stroke in areas supplied by the posterior cerebral artery were...... included (four with right hemisphere damage, three with left, tested at least 1 year post stroke). We examined word and face recognition using a delayed match-to-sample paradigm using four different categories of stimuli: cropped faces, full faces, words, and cars. Reading speed and word length effects...

  14. The dynamic regulation of cortical excitability is altered in episodic ataxia type 2

    DEFF Research Database (Denmark)

    Helmich, Rick C; Siebner, Hartwig R; Giffin, Nicola

    2010-01-01

    -pulse transcranial magnetic stimulation at an interstimulus interval of 2 and 10 ms to assess intracortical inhibition and facilitation, respectively. The time course of burst-induced excitability changes differed between groups. Healthy controls showed a short-lived increase in excitability that was only present 50...... different from either controls or patients with episodic ataxia type 2. Together, these findings indicate that patients with episodic ataxia type 2 have an excessive increase in motor cortex excitability following a strong facilitatory input. We argue that this deficient control of cortical excitability may...

  15. BDNF-Val66Met-Polymorphism Impact on Cortical Plasticity in Schizophrenia Patients: A Proof-of-Concept Study

    Science.gov (United States)

    Nitsche, Michael A.; Wobrock, Thomas; Bunse, Tilmann; Rein, Bettina; Herrmann, Maximiliane; Schmitt, Andrea; Nieratschker, Vanessa; Witt, Stephanie H.; Rietschel, Marcella; Falkai, Peter; Hasan, Alkomiet

    2015-01-01

    Background: Brain-derived neurotrophic factor (BDNF) has been shown to be a moderator of neuroplasticity. A frequent BDNF-polymorphism (Val66Met) is associated with impairments of cortical plasticity. In patients with schizophrenia, reduced neuroplastic responses following non-invasive brain stimulation have been reported consistently. Various studies have indicated a relationship between the BDNF-Val66Met-polymorphism and motor-cortical plasticity in healthy individuals, but schizophrenia patients have yet to be investigated. The aim of this proof-of-concept study was, therefore, to test the impact of the BDNF-Val66Met-polymorphism on inhibitory and facilitatory cortical plasticity in schizophrenia patients. Methods: Cortical plasticity was investigated in 22 schizophrenia patients and 35 healthy controls using anodal and cathodal transcranial direct-current stimulation (tDCS) applied to the left primary motor cortex. Animal and human research indicates that excitability shifts following anodal and cathodal tDCS are related to molecular long-term potentiation and long-term depression. To test motor-cortical excitability before and after tDCS, well-established single- and paired-pulse transcranial magnetic stimulation protocols were applied. Results: Our analysis revealed increased glutamate-mediated intracortical facilitation in met-heterozygotes compared to val-homozygotes at baseline. Following cathodal tDCS, schizophrenia met-heterozygotes had reduced gamma-amino-butyric-acid-mediated short-interval intracortical inhibition, whereas healthy met-heterozygotes displayed the opposite effect. The BDNF-Val66Met-polymorphism did not influence single-pulse motor-evoked potential amplitudes after tDCS. Conclusions: These preliminary findings support the notion of an association of the BDNF-Val66Met-polymorphism with observable alterations in plasticity following cathodal tDCS in schizophrenia patients. This indicates a complex interaction between inhibitory

  16. Research Review: Executive function deficits in fetal alcohol spectrum disorders and attention-deficit/hyperactivity disorder – a meta-analysis

    Science.gov (United States)

    Kingdon, Danielle; Cardoso, Christopher; McGrath, Jennifer J.

    2018-01-01

    Background Attention-deficit/hyperactivity disorder (ADHD)-like symptoms are common in fetal alcohol spectrum disorders (FASD). FASD and ADHD groups both display executive function impairments; however, there is ongoing debate whether the pattern and magnitude of executive function deficits differs between these two types of disorders. Methods An electronic literature search was conducted (PubMed, PsychInfo; 1972–2013) to identify studies comparing the executive functioning of children with FASD with ADHD or control groups. FASD groups included those with and without dysmorphy (i.e., FAS, pFAS, ARND, and other FASD diagnoses). Effect sizes (Hedges’ g, standardized mean difference) were calculated. Random effects meta-analytic models were performed using the metafor package for R. Results Fifty-one studies met inclusion criteria (FASD N = 2,115; ADHD N = 453; controls N = 1,990). Children with FASD showed the strongest and most consistent deficits in planning, fluency, and set-shifting compared to controls (Hedges’ g = −0.94, −0.78) and children with ADHD (Hedges’ g = −0.72, −0.32). FASD was associated with moderate to large impairments in working memory, compared to controls (Hedges’ g = −.84, −.58) and small impairments relative to groups with ADHD (Hedges’ g = −.26). Smaller and less consistent deficits were found on measures of inhibition and vigilance relative to controls (Hedges’ g = −0.52, −0.31); FASD and ADHD were not differentiated on these measures. Moderator analyses indicated executive dysfunction was associated with older age, dysmorphy, and larger group differences in IQ. Sex and diagnostic system were not consistently related to effect size. Conclusions While FASD is associated with global executive impairments, executive function weaknesses are most consistent for measures of planning, fluency, and set-shifting. Neuropsychological measures assessing these executive function domains may improve differential diagnosis

  17. Persistent barrage firing in cortical interneurons can be induced in vivo and may be important for the suppression of epileptiform activity

    Directory of Open Access Journals (Sweden)

    Norimitsu eSuzuki

    2014-03-01

    Full Text Available Neural circuits are typically maintained in a state of dynamic equilibrium by balanced synaptic excitation and inhibition. However, brain regions that are particularly susceptible to epilepsy may have evolved additional specialized mechanisms for inhibiting overexcitation. Here we identify one such possible mechanism in the cerebral cortex and hippocampus of mice. Recently it was reported that some types of GABAergic interneurons can slowly integrate excitatory inputs until eventually they fire persistently in the absence of the original stimulus. This property, called persistent firing or retroaxonal barrage firing, is of unknown physiological importance. We show that two common types of interneurons in cortical regions, neurogliaform cells and fast-spiking multipolar cells, are unique in exhibiting barrage firing in acute slices (~85% and ~23% success rate for induction, respectively. Barrage firing can also be induced in vivo, although the success rate for induction is lower (~60% in neurogliaform cells. In slices, barrage firing could reliably be triggered by trains of excitatory synaptic input, as well as by exposure to proconvulsant bath solutions (elevated extracellular K+, blockade of GABAA receptors. Using pair recordings in slices, we confirmed that barrage-firing neurogliaform cells can produce synaptic inhibition of nearby pyramidal neurons, and that this inhibition outlasts the original excitation. The ubiquity of neurogliaform and fast-spiking cells, together with their ability to fire persistently following excessive excitation, suggests that these interneurons may function as cortical sentinels, imposing an activity-dependent brake on undesirable neuronal hyperexcitability.

  18. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes.

    Science.gov (United States)

    Shen, Yao; Tian, Yueyang; Shi, Xiaojie; Yang, Jianbo; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin

    2014-08-01

    Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Anosognosia for memory deficits in mild cognitive impairment: Insight into the neural mechanism using functional and molecular imaging

    Directory of Open Access Journals (Sweden)

    Patrizia Vannini

    2017-01-01

    Full Text Available Anosognosia, or loss of insight of memory deficits, is a common and striking symptom in Alzheimer's disease (AD. Previous findings in AD dementia patients suggest that anosognosia is due to both functional metabolic changes within cortical midline structures involved in self-referential processes, as well as functional disconnection between these regions. The present study aims to extend these findings by investigating the neural correlates of anosognosia in the prodromal stage of AD. Here, we used regional brain metabolism (resting state 18-F fluorodeoxyglucose positron emission tomography (FDG-PET to unravel the metabolic correlates of anosognosia in subjects with amnestic mild cognitive impairment (aMCI and subsequently resting state functional magnetic resonance imaging (rs-fMRI to investigate the intrinsic connectivity disruption between brain regions. Thirty-one subjects (mean age: 74.1; Clinical Dementia Rating (CDR global score: 0.5 with aMCI, and 251 cognitively normal (CN older adults (mean age: 73.3; CDR: 0 were included as a reference group for behavioral and FDG data. An anosognosia index was obtained by calculating a discrepancy score between subjective and objective memory scores. All subjects underwent FDG-PET for glucose metabolism measurement, and aMCI subjects underwent additional rs-fMRI for intrinsic connectivity measurement. Voxel-wise correlations between anosognosia and neuroimaging data were conducted in the aMCI subjects. Subjects with aMCI had significantly decreased memory awareness as compared to the CN older adults. Greater anosognosia in aMCI subjects was associated with reduced glucose metabolism in the posterior cingulate (PCC cortices and hippocampus. Intrinsic connectivity analyses revealed a significant association between anosognosia and attenuated functional connectivity between the PCC seed region and orbitofrontal cortex (OFC as well as bilateral inferior parietal lobes (IPL. These findings provide further

  20. Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network in Patients with Persistent Insomnia Symptoms.

    Science.gov (United States)

    Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol

    2016-01-01

    Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. © 2016 Associated Professional Sleep Societies, LLC.