WorldWideScience

Sample records for cortical bone volume

  1. Evaluation of trabecular bone patterns on dental radiographic images: influence of cortical bone

    Science.gov (United States)

    Amouriq, Yves; Evenou, Pierre; Arlicot, Aurore; Normand, Nicolas; Layrolle, Pierre; Weiss, Pierre; Guédon, Jean-Pierre

    2010-03-01

    For some authors trabecular bone is highly visible in intraoral radiographs. For other authors, the observed intrabony trabecular pattern is a representation of only the endosteal surface of cortical bone, not of intermedullary striae. The purpose of this preliminary study was to investigate the true anatomical structures that are visible in routine dental radiographs and classically denoted trabecular bone. This is a major point for bone texture analysis on radiographs. Computed radiography (CR) images of dog mandible section in molar region were compared with simulations calculated from high-resolution micro-CT volumes. Calculated simulations were obtained using the Mojette Transform. By digitally editing the CT volume, the simulations were separated into trabecular and cortical components into a region of interest. Different images were compared and correlated, some bone micro-architecture parameters calculated. A high correlation was found between computed radiographs and calculated simulations from micro-CT. The Mojette transform was successful to obtain high quality images. Cortical bone did not contribute to change in a major way simulated images. These first results imply that intrabony trabecular pattern observed on radiographs can not only be a representation of the cortical bone endosteal surface and that trabecular bone is highly visible in intraoral radiographs.

  2. Is cortical bone hip? What determines cortical bone properties?

    Science.gov (United States)

    Epstein, Sol

    2007-07-01

    Increased bone turnover may produce a disturbance in bone structure which may result in fracture. In cortical bone, both reduction in turnover and increase in hip bone mineral density (BMD) may be necessary to decrease hip fracture risk and may require relatively greater proportionate changes than for trabecular bone. It should also be noted that increased porosity produces disproportionate reduction in bone strength, and studies have shown that increased cortical porosity and decreased cortical thickness are associated with hip fracture. Continued studies for determining the causes of bone strength and deterioration show distinct promise. Osteocyte viability has been observed to be an indicator of bone strength, with viability as the result of maintaining physiological levels of loading and osteocyte apoptosis as the result of a decrease in loading. Osteocyte apoptosis and decrease are major factors in the bone loss and fracture associated with aging. Both the osteocyte and periosteal cell layer are assuming greater importance in the process of maintaining skeletal integrity as our knowledge of these cells expand, as well being a target for pharmacological agents to reduce fracture especially in cortical bone. The bisphosphonate alendronate has been seen to have a positive effect on cortical bone by allowing customary periosteal growth, while reducing the rate of endocortical bone remodeling and slowing bone loss from the endocortical surface. Risedronate treatment effects were attributed to decrease in bone resorption and thus a decrease in fracture risk. Ibandronate has been seen to increase BMD as the spine and femur as well as a reduced incidence of new vertebral fractures and non vertebral on subset post hoc analysis. And treatment with the anabolic agent PTH(1-34) documented modeling and remodelling of quiescent and active bone surfaces. Receptor activator of nuclear factor kappa B ligand (RANKL) plays a key role in bone destruction, and the human monoclonal

  3. Cortical bone metastases

    International Nuclear Information System (INIS)

    Davis, T.M. Jr.; Rogers, L.F.; Hendrix, R.W.

    1986-01-01

    Twenty-five cases of bone metastases involving the cortex alone are reviewed. Seven patients had primary lung carcinoma, while 18 had primary tumors not previously reported to produce cortical bone metastases (tumors of the breast, kidney, pancreas, adenocarcinoma of unknown origin, multiple myeloma). Radiographically, these cortical lesions were well circumscribed, osteolytic, and produced soft-tissue swelling and occasional periosteal reaction. A recurrent pattern of metadiaphyseal involvement of the long bones of the lower extremity (particularly the femur) was noted, and is discussed. Findings reported in the literature, review, pathophysiology, and the role of skeletal radiographs, bone scans, and CT scans in evaluating cortical bone metastases are addressed

  4. Tibial loading increases osteogenic gene expression and cortical bone volume in mature and middle-aged mice.

    Directory of Open Access Journals (Sweden)

    Matthew J Silva

    Full Text Available There are conflicting data on whether age reduces the response of the skeleton to mechanical stimuli. We examined this question in female BALB/c mice of different ages, ranging from young to middle-aged (2, 4, 7, 12 months. We first assessed markers of bone turnover in control (non-loaded mice. Serum osteocalcin and CTX declined significantly from 2 to 4 months (p<0.001. There were similar age-related declines in tibial mRNA expression of osteoblast- and osteoclast-related genes, most notably in late osteoblast/matrix genes. For example, Col1a1 expression declined 90% from 2 to 7 months (p<0.001. We then assessed tibial responses to mechanical loading using age-specific forces to produce similar peak strains (-1300 µε endocortical; -2350 µε periosteal. Axial tibial compression was applied to the right leg for 60 cycles/day on alternate days for 1 or 6 weeks. qPCR after 1 week revealed no effect of loading in young (2-month mice, but significant increases in osteoblast/matrix genes in older mice. For example, in 12-month old mice Col1a1 was increased 6-fold in loaded tibias vs. controls (p = 0.001. In vivo microCT after 6 weeks revealed that loaded tibias in each age group had greater cortical bone volume (BV than contralateral control tibias (p<0.05, due to relative periosteal expansion. The loading-induced increase in cortical BV was greatest in 4-month old mice (+13%; p<0.05 vs. other ages. In summary, non-loaded female BALB/c mice exhibit an age-related decline in measures related to bone formation. Yet when subjected to tibial compression, mice from 2-12 months have an increase in cortical bone volume. Older mice respond with an upregulation of osteoblast/matrix genes, which increase to levels comparable to young mice. We conclude that mechanical loading of the tibia is anabolic for cortical bone in young and middle-aged female BALB/c mice.

  5. Age-related changes in cortical and trabecular bone mineral status: A quantitative CT study in lumbar vertebrae

    International Nuclear Information System (INIS)

    Tanno, M.; Horiuchi, T.; Nakajima, I.; Maeda, S.; Igarashi, M.; Yamada, H.

    2000-01-01

    To investigate the age and sex dependence of the bone mineral status of human lumbar vertebrae with special regard to differences between cortical and trabecular bone. The study group comprised 125 normal Japanese healthy volunteers (54 males and 71 females), and was subdivided into adult male and female groups (subjects younger than 40 years), intermediate male and female groups (ages ranging between 41 and 64 years) and old male and female groups (subjects older than 65 years). The cortical bone mineral status was estimated using a single-energy quantitative CT (SE-QCT) technique, whereas trabecular bone mineral density (BMD) was estimated using a dual-energy (DE-QCT) technique. A considerable gender difference in the age-related cortical bone status was found. There was a significant reduction of the mean values of the cortical volume and BMD in the old female group compared with those obtained in the old male group. The results suggest that in men, cortical and trabecular bone volume decrease very little with age. In women, cortical volume and BMD and trabecular BMD decrease with age while trabecular bone volume does not. The study showed that all variables had higher values in men than in women and that the difference increased with age

  6. Cortical bone deficit and fat infiltration of bone marrow and skeletal muscle in ambulatory children with mild spastic cerebral palsy.

    Science.gov (United States)

    Whitney, Daniel G; Singh, Harshvardhan; Miller, Freeman; Barbe, Mary F; Slade, Jill M; Pohlig, Ryan T; Modlesky, Christopher M

    2017-01-01

    Nonambulatory children with severe cerebral palsy (CP) have underdeveloped bone architecture, low bone strength and a high degree of fat infiltration in the lower extremity musculature. The present study aims to determine if such a profile exists in ambulatory children with mild CP and if excess fat infiltration extends into the bone marrow. Ambulatory children with mild spastic CP and typically developing children (4 to 11years; 12/group) were compared. Magnetic resonance imaging was used to estimate cortical bone, bone marrow and total bone volume and width, bone strength [i.e., section modulus (Z) and polar moment of inertia (J)], and bone marrow fat concentration in the midtibia, and muscle volume, intermuscular, subfascial, and subcutaneous adipose tissue (AT) volume and intramuscular fat concentration in the midleg. Accelerometer-based activity monitors worn on the ankle were used to assess physical activity. There were no group differences in age, height, body mass, body mass percentile, BMI, BMI percentile or tibia length, but children with CP had lower height percentile (19th vs. 50th percentile) and total physical activity counts (44%) than controls (both pChildren with CP also had lower cortical bone volume (30%), cortical bone width in the posterior (16%) and medial (32%) portions of the shaft, total bone width in the medial-lateral direction (15%), Z in the medial-lateral direction (34%), J (39%) and muscle volume (39%), and higher bone marrow fat concentration (82.1±1.8% vs. 80.5±1.9%), subfascial AT volume (3.3 fold) and intramuscular fat concentration (25.0±8.0% vs. 16.1±3.3%) than controls (all pfat infiltration estimates, except posterior cortical bone width, were still present (all pchildren with CP compared to controls emerged (pchildren with mild spastic CP exhibit an underdeveloped bone architecture and low bone strength in the midtibia and a greater infiltration of fat in the bone marrow and surrounding musculature compared to typically

  7. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    Science.gov (United States)

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  8. Osteocyte lacunar properties in rat cortical bone

    DEFF Research Database (Denmark)

    Bach-Gansmo, Fiona Linnea; Weaver, James C.; Jensen, Mads Hartmann

    2015-01-01

    Recently, the roles of osteocytes in bone maintenance have gained increasing attention. Osteocytes reside in lacunae that are interconnected by canaliculi resulting in a vast cellular network within the mineralized bone matrix. As the structure of the lacuno-canalicular network is highly connected......-species but also inter-site variation in lacunar properties. Here, osteocyte lacunae in rat cortical bone have been studied using synchrotron radiation micro computed tomography (SR μCT) and backscattered electron (BE) microscopy. Quantitative lacunar geometric characteristics are reported based on the synchrotron...... radiation data, differentiating between circumferential lamellar bone and a central, more disordered bone type. From these studies, no significant differences were found in lacunar volumes between lamellar and central bone, whereas significant differences in lacunar orientation, shape and density values...

  9. Evolution of bone disease after kidney transplantation: A prospective histomorphometric analysis of trabecular and cortical bone.

    Science.gov (United States)

    Carvalho, Catarina; Magalhães, Juliana; Pereira, Luciano; Simões-Silva, Liliana; Castro-Ferreira, Inês; Frazão, João Miguel

    2016-01-01

    Post-transplant bone disease results from multiple factors, including previous bone and mineral metabolism disturbances and effects from transplant-related medications. Bone biopsy remains the gold-standard diagnostic tool. We aimed to prospectively evaluate trabecular and cortical bone by histomorphometry after kidney transplantation. Seven patients, willing to perform follow-up bone biopsy, were included in the study. Dual-X-ray absorptiometry and trans-iliac bone biopsy were performed within the first 2 months after renal transplantation and repeated after 2-5 years of follow-up. Follow-up biopsy revealed a significant decrease in osteoblast surface/bone surface (0.91 ± 0.81 to 0.47 ± 0.12%, P = 0.036), osteoblasts number/bone surface (0.45 (0.23, 0.94) to 0.00/mm(2) , P = 0.018) and erosion surface/bone surface (3.75 ± 2.02 to 2.22 ± 1.38%, P = 0.044). A decrease in trabecular number (3.55 (1.81, 2.89) to 1.55/mm (1.24, 2.06), P = 0.018) and increase in trabecular separation (351.65 ± 135.04 to 541.79 ± 151.91 μm, P = 0.024) in follow-up biopsy suggest loss in bone quantity. We found no significant differences in cortical analysis, except a reduction in external cortical osteonal eroded surface (5.76 (2.94, 13.97) to 3.29% (0.00, 6.67), P = 0.043). Correlations between bone histomorphometric and dual-X-ray absorptiometry parameters gave inconsistent results. The results show a reduction in bone activity, suggesting increased risk of adynamic bone and loss of bone volume. Cortical bone seems less affected by post-transplant biological changes in the first years after kidney transplantation. © 2015 Asian Pacific Society of Nephrology.

  10. Acute hypothalamic suppression significantly affects trabecular bone but not cortical bone following recovery and ovariectomy surgery in a rat model

    Directory of Open Access Journals (Sweden)

    Vanessa R. Yingling

    2016-01-01

    Full Text Available Background. Osteoporosis is “a pediatric disease with geriatric consequences.” Bone morphology and tissue quality co-adapt during ontogeny for sufficient bone stiffness. Altered bone morphology from hypothalamic amenorrhea, a risk factor for low bone mass in women, may affect bone strength later in life. Our purpose was to determine if altered morphology following hypothalamic suppression during development affects cortical bone strength and trabecular bone volume (BV/TV at maturity.Methods. Female rats (25 days old were assigned to a control (C group (n = 45 that received saline injections (.2 cc or an experimental group (GnRH-a (n = 45 that received gonadotropin releasing hormone antagonist injections (.24 mg per dose for 25 days. Fifteen animals from each group were sacrificed immediately after the injection protocol at Day 50 (C, GnRH-a. The remaining animals recovered for 135 days and a subset of each group was sacrificed at Day 185 ((C-R (n = 15 and (G-R (n = 15. The remaining animals had an ovariectomy surgery (OVX at 185 days of age and were sacrificed 40 days later (C-OVX (n = 15 and (G-OVX (n = 15. After sacrifice femurs were mechanically tested and scanned using micro CT. Serum C-terminal telopeptides (CTX and insulin-like growth factor 1 (IGF-1 were measured. Two-way ANOVA (2 groups (GnRH-a and Control X 3 time points (Injection Protocol, Recovery, post-OVX was computed.Results. GnRH-a injections suppressed uterine weights (72% and increased CTX levels by 59%. Bone stiffness was greater in the GnRH-a groups compared to C. Ash content and cortical bone area were similar between groups at all time points. Polar moment of inertia, a measure of bone architecture, was 15% larger in the GnRH-a group and remained larger than C (19% following recovery. Both the polar moment of inertia and cortical area increased linearly with the increases in body weight. Following the injection protocol, trabecular BV/TV was 31% lower in the Gn

  11. Restoration of Thickness, Density, and Volume for Highly Blurred Thin Cortical Bones in Clinical CT Images.

    Science.gov (United States)

    Pakdel, Amirreza; Hardisty, Michael; Fialkov, Jeffrey; Whyne, Cari

    2016-11-01

    In clinical CT images containing thin osseous structures, accurate definition of the geometry and density is limited by the scanner's resolution and radiation dose. This study presents and validates a practical methodology for restoring information about thin bone structure by volumetric deblurring of images. The methodology involves 2 steps: a phantom-free, post-reconstruction estimation of the 3D point spread function (PSF) from CT data sets, followed by iterative deconvolution using the PSF estimate. Performance of 5 iterative deconvolution algorithms, blind, Richardson-Lucy (standard, plus Total Variation versions), modified residual norm steepest descent (MRNSD), and Conjugate Gradient Least-Squares were evaluated using CT scans of synthetic cortical bone phantoms. The MRNSD algorithm resulted in the highest relative deblurring performance as assessed by a cortical bone thickness error (0.18 mm) and intensity error (150 HU), and was subsequently applied on a CT image of a cadaveric skull. Performance was compared against micro-CT images of the excised thin cortical bone samples from the skull (average thickness 1.08 ± 0.77 mm). Error in quantitative measurements made from the deblurred images was reduced 82% (p < 0.01) for cortical thickness and 55% (p < 0.01) for bone mineral mass. These results demonstrate a significant restoration of geometrical and radiological density information derived for thin osseous features.

  12. Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain

    Science.gov (United States)

    Pacheco-Costa, Rafael; Davis, Hannah M.; Sorenson, Chad; Hon, Mary C.; Hassan, Iraj; Reginato, Rejane D.; Allen, Matthew R.; Bellido, Teresita; Plotkin, Lilian I.

    2015-01-01

    Connexin43 (Cx43) forms gap junction channels and hemichannels that allow the communication among osteocytes, osteoblasts, and osteoclasts. Cx43 carboxy-terminal (CT) domain regulates channel opening and intracellular signaling by acting as a scaffold for structural and signaling proteins. To determine the role of Cx43 CT domain in bone, mice in which one allele of full length Cx43 was replaced by a mutant lacking the CT domain (Cx43ΔCT/fl) were studied. Cx43ΔCT/fl mice exhibit lower cancellous bone volume but higher cortical thickness than Cx43fl/fl controls, indicating that the CT domain is involved in normal cancellous bone gain but opposes cortical bone acquisition. Further, Cx43ΔCT is able to exert the functions of full length osteocytic Cx43 on cortical bone geometry and mechanical properties, demonstrating that domains other than the CT are responsible for Cx43 function in cortical bone. In addition, parathyroid hormone (PTH) failed to increase endocortical bone formation or energy to failure, a mechanical property that indicates resistance to fracture, in cortical bone in Cx43ΔCT mice with or without osteocytic full length Cx43. On the other hand, bone mass and bone formation markers were increased by the hormone in all mouse models, regardless of whether full length or Cx43ΔCT were or not expressed. We conclude that Cx43 CT domain is involved in proper bone acquisition; and that Cx43 expression in osteocytes is dispensable for some but not all PTH anabolic actions. PMID:26409319

  13. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones.

    Science.gov (United States)

    Sugiyama, Toshihiro; Price, Joanna S; Lanyon, Lance E

    2010-02-01

    In order to validate whether bones' functional adaptation to mechanical loading is a local phenomenon, we randomly assigned 21 female C57BL/6 mice at 19 weeks of age to one of three equal numbered groups. All groups were treated with isoflurane anesthesia three times a week for 2 weeks (approximately 7 min/day). During each anaesthetic period, the right tibiae/fibulae in the DYNAMIC+STATIC group were subjected to a peak dynamic load of 11.5 N (40 cycles with 10-s intervals between cycles) superimposed upon a static "pre-load" of 2.0 N. This total load of 13.5 N engendered peak longitudinal strains of approximately 1400 microstrain on the medial surface of the tibia at a middle/proximal site. The right tibiae/fibulae in the STATIC group received the static "pre-load" alone while the NOLOAD group received no artificial loading. After 2 weeks, the animals were sacrificed and both tibiae, fibulae, femora, ulnae and radii analyzed by three-dimensional high-resolution (5 mum) micro-computed tomography (microCT). In the DYNAMIC+STATIC group, the proximal trabecular percent bone volume and cortical bone volume at the proximal and middle levels of the right tibiae as well as the cortical bone volume at the middle level of the right fibulae were markedly greater than the left. In contrast, the left bones in the DYNAMIC+STATIC group showed no differences compared to the left or right bones in the NOLOAD or STATIC group. These microCT data were confirmed by two-dimensional examination of fluorochrome labels in bone sections which showed the predominantly woven nature of the new bone formed in the loaded bones. We conclude that the adaptive response in both cortical and trabecular regions of bones subjected to short periods of dynamic loading, even when this response is sufficiently vigorous to stimulate woven bone formation, is confined to the loaded bones and does not involve changes in other bones that are adjacent, contra-lateral or remote to them. (c) 2009 Elsevier Inc

  14. Paradiaphyseal calcific tendinitis with cortical bone erosion.

    Science.gov (United States)

    Fritz, P; Bardin, T; Laredo, J D; Ziza, J M; D'Anglejan, G; Lansaman, J; Bucki, B; Forest, M; Kuntz, D

    1994-05-01

    To determine the clinical, radiologic, and histologic features of calcific tendinitis with cortical bone erosion. The records of 6 patients with paradiaphyseal calcific tendinitis and adjacent bone cortex erosion were reviewed. Calcific tendinitis involved the linea aspera in 4 patients, the bicipital groove in 1 patient, and the deltoid insertion in another. Calcium deposits were associated with cortical bone erosions, revealed on plain radiographs in 4 patients and computed tomography scans in 2. Bone scans were performed in 2 patients and showed local hyperfixation of the isotope. In 4 patients, suspicion of a neoplasm led to a biopsy. Calcium deposits appeared to be surrounded by a foreign body reaction with numerous giant cells. Apatite crystals were identified by transmission electron microscopy and elemental analysis in 1 surgical sample. Paradiaphyseal calcific tendinitis with cortical bone erosion is an uncommon presentation of apatite deposition disease.

  15. Response of cortical bone to antiresorptive treatment

    DEFF Research Database (Denmark)

    Hyldstrup, Lars; Jørgensen, J T; Sørensen, T K

    2001-01-01

    of the spine, hip, and forearm. Longitudinal changes in bone densitometry were compared with changes captured by DXR: BMD evaluated by DXR (BMDDXR), cortical thickness of the second metacarpal (CTMC2), and porosity of cortical bone. The expected annual postmenopausal reduction in BMD in the control group...... treatment regimens used in the prevention of osteoporosis....

  16. Cortical bone drilling: An experimental and numerical study.

    Science.gov (United States)

    Alam, Khurshid; Bahadur, Issam M; Ahmed, Naseer

    2014-12-16

    Bone drilling is a common surgical procedure in orthopedics, dental and neurosurgeries. In conventional bone drilling process, the surgeon exerts a considerable amount of pressure to penetrate the drill into the bone tissue. Controlled penetration of drill in the bone is necessary for safe and efficient drilling. Development of a validated Finite Element (FE) model of cortical bone drilling. Drilling experiments were conducted on bovine cortical bone. The FE model of the bone drilling was based on mechanical properties obtained from literature data and additionally conducted microindentation tests on the cortical bone. The magnitude of stress in bone was found to decrease exponentially away from the lips of the drill in simulations. Feed rate was found to be the main influential factor affecting the force and torque in the numerical simulations and experiments. The drilling thrust force and torque were found to be unaffected by the drilling speed in numerical simulations. Simulated forces and torques were compared with experimental results for similar drilling conditions and were found in good agreement.CONCLUSIONS: FE schemes may be successfully applied to model complex kinematics of bone drilling process.

  17. Ultrasonically-induced electrical potentials in demineralized bovine cortical bone

    Science.gov (United States)

    Mori, Shunki; Makino, Taiki; Koyama, Daisuke; Takayanagi, Shinji; Yanagitani, Takahiko; Matsukawa, Mami

    2018-04-01

    While the low-intensity pulsed ultrasound technique has proved useful for healing of bone fractures, the ultrasound healing mechanism is not yet understood. To understand the initial physical effects of the ultrasound irradiation process on bone, we have studied the anisotropic piezoelectric properties of bone in the MHz range. Bone is known to be composed of collagen and hydroxyapatite (HAp) and shows strong elastic anisotropy. In this study, the effects of HAp on the piezoelectricity were investigated experimentally. To remove the HAp crystallites from the bovine cortical bone, demineralization was performed using ethylene diamine tetra-acetic acid (EDTA) solutions. To investigate the piezoelectricity, we have fabricated ultrasound transducers using the cortical bone or demineralized cortical bone. The induced electrical potentials due to the piezoelectricity were observed as the output of these transducers under pulsed ultrasound irradiation in the MHz range. The cortical bone transducer (before mineralization) showed anisotropic piezoelectric behavior. When the ultrasound irradiation was applied normal to the transducer surface, the observed induced electrical potentials had minimum values. The potential increased under off-axis ultrasound irradiation with changes in polarization. In the demineralized bone transducer case, however, the anisotropic behavior was not observed in the induced electrical potentials. These results therefore indicate that the HAp crystallites affect the piezoelectric characteristics of bone.

  18. Using modern human cortical bone distribution to test the systemic robusticity hypothesis.

    Science.gov (United States)

    Baab, Karen L; Copes, Lynn E; Ward, Devin L; Wells, Nora; Grine, Frederick E

    2018-06-01

    The systemic robusticity hypothesis links the thickness of cortical bone in both the cranium and limb bones. This hypothesis posits that thick cortical bone is in part a systemic response to circulating hormones, such as growth hormone and thyroid hormone, possibly related to physical activity or cold climates. Although this hypothesis has gained popular traction, only rarely has robusticity of the cranium and postcranial skeleton been considered jointly. We acquired computed tomographic scans from associated crania, femora and humeri from single individuals representing 11 populations in Africa and North America (n = 228). Cortical thickness in the parietal, frontal and occipital bones and cortical bone area in limb bone diaphyses were analyzed using correlation, multiple regression and general linear models to test the hypothesis. Absolute thickness values from the crania were not correlated with cortical bone area of the femur or humerus, which is at odds with the systemic robusticity hypothesis. However, measures of cortical bone scaled by total vault thickness and limb cross-sectional area were positively correlated between the cranium and postcranium. When accounting for a range of potential confounding variables, including sex, age and body mass, variation in relative postcranial cortical bone area explained ∼20% of variation in the proportion of cortical cranial bone thickness. While these findings provide limited support for the systemic robusticity hypothesis, cranial cortical thickness did not track climate or physical activity across populations. Thus, some of the variation in cranial cortical bone thickness in modern humans is attributable to systemic effects, but the driving force behind this effect remains obscure. Moreover, neither absolute nor proportional measures of cranial cortical bone thickness are positively correlated with total cranial bone thickness, complicating the extrapolation of these findings to extinct species where only cranial

  19. Comparative cortical bone thickness between the long bones of humans and five common non-human mammal taxa.

    Science.gov (United States)

    Croker, Sarah L; Reed, Warren; Donlon, Denise

    2016-03-01

    The task of identifying fragments of long bone shafts as human or non-human is difficult but necessary, for both forensic and archaeological cases, and a fast simple method is particularly useful. Previous literature suggests there may be differences in the thickness of the cortical bone between these two groups, but this has not been tested thoroughly. The aim of this study was not only to test this suggestion, but also to provide data that could be of practical assistance for future comparisons. The major limb bones (humerus, radius, femur and tibia) of 50 Caucasoid adult skeletons of known age and sex were radiographed, along with corresponding skeletal elements from sheep, pigs, cattle, large dogs and kangaroos. Measurements were taken from the radiographs at five points along the bone shaft, of shaft diameter, cortical bone thickness, and a cortical thickness index (sum of cortices divided by shaft diameter) in both anteroposterior and mediolateral orientations. Each variable for actual cortical bone thickness as well as cortical thickness indices were compared between the human group (split by sex) and each of the non-human groups in turn, using Student's t-tests. Results showed that while significant differences did exist between the human groups and many of the non-human groups, these were not all in the same direction. That is, some variables in the human groups were significantly greater than, and others were significantly less than, the corresponding variable in the non-human groups, depending on the particular non-human group, sex of the human group, or variable under comparison. This was the case for measurements of both actual cortical bone thickness and cortical thickness index. Therefore, for bone shaft fragments for which the skeletal element is unknown, the overlap in cortical bone thickness between different areas of different bones is too great to allow identification using this method alone. However, by providing extensive cortical bone

  20. Assessment of bone mineral content in the internal bone volume

    International Nuclear Information System (INIS)

    Hoeiseth, A.; Alho, A.; Husby, T.; Ullevaal Sykehus, Oslo

    1991-01-01

    A method for assessing values related to bone density and mass is described. Mean attenuation and pixel area are measured in pixels selected on the basis of CT units. The method is to a large extent computerized and not dependent on manual positioning or outlining of a region of interest. Because it is not dependent on a comparatively large volume of homogeneous bone it can be used to make assessments even in very heterogeneous bones including cortical bone. The method is adaptable for measurement in all parts of the skeleton and values related to both bone density (DRV) and bone mass (MRV) are derived. The measurements in the femoral condyles were shown to have a precision of approximately 0.25 to 0.30 Z-score units (standard deviation of the measurements expressed in Z-score units). The agreement between chemically analyzed calcium density (weight of calcium per volume) and DRV was little less than 0.50 Z-scores and 0.30 Z-scores for the chemically determined calcium mass and the MRV. The agreement with mechanical bone strength was 0.78 Z-scores for DRV and 0.64 for the MRV. Altering scan parameters or measuring approaches gave systematic differences in the measurements. There were, however, good linear correlations between the measurements which show that these different measuring approaches essentially gave identical measurements. (orig.)

  1. Comparative Analysis of Bone Structural Parameters Reveals Subchondral Cortical Plate Resorption and Increased Trabecular Bone Remodeling in Human Facet Joint Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Cordula Netzer

    2018-03-01

    Full Text Available Facet joint osteoarthritis is a prominent feature of degenerative spine disorders, highly prevalent in ageing populations, and considered a major cause for chronic lower back pain. Since there is no targeted pharmacological therapy, clinical management of disease includes analgesic or surgical treatment. The specific cellular, molecular, and structural changes underpinning facet joint osteoarthritis remain largely elusive. The aim of this study was to determine osteoarthritis-related structural alterations in cortical and trabecular subchondral bone compartments. To this end, we conducted comparative micro computed tomography analysis in healthy (n = 15 and osteoarthritic (n = 22 lumbar facet joints. In osteoarthritic joints, subchondral cortical plate thickness and porosity were significantly reduced. The trabecular compartment displayed a 42 percent increase in bone volume fraction due to an increase in trabecular number, but not trabecular thickness. Bone structural alterations were associated with radiological osteoarthritis severity, mildly age-dependent but not gender-dependent. There was a lack of association between structural parameters of cortical and trabecular compartments in healthy and osteoarthritic specimens. The specific structural alterations suggest elevated subchondral bone resorption and turnover as a potential treatment target in facet joint osteoarthritis.

  2. Influence of cortical endplates on ultrasonic properties of trabecular bone

    International Nuclear Information System (INIS)

    Kim, Yoon Mi; Lee, Kang Il

    2015-01-01

    The present study investigated the influence of thick cortical endplates on the ultrasonic properties of trabecular bone in a femur with a high fracture risk. Twelve trabecular bone samples were prepared from bovine femurs, and acrylic plates with thicknesses of 1.25, 1.80, and 2.75 mm were manufactured to simulate the cortical endplates using acrylic with a density and a sound speed similar to cortical bone. Although the thickness of the acrylic plates attached to the two sides of the trabecular bone increased, high correlations were observed between the speed of sound and the apparent bone density of the trabecular bone, with Pearson's correlation coefficients of 0.80-0.86. High correlations were also observed between the attenuation coefficient at 0.5 mm and the apparent bone density of the trabecular bone, with Pearson's correlation coefficients of 0.84-0.91. These results suggest that the speed of sound and attenuation coefficient at a specific frequency measured in a femur with relatively thick cortical endplates compared to the calcaneus could be used as indices for predicting the bone mineral density of the femur.

  3. INAA of cortical and trabecular bone samples from animals

    International Nuclear Information System (INIS)

    Takata, M.K.; Saiki, M.

    2004-01-01

    Instrumental neutron activation analysis (INAA) was applied to determine Ba, Br, Ca, Cl, Fe, K, Mg, Mn, Na, P, Sr and Zn in bovine and porcine rib bones. Precise results were obtained in analyses of freeze-dried cortical and trabecular bones separately, and also of whole bone ashes. Cortical tissues presented higher concentrations of Ba, Ca, Mg, Mn, Na, P, Sr and Zn than those obtained in trabecular ones. Comparisons were also made between the results obtained for bovine and porcine rib bones. (author)

  4. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    Science.gov (United States)

    Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H; Farman, Helen H; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara

    2014-01-01

    The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  5. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    Directory of Open Access Journals (Sweden)

    Claes Ohlsson

    Full Text Available The gut microbiota (GM modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L strain, L. paracasei DSM13434 (L. para or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  6. Computer-aided design evaluation of harvestable mandibular bone volume: a clinical and tomographic human study.

    Science.gov (United States)

    Verdugo, Fernando; Simonian, Krikor; Raffaelli, Luca; D'Addona, Antonio

    2014-06-01

    To evaluate and compare the volume of bone graft material that can be safely harvested from the mandibular symphysis and rami using a computer-aided design (CAD) software program. Preoperative computerized tomography scans from 40 patients undergoing bone augmentation procedures were analyzed. Symphysis and rami cross sections were mapped using a CAD software program (AutoCAD(®), Autodesk, Inc., San Rafael, CA, USA) to evaluate the bone volume that can be safely harvested. CAD calculations were contrasted to intrasurgical measurements in a subgroup of 20 individuals. CAD calculations yielded a safe harvestable osseous volume of 1.44 cm(3) ± 0.49 for the symphysis and 0.82 cm(3) ± 0.21 for each ramus (p < .0001, confidence interval [CI] 95%: 0.47-0.78). These measurements were significantly lower (p < .0001) than the bone volumes harvested intrasurgically for both symphysis and ramus, respectively (2.40 cm(3) ± 0.50 vs. 2.65 cm(3) ± 0.45). CAD calculations of harvestable symphysis and ramus bone translated into an average of 2.40 cm(3) ± 0.50 (range: 1.80-3.10 cm(3)) and 2.65 cm(3) ± 0.45 (range: 1.90-3.50) of particulate bone graft intrasurgically, respectively. Ramus cortical was significantly thicker than the symphysis cortical, 2.9 ± 0.4 mm versus 2.19 mm ± 0.4 mm (p < .0001, CI 95%: 0.45-1.03). The symphysis and rami are good harvesting sources to obtain dense corticocancellous bone. The significant volumetric CAD differences between the symphysis and ramus seem to balance out intrasurgically and may be due to the greater cortical bone volume at the ramus area. It is plausible to harvest an average of 7.70 cm(3) from the symphysis and rami alone. The use of a CAD software program can enhance surgical treatment planning prior to bone transplantation. © 2012 Wiley Periodicals, Inc.

  7. Swine cortical and cancellous bone: histomorphometric and densitometric characterisation

    Directory of Open Access Journals (Sweden)

    Maria Elena Andreis

    2017-06-01

    Full Text Available Introduction: Swine bone morphology, composition and remodelling are similar to humans’, therefore they are considered good models in bone-related research. They have been used for several studies involving bone growth, bone and cartilage fractures and femoral head osteonecrosis. Nevertheless, the literature about pig normal bone features is incomplete. This work aims to fill the literature gaps on the microarchitecture and Bone Mineral Density (BMD of swine femoral diaphysis and distal epiphysis and tibial plateau and diaphysis. Materials and methods: Five hind limbs were collected from slaughtered 80-100 kg pigs. Microscopic analysis of cortical and cancellous bone from middle/distal femur and proximal/middle tibia was performed to determine basic histomorphometric parameters at different sites. Dual-energy X-Rays Absorptiometry was also employed to evaluate BMD. ANOVA and correlation between BMD, bone area (BA and cortical thickness were performed. Results and discussion: Diaphyseal cortical bone was mostly plexiform both in the tibia and the femur; primary/secondary osteons without clear organization were also found. Mean values for bone area, bone perimeter, trabecular width, number and separation and BMD at different anatomical sites were defined. No significant difference was found for these values at different anatomical sites. BMD proved to be positively correlated with cortical thickness (r=0,80; p<0,01. Despite the small sample size, these results seem homogeneous. They could therefore represent reference values for normal bone parameters in pigs. Applied anatomy and regenerative medicine, in fact, demand very precise information about bone micromorphology, composition and density to provide reliable indication in bone substitutes building. Moreover, since the interpretation of bone abnormalities is based on mastering normal bone characteristics, the definition of reference parameters is mandatory to avoid misinterpretation and

  8. Effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats.

    Science.gov (United States)

    Iwamoto, Jun; Matsumoto, Hideo; Takeda, Tsuyoshi; Sato, Yoshihiro; Yeh, James K

    2010-09-01

    The purpose of the present study was to examine the effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats. Thirty-four female Sprague-Dawley retired breeder rats were randomized into three groups: age-matched control, sciatic neurectomy (NX), and NX + vitamin K2 administration (menatetrenone, 30 mg/kg/day p.o., three times a week). At the end of the 8-week experiment, bone histomorphometric analysis was performed on cortical and cancellous bone of the tibial diaphysis and proximal metaphysis, respectively, and osteocyte lacunar system and porosity were evaluated on cortical bone of the tibial diaphysis. NX decreased cortical and cancellous bone mass compared with age-matched controls as a result of increased endocortical and trabecular bone erosion and decreased trabecular mineral apposition rate (MAR). Vitamin K2 ameliorated the NX-induced increase in bone erosion, prevented the NX-induced decrease in MAR, and increased bone formation rate (BFR/bone surface) in cancellous bone, resulting in an attenuation of NX-induced cancellous bone loss. However, vitamin K2 did not significantly influence cortical bone mass. NX also decreased osteocyte density and lacunar occupancy and increased porosity in cortical bone compared with age-matched controls. Vitamin K2 ameliorated the NX-induced decrease in lacunar occupancy by viable osteocytes and the NX-induced increase in porosity. The present study showed the efficacy of vitamin K2 for cancellous bone mass and cortical lacunar occupancy by viable osteocytes and porosity in sciatic NX rats.

  9. Cortical bone mineral content in primary hyperparathyroidism

    International Nuclear Information System (INIS)

    Mautalen, C.; Reyes, H.R.; Ghiringhelli, G.; Fromm, G.

    1986-01-01

    The bone mineral content (BMC) of 35 patients with primary hyperparathyroidism (PHPT) was measured at the mid radius (95% cortical bone) by photon absorptiometry of a 241 Am source. The majority of the patients had an overt disease of moderate to severe degree. Average serum calcium of the group was 12.3 mg/100 ml (range 10.6 to 18.0 mg/100 ml). The percentage of normality of the BMC was (Av +- 1 SD) 75.1 +- 13.0% for the whole group. The average increment of BMC in 14 patients 9 to 26 months after parathyroidectomy was 9.9%, with a wide dispersion. However, a highly significant negative correlation (r: 0.83; P < 0.01) was found between the initial bone mass and the percentage increment per month after surgery. No furhter gain was observed 2 years after parathyroidectomy except in one patient with an extremely severe bone loss. In spite of the gain obtained after surgery the bone mass remained markedly diminished in most patients showing that the cortical bone loss caused by PHPT is mainly irreversible. (author)

  10. Surface structural damage study in cortical bone due to medical drilling.

    Science.gov (United States)

    Tavera R, Cesar G; De la Torre-I, Manuel H; Flores-M, Jorge M; Hernandez M, Ma Del Socorro; Mendoza-Santoyo, Fernando; Briones-R, Manuel de J; Sanchez-P, Jorge

    2017-05-01

    A bone's fracture could be produced by an excessive, repetitive, or sudden load. A regular medical practice to heal it is to fix it in two possible ways: external immobilization, using a ferule, or an internal fixation, using a prosthetic device commonly attached to the bone by means of surgical screws. The bone's volume loss due to this drilling modifies its structure either in the presence or absence of a fracture. To observe the bone's surface behavior caused by the drilling effects, a digital holographic interferometer is used to analyze the displacement surface's variations in nonfractured post-mortem porcine femoral bones. Several nondrilled post-mortem bones are compressed and compared to a set of post-mortem bones with a different number of cortical drillings. During each compression test, a series of digital interferometric holograms were recorded using a high-speed CMOS camera. The results are presented as pseudo 3D mesh displacement maps for comparisons in the physiological range of load (30 and 50 lbs) and beyond (100, 200, and 400 lbs). The high resolution of the optical phase gives a better understanding about the bone's microstructural modifications. Finally, a relationship between compression load and bone volume loss due to the drilling was observed. The results prove that digital holographic interferometry is a viable technique to study the conditions that avoid the surgical screw from loosening in medical procedures of this kind.

  11. Repair of microdamage in osteonal cortical bone adjacent to bone screw.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available Up to date, little is known about the repair mode of microdamage in osteonal cortical bone resulting from bone screw implantation. In this study, self-tapping titanium cortical bone screws were inserted into the tibial diaphyses of 24 adult male rabbits. The animals were sacrificed at 1 day, 2 weeks, 1 month and 2 months after surgery. Histomorphometric measurement and confocal microscopy were performed on basic fuchsin stained bone sections to examine the morphological characteristics of microdamage, bone resorption activity and spatial relationship between microdamage and bone resorption. Diffuse and linear cracks were coexisted in peri-screw bone. Intracortical bone resorption was significantly increased 2 weeks after screw installation and reach to the maximum at 1 month. There was no significant difference in bone resorption between 1-month and 2-months groups. Microdamage was significantly decreased within 1 month after surgery. Bone resorption was predisposed to occur in the region of <100 µm from the bone-screw interface, where had extensive diffuse damage mixed with linear cracks. Different patterns of resorption cavities appeared in peri-screw bone. These data suggest that 1 the complex microdamage composed of diffuse damage and linear cracks is a strong stimulator for initiating targeted bone remodeling; 2 bone resorption activities taking place on the surfaces of differently oriented Haversian and Volkmann canals work in a team for the repair of extensive microdamage; 3 targeted bone remodeling is a short-term reaction to microdamage and thereby it may not be able to remove all microdamage resulting from bone screw insertion.

  12. Organ and tissue level properties are more sensitive to age than osteocyte lacunar characteristics in rat cortical bone

    DEFF Research Database (Denmark)

    Wittig, Nina; Bach-Gansmo, Fiona Linnea; Birkbak, Mie Elholm

    2016-01-01

    orientation with animal age. Hence, the evolution of organ and tissue level properties with age in rat cortical bone is not accompanied by related changes in osteocyte lacunar properties. This suggests that bone microstructure and bone matrix material properties and not the geometric properties...... of bone on the organ and tissue level, whereas features on the nano- and micrometer scale are much less explored. We investigated the age-related development of organ and tissue level bone properties such as bone volume, bone mineral density, and load to fracture and correlated these with osteocyte...

  13. Synergistic effect of parathyroid hormone and growth hormone on trabecular and cortical bone formation in hypophysectomized rats.

    Science.gov (United States)

    Guevarra, Maria Sarah N; Yeh, James K; Castro Magana, Mariano; Aloia, John F

    2010-01-01

    Growth hormone (GH) deficiency in pediatric patients results in short stature and osteopenia. We postulated that the GH and parathyroid hormone (PTH) combination would result in improvement in bone growth and bone formation. Forty hypophysectomized female rats at age 8 weeks were divided into hypophysectomy (HX), HX + PTH (62.5 microg/kg, s.c. daily), HX + GH (3.33 mg/kg, s.c. daily), and HX + PTH + GH for a 4-week study. GH increased body weight, bone growth, bone mineral content (BMC) and bone mineral density (BMD), whereas PTH increased BMC and BMD without a significant effect on bone size. GH increased both periosteal and endocortical bone formation and cortical size, while PTH increased only endocortical bone formation. GH mitigated the trabecular bone loss by increasing bone formation, while PTH increased bone mass by increasing bone formation and suppressing osteoclast number per bone area. The result of combined intervention shows an increase in trabecular, periosteal and endocortical bone formation and suppression of bone resorption resulting in a synergistic effect on increasing trabecular and cortical bone volume and BMD. The combination treatment of PTH and GH increases bone growth, bone formation, decreases bone resorption and has a synergistic effect on increasing bone density and bone mass. Copyright (c) 2010 S. Karger AG, Basel.

  14. Women Build Long Bones With Less Cortical Mass Relative to Body Size and Bone Size Compared With Men.

    Science.gov (United States)

    Jepsen, Karl J; Bigelow, Erin M R; Schlecht, Stephen H

    2015-08-01

    The twofold greater lifetime risk of fracturing a bone for white women compared with white men and black women has been attributed in part to differences in how the skeletal system accumulates bone mass during growth. On average, women build more slender long bones with less cortical area compared with men. Although slender bones are known to have a naturally lower cortical area compared with wider bones, it remains unclear whether the relatively lower cortical area of women is consistent with their increased slenderness or is reduced beyond that expected for the sex-specific differences in bone size and body size. Whether this sexual dimorphism is consistent with ethnic background and is recapitulated in the widely used mouse model also remains unclear. We asked (1) do black women build bones with reduced cortical area compared with black men; (2) do white women build bones with reduced cortical area compared with white men; and (3) do female mice build bones with reduced cortical area compared with male mice? Bone strength and cross-sectional morphology of adult human and mouse bone were calculated from quantitative CT images of the femoral midshaft. The data were tested for normality and regression analyses were used to test for differences in cortical area between men and women after adjusting for body size and bone size by general linear model (GLM). Linear regression analysis showed that the femurs of black women had 11% lower cortical area compared with those of black men after adjusting for body size and bone size (women: mean=357.7 mm2; 95% confidence interval [CI], 347.9-367.5 mm2; men: mean=400.1 mm2; 95% CI, 391.5-408.7 mm2; effect size=1.2; pbone size (women: mean=350.1 mm2; 95% CI, 340.4-359.8 mm2; men: mean=394.3 mm2; 95% CI, 386.5-402.1 mm2; effect size=1.3; pbone size (female: mean=0.73 mm2; 95% CI, 0.71-0.74 mm2; male: mean=0.70 mm2; 95% CI, 0.68-0.71 mm2; effect size=0.74; p=0.04, GLM). Female femurs are not simply a more slender version of male

  15. High Insulin Levels in KK-Ay Diabetic Mice Cause Increased Cortical Bone Mass and Impaired Trabecular Micro-Structure

    Directory of Open Access Journals (Sweden)

    Cen Fu

    2015-04-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a chronic disease characterized by hyperglycemia, hyperinsulinemia and complications, including obesity and osteoporosis. Rodents have been widely used to model human T2DM and investigate its effect on the skeleton. We aimed to investigate skeletal alterations in Yellow Kuo Kondo (KK-Ay diabetic mice displaying high insulin and glucose levels. Bone mineral density (BMD, micro-architecture and bone metabolism-related genes were analyzed. The total femoral areal BMD (aBMD, cortical volumetric BMD (vBMD and thickness were significantly increased in KK-Ay mice, while the trabecular vBMD and mineralized bone volume/tissue volume (BV/TV, trabecular thickness and number were decreased compared to C57BL mice. The expression of both osteoblast-related genes, such as osteocalcin (OC, bone sialoprotein, Type I Collagen, osteonectin, RUNX2 and OSX, and osteoclast-related genes, such as TRAP and TCIRG, were up-regulated in KK-Ay mice. Correlation analyses showed that serum insulin levels were positively associated with aBMD, cortical vBMD and thickness and negatively associated with trabecular vBMD and micro-architecture. In addition, serum insulin levels were positively related to osteoblast-related and osteoclast-related gene expression. Our data suggest that high insulin levels in KK-Ay diabetic mice may increase cortical bone mass and impair trabecular micro-structure by up-regulating osteoblast-and osteoclast-related gene expression.

  16. Effect of microstructure on micromechanical performance of dry cortical bone tissues

    International Nuclear Information System (INIS)

    Yin Ling; Venkatesan, Sudharshan; Kalyanasundaram, Shankar; Qin Qinghua

    2009-01-01

    The mechanical properties of bone depend on composition and structure. Previous studies have focused on macroscopic fracture behavior of bone. In the present study, we performed microindentation studies to understand the deformation properties and microcrack-microstructure interactions of dry cortical bone. Dry cortical bone tissues from lamb femurs were tested using Vickers indentation with loads of 0.245-9.8 N. We examined the effect of bone microstructure on deformation and crack propagation using scanning electron microscopy (SEM). The results showed the significant effect of cortical bone microstructure on indentation deformation and microcrack propagation. The indentation deformation of the dry cortical bone was basically plastic at any applied load with a pronounced viscoelastic recovery, in particular at lower loads. More microcracks up to a length of approximately 20 μm occurred when the applied load was increased. At loads of 4.9 N and higher, most microcracks were found to develop from the boundaries of haversian canals, osteocyte lacunae and canaliculi. Some microcracks propagated from the parallel direction of the longitudinal interstitial lamellae. At loads 0.45 N and lower, no visible microcracks were observed.

  17. Dynamic Mechanical Testing Techniques for Cortical and Cancellous Bone

    Science.gov (United States)

    Cloete, Trevor

    2017-06-01

    Bone fracture typically occurs as an impact loading event (sporting accidents, vehicle collisions), the simulation of which requires in-depth understanding of dynamic bone behavior. Bone is a natural composite material with a complex multi length-scale hierarchical microstructure. At a macroscopic level, it is classified into hard/compact cortical bone and soft/spongy cancellous (trabecular) bone, though both are low-impedance materials relative to steels. Cortical bone is predominant in long bones, while in complex bone geometries (joints, flat bones) a cancellous bone core supports a thin cortical shell. Bone has primarily been studied at quasi-static strain rates (ɛ˙ failure, with interrupted quasi-static tests revealing a strong microstructure dependence. However, bone specimens are typically destroyed during dynamic tests, leading to a lack of dynamic microstructural damage investigations. In this paper, a short overview of dynamic bone testing is presented to give context to the challenges of testing low impedance, strain-rate dependent, non-linear, visco-elastic-brittle materials. Recent state-of-the-art experimental developments in dynamic bone testing are reviewed, with emphasis on pulse shaping, momentum trapping and ISR testing. These techniques allow for dynamic bone testing at small strains and near-constant strain rates with intact specimen recovery. The results are compared to those obtained with varying strain rate tests. Interrupted dynamic test results with microstructural analysis of the recovered specimens are presented and discussed. The paper concludes with a discussion of the experimental and modeling challenges that lie ahead in the field of dynamic bone behavior. The financial assistance of the National Research Foundation and the University of Cape Town towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the author alone.

  18. Micro-computed tomography of fatigue microdamage in cortical bone using a barium sulfate contrast agent.

    Science.gov (United States)

    Leng, Huijie; Wang, Xiang; Ross, Ryan D; Niebur, Glen L; Roeder, Ryan K

    2008-01-01

    Accumulation of microdamage during fatigue can lead to increased fracture susceptibility in bone. Current techniques for imaging microdamage in bone are inherently destructive and two-dimensional. Therefore, the objective of this study was to image the accumulation of fatigue microdamage in cortical bone using micro-computed tomography (micro-CT) with a barium sulfate (BaSO(4)) contrast agent. Two symmetric notches were machined on the tensile surface of bovine cortical bone beams in order to generate damage ahead of the stress concentrations during four-point bending fatigue. Specimens were loaded to a specified number of cycles or until one notch fractured, such that the other notch exhibited the accumulation of microdamage prior to fracture. Microdamage ahead of the notch was stained in vitro by precipitation of BaSO(4) and imaged using micro-CT. Reconstructed images showed a distinct region of bright voxels around the notch tip or along propagating cracks due to the presence of BaSO(4), which was verified by backscattered electron imaging and energy dispersive spectroscopy. The shape of the stained region ahead of the notch tip was consistent with principal strain contours calculated by finite element analysis. The relative volume of the stained region was correlated with the number of loading cycles by non-linear regression using a power-law. This study demonstrates new methods for the non-destructive and three-dimensional detection of fatigue microdamage accumulation in cortical bone in vitro, which may be useful to gain further understanding into the role of microdamage in bone fragility.

  19. The cortical representation of sensory inputs arising from bone.

    Science.gov (United States)

    Ivanusic, Jason J; Sahai, Vineet; Mahns, David A

    2009-05-07

    In the present study, we show that sensory information from bone reaches the discriminative areas of the somatosensory cortices by electrically stimulating the nerve to the cat humerus and recording evoked potentials on the surface of the primary (SI) and secondary (SII) somatosensory cortex. The SI focus was located over the rostral part of the postcruciate cortex, caudal to the lateral aspect of the cruciate sulcus. The SII focus was identified on the anterior ectosylvian gyrus, lateral to the suprasylvian sulcus. These foci were located adjacent to, or within areas that responded to stimulation of the median, ulnar and/or musculocutaneous nerves. The latency (6-11 ms) to onset of cortical responses in SI and SII were indistinguishable (unpaired t-test; P>0.05), and were consistent with activation of A delta fibers in the peripheral nerve. The amplitudes of the cortical responses were graded as a function of stimulus intensity, and may reflect a mechanism for intensity coding. We did not observe long latency cortical responses (50-300 ms) that would be consistent with C fiber activation in the peripheral nerve, and provide evidence that this may be attributable to inhibition of cortical responsiveness following the initial A delta response. Our finding of discrete, short latency evoked potentials (presumably of A delta origin) in the primary and secondary somatosensory cortices, following stimulation of a nerve innervating bone, may reflect a mechanism for the discriminative component of bone pain.

  20. Pharmacokinetics of Cefuroxime in Cortical and Cancellous Bone Obtained by Microdialysis - a Porcine Study

    DEFF Research Database (Denmark)

    Tøttrup, Mikkel; Forsingdal Hardlei, Tore; Bendtsen, Michael

    2014-01-01

    . As reference, free and total plasma concentrations were also measured. The animals received a bolus of 1500 mg cefuroxime over 30 min. No significant differences between key pharmacokinetic parameters for sealed and unsealed drill holes in cortical bone were found. The mean area under the concentration...... (MD) technique for measurement of cefuroxime in bone, and to obtain pharmacokinetic profiles for the same drug in porcine cortical and cancellous bone. Measurements were conducted in bone-wax sealed and unsealed drill holes in cortical bone, in drill holes in cancellous bone and in subcutaneous tissue...

  1. Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow–derived counterparts

    Directory of Open Access Journals (Sweden)

    Daniel Blashki

    2016-08-01

    Full Text Available In this study, we show that matrix dense cortical bone is the more potent compartment of bone than bone marrow as a stromal source for mesenchymal stem cells as isolated from adult rats. Lineage-depleted cortical bone-mesenchymal stem cells demonstrated >150-fold enrichment of colony forming unit–fibroblasts per cell incidence. compared to lineage-depleted bone marrow-mesenchymal stem cells, corresponding to a 70-fold increase in absolute recovered colony forming unit–fibroblasts. The composite phenotype Lin−/CD45−/CD31−/VLA-1+/Thy-1+ enriched for clonogenic mesenchymal stem cells solely from cortical bone–derived cells from which 70% of clones spontaneously differentiated into all lineages of bone, cartilage, and adipose. Both populations generated vascularized bone tissue within subcutaneous implanted collagen scaffolds; however, cortical bone–derived cells formed significantly more osteoid than bone marrow counterparts, quantified by histology. The data demonstrate that our isolation protocol identifies and validates mesenchymal stem cells with superior clonal, proliferative, and developmental potential from cortical bone compared to the bone marrow niche although marrow persists as the typical source for mesenchymal stem cells both in the literature and current pre-clinical therapies.

  2. Quantitation of mandibular ramus volume as a source of bone grafting.

    Science.gov (United States)

    Verdugo, Fernando; Simonian, Krikor; Smith McDonald, Roberto; Nowzari, Hessam

    2009-10-01

    When alveolar atrophy impairs dental implant placement, ridge augmentation using mandibular ramus graft may be considered. In live patients, however, an accurate calculation of the amount of bone that can be safely harvested from the ramus has not been reported. The use of a software program to perform these calculations can aid in preventing surgical complications. The aim of the present study was to intra-surgically quantify the volume of the ramus bone graft that can be safely harvested in live patients, and compare it to presurgical computerized tomographic calculations. The AutoCAD software program quantified ramus bone graft in 40 consecutive patients from computerized tomographies. Direct intra-surgical measurements were recorded thereafter and compared to software data (n = 10). In these 10 patients, the bone volume was also measured at the recipient sites 6 months post-sinus augmentation. The mandibular second and third molar areas provided the thickest cortical graft averaging 2.8 +/- 0.6 mm. The thinnest bone was immediately posterior to the third molar (1.9 +/- 0.3 mm). The volume of ramus bone graft measured by AutoCAD averaged 0.8 mL (standard deviation [SD] 0.2 mL, range: 0.4-1.2 mL). The volume of bone graft measured intra-surgically averaged 2.5 mL (SD 0.4 mL, range: 1.8-3.0 mL). The difference between the two measurement methods was significant (p AutoCAD software program did not overestimate the volume of bone that can be safely harvested from the mandibular ramus.

  3. Thickened cortical bones in congenital neutropenia

    International Nuclear Information System (INIS)

    Boechat, M.I.; Gormley, L.S.; O'Laughlin, B.J.

    1987-01-01

    Congenital neutropenia is an uncommon entity which may be familial and has a wide spectrum of clinical expression. Three sisters with the severe form of the disease, that suffered from recurrent infections which lead to their demise are described. Review of their radiographs revealed the presence of cortical thickening of the bones. Although several syndroms with different bone abnormalities have been reported associated with neutropenia, the radiographic finding of thickened cortex in children with congenital neutropenia has not been previously described. (orig.)

  4. Thickened cortical bones in congenital neutropenia

    Energy Technology Data Exchange (ETDEWEB)

    Boechat, M.I.; Gormley, L.S.; O' Laughlin, B.J.

    1987-02-01

    Congenital neutropenia is an uncommon entity which may be familial and has a wide spectrum of clinical expression. Three sisters with the severe form of the disease, that suffered from recurrent infections which lead to their demise are described. Review of their radiographs revealed the presence of cortical thickening of the bones. Although several syndroms with different bone abnormalities have been reported associated with neutropenia, the radiographic finding of thickened cortex in children with congenital neutropenia has not been previously described.

  5. Comparative study on inorganic composition and crystallographic properties of cortical and cancellous bone.

    Science.gov (United States)

    Wang, Xiao-Yan; Zuo, Yi; Huang, Di; Hou, Xian-Deng; Li, Yu-Bao

    2010-12-01

    To comparatively investigate the inorganic composition and crystallographic properties of cortical and cancellous bone via thermal treatment under 700 °C. Thermogravimetric measurement, infrared spectrometer, X-ray diffraction, chemical analysis and X-ray photo-electron spectrometer were used to test the physical and chemical properties of cortical and cancellous bone at room temperature 250 °C, 450 °C, and 650 °C, respectively. The process of heat treatment induced an extension in the a-lattice parameter and changes of the c-lattice parameter, and an increase in the crystallinity reflecting lattice rearrangement after release of lattice carbonate and possible lattice water. The mineral content in cortical and cancellous bone was 73.2wt% and 71.5wt%, respectively. For cortical bone, the weight loss was 6.7% at the temperature from 60 °C to 250 °C, 17.4% from 250 °C to 450 °C, and 2.7% from 450 °C to 700 °C. While the weight loss for the cancellous bone was 5.8%, 19.9%, and 2.8 % at each temperature range, the Ca/P ratio of cortical bone was 1.69 which is higher than the 1.67 of stoichiometric HA due to the B-type CO₃²⁻ substitution in apatite lattice. The Ca/P ratio of cancellous bone was lower than 1.67, suggesting the presence of more calcium deficient apatite. The collagen fibers of cortical bone were arrayed more orderly than those of cancellous bone, while their mineralized fibers ollkded similar. The minerals in both cortical and cancellous bone are composed of poorly crystallized nano-size apatite crystals with lattice carbonate and possible lattice water. The process of heat treatment induces a change of the lattice parameter, resulting in lattice rearrangement after the release of lattice carbonate and lattice water and causing an increase in crystal size and crystallinity. This finding is helpful for future biomaterial design, preparation and application. Copyright © 2010 The Editorial Board of Biomedical and Environmental Sciences

  6. Sex-specific patterns in cortical and trabecular bone microstructure in the Kirsten Skeletal Collection, South Africa.

    Science.gov (United States)

    Beresheim, Amy C; Pfeiffer, Susan K; Grynpas, Marc D; Alblas, Amanda

    2018-02-07

    The purpose of this study was to provide bone histomorphometric reference data for South Africans of the Western Cape who likely dealt with health issues under the apartheid regime. The 206 adult individuals ( n female = 75, n male = 131, mean = 47.9 ± 15.8 years) from the Kirsten Skeletal Collection, U. Stellenbosch, lived in the Cape Town metropole from the late 1960s to the mid-1990s. To study age-related changes in cortical and trabecular bone microstructure, photomontages of mid-thoracic rib cross-sections were quantitatively examined. Variables include relative cortical area (Rt.Ct.Ar), osteon population density (OPD), osteon area (On.Ar), bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular spacing (Tb.Sp). All cortical variables demonstrated significant relationships with age in both sexes, with women showing stronger overall age associations. Peak bone mass was compromised in some men, possibly reflecting poor nutritional quality and/or substance abuse issues throughout adolescence and early adulthood. In women, greater predicted decrements in On.Ar and Rt.Ct.Ar suggest a structural disadvantage with age, consistent with postmenopausal bone loss. Age-related patterns in trabecular bone microarchitecture are variable and difficult to explain. Except for Tb.Th, there are no statistically significant relationships with age in women. Men demonstrate significant negative correlations between BV/TV, Tb.N, and age, and a significant positive correlation between Tb.Sp and age. This research highlights sex-specific differences in patterns of age-related bone loss, and provides context for discussion of contemporary South African bone health. While the study sample demonstrates indicators of poor bone quality, osteoporosis research continues to be under-prioritized in South Africa. © 2018 Wiley Periodicals, Inc.

  7. Low cortical bone density measured by computed tomography in children and adolescents with untreated hyperthyroidism.

    Science.gov (United States)

    Numbenjapon, Nawaporn; Costin, Gertrude; Gilsanz, Vicente; Pitukcheewanont, Pisit

    2007-05-01

    To determine whether increased thyroid hormones levels have an effect on various bone components (cortical vs cancellous bone). The anthropometric and 3-dimensional quantitative computed tomography (CT) bone measurements, including bone density (BD), cross-sectional area (CSA) of the lumbar spine and femur, and cortical bone area (CBA) of the femur, of 18 children and adolescents with untreated hyperthyroidism were reviewed and compared with those of age-, sex-, and ethnicity-matched historical controls. No significant differences in height, weight, body mass index (BMI), or pubertal staging between patients and controls were found. Cortical BD was significantly lower (P hyperthyroidism compared with historical controls. After adjusting for weight and height, no difference in femur CSA between hyperthyroid children and historical controls was evident. No significant correlations among thyroid hormone levels, antithyroid antibody levels, and cortical BD values were found. As determined by CT, cortical bone is the preferential site of bone loss in children and adolescents with untreated hyperthyroidism.

  8. Demineralized Freeze-Dried Bovine Cortical Bone: Its Potential for Guided Bone Regeneration Membrane

    Directory of Open Access Journals (Sweden)

    David B. Kamadjaja

    2017-01-01

    Full Text Available Background. Bovine pericardium collagen membrane (BPCM had been widely used in guided bone regeneration (GBR whose manufacturing process usually required chemical cross-linking to prolong its biodegradation. However, cross-linking of collagen fibrils was associated with poorer tissue integration and delayed vascular invasion. Objective. This study evaluated the potential of bovine cortical bone collagen membrane for GBR by evaluating its antigenicity potential, cytotoxicity, immune and tissue response, and biodegradation behaviors. Material and Methods. Antigenicity potential of demineralized freeze-dried bovine cortical bone membrane (DFDBCBM was done with histology-based anticellularity evaluation, while cytotoxicity was analyzed using MTT Assay. Evaluation of immune response, tissue response, and biodegradation was done by randomly implanting DFDBCBM and BPCM in rat’s subcutaneous dorsum. Samples were collected at 2, 5, and 7 days and 7, 14, 21, and 28 days for biocompatibility and tissue response-biodegradation study, respectively. Result. DFDBCBM, histologically, showed no retained cells; however, it showed some level of in vitro cytotoxicity. In vivo study exhibited increased immune response to DFDBCBM in early healing phase; however, normal tissue response and degradation rate were observed up to 4 weeks after DFDBCBM implantation. Conclusion. Demineralized freeze-dried bovine cortical bone membrane showed potential for clinical application; however, it needs to be optimized in its biocompatibility to fulfill all requirements for GBR membrane.

  9. In Vivo Assessment of Elasticity of Child Rib Cortical Bone Using Quantitative Computed Tomography

    Directory of Open Access Journals (Sweden)

    Y. Zhu

    2017-01-01

    Full Text Available Elasticity of the child rib cortical bone is poorly known due to the difficulties in obtaining specimens to perform conventional tests. It was shown on the femoral cortical bone that elasticity is strongly correlated with density for both children and adults through a unique relationship. Thus, it is assumed that the relationships between the elasticity and density of adult rib cortical bones could be expanded to include that of children. This study estimated in vivo the elasticity of the child rib cortical bone using quantitative computed tomography (QCT. Twenty-eight children (from 1 to 18 y.o. were considered. Calibrated QCT images were prescribed for various thoracic pathologies. The Hounsfield units were converted to bone mineral density (BMD. A relationship between the BMD and the elasticity of the rib cortical bone was applied to estimate the elasticity of children’s ribs in vivo. The estimated elasticity increases with growth (7.1 ± 2.5 GPa at 1 y.o. up to 11.6 ± 1.9 GPa at 18 y.o.. This data is in agreement with the few previous values obtained using direct measurements. This methodology paves the way for in vivo assessment of the elasticity of the child cortical bone based on calibrated QCT images.

  10. Computed tomography evaluation of human mandibles with regard to layer thickness and bone density of the cortical bone

    International Nuclear Information System (INIS)

    Markwardt, Jutta; Meissner, H.; Weber, A.; Reitemeier, B.; Laniado, M.

    2013-01-01

    Application of function-restoring individual implants for the bridging of defects in mandibles with continuity separation requires a stable fixation with special use of the cortical bone stumps. Five section planes each of 100 computed tomographies of poly-traumatized patients' jaws were used for measuring the thickness of the cortical layer and the bone density of the mandible. The CT scans of 28 female and 72 male candidates aged between 12 and 86 years with different dentition of the mandible were available. The computed tomographic evaluations of human mandibles regarding the layer thickness of the cortical bone showed that the edge of the mandible in the area of the horizontal branch possesses the biggest layer thickness of the whole of the lower jaws. The highest medians of the cortical bone layer thickness were found in the area of the molars and premolars at the lower edge of the lower jaws in 6-o'clock position, in the area of the molars in the vestibular cranial 10-o'clock position and in the chin region lingual-caudal in the 4-o'clock position. The measurement of the bone density showed the highest values in the 8-o'clock position (vestibular-caudal) in the molar region in both males and females. The average values available of the bone density and the layer thickness of the cortical bone in the various regions of the lower jaw, taking into consideration age, gender and dentition, are an important aid in practice for determining a safe fixation point for implants in the area of the surface layer of the mandible by means of screws or similar fixation elements. (orig.)

  11. Increased resistance during jump exercise does not enhance cortical bone formation.

    Science.gov (United States)

    Boudreaux, Ramon D; Swift, Joshua M; Gasier, Heath G; Wiggs, Michael P; Hogan, Harry A; Fluckey, James D; Bloomfield, Susan A

    2014-01-01

    This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cortical bone of the tibia and femur mid-diaphyses. Sprague-Dawley rats (male, 6 months old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE for 5 wk. Load in the HRE group was progressively increased from 80 g added to a weighted vest (50 repetitions) to 410 g (16 repetitions). The LRE rats completed the same protocol as the HRE group (same number of repetitions), with only a 30-g vest applied. Low- and high-load jump RE resulted in 6%-11% higher cortical bone mineral content and cortical bone area compared with controls, as determined by in vivo peripheral quantitative computed tomography measurements. In the femur, however, only LRE demonstrated improvements in cortical volumetric bone mineral density (+11%) and cross-sectional moment of inertia (+20%) versus the CC group. The three-point bending to failure revealed a marked increase in tibial maximum force (25%-29%), stiffness (19%-22%), and energy to maximum force (35%-55%) and a reduction in elastic modulus (-11% to 14%) in both LRE and HRE compared with controls. Dynamic histomorphometry assessed at the tibia mid-diaphysis determined that both LRE and HRE resulted in 20%-30% higher periosteal mineralizing surface versus the CC group. Mineral apposition rate and bone formation rate were significantly greater in animals in the LRE group (27%, 39%) than those in the HRE group. These data demonstrate that jump training with minimal loading is equally, and sometimes more, effective at augmenting cortical bone integrity compared with overload training in skeletally mature rats.

  12. Observation of the bone mineral density of newly formed bone using rabbits. Compared with newly formed bone around implants and cortical bone

    International Nuclear Information System (INIS)

    Nakada, Hiroshi; Numata, Yasuko; Sakae, Toshiro; Tamaki, Hiroyuki; Kato, Takao

    2009-01-01

    There have been many studies reporting that newly formed bone around implants is spongy bone. However, although the morphology is reported as being like spongy bone, it is difficult to discriminate whether the bone quality of newly formed bone appears similar to osteoid or cortical bone; therefore, evaluation of bone quality is required. The aims of this study were to measure the bone mineral density (BMD) values of newly formed bone around implants after 4, 8, 16, 24 and 48 weeks, to represent these values on three-dimensional color mapping (3Dmap), and to evaluate the change in bone quality associated with newly formed bone around implants. The animal experimental protocol of this study was approved by the Ethics Committee for Animal Experiments of our University. This experiment used 20 surface treatment implants (Ti-6Al-4V alloy: 3.1 mm in diameter and 30.0 mm in length) by grit-blasting. They were embedded into surgically created flaws in femurs of 20 New Zealand white rabbits (16 weeks old, male). The rabbits were sacrificed with an ear intravenous overdose of pentobarbital sodium under general anesthesia each period, and the femurs were resected. We measured BMD of newly formed bone around implants and cortical bone using Micro-CT, and the BMD distribution map of 3Dmap (TRI/3D Bon BMD, Ratoc System Engineering). The BMD of cortical bone was 1,026.3±44.3 mg/cm 3 at 4 weeks, 1,023.8±40.9 mg/cm 3 at 8 weeks, 1,048.2±45.6 mg/cm 3 at 16 weeks, 1,067.2±60.2 mg/cm 3 at 24 weeks, and 1,069.3±50.7 mg/cm 3 at 48 weeks after implantation, showing a non-significant increase each period. The BMD of newly formed bone around implants was 296.8±25.6 mg/cm 3 at 4 weeks, 525.0±72.4 mg/cm 3 at 8 weeks, 691.2±26.0 mg/cm 3 at 16 weeks, 776.9±27.7 mg/cm 3 at 24 weeks, and 845.2±23.1 mg/cm 3 at 48 weeks after implantation, showing a significant increase after each period. It was revealed that the color scale of newly formed bone was Low level at 4 weeks, and then it

  13. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Eneh, C. T. M., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Töyräs, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Jurvelin, J. S., E-mail: jukka.jurvelin@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland and Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029 (Finland); Malo, M. K. H., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Liukkonen, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211 (Finland); Karjalainen, J. P., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Bone Index Finland Ltd., P.O. Box 1188, Kuopio FI-70211 (Finland)

    2016-05-15

    Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessment by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R{sup 2} ≥ 0.493, p < 0.01 and R{sup 2} ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated

  14. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    International Nuclear Information System (INIS)

    Eneh, C. T. M.; Töyräs, J.; Jurvelin, J. S.; Malo, M. K. H.; Liukkonen, J.; Karjalainen, J. P.

    2016-01-01

    Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessment by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R"2 ≥ 0.493, p < 0.01 and R"2 ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated in vivo

  15. One-month spaceflight compromises the bone microstructure, tissue-level mechanical properties, osteocyte survival and lacunae volume in mature mice skeletons.

    Science.gov (United States)

    Gerbaix, Maude; Gnyubkin, Vasily; Farlay, Delphine; Olivier, Cécile; Ammann, Patrick; Courbon, Guillaume; Laroche, Norbert; Genthial, Rachel; Follet, Hélène; Peyrin, Françoise; Shenkman, Boris; Gauquelin-Koch, Guillemette; Vico, Laurence

    2017-06-01

    The weightless environment during spaceflight induces site-specific bone loss. The 30-day Bion-M1 mission offered a unique opportunity to characterize the skeletal changes after spaceflight and an 8-day recovery period in mature male C57/BL6 mice. In the femur metaphysis, spaceflight decreased the trabecular bone volume (-64% vs. Habitat Control), dramatically increased the bone resorption (+140% vs. Habitat Control) and induced marrow adiposity invasion. At the diaphysis, cortical thinning associated with periosteal resorption was observed. In the Flight animal group, the osteocyte lacunae displayed a reduced volume and a more spherical shape (synchrotron radiation analyses), and empty lacunae were highly increased (+344% vs. Habitat Control). Tissue-level mechanical cortical properties (i.e., hardness and modulus) were locally decreased by spaceflight, whereas the mineral characteristics and collagen maturity were unaffected. In the vertebrae, spaceflight decreased the overall bone volume and altered the modulus in the periphery of the trabecular struts. Despite normalized osteoclastic activity and an increased osteoblast number, bone recovery was not observed 8 days after landing. In conclusion, spaceflight induces osteocyte death, which may trigger bone resorption and result in bone mass and microstructural deterioration. Moreover, osteocyte cell death, lacunae mineralization and fatty marrow, which are hallmarks of ageing, may impede tissue maintenance and repair.

  16. Automatic Detection of Cortical Bones Haversian Osteonal Boundaries

    Directory of Open Access Journals (Sweden)

    Ilige Hage

    2015-10-01

    Full Text Available This work aims to automatically detect cement lines in decalcified cortical bone sections stained with H&E. Employed is a methodology developed previously by the authors and proven to successfully count and disambiguate the micro-architectural features (namely Haversian canals, canaliculi, and osteocyte lacunae present in the secondary osteons/Haversian system (osteon of cortical bone. This methodology combines methods typically considered separately, namely pulse coupled neural networks (PCNN, particle swarm optimization (PSO, and adaptive threshold (AT. In lieu of human bone, slides (at 20× magnification from bovid cortical bone are used in this study as proxy of human bone. Having been characterized, features with same orientation are used to detect the cement line viewed as the next coaxial layer adjacent to the outermost lamella of the osteon. Employed for this purpose are three attributes for each and every micro-sized feature identified in the osteon lamellar system: (1 orientation, (2 size (ellipse perimeter and (3 Euler number (a topological measure. From a training image, automated parameters for the PCNN network are obtained by forming fitness functions extracted from these attributes. It is found that a 3-way combination of these features attributes yields good representations of the overall osteon boundary (cement line. Near-unity values of classical metrics of quality (precision, sensitivity, specificity, accuracy, and dice suggest that the segments obtained automatically by the optimized artificial intelligent methodology are of high fidelity as compared with manual tracing. For bench marking, cement lines segmented by k-means did not fare as well. An analysis based on the modified Hausdorff distance (MHD of the segmented cement lines also testified to the quality of the detected cement lines vis-a-vis the k-means method.

  17. The Hounsfield value for cortical bone geometry in the proximal humerus - an in vitro study

    International Nuclear Information System (INIS)

    Lim Fat, Daren; Kennedy, Jim; Galvin, Rose; O'Brien, Fergal; Mc Grath, Frank; Mullett, Hannan

    2012-01-01

    Fractures of the proximal humerus represent a major osteoporotic burden. Recent developments in CT imaging have emphasized the importance of cortical bone thickness distribution in the prevention and management of fragility fractures. We aimed to experimentally define the CT density of cortical bone in the proximal humerus for building cortical geometry maps. With ethical approval, we used ten fresh-frozen human proximal humeri. These were stripped of all soft tissue and high-resolution CT images were then taken. The humeral heads were then subsequently resected to allow access to the metaphyseal area. Using curettes, cancellous bone was removed down to hard cortical bone. Another set of CT images of the reamed specimen was then taken. Using CT imaging software and a CAD interface, we then compared cortical contours at different CT density thresholds to the reference inner cortical contour of our reamed specimens. Working with 3D model representations of these cortical maps, we were able to accurately make distance comparison analyses based on different CT thresholds. We could compute a single closest value at 700 HU. No difference was found in the HU-based contours generated along the 500-900 HU pixels (p = 1.000). The contours were significantly different from those generated at 300, 400, 1,000, and 1,100 HU. A Hounsfield range of 500-900 HU can accurately depict cortical bone geometry in the proximal humerus. Thresholding outside this range leads to statistically significant inaccuracies. Our results concur with a similar range reported in the literature for the proximal femur. Knowledge of regional variations in cortical bone thickness has direct implications for basic science studies on osteoporosis and its treatment, but is also important for the orthopedic surgeon since our decision for treatment options is often guided by local bone quality. (orig.)

  18. Postnatal Changes in Humerus Cortical Bone Thickness Reflect the Development of Metabolic Bone Disease in Preterm Infants

    Directory of Open Access Journals (Sweden)

    Shuko Tokuriki

    2016-01-01

    Full Text Available Objective. To use cortical bone thickness (CBT of the humerus to identify risk factors for the development of metabolic bone disease in preterm infants. Methods. Twenty-seven infants born at <32 weeks of gestational age, with a birth weight of <1,500 g, were enrolled. Humeral CBT was measured from chest radiographs at birth and at 27-28, 31-32, and 36–44 weeks of postmenstrual age (PMA. The risk factors for the development of osteomalacia were statistically analyzed. Results. The humeral CBT at 36–44 weeks of PMA was positively correlated with gestational age and birth weight and negatively correlated with the duration of mechanical ventilation. CBT increased with PMA, except in six very early preterm infants in whom it decreased. Based on logistic regression analysis, gestational age and duration of mechanical ventilation were identified as risk factors for cortical bone thinning. Conclusions. Humeral CBT may serve as a radiologic marker of metabolic bone disease at 36–44 weeks of PMA in preterm infants. Cortical bones of extremely preterm infants are fragile, even when age is corrected for term, and require extreme care to lower the risk of fractures.

  19. A computer-aided system for automatic extraction of femur neck trabecular bone architecture using isotropic volume construction from clinical hip computed tomography images.

    Science.gov (United States)

    Vivekanandhan, Sapthagirivasan; Subramaniam, Janarthanam; Mariamichael, Anburajan

    2016-10-01

    Hip fractures due to osteoporosis are increasing progressively across the globe. It is also difficult for those fractured patients to undergo dual-energy X-ray absorptiometry scans due to its complicated protocol and its associated cost. The utilisation of computed tomography for the fracture treatment has become common in the clinical practice. It would be helpful for orthopaedic clinicians, if they could get some additional information related to bone strength for better treatment planning. The aim of our study was to develop an automated system to segment the femoral neck region, extract the cortical and trabecular bone parameters, and assess the bone strength using an isotropic volume construction from clinical computed tomography images. The right hip computed tomography and right femur dual-energy X-ray absorptiometry measurements were taken from 50 south-Indian females aged 30-80 years. Each computed tomography image volume was re-constructed to form isotropic volumes. An automated system by incorporating active contour models was used to segment the neck region. A minimum distance boundary method was applied to isolate the cortical and trabecular bone components. The trabecular bone was enhanced and segmented using trabecular enrichment approach. The cortical and trabecular bone features were extracted and statistically compared with dual-energy X-ray absorptiometry measured femur neck bone mineral density. The extracted bone measures demonstrated a significant correlation with neck bone mineral density (r > 0.7, p computed tomography images scanned with low dose could eventually be helpful in osteoporosis diagnosis and its treatment planning. © IMechE 2016.

  20. Growth hormone effects on cortical bone dimensions in young adults with childhood-onset growth hormone deficiency

    DEFF Research Database (Denmark)

    Hyldstrup, L; Conway, G S; Racz, K

    2012-01-01

    Growth hormone (GH) treatment in young adults with childhood-onset GH deficiency has beneficial effects on bone mass. The present study shows that cortical bone dimensions also benefit from GH treatment, with endosteal expansion and increased cortical thickness leading to improved bone strength....... INTRODUCTION: In young adults with childhood-onset growth hormone deficiency (CO GHD), GH treatment after final height is reached has been shown to have beneficial effects on spine and hip bone mineral density. The objective of the study was to evaluate the influence of GH on cortical bone dimensions. METHODS...

  1. Trajectories of cortical surface area and cortical volume maturation in normal brain development

    Directory of Open Access Journals (Sweden)

    Simon Ducharme

    2015-12-01

    Full Text Available This is a report of developmental trajectories of cortical surface area and cortical volume in the NIH MRI Study of Normal Brain Development. The quality-controlled sample included 384 individual typically-developing subjects with repeated scanning (1–3 per subject, total scans n=753 from 4.9 to 22.3 years of age. The best-fit model (cubic, quadratic, or first-order linear was identified at each vertex using mixed-effects models, with statistical correction for multiple comparisons using random field theory. Analyses were performed with and without controlling for total brain volume. These data are provided for reference and comparison with other databases. Further discussion and interpretation on cortical developmental trajectories can be found in the associated Ducharme et al.׳s article “Trajectories of cortical thickness maturation in normal brain development – the importance of quality control procedures” (Ducharme et al., 2015 [1].

  2. Effect of random microstructure on crack propagation in cortical bone tissue under dynamic loading

    International Nuclear Information System (INIS)

    Gao, X; Li, S; Adel-Wahab, A; Silberschmidt, V

    2013-01-01

    A fracture process in a cortical bone tissue depends on various factors, such as bone loss, heterogeneous microstructure, variation of its material properties and accumulation of microcracks. Therefore, it is crucial to comprehend and describe the effect of microstructure and material properties of the components of cortical bone on crack propagation in a dynamic loading regime. At the microscale level, osteonal bone demonstrates a random distribution of osteons imbedded in an interstitial matrix and surrounded by a thin layer known as cement line. Such a distribution of osteons can lead to localization of deformation processes. The global mechanical behavior of bone and the crack-propagation process are affected by such localization under external loads. Hence, the random distribution of microstructural features plays a key role in the fracture process of cortical bone. The purpose of this study is two-fold: firstly, to develop two-dimensional microstructured numerical models of cortical bone tissue in order to examine the interaction between the propagating crack and bone microstructure using an extended finite-element method under both quasi-static and dynamic loading conditions; secondly, to investigate the effect of randomly distributed microstructural constituents on the crack propagation processes and crack paths. The obtained results of numerical simulations showed the influence of random microstructure on the global response of bone tissue at macroscale and on the crack-propagation process for quasi-static and dynamic loading conditions

  3. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone - a feasibility study.

    Science.gov (United States)

    Marcián, Petr; Borák, Libor; Valášek, Jiří; Kaiser, Jozef; Florian, Zdeněk; Wolff, Jan

    2014-12-18

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant geometries and the levels of bone-to-implant contact (BIC) on the surrounding bone. Six mandibular bone segments demonstrating different grades of mandibular bone atrophy and various bone volume fractions (from 0.149 to 0.471) were imaged using a micro-CT device. The acquired bone STL models and implant (Brånemark, Straumann, Ankylos) were merged into a three-dimensional finite elements structure. The mean displacement value for all implants was 3.1 ±1.2 µm. Displacements were lower in the group with a strong BIC. The results indicated that the maximum strain values of cortical and cancellous bone increased with lower bone density. Strain distribution is the first and foremost dependent on the shape of bone and architecture of cancellous bone. The geometry of the implant, thread patterns, grade of bone atrophy and BIC all affect the displacement and micro-strain on the mandible bone. Preoperative finite element analysis could offer improved predictability in the long-term outlook of dental implant restorations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Assessment of compressive failure process of cortical bone materials using damage-based model.

    Science.gov (United States)

    Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R

    2017-02-01

    The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Spatial relationship between bone formation and mechanical stimulus within cortical bone: Combining 3D fluorochrome mapping and poroelastic finite element modelling.

    Science.gov (United States)

    Carrieroa, A; Pereirab, A F; Wilson, A J; Castagno, S; Javaheri, B; Pitsillides, A A; Marenzana, M; Shefelbine, S J

    2018-06-01

    Bone is a dynamic tissue and adapts its architecture in response to biological and mechanical factors. Here we investigate how cortical bone formation is spatially controlled by the local mechanical environment in the murine tibia axial loading model (C57BL/6). We obtained 3D locations of new bone formation by performing 'slice and view' 3D fluorochrome mapping of the entire bone and compared these sites with the regions of high fluid velocity or strain energy density estimated using a finite element model, validated with ex-vivo bone surface strain map acquired ex-vivo using digital image correlation. For the comparison, 2D maps of the average bone formation and peak mechanical stimulus on the tibial endosteal and periosteal surface across the entire cortical surface were created. Results showed that bone formed on the periosteal and endosteal surface in regions of high fluid flow. Peak strain energy density predicted only the formation of bone periosteally. Understanding how the mechanical stimuli spatially relates with regions of cortical bone formation in response to loading will eventually guide loading regime therapies to maintain or restore bone mass in specific sites in skeletal pathologies.

  6. Disuse exaggerates the detrimental effects of alcohol on cortical bone

    Science.gov (United States)

    Hefferan, Theresa E.; Kennedy, Angela M.; Evans, Glenda L.; Turner, Russell T.

    2003-01-01

    BACKGROUND: Alcohol abuse is associated with an increased risk for osteoporosis. However, comorbidity factors may play an important role in the pathogenesis of alcohol-related bone fractures. Suboptimal mechanical loading of the skeleton, an established risk factor for bone loss, may occur in some alcohol abusers due to reduced physical activity, muscle atrophy, or both. The effect of alcohol consumption and reduced physical activity on bone metabolism has not been well studied. The purpose of this study was to determine whether mechanical disuse alters bone metabolism in a rat model for chronic alcohol abuse. METHODS: Alcohol was administered in the diet (35% caloric intake) of 6-month-old male rats for 4 weeks. Rats were hindlimb-unloaded the final 2 weeks of the experiment to prevent dynamic weight bearing. Afterward, cortical bone histomorphometry was evaluated at the tibia-fibula synostosis. RESULTS: At the periosteal surface of the tibial diaphysis, alcohol and hindlimb unloading independently decreased the mineralizing perimeter, mineral apposition rate, and bone formation rate. In addition, alcohol, but not hindlimb unloading, increased endocortical bone resorption. The respective detrimental effects of alcohol and hindlimb unloading to inhibit bone formation were additive; there was no interaction between the two variables. CONCLUSIONS: Reduced weight bearing accentuates the detrimental effects of alcohol on cortical bone in adult male rats by further inhibiting bone formation. This finding suggests that reduced physical activity may be a comorbidity factor for osteoporosis in alcohol abusers.

  7. The micro-damage process zone during transverse cortical bone fracture: No ears at crack growth initiation.

    Science.gov (United States)

    Willett, Thomas; Josey, David; Lu, Rick Xing Ze; Minhas, Gagan; Montesano, John

    2017-10-01

    Apply high-resolution benchtop micro-computed tomography (micro-CT) to gain greater understanding and knowledge of the formation of the micro-damage process zone formed during traverse fracture of cortical bone. Bovine cortical bone was cut into single edge notch (bending) fracture testing specimens with the crack on the transverse plane and oriented to grow in the circumferential direction. We used a multi-specimen technique and deformed the specimens to various individual secant modulus loss levels (P-values) up to and including maximum load (Pmax). Next, the specimens were infiltrated with a BaSO 4 precipitation stain and scanned at 3.57-μm isotropic voxel size using a benchtop high resolution-micro-CT. Measurements of the micro-damage process zone volume, width and height were made. These were compared with the simple Irwin's process zone model and with finite element models. Electron and confocal microscopy confirmed the formation of BaSO 4 precipitate in micro-cracks and other porosity, and an interesting novel mechanism similar to tunneling. Measurable micro-damage was detected at low P values and the volume of the process zone increased according to a second order polynomial trend. Both width and height grew linearly up to Pmax, at which point the process zone cross-section (perpendicular to the plane of the crack) was almost circular on average with a radius of approximately 550µm (approximately one quarter of the unbroken ligament thickness) and corresponding to the shape expected for a biological composite under plane stress conditions. This study reports details of the micro-damage fracture process zone previously unreported for cortical bone. High-resolution micro-CT enables 3D visualization and measurement of the process zone and confirmation that the crack front edge and process zone are affected by microstructure. It is clear that the process zone for the specimens studied grows to be meaningfully large, confirming the need for the J

  8. Mechanical properties of bovine cortical bone based on the automated ball indentation technique and graphics processing method.

    Science.gov (United States)

    Zhang, Airong; Zhang, Song; Bian, Cuirong

    2018-02-01

    Cortical bone provides the main form of support in humans and other vertebrates against various forces. Thus, capturing its mechanical properties is important. In this study, the mechanical properties of cortical bone were investigated by using automated ball indentation and graphics processing at both the macroscopic and microstructural levels under dry conditions. First, all polished samples were photographed under a metallographic microscope, and the area ratio of the circumferential lamellae and osteons was calculated through the graphics processing method. Second, fully-computer-controlled automated ball indentation (ABI) tests were performed to explore the micro-mechanical properties of the cortical bone at room temperature and a constant indenter speed. The indentation defects were examined with a scanning electron microscope. Finally, the macroscopic mechanical properties of the cortical bone were estimated with the graphics processing method and mixture rule. Combining ABI and graphics processing proved to be an effective tool to obtaining the mechanical properties of the cortical bone, and the indenter size had a significant effect on the measurement. The methods presented in this paper provide an innovative approach to acquiring the macroscopic mechanical properties of cortical bone in a nondestructive manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Influence of basis images and skull position on evaluation of cortical bone thickness in cone beam computed tomography.

    Science.gov (United States)

    Nascimento, Monikelly do Carmo Chagas; Boscolo, Solange Maria de Almeida; Haiter-Neto, Francisco; Santos, Emanuela Carla Dos; Lambrichts, Ivo; Pauwels, Ruben; Jacobs, Reinhilde

    2017-06-01

    The aim of this study was to assess the influence of the number of basis images and the orientation of the skull on the evaluation of cortical alveolar bone in cone beam computed tomography (CBCT). Eleven skulls with a total of 59 anterior teeth were selected. CBCT images were acquired by using 4 protocols, by varying the rotation of the tube-detector arm and the orientation of the skull (protocol 1: 360°/0°; protocol 2: 180°/0°; protocol 3: 180°/90°; protocol 4: 180°/180°). Observers evaluated cortical bone as absent, thin, or thick. Direct observation of the skulls was used as the gold standard. Intra- and interobserver agreement, as well as agreement of scoring between the 3 bone thickness classifications, were calculated by using the κ statistic. The Wilcoxon signed-rank test was used to compare the 4 protocols. For lingual cortical bone, protocol 1 showed no statistical difference from the gold standard. Higher reliability was found in protocol 3 for absent (κ = 0.80) and thin (κ = 0.47) cortices, whereas for thick cortical bone, protocol 2 was more consistent (κ = 0.60). In buccal cortical bone, protocol 1 obtained the highest agreement for absent cortices (κ = 0.61), whereas protocol 4 was better for thin cortical plates (κ = 0.38) and protocol 2 for thick cortical plates (κ = 0.40). No consistent effect of the number of basis images or head orientation for visual detection of alveolar bone was detected, except for lingual cortical bone, for which full rotation scanning showed improved visualization. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Weibull analysis of fracture test data on bovine cortical bone: influence of orientation.

    Science.gov (United States)

    Khandaker, Morshed; Ekwaro-Osire, Stephen

    2013-01-01

    The fracture toughness, K IC, of a cortical bone has been experimentally determined by several researchers. The variation of K IC values occurs from the variation of specimen orientation, shape, and size during the experiment. The fracture toughness of a cortical bone is governed by the severest flaw and, hence, may be analyzed using Weibull statistics. To the best of the authors' knowledge, however, no studies of this aspect have been published. The motivation of the study is the evaluation of Weibull parameters at the circumferential-longitudinal (CL) and longitudinal-circumferential (LC) directions. We hypothesized that Weibull parameters vary depending on the bone microstructure. In the present work, a two-parameter Weibull statistical model was applied to calculate the plane-strain fracture toughness of bovine femoral cortical bone obtained using specimens extracted from CL and LC directions of the bone. It was found that the Weibull modulus of fracture toughness was larger for CL specimens compared to LC specimens, but the opposite trend was seen for the characteristic fracture toughness. The reason for these trends is the microstructural and extrinsic toughening mechanism differences between CL and LC directions bone. The Weibull parameters found in this study can be applied to develop a damage-mechanics model for bone.

  11. Does cortical bone thickness in the last sacral vertebra differ among tail types in primates?

    Science.gov (United States)

    Nishimura, Abigail C; Russo, Gabrielle A

    2017-04-01

    The external morphology of the sacrum is demonstrably informative regarding tail type (i.e., tail presence/absence, length, and prehensility) in living and extinct primates. However, little research has focused on the relationship between tail type and internal sacral morphology, a potentially important source of functional information when fossil sacra are incomplete. Here, we determine if cortical bone cross-sectional thickness of the last sacral vertebral body differs among tail types in extant primates and can be used to reconstruct tail types in extinct primates. Cortical bone cross-sectional thickness in the last sacral vertebral body was measured from high-resolution CT scans belonging to 20 extant primate species (N = 72) assigned to tail type categories ("tailless," "nonprehensile short-tailed," "nonprehensile long-tailed," and "prehensile-tailed"). The extant dataset was then used to reconstruct the tail types for four extinct primate species. Tailless primates had significantly thinner cortical bone than tail-bearing primates. Nonprehensile short-tailed primates had significantly thinner cortical bone than nonprehensile long-tailed primates. Cortical bone cross-sectional thickness did not distinguish between prehensile-tailed and nonprehensile long-tailed taxa. Results are strongly influenced by phylogeny. Corroborating previous studies, Epipliopithecus vindobonensis was reconstructed as tailless, Archaeolemur edwardsi as long-tailed, Megaladapis grandidieri as nonprehensile short-tailed, and Palaeopropithecus kelyus as nonprehensile short-tailed or tailless. Results indicate that, in the context of phylogenetic clade, measures of cortical bone cross-sectional thickness can be used to allocate extinct primate species to tail type categories. © 2017 Wiley Periodicals, Inc.

  12. MicroCT evaluation of bone mineral density loss in human bones

    International Nuclear Information System (INIS)

    Nogueira, Liebert P.; Braz, Delson; Lopes, Ricardo T.; Barroso, Regina C.; Oliveira, Luis F.

    2007-01-01

    Bone is a connective tissue largely composed of an organic protein, collagen and the inorganic mineral hydroxyapatite [Ca 10 (PO 4 ) 6 OH 2 ], which combine to provide a mechanical and supportive role in the body. Depending on the orientation of collagen fibers, two types of bone can be distinguished: trabecular and cortical bone. Degree of mineralization is considered an important feature of bone quality. Changes in the degree of mineralization is generally due to osteoporosis, but many recent studies have already shown that alterations in degree of mineralization can occur due to a large variety of factors. The transmission X-ray microtomography is one of the most popular methods, which provides the spatial distribution of the total absorption coefficient inside the sample. The aim of this study was to investigate the suitability of using microCT as a supplementary tool for the diagnosis of the health status of human bones. Eleven samples were constructed simulating the physiological range of bone mineral density (BMD) found in cortical human bone. The samples represent healthy mixtures of swine compact bone dried at room temperature, powdered and mixed with fat (0 - 100 % by mass). The samples were imaged by a microfocus tube (Fein-Focus) with focal size of about 60 μm (±5%), and a CCD camera (0.143 mm pixel size) coupled with an intensifier tube with fluoroscope screen at the Nuclear Instrumentation Laboratory (COPPE/UFRJ), Brazil. The images were reconstructed and treated with suitable software developed at the Nuclear Instrumentation Laboratory. The mineral content in cortical bone is defined by the volume of dry, fat-free bone per unit bulk volume of the bone. The volumes were calculated from the bone density using the relationship between volume and density. The densities of fat and bone were taken to be 0.95 g.cm -3 and 1.92 g.cm -3 respectively. The correlation of the measured absorption coefficient with the mineral content in the samples was then

  13. MicroCT evaluation of bone mineral density loss in human bones

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Liebert P.; Braz, Delson; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mails: lnogueira@con.ufrj.br; Barroso, Regina C.; Oliveira, Luis F. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail: cely@uerj.br

    2007-07-01

    Bone is a connective tissue largely composed of an organic protein, collagen and the inorganic mineral hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}OH{sub 2}], which combine to provide a mechanical and supportive role in the body. Depending on the orientation of collagen fibers, two types of bone can be distinguished: trabecular and cortical bone. Degree of mineralization is considered an important feature of bone quality. Changes in the degree of mineralization is generally due to osteoporosis, but many recent studies have already shown that alterations in degree of mineralization can occur due to a large variety of factors. The transmission X-ray microtomography is one of the most popular methods, which provides the spatial distribution of the total absorption coefficient inside the sample. The aim of this study was to investigate the suitability of using microCT as a supplementary tool for the diagnosis of the health status of human bones. Eleven samples were constructed simulating the physiological range of bone mineral density (BMD) found in cortical human bone. The samples represent healthy mixtures of swine compact bone dried at room temperature, powdered and mixed with fat (0 - 100 % by mass). The samples were imaged by a microfocus tube (Fein-Focus) with focal size of about 60 {mu}m ({+-}5%), and a CCD camera (0.143 mm pixel size) coupled with an intensifier tube with fluoroscope screen at the Nuclear Instrumentation Laboratory (COPPE/UFRJ), Brazil. The images were reconstructed and treated with suitable software developed at the Nuclear Instrumentation Laboratory. The mineral content in cortical bone is defined by the volume of dry, fat-free bone per unit bulk volume of the bone. The volumes were calculated from the bone density using the relationship between volume and density. The densities of fat and bone were taken to be 0.95 g.cm{sup -3} and 1.92 g.cm{sup -3} respectively. The correlation of the measured absorption coefficient with the mineral content

  14. Insulin Resistance and the IGF-I-Cortical Bone Relationship in Children Ages 9 to 13 Years.

    Science.gov (United States)

    Kindler, Joseph M; Pollock, Norman K; Laing, Emma M; Oshri, Assaf; Jenkins, Nathan T; Isales, Carlos M; Hamrick, Mark W; Ding, Ke-Hong; Hausman, Dorothy B; McCabe, George P; Martin, Berdine R; Hill Gallant, Kathleen M; Warden, Stuart J; Weaver, Connie M; Peacock, Munro; Lewis, Richard D

    2017-07-01

    IGF-I is a pivotal hormone in pediatric musculoskeletal development. Although recent data suggest that the role of IGF-I in total body lean mass and total body bone mass accrual may be compromised in children with insulin resistance, cortical bone geometric outcomes have not been studied in this context. Therefore, we explored the influence of insulin resistance on the relationship between IGF-I and cortical bone in children. A secondary aim was to examine the influence of insulin resistance on the lean mass-dependent relationship between IGF-I and cortical bone. Children were otherwise healthy, early adolescent black and white boys and girls (ages 9 to 13 years) and were classified as having high (n = 147) or normal (n = 168) insulin resistance based on the homeostasis model assessment of insulin resistance (HOMA-IR). Cortical bone at the tibia diaphysis (66% site) and total body fat-free soft tissue mass (FFST) were measured by peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA), respectively. IGF-I, insulin, and glucose were measured in fasting sera and HOMA-IR was calculated. Children with high HOMA-IR had greater unadjusted IGF-I (p insulin resistance as a potential suppressor of IGF-I-dependent cortical bone development, though prospective studies are needed. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  15. Quantitative CBCT evaluation of maxillary and mandibular cortical bone thickness and density variability for orthodontic miniplate placement.

    Science.gov (United States)

    Rossi, Margherita; Bruno, Giovanni; De Stefani, Alberto; Perri, Alessandro; Gracco, Antonio

    2017-12-01

    To assess whether cortical bone thickness and density vary in relation to age, sex and skeletal pattern at the maxillary and mandibular areas suitable for miniplates placement for orthodontic purposes. CBCT of 92 subjects (42 males and 50 females) with skeletal class I, II or III malocclusion, divided between adolescents and adults, were examined. InVivoDental ® software (Anatomage Inc, USA) was used to measure 34 maxillary areas and 40 mandibular areas per side. Values obtained were then compared between the groups of subjects. Statistical analysis was performed using the non-parametric Wilcoxon-Mann-Whitney rank-sum test for independent samples. No significant differences were found in the cortical bone thickness values between the three skeletal patterns, and according to sex and age. Both maxilla and mandible showed an increase in cortical bone thickness from the anterior towards the posterior regions, and from the alveolar boneto the basal bone. Cortical bone density significantly varied in relation to the subject's age, with adults always showing higher values. Slight clinically significant differences were found between the three skeletal patterns and sex. In terms of cortical bone thickness, age, sex and skeletal pattern do not represent valid decision criteria for the evaluation of the best insertion areas for miniplates, while in terms of cortical bone density, only age is useful as a decision criterion. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.

  16. The relationship between age and the mandibular cortical bone thickness by using panoramic radiograph

    International Nuclear Information System (INIS)

    Kim, Yun Suk; Kim, Kyoung A; Koh, Kwang Joon

    2010-01-01

    This study was to determine the relationship between age and the mandibular cortical bone thickness on panoramic radiograph. Panoramic radiographs of 360 patients (180 men and 180 women) over 20 years old, who visited the Chonbuk National University Hospital from January to December in 2007, were assessed. The subjects were divided into 5 age groups. Five indices such as cortical bone thickness at the gonion (GI), antegonion (AI), and below the mental foramen (MI), the panoramic mandibular index (PMI), the mandibular cortical index (MCI) were measured on panoramic radiographs. All five indices including GI, AI, MI, PMI, and MCI showed significant differences between third decade and over 8 decade groups (p,0.05). PMI, MI and GI showed significant differences with gender statistically (p<0.05). The mandibular cortical bone thickness showed negative correlation with age, and the value of the thickness (PMI, MI, and GI) was greater in men than in women.

  17. Troglitazone treatment increases bone marrow adipose tissue volume but does not affect trabecular bone volume in mice

    DEFF Research Database (Denmark)

    Erikstrup, Lise Tornvig; Mosekilde, Leif; Justesen, J

    2001-01-01

    proliferator activated receptor-gamma (PPARgamma). Histomorphometric analysis of proximal tibia was performed in order to quantitate the amount of trabecular bone volume per total volume (BV/TV %), adipose tissue volume per total volume (AV/TV %), and hematopoietic marrow volume per total volume (HV......Aging is associated with decreased trabecular bone mass and increased adipocyte formation in bone marrow. As osteoblasts and adipocytes share common precursor cells present in the bone marrow stroma, it has been proposed that an inverse relationship exists between adipocyte and osteoblast....../TV %) using the point-counting technique. Bone size did not differ between the two groups. In troglitazone-treated mice, AV/TV was significantly higher than in control mice (4.7+/-2.1% vs. 0.2+/-0.3%, respectively, mean +/- SD, P

  18. Noncontact ultrasound imaging applied to cortical bone phantoms.

    Science.gov (United States)

    Bulman, J B; Ganezer, K S; Halcrow, P W; Neeson, Ian

    2012-06-01

    The purpose of this paper was to take the first steps toward applying noncontact ultrasound (NCU) to the tasks of monitoring osteoporosis and quantitative ultrasound imaging (QUS) of cortical bone. The authors also focused on the advantages of NCU, such as its lack of reliance on a technologist to apply transducers and a layer of acoustical coupling gel, the ability of the transducers to operate autonomously as specified by preprogrammed software, and the likely reduction in statistical and systematic errors associated with the variability in the pressure applied by the clinician to the transmitting transducer that NCU might provide. The authors also undertook this study in order to find additional applications of NCU beyond its past limited usage in assessing the severity of third degree burns. A noncontact ultrasound imaging system using a pair of specially designed broadband, 1.5 MHz noncontact piezoelectric transducers and cortical bone phantoms, were used to determine bone mineral density (BMD), speed of sound (SOS), integrated response (IR), and ultrasonic transmittance. Air gaps of greater than 3 cm, two transmission and two reflection paths, and a digital signal processor were also used in the collection of data from phantoms of nominal mass densities that varied from 1.17 to 2.25 g/cm(3) and in bone mineral density from 0 to 1.7 g/cm(3). Good correlations between known BMD and measured SOS, IR, and transmittance were obtained for all 17 phantoms, and methods for quantifying and minimizing sources of systematic errors were outlined. The BMD of the phantom sets extended through most of the in vivo range found in cortical bone. A total of 16-20 repeated measurements of the SOS, thickness, and IR for the phantom set that were conducted over a period of several months showed a small variation in the range of measurements of ±1%-2%. These NCU data were shown to be in agreement with similar results using contact ultrasound to be within 1%-2%. Transmittance

  19. How Tough is Human Cortical Bone? In-Situ Measurements on Realistically Short Cracks

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, Robert O; Koester, K. J.; Ager III, J. W.; Ritchie, R.O.

    2008-05-10

    Bone is more difficult to break than to split. Although this is well known, and many studies exist on the behavior of long cracks in bone, there is a need for data on the orientation-dependent crack-growth resistance behavior of human cortical bone which accurately assesses its toughness at appropriate size-scales. Here we use in-situ mechanical testing in the scanning electron microscope and x-ray computed tomography to examine how physiologically-pertinent short (<600 mu m) cracks propagate in both the transverse and longitudinal orientations in cortical bone, using both crack-deflection/twist mechanics and nonlinear-elastic fracture mechanics to determine crack-resistance curves. We find that after only 500 mu m of cracking, the driving force for crack propagation was more than five times higher in the transverse (breaking) direction than in the longitudinal (splitting) direction due to major crack deflections/twists principally at cement sheathes. Indeed, our results show that the true transverse toughness of cortical bone is far higher than previously reported. However, the toughness in the longitudinal orientation, where cracks tend to follow the cement lines, is quite low at these small crack sizes; it is only when cracks become several millimeters in length that bridging mechanisms can develop leading to the (larger-crack) toughnesses generally quoted for bone.

  20. Reduced bone formation markers, and altered trabecular and cortical bone mineral densities of non-paretic femurs observed in rats with ischemic stroke: A randomized controlled pilot study.

    Directory of Open Access Journals (Sweden)

    Karen N Borschmann

    Full Text Available Immobility and neural damage likely contribute to accelerated bone loss after stroke, and subsequent heightened fracture risk in humans.To investigate the skeletal effect of middle cerebral artery occlusion (MCAo stroke in rats and examine its utility as a model of human post-stroke bone loss.Twenty 15-week old spontaneously hypertensive male rats were randomized to MCAo or sham surgery controls. Primary outcome: group differences in trabecular bone volume fraction (BV/TV measured by Micro-CT (10.5 micron istropic voxel size at the ultra-distal femur of stroke affected left legs at day 28. Neurological impairments (stroke behavior and foot-faults and physical activity (cage monitoring were assessed at baseline, and days 1 and 27. Serum bone turnover markers (formation: N-terminal propeptide of type 1 procollagen, PINP; resorption: C-terminal telopeptide of type 1 collagen, CTX were assessed at baseline, and days 7 and 27.No effect of stroke was observed on BV/TV or physical activity, but PINP decreased by -24.5% (IQR -34.1, -10.5, p = 0.046 at day 27. In controls, cortical bone volume (5.2%, IQR 3.2, 6.9 and total volume (6.4%, IQR 1.2, 7.6 were higher in right legs compared to left legs, but these side-to-side differences were not evident in stroke animals.MCAo may negatively affect bone formation. Further investigation of limb use and physical activity patterns after MCAo is required to determine the utility of this current model as a representation of human post-stroke bone loss.

  1. Correlation between the thickness of the crestal and buccolingual cortical bone at varying depths and implant stability quotients.

    Directory of Open Access Journals (Sweden)

    Kanthanat Chatvaratthana

    Full Text Available Resonance frequency analysis (RFA is clinically used in dentistry to access the stiffness of dental implants in surrounding bone. However, the clear advantages and disadvantages of this method are still inconclusive. The aim of this study was to investigate and compare implant stability quotient (ISQ values obtained from RFA with parameters obtained from a cone beam computed tomography (CBCT scan of the same region.Nineteen implants (Conelog were inserted in the posterior maxillary and mandibular partially edentulous regions of 16 patients. At the time of implant placement, the ISQ values were obtained using RFA (Osstell. CBCT was used to measure the thickness of the crestal, cortical, buccolingual cortical, and cancellous bone at 3, 6, and 9 mm below the crestal bone level, as indicated by radiographic markers. The ratio of the thickness of the cortical to cancellous bone at varying depths was also calculated and classified into 4 groups (Group 1-4.There was a strong correlation between the crestal cortical bone thickness and ISQ values (P<0.001. The thickness of the buccolingual cortical bone and ratio of the cortical to cancellous bone thickness at 3 mm were significantly related to the ISQ (P = 0.018 and P = 0.034, respectively. Furthermore, the ISQs in Group 1 were the highest compared with those in Group 2 and Group 3, whereas the CBCT parameters at 6 and 9 mm did not have any specific correlation with the ISQ values.This study showed that the ISQ values obtained from RFA highly correlated with the quantity and quality of bone 3 mm below the crestal bone level. The correlation between the ISQ and bone surrounding the implant site was dependent on the depth of measurement. Therefore, RFA can help to predict the marginal bone level, as confirmed in this study.

  2. Cortical thickness and subcortical brain volumes in professional rugby league players

    Directory of Open Access Journals (Sweden)

    Magdalena Wojtowicz

    Full Text Available Purpose: The purpose of this study was to examine cortical thickness and subcortical volumes in professional rugby players with an extensive history of concussions compared to control subjects. Method: Participants included 24 active and former professional rugby league players [Age M(SD = 33.3(6.3; Range = 21–44] with an extensive history of concussion and 18 age- and education-matched controls with no history of neurotrauma or participation in contact sports. Participants underwent T1-weighted imaging and completed a neuropsychological battery, including two tests of memory. Whole brain cortical thickness analysis and structural volume analysis was performed using FreeSurfer version 6.0. Results: Professional rugby league players reported greater alcohol consumption (p < .001 and had significantly worse delayed recall of a visually complex design (p = .04. They did not differ from controls on other clinical outcome measures. There were no differences in cortical thickness between the groups. Professional players had smaller whole brain (p = .003, bilateral hippocampi (ps = .03, and left amygdala volumes (p = .01 compared to healthy controls. Within the players group, there were significant associations between greater alcohol use and smaller bilateral hippocampi and left amygdala volumes. There were no associations between structural volumes and history of concussions or memory performance. Conclusions: The literature examining cortical thickness in athletes with a history of multiple concussions is mixed. We did not observe differences in cortical thickness in professional rugby league players compared to controls. However, smaller subcortical volumes were found in players that were, in part, associated with greater alcohol consumption. Keywords: Volumetric MRI, Cortical thickness, Concussion, Brain morphometry, Athletes, Rugby

  3. Femoral Cortical Bone Mineral Density and Biomechanical Properties in Sheep Consuming an Acidifying Diet

    Directory of Open Access Journals (Sweden)

    Eileen S. Hackett

    2009-01-01

    Full Text Available Dietary acidity is a likely contributor to the development of osteoporosis. Dietary acidosis in an ovine model has effects on trabecular bone that have been previously shown to mimic human osteoporosis. Effects on cortical bone using this model have not been investigated. The objective of this study was to examine the effects of dietary acidosis on cortical bone mineral density and material properties. Skeletally mature ovariectomized (OVX sheep consumed either a normal diet (ND or a metabolic acidosis diet (MA for 6 or 12 months. Whole femoral and cortical bone beam BMD was determined using dual energy x-ray absorptiometry (DEXA. Beams were then subjected to three point flexure monotonically to failure to determine strength and modulus and then ashed to determine percent mineralization. Femoral BMD in adult OVX ND 6 mo sheep was significantly greater than those in the non-OVX ND group. The BMD in the MA groups was lower than the control non-OVX ND group. Cortical beams had significantly decreased modulus in all MA and OVX groups when compared with the non-OVX ND group and a tendency towards decreased strength in all groups with significance only in the OVX ND 6 mo sheep. Percent mineralization increased in MA and OVX groups when compared to the non-OVX ND group and was significantly increased in the OVX ND 6 mo and OVX MA 12 mo groups. A significant correlation was seen between BMD of the beam and breaking strength and modulus. Dietary acidity impacts cortical bone and results in reduced material properties that may contribute to failure.

  4. Computed tomography to evaluate the association of fragmented heterolog cortical bone and methylmethacrylate to repare segmental bone defect produced in tibia of rabbits

    International Nuclear Information System (INIS)

    Freitas, S.H.; Doria, R.G.S.; Mendonca, F.S.; Santos, M.D.; Moreira, R.; Simoes, R.S.; Camargo, L.M.; Simoes, M.J.; Marques, A.T.C.

    2012-01-01

    A 6mm segmental defect was performed on the metaphyseal region of the tibia of 12 rabbits and the autoclaved fragmented heterolog cortical bone conserved in glycerin (98%) and methylmethacrylate was used as a bone graft for the reconstruction. The graft was placed in the receptor bed and its integration was evaluated by computed tomography after 30, 60 and 90 days. There was gradual bone graft incorporation in the receptor bed during the time in 100% of the cases. Fragmented cortical bone heterograft and methylmethacrylate was biologically compatible and promotes bone defect reparation without signs of infection, migration and or rejection, featuring a new option of osseous substitute to fill in bone defects. (author)

  5. Safe Harvesting of Outer Table Parietal Bone Grafts Using an Oscillating Saw and a Bone Scraper : A Refinement of Technique for Harvesting Cortical and "Cancellous"-Like Calvarial Bone

    NARCIS (Netherlands)

    Schortinghuis, Jurjen; Putters, Thomas F.; Raghoebar, Gerry M.

    Calvarial bone is a readily available source of bone for preimplantation augmentation procedures of the alveolar process. However, the calvaria consist mostly of cortical bone, and cancellous bone of the diploic space is scarce. A bone scraper (Safescraper Twist; META, Reggio Emilia, Italy) was used

  6. The Role of Water Compartments in the Material Properties of Cortical Bone.

    Science.gov (United States)

    Granke, Mathilde; Does, Mark D; Nyman, Jeffry S

    2015-09-01

    Comprising ~20% of the volume, water is a key determinant of the mechanical behavior of cortical bone. It essentially exists in two general compartments: within pores and bound to the matrix. The amount of pore water-residing in the vascular-lacunar-canalicular space-primarily reflects intracortical porosity (i.e., open spaces within the matrix largely due to Haversian canals and resorption sites) and as such is inversely proportional to most mechanical properties of bone. Movement of water according to pressure gradients generated during dynamic loading likely confers hydraulic stiffening to the bone as well. Nonetheless, bound water is a primary contributor to the mechanical behavior of bone in that it is responsible for giving collagen the ability to confer ductility or plasticity to bone (i.e., allows deformation to continue once permanent damage begins to form in the matrix) and decreases with age along with fracture resistance. Thus, dehydration by air-drying or by solvents with less hydrogen bonding capacity causes bone to become brittle, but interestingly, it also increases stiffness and strength across the hierarchical levels of organization. Despite the importance of matrix hydration to fracture resistance, little is known about why bound water decreases with age in hydrated human bone. Using (1)H nuclear magnetic resonance (NMR), both bound and pore water concentrations in bone can be measured ex vivo because the proton relaxation times differ between the two water compartments, giving rise to two distinct signals. There are also emerging techniques to measure bound and pore water in vivo with magnetic resonance imaging (MRI). The NMR/MRI-derived bound water concentration is positively correlated with both the strength and toughness of hydrated bone and may become a useful clinical marker of fracture risk.

  7. Propagation of a dorsal cortical fracture of the third metacarpal bone in two horses

    International Nuclear Information System (INIS)

    Spurlock, G.H.

    1988-01-01

    Seemingly, propagation of a dorsal cortical fracture in the third metacarpal bone developed after continued race performance in 2 horses. Historically, both horses had intermittent lameness that had responded to nonsteroidal anti-inflammatory drugs and brief rest periods. However, lameness in both horses had increased in severity. Radiography revealed a dorsal cortical fracture of the third metacarpal bone, with propagation of the fracture plane proximally. Fractures were incomplete and healed with stall rest in both horses

  8. The effect of high voltage, high frequency pulsed electric field on slain ovine cortical bone.

    Science.gov (United States)

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-04-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  9. Effects of treadmill exercise on cortical bone in the third metacarpus of young horses

    International Nuclear Information System (INIS)

    McCarthy, R.N.; Jeffcott, L.B.

    1992-01-01

    The effects of exercise and relative inactivity on cortical bone were compared in young horses. Two groups were used; one was given a 14-week programme of exercise (n = 6) and the other kept as unexercised controls (n = 6). The first nine weeks of exercise involved trotting and cantering (2 to 4 km d-1 at speeds up to 12 m s-1) on a treadmill set at an incline of 3 degrees. Over the next five weeks the horses were trained at near maximal speeds (that is, up to 14.5 m s-1) with no incline of the treadmill. At the end of the programme marked differences in cortical porosity and distribution of subperiosteal osteogenesis at the mid-shaft of the third metacarpal bone were found between the groups. Histomorphometrical examination of the dorsal cortex showed minimal bone remodelling in the exercised horses, but extensive modelling as evidenced by the large amount of subperiosteal bone formation. In contrast, the unexercised horses had significantly more bone remodelling and less formation of subperiosteal bone. The histomorphometric and microradiographic findings provided an explanation for changes in the non-invasive bone measurements that occurred during training. Bone mineral content of the mid-metacarpus was found to increase more in the exercised than the unexercised horses despite a lower overall growth in bodyweight. In those horses that completed the full training programme, ultrasound speed increased significantly by the end of the training programme. It remained unchanged in the horse that did not complete the full exercise programme and decreased slightly in the unexercised horses. The difference in ultrasound speed between the groups was considered to reflect differences in intracortical bone porosity, endosteal bone formation and alterations in skin thickness. The stiffness of cortical bone increased significantly in the exercised horses but remained unaltered in the unexercised horses

  10. Neutron activation analysis of medullar and cortical bone tissues from animals

    International Nuclear Information System (INIS)

    Takata, Marcelo Kazuo; Saiki, Mitiko

    2000-01-01

    In this work, neutron activation analysis was applied in the determination of the elements Ba, Br, Ca, Cl, Cr, Fe, K, Mg, Mn, Na, P, Rb, Sb, Sc, Sr and Zn present in animal bone tissues. The obtained results indicated a significant difference between the elemental concentrations present in medullar and cortical tissues. The results obtained for bone tissues from distinct animal species were also different. (author)

  11. The resistance of cortical bone tissue to failure under cyclic loading is reduced with alendronate.

    Science.gov (United States)

    Bajaj, Devendra; Geissler, Joseph R; Allen, Matthew R; Burr, David B; Fritton, J C

    2014-07-01

    Bisphosphonates are the most prescribed preventative treatment for osteoporosis. However, their long-term use has recently been associated with atypical fractures of cortical bone in patients who present with low-energy induced breaks of unclear pathophysiology. The effects of bisphosphonates on the mechanical properties of cortical bone have been exclusively studied under simple, monotonic, quasi-static loading. This study examined the cyclic fatigue properties of bisphosphonate-treated cortical bone at a level in which tissue damage initiates and is accumulated prior to frank fracture in low-energy situations. Physiologically relevant, dynamic, 4-point bending applied to beams (1.5 mm × 0.5 mm × 10 mm) machined from dog rib (n=12/group) demonstrated mechanical failure and micro-architectural features that were dependent on drug dose (3 groups: 0, 0.2, 1.0mg/kg/day; alendronate [ALN] for 3 years) with cortical bone tissue elastic modulus (initial cycles of loading) reduced by 21% (pbone remodeling, such as the size of osteons (-14%; ALN1.0: 10.5±1.8, VEH: 12.2±1.6, ×10(3) μm2; pbone tissue are altered by high-dose ALN treatment and contribute to reduced mechanical properties under cyclic loading conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Cortical bone resorption rate in elderly persons: Estimates from long-term in vivo measurements of 90Sr in the skeleton

    Energy Technology Data Exchange (ETDEWEB)

    Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.; Anspaugh, L. R.; Napier, Bruce A.

    2012-06-01

    The rate of cortical bone resorption was assessed from long-term in vivo measurements of 90Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of 90Sr were conducted with a whole body counter for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of 90Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based on the use of accidentally ingested 90Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.

  13. Cortical bone resorption rate in elderly persons: Estimates from long-term in vivo measurements of 90Sr in the skeleton

    International Nuclear Information System (INIS)

    Shagina, N.B.; Tolstykh, E.I.; Degteva, M.O.; Anspaugh, L.R.; Napier, Bruce A.

    2012-01-01

    The rate of cortical bone resorption was assessed from long-term in vivo measurements of 90Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of 90Sr were conducted with a whole body counter for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of 90Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based on the use of accidentally ingested 90Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.

  14. A case of monostotic fibrous dysplasia of proximal femur managed with curettage and cortical bone grafting

    Directory of Open Access Journals (Sweden)

    A D Sud

    2013-01-01

    Full Text Available We present a case report of a young military personnel with monostotic fibrous dysplasia of proximal femur with painful, dysplasticlesion of the femoral neck and fatigue fracture who underwent cortical bone grafting using autogenous fibular strut graft and iliac crest bone graft. The fibular cortical grafts was used to bridge the lesion in the femoral neck and were securely anchored to the normal bone of the lateral femoral cortex and a head of the femur. No supplemental internal fixation was required.

  15. Age-related changes in trabecular and cortical bone microstructure.

    Science.gov (United States)

    Chen, Huayue; Zhou, Xiangrong; Fujita, Hiroshi; Onozuka, Minoru; Kubo, Kin-Ya

    2013-01-01

    The elderly population has substantially increased worldwide. Aging is a complex process, and the effects of aging are myriad and insidious, leading to progressive deterioration of various organs, including the skeleton. Age-related bone loss and resultant osteoporosis in the elderly population increase the risk for fractures and morbidity. Osteoporosis is one of the most common conditions associated with aging, and age is an independent risk factor for osteoporotic fractures. With the development of noninvasive imaging techniques such as computed tomography (CT), micro-CT, and high resolution peripheral quantitative CT (HR-pQCT), imaging of the bone architecture provides important information about age-related changes in bone microstructure and estimates of bone strength. In the past two decades, studies of human specimens using imaging techniques have revealed decreased bone strength in older adults compared with younger adults. The present paper addresses recently studied age-related changes in trabecular and cortical bone microstructure based primarily on HR-pQCT and micro-CT. We specifically focus on the three-dimensional microstructure of the vertebrae, femoral neck, and distal radius, which are common osteoporotic fracture sites.

  16. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.

  17. [The periosteum: the "umbilical cord" of bone. Quantification of the blood supply of cortical bone of periosteal origin].

    Science.gov (United States)

    Chanavaz, M

    1995-01-01

    The Periosteum or periosteal membrane is a continuous composite fibroelastic covering membrane of the bone to which it is intimately linked. It consists of multipotent mesodermal cells (11, 15). Although the bone cortex is the main beneficiary of the principal anatomical and physiological functions of the periosteal membrane, the behaviour of the entire bone remains closely influenced by the periosteal activity. These principal functions are related to the cortical blood supply, osteogenesis, muscle and ligament attachments. Through its elastic and contractile nature, it participates in the maintenance of bone shape, and plays an important role in metabolic ionic exchange and physiological distribution of electro-chemical potential difference across its membranous structure. It has also been suggested that the periosteum may have its own specific proprioceptive property. This presentation will study the histo-anatomy and physiology of the periosteum and will discuss in detail its main functions of cortical blood supply and osteogenesis (fig. 1 and 2). It will also present the third intermediary report on a current study of the quantification of cortical vascularisation of femoral bone via the periosteum, using an isotonic salt solution of 85Strontium. The afferent-efferent (arterio-venous) flows of this solution in the thigh vascular system of guinea pigs were measured by gamma spectrometry after a series of selective macro and micro injections of radioactive salt into the femoral arterial system were carried out. Each vascular territory was meticulously selected and the injections were made according to size, starting with the larger vessels, with or without ligatures of neighbouring vessels, going progressively to smaller and smaller vessels not exceeding 100m in diameter.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Preliminary determination of calcium, phosphorus, and the calcium/phosphorus ratio in cortical bone of Chinstrap penguin using synchrotron X-ray fluorescence analysis

    Institute of Scientific and Technical Information of China (English)

    Xie Zhouqing; Cheng Bangbo; Sun Liguang; Huang Yuying; He Wei; Zhao Sanping

    2006-01-01

    Synchrotron radiation X-ray fluorescence (SR-XRF) approach was applied to analyzing of Chinstrap penguin (Pygoscelis Antarctica) cortical bone. The method enabled the in situ determination of Ca and P concentrations and the Ca/P ratio in cortical bone. The preliminary results show that: (1) there is the bone site-related difference for Ca and P concentrations. The mean values for the investigated parameters ( on a dry-weight basis) are: 30.7% (Ca) and 14.9% (P) for the femoral cortical bone, 21.4% (Ca) and 11.5% (P) for wing cortical bone. (2) The variation for the Ca/P ratio in cortical bone is lower than those for Ca and P separately.This is in agreement with the previous report that the specificity of the Ca/P ratio is better than that of Ca and P concentrations and is more reliable for the diagnosis of bone disorders. The authors suggest that further studies be conducted to establish normal values of Ca, P and Ca/P ratio for polar animals and provide a basis for the diagnosis of bone disorders.

  19. Marked disparity between trabecular and cortical bone loss with age in healthy men. Measurement by vertebral computed tomography and radial photon absorptiometry

    International Nuclear Information System (INIS)

    Meier, D.E.; Orwoll, E.S.; Jones, J.M.

    1984-01-01

    To define age-related changes in bone mineral content in normal men, we measured radial (proximal and distal) and vertebral bone mineral content in 62 men aged 30 to 92 years. Radial bone mineral content (largely cortical bone) was measured by single photon absorptiometry, and trabecular vertebral content (T12, L1 to L3) by computed tomography. Radial bone mineral content fell gradually (2% to 3.4% per decade) with age, but vertebral trabecular content fell more rapidly (12% per decade). Body size was not associated with the rate of bone loss from the distal radial and vertebral sites, but men with lower surface areas lost bone more rapidly at the predominantly cortical proximal radial site. The fact that radial cortical bone mineral content falls much less rapidly than vertebral trabecular content with age and is also associated with surface area indicates that trabecular and cortical bone compartments may be independently modulated. Age-related bone loss should not be considered a homogeneous process

  20. A Retrospective Study on Indian Population to evaluate Cortical Bone Thickness in Maxilla and Mandible using Computed Tomography Images

    Directory of Open Access Journals (Sweden)

    Jeegar Ketan Vakil

    2014-01-01

    Conclusion: Mini-implants have gained considerable popularity due to their low cost, effectiveness, clinical management and stability. Among the factors related to microimplant stability, bone density and cortical bone thickness appear to be critical for successful placement. This study will provide knowledge of cortical bone thickness in various areas which can guide the clinicians in selecting the placement site.

  1. Three-dimensional visualization and characterization of bone structure using reconstructed in-vitro μCT images: A pilot study for bone microarchitecture analysis

    Energy Technology Data Exchange (ETDEWEB)

    Latief, Fourier Dzar Eljabbar, E-mail: fourier@fi.itb.ac.id [Physics of Earth and Complex Systems, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Dewi, Dyah Ekashanti Octorina [2Biomedical Engineering Research Division, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Shari, Mohd Aliff Bin Mohd [Faculty of Electrical Engineering, Universiti Teknologi MARA Malaysia, 40000 Shah Alam, Selangor (Malaysia)

    2014-03-24

    Micro Computed Tomography (μCT) has been largely used to perform micrometer scale imaging of specimens, bone biopsies and small animals for the study of porous or cavity-containing objects. One of its favored applications is for assessing structural properties of bone. In this research, we perform a pilot study to visualize and characterize bone structure of a chicken bone thigh, as well as to delineate its cortical and trabecular bone regions. We utilize an In-Vitro μCT scanner Skyscan 1173 to acquire a three dimensional image data of a chicken bone thigh. The thigh was scanned using X-ray voltage of 45 kV and current of 150 μA. The reconstructed images have spatial resolution of 142.50 μm/pixel. Using image processing and analysis e.i segmentation by thresholding the gray values (which represent the pseudo density) and binarizing the images, we were able to visualize each part of the bone, i.e., the cortical and trabecular regions. Total volume of the bone is 4663.63 mm{sup 3}, and the surface area of the bone is 7913.42 mm{sup 2}. The volume of the cortical is approximately 1988.62 mm{sup 3} which is nearly 42.64% of the total bone volume. This pilot study has confirmed that the μCT is capable of quantifying 3D bone structural properties and defining its regions separately. For further development, these results can be improved for understanding the pathophysiology of bone abnormality, testing the efficacy of pharmaceutical intervention, or estimating bone biomechanical properties.

  2. Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom

    International Nuclear Information System (INIS)

    Deuerling, Justin M.; Rudy, David J.; Niebur, Glen L.; Roeder, Ryan K.

    2010-01-01

    Purpose: Microcomputed tomography (micro-CT) is increasingly used as a nondestructive alternative to ashing for measuring bone mineral content. Phantoms are utilized to calibrate the measured x-ray attenuation to discrete levels of mineral density, typically including levels up to 1000 mg HA/cm 3 , which encompasses levels of bone mineral density (BMD) observed in trabecular bone. However, levels of BMD observed in cortical bone and levels of tissue mineral density (TMD) in both cortical and trabecular bone typically exceed 1000 mg HA/cm 3 , requiring extrapolation of the calibration regression, which may result in error. Therefore, the objectives of this study were to investigate (1) the relationship between x-ray attenuation and an expanded range of hydroxyapatite (HA) density in a less attenuating polymer matrix and (2) the effects of the calibration on the accuracy of subsequent measurements of mineralization in human cortical bone specimens. Methods: A novel HA-polymer composite phantom was prepared comprising a less attenuating polymer phase (polyethylene) and an expanded range of HA density (0-1860 mg HA/cm 3 ) inclusive of characteristic levels of BMD in cortical bone or TMD in cortical and trabecular bone. The BMD and TMD of cortical bone specimens measured using the new HA-polymer calibration phantom were compared to measurements using a conventional HA-polymer phantom comprising 0-800 mg HA/cm 3 and the corresponding ash density measurements on the same specimens. Results: The HA-polymer composite phantom exhibited a nonlinear relationship between x-ray attenuation and HA density, rather than the linear relationship typically employed a priori, and obviated the need for extrapolation, when calibrating the measured x-ray attenuation to high levels of mineral density. The BMD and TMD of cortical bone specimens measured using the conventional phantom was significantly lower than the measured ash density by 19% (p<0.001, ANCOVA) and 33% (p<0.05, Tukey's HSD

  3. Modalities for visualization of cortical bone remodeling: the past, present and near future

    Directory of Open Access Journals (Sweden)

    Kimberly Dawn Harrison

    2015-08-01

    Full Text Available Bone’s ability to respond to load-related phenomena and repair microdamage is achieved through the remodeling process which renews bone by activating groups of cells known as Basic Multicellular Units (BMUs. The products of BMUs, secondary osteons, have been extensively studied via classic two-dimensional (2D techniques which have provided a wealth of information on how histomorphology relates to skeletal structure and function. Remodeling is critical in maintaining healthy bone tissue; however, in osteoporotic bone imbalanced resorption results in increased bone fragility and fracture. With increasing life expectancy, such degenerative bone diseases are a growing concern. The three-dimensional (3D morphology of BMUs and their correlation to function, however, are not well characterized and little is known about the specific mechanisms that initiate and regulate their activity within cortical bone. We believe a key limitation has been the lack 3D information about BMU morphology and activity. Thus, this paper reviews methodologies for 3D investigation of cortical bone remodeling and, specifically, structures associated with BMU activity (resorption spaces and the structures they create (secondary osteons, spanning from histology to modern ex vivo imaging modalities, culminating with the growing potential of in vivo imaging. This collection of papers focuses on the theme of putting the why back into bone archytecture. Remodeling is one of two mechanisms how bone structure is dynamically modified and thus an improved 3D understanding of this fundamental process is crucial to ultimately understanding the why.

  4. Insulin Resistance Is Associated With Smaller Cortical Bone Size in Nondiabetic Men at the Age of Peak Bone Mass.

    Science.gov (United States)

    Verroken, Charlotte; Zmierczak, Hans-Georg; Goemaere, Stefan; Kaufman, Jean-Marc; Lapauw, Bruno

    2017-06-01

    In type 2 diabetes mellitus, fracture risk is increased despite preserved areal bone mineral density. Although this apparent paradox may in part be explained by insulin resistance affecting bone structure and/or material properties, few studies have investigated the association between insulin resistance and bone geometry. We aimed to explore this association in a cohort of nondiabetic men at the age of peak bone mass. Nine hundred ninety-six nondiabetic men aged 25 to 45 years were recruited in a cross-sectional, population-based sibling pair study at a university research center. Insulin resistance was evaluated using the homeostasis model assessment of insulin resistance (HOMA-IR), with insulin and glucose measured from fasting serum samples. Bone geometry was assessed using peripheral quantitative computed tomography at the distal radius and the radial and tibial shafts. In age-, height-, and weight-adjusted analyses, HOMA-IR was inversely associated with trabecular area at the distal radius and with cortical area, periosteal and endosteal circumference, and polar strength strain index at the radial and tibial shafts (β ≤ -0.13, P insulin-like growth factor 1, or sex steroid levels. In this cohort of nondiabetic men at the age of peak bone mass, insulin resistance is inversely associated with trabecular and cortical bone size. These associations persist after adjustment for body composition, muscle size or function, or sex steroid levels, suggesting an independent effect of insulin resistance on bone geometry. Copyright © 2017 Endocrine Society

  5. Age-Related Changes in Trabecular and Cortical Bone Microstructure

    Directory of Open Access Journals (Sweden)

    Huayue Chen

    2013-01-01

    Full Text Available The elderly population has substantially increased worldwide. Aging is a complex process, and the effects of aging are myriad and insidious, leading to progressive deterioration of various organs, including the skeleton. Age-related bone loss and resultant osteoporosis in the elderly population increase the risk for fractures and morbidity. Osteoporosis is one of the most common conditions associated with aging, and age is an independent risk factor for osteoporotic fractures. With the development of noninvasive imaging techniques such as computed tomography (CT, micro-CT, and high resolution peripheral quantitative CT (HR-pQCT, imaging of the bone architecture provides important information about age-related changes in bone microstructure and estimates of bone strength. In the past two decades, studies of human specimens using imaging techniques have revealed decreased bone strength in older adults compared with younger adults. The present paper addresses recently studied age-related changes in trabecular and cortical bone microstructure based primarily on HR-pQCT and micro-CT. We specifically focus on the three-dimensional microstructure of the vertebrae, femoral neck, and distal radius, which are common osteoporotic fracture sites.

  6. Structural and Biomechanical Adaptations to Free-Fall Landing in Hindlimb Cortical Bone of Growing Female Rats

    Directory of Open Access Journals (Sweden)

    Hsin-Shih Lin, Ho-Seng Wang, Hung-Ta Chiu, Kuang-You B. Cheng, Ar-Tyan Hsu, Tsang-Hai Huang

    2018-06-01

    Full Text Available The purpose of the study was to investigate the adaptation process of hindlimb cortical bone subjected to free-fall landing training. Female Wistar rats (7 weeks old were randomly assigned to four landing (L groups and four age-matched control (C groups (n = 12 per group: L1, L2, L4 L8, C1, C2, C4 and C8. Animals in the L1, L2, L4 and L8 groups were respectively subjected to 1, 2, 4 and 8 weeks of free-fall-landing training (40 cm height, 30 times/day and 5 days/week while the C1, C2, C4 and C8 groups served as age-matched control groups. The tibiae of the L8 group were higher in cortical bone mineral content (BMC than those in the C8 group (p < 0.05. Except for the higher bone mineralization over bone surface ratio (MS/BS, % shown in the tibiae of the L1 group (p < 0.05, dynamic histomorphometry in the tibial and femoral cortical bone showed no difference between landing groups and their age-matched control groups. In the femora, the L1 group was lower than the C1 group in cortical bone area (Ct.Ar and cortical thickness (Ct.Th (p < 0.05; however, the L4 group was higher than the C4 group in Ct.Ar and Ct.Th (p <0 .05. In the tibiae, the moment of inertia about the antero-posterior axis (Iap, Ct.Ar and Ct.Th was significantly higher in the L8 group than in the C8 group (p < 0.05. In biomechanical testing, fracture load (FL of femora was lower in the L1 group than in the C1 group (p < 0.05. Conversely, yield load (YL, FL and yield load energy (YE of femora, as well as FL of tibiae were all significantly higher in the L8 group than in the C8 group (p < 0.05. Free-fall landing training may initially compromise bone material. However, over time, the current free-fall landing training induced improvements in biomechanical properties and/or the structure of growing bones.

  7. Structural and Biomechanical Adaptations to Free-Fall Landing in Hindlimb Cortical Bone of Growing Female Rats.

    Science.gov (United States)

    Lin, Hsin-Shih; Wang, Ho-Seng; Chiu, Hung-Ta; Cheng, Kuang-You B; Hsu, Ar-Tyan; Huang, Tsang-Hai

    2018-06-01

    The purpose of the study was to investigate the adaptation process of hindlimb cortical bone subjected to free-fall landing training. Female Wistar rats (7 weeks old) were randomly assigned to four landing (L) groups and four age-matched control (C) groups (n = 12 per group): L1, L2, L4 L8, C1, C2, C4 and C8. Animals in the L1, L2, L4 and L8 groups were respectively subjected to 1, 2, 4 and 8 weeks of free-fall-landing training (40 cm height, 30 times/day and 5 days/week) while the C1, C2, C4 and C8 groups served as age-matched control groups. The tibiae of the L8 group were higher in cortical bone mineral content (BMC) than those in the C8 group (p < 0.05). Except for the higher bone mineralization over bone surface ratio (MS/BS, %) shown in the tibiae of the L1 group (p < 0.05), dynamic histomorphometry in the tibial and femoral cortical bone showed no difference between landing groups and their age-matched control groups. In the femora, the L1 group was lower than the C1 group in cortical bone area (Ct.Ar) and cortical thickness (Ct.Th) (p < 0.05); however, the L4 group was higher than the C4 group in Ct.Ar and Ct.Th (p <0 .05). In the tibiae, the moment of inertia about the antero-posterior axis ( I ap ), Ct.Ar and Ct.Th was significantly higher in the L8 group than in the C8 group (p < 0.05). In biomechanical testing, fracture load (FL) of femora was lower in the L1 group than in the C1 group (p < 0.05). Conversely, yield load (YL), FL and yield load energy (YE) of femora, as well as FL of tibiae were all significantly higher in the L8 group than in the C8 group (p < 0.05). Free-fall landing training may initially compromise bone material. However, over time, the current free-fall landing training induced improvements in biomechanical properties and/or the structure of growing bones.

  8. Noncontact ultrasound imaging applied to cortical bone phantoms

    OpenAIRE

    Bulman, J. B.; Ganezer, K. S.; Halcrow, P. W.; Neeson, Ian

    2012-01-01

    Purpose: The purpose of this paper was to take the first steps toward applying noncontact ultrasound (NCU) to the tasks of monitoring osteoporosis and quantitative ultrasound imaging (QUS) of cortical bone. The authors also focused on the advantages of NCU, such as its lack of reliance on a technologist to apply transducers and a layer of acoustical coupling gel, the ability of the transducers to operate autonomously as specified by preprogrammed software, and the likely reduction in statisti...

  9. Mechanotransduction in cortical bone and the role of piezoelectricity: a numerical approach.

    Science.gov (United States)

    Stroe, M C; Crolet, J M; Racila, M

    2013-01-01

    This paper is a contribution to a plausible explanation of the mechanotransduction phenomenon in cortical bone during its remodelling. Our contribution deals only with the mechanical processes and the biological aspects have not been taken into account. It is well known that osteoblasts are able to generate bone in a suitable bony substitute only under fluid action. But the bone created in this manner is not organised to resist specific mechanical stress. Our aim was to suggest the nature of the physical information that can be transmitted - directly or via a biological or biochemical process - to the cell to initiate a cellular activity inducing the reconstruction of the osteon that is best adapted to local mechanical stresses. For this, the cell must have, from our point of view, a good knowledge of its structural environment. But this knowledge exists at the cellular scale while the bone is loaded at the macroscopic scale. This study is based on the SiNuPrOs model that allows exchange of information between the different structural scales of cortical bone. It shows that more than the fluid, the collagen - via its piezoelectric properties - plays an essential role in the transmission of information between the macroscopic and nanoscopic scales. Moreover, this process allows us to explain various dysfunctions and even some diseases.

  10. Auditory cortical volumes and musical ability in Williams syndrome.

    Science.gov (United States)

    Martens, Marilee A; Reutens, David C; Wilson, Sarah J

    2010-07-01

    Individuals with Williams syndrome (WS) have been shown to have atypical morphology in the auditory cortex, an area associated with aspects of musicality. Some individuals with WS have demonstrated specific musical abilities, despite intellectual delays. Primary auditory cortex and planum temporale volumes were manually segmented in 25 individuals with WS and 25 control participants, and the participants also underwent testing of musical abilities. Left and right planum temporale volumes were significantly larger in the participants with WS than in controls, with no significant difference noted between groups in planum temporale asymmetry or primary auditory cortical volumes. Left planum temporale volume was significantly increased in a subgroup of the participants with WS who demonstrated specific musical strengths, as compared to the remaining WS participants, and was highly correlated with scores on a musical task. These findings suggest that differences in musical ability within WS may be in part associated with variability in the left auditory cortical region, providing further evidence of cognitive and neuroanatomical heterogeneity within this syndrome. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Adaptations in the Microarchitecture and Load Distribution of Maternal Cortical and Trabecular Bone in Response to Multiple Reproductive Cycles in Rats

    Science.gov (United States)

    de Bakker, Chantal M. J.; Altman-Singles, Allison R.; Li, Yihan; Tseng, Wei-Ju; Li, Connie; Liu, X. Sherry

    2017-01-01

    Pregnancy, lactation, and weaning result in dramatic changes in maternal calcium metabolism. In particular, the increased calcium demand during lactation causes a substantial degree of maternal bone loss. This reproductive bone loss has been suggested to be largely reversible, as multiple clinical studies have found that parity and lactation history have no adverse effect on post-menopausal fracture risk. However, the precise effects of pregnancy, lactation, and post-weaning recovery on maternal bone structure are not well understood. Our study aimed to address this question by longitudinally tracking changes in trabecular and cortical bone microarchitecture at the proximal tibia in rats throughout three cycles of pregnancy, lactation, and post-weaning using in vivo μCT. We found that the trabecular thickness underwent a reversible deterioration during pregnancy and lactation, which was fully recovered after weaning, while other parameters of trabecular microarchitecture (including trabecular number, spacing, connectivity density, and structure model index) underwent a more permanent deterioration which recovered minimally. Thus, pregnancy and lactation resulted in both transient and long-lasting alterations in trabecular microstructure. In the meantime, multiple reproductive cycles appeared to improve the robustness of cortical bone (resulting in an elevated cortical area and polar moment of inertia), as well as increase the proportion of the total load carried by the cortical bone at the proximal tibia. Taken together, changes in the cortical and trabecular compartments suggest that while rat tibial trabecular bone appears to be highly involved in maintaining calcium homeostasis during female reproduction, cortical bone adapts to increase its load-bearing capacity, allowing the overall mechanical function of the tibia to be maintained. PMID:28109138

  12. Glycation of human cortical and cancellous bone captures differences in the formation of Maillard reaction products between glucose and ribose.

    Directory of Open Access Journals (Sweden)

    Grażyna E Sroga

    Full Text Available To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs at the levels that corresponded to approx. 25-30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation or ribose (ribosylation. Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women. More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples. Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar

  13. Suppression of autophagy in osteocytes does not modify the adverse effects of glucocorticoids on cortical bone.

    Science.gov (United States)

    Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Wang, Yiying; Almeida, Maria; Thostenson, Jeff D; Weinstein, Robert S; Manolagas, Stavros C; O'Brien, Charles A

    2015-06-01

    Glucocorticoid excess decreases bone mass and strength in part by acting directly on osteoblasts and osteocytes, but the mechanisms remain unclear. Macroautophagy (herein referred to as autophagy) is a lysosome-based recycling pathway that promotes the turnover of intracellular components and can promote cell function and survival under stressful conditions. Recent studies have shown that glucocorticoids stimulate autophagy in osteocytes, suggesting that autophagy may oppose the negative actions of glucocorticoids on this cell type. To address this possibility, we compared the impact of prednisolone administration on the skeletons of adult mice in which autophagy was suppressed in osteocytes, via deletion of Atg7 with a Dmp1-Cre transgene, to their control littermates. In control mice, prednisolone increased autophagic flux in osteocyte-enriched bone as measured by LC3 conversion, but this change did not occur in the mice lacking Atg7 in osteocytes. Nonetheless, prednisolone reduced femoral cortical thickness, increased cortical porosity, and reduced bone strength to similar extents in mice with and without autophagy in osteocytes. Prednisolone also suppressed osteoblast number and bone formation in the cancellous bone of control mice. As shown previously, Atg7 deletion in osteocytes reduced osteoblast number and bone formation in cancellous bone, but these parameters were not further reduced by prednisolone administration. In cortical bone, prednisolone elevated osteoclast number to a similar extent in both genotypes. Taken together, these results demonstrate that although glucocorticoids stimulate autophagy in osteocytes, suppression of autophagy in this cell type does not worsen the negative impact of glucocorticoids on the skeleton. Published by Elsevier Inc.

  14. Physical and chemical characteristics of the demineralized lyophylized bovine cortical bone sterilized by gamma irradiation

    International Nuclear Information System (INIS)

    Basril, A.; Febrida, A.; Hilmy, N.; Surtipanti, S.; Petrus, Z.

    1999-01-01

    The purpose of the studies were: 1) to ascertain the relationship between immersion time of bone in the Hydrochloride acid (HCl) solution and Calcium and Phosphor content in the bone and 2) to study the effects of irradiation on bone hardness. The methods used in these studies were according to American Association of Tissue Bank. The samples of bovine cortical bone in shape of I cm x I cm were demineralised in 0.6 N of HCl at room temperature until 72 hours. At 12, 24, 48, and 72 hours after demineralisation, 10 grams of demineralised samples were removed and labelled to reflect the demineralisation time. The pH values were monitored at 15 minutes intervals until the end of the process. Subsequently the wet samples were freeze-dried and Calcium and phosphor content were determined by X-ray diffraction. To observe the effects of radiation on bone hardness, the lyophilised cortical bovine bone was irradiated with gamma rays at the doses of 0, 10, 20, and 30 kGy and then were stored until 6 months. Results indicate that the beginning pH of the solution is 1. 1 and it increase sharply up to 2.3 after 12 hours of demineralisation and that pH become constant at 2.5 until the end of process. Calcium and phosphor content in the bone reduce in correlation with increasing of the pH. The beginning of Calcium and phosphor content in the bone are 36.4% and 25.3%, respectively and they reduce to 10.8% and 8.4% at the end of the process. The hardness of non irradiated and non demineralised, demineralised, irradiated, and demineralised irradiated of the cortical bone are 77.67; 65.21; 63.67; and 55.15 Vickers, respectively. The effects of irradiation up to 30 kGy on the hardness of the bone are not significant, but the storage time until 6 months give a significant of reduction. It can be concluded using this method the minimum residual of Calcium concentration in the bone is 10.8%

  15. Development and design of a bone-equivalent cortical shell phantom to determine accuracy measures on DXA and PQCT scanners

    International Nuclear Information System (INIS)

    Khoo, B.C.C.; Beck, T.J. Johns; Turk, B.; Price, R.I.

    2004-01-01

    Full text: Hip Structural Analysis (HSA), is an algorithm that computes bone-structural geometry from dual energy X-ray absorptiometry (DXA) derived hip images and may be used in a complementary manner to DXA areal bone mineral density (BMD) for bone strength interpretation. DXA is normally used to facilitate the diagnosis and management of bone metabolic diseases such as osteoporosis. HSA provides a biomechanical interpretation of BMD, using its mass profiles to compute cross-sectional structural geometry. In essence, HSA provides insight into bone structural and biomechanical properties, particularly of long bones, which BMD alone cannot. While conventional (vendor-provided) phantoms calibrate DXA machines for densitometric precision, analogous phantoms for calibrating structural geometry are lacking. This paper describes the design and preliminary testing of a densitometric bone-equivalent cylindrical phantom with 'cortical' shells and 'cancellous' core, and the use of this phantom to do a performance test of structural geometry variables such as cortical thickness, bone width and section modulus derived, from pQCT and DXA scan data. Powdered calcium-sulphate (CSC) was water-mixed in vacuum and cured. This mixture exhibited hydroxyapatite-like DXA photon-attenuation properties with density monotonically related to added water-mass. Its mass and BMD maintained temporal stability (CV%=0.03%, n=4 specimens over 321 d). Using CSC designed for a BMD=1.04g/cm, (for plate-thickness 10mm), a cylindrical phantom with cortical shell thicknesses of 0.5, 1.0, 2.0, 4.0mm, an acrylic-based internal core diameter of 26mm, and an acrylic surrounding 'soft-tissue' were constructed. The phantom was scanned using a DXA scanner (Hologic QDRl000W) and pQCT (Stratec XCT2000, pixel resolution 0.15mm). Selected cortical structural-geometric variables, derived from calculated geometry; pQCT mass-projections, and DXA HSA. In conclusion, dimensions of this novel cortical-shell phantom

  16. The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization

    Science.gov (United States)

    Parnell, William J; Grimal, Quentin

    2008-01-01

    Recently, the mesoscale of cortical bone has been given particular attention in association with novel experimental techniques such as nanoindentation, micro-computed X-ray tomography and quantitative scanning acoustic microscopy (SAM). A need has emerged for reliable mathematical models to interpret the related microscopic and mesoscopic data in terms of effective elastic properties. In this work, a new model of cortical bone elasticity is developed and used to assess the influence of mesoscale porosity on the induced anisotropy of the material. Only the largest pores (Haversian canals and resorption cavities), characteristic of the mesoscale, are considered. The input parameters of the model are derived from typical mesoscale experimental data (e.g. SAM data). We use the method of asymptotic homogenization to determine the local effective elastic properties by modelling the propagation of low-frequency elastic waves through an idealized material that models the local mesostructure. We use a novel solution of the cell problem developed by Parnell & Abrahams. This solution is stable for the physiological range of variation of mesoscopic porosity and elasticity found in bone. Results are computed efficiently (in seconds) and the solutions can be implemented easily by other workers. Parametric studies are performed in order to assess the influence of mesoscopic porosity, the assumptions regarding the material inside the mesoscale pores (drained or undrained bone) and the shape of pores. Results are shown to be in good qualitative agreement with existing schemes and we describe the potential of the scheme for future use in modelling more complex microstructures for cortical bone. In particular, the scheme is shown to be a useful tool with which to predict the qualitative changes in anisotropy due to variations in the structure at the mesoscale. PMID:18628200

  17. Adaptations in tibial cortical thickness and total volumetric bone density in postmenopausal South Asian women with small bone size.

    Science.gov (United States)

    Darling, Andrea L; Hakim, Ohood A; Horton, Khim; Gibbs, Michelle A; Cui, Liang; Berry, Jacqueline L; Lanham-New, Susan A; Hart, Kathryn H

    2013-07-01

    There is some evidence that South Asian women may have an increased risk of osteoporosis compared with Caucasian women, although whether South Asians are at increased risk of fracture is not clear. It is unknown whether older South Asian women differ from Caucasian women in bone geometry. This is the first study, to the authors' knowledge, to use peripheral Quantitative Computed Tomography (pQCT) to measure radial and tibial bone geometry in postmenopausal South Asian women. In comparison to Caucasian women, Asian women had smaller bone size at the 4% (-18% pAsians had increased cortical thickness (-17% p=0.04) at the 38% tibia, (in proportion to bone size (-30% p=0.003)). Furthermore, at the 4% and 14% tibia there were increased total densities (+12% to +29% pAsians. These differences at the 14% and 38% (but not 4%) remained statistically significant after adjustment for Body Mass Index (BMI). These adaptations are similar to those seen previously in Chinese women. Asian women had reduced strength at the radius and tibia, evidenced by the 20-40% reduction in both polar Strength Strain Index (SSIp) and fracture load (under bending). Overall, the smaller bone size in South Asians is likely to be detrimental to bone strength, despite some adaptations in tibial cortical thickness and tibial and radial density which may partially compensate for this. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Mechanical test and fractal analysis on anisotropic fracture of cortical bone

    International Nuclear Information System (INIS)

    Yin, Dagang; Chen, Bin; Ye, Wei; Gou, Jihua; Fan, Jinghong

    2015-01-01

    Highlights: • The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. • SEM observation shows that the roughness of the fracture surfaces of the three different directions of the bone are remarkably different. • The fractal dimensions of the different fracture surfaces of the bone are calculated by box-counting method in MATLAB. • The fracture energies of the different fracture directions are calculated based on their fractal models. - Abstract: The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. It is indicated that the fracture energy along the transversal direction of the bone is distinctly larger than those of the longitudinal and radial directions. The fracture surfaces of the three different directions are observed by scanning electron microscope (SEM). It is shown that the roughness of the fracture surface of the transversal direction is obviously larger than those of the fracture surfaces of the longitudinal and radial directions. It is also revealed that the osteons in the bone are perpendicular to the fracture surface of the transversal direction and parallel to the fracture surfaces of the longitudinal and radial directions. Based on these experimental results, the fractal dimensions of the fracture surfaces of different directions are calculated by box-counting method in MATLAB. The calculated results show that the fractal dimension of the fracture surface of the transversal direction is remarkably larger than those of the fracture surfaces of the longitudinal and radial directions. The fracture energies of different directions are also calculated based on their fractal models. It is denoted that the fracture energy of the transversal direction is remarkably larger than those of the longitudinal and radial directions. The calculated results are in

  19. Mechanical test and fractal analysis on anisotropic fracture of cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Dagang [State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044 (China); College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Chen, Bin, E-mail: bchen@cqu.edu.cn [State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044 (China); College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Ye, Wei [College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Gou, Jihua [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Fan, Jinghong [Division of Mechanical Engineering, Alfred University, Alfred, NY 14802 (United States)

    2015-12-01

    Highlights: • The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. • SEM observation shows that the roughness of the fracture surfaces of the three different directions of the bone are remarkably different. • The fractal dimensions of the different fracture surfaces of the bone are calculated by box-counting method in MATLAB. • The fracture energies of the different fracture directions are calculated based on their fractal models. - Abstract: The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. It is indicated that the fracture energy along the transversal direction of the bone is distinctly larger than those of the longitudinal and radial directions. The fracture surfaces of the three different directions are observed by scanning electron microscope (SEM). It is shown that the roughness of the fracture surface of the transversal direction is obviously larger than those of the fracture surfaces of the longitudinal and radial directions. It is also revealed that the osteons in the bone are perpendicular to the fracture surface of the transversal direction and parallel to the fracture surfaces of the longitudinal and radial directions. Based on these experimental results, the fractal dimensions of the fracture surfaces of different directions are calculated by box-counting method in MATLAB. The calculated results show that the fractal dimension of the fracture surface of the transversal direction is remarkably larger than those of the fracture surfaces of the longitudinal and radial directions. The fracture energies of different directions are also calculated based on their fractal models. It is denoted that the fracture energy of the transversal direction is remarkably larger than those of the longitudinal and radial directions. The calculated results are in

  20. Development of a Three-Dimensional (3D) Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft

    Science.gov (United States)

    Chou, Ying-Chao; Lee, Demei; Chang, Tzu-Min; Hsu, Yung-Heng; Yu, Yi-Hsun; Liu, Shih-Jung; Ueng, Steve Wen-Neng

    2016-01-01

    This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D) printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire) fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft. PMID:27104525

  1. Development of a Three-Dimensional (3D Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft

    Directory of Open Access Journals (Sweden)

    Ying-Chao Chou

    2016-04-01

    Full Text Available This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft.

  2. Determination of a tissue-level failure evaluation standard for rat femoral cortical bone utilizing a hybrid computational-experimental method.

    Science.gov (United States)

    Fan, Ruoxun; Liu, Jie; Jia, Zhengbin; Deng, Ying; Liu, Jun

    2018-01-01

    Macro-level failure in bone structure could be diagnosed by pain or physical examination. However, diagnosing tissue-level failure in a timely manner is challenging due to the difficulty in observing the interior mechanical environment of bone tissue. Because most fractures begin with tissue-level failure in bone tissue caused by continually applied loading, people attempt to monitor the tissue-level failure of bone and provide corresponding measures to prevent fracture. Many tissue-level mechanical parameters of bone could be predicted or measured; however, the value of the parameter may vary among different specimens belonging to a kind of bone structure even at the same age and anatomical site. These variations cause difficulty in representing tissue-level bone failure. Therefore, determining an appropriate tissue-level failure evaluation standard is necessary to represent tissue-level bone failure. In this study, the yield and failure processes of rat femoral cortical bones were primarily simulated through a hybrid computational-experimental method. Subsequently, the tissue-level strains and the ratio between tissue-level failure and yield strains in cortical bones were predicted. The results indicated that certain differences existed in tissue-level strains; however, slight variations in the ratio were observed among different cortical bones. Therefore, the ratio between tissue-level failure and yield strains for a kind of bone structure could be determined. This ratio may then be regarded as an appropriate tissue-level failure evaluation standard to represent the mechanical status of bone tissue.

  3. Femtosecond laser ablation of bovine cortical bone

    Science.gov (United States)

    Cangueiro, Liliana T.; Vilar, Rui; Botelho do Rego, Ana M.; Muralha, Vania S. F.

    2012-12-01

    We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.

  4. Total brain, cortical and white matter volumes in children previously treated with glucocorticoids

    DEFF Research Database (Denmark)

    Holm, Sara K; Madsen, Kathrine S; Vestergaard, Martin

    2018-01-01

    BACKGROUND: Perinatal exposure to glucocorticoids and elevated endogenous glucocorticoid-levels during childhood can have detrimental effects on the developing brain. Here, we examined the impact of glucocorticoid-treatment during childhood on brain volumes. METHODS: Thirty children and adolescents...... with rheumatic or nephrotic disease previously treated with glucocorticoids and 30 controls matched on age, sex, and parent education underwent magnetic resonance imaging (MRI) of the brain. Total cortical grey and white matter, brain, and intracranial volume, and total cortical thickness and surface area were...... were mainly driven by the children with rheumatic disease. Total cortical thickness and cortical surface area did not significantly differ between groups. We found no significant associations between glucocorticoid-treatment variables and volumetric measures. CONCLUSION: Observed smaller total brain...

  5. Radiographic healing and remodelling of cortical and cancellous bone grafts after rigid plate fixation

    International Nuclear Information System (INIS)

    Waris, P.; Karaharju, E.; Slaetis, P.; Paavolainen, P.

    1980-01-01

    Cortical and cancellous interposition grafts, with rigid plate fixation, in the tibiofibular bones of 130 rabbits were followed radiographically for one year. The cancellous grafts healed earlier, but by 12 weeks both graft types had been incorporated, the distal host-graft interface being the last to heal. Progressive cancellous transformation in both the graft and host bone led to an increased over-all bone diameter, a widened medullary canal and a thinned porotic wall. (Auth.)

  6. An optimized process flow for rapid segmentation of cortical bones of the craniofacial skeleton using the level-set method.

    Science.gov (United States)

    Szwedowski, T D; Fialkov, J; Pakdel, A; Whyne, C M

    2013-01-01

    Accurate representation of skeletal structures is essential for quantifying structural integrity, for developing accurate models, for improving patient-specific implant design and in image-guided surgery applications. The complex morphology of thin cortical structures of the craniofacial skeleton (CFS) represents a significant challenge with respect to accurate bony segmentation. This technical study presents optimized processing steps to segment the three-dimensional (3D) geometry of thin cortical bone structures from CT images. In this procedure, anoisotropic filtering and a connected components scheme were utilized to isolate and enhance the internal boundaries between craniofacial cortical and trabecular bone. Subsequently, the shell-like nature of cortical bone was exploited using boundary-tracking level-set methods with optimized parameters determined from large-scale sensitivity analysis. The process was applied to clinical CT images acquired from two cadaveric CFSs. The accuracy of the automated segmentations was determined based on their volumetric concurrencies with visually optimized manual segmentations, without statistical appraisal. The full CFSs demonstrated volumetric concurrencies of 0.904 and 0.719; accuracy increased to concurrencies of 0.936 and 0.846 when considering only the maxillary region. The highly automated approach presented here is able to segment the cortical shell and trabecular boundaries of the CFS in clinical CT images. The results indicate that initial scan resolution and cortical-trabecular bone contrast may impact performance. Future application of these steps to larger data sets will enable the determination of the method's sensitivity to differences in image quality and CFS morphology.

  7. Classification of tubulo-papillary renal cortical tumours using estimates of nuclear volume

    DEFF Research Database (Denmark)

    Brooks, B; Sørensen, Flemming Brandt; Olsen, S

    1993-01-01

    The classification of renal cortical tumours is problematic, with no clear division of benign from malignant tumours. Unbiased stereological estimates of volume-weighted nuclear volume (nuclear vv) were obtained by point sampling of nuclear intercepts in a retrospective study of 36 variably sized...... = 241 microns 3) and 15 tumours classified as renal cell carcinomas with diameters > 3 cm, or aggressive histological pattern (average nuclear vv = 229 microns 3) (2p = 0.68). In this subtype of renal cortical tumours, estimates of nuclear vv do not support the historical convention of using a 3 cm...... tumour diameter as the dividing line between adenomas and carcinomas, but support the theory of a single group of tumours. As most of the truly incidental renal cortical tumours are less than 1 cm in diameter, this limit could be considered. Such small benign cortical nodules have never been reported...

  8. Collagen and mineral deposition in rabbit cortical bone during maturation and growth: effects on tissue properties.

    Science.gov (United States)

    Isaksson, Hanna; Harjula, Terhi; Koistinen, Arto; Iivarinen, Jarkko; Seppänen, Kari; Arokoski, Jari P A; Brama, Pieter A; Jurvelin, Jukka S; Helminen, Heikki J

    2010-12-01

    We characterized the composition and mechanical properties of cortical bone during maturation and growth and in adult life in the rabbit. We hypothesized that the collagen network develops earlier than the mineralized matrix. Growth was monitored, and the rabbits were euthanized at birth (newborn), and at 1, 3, 6, 9, and 18 months of age. The collagen network was assessed biochemically (collagen content, enzymatic and non-enzymatic cross-links) in specimens from the mid-diaphysis of the tibia and femur and biomechanically (tensile testing) from decalcified whole tibia specimens. The mineralized matrix was analyzed using pQCT and 3-point bend tests from intact femur specimens. The collagen content and the Young's modulus of the collagen matrix increased significantly until the rabbits were 3 months old, and thereafter remained stable. The amount of HP and LP collagen cross-links increased continuously from newborn to 18 months of age, whereas PEN cross-links increased after 6 months of age. Bone mineral density and the Young's modulus of the mineralized bone increased until the rabbits were at least 6 months old. We concluded that substantial changes take place during the normal process of development in both the biochemical and biomechanical properties of rabbit cortical bone. In cortical bone, the collagen network reaches its mature composition and mechanical strength prior to the mineralized matrix. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Exploring thermal anisotropy of cortical bone using temperature measurements in drilling.

    Science.gov (United States)

    Alam, Khurshid

    2016-05-12

    Bone drilling is widely used in orthopaedics for fracture treatment, reconstructive surgery and bone biopsy. Heat generation in bone drilling can cause rise in bone temperature resulting in prolonged healing time or loosening of fixation. The purpose of this study was to investigate thermal anisotropy of bone by measuring the level of temperature in bone drilling with and without cooling conditions in two anatomical directions. Drilling tests were performed on bovine cortical bone. A total of fifteen specimens were used to obtain data for statistical analysis. Temperature near the cutting zone was measured in two anatomical directions. i.e. along the longitudinal and circumferential direction. Temperature distribution was also found in the two prescribed directions. Analysis of variance (ANOVA) was used to identify significant drilling parameter affecting bone temperature. Drilling speed, feed rate and drill size were found influential parameters affecting bone temperature. Higher drilling speed, feed rate, and large drill size were found to cause elevated temperature in bone. Much lower temperature was measured in bone when cooling fluid was supplied to the drilling region. Experimental results revealed lower temperatures in the circumferential direction compared to the longitudinal direction. Thermal anisotropy for heat transport was found in the bone. This study recommends lower drilling speed and feed rate and cooling for controlling rise in bone temperature.

  10. Interaction between LRP5 and periostin gene polymorphisms on serum periostin levels and cortical bone microstructure.

    Science.gov (United States)

    Pepe, J; Bonnet, N; Herrmann, F R; Biver, E; Rizzoli, R; Chevalley, T; Ferrari, S L

    2018-02-01

    We investigated the interaction between periostin SNPs and the SNPs of the genes assumed to modulate serum periostin levels and bone microstructure in a cohort of postmenopausal women. We identified an interaction between LRP5 SNP rs648438 and periostin SNP rs9547970 on serum periostin levels and on radial cortical porosity. The purpose of this study is to investigate the interaction between periostin gene polymorphisms (SNPs) and other genes potentially responsible for modulating serum periostin levels and bone microstructure in a cohort of postmenopausal women. In 648 postmenopausal women from the Geneva Retirees Cohort, we analyzed 6 periostin SNPs and another 149 SNPs in 14 genes, namely BMP2, CTNNB1, ESR1, ESR2, LRP5, LRP6, PTH, SPTBN1, SOST, TGFb1, TNFRSF11A, TNFSF11, TNFRSF11B and WNT16. Volumetric BMD and bone microstructure were measured by high-resolution peripheral quantitative computed tomography at the distal radius and tibia. Serum periostin levels were associated with radial cortical porosity, including after adjustment for age, BMI, and years since menopause (p = 0.036). Sixteen SNPs in the ESR1, LRP5, TNFRSF11A, SOST, SPTBN1, TNFRSF11B and TNFSF11 genes were associated with serum periostin levels (p range 0.03-0.001) whereas 26 SNPs in 9 genes were associated with cortical porosity at the radius and/or at the tibia. WNT 16 was the gene with the highest number of SNPs associated with both trabecular and cortical microstructure. The periostin SNP rs9547970 was also associated with cortical porosity (p = 0.04). In particular, SNPs in LRP5, ESR1 and near the TNFRSF11A gene were associated with both cortical porosity and serum periostin levels. Eventually, we identified an interaction between LRP5 SNP rs648438 and periostin SNP rs9547970 on serum periostin levels (interaction p = 0.01) and on radial cortical porosity (interaction p = 0.005). These results suggest that periostin expression is genetically modulated, particularly by polymorphisms

  11. Influence of estrogen deficiency and tibolone therapy on trabecular and cortical bone evaluated by computed radiography system in rats

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ana Carolina Bergmann de; Henriques, Helene Nara [Postgraduate Program in Pathology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Fernandes, Gustavo Vieira Oliveira [Postgraduate Program in Medical Sciences, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Lima, Inaya; Oliveira, Davi Ferreira de; Lopes, Ricardo Tadeu [Nuclear Engineering Program, Federal University of Rio de Janeiro (UFRJ), RJ (Brazil); Pantaleao, Jose Augusto Soares [Maternal and Child Department, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Granjeiro, Jose Mauro [Department of Cellular and Molecular Biology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Silva, Maria Angelica Guzman [Department of Pathology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-03-15

    Purpose: To verify the effects of tibolone administration on trabecular and cortical bone of ovariectomized female rats by computed radiography system (CRS). Methods: The experiment was performed on two groups of rats previously ovariectomized, one received tibolone (OVX+T) while the other did not (OVX), those groups were compared to a control group (C) not ovariectomized. Tibolone administration (1 mg/day) began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs and tibias collected. Computed radiographs of the bones were obtained and the digital images were used to determine the bone optical density and cortical thickness on every group. All results were statistically evaluated with significance set at P<0.05%. Results: Tibolone administration was shown to be beneficial only in the densitometric analysis of the femoral head, performing higher optical density compared to OVX. No difference was found in cortical bone thickness. Conclusion: Ovariectomy caused bone loss in the analyzed regions and tibolone administered in high doses over a long period showed not to be fully beneficial, but preserved bone mass in the femoral head. (author)

  12. Effect of vitamin K2 and growth hormone on the long bones in hypophysectomized young rats: a bone histomorphometry study.

    Science.gov (United States)

    Iwamoto, Jun; Takeda, Tsuyoshi; Sato, Yoshihiro; Yeh, James K

    2007-01-01

    The purpose of the present study was to determine whether vitamin K(2) and growth hormone (GH) had an additive effect on the long bones in hypophysectomized young rats. Forty-eight female Sprague-Dawley rats (6 weeks old) were assigned to the following five groups by the stratified weight randomization method: intact controls, hypophysectomy (HX) alone, HX + vitamin K(2) (30 mg/kg, p.o., daily), HX + GH (0.625 mg/kg, s.c., 5 days a week), and HX + vitamin K(2) + GH. The duration of the experiment was 4 weeks. HX resulted in a reduction of the cancellous bone volume/total tissue volume (BV/TV) at the proximal tibial metaphysis, as well as decreasing the total tissue area and cortical area of the tibial diaphysis. These changes resulted from a decrease of the longitudinal growth rate and the bone formation rate (BFR)/TV of cancellous bone, as well as a decrease of the periosteal BFR/bone surface (BS) and an increase of endocortical bone turnover (indicated by the BFR/BS) in cortical bone. Administration of vitamin K(2) to HX rats did not affect the cancellous BV/TV or the cortical area. On the other hand, GH completely prevented the decrease of total tissue area and cortical area in cortical bone, as well as the decrease of marrow area and endocortical circumference, by increasing the periosteal BFR/BS compared with that in intact controls and reversing the increase of endocortical bone turnover (BFR/BS). However, GH only partly improved the reduction of the cancellous BV/TV, despite an increase of the longitudinal growth rate and BFR/TV compared with those of intact controls. When administered with GH, vitamin K(2) counteracted the reduction of endocortical bone turnover (BFR/BS) and circumference caused by GH treatment, resulting in no significant difference of marrow area from that in untreated HX rats. These results suggest that, despite the lack of an obvious effect on bone parameters, vitamin K(2) normalizes the size of the marrow cavity during development of

  13. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone.

    Science.gov (United States)

    Fletcher, Lloyd; Codrington, John; Parkinson, Ian

    2014-07-01

    As a composite material, cortical bone accumulates fatigue microdamage through the repetitive loading of everyday activity (e.g. walking). The accumulation of fatigue microdamage is thought to contribute to the occurrence of fragility fractures in older people. Therefore it is beneficial to understand the relationship between microcrack accumulation and the fracture resistance of cortical bone. Twenty longitudinally orientated compact tension fracture specimens were machined from a single bovine femur, ten specimens were assigned to both the control and fatigue damaged groups. The damaged group underwent a fatigue loading protocol to induce microdamage which was assessed via fluorescent microscopy. Following fatigue loading, non-linear fracture resistance tests were undertaken on both the control and damaged groups using the J-integral method. The interaction of the crack path with the fatigue induced damage and inherent toughening mechanisms were then observed using fluorescent microscopy. The results of this study show that fatigue induced damage reduces the initiation toughness of cortical bone and the growth toughness within the damage zone by three distinct mechanisms of fatigue-fracture interaction. Further analysis of the J-integral fracture resistance showed both the elastic and plastic component were reduced in the damaged group. For the elastic component this was attributed to a decreased number of ligament bridges in the crack wake while for the plastic component this was attributed to the presence of pre-existing fatigue microcracks preventing energy absorption by the formation of new microcracks.

  14. Edentulation alters material properties of cortical bone in the human craniofacial skeleton: functional implications for craniofacial structure in primate evolution

    Science.gov (United States)

    Dechow, Paul C.; Wang, Qian; Peterson, Jill

    2011-01-01

    Skeletal adaptations to reduced function are an important source of skeletal variation and may be indicative of environmental pressures that lead to evolutionary changes. Humans serve as a model animal to investigate the effects of loss of craniofacial function through edentulation. In the human maxilla, it is known that edentulation leads to significant changes in skeletal structure such as residual ridge resorption and loss of cortical thickness. However, little is known about changes in bone tissue structure and material properties, which are also important for understanding skeletal mechanics but are often ignored. The aims of this study were to determine cortical material properties in edentulous crania and to evaluate differences with dentate crania and thus examine the effects of loss of function on craniofacial structure. Cortical bone samples from fifteen edentulous human skulls were measured for thickness and density. Elastic properties and directions of maximum stiffness were determined by using ultrasonic techniques. These data were compared to those from dentate crania reported in a previous investigation. Cortical bone from all regions of the facial skeleton of edentulous individuals is thinner than in dentate skulls. Elastic and shear moduli, and density are similar or greater in the zygoma and cranial vault of edentulous individuals, while these properties are less in the maxilla. Most cortical bone, especially in edentulous maxillae, has reduced directional orientation. The loss of significant occlusal loads following edentulation may contribute to the change in material properties and the loss of orientation over time during the normal process of bone remodeling. These results suggest that area-specific cortical microstructural changes accompany bone resorption following edentulation. They also suggest that functional forces are important for maintaining bone mass throughout the craniofacial skeleton, even in areas such as the browridges, which

  15. Contribution of the endosteal surface of cortical bone to the trabecular pattern seen on IOPA radiographs: an in vitro study

    Directory of Open Access Journals (Sweden)

    P T Ravikumar

    2012-01-01

    Full Text Available Objectives: A study was conducted to assess the contribution of the cancellous and endosteal surface of the cortical bone to the trabecular pattern seen in an IOPA radiograph. Materials and methods: An in vitro study analyzing the contribution of the endosteal surface of cortical bone and cancellous bone to the trabecular pattern was conducted, using 60 specimens of desiccated human mandibles. The mode of execution involved IOPA radiographic evaluation of premolarmolar segments in the specimens before and after removal of cancellous bone. The radiographs were numbered for identification and subjected to evaluation by 5 dentomaxillofacial radiologists who were doubleblinded to ensure an unbiased interpretation. Results: The trabecular pattern appreciation by the experts in the IOPA radiographs before and after removal of cancellous bone displayed immaculate correlation as per the Goodman-Kruskal Gamma Coefficient values which was 0.78 indicating a very large correlation. The relative density of trabecular pattern was significantly higher in radiograph before than after removal of cancellous bone with p-value less than 0.05. Conclusion: Based on these results it was adjudged that both the cancellous and endosteal surface of cortical bone contributed significantly to the trabecular pattern in an IOPA radiograph.

  16. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl Christian; Overgaard, Søren

    2011-01-01

    of 3 months without treatment. Group 3 was left untreated and served as controls. All sheep received a restricted diet with low calcium and phosphorus. At sacrifice, cortical bone samples from the femur midshaft of each sheep were harvested, micro-CT scanned and subjected to three-point bending...... and tensile strength testing. Bone collagen and mineral were determined. Cortical porosity was significantly increased in the glucocorticoid-2 compared with the glucocorticoid-1 and control groups. Apparent density was significantly decreased in the glucocorticoid-2 compared with the glucocorticoid-1 group....... Collagen content was significantly increased in the glucocorticoid-2 compared with the glucocorticoid-1 and control groups. Bone mineral content did not differ between the groups. Neither the three-point bending mechanical properties nor the tensile mechanical properties differed significantly between...

  17. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl C; Overgaard, Søren

    2010-01-01

    The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone – Validation of large animal model for tissue engineering and biomaterial research Ming Ding,1* Carl Christian Danielsen,2 Søren Overgaard1 1Orthopaedic Research Laboratory......, Department of Orthopaedics and Traumatology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark 2Department of Connective Tissue Biology, Institute of Anatomy, University of Aarhus, Aarhus C, Denmark Osteopenia in sheep has been successfully induced...... by glucocorticoid treatment and the changes in properties of cancellous bone were comparable with those observed in humans after long-term glucocorticoid treatment. However, the influence on cortical bone has not been thoroughly elucidated. This study aimed to investigate the influence of glucocorticoid on sheep...

  18. The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Launey, Maximilien E.; Ritchie, Robert O.

    2010-03-25

    The majority of fracture mechanics studies on the toughness of bone have been performed under tensile loading. However, it has recently been shown that the toughness of human cortical bone in the transverse (breaking) orientation is actually much lower in shear (mode II) than in tension (mode I); a fact that is physiologically relevant as in vivo bone is invariably loaded multiaxially. Since bone is a material that derives its fracture resistance primarily during crack growth through extrinsic toughening mechanisms, such as crack deflection and bridging, evaluation of its toughness is best achieved through measurements of the crack-resistance or R-curve, which describes the fracture toughness as a function of crack extension. Accordingly, in this study, we attempt to measure for the first time the R-curve fracture toughness of human cortical bone under physiologically relevant mixed-mode loading conditions. We show that the resulting mixed-mode (mode I + II) toughness depends strongly on the crack trajectory and is the result of the competition between the paths of maximum mechanical driving force and 'weakest' microstructural resistance.

  19. Evaluation of the Cortical Bone Reaction Around of Implants Using a Single-Use Final Drill: A Histologic Study.

    Science.gov (United States)

    Gehrke, Sergio Alexandre

    2015-07-01

    This study was designed to compare the cortical bone reaction following traditional osteotomy or the use of a single-use final drill in the osseointegration of implants in the tibia of rabbits. For this study, 48 conical implants, of standard surface type and design and manufactured by the same company, were inserted into the tibiae of 12 rabbits and removed after 30 or 60 days for histologic analysis. Two test groups were prepared according to the drill sequence used for the osteotomy at the preparation sites: in the control group was used a conventional drill sequence with several uses, whereas the test group (tesG) used a single-use final drill. The bone-to-implant contact and qualitative factors of the resulting cortical bone were assessed. Both techniques produced good implant integration. Differences in the linear bone-to-implant contact were observed between the drilling procedures as time elapsed in vivo, with the tesG appearing to have clinical advantages. Both groups exhibited new bone in quantity and in quality; however, the tesG exhibited a higher level of new bone deposition than the control group. Within the limitations of this study, the findings suggest that the use of a single-use final drill leads to better and faster organization of the cortical bone area during the evaluated period and may avoid the possible problems that can be caused by worn drills.

  20. Effect of synthetic cell-binding peptide on the healing of cortical segmental bone defects

    International Nuclear Information System (INIS)

    Cakmak, G.; Bolukbasi, S.; Simsek, A.; Senkoylu, A.; Erdem, O.; Yilmaz, G.

    2006-01-01

    To determine the effect of inorganic bone matric/Pepgen P-15 (ABM/P-15) on the healing of a critical sized segmental defect in a rat radius using a radiological and histological grading system. We carried out this study at the Research Laboratories, Gazi University School of Medicine in 2004. Critical sized segmental defects were created in the radius of 36 Wistar rats. Thirteen defects were filled with ABM/P-15 Flow (gel form), 12 defects were filled with ABM/P-15, and 11 defects were used as a control group. The rats were sacrified at the tenth week, and healing of the defects was evaluated radiographically and histologically. The usage of ABM/P-15 and ABM/P-15 Flow were demonstrated to improve healing of segmental bone defects compared with the control group. Statistical evaluation showed that there were significant differences between control sites, and the sites treated with P-15 and P-15 Flow (p=0.011). The highest radiological and histological grades were achieved by P-15. Segmental cortical bone defects may be treated with ABM/P-15 instead of bone allografts, and autografts. According to the radiological and histological parameters measured in this study, the implantation of ABM/P-15 resulted in optimum healing of the segmental cortical bone defects. Pepgen P-15 has a positive effect on bone healing, without any immunogenic features and disease transmission risk. Therefore, ABM/P-15 can also be used for orthopedic surgery. (author)

  1. Does the presence of tumor-induced cortical bone destruction at CT have any prognostic value in newly diagnosed diffuse large B-cell lymphoma?

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Hugo J.A.; Nievelstein, Rutger A.J.; Kwee, Thomas C. [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine, Utrecht (Netherlands); Klerk, John M.H. de [Meander Medical Center, Department of Nuclear Medicine, Amersfoort (Netherlands); Fijnheer, Rob [Meander Medical Center, Department of Hematology, Amersfoort (Netherlands); Heggelman, Ben G.F. [Meander Medical Center, Department of Radiology, Amersfoort (Netherlands); Dubois, Stefan V. [Meander Medical Center, Department of Pathology, Amersfoort (Netherlands)

    2015-05-01

    To determine the prognostic value of tumor-induced cortical bone destruction at computed tomography (CT) in newly diagnosed diffuse large B-cell lymphoma (DLBCL). This retrospective study included 105 patients with newly diagnosed DLBCL who had undergone CT and bone marrow biopsy (BMB) before R-CHOP (rituximab, cyclophosphamide, hydroxydaunorubicin, Oncovin, and prednisolone) chemo-immunotherapy. Cox regression analyses were used to determine the associations of cortical bone status at CT (absence vs. presence of tumor-induced cortical bone destruction), BMB findings (negative vs. positive for lymphomatous involvement), and dichotomized National Comprehensive Cancer Network International Prognostic Index (NCCN-IPI) strata (low risk vs. high risk) with progression-free survival (PFS) and overall survival (OS). Univariate Cox regression analysis indicated that cortical bone status at CT was no significant predictor of either PFS or OS (p = 0.358 and p = 0.560, respectively), whereas BMB findings (p = 0.002 and p = 0.013, respectively) and dichotomized NCCN-IPI risk strata (p = 0.002 and p = 0.003, respectively) were significant predictors of both PFS and OS. In the multivariate Cox proportional hazards model, only the dichotomized NCCN-IPI score was an independent predictive factor of PFS and OS (p = 0.004 and p = 0.003, respectively). The presence of tumor-induced cortical bone destruction at CT was not found to have any prognostic implications in newly diagnosed DLBCL. (orig.)

  2. Aging and Fracture of Human Cortical Bone and Tooth Dentin

    Energy Technology Data Exchange (ETDEWEB)

    Ager, Joel; Koester, Kurt J.; Ager III, Joel W.; Ritchie, Robert O.

    2008-05-07

    Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms which function primarily behind the tip, such as crack bridging in ceramics. Bone and dentin derive their resistance to fracture principally from extrinsic toughening mechanisms which have their origins in the hierarchical microstructure of these mineralized tissues. Experimentally, quantification of these toughening mechanisms requires a crack-growth resistance approach, which can be achieved by measuring the crack-driving force, e.g., the stress intensity, as a function of crack extension ("R-curve approach"). Here this methodology is used to study of the effect of aging on the fracture properties of human cortical bone and human dentin in order to discern the microstructural origins of toughness in these materials.

  3. Age-related changes in cortical bone mass: data from a German female cohort

    International Nuclear Information System (INIS)

    Toledo, V.A. Molina; Jergas, M.

    2006-01-01

    To describe data from digital radiogrammetry (DXR) in an unselected German female cohort over a wide age range. Using a retrospective study design we analyzed radiographs of the hand from 540 German women (aged 5-96 years) using an automated assessment of cortical thickness, metacarpal index (MCI), and estimated cortical bone mineral density (DXR-BMD) on digitized radiographs. Both hands were radiographed in 97 women. In this group DXR-BMD and cortical thickness were significantly higher in the right metacarpals while there was no significant difference in MCI. To study the association with age we differentiated young ( 45 years). In young women all parameters increased significantly with age in a linear fashion (r=0.8 for DXR-BMD, r=0.7 for MCI). In those aged 25-45 years DXR-BMD and MCI were highest (peak bone mass). In women aged 45 or older all parameters decreased with age in an almost linear fashion with an annual change ranging from 0.7% to 0.9%. Our results for an unselected German female cohort indicate that DXR is a reliable, widely available osteodensitometric technique based on the refinement of conventional radiogrammetry. These findings are comparable to those from other studies and represent a valid resource for clinical application and for comparisons with other ethnic groups. (orig.)

  4. Classification of tubulo-papillary renal cortical tumours using estimates of nuclear volume

    DEFF Research Database (Denmark)

    Brooks, B; Sørensen, Flemming Brandt; Olsen, S

    1993-01-01

    The classification of renal cortical tumours is problematic, with no clear division of benign from malignant tumours. Unbiased stereological estimates of volume-weighted nuclear volume (nuclear vv) were obtained by point sampling of nuclear intercepts in a retrospective study of 36 variably sized...

  5. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    International Nuclear Information System (INIS)

    Herlin, Maria; Finnilä, Mikko A.J.; Zioupos, Peter; Aula, Antti; Risteli, Juha; Miettinen, Hanna M.; Jämsä, Timo; Tuukkanen, Juha; Korkalainen, Merja; Håkansson, Helen; Viluksela, Matti

    2013-01-01

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr −/− ) and wild-type (Ahr +/+ ) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr +/+ mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr −/− mice displayed a slightly modified bone phenotype as compared with untreated Ahr +/+ mice, while TCDD exposure caused only a few changes in bones of Ahr −/− mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr +/+ mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation results in increased trabecular bone

  6. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    Energy Technology Data Exchange (ETDEWEB)

    Herlin, Maria, E-mail: maria.herlin@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Finnilä, Mikko A.J., E-mail: mikko.finnila@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Zioupos, Peter, E-mail: p.zioupos@cranfield.ac.uk [Biomechanics Laboratories, Department of Engineering and Applied Science, Cranfield University, Shrivenham SN6 8LA (United Kingdom); Aula, Antti, E-mail: antti.aula@gmail.com [Department of Medical Physics, Imaging Centre, Tampere University Hospital, Tampere (Finland); Department of Biomedical Engineering, Tampere University of Technology, Tampere (Finland); Risteli, Juha, E-mail: juha.risteli@ppshp.fi [Department of Clinical Chemistry, Oulu University Hospital, Oulu (Finland); Miettinen, Hanna M., E-mail: hanna.miettinen@crl.com [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Jämsä, Timo, E-mail: timo.jamsa@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Diagnostic Radiology, Oulu University Hospital, Oulu (Finland); Tuukkanen, Juha, E-mail: juha.tuukkanen@oulu.fi [Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Korkalainen, Merja, E-mail: merja.korkalainen@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Håkansson, Helen, E-mail: Helen.Hakansson@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Viluksela, Matti, E-mail: matti.viluksela@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Department of Environmental Science, University of Eastern Finland, Kuopio (Finland)

    2013-11-15

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr{sup −/−}) and wild-type (Ahr{sup +/+}) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr{sup +/+} mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr{sup −/−} mice displayed a slightly modified bone phenotype as compared with untreated Ahr{sup +/+} mice, while TCDD exposure caused only a few changes in bones of Ahr{sup −/−} mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr{sup +/+} mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation

  7. Cortical thickness, surface area and volume measures in Parkinson's disease, multiple system atrophy and progressive supranuclear palsy.

    Directory of Open Access Journals (Sweden)

    Amanda Worker

    Full Text Available Parkinson's disease (PD, Multiple System Atrophy (MSA and Progressive Supranuclear Palsy (PSP are neurodegenerative diseases that can be difficult to distinguish clinically. The objective of the current study was to use surface-based analysis techniques to assess cortical thickness, surface area and grey matter volume to identify unique morphological patterns of cortical atrophy in PD, MSA and PSP and to relate these patterns of change to disease duration and clinical features.High resolution 3D T1-weighted MRI volumes were acquired from 14 PD patients, 18 MSA, 14 PSP and 19 healthy control participants. Cortical thickness, surface area and volume analyses were carried out using the automated surface-based analysis package FreeSurfer (version 5.1.0. Measures of disease severity and duration were assessed for correlation with cortical morphometric changes in each clinical group.Results show that in PSP, widespread cortical thinning and volume loss occurs within the frontal lobe, particularly the superior frontal gyrus. In addition, PSP patients also displayed increased surface area in the pericalcarine. In comparison, PD and MSA did not display significant changes in cortical morphology.These results demonstrate that patients with clinically established PSP exhibit distinct patterns of cortical atrophy, particularly affecting the frontal lobe. These results could be used in the future to develop a useful clinical application of MRI to distinguish PSP patients from PD and MSA patients.

  8. Mitochondrial Point Mutation m.3243A>G Associates With Lower Bone Mineral Density, Thinner Cortices, and Reduced Bone Strength

    DEFF Research Database (Denmark)

    Langdahl, Jakob Høgild; Frederiksen, Anja Lisbeth; Hansen, Stinus Jørn

    2017-01-01

    Mitochondrial dysfunction is associated with several clinical manifestations including diabetes mellitus (DM), neurological disorders, renal and hepatic diseases, and myopathy. Although mitochondrial dysfunction is associated with increased bone resorption and decreased bone formation in mouse...... at the lumbar spine, total hip, and femoral neck in cases. Mean lumbar spine, total hip, and femoral neck T-scores were -1.5, -1.3, and -1.6 in cases, respectively, and -0.8, -0.3, and -0.7 in controls (all p G mutation was associated with lower BMD, cortical but not trabecular density...

  9. Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study.

    Science.gov (United States)

    Rivadeneira, Fernando; Zillikens, M Carola; De Laet, Chris Edh; Hofman, Albert; Uitterlinden, André G; Beck, Thomas J; Pols, Huibert Ap

    2007-11-01

    We studied HSA measurements in relation to hip fracture risk in 4,806 individuals (2,740 women). Hip fractures (n = 147) occurred at the same absolute levels of bone instability in both sexes. Cortical instability (propensity of thinner cortices in wide diameters to buckle) explains why hip fracture risk at different BMD levels is the same across sexes. Despite the sexual dimorphism of bone, hip fracture risk is very similar in men and women at the same absolute BMD. We aimed to elucidate the main structural properties of bone that underlie the measured BMD and that ultimately determines the risk of hip fracture in elderly men and women. This study is part of the Rotterdam Study (a large prospective population-based cohort) and included 147 incident hip fracture cases in 4,806 participants with DXA-derived hip structural analysis (mean follow-up, 8.6 yr). Indices compared in relation to fracture included neck width, cortical thickness, section modulus (an index of bending strength), and buckling ratio (an index of cortical bone instability). We used a mathematical model to calculate the hip fracture distribution by femoral neck BMD, BMC, bone area, and hip structure analysis (HSA) parameters (cortical thickness, section modulus narrow neck width, and buckling ratio) and compared it with prospective data from the Rotterdam Study. In the prospective data, hip fracture cases in both sexes had lower BMD, thinner cortices, greater bone width, lower strength, and higher instability at baseline. In fractured individuals, men had an average BMD that was 0.09 g/cm(2) higher than women (p men and women. No significant differences were observed between the areas under the ROC curves of BMD (0.8146 in women and 0.8048 in men) and the buckling ratio (0.8161 in women and 0.7759 in men). The buckling ratio (an index of bone instability) portrays in both sexes the critical balance between cortical thickness and bone width. Our findings suggest that extreme thinning of cortices in

  10. Tributyltin induces distinct effects on cortical and trabecular bone in female C57Bl/6J mice.

    Science.gov (United States)

    Watt, James; Baker, Amelia H; Meeks, Brett; Pajevic, Paola D; Morgan, Elise F; Gerstenfeld, Louis C; Schlezinger, Jennifer J

    2018-09-01

    The retinoid X receptors (RXR), peroxisome proliferator activated receptor gamma (PPARγ), and liver X receptors (LXR) all have been shown to regulate bone homeostasis. Tributyltin (TBT) is an environmental contaminant that is a dual RXRα/β and PPARγ agonist. TBT induces RXR, PPARγ, and LXR-mediated gene transcription and suppresses osteoblast differentiation in vitro. Bone marrow multipotent mesenchymal stromal cells derived from female C57BL/6J mice were more sensitive to suppression of osteogenesis by TBT than those derived from male mice. In vivo, oral gavage of 12 week old female, C57Bl/6J mice with 10 mg/kg TBT for 10 weeks resulted in femurs with a smaller cross-sectional area and thinner cortex. Surprisingly, TBT induced significant increases in trabecular thickness, number, and bone volume fraction. TBT treatment did not change the Rankl:Opg RNA ratio in whole bone, and histological analyses showed that osteoclasts in the trabecular space were minimally reduced. In contrast, expression of cardiotrophin-1, an osteoblastogenic cytokine secreted by osteoclasts, increased. In primary bone marrow macrophage cultures, TBT marginally inhibited the number of osteoclasts that differentiated, in spite of significantly suppressing expression of osteoclast markers Nfatc1, Acp5, and Ctsk and resorptive activity. TBT induced expression of RXR- and LXR-dependent genes in whole bone and in vitro osteoclast cultures. However, only an RXR antagonist, but not an LXR antagonist, significantly inhibited TBTs ability to suppress osteoclast differentiation. These results suggest that TBT has distinct effects on cortical versus trabecular bone, likely resulting from independent effects on osteoblast and osteoclast differentiation that are mediated through RXR. © 2018 Wiley Periodicals, Inc.

  11. Examining the volume efficiency of the cortical architecture in a multi-processor network model.

    Science.gov (United States)

    Ruppin, E; Schwartz, E L; Yeshurun, Y

    1993-01-01

    The convoluted form of the sheet-like mammalian cortex naturally raises the question whether there is a simple geometrical reason for the prevalence of cortical architecture in the brains of higher vertebrates. Addressing this question, we present a formal analysis of the volume occupied by a massively connected network or processors (neurons) and then consider the pertaining cortical data. Three gross macroscopic features of cortical organization are examined: the segregation of white and gray matter, the circumferential organization of the gray matter around the white matter, and the folded cortical structure. Our results testify to the efficiency of cortical architecture.

  12. Genetic and environmental variances of bone microarchitecture and bone remodeling markers: a twin study.

    Science.gov (United States)

    Bjørnerem, Åshild; Bui, Minh; Wang, Xiaofang; Ghasem-Zadeh, Ali; Hopper, John L; Zebaze, Roger; Seeman, Ego

    2015-03-01

    All genetic and environmental factors contributing to differences in bone structure between individuals mediate their effects through the final common cellular pathway of bone modeling and remodeling. We hypothesized that genetic factors account for most of the population variance of cortical and trabecular microstructure, in particular intracortical porosity and medullary size - void volumes (porosity), which establish the internal bone surface areas or interfaces upon which modeling and remodeling deposit or remove bone to configure bone microarchitecture. Microarchitecture of the distal tibia and distal radius and remodeling markers were measured for 95 monozygotic (MZ) and 66 dizygotic (DZ) white female twin pairs aged 40 to 61 years. Images obtained using high-resolution peripheral quantitative computed tomography were analyzed using StrAx1.0, a nonthreshold-based software that quantifies cortical matrix and porosity. Genetic and environmental components of variance were estimated under the assumptions of the classic twin model. The data were consistent with the proportion of variance accounted for by genetic factors being: 72% to 81% (standard errors ∼18%) for the distal tibial total, cortical, and medullary cross-sectional area (CSA); 67% and 61% for total cortical porosity, before and after adjusting for total CSA, respectively; 51% for trabecular volumetric bone mineral density (vBMD; all p accounted for 47% to 68% of the variance (all p ≤ 0.001). Cross-twin cross-trait correlations between tibial cortical porosity and medullary CSA were higher for MZ (rMZ  = 0.49) than DZ (rDZ  = 0.27) pairs before (p = 0.024), but not after (p = 0.258), adjusting for total CSA. For the remodeling markers, the data were consistent with genetic factors accounting for 55% to 62% of the variance. We infer that middle-aged women differ in their bone microarchitecture and remodeling markers more because of differences in their genetic factors than

  13. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    OpenAIRE

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100?150?MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110?MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1?10?MPa compressive...

  14. Extraskeletal and intraskeletal new bone formation induced by demineralized bone matrix combined with bone marrow cells

    International Nuclear Information System (INIS)

    Lindholm, T.S.; Nilsson, O.S.; Lindholm, T.C.

    1982-01-01

    Dilutions of fresh autogenous bone marrow cells in combination with allogeneic demineralized cortical bone matrix were tested extraskeletally in rats using roentgenographic, histologic, and 45 Ca techniques. Suspensions of bone marrow cells (especially diluted 1:2 with culture media) combined with demineralized cortical bone seemed to induce significantly more new bone than did demineralized bone, bone marrow, or composite grafts with whole bone marrow, respectively. In a short-term spinal fusion experiment, demineralized cortical bone combined with fresh bone marrow produced new bone and bridged the interspace between the spinous processes faster than other transplantation procedures. The induction of undifferentiated host cells by demineralized bone matrix is further complemented by addition of autogenous, especially slightly diluted, bone marrow cells

  15. Grey matter volume and cortical structure in Prader-Willi syndrome compared to typically developing young adults

    Directory of Open Access Journals (Sweden)

    Katherine E. Manning

    2018-01-01

    Full Text Available Prader-Willi syndrome (PWS is a neurodevelopmental disorder of genomic imprinting, presenting with a characteristic overeating disorder, mild to moderate intellectual disability, and a variable range of social and behavioral difficulties. Consequently, widespread alterations in neural structure and developmental and maturational trajectory would be expected. To date, there have been few quantitative and systematic studies of brain morphology in PWS, although alterations of volume and of cortical organisation have been reported. This study aimed to investigate, in detail, the structure of grey matter and cortex in the brain in a sample of young adults with PWS in a well-matched case-controlled analysis. 20 young adults with PWS, aged 19–27 years, underwent multiparameter mapping magnetic resonance imaging sequences, from which measures of grey matter volume, cortical thickness and magnetisation transfer saturation, as a proxy measure of myelination, were examined. These variables were investigated in comparison to a control group of 40 typically developing young adults, matched for age and sex. A voxel-based morphometry analysis identified large and widespread bilateral clusters of both increased and decreased grey matter volume in the brain in PWS. In particular, widespread areas of increased volume encompassed parts of the prefrontal cortex, especially medially, the majority of the cingulate cortices, from anterior to posterior aspects, insula cortices, and areas of the parietal and temporal cortices. Increased volume was also reported in the caudate, putamen and thalamus. The most ventromedial prefrontal areas, in contrast, showed reduced volume, as did the parts of the medial temporal lobe, bilateral temporal poles, and a small cluster in the right lateral prefrontal cortex. Analysis of cortical structure revealed that areas of increased volume in the PWS group were largely driven by greater cortical thickness. Conversely, analysis of

  16. Grey matter volume and cortical structure in Prader-Willi syndrome compared to typically developing young adults.

    Science.gov (United States)

    Manning, Katherine E; Tait, Roger; Suckling, John; Holland, Anthony J

    2018-01-01

    Prader-Willi syndrome (PWS) is a neurodevelopmental disorder of genomic imprinting, presenting with a characteristic overeating disorder, mild to moderate intellectual disability, and a variable range of social and behavioral difficulties. Consequently, widespread alterations in neural structure and developmental and maturational trajectory would be expected. To date, there have been few quantitative and systematic studies of brain morphology in PWS, although alterations of volume and of cortical organisation have been reported. This study aimed to investigate, in detail, the structure of grey matter and cortex in the brain in a sample of young adults with PWS in a well-matched case-controlled analysis. 20 young adults with PWS, aged 19-27 years, underwent multiparameter mapping magnetic resonance imaging sequences, from which measures of grey matter volume, cortical thickness and magnetisation transfer saturation, as a proxy measure of myelination, were examined. These variables were investigated in comparison to a control group of 40 typically developing young adults, matched for age and sex. A voxel-based morphometry analysis identified large and widespread bilateral clusters of both increased and decreased grey matter volume in the brain in PWS. In particular, widespread areas of increased volume encompassed parts of the prefrontal cortex, especially medially, the majority of the cingulate cortices, from anterior to posterior aspects, insula cortices, and areas of the parietal and temporal cortices. Increased volume was also reported in the caudate, putamen and thalamus. The most ventromedial prefrontal areas, in contrast, showed reduced volume, as did the parts of the medial temporal lobe, bilateral temporal poles, and a small cluster in the right lateral prefrontal cortex. Analysis of cortical structure revealed that areas of increased volume in the PWS group were largely driven by greater cortical thickness. Conversely, analysis of myelin content using

  17. Bone microarchitecture and estimated bone strength in men with active acromegaly.

    Science.gov (United States)

    Silva, Paula P B; Amlashi, Fatemeh G; Yu, Elaine W; Pulaski-Liebert, Karen J; Gerweck, Anu V; Fazeli, Pouneh K; Lawson, Elizabeth; Nachtigall, Lisa B; Biller, Beverly M K; Miller, Karen K; Klibanski, Anne; Bouxsein, Mary; Tritos, Nicholas A

    2017-11-01

    Both acromegaly and adult growth hormone deficiency (GHD) are associated with increased fracture risk. Sufficient data are lacking regarding cortical bone microarchitecture and bone strength, as assessed by microfinite element analysis (µFEA). To elucidate both cortical and trabecular bone microarchitecture and estimated bone strength in men with active acromegaly or GHD compared to healthy controls. Cross-sectional study at a clinical research center, including 48 men (16 with acromegaly, 16 with GHD and 16 healthy controls). Areal bone mineral density (aBMD), cortical and trabecular bone microarchitecture and estimated bone strength (µFEA) at the radius and tibia. aBMD was not different between the 3 groups at any skeletal site. At the radius, patients with acromegaly had greater cortical area ( P  acromegaly had lower trabecular bone density ( P  = 0.0082), but no differences in cortical bone microstructure. Compressive strength and failure load did not significantly differ between groups. These findings persisted after excluding patients with hypogonadism. Bone microarchitecture was not deficient in patients with GHD. Both cortical and trabecular microarchitecture are altered in men with acromegaly. Our data indicate that GH excess is associated with distinct effects in cortical vs trabecular bone compartments. Our observations also affirm the limitations of aBMD testing in the evaluation of patients with acromegaly. © 2017 European Society of Endocrinology.

  18. Genomic regulation of natural variation in cortical and noncortical brain volume

    Directory of Open Access Journals (Sweden)

    Laughlin Rick E

    2006-02-01

    Full Text Available Abstract Background The relative growth of the neocortex parallels the emergence of complex cognitive functions across species. To determine the regions of the mammalian genome responsible for natural variations in cortical volume, we conducted a complex trait analysis using 34 strains of recombinant inbred (Rl strains of mice (BXD, as well as their two parental strains (C57BL/6J and DBA/2J. We measured both neocortical volume and total brain volume in 155 coronally sectioned mouse brains that were Nissl stained and embedded in celloidin. After correction for shrinkage, the measured cortical and noncortical brain volumes were entered into a multiple regression analysis, which removed the effects of body size and age from the measurements. Marker regression and interval mapping were computed using WebQTL. Results An ANOVA revealed that more than half of the variance of these regressed phenotypes is genetically determined. We then identified the regions of the genome regulating this heritability. We located genomic regions in which a linkage disequilibrium was present using WebQTL as both a mapping engine and genomic database. For neocortex, we found a genome-wide significant quantitative trait locus (QTL on chromosome 11 (marker D11Mit19, as well as a suggestive QTL on chromosome 16 (marker D16Mit100. In contrast, for noncortex the effect of chromosome 11 was markedly reduced, and a significant QTL appeared on chromosome 19 (D19Mit22. Conclusion This classic pattern of double dissociation argues strongly for different genetic factors regulating relative cortical size, as opposed to brain volume more generally. It is likely, however, that the effects of proximal chromosome 11 extend beyond the neocortex strictly defined. An analysis of single nucleotide polymorphisms in these regions indicated that ciliary neurotrophic factor (Cntf is quite possibly the gene underlying the noncortical QTL. Evidence for a candidate gene modulating neocortical

  19. Kit W-sh Mutation Prevents Cancellous Bone Loss during Calcium Deprivation.

    Science.gov (United States)

    Lotinun, Sutada; Suwanwela, Jaijam; Poolthong, Suchit; Baron, Roland

    2018-01-01

    Calcium is essential for normal bone growth and development. Inadequate calcium intake increases the risk of osteoporosis and fractures. Kit ligand/c-Kit signaling plays an important role in regulating bone homeostasis. Mice with c-Kit mutations are osteopenic. The present study aimed to investigate whether impairment of or reduction in c-Kit signaling affects bone turnover during calcium deprivation. Three-week-old male WBB6F1/J-Kit W /Kit W-v /J (W/W v ) mice with c-Kit point mutation, Kit W-sh /HNihrJaeBsmJ (W sh /W sh ) mice with an inversion mutation in the regulatory elements upstream of the c-Kit promoter region, and their wild-type controls (WT) were fed either a normal (0.6% calcium) or a low calcium diet (0.02% calcium) for 3 weeks. μCT analysis indicated that both mutants fed normal calcium diet had significantly decreased cortical thickness and cancellous bone volume compared to WT. The low calcium diet resulted in a comparable reduction in cortical bone volume and cortical thickness in the W/W v and W sh /W sh mice, and their corresponding controls. As expected, the low calcium diet induced cancellous bone loss in the W/W v mice. In contrast, W sh /W sh cancellous bone did not respond to this diet. This c-Kit mutation prevented cancellous bone loss by antagonizing the low calcium diet-induced increase in osteoblast and osteoclast numbers in the W sh /W sh mice. Gene expression profiling showed that calcium deficiency increased Osx, Ocn, Alp, type I collagen, c-Fms, M-CSF, and RANKL/OPG mRNA expression in controls; however, the W sh mutation suppressed these effects. Our findings indicate that although calcium restriction increased bone turnover, leading to osteopenia, the decreased c-Kit expression levels in the W sh /W sh mice prevented the low calcium diet-induced increase in cancellous bone turnover and bone loss but not the cortical bone loss.

  20. Growth and Age-Related Abnormalities in Cortical Structure and Fracture Risk

    Directory of Open Access Journals (Sweden)

    Ego Seeman

    2015-12-01

    Full Text Available Vertebral fractures and trabecular bone loss have dominated thinking and research into the pathogenesis and the structural basis of bone fragility during the last 70 years. However, 80% of all fractures are non-vertebral and occur at regions assembled using large amounts of cortical bone; only 20% of fractures are vertebral. Moreover, ~80% of the skeleton is cortical and ~70% of all bone loss is cortical even though trabecular bone is lost more rapidly than cortical bone. Bone is lost because remodelling becomes unbalanced after midlife. Most cortical bone loss occurs by intracortical, not endocortical remodelling. Each remodelling event removes more bone than deposited enlarging existing canals which eventually coalesce eroding and thinning the cortex from 'within.' Thus, there is a need to study the decay of cortical as well as trabecular bone, and to develop drugs that restore the strength of both types of bone. It is now possible to accurately quantify cortical porosity and trabecular decay in vivo. The challenges still to be met are to determine whether measurement of porosity identifies persons at risk for fracture, whether this approach is compliments information obtained using bone densitometry, and whether changes in cortical porosity and other microstructural traits have the sensitivity to serve as surrogates of treatment success or failure.

  1. 3D printed phantoms mimicking cortical bone for the assessment of ultrashort echo time magnetic resonance imaging.

    Science.gov (United States)

    Rai, Robba; Manton, David; Jameson, Michael G; Josan, Sonal; Barton, Michael B; Holloway, Lois C; Liney, Gary P

    2018-02-01

    Human cortical bone has a rapid T2∗ decay, and it can be visualized using ultrashort echo time (UTE) techniques in magnetic resonance imaging (MRI). These sequences operate at the limits of gradient and transmit-receive signal performance. Development of multicompartment anthropomorphic phantoms that can mimic human cortical bone can assist with quality assurance and optimization of UTE sequences. The aims of this study were to (a) characterize the MRI signal properties of a photopolymer resin that can be 3D printed, (b) develop multicompartment phantoms based on the resin, and (c) demonstrate the feasibility of using these phantoms to mimic human anatomy in the assessment of UTE sequences. A photopolymer resin (Prismlab China Ltd, Shanghai, China) was imaged on a 3 Tesla MRI system (Siemens Skyra) to characterize its MRI properties with emphasis on T2∗ signal and longevity. Two anthropomorphic phantoms, using the 3D printed resin to simulate skeletal anatomy, were developed and imaged using UTE sequences. A skull phantom was developed and used to assess the feasibility of using the resin to develop a complex model with realistic morphological human characteristics. A tibia model was also developed to assess the suitability of the resin at mimicking a simple multicompartment anatomical model and imaged using a three-dimensional UTE sequence (PETRA). Image quality measurements of signal-to-noise ratio (SNR) and contrast factor were calculated and these were compared to in vivo values. The T2∗ and T 1 (mean ± standard deviation) of the photopolymer resin was found to be 411 ± 19 μs and 74.39 ± 13.88 ms, respectively, and demonstrated no statistically significant change during 4 months of monitoring. The resin had a similar T2∗ decay to human cortical bone; however, had lower T 1 properties. The bone water concentration of the resin was 59% relative to an external water reference phantom, and this was higher than in vivo values reported for human cortical

  2. MRI of the temporo-mandibular joint: which sequence is best suited to assess the cortical bone of the mandibular condyle? A cadaveric study using micro-CT as the standard of reference.

    Science.gov (United States)

    Karlo, Christoph A; Patcas, Raphael; Kau, Thomas; Watzal, Helmut; Signorelli, Luca; Müller, Lukas; Ullrich, Oliver; Luder, Hans-Ulrich; Kellenberger, Christian J

    2012-07-01

    To determine the best suited sagittal MRI sequence out of a standard temporo-mandibular joint (TMJ) imaging protocol for the assessment of the cortical bone of the mandibular condyles of cadaveric specimens using micro-CT as the standard of reference. Sixteen TMJs in 8 human cadaveric heads (mean age, 81 years) were examined by MRI. Upon all sagittal sequences, two observers measured the cortical bone thickness (CBT) of the anterior, superior and posterior portions of the mandibular condyles (i.e. objective analysis), and assessed for the presence of cortical bone thinning, erosions or surface irregularities as well as subcortical bone cysts and anterior osteophytes (i.e. subjective analysis). Micro-CT of the condyles was performed to serve as the standard of reference for statistical analysis. Inter-observer agreements for objective (r = 0.83-0.99, P < 0.01) and subjective (κ = 0.67-0.88) analyses were very good. Mean CBT measurements were most accurate, and cortical bone thinning, erosions, surface irregularities and subcortical bone cysts were best depicted on the 3D fast spoiled gradient echo recalled sequence (3D FSPGR). The most reliable MRI sequence to assess the cortical bone of the mandibular condyles on sagittal imaging planes is the 3D FSPGR sequence. MRI may be used to assess the cortical bone of the TMJ. • Depiction of cortical bone is best on 3D FSPGR sequences. • MRI can assess treatment response in patients with TMJ abnormalities.

  3. X-ray imaging characterization of femoral bones in aging mice with osteopetrotic disorder.

    Science.gov (United States)

    Tu, Shu-Ju; Huang, Hong-Wen; Chang, Wei-Jeng

    2015-04-01

    Aging mice with a rare osteopetrotic disorder in which the entire space of femoral bones are filled with trabecular bones are used as our research platform. A complete study is conducted with a micro computed tomography (CT) system to characterize the bone abnormality. Technical assessment of femoral bones includes geometric structure, biomechanical strength, bone mineral density (BMD), and bone mineral content (BMC). Normal aging mice of similar ages are included for comparisons. In our imaging work, we model the trabecular bone as a cylindrical rod and new quantitative which are not previously discussed are developed for advanced analysis, including trabecular segment length, trabecular segment radius, connecting node number, and distribution of trabecular segment radius. We then identified a geometric characteristic in which there are local maximums (0.0049, 0.0119, and 0.0147 mm) in the structure of trabecular segment radius. Our calculations show 343% higher in percent trabecular bone volume at distal-metaphysis; 38% higher in cortical thickness at mid-diaphysis; 11% higher in cortical cross-sectional moment of inertia at mid-diaphysis; 42% higher in cortical thickness at femur neck; 26% higher in cortical cross-sectional moment of inertia at femur neck; 31% and 395% higher in trabecular BMD and BMC at distal-metaphysis; 17% and 27% higher in cortical BMD and BMC at distal-metaphysis; 9% and 53% higher in cortical BMD and BMC at mid-diaphysis; 25% and 64% higher in cortical BMD and BMC at femur neck. Our new quantitative parameters and findings may be extended to evaluate the treatment response for other similar bone disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Quantitation of mandibular symphysis volume as a source of bone grafting.

    Science.gov (United States)

    Verdugo, Fernando; Simonian, Krikor; Smith McDonald, Roberto; Nowzari, Hessam

    2010-06-01

    Autogenous intramembranous bone graft present several advantages such as minimal resorption and high concentration of bone morphogenetic proteins. A method for measuring the amount of bone that can be harvested from the symphysis area has not been reported in real patients. The aim of the present study was to intrasurgically quantitate the volume of the symphysis bone graft that can be safely harvested in live patients and compare it with AutoCAD (version 16.0, Autodesk, Inc., San Rafael, CA, USA) tomographic calculations. AutoCAD software program quantitated symphysis bone graft in 40 patients using computerized tomographies. Direct intrasurgical measurements were recorded thereafter and compared with AutoCAD data. The bone volume was measured at the recipient sites of a subgroup of 10 patients, 6 months post sinus augmentation. The volume of bone graft measured by AutoCAD averaged 1.4 mL (SD 0.6 mL, range: 0.5-2.7 mL). The volume of bone graft measured intrasurgically averaged 2.3 mL (SD 0.4 mL, range 1.7-2.8 mL). The statistical difference between the two measurement methods was significant. The bone volume measured at the recipient sites 6 months post sinus augmentation averaged 1.9 mL (SD 0.3 mL, range 1.3-2.6 mL) with a mean loss of 0.4 mL. AutoCAD did not overestimate the volume of bone that can be safely harvested from the mandibular symphysis. The use of the design software program may improve surgical treatment planning prior to sinus augmentation.

  5. A grape-enriched diet increases bone calcium retention and cortical bone properties in ovariectomized rats.

    Science.gov (United States)

    Hohman, Emily E; Weaver, Connie M

    2015-02-01

    Grapes and their associated phytochemicals have been investigated for beneficial effects on cardiovascular health, cancer prevention, and other chronic diseases, but the effect of grape consumption on bone health has not been fully determined. We previously found short-term benefits of grape products on reducing bone turnover in ovariectomized rats. The objective of this study was to determine the long-term benefits of a grape-enriched diet on bone in ovariectomized rats. Rats were ovariectomized at 3 mo of age and were administered a single dose of (45)Ca to prelabel bones at 4 mo of age. After a 1-mo equilibration period, baseline urinary (45)Ca excretion was determined. Rats (n = 22/group) were then randomly assigned to a modified AIN93M diet containing 25% freeze-dried grape powder or to a control diet for 8 wk. Urinary (45)Ca excretion was monitored throughout the study to determine changes in bone (45)Ca retention. Calcium balance was assessed after 1 and 8 wk of consuming the experimental diets, and a calcium kinetic study was performed at 8 wk. After 8 wk, femurs were collected for micro-computed tomographic imaging, 3-point bending, and reference point indentation. Rats fed the grape-enriched diet had 44% greater net bone calcium retention than did rats fed the control diet. There were no differences in calcium balance due to diet at either week 1 or week 8, but there was a significant increase in net calcium absorption (10.6%) and retention (5.7%) from week 1 to week 8 in the grape-enriched diet group only. Grape-enriched diet-fed rats had 3% greater cortical thickness and 11% greater breaking strength. There were no differences in femur bone mineral density, trabecular microarchitecture, or reference point indentation variables due to diet. This study of ovariectomized rats indicates that the consumption of grape products may improve calcium utilization and suppress bone turnover, resulting in improvements in bone quality. © 2015 American Society for

  6. Fatigue crack growth behavior in equine cortical bone

    Science.gov (United States)

    Shelton, Debbie Renee

    2001-07-01

    Objectives for this research were to experimentally determine crack growth rates, da/dN, as a function of alternating stress intensity factor, DeltaK, for specimens from lateral and dorsal regions of equine third metacarpal cortical bone tissue, and to determine if the results were described by the Paris law. In one set of experiments, specimens were oriented for crack propagation in the circumferential direction with the crack plane transverse to the long axis of the bone. In the second set of experiments, specimens were oriented for radial crack growth with the crack plane parallel to the long axis of the bone. Results of fatigue tests from the latter specimens were used to evaluate the hypothesis that crack growth rates differ regionally. The final experiments were designed to determine if crack resistance was dependent on region, proportion of hooped osteons (those with circumferentially oriented collagen fibers in the outer lamellae) or number of osteons penetrated by the crack, and to address the hypothesis that hooped osteons resist invasion by cracks better than other osteonal types. The transverse crack growth data for dorsal specimens were described by the Paris law with an exponent of 10.4 and suggested a threshold stress intensity factor, DeltaKth, of 2.0 MPa·m1/2 and fracture toughness of 4.38 MPa·m 1/2. Similar results were not obtained for lateral specimens because the crack always deviated from the intended path and ran parallel to the loading direction. Crack growth for the dorsal and lateral specimens in the radial orientation was described by the Paris law with exponents of 8.7 and 10.2, respectively, and there were no regional differences in the apparent DeltaK th (0.5 MPa·m1/2) or fracture toughness (1.2 MPa·m 1/2). Crack resistance was not associated with cortical region, proportion of hooped osteons or the number of osteons penetrated by the crack. The extent to which cracks penetrate osteons was influenced by whether the collagen fiber

  7. A newly developed snack effective for enhancing bone volume

    Directory of Open Access Journals (Sweden)

    Hayashi Hidetaka

    2009-07-01

    Full Text Available Abstract Background The incidence of primary osteoporosis is higher in Japan than in USA and European countries. Recently, the importance of preventive medicine has been gradually recognized in the field of orthopaedic surgery with a concept that peak bone mass should be increased in childhood as much as possible for the prevention of osteoporosis. Under such background, we have developed a new bean snack with an aim to improve bone volume loss. In this study, we examined the effects of a newly developed snack on bone volume and density in osteoporosis model mice. Methods Orchiectomy (ORX and ovariectomy (OVX were performed for C57BL/6J mice of twelve-week-old (Jackson Laboratory, Bar Harbar, ME, USA were used in this experiment. We prepared and given three types of powder diet e.g.: normal calcium diet (NCD, Ca: 0.9%, Clea Japan Co., Tokyo, Japan, low calcium diet (LCD, Ca: 0.63%, Clea Japan Co., and special diet (SCD, Ca: 0.9%. Eighteen weeks after surgery, all the animals were sacrified and prepared for histomorphometric analysis to quantify bone density and bone mineral content. Results As a result of histomorphometric examination, SCD was revealed to enhance bone volume irrespective of age and sex. The bone density was increased significantly in osteoporosis model mice fed the newly developmental snack as compared with the control mice. The bone mineral content was also enhanced significantly. These phenomena were revealed in both sexes. Conclusion It is shown that the newly developed bean snack is highly effective for the improvement of bone volume loss irrespective of sex. We demonstrated that newly developmental snack supplements may be a useful preventive measure for Japanese whose bone mineral density values are less than the ideal condition.

  8. Effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture.

    Science.gov (United States)

    Jain, R; Podworny, N; Hearn, T; Anderson, G I; Schemitsch, E H

    1997-10-01

    Comparison of the effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture. Randomized, prospective. Orthopaedic research laboratory. Ten large (greater than twenty-five kilogram) adult dogs. A short, midshaft spiral tibial fracture was created, followed by lag screw fixation and neutralization with an eight-hole, 3.5-millimeter, low-contact dynamic compression plate (LCDCP) made of either 316L stainless steel (n = five) or commercially pure titanium (n = five). After surgery, animals were kept with unrestricted weight-bearing in individual stalls for ten weeks. Cortical bone blood flow was assessed by laser Doppler flowmetry using a standard metalshafted probe (Periflux Pf303, Perimed, Jarfalla, Sweden) applied through holes in the custom-made LCDCPs at five sites. Bone blood flow was determined at four times: (a) prefracture, (b) postfracture, (c) postplating, and (d) ten weeks postplating. After the dogs were killed, the implant was removed and both the treated tibia and contralateral tibia were tested for bending stiffness and load to failure. Fracture creation decreased cortical perfusion in both groups at the fracture site (p = 0.02). The application of neither stainless steel nor titanium LCDCPs further decreased cortical bone blood flow after fracture creation. However, at ten weeks postplating, cortical perfusion significantly increased compared with acute postplating levels in the stainless steel (p = 0.003) and titanium (p = 0.001) groups. Cortical bone blood flow ten weeks postplating was not significantly different between the titanium group and the stainless steel group. Biomechanical tests performed on the tibiae with the plates removed did not reveal any differences in bending stiffness nor load required to cause failure between the two groups. Both titanium and stainless steel LCDCPs were equally effective in allowing revascularization, and

  9. Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation.

    Science.gov (United States)

    McGee-Lawrence, Meghan; Buckendahl, Patricia; Carpenter, Caren; Henriksen, Kim; Vaughan, Michael; Donahue, Seth

    2015-07-01

    Decreased physical activity in mammals increases bone turnover and uncouples bone formation from bone resorption, leading to hypercalcemia, hypercalcuria, bone loss and increased fracture risk. Black bears, however, are physically inactive for up to 6 months annually during hibernation without losing cortical or trabecular bone mass. Bears have been shown to preserve trabecular bone volume and architectural parameters and cortical bone strength, porosity and geometrical properties during hibernation. The mechanisms that prevent disuse osteoporosis in bears are unclear as previous studies using histological and serum markers of bone remodeling show conflicting results. However, previous studies used serum markers of bone remodeling that are known to accumulate with decreased renal function, which bears have during hibernation. Therefore, we measured serum bone remodeling markers (BSALP and TRACP) that do not accumulate with decreased renal function, in addition to the concentrations of serum calcium and hormones involved in regulating bone remodeling in hibernating and active bears. Bone resorption and formation markers were decreased during hibernation compared with when bears were physically active, and these findings were supported by histomorphometric analyses of bone biopsies. The serum concentration of cocaine and amphetamine regulated transcript (CART), a hormone known to reduce bone resorption, was 15-fold higher during hibernation. Serum calcium concentration was unchanged between hibernation and non-hibernation seasons. Suppressed and balanced bone resorption and formation in hibernating bears contributes to energy conservation, eucalcemia and the preservation of bone mass and strength, allowing bears to survive prolonged periods of extreme environmental conditions, nutritional deprivation and anuria. © 2015. Published by The Company of Biologists Ltd.

  10. Effects of Habitual Physical Activity and Fitness on Tibial Cortical Bone Mass, Structure and Mass Distribution in Pre-pubertal Boys and Girls: The Look Study.

    Science.gov (United States)

    Duckham, Rachel L; Rantalainen, Timo; Ducher, Gaele; Hill, Briony; Telford, Richard D; Telford, Rohan M; Daly, Robin M

    2016-07-01

    Targeted weight-bearing activities during the pre-pubertal years can improve cortical bone mass, structure and distribution, but less is known about the influence of habitual physical activity (PA) and fitness. This study examined the effects of contrasting habitual PA and fitness levels on cortical bone density, geometry and mass distribution in pre-pubertal children. Boys (n = 241) and girls (n = 245) aged 7-9 years had a pQCT scan to measure tibial mid-shaft total, cortical and medullary area, cortical thickness, density, polar strength strain index (SSIpolar) and the mass/density distribution through the bone cortex (radial distribution divided into endo-, mid- and pericortical regions) and around the centre of mass (polar distribution). Four contrasting PA and fitness groups (inactive-unfit, inactive-fit, active-unfit, active-fit) were generated based on daily step counts (pedometer, 7-days) and fitness levels (20-m shuttle test and vertical jump) for boys and girls separately. Active-fit boys had 7.3-7.7 % greater cortical area and thickness compared to inactive-unfit boys (P girls, but active-fit girls had 6.1 % (P girls, which was likely due to their 6.7 % (P active-fit girls. Higher levels of habitual PA-fitness were associated with small regional-specific gains in 66 % tibial cortical bone mass in pre-pubertal children, particularly boys.

  11. Renal cortical volume measured using automatic contouring software for computed tomography and its relationship with BMI, age and renal function

    International Nuclear Information System (INIS)

    Muto, Natalia Sayuri; Kamishima, Tamotsu; Harris, Ardene A.; Kato, Fumi; Onodera, Yuya; Terae, Satoshi; Shirato, Hiroki

    2011-01-01

    Purpose: To evaluate the relationship between renal cortical volume, measured by an automatic contouring software, with body mass index (BMI), age and renal function. Materials and methods: The study was performed in accordance to the institutional guidelines at our hospital. Sixty-four patients (34 men, 30 women), aged 19 to 79 years had their CT scans for diagnosis or follow-up of hepatocellular carcinoma retrospectively examined by a computer workstation using a software that automatically contours the renal cortex and the renal parenchyma. Body mass index and estimated glomerular filtration rate (eGFR) were calculated based on data collected. Statistical analysis was done using the Student t-test, multiple regression analysis, and intraclass correlation coefficient (ICC). Results: The ICC for total renal and renal cortical volumes were 0.98 and 0.99, respectively. Renal volume measurements yielded a mean cortical volume of 105.8 cm 3 ± 28.4 SD, mean total volume of 153 cm 3 ± 39 SD and mean medullary volume of 47.8 cm 3 ± 19.5 SD. The correlation between body weight/height/BMI and both total renal and cortical volumes presented r = 0.6, 0.6 and 0.4, respectively, p < 0.05, while the correlation between renal cortex and age was r = -0.3, p < 0.05. eGFR showed correlation with renal cortical volume r = 0.6, p < 0.05. Conclusion: This study demonstrated that renal cortical volume had a moderate positive relationship with BMI, moderate negative relationship with age, and a strong positive relationship with the renal function, and provided a new method to routinely produce volumetric assessment of the kidney.

  12. Insufficient irrigation induces peri-implant bone resorption: an in vivo histologic analysis in sheep.

    Science.gov (United States)

    Trisi, Paolo; Berardini, Marco; Falco, Antonello; Podaliri Vulpiani, Michele; Perfetti, Giorgio

    2014-06-01

    To measure in vivo impact of dense bone overheating on implant osseointegration and peri-implant bone resorption comparing different bur irrigation methods vs. no irrigation. Twenty TI-bone implants were inserted in the inferior edge of mandibles of sheep. Different cooling procedures were used in each group: no irrigation (group A), only internal bur irrigation (group B), both internal and external irrigation (group C), and external irrigation (group D). The histomorphometric parameters calculated for each implant were as follows: %cortical bone-implant contact (%CBIC) and %cortical bone volume (%CBV). Friedman's test was applied to test the statistical differences. In group A, we found a huge resorption of cortical bone with %CBIC and %CBV values extremely low. Groups B and C showed mean %CBIC and %BV values higher than other groups The mean %CBV value was significantly different when comparing group B and group C vs. group A (P bone caused massive resorption of the cortical bone and implant failure. Drilling procedures on hard bone need an adequate cooling supply because the bone matrix overheating may induce complete resorption of dense bone around implants. Internal-external irrigation and only internal irrigation showed to be more efficient than other types of cooling methods in preventing bone resorption around implants. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  13. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  14. Local bone graft harvesting and volumes in posterolateral lumbar fusion: a technical report.

    Science.gov (United States)

    Carragee, Eugene J; Comer, Garet C; Smith, Micah W

    2011-06-01

    In lumbar surgery, local bone graft is often harvested and used in posterolateral fusion procedures. The volume of local bone graft available for posterolateral fusion has not been determined in North American patients. Some authors have described this as minimal, but others have suggested the volume was sufficient to be reliably used as a stand-alone bone graft substitute for single-level fusion. To describe the technique used and determine the volume of local bone graft available in a cohort of patients undergoing single-level primary posterolateral fusion by the authors harvesting technique. Technical description and cohort report. Consecutive patients undergoing lumbar posterolateral fusion with or without instrumentation for degenerative processes. Local bone graft volume. Consecutive patients undergoing lumbar posterolateral fusion with or without instrumentation for degenerative processes of were studied. Local bone graft was harvested by a standard method in each patient and the volume measured by a standard procedure. Twenty-five patients were studied, and of these 11 (44%) had a previous decompression. The mean volume of local bone graft harvested was measured to be 25 cc (range, 12-36 cc). Local bone graft was augmented by iliac crest bone in six of 25 patients (24%) if the posterolateral fusion bed was not well packed with local bone alone. There was a trend to greater local bone graft volumes in men and in patients without previous decompression. Large volumes of local bone can be harvested during posterolateral lumbar fusion surgery. Even in patients with previous decompression the volume harvested is similar to that reported harvested from the posterior iliac crest for single-level fusion. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. State of the mineral component of rat bone tissue during hypokinesia and the recovery period

    Science.gov (United States)

    Volozhin, A. I.; Stupakov, G. P.; Pavlova, M. N.; Muradov, I. S.

    1980-01-01

    Experiments were conducted on young growing rats. Hypokinesia lasting from 20 to 200 days caused retarded gain in weight and volume of the femur and delayed development of the cortical layer of the diaphysis. In contrast, the density of the cortical layer of the femoral diaphysis increased due to elevation of the mineral saturation of the bone tissue microstructures. Incorporation of Ca into the bone tissue in hypokinesia had a tendency to reduce. Partial normalization of the bone tissue mineral component occurred during a 20 day recovery period following hypokinesia.

  16. Determination of bone mineral volume fraction using impedance analysis and Bruggeman model

    Energy Technology Data Exchange (ETDEWEB)

    Ciuchi, Ioana Veronica; Olariu, Cristina Stefania, E-mail: oocristina@yahoo.com; Mitoseriu, Liliana, E-mail: lmtsr@uaic.ro

    2013-11-20

    Highlights: • Mineral volume fraction of a bone sample was determined. • Dielectric properties for bone sample and for the collagen type I were determined by impedance spectroscopy. • Bruggeman effective medium approximation was applied in order to evaluate mineral volume fraction of the sample. • The computed values were compared with ones derived from a histogram test performed on SEM micrographs. -- Abstract: Measurements by impedance spectroscopy and Bruggeman effective medium approximation model were employed in order to determine the mineral volume fraction of dry bone. This approach assumes that two or more phases are present into the composite: the matrix (environment) and the other ones are inclusion phases. A fragment of femur diaphysis dense bone from a young pig was investigated in its dehydrated state. Measuring the dielectric properties of bone and its main components (hydroxyapatite and collagen) and using the Bruggeman approach, the mineral volume filling factor was determined. The computed volume fraction of the mineral volume fraction was confirmed by a histogram test analysis based on the SEM microstructures. In spite of its simplicity, the method provides a good approximation for the bone mineral volume fraction. The method which uses impedance spectroscopy and EMA modeling can be further developed by considering the conductive components of the bone tissue as a non-invasive in situ impedance technique for bone composition evaluation and monitoring.

  17. Determination of bone mineral volume fraction using impedance analysis and Bruggeman model

    International Nuclear Information System (INIS)

    Ciuchi, Ioana Veronica; Olariu, Cristina Stefania; Mitoseriu, Liliana

    2013-01-01

    Highlights: • Mineral volume fraction of a bone sample was determined. • Dielectric properties for bone sample and for the collagen type I were determined by impedance spectroscopy. • Bruggeman effective medium approximation was applied in order to evaluate mineral volume fraction of the sample. • The computed values were compared with ones derived from a histogram test performed on SEM micrographs. -- Abstract: Measurements by impedance spectroscopy and Bruggeman effective medium approximation model were employed in order to determine the mineral volume fraction of dry bone. This approach assumes that two or more phases are present into the composite: the matrix (environment) and the other ones are inclusion phases. A fragment of femur diaphysis dense bone from a young pig was investigated in its dehydrated state. Measuring the dielectric properties of bone and its main components (hydroxyapatite and collagen) and using the Bruggeman approach, the mineral volume filling factor was determined. The computed volume fraction of the mineral volume fraction was confirmed by a histogram test analysis based on the SEM microstructures. In spite of its simplicity, the method provides a good approximation for the bone mineral volume fraction. The method which uses impedance spectroscopy and EMA modeling can be further developed by considering the conductive components of the bone tissue as a non-invasive in situ impedance technique for bone composition evaluation and monitoring

  18. Cortical Thickness, Surface Area and Subcortical Volume Differentially Contribute to Cognitive Heterogeneity in Parkinson's Disease.

    Science.gov (United States)

    Gerrits, Niels J H M; van Loenhoud, Anita C; van den Berg, Stan F; Berendse, Henk W; Foncke, Elisabeth M J; Klein, Martin; Stoffers, Diederick; van der Werf, Ysbrand D; van den Heuvel, Odile A

    2016-01-01

    Parkinson's disease (PD) is often associated with cognitive deficits, although their severity varies considerably between patients. Recently, we used voxel-based morphometry (VBM) to show that individual differences in gray matter (GM) volume relate to cognitive heterogeneity in PD. VBM does, however, not differentiate between cortical thickness (CTh) and surface area (SA), which might be independently affected in PD. We therefore re-analyzed our cohort using the surface-based method FreeSurfer, and investigated (i) CTh, SA, and (sub)cortical GM volume differences between 93 PD patients and 45 matched controls, and (ii) the relation between these structural measures and cognitive performance on six neuropsychological tasks within the PD group. We found cortical thinning in PD patients in the left pericalcarine gyrus, extending to cuneus, precuneus and lingual areas and left inferior parietal cortex, bilateral rostral middle frontal cortex, and right cuneus, and increased cortical surface area in the left pars triangularis. Within the PD group, we found negative correlations between (i) CTh of occipital areas and performance on a verbal memory task, (ii) SA and volume of the frontal cortex and visuospatial memory performance, and, (iii) volume of the right thalamus and scores on two verbal fluency tasks. Our primary findings illustrate that i) CTh and SA are differentially affected in PD, and ii) VBM and FreeSurfer yield non-overlapping results in an identical dataset. We argue that this discrepancy is due to technical differences and the subtlety of the PD-related structural changes.

  19. 3D osteocyte lacunar morphometric properties and distributions in human femoral cortical bone using synchrotron radiation micro-CT images.

    Science.gov (United States)

    Dong, Pei; Haupert, Sylvain; Hesse, Bernhard; Langer, Max; Gouttenoire, Pierre-Jean; Bousson, Valérie; Peyrin, Françoise

    2014-03-01

    Osteocytes, the most numerous bone cells, are thought to be actively involved in the bone modeling and remodeling processes. The morphology of osteocyte is hypothesized to adapt according to the physiological mechanical loading. Three-dimensional micro-CT has recently been used to study osteocyte lacunae. In this work, we proposed a computationally efficient and validated automated image analysis method to quantify the 3D shape descriptors of osteocyte lacunae and their distribution in human femurs. Thirteen samples were imaged using Synchrotron Radiation (SR) micro-CT at ID19 of the ESRF with 1.4μm isotropic voxel resolution. With a field of view of about 2.9×2.9×1.4mm(3), the 3D images include several tens of thousands of osteocyte lacunae. We designed an automated quantification method to segment and extract 3D cell descriptors from osteocyte lacunae. An image moment-based approach was used to calculate the volume, length, width, height and anisotropy of each osteocyte lacuna. We employed a fast algorithm to further efficiently calculate the surface area, the Euler number and the structure model index (SMI) of each lacuna. We also introduced the 3D lacunar density map to directly visualize the lacunar density variation over a large field of view. We reported the lacunar morphometric properties and distributions as well as cortical bone histomorphometric indices on the 13 bone samples. The mean volume and surface were found to be 409.5±149.7μm(3) and 336.2±94.5μm(2). The average dimensions were of 18.9±4.9μm in length, 9.2±2.1μm in width and 4.8±1.1μm in depth. We found lacunar number density and six osteocyte lacunar descriptors, three axis lengths, two anisotropy ratios and SMI, that are significantly correlated to bone porosity at a same local region. The proposed method allowed an automatic and efficient direct 3D analysis of a large population of bone cells and is expected to provide reliable biological information for better understanding the

  20. Effect of glucose on fatigue-induced changes in the microstructure and mechanical properties of demineralized bovine cortical bone.

    Science.gov (United States)

    Trębacz, Hanna; Zdunek, Artur; Wlizło-Dyś, Ewa; Cybulska, Justyna; Pieczywek, Piotr

    2015-10-16

    The aim of this study was to test a hypothesis that fatigue-induced weakening of cortical bone was intensified in bone incubated in glucose and that this weakening is revealed in the microstructure and mechanical competence of the bone matrix. Cubic specimens of bovine femoral shaft were incubated in glucose solution (G) or in buffer (NG). One half of G samples and one half of NG were axially loaded in 300 cycles (30 mm/min) at constant deformation (F); the other half was a control (C). Samples from each group (GF, NGF, GC, NGC) were completely demineralized. Slices from demineralized samples were used for microscopic image analysis. A combined effect of glycation and fatigue on demineralized bone was tested in compression (10 mm/min). Damage of samples during the test was examined in terms of acoustic emission analysis (AE). During the fatigue procedure, resistance to loading in glycated samples decreased by 14.5% but only by 8.1% in nonglycated samples. In glycated samples fatigue resulted in increased porosity with pores significantly larger than in the other groups. Under compression, strain at failure in demineralized bone was significantly affected by glucose and fatigue. AE from demineralized bone matrix was considerably related to the largest pores in the tissue. The results confirm the hypothesis that the effect of fatigue on cortical bone tissue was intensified after incubation in glucose, both in the terms of the mechanical competence of bone tissue and the structural changes in the collagenous matrix of bone.

  1. Bone heat generated using conventional implant drills versus piezosurgery unit during apical cortical plate perforation.

    Science.gov (United States)

    Lajolo, Carlo; Valente, Nicola Alberto; Romandini, William Giuseppe; Petruzzi, Massimo; Verdugo, Fernando; D'Addona, Antonio

    2018-03-09

    The apical portion of the implant osteotomy receives less irrigation and cooling during surgical preparation. High bone temperatures, above the critical 10°C threshold, may impair osseointegration, particularly, around dense cortical bone. The aim of this study is to evaluate the apical cortical plate temperature increase with two different devices and pressure loads in a porcine rib ex-vivo model. Twenty-four implant sites were prepared on porcine ribs divided into 4 groups of 6 samples each according to the device used (conventional drill system or piezosurgery) and pressure load applied (1000 g or 1500 g). A rubber dam was used to isolate the apical cortical plate from the cooling effect of irrigation. Temperature variation measurements were taken using an infrared thermometer. The piezosurgery unit was 2 times more likely to increase the osteotomy temperature by 10.0°C (OR = 2; 95% CI = 1.136-3.522; p piezosurgery-1000 g) and 8.17°C (SD = 6.12) for group 4 (piezosurgery-1,500 g). The piezosurgery site preparation caused significantly higher temperature increase than conventional drills (p piezosurgery unit is a potential risk during implant site preparation. The piezosurgical device reached significantly higher temperatures than conventional drilling at the apical cortical portion of the osteotomy. The temperature increase is often higher than the critical 10°C threshold. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Bone density and anisotropy affect periprosthetic cement and bone stresses after anatomical glenoid replacement: A micro finite element analysis.

    Science.gov (United States)

    Chevalier, Yan; Santos, Inês; Müller, Peter E; Pietschmann, Matthias F

    2016-06-14

    Glenoid loosening is still a main complication for shoulder arthroplasty. We hypothesize that cement and bone stresses potentially leading to fixation failure are related not only to glenohumeral conformity, fixation design or eccentric loading, but also to bone volume fraction, cortical thickness and degree of anisotropy in the glenoid. In this study, periprosthetic bone and cement stresses were computed with micro finite element models of the replaced glenoid depicting realistic bone microstructure. These models were used to quantify potential effects of bone microstructural parameters under loading conditions simulating different levels of glenohumeral conformity and eccentric loading simulating glenohumeral instability. Results show that peak cement stresses were achieved near the cement-bone interface in all loading schemes. Higher stresses within trabecular bone tissue and cement mantle were obtained within specimens of lower bone volume fraction and in regions of low anisotropy, increasing with decreasing glenohumeral conformity and reaching their maxima below the keeled design when the load is shifted superiorly. Our analyses confirm the combined influences of eccentric load shifts with reduced bone volume fraction and anisotropy on increasing periprosthetic stresses. They finally suggest that improving fixation of glenoid replacements must reduce internal cement and bone tissue stresses, in particular in glenoids of low bone density and heterogeneity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Bone structure in two adult subjects with impaired minor spliceosome function resulting from RNU4ATAC mutations causing microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1).

    Science.gov (United States)

    Krøigård, Anne Bruun; Frost, Morten; Larsen, Martin Jakob; Ousager, Lilian Bomme; Frederiksen, Anja Lisbeth

    2016-11-01

    Microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1), or Taybi-Linder syndrome is characterized by distinctive skeletal dysplasia, severe intrauterine and postnatal growth retardation, microcephaly, dysmorphic features, and neurological malformations. It is an autosomal recessive disorder caused by homozygous or compound heterozygous mutations in the RNU4ATAC gene resulting in impaired function of the minor spliceosome. Here, we present the first report on bone morphology, bone density and bone microstructure in two adult MOPD1 patients and applied radiographs, dual energy X-ray absorptiometry, high-resolution peripheral quantitative computed tomography and biochemical evaluation. The MOPD1 patients presented with short stature, low BMI but normal macroscopic bone configuration. Bone mineral density was low. Compared to Danish reference data, total bone area, cortical bone area, cortical thickness, total bone density, cortical bone density, trabecular bone density and trabecular bone volume per tissue volume (BV/TV) were all low. These findings may correlate to the short stature and low body weight of the MOPD1 patients. Our findings suggest that minor spliceosome malfunction may be associated with altered bone modelling. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Histological analysis of the alterations on cortical bone channels network after radiotherapy: A rabbit study.

    Science.gov (United States)

    Rabelo, Gustavo Davi; Beletti, Marcelo Emílio; Dechichi, Paula

    2010-10-01

    The aim of this study was to evaluate the effects of radiotherapy in cortical bone channels network. Fourteen rabbits were divided in two groups and test group received single dose of 15 Gy cobalt-60 radiation in tibia, bilaterally. The animals were sacrificed and a segment of tibia was removed and histologically processed. Histological images were taken and had their bone channels segmented and called regions of interest (ROI). Images were analyzed through developed algorithms using the SCILAB mathematical environment, getting percentage of bone matrix, ROI areas, ROI perimeters, their standard deviations and Lacunarity. The osteocytes and empty lacunae were also counted. Data were evaluated using Kolmogorov-Smirnov, Mann Whitney, and Student's t test (P < 0.05). Significant differences in bone matrix percentage, area and perimeters of the channels, their respective standard deviations and lacunarity were found between groups. In conclusion, the radiotherapy causes reduction of bone matrix and modifies the morphology of bone channels network. © 2010 Wiley-Liss, Inc.

  5. Histologic Evaluation of Wound Healing After Ridge Preservation With Cortical, Cancellous, and Combined Cortico-Cancellous Freeze-Dried Bone Allograft: A Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Demetter, Randy S; Calahan, Blaine G; Mealey, Brian L

    2017-09-01

    Cortical and cancellous mineralized freeze-dried bone allografts (FDBA) are available for use in alveolar ridge preservation after tooth extraction. There are currently no data regarding use of a combination 50%/50% cortico-cancellous FDBA compared with a 100% cortical or 100% cancellous FDBA in ridge preservation. The primary objective of this study is to dimensionally and histologically evaluate healing after ridge preservation in non-molar sites using 50%/50% cortico-cancellous FDBA versus 100% cortical and 100% cancellous FDBA. Sixty-six patients requiring extraction of a non-molar tooth were enrolled and randomized into three groups to receive ridge preservation with the following: 1) 100% cortical FDBA; 2) 100% cancellous FDBA; or 3) 50%/50% cortico-cancellous FDBA. After 18 to 20 weeks of healing, a biopsy was harvested, and an implant was placed. The alveolar ridge was measured pre- and postoperatively to evaluate change in ridge height and width. Percentages of vital bone, residual graft, and connective tissue (CT)/other were determined via histomorphometric analysis. Histomorphometric analysis revealed no significant differences among groups regarding percentage of vital bone or CT/other. The 100% cortical FDBA group had significantly greater residual graft material (P = 0.04). Dimensional analysis revealed no significant between-group differences in any parameter measured. To the best knowledge of the authors, this study offers the first histologic evidence demonstrating no significant difference in vital bone formation or dimensional changes among 50%/50% cortico-cancellous FDBA, 100% cortical FDBA, and 100% cancellous FDBA when used in ridge preservation of non-molar tooth sites.

  6. Instrumental neutron-activation analysis applications in the age dynamics assessment of Ca, Cl, K, Mg. Mn, Na, P, and Sr contents in the human cortical bone

    International Nuclear Information System (INIS)

    Zaichick, V.

    2003-01-01

    Full text: Senile osteoporosis and particularly osteoporosis among postmenopausal women represents an urgent problem of modern medicine. One of the main osteoporosis symptoms is a decrease in both bone mineral density and subsequent bone strength. The upper extremity of the femur in humans is a particularly vulnerable section of the skeleton, being subject to fracture and necrosis and to destruction of its cartilage. Iliac crest biopsies are commonly taken clinically on patients. It is known that the control of the mineral component providing bone strength is a good indicator to detect bone diseases like osteoporosis. Despite this, changes of chemical element contents occurring with age in the femoral head and the iliac crest of female and male separately have been little studied, but in iliac cortical bone have not been studied at all. The effect of age and sex on chemical element contents in intact cortical bone of femoral neck and iliac crest of 81 relatively healthy 15-55 years old women (n=36) and men (n=45) was investigated. All subjects had died suddenly and bone samples were obtained at necropsy from the right side of bodies within twenty-four hours after death. A tool made of titanium and plastic was used to clear samples from soft tissues and blood and to cut cortical part of bone. The IAEA and NIST reference materials (H-5 animal bone and SRM1486 bone meal) were used to estimate the precision and accuracy of results. Contents of Ca, Cl, K, Mg> Mn, Na, P, and Sr in intact bone samples were determined by instrumental neutron activation analysis using short-lived radionuclides. Our means data for each element of reference materials were within the certified 95 % confidence interval, and indicate an acceptable accuracy of the obtained results. No age- and sex-related differences in the cortical femoral neck composition were detected. Mean values (M±S.E.M.) of Ca, Cl, K, Mg, Mn, Na, P, and Sr mass fractions (on dry weight basis) for female and male all

  7. Lacunar-canalicular network in femoral cortical bone is reduced in aged women and is predominantly due to a loss of canalicular porosity

    Directory of Open Access Journals (Sweden)

    A.M. Ashique

    2017-12-01

    Full Text Available The lacunar-canalicular network (LCN of bone contains osteocytes and their dendritic extensions, which allow for intercellular communication, and are believed to serve as the mechanosensors that coordinate the processes of bone modeling and remodeling. Imbalances in remodeling, for example, are linked to bone disease, including fragility associated with aging. We have reported that there is a reduction in scale for one component of the LCN, osteocyte lacunar volume, across the human lifespan in females. In the present study, we explore the hypothesis that canalicular porosity also declines with age. To visualize the LCN and to determine how its components are altered with aging, we examined samples from young (age: 20–23 y; n = 5 and aged (age: 70–86 y; n = 6 healthy women donors utilizing a fluorescent labelling technique in combination with confocal laser scanning microscopy. A large cross-sectional area of cortical bone spanning the endosteal to periosteal surfaces from the anterior proximal femoral shaft was examined in order to account for potential trans-cortical variation in the LCN. Overall, we found that LCN areal fraction was reduced by 40.6% in the samples from aged women. This reduction was due, in part, to a reduction in lacunar density (21.4% decline in lacunae number per given area of bone, but much more so due to a 44.6% decline in canalicular areal fraction. While the areal fraction of larger vascular canals was higher in endosteal vs. periosteal regions for both age groups, no regional differences were observed in the areal fractions of the LCN and its components for either age group. Our data indicate that the LCN is diminished in aged women, and is largely due to a decline in the canalicular areal fraction, and that, unlike vascular canal porosity, this diminished LCN is uniform across the cortex.

  8. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P < 0.05) in longitudinal bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P < 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  9. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation).

    Science.gov (United States)

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Castillo, Alesha B; Kennedy, Oran; Condon, Keith W; Auger, Janene; Black, Hal L; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2009-12-01

    Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse-induced bone loss in bears into novel treatments for osteoporosis.

  10. Prenatal nutritional manipulation by in ovo enrichment influences bone structure, composition, and mechanical properties.

    Science.gov (United States)

    Yair, R; Shahar, R; Uni, Z

    2013-06-01

    The objective of this study was to examine the effect of embryonic nutritional enrichment on the development and properties of broiler leg bones (tibia and femur) from the prenatal period until maturity. To accomplish the objective, 300 eggs were divided into 2 groups: a noninjected group (control) and a group injected in ovo with a solution containing minerals, vitamins, and carbohydrates (enriched). Tibia and femur from both legs were harvested from chicks on embryonic days 19 (E19) and 21 (E21) and d 3, 7, 14, 28, and 54 posthatch (n = 8). The bones were mechanically tested (stiffness, maximal load, and work to fracture) and scanned in a micro-computed tomography (μCT) scanner to examine the structural properties of the cortical [cortical area, medullary area, cortical thickness, and maximal moment of inertia (Imax)] and trabecular (bone volume percent, trabecular thickness, and trabecular number) areas. To examine bone mineralization, bone mineral density (BMD) of the cortical area was obtained from the μCT scans, and bones were analyzed for the ash and mineral content. The results showed improved mechanical properties of the enriched group between E19 and d 3 and on d 14 (P bones), greater femoral cortical area on d 3, and greater Imax of both bones on d 14 (P bone trabecular architecture were that the enriched group had greater bone volume percent and trabecular thickness in the tibia on d 7 and the femur on d 28 (P mineralization between E19 and d 54 showed improved mineralization in the enriched group on E19 whereas on d 3 and 7, the control group showed a mineralization advantage, and on d 28 and 54, the enriched group showed again greater mineralization (P bone properties pre- and postnatally and showed that avian embryos are a good model for studying the effect of embryonic nutrition on natal and postnatal development. Most importantly, the enrichment led to improved mechanical properties until d 14 (roughly third of the lifespan of the bird), a big

  11. Alendronate treatment alters bone tissues at multiple structural levels in healthy canine cortical bone.

    Science.gov (United States)

    Acevedo, Claire; Bale, Hrishikesh; Gludovatz, Bernd; Wat, Amy; Tang, Simon Y; Wang, Mingyue; Busse, Björn; Zimmermann, Elizabeth A; Schaible, Eric; Allen, Matthew R; Burr, David B; Ritchie, Robert O

    2015-12-01

    Bisphosphonates are widely used to treat osteoporosis, but have been associated with atypical femoral fractures (AFFs) in the long term, which raises a critical health problem for the aging population. Several clinical studies have suggested that the occurrence of AFFs may be related to the bisphosphonate-induced changes of bone turnover, but large discrepancies in the results of these studies indicate that the salient mechanisms responsible for any loss in fracture resistance are still unclear. Here the role of bisphosphonates is examined in terms of the potential deterioration in fracture resistance resulting from both intrinsic (plasticity) and extrinsic (shielding) toughening mechanisms, which operate over a wide range of length-scales. Specifically, we compare the mechanical properties of two groups of humeri from healthy beagles, one control group comprising eight females (oral doses of saline vehicle, 1 mL/kg/day, 3 years) and one treated group comprising nine females (oral doses of alendronate used to treat osteoporosis, 0.2mg/kg/day, 3 years). Our data demonstrate treatment-specific reorganization of bone tissue identified at multiple length-scales mainly through advanced synchrotron x-ray experiments. We confirm that bisphosphonate treatments can increase non-enzymatic collagen cross-linking at molecular scales, which critically restricts plasticity associated with fibrillar sliding, and hence intrinsic toughening, at nanoscales. We also observe changes in the intracortical architecture of treated bone at microscales, with partial filling of the Haversian canals and reduction of osteon number. We hypothesize that the reduced plasticity associated with BP treatments may induce an increase in microcrack accumulation and growth under cyclic daily loadings, and potentially increase the susceptibility of cortical bone to atypical (fatigue-like) fractures. Published by Elsevier Inc.

  12. Role of endocortical contouring methods on precision of HR-pQCT-derived cortical micro-architecture in postmenopausal women and young adults.

    Science.gov (United States)

    Kawalilak, C E; Johnston, J D; Cooper, D M L; Olszynski, W P; Kontulainen, S A

    2016-02-01

    Precision errors of cortical bone micro-architecture from high-resolution peripheral quantitative computed tomography (pQCT) ranged from 1 to 16 % and did not differ between automatic or manually modified endocortical contour methods in postmenopausal women or young adults. In postmenopausal women, manually modified contours led to generally higher cortical bone properties when compared to the automated method. First, the objective of the study was to define in vivo precision errors (coefficient of variation root mean square (CV%RMS)) and least significant change (LSC) for cortical bone micro-architecture using two endocortical contouring methods: automatic (AUTO) and manually modified (MOD) in two groups (postmenopausal women and young adults) from high-resolution pQCT (HR-pQCT) scans. Second, it was to compare precision errors and bone outcomes obtained with both methods within and between groups. Using HR-pQCT, we scanned twice the distal radius and tibia of 34 postmenopausal women (mean age ± SD 74 ± 7 years) and 30 young adults (27 ± 9 years). Cortical micro-architecture was determined using AUTO and MOD contour methods. CV%RMS and LSC were calculated. Repeated measures and multivariate ANOVA were used to compare mean CV% and bone outcomes between the methods within and between the groups. Significance was accepted at P young adults, postmenopausal women had better precision for radial cortical porosity (precision difference 9.3 %) and pore volume (7.5 %) with MOD. Young adults had better precision for cortical thickness (0.8 %, MOD) and tibial cortical density (0.2 %, AUTO). In postmenopausal women, MOD resulted in 0.2-54 % higher values for most cortical outcomes, as well as 6-8 % lower radial and tibial cortical BMD and 2 % lower tibial cortical thickness. Results suggest that AUTO and MOD endocortical contour methods provide comparable repeatability. In postmenopausal women, manual modification of endocortical contours led to

  13. An investigation of the mineral in ductile and brittle cortical mouse bone.

    Science.gov (United States)

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J

    2015-05-01

    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size

  14. MRI of the temporo-mandibular joint: which sequence is best suited to assess the cortical bone of the mandibular condyle? A cadaveric study using micro-CT as the standard of reference

    International Nuclear Information System (INIS)

    Karlo, Christoph A.; Patcas, Raphael; Signorelli, Luca; Mueller, Lukas; Kau, Thomas; Watzal, Helmut; Kellenberger, Christian J.; Ullrich, Oliver; Luder, Hans-Ulrich

    2012-01-01

    To determine the best suited sagittal MRI sequence out of a standard temporo-mandibular joint (TMJ) imaging protocol for the assessment of the cortical bone of the mandibular condyles of cadaveric specimens using micro-CT as the standard of reference. Sixteen TMJs in 8 human cadaveric heads (mean age, 81 years) were examined by MRI. Upon all sagittal sequences, two observers measured the cortical bone thickness (CBT) of the anterior, superior and posterior portions of the mandibular condyles (i.e. objective analysis), and assessed for the presence of cortical bone thinning, erosions or surface irregularities as well as subcortical bone cysts and anterior osteophytes (i.e. subjective analysis). Micro-CT of the condyles was performed to serve as the standard of reference for statistical analysis. Inter-observer agreements for objective (r = 0.83-0.99, P < 0.01) and subjective (κ = 0.67-0.88) analyses were very good. Mean CBT measurements were most accurate, and cortical bone thinning, erosions, surface irregularities and subcortical bone cysts were best depicted on the 3D fast spoiled gradient echo recalled sequence (3D FSPGR). The most reliable MRI sequence to assess the cortical bone of the mandibular condyles on sagittal imaging planes is the 3D FSPGR sequence. (orig.)

  15. MRI of the temporo-mandibular joint: which sequence is best suited to assess the cortical bone of the mandibular condyle? A cadaveric study using micro-CT as the standard of reference

    Energy Technology Data Exchange (ETDEWEB)

    Karlo, Christoph A. [University Hospital Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); Patcas, Raphael; Signorelli, Luca; Mueller, Lukas [University of Zurich, Clinic for Orthodontics and Pediatric Dentistry, Center of Dental Medicine, Zurich (Switzerland); Kau, Thomas; Watzal, Helmut; Kellenberger, Christian J. [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); Ullrich, Oliver [University of Zurich, Institute of Anatomy, Faculty of Medicine, Zurich (Switzerland); Luder, Hans-Ulrich [University of Zurich, Section of Orofacial Structures and Development, Center of Dental Medicine, Zurich (Switzerland)

    2012-07-15

    To determine the best suited sagittal MRI sequence out of a standard temporo-mandibular joint (TMJ) imaging protocol for the assessment of the cortical bone of the mandibular condyles of cadaveric specimens using micro-CT as the standard of reference. Sixteen TMJs in 8 human cadaveric heads (mean age, 81 years) were examined by MRI. Upon all sagittal sequences, two observers measured the cortical bone thickness (CBT) of the anterior, superior and posterior portions of the mandibular condyles (i.e. objective analysis), and assessed for the presence of cortical bone thinning, erosions or surface irregularities as well as subcortical bone cysts and anterior osteophytes (i.e. subjective analysis). Micro-CT of the condyles was performed to serve as the standard of reference for statistical analysis. Inter-observer agreements for objective (r = 0.83-0.99, P < 0.01) and subjective ({kappa} = 0.67-0.88) analyses were very good. Mean CBT measurements were most accurate, and cortical bone thinning, erosions, surface irregularities and subcortical bone cysts were best depicted on the 3D fast spoiled gradient echo recalled sequence (3D FSPGR). The most reliable MRI sequence to assess the cortical bone of the mandibular condyles on sagittal imaging planes is the 3D FSPGR sequence. (orig.)

  16. Effect of age on bone mineral density and micro architecture in the radius and tibia of horses: An Xtreme computed tomographic study

    Directory of Open Access Journals (Sweden)

    Schmidlin A

    2008-01-01

    Full Text Available Abstract Background The effect of age on the bone mineral density and microarchitecture of the equine radius and tibia was investigated. Fifty-six bones from 15 horses aged four to 21 years were used. There were nine geldings and six mares, and none of the horses had any disease influencing bone properties. Xtreme computed tomography was used to evaluate a 9-mm segment of the diaphysis and metaphysis of each bone. The following variables were determined: length of the bone, circumference and diameter in the frontal and sagittal planes in the middle of the bone. Diaphysis: total volume, bone volume, bone volume ratio, slice area, bone area, marrow area, cortical and marrow thickness, bone mineral density, polar moment of inertia of the cortex. Metaphysis: total area, bone area, cortical bone area, cortical thickness, bone mineral density, bone mineral density in the cortex, bone mineral density in the trabecular region, trabecular number, trabecular thickness, trabecular separation, polar moment of inertia of the metaphysis, polar moment of inertia of the cortex of the metaphysis. Results Bone density and microarchitecture were not affected by breed or gender. However, the microarchitecture varied with the age of the horse; the number of trabeculae decreased significantly and the distance between trabeculae increased significantly with increasing age. There were no significant differences between bones of the left and right limbs or between the radius and tibia. Conclusion The variables investigated did not differ between geldings and mares. However, there were age-related changes in the microstructure of the bones. Further experimental studies are necessary to determine whether these changes reduce bone strength. Age-related changes in the bones were seen and may explain the higher incidence of fractures and fissures in older horses.

  17. Effect of age on bone mineral density and micro architecture in the radius and tibia of horses: An Xtreme computed tomographic study

    Science.gov (United States)

    Fürst, A; Meier, D; Michel, S; Schmidlin, A; Held, L; Laib, A

    2008-01-01

    Background The effect of age on the bone mineral density and microarchitecture of the equine radius and tibia was investigated. Fifty-six bones from 15 horses aged four to 21 years were used. There were nine geldings and six mares, and none of the horses had any disease influencing bone properties. Xtreme computed tomography was used to evaluate a 9-mm segment of the diaphysis and metaphysis of each bone. The following variables were determined: length of the bone, circumference and diameter in the frontal and sagittal planes in the middle of the bone. Diaphysis: total volume, bone volume, bone volume ratio, slice area, bone area, marrow area, cortical and marrow thickness, bone mineral density, polar moment of inertia of the cortex. Metaphysis: total area, bone area, cortical bone area, cortical thickness, bone mineral density, bone mineral density in the cortex, bone mineral density in the trabecular region, trabecular number, trabecular thickness, trabecular separation, polar moment of inertia of the metaphysis, polar moment of inertia of the cortex of the metaphysis. Results Bone density and microarchitecture were not affected by breed or gender. However, the microarchitecture varied with the age of the horse; the number of trabeculae decreased significantly and the distance between trabeculae increased significantly with increasing age. There were no significant differences between bones of the left and right limbs or between the radius and tibia. Conclusion The variables investigated did not differ between geldings and mares. However, there were age-related changes in the microstructure of the bones. Further experimental studies are necessary to determine whether these changes reduce bone strength. Age-related changes in the bones were seen and may explain the higher incidence of fractures and fissures in older horses. PMID:18221526

  18. Effect of age on bone mineral density and micro architecture in the radius and tibia of horses: an Xtreme computed tomographic study.

    Science.gov (United States)

    Fürst, A; Meier, D; Michel, S; Schmidlin, A; Held, L; Laib, A

    2008-01-25

    The effect of age on the bone mineral density and microarchitecture of the equine radius and tibia was investigated. Fifty-six bones from 15 horses aged four to 21 years were used. There were nine geldings and six mares, and none of the horses had any disease influencing bone properties. Xtreme computed tomography was used to evaluate a 9-mm segment of the diaphysis and metaphysis of each bone. The following variables were determined: length of the bone, circumference and diameter in the frontal and sagittal planes in the middle of the bone.Diaphysis: total volume, bone volume, bone volume ratio, slice area, bone area, marrow area, cortical and marrow thickness, bone mineral density, polar moment of inertia of the cortex.Metaphysis: total area, bone area, cortical bone area, cortical thickness, bone mineral density, bone mineral density in the cortex, bone mineral density in the trabecular region, trabecular number, trabecular thickness, trabecular separation, polar moment of inertia of the metaphysis, polar moment of inertia of the cortex of the metaphysis. Bone density and microarchitecture were not affected by breed or gender. However, the microarchitecture varied with the age of the horse; the number of trabeculae decreased significantly and the distance between trabeculae increased significantly with increasing age. There were no significant differences between bones of the left and right limbs or between the radius and tibia. The variables investigated did not differ between geldings and mares. However, there were age-related changes in the microstructure of the bones. Further experimental studies are necessary to determine whether these changes reduce bone strength. Age-related changes in the bones were seen and may explain the higher incidence of fractures and fissures in older horses.

  19. k-space sampling optimization for ultrashort TE imaging of cortical bone: Applications in radiation therapy planning and MR-based PET attenuation correction

    International Nuclear Information System (INIS)

    Hu, Lingzhi; Traughber, Melanie; Su, Kuan-Hao; Pereira, Gisele C.; Grover, Anu; Traughber, Bryan; Muzic, Raymond F. Jr.

    2014-01-01

    Purpose: The ultrashort echo-time (UTE) sequence is a promising MR pulse sequence for imaging cortical bone which is otherwise difficult to image using conventional MR sequences and also poses strong attenuation for photons in radiation therapy and PET imaging. The authors report here a systematic characterization of cortical bone signal decay and a scanning time optimization strategy for the UTE sequence through k-space undersampling, which can result in up to a 75% reduction in acquisition time. Using the undersampled UTE imaging sequence, the authors also attempted to quantitatively investigate the MR properties of cortical bone in healthy volunteers, thus demonstrating the feasibility of using such a technique for generating bone-enhanced images which can be used for radiation therapy planning and attenuation correction with PET/MR. Methods: An angularly undersampled, radially encoded UTE sequence was used for scanning the brains of healthy volunteers. Quantitative MR characterization of tissue properties, including water fraction and R2 ∗ = 1/T2 ∗ , was performed by analyzing the UTE images acquired at multiple echo times. The impact of different sampling rates was evaluated through systematic comparison of the MR image quality, bone-enhanced image quality, image noise, water fraction, and R2 ∗ of cortical bone. Results: A reduced angular sampling rate of the UTE trajectory achieves acquisition durations in proportion to the sampling rate and in as short as 25% of the time required for full sampling using a standard Cartesian acquisition, while preserving unique MR contrast within the skull at the cost of a minimal increase in noise level. The R2 ∗ of human skull was measured as 0.2–0.3 ms −1 depending on the specific region, which is more than ten times greater than the R2 ∗ of soft tissue. The water fraction in human skull was measured to be 60%–80%, which is significantly less than the >90% water fraction in brain. High-quality, bone

  20. Propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of); Choi, Bok Kyoung [Maritime Security Research Center, KIOST, Ansan (Korea, Republic of)

    2014-12-15

    The present study aims to investigate the propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom. The velocities of the guided waves in a 5-mm-thick acrylic plate were measured by using the axial transmission technique. A pure A0 Lamb mode could be successfully launched in the 5-mm-thick acrylic plate through a time reversal process of Lamb waves, consistent with the fact that the time reversal process can automatically compensate for the dispersive nature of Lamb waves. The experimental velocities of the slow guided wave (SGW) and the time-reversed Lamb wave were found to be in reasonable agreement with the theoretical group velocity of the A0 Lamb mode, suggesting that both the SGW and the time-reversed Lamb wave excited in the 5-mm-thick acrylic plate correspond to the A0 Lamb mode. These results suggest that the time reversal process of Lamb waves can be usefully applied to noninvasive characterization of long cortical bones.

  1. Propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom

    International Nuclear Information System (INIS)

    Lee, Kang Il; Choi, Bok Kyoung

    2014-01-01

    The present study aims to investigate the propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom. The velocities of the guided waves in a 5-mm-thick acrylic plate were measured by using the axial transmission technique. A pure A0 Lamb mode could be successfully launched in the 5-mm-thick acrylic plate through a time reversal process of Lamb waves, consistent with the fact that the time reversal process can automatically compensate for the dispersive nature of Lamb waves. The experimental velocities of the slow guided wave (SGW) and the time-reversed Lamb wave were found to be in reasonable agreement with the theoretical group velocity of the A0 Lamb mode, suggesting that both the SGW and the time-reversed Lamb wave excited in the 5-mm-thick acrylic plate correspond to the A0 Lamb mode. These results suggest that the time reversal process of Lamb waves can be usefully applied to noninvasive characterization of long cortical bones.

  2. Release of lead from bone in pregnancy and lactation

    International Nuclear Information System (INIS)

    Manton, W.I.; Angle, C.R.; Stanek, K.L.; Kuntzelman, D.; Reese, Y.R.; Kuehnemann, T.J.

    2003-01-01

    Concentrations and isotope ratios of lead in blood, urine, 24-h duplicate diets, and hand wipes were measured for 12 women from the second trimester of pregnancy until at least 8 months after delivery. Six bottle fed and six breast fed their infants. One bottle feeder fell pregnant for a second time, as did a breast feeder, and each was followed semicontinuously for totals of 44 and 54 months, respectively. Bone resorption rather than dietary absorption controls changes in blood lead, but in pregnancy the resorption of trabecular and cortical bone are decoupled. In early pregnancy, only trabecular bone (presumably of low lead content) is resorbed, causing blood leads to fall more than expected from hemodilution alone. In late pregnancy, the sites of resorption move to cortical bone of higher lead content and blood leads rise. In bottle feeders, the cortical bone contribution ceases immediately after delivery, but any tendency for blood leads to fall may be compensated by the effect of hemoconcentration produced by the postpartum loss of plasma volume. In lactation, the whole skeleton undergoes resorption and the blood leads of nursing mothers continue to rise, reaching a maximum 6-8 months after delivery. Blood leads fall from pregnancy to pregnancy, implying that the greatest risk of lead toxicity lies with first pregnancies

  3. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    Science.gov (United States)

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100-150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1-10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications.

  4. Histomorphometry and cortical robusticity of the adult human femur.

    Science.gov (United States)

    Miszkiewicz, Justyna Jolanta; Mahoney, Patrick

    2018-01-13

    Recent quantitative analyses of human bone microanatomy, as well as theoretical models that propose bone microstructure and gross anatomical associations, have started to reveal insights into biological links that may facilitate remodeling processes. However, relationships between bone size and the underlying cortical bone histology remain largely unexplored. The goal of this study is to determine the extent to which static indicators of bone remodeling and vascularity, measured using histomorphometric techniques, relate to femoral midshaft cortical width and robusticity. Using previously published and new quantitative data from 450 adult human male (n = 233) and female (n = 217) femora, we determine if these aspects of femoral size relate to bone microanatomy. Scaling relationships are explored and interpreted within the context of tissue form and function. Analyses revealed that the area and diameter of Haversian canals and secondary osteons, and densities of secondary osteons and osteocyte lacunae from the sub-periosteal region of the posterior midshaft femur cortex were significantly, but not consistently, associated with femoral size. Cortical width and bone robusticity were correlated with osteocyte lacunae density and scaled with positive allometry. Diameter and area of osteons and Haversian canals decreased as the width of cortex and bone robusticity increased, revealing a negative allometric relationship. These results indicate that microscopic products of cortical bone remodeling and vascularity are linked to femur size. Allometric relationships between more robust human femora with thicker cortical bone and histological products of bone remodeling correspond with principles of bone functional adaptation. Future studies may benefit from exploring scaling relationships between bone histomorphometric data and measurements of bone macrostructure.

  5. Seaweed flour (“Lithothamnium calcareum”) as a mineral supplement in the bone healing of a cortical autograft in dogs Farinha de algas marinhas (“Lithothamnium calcareum”) como suplemento mineral na cicatrização óssea de autoenxerto cortical em cães

    OpenAIRE

    Emanoel Ferreira Martins Filho; Marcelo Weinstein Teixeira; Glauber Sergio Jacinto-Aragão; Alessandra Estrela Lima; Marcelo Jorge Cavalcanti de Sá; Raquel Graça Teixeira; João Moreira Costa Neto; Julia Morena de Miranda Leão Toríbio; Adílio Santos de Azevedo

    2010-01-01

    The influence of the seaweed flour (Lithothamnium calcareum) was evaluated as a mineral supplement in during healing of bone failure reconstructed with a cortical autograft. Ten adult male mongrel dogs, weighing between 10 and 15kg, were used. The graft made of a cilinder block of the cortical bone was obtained by the ulna proximal diaphysis by ostectomy with a trephine of eight millimeters. In the same way, it was created a bone failure located in the middle-skull region of the proximal diap...

  6. Skeletal development of mice lacking bone sialoprotein (BSP--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    Directory of Open Access Journals (Sweden)

    Wafa Bouleftour

    Full Text Available Adult Ibsp-knockout mice (BSP-/- display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice

  7. The influence of water removal on the strength and toughness of cortical bone

    OpenAIRE

    Nyman, Jeffry S.; Roy, Anuradha; Shen, Xinmei; Acuna, Rae L.; Tyler, Jerrod H.; Wang, Xiaodu

    2006-01-01

    Although the effects of dehydration on the mechanical behavior of cortical bone are known, the underlying mechanisms for such effects are not clear. We hypothesize that the interactions of water with the collagen and mineral phases each have a unique influence on mechanical behavior. To study this, strength, toughness, and stiffness were measured with three-point bend specimens made from the mid-diaphysis of human cadaveric femurs and divided into six test groups: control (hydrated), drying i...

  8. Cortical volumes and atrophy rates in FTD-3 CHMP2B mutation carriers and related non-carriers

    DEFF Research Database (Denmark)

    Eskildsen, Simon F; Østergaard, Lasse R; Rodell, Anders B

    2008-01-01

    with a mean interval of 16 months and surface based cortical segmentation we measured cortical thickness and volume, and quantified atrophy rates. Cortical thickness and atrophy rates were averaged within major lobes and focal effects were determined by parametric statistical maps. The volumetric atrophy...... in the frontal and occipital lobes, and in the left temporal lobe. Results indicated that cortical thickness has a higher sensitivity for detecting small changes than whole-brain volumetric measures. Comparing mutation carriers with non-carriers revealed increased atrophy rates in mutation carriers bilaterally...

  9. Benefits of mineralized bone cortical allograft for immediate implant placement in extraction sites: an in vivo study in dogs.

    Science.gov (United States)

    Orti, Valérie; Bousquet, Philippe; Tramini, Paul; Gaitan, Cesar; Mertens, Brenda; Cuisinier, Frédéric

    2016-10-01

    The aim of the present study was to evaluate the effectiveness of using a mineralized bone cortical allograft (MBCA), with or without a resorbable collagenous membrane derived from bovine pericardium, on alveolar bone remodeling after immediate implant placement in a dog model. Six mongrel dogs were included. The test and control sites were randomly selected. Four biradicular premolars were extracted from the mandible. In control sites, implants without an allograft or membrane were placed immediately in the fresh extraction sockets. In the test sites, an MBCA was placed to fill the gap between the bone socket wall and implant, with or without a resorbable collagenous membrane. Specimens were collected after 1 and 3 months. The amount of residual particles and new bone quality were evaluated by histomorphometry. Few residual graft particles were observed to be closely embedded in the new bone without any contact with the implant surface. The allograft combined with a resorbable collagen membrane limited the resorption of the buccal wall in height and width. The histological quality of the new bone was equivalent to that of the original bone. The MBCA improved the quality of new bone formation, with few residual particles observed at 3 months. The preliminary results of this animal study indicate a real benefit in obtaining new bone as well as in enhancing osseointegration due to the high resorbability of cortical allograft particles, in comparison to the results of xenografts or other biomaterials (mineralized or demineralized cancellous allografts) that have been presented in the literature. Furthermore, the use of an MBCA combined with a collagen membrane in extraction and immediate implant placement limited the extent of post-extraction resorption.

  10. Individual differences in posterior cortical volume correlate with proneness to pride and gratitude.

    Science.gov (United States)

    Zahn, Roland; Garrido, Griselda; Moll, Jorge; Grafman, Jordan

    2014-11-01

    Proneness to specific moral sentiments (e.g. pride, gratitude, guilt, indignation) has been linked with individual variations in functional MRI (fMRI) response within anterior brain regions whose lesion leads to inappropriate behaviour. However, the role of structural anatomical differences in rendering individuals prone to particular moral sentiments relative to others is unknown. Here, we investigated grey matter volumes (VBM8) and proneness to specific moral sentiments on a well-controlled experimental task in healthy individuals. Individuals with smaller cuneus, and precuneus volumes were more pride-prone, whereas those with larger right inferior temporal volumes experienced gratitude more readily. Although the primary analysis detected no associations with guilt- or indignation-proneness, subgenual cingulate fMRI responses to guilt were negatively correlated with grey matter volumes in the left superior temporal sulcus and anterior dorsolateral prefrontal cortices (right >left). This shows that individual variations in functional activations within critical areas for moral sentiments were not due to grey matter volume differences in the same areas. Grey matter volume differences between healthy individuals may nevertheless play an important role by affecting posterior cortical brain systems that are non-critical but supportive for the experience of specific moral sentiments. This may be of particular relevance when their experience depends on visuo-spatial elaboration. Published by Oxford University Press 2013. This work is written by US Government employees and is in the public domain in the US.

  11. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method.

    Science.gov (United States)

    Barkaoui, Abdelwahed; Chamekh, Abdessalem; Merzouki, Tarek; Hambli, Ridha; Mkaddem, Ali

    2014-03-01

    The complexity and heterogeneity of bone tissue require a multiscale modeling to understand its mechanical behavior and its remodeling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network (NN) computation and homogenization equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained NN simulation. Finite element calculation is performed at nanoscopic levels to provide a database to train an in-house NN program; and (iii) in steps 2-10 from fibril to continuum cortical bone tissue, homogenization equations are used to perform the computation at the higher scales. The NN outputs (elastic properties of the microfibril) are used as inputs for the homogenization computation to determine the properties of mineralized collagen fibril. The mechanical and geometrical properties of bone constituents (mineral, collagen, and cross-links) as well as the porosity were taken in consideration. This paper aims to predict analytically the effective elastic constants of cortical bone by modeling its elastic response at these different scales, ranging from the nanostructural to mesostructural levels. Our findings of the lowest scale's output were well integrated with the other higher levels and serve as inputs for the next higher scale modeling. Good agreement was obtained between our predicted results and literature data. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Cortical and Subcortical Structural Plasticity Associated with the Glioma Volumes in Patients with Cerebral Gliomas Revealed by Surface-Based Morphometry

    Directory of Open Access Journals (Sweden)

    Jinping Xu

    2017-06-01

    Full Text Available Postlesional plasticity has been identified in patients with cerebral gliomas by inducing a large functional reshaping of brain networks. Although numerous non-invasive functional neuroimaging methods have extensively investigated the mechanisms of this functional redistribution in patients with cerebral gliomas, little effort has been made to investigate the structural plasticity of cortical and subcortical structures associated with the glioma volume. In this study, we aimed to investigate whether the contralateral cortical and subcortical structures are able to actively reorganize by themselves in these patients. The compensation mechanism following contralateral cortical and subcortical structural plasticity is considered. We adopted the surface-based morphometry to investigate the difference of cortical and subcortical gray matter (GM volumes in a cohort of 14 healthy controls and 13 patients with left-hemisphere cerebral gliomas [including 1 patients with World Health Organization (WHO I, 8 WHO II, and 4 WHO III]. The glioma volume ranges from 5.1633 to 208.165 cm2. Compared to healthy controls, we found significantly increased GM volume of the right cuneus and the left thalamus, as well as a trend toward enlargement in the right globus pallidus in patients with cerebral gliomas. Moreover, the GM volumes of these regions were positively correlated with the glioma volumes of the patients. These results provide evidence of cortical and subcortical enlargement, suggesting the usefulness of surface-based morphometry to investigate the structural plasticity. Moreover, the structural plasticity might be acted as the compensation mechanism to better fulfill its functions in patients with cerebral gliomas as the gliomas get larger.

  13. Response of induced bone defects in horses to collagen matrix containing the human parathyroid hormone gene.

    Science.gov (United States)

    Backstrom, Kristin C; Bertone, Alicia L; Wisner, Erik R; Weisbrode, Stephen E

    2004-09-01

    To determine whether human parathyroid hormone (hPTH) gene in collagen matrix could safely promote bone formation in diaphyseal or subchondral bones of horses. 8 clinically normal adult horses. Amount, rate, and quality of bone healing for 13 weeks were determined by use of radiography, quantitative computed tomography, and histomorphometric analysis. Diaphyseal cortex and subchondral bone defects of metacarpi were filled with hPTH(1-34) gene-activated matrix (GAM) or remained untreated. Joints were assessed on the basis of circumference, synovial fluid analysis, pain on flexion, lameness, and gross and histologic examination. Bone volume index was greater for cortical defects treated with hPTH(1-34) GAM, compared with untreated defects. Bone production in cortical defects treated with hPTH(1-34) GAM positively correlated with native bone formation in untreated defects. In contrast, less bone was detected in hPTH(1-34) GAM-treated subchondral bone defects, compared with untreated defects, and histology confirmed poorer healing and residual collagen sponge. Use of hPTH(1-34) GAM induced greater total bone, specifically periosteal bone, after 13 weeks of healing in cortical defects of horses. The hPTH(1-34) GAM impeded healing of subchondral bone but was biocompatible with joint tissues. Promotion of periosteal bone formation may be beneficial for healing of cortical fractures in horses, but the delay in onset of bone formation may negate benefits. The hPTH(1-34) GAM used in this study should not be placed in articular subchondral bone defects, but contact with articular surfaces is unlikely to cause short-term adverse effects.

  14. Technical Note: Cortical thickness and density estimation from clinical CT using a prior thickness-density relationship

    Energy Technology Data Exchange (ETDEWEB)

    Humbert, Ludovic, E-mail: ludohumberto@gmail.com [Galgo Medical, Barcelona 08036 (Spain); Hazrati Marangalou, Javad; Rietbergen, Bert van [Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Río Barquero, Luis Miguel del [CETIR Centre Medic, Barcelona 08029 (Spain); Lenthe, G. Harry van [Biomechanics Section, KU Leuven–University of Leuven, Leuven 3001 (Belgium)

    2016-04-15

    Purpose: Cortical thickness and density are critical components in determining the strength of bony structures. Computed tomography (CT) is one possible modality for analyzing the cortex in 3D. In this paper, a model-based approach for measuring the cortical bone thickness and density from clinical CT images is proposed. Methods: Density variations across the cortex were modeled as a function of the cortical thickness and density, location of the cortex, density of surrounding tissues, and imaging blur. High resolution micro-CT data of cadaver proximal femurs were analyzed to determine a relationship between cortical thickness and density. This thickness-density relationship was used as prior information to be incorporated in the model to obtain accurate measurements of cortical thickness and density from clinical CT volumes. The method was validated using micro-CT scans of 23 cadaver proximal femurs. Simulated clinical CT images with different voxel sizes were generated from the micro-CT data. Cortical thickness and density were estimated from the simulated images using the proposed method and compared with measurements obtained using the micro-CT images to evaluate the effect of voxel size on the accuracy of the method. Then, 19 of the 23 specimens were imaged using a clinical CT scanner. Cortical thickness and density were estimated from the clinical CT images using the proposed method and compared with the micro-CT measurements. Finally, a case-control study including 20 patients with osteoporosis and 20 age-matched controls with normal bone density was performed to evaluate the proposed method in a clinical context. Results: Cortical thickness (density) estimation errors were 0.07 ± 0.19 mm (−18 ± 92 mg/cm{sup 3}) using the simulated clinical CT volumes with the smallest voxel size (0.33 × 0.33 × 0.5 mm{sup 3}), and 0.10 ± 0.24 mm (−10 ± 115 mg/cm{sup 3}) using the volumes with the largest voxel size (1.0 × 1.0 × 3.0 mm{sup 3}). A trend for the

  15. Technical Note: Cortical thickness and density estimation from clinical CT using a prior thickness-density relationship

    International Nuclear Information System (INIS)

    Humbert, Ludovic; Hazrati Marangalou, Javad; Rietbergen, Bert van; Río Barquero, Luis Miguel del; Lenthe, G. Harry van

    2016-01-01

    Purpose: Cortical thickness and density are critical components in determining the strength of bony structures. Computed tomography (CT) is one possible modality for analyzing the cortex in 3D. In this paper, a model-based approach for measuring the cortical bone thickness and density from clinical CT images is proposed. Methods: Density variations across the cortex were modeled as a function of the cortical thickness and density, location of the cortex, density of surrounding tissues, and imaging blur. High resolution micro-CT data of cadaver proximal femurs were analyzed to determine a relationship between cortical thickness and density. This thickness-density relationship was used as prior information to be incorporated in the model to obtain accurate measurements of cortical thickness and density from clinical CT volumes. The method was validated using micro-CT scans of 23 cadaver proximal femurs. Simulated clinical CT images with different voxel sizes were generated from the micro-CT data. Cortical thickness and density were estimated from the simulated images using the proposed method and compared with measurements obtained using the micro-CT images to evaluate the effect of voxel size on the accuracy of the method. Then, 19 of the 23 specimens were imaged using a clinical CT scanner. Cortical thickness and density were estimated from the clinical CT images using the proposed method and compared with the micro-CT measurements. Finally, a case-control study including 20 patients with osteoporosis and 20 age-matched controls with normal bone density was performed to evaluate the proposed method in a clinical context. Results: Cortical thickness (density) estimation errors were 0.07 ± 0.19 mm (−18 ± 92 mg/cm"3) using the simulated clinical CT volumes with the smallest voxel size (0.33 × 0.33 × 0.5 mm"3), and 0.10 ± 0.24 mm (−10 ± 115 mg/cm"3) using the volumes with the largest voxel size (1.0 × 1.0 × 3.0 mm"3). A trend for the cortical thickness and

  16. On the effect of x-ray irradiation on the deformation and fracture behavior of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Holly D.; Launey, Maximilien E.; McDowell, Alastair A.; Ager III, Joel W.; Ritchie, Robert O.

    2010-01-10

    In situ mechanical testing coupled with imaging using high-energy synchrotron x-ray diffraction or tomography imaging is gaining in popularity as a technique to investigate micrometer and even sub-micrometer deformation and fracture mechanisms in mineralized tissues, such as bone and teeth. However, the role of the irradiation in affecting the nature and properties of the tissue is not always taken into account. Accordingly, we examine here the effect of x-ray synchrotron-source irradiation on the mechanistic aspects of deformation and fracture in human cortical bone. Specifically, the strength, ductility and fracture resistance (both work-of-fracture and resistance-curve fracture toughness) of human femoral bone in the transverse (breaking) orientation were evaluated following exposures to 0.05, 70, 210 and 630 kGy irradiation. Our results show that the radiation typically used in tomography imaging can have a major and deleterious impact on the strength, post-yield behavior and fracture toughness of cortical bone, with the severity of the effect progressively increasing with higher doses of radiation. Plasticity was essentially suppressed after as little as 70 kGy of radiation; the fracture toughness was decreased by a factor of five after 210 kGy of radiation. Mechanistically, the irradiation was found to alter the salient toughening mechanisms, manifest by the progressive elimination of the bone's capacity for plastic deformation which restricts the intrinsic toughening from the formation 'plastic zones' around crack-like defects. Deep-ultraviolet Raman spectroscopy indicated that this behavior could be related to degradation in the collagen integrity.

  17. Osteoclast inhibition impairs chondrosarcoma growth and bone destruction.

    Science.gov (United States)

    Otero, Jesse E; Stevens, Jeff W; Malandra, Allison E; Fredericks, Douglas C; Odgren, Paul R; Buckwalter, Joseph A; Morcuende, Jose

    2014-12-01

    Because Chondrosarcoma is resistant to available chemotherapy and radiation regimens, wide resection is the mainstay in treatment, which frequently results in high morbidity and which may not prevent local recurrence. There is a clear need for improved adjuvant treatment of this malignancy. We have observed the presence of osteoclasts in the microenvironment of chondrosarcoma in human pathological specimens. We utilized the Swarm rat chondrosarcoma (SRC) model to test the hypothesis that osteoclasts affect chondrosarcoma pathogenesis. We implanted SRC tumors in tibia of Sprague-Dawley rats and analyzed bone histologically and radiographically for bone destruction and tumor growth. At three weeks, tumors invaded local bone causing cortical disruption and trabecular resorption. Bone destruction was accompanied by increased osteoclast number and resorbed bone surface. Treatment of rats with the zoledronic acid prevented cortical destruction, inhibited trabecular resorption, and resulted in decreased tumor volume in bone. To confirm that inhibition of osteoclasts per se, and not off-target effects of drug, was responsible for the prevention of tumor growth and bone destruction, we implanted SRC into osteopetrotic rat tibia. SRC-induced bone destruction and tumor growth were impaired in osteopetrotic bone compared with control bone. The results from our animal model demonstrate that osteoclasts contribute to chondrosarcoma-mediated bone destruction and tumor growth and may represent a therapeutic target in particular chondrosarcoma patients. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. Cognitively Engaging Activity is Associated with Greater Cortical and Subcortical Volumes

    Directory of Open Access Journals (Sweden)

    Talia R. Seider

    2016-05-01

    Full Text Available As the population ages and dementia becomes a growing healthcare concern, it is increasingly important to identify targets for intervention to delay or attenuate cognitive decline. Research has shown that the most successful interventions aim at altering lifestyle factors. Thus, this study examined how involvement in physical, cognitive, and social activity is related to brain structure in older adults. Sixty-five adults (mean age = 71.4 years, standard deviation = 8.9 received the Community Healthy Activities Model Program for Seniors (CHAMPS, a questionnaire that polls everyday activities in which older adults may be involved, and also underwent structural magnetic resonance imaging. Stepwise regression with backwards selection was used to predict weekly time spent in either social, cognitive, light physical, or heavy physical activity from the volume of one of the cortical or subcortical regions of interest (corrected by intracranial volume as well as age, education, and gender as control variables. Regressions revealed that more time spent in cognitive activity was associated with greater volumes of all brain regions studied: total cortex (β = .289, p = .014, frontal (β = .276, p = .019, parietal (β = .305, p = .009, temporal (β = .275, p = .020, and occipital (β = .256, p = .030 lobes, and thalamus (β = .310, p = .010, caudate (β = .233, p = .049, hippocampus (β = .286, p = .017, and amygdala (β = .336, p = .004. These effects remained even after accounting for the positive association between cognitive activity and education. No other activity variable was associated with brain volumes. Results indicate that time spent in cognitively engaging activity is associated with greater cortical and subcortical brain volume. Findings suggest that interventions aimed at increasing levels of cognitive activity may delay cognitive consequences of aging and decrease the risk of developing dementia.

  19. Effects of age and loading rate on equine cortical bone failure.

    Science.gov (United States)

    Kulin, Robb M; Jiang, Fengchun; Vecchio, Kenneth S

    2011-01-01

    Although clinical bone fractures occur predominantly under impact loading (as occurs during sporting accidents, falls, high-speed impacts or other catastrophic events), experimentally validated studies on the dynamic fracture behavior of bone, at the loading rates associated with such events, remain limited. In this study, a series of tests were performed on femoral specimens obtained post-mortem from equine donors ranging in age from 6 months to 28 years. Fracture toughness and compressive tests were performed under both quasi-static and dynamic loading conditions in order to determine the effects of loading rate and age on the mechanical behavior of the cortical bone. Fracture toughness experiments were performed using a four-point bending geometry on single and double-notch specimens in order to measure fracture toughness, as well as observe differences in crack initiation between dynamic and quasi-static experiments. Compressive properties were measured on bone loaded parallel and transverse to the osteonal growth direction. Fracture propagation was then analyzed using scanning electron and scanning confocal microscopy to observe the effects of microstructural toughening mechanisms at different strain rates. Specimens from each horse were also analyzed for dry, wet and mineral densities, as well as weight percent mineral, in order to investigate possible influences of composition on mechanical behavior. Results indicate that bone has a higher compressive strength, but lower fracture toughness when tested dynamically as compared to quasi-static experiments. Fracture toughness also tends to decrease with age when measured quasi-statically, but shows little change with age under dynamic loading conditions, where brittle "cleavage-like" fracture behavior dominates. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Development of a hip joint model for finite volume simulations.

    Science.gov (United States)

    Cardiff, P; Karač, A; FitzPatrick, D; Ivanković, A

    2014-01-01

    This paper establishes a procedure for numerical analysis of a hip joint using the finite volume method. Patient-specific hip joint geometry is segmented directly from computed tomography and magnetic resonance imaging datasets and the resulting bone surfaces are processed into a form suitable for volume meshing. A high resolution continuum tetrahedral mesh has been generated, where a sandwich model approach is adopted; the bones are represented as a stiffer cortical shells surrounding more flexible cancellous cores. Cartilage is included as a uniform thickness extruded layer and the effect of layer thickness is investigated. To realistically position the bones, gait analysis has been performed giving the 3D positions of the bones for the full gait cycle. Three phases of the gait cycle are examined using a finite volume based custom structural contact solver implemented in open-source software OpenFOAM.

  1. Magnetic resonance imaging of trabecular and cortical bone in mice: comparison of high resolution in vivo and ex vivo MR images with corresponding histology

    International Nuclear Information System (INIS)

    Weber, Michael H.; Sharp, Jonathan C.; Latta, Peter; Sramek, Milos; Hassard, H. Thomas; Orr, F. William

    2005-01-01

    Measurements of bone morphometry and remodeling have been shown to reflect bone strength and can be used to diagnose degenerative bone disease. In this study, in vivo and ex vivo magnetic resonance imaging (MRI) techniques to assess trabecular and cortical bone properties have been compared to each other and to histology as a novel means for the quantification of bone. Femurs of C57Bl/6 mice were examined both in vivo and ex vivo on an 11.7 T MRI scanner, followed by histologic processing and morphometry. A thresholding analysis technique was applied to the MRI images to generate contour lines and to delineate the boundaries between bone and marrow. Using MRI, an optimal correlation with histology was obtained with an in vivo longitudinal sectioned short echo time gradient-echo versus an in vivo long echo time spin-echo sequence or an ex vivo pulse sequence. Gradient-echo images were acquired with a maximum in-plane resolution of 35 μm. Our results demonstrated that in both the in vivo and ex vivo data sets, the percent area of marrow increases and percent area of trabecular bone and cortical bone thickness decreases moving from the epiphyseal growth plate to the diaphysis. These changes, observed with MRI, correlate with the histological data. Investigations using in vivo MRI gradient-echo sequences consistently gave the best correlation with histology. Our quantitative evaluation using both ex vivo and in vivo MRI was found to be an effective means to visualize non-invasively the normal variation in trabecular and cortical bone as compared to a histological 'gold standard' The experiments validated in vivo MRI as a potential high resolution technique for investigating both soft tissue, such as marrow, and bone without radiation exposure

  2. Altered grey matter volume and cortical thickness in patients with schizo-obsessive comorbidity

    DEFF Research Database (Denmark)

    Wang, Yong-Ming; Zou, Lai-Quan; Xie, Wen-Lan

    2018-01-01

    Recent findings suggest that schizo-obsessive comorbidity (SOC) may be a unique diagnostic entity. We examined grey matter (GM) volume and cortical thickness in 22 patients with SOC, and compared them with 21 schizophrenia (SCZ) patients, 22 obsessive-compulsive disorder (OCD) patients and 22...

  3. Experimental investigations and finite element simulation of cutting heat in vibrational and conventional drilling of cortical bone.

    Science.gov (United States)

    Wang, Yu; Cao, Meng; Zhao, Xiangrui; Zhu, Gang; McClean, Colin; Zhao, Yuanyuan; Fan, Yubo

    2014-11-01

    Heat generated during bone drilling could cause irreversible thermal damage, which can lead to bone necrosis or even osteomyelitis. In this study, vibrational drilling was applied to fresh bovine bones to investigate the cutting heat in comparison with conventional drilling through experimental investigation and finite element analysis (FEA). The influence of vibrational frequency and amplitude on cutting heat generation and conduction were studied. The experimental results showed that, compared with the conventional drilling, vibrational drilling could significantly reduce the cutting temperature in drilling of cortical bone (P<0.05): the cutting temperature tended to decrease with increasing vibrational frequency and amplitude. The FEA results also showed that the vibrational amplitude holds a significant effect on the cutting heat conduction. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. The estimation of bone cyst volume using the Cavalieri principle on computed tomography images.

    Science.gov (United States)

    Say, Ferhat; Gölpınar, Murat; Kılınç, Cem Yalın; Şahin, Bünyamin

    2018-01-01

    To evaluate the volume of bone cyst using the planimetry method of the Cavalieri principle. A retrospective analysis was carried out on data from 25 computed tomography (CT) images of patients with bone cyst. The volume of the cysts was calculated by two independent observers using the planimetry method. The procedures were repeated 1 month later by each observer. The overall mean volume of the bone cyst was 29.25 ± 25.86 cm 3 . The mean bone cyst volumes calculated by the first observer for the first and second sessions were 29.18 ± 26.14 and 29.27 ± 26.19 cm 3 , respectively. The mean bone cyst volumes calculated by the second observer for the first and second sessions were 29.32 ± 26.36 and 29.23 ± 26.36 cm 3 , respectively. Statistical analysis showed no difference and high agreement between the first and second measurements of both observers. The Bland-Altman plots showed strong intraobserver and interobserver concordance in the measurement of the bone cyst volume. The mean total time necessary to obtain the cyst volume by the two observers was 5.27 ± 2.30 min. The bone cyst of the patients can be objectively evaluated using the planimetry method of the Cavalieri principle on CT. This method showed high interobserver and intraobserver agreement. This volume measurement can be used to evaluate cyst remodeling, including complete healing and cyst recurrence.

  5. Subcortical volume and cortical surface architecture in women with acute and remitted anorexia nervosa: An exploratory neuroimaging study.

    Science.gov (United States)

    Miles, Amy E; Voineskos, Aristotle N; French, Leon; Kaplan, Allan S

    2018-04-13

    Anorexia nervosa (AN) is a highly heritable psychiatric disorder characterized by starvation and emaciation and associated with changes in brain structure. The precise nature of these changes remains unclear, as does their developmental time course and capacity for reversal with weight-restoration. In this comprehensive neuroimaging study, we sought to characterize these changes by measuring subcortical volume and cortical surface architecture in women with acute and remitted AN. Structural magnetic resonance imaging data was acquired from underweight women with a current diagnosis of AN (acAN: n = 23), weight-recovered women with a past diagnosis of AN (recAN: n = 24), and female controls (HC: n = 24). Subcortical segmentation and cortical surface reconstruction were performed with FreeSurfer 6.0.0, and group differences in regional volume and vertex-wise, cortex-wide thickness, surface area, and local gyrification index (LGI), a measure of folding, were tested with separate univariate analyses of covariance. Mean hippocampal and thalamic volumes were significantly reduced in acAN participants, as was mean cortical thickness in four frontal and temporal clusters. Mean LGI was significantly reduced in acAN and recAN participants in five frontal and parietal clusters. No significant group differences in cortical surface area were detected. Reductions in subcortical volume, cortical thickness, and right postcentral LGI were unique to women with acute AN, indicating state-dependence and pointing towards cellular remodeling and sulcal widening as consequences of disease manifestation. Reductions in bilateral frontal LGI were observed in women with acute and remitted AN, suggesting a role of atypical neurodevelopment in disease vulnerability. Copyright © 2018. Published by Elsevier Ltd.

  6. Bone fragility induced by X-ray irradiation in relation to cortical bone-mineral content

    International Nuclear Information System (INIS)

    Nyaruba, M.M.; Yamamoto, I.; Morita, R.; Kimura, H.

    1998-01-01

    The purpose of this study was to investigate the effects of fractional irradiation on the biomechanical properties of bone in the rat in relation to the cortical bone-mineral content (BMC), and to compare these effects with those brought about by single-dose irradiation. Seventy-five veteran female Wistar rats were divided into 4 groups. Group 1 was the control group. The left tibiae of the remaining rats were exposed to irradiation. Group 2 received one single dose of X-rays at 10-60 Gy. Groups 3 and 4 received fractional irradiation up to different cumulative doses (10-60 Gy): group 3 received 2.5 Gy once a day; group 4 received 1.25 Gy twice a day. Twenty-four weeks after irradiation, the rats were killed and the BMC in each tibial diaphysis was determined by dual-energy X-ray absorptiometry (DXA). The bones were then loaded to failure in a three-point bending test. The control group showed no difference (p>0.05) between left and right tibiae, neither in BMC nor in the maximum load at fracture. Single-dose irradiation caused a 16% (p=0.0366) decrease in the maximum load at 40 Gy, and a 19% (p=0.008) decrease at 60 Gy. The once-daily fractional dose of irradiation caused a 10% (p=0.0022) decrease in the maximum load of the irradiated tibiae at 60 Gy when compared to the intact contralateral tibiae. The twice-daily fractional dose of irradiation had no observable effect on the maximum load of the irradiated tibiae. Neither fractional irradiation modality had an effect on BMC. (orig./MG)

  7. Determination of calcium, phosphorus, and the calcium/phosphorus ratio in cortical bone from the human femoral neck by neutron activation analysis

    International Nuclear Information System (INIS)

    Zaichick, Vladimir; Tzaphlidou, Margaret

    2002-01-01

    Concentrations of Ca and P as well as the Ca/P ratio were estimated in intact cortical bone samples from the femoral neck of healthy humans, 33 women and 45 men, aged from 15 to 55 yr using instrumental neutron activation analysis. Mean values (M±SD) for the investigated parameters (on dry weight basis) were: 23.0±3.9%, 10.7±2.4% and 2.17±0.31, respectively. No statistically significant differences of the above parameters were observed related either to age or sex. The mean values for Ca, P and Ca/P ratio were within a very wide range of published data and close to their median. The individual variation for the Ca/P ratio in cortical bone from the healthy human femoral neck was lower than those for Ca and P separately. This means that specificity of Ca/P ratio is better than those of Ca and P concentrations are and may be more reliable for diagnosis of bone disorders

  8. Relationships between bone strength and bone quality. Three-dimensional imaging analysis in ovariectomized mice

    International Nuclear Information System (INIS)

    Wakabayashi, Suguru; Sakurai, Takashi; Kashima, Isamu

    2004-01-01

    Low-energy trauma resulting in fractures of the distal femur is often observed in elderly patients with osteoporosis; such fractures are often associated with treatment difficulties and poor prognosis. The purpose of this study was to clarify the factors that affect the bone strength of the distal femur. We used ovariectomized mice to demonstrate bone quality factors associated with deterioration of the strength of the distal femur. Ten-week old ICR-strain mice were ovariectomized or sham-ovariectomized. Total bone mineral density (BMD), total bone area, cortical BMD, cortical thickness, and trabecular BMD were measured by peripheral quantitative computed tomography in the distal metaphyseal region of the femora. As three-dimensional architectural parameters, the trabecular number, trabecular thickness (Tb.Th), trabecular separation, and connectivity density were measured in the same region by micro-computed tomography. The maximum load measured by compression testing of the distal metaphyseal region was regarded as the bone strength of each sample. No significant differences in total bone area or in cortical BMD were found between the groups. Bone strength showed the closest relationship with total BMD (r=0.834). Multiple regression analysis demonstrated that total BMD greatly depended on cortical thickness. The addition of Tb.Th to trabecular BMD markedly reflected bone strength (R=0.857), suggesting that Tb.Th affected bone strength more significantly than trabecular BMD. These findings suggested that deterioration of bone strength of the distal femur (metaphysis) was not caused by a reduction in cortical BMD, but was related to reduced cortical thickness, which reduced total BMD, and to trabecular BMD and architecture, in particular to reduced Tb.Th. (author)

  9. Accounting for beta-particle energy loss to cortical bone via paired-image radiation transport (PIRT)

    International Nuclear Information System (INIS)

    Shah, Amish P.; Rajon, Didier A.; Patton, Phillip W.; Jokisch, Derek W.; Bolch, Wesley E.

    2005-01-01

    Current methods of skeletal dose assessment in both medical physics (radionuclide therapy) and health physics (dose reconstruction and risk assessment) rely heavily on a single set of bone and marrow cavity chord-length distributions in which particle energy deposition is tracked within an infinite extent of trabecular spongiosa, with no allowance for particle escape to cortical bone. In the present study, we introduce a paired-image radiation transport (PIRT) model which provides a more realistic three-dimensional (3D) geometry for particle transport in the skeletal site at both microscopic and macroscopic levels of its histology. Ex vivo CT scans were acquired of the pelvis, cranial cap, and individual ribs excised from a 66-year male cadaver (BMI of 22.7 kg m -2 ). For the three skeletal sites, regions of trabecular spongiosa and cortical bone were identified and segmented. Physical sections of interior spongiosa were taken and subjected to microCT imaging. Voxels within the resulting microCT images were then segmented and labeled as regions of bone trabeculae, endosteum, active marrow, and inactive marrow through application of image processing algorithms. The PIRT methodology was then implemented within the EGSNRC radiation transport code whereby electrons of various initial energies are simultaneously tracked within both the ex vivo CT macroimage and the CT microimage of the skeletal site. At initial electron energies greater than 50-200 keV, a divergence in absorbed fractions to active marrow are noted between PIRT model simulations and those estimated under existing techniques of infinite spongiosa transport. Calculations of radionuclide S values under both methodologies imply that current chord-based models may overestimate the absorbed dose to active bone marrow in these skeletal sites by 0% to 27% for low-energy beta emitters ( 33 P, 169 Er, and 177 Lu), by ∼4% to 49% for intermediate-energy beta emitters ( 153 Sm, 186 Re, and 89 Sr), and by ∼14% to

  10. AN INVESTIGATION OF THE MINERAL IN DUCTILE AND BRITTLE CORTICAL MOUSE BONE

    Science.gov (United States)

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J.; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J.

    2015-01-01

    Bone is a strong and tough material composed of apatite mineral, organic matter and water. Changes in composition and organization of these building blocks affect bone’s mechanical integrity. Skeletal disorders often affect bone’s mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta murine (oim−/−) mice were used to model brittle bone; PHOSPHO1 mutants (Phospho1−/−) had ductile bone. They were compared to their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD), and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification, to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (qbSEM). Interestingly, the mineral of brittle oim−/− and ductile Phospho1−/− bones had many similar characteristics. Both pathology models had smaller apatite crystals, lower mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild-types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. The degree of mineralization of the bone matrix was different for each strain: oim−/− were hypermineralized, while Phospho1−/− were hypomineralized. However, alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results revealed that despite having extremely different whole bone mechanics, the mineral of oim−/− and Phospho1−/− has several similar trends at smaller length scales. This

  11. Intraskeletal variation in human cortical osteocyte lacunar density: Implications for bone quality assessment

    Directory of Open Access Journals (Sweden)

    Randee L. Hunter

    2016-12-01

    Full Text Available Osteocytes and their lacunocanalicular network have been identified as the regulator of bone quality and function by exerting extensive influence over metabolic processes, mechanical adaptation, and mineral homeostasis. Recent research has shown that osteocyte apoptosis leads to a decrease in bone quality and increase in bone fragility mediated through its effects on remodeling. The purpose of this study is to investigate variation in cortical bone osteocyte lacunar density with respect to major factors including sex, age, and intracortical porosity to establish both regional and systemic trends. Samples from the midshaft femur, midshaft rib and distal one-third diaphysis of the radius were recovered from 30 modern cadaveric individuals (15 males and 15 females ranging from 49 to 100 years old. Thick ground undecalcified histological (80 μm cross-sections were made and imaged under bright field microscopy. Osteocyte lacunar density (Ot.Lc.N/B.Ar and intracortical porosity (%Po.Ar were quantified. No significant sex differences in Ot.Lc.N/B.Ar or %Po.Ar were found in any element. Linear regressions demonstrated a significant decrease in osteocyte lacunar density (Ot.Lc.N/B.Ar and increase in intracortical porosity (%Po.Ar with age for the sex-pooled sample in the femur (R2 = 0.208, 0.297 respectively and radius (R2 = 0.108, 0.545 respectively. Age was unable to significantly predict osteocyte lacunar density or intracortical porosity in the rib (R2 = 0.058, 0.114 respectively. Comparisons of regression coefficients demonstrated a systemic trend in the decrease in osteocyte lacunar density (Ot.Lc.N/B.Ar and increase in intracortical porosity (%Po.Ar with age. In each element, intracortical porosity was significantly negatively correlated with lacunar density for which the radius demonstrated the strongest relationship (r = −0.746. Using pore number (Po.N as a proxy for available vascularity to support the osteocyte population, Po

  12. Predicting Hip Fracture Type With Cortical Bone Mapping (CBM) in the Osteoporotic Fractures in Men (MrOS) Study.

    Science.gov (United States)

    Treece, Graham M; Gee, Andrew H; Tonkin, Carol; Ewing, Susan K; Cawthon, Peggy M; Black, Dennis M; Poole, Kenneth E S

    2015-11-01

    Hip fracture risk is known to be related to material properties of the proximal femur, but fracture prediction studies adding richer quantitative computed tomography (QCT) measures to dual-energy X-ray (DXA)-based methods have shown limited improvement. Fracture types have distinct relationships to predictors, but few studies have subdivided fracture into types, because this necessitates regional measurements and more fracture cases. This work makes use of cortical bone mapping (CBM) to accurately assess, with no prior anatomical presumptions, the distribution of properties related to fracture type. CBM uses QCT data to measure the cortical and trabecular properties, accurate even for thin cortices below the imaging resolution. The Osteoporotic Fractures in Men (MrOS) study is a predictive case-cohort study of men over 65 years old: we analyze 99 fracture cases (44 trochanteric and 55 femoral neck) compared to a cohort of 308, randomly selected from 5994. To our knowledge, this is the largest QCT-based predictive hip fracture study to date, and the first to incorporate CBM analysis into fracture prediction. We show that both cortical mass surface density and endocortical trabecular BMD are significantly different in fracture cases versus cohort, in regions appropriate to fracture type. We incorporate these regions into predictive models using Cox proportional hazards regression to estimate hazard ratios, and logistic regression to estimate area under the receiver operating characteristic curve (AUC). Adding CBM to DXA-based BMD leads to a small but significant (p fracture, with AUC increasing from 0.78 to 0.79, assessed using leave-one-out cross-validation. For specific fracture types, the improvement is more significant (p trochanteric fractures and 0.76 to 0.82 for femoral neck fractures. In contrast, adding DXA-based BMD to a CBM-based predictive model does not result in any significant improvement. © 2015 The Authors. Journal of Bone and Mineral Research

  13. Computed tomography to evaluate the association of fragmented heterolog cortical bone and methylmethacrylate to repare segmental bone defect produced in tibia of rabbits; Tomografia computadorizada da matriz ossea mineralizada heterologa fragmentada e metilmetacrilato na reparacao de falhas osseas segmentares produzidas em tibia de coelhos

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, S.H. [Universidade Federal de Sao Paulo (USP), SP (Brazil); Doria, R.G.S. [Universidade Federal de Sao Paulo (USP), SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos; Mendonca, F.S.; Santos, M.D.; Moreira, R. [Universidade de Cuiaba, MT (Brazil). Faculdade de Medicina Veterinaria; Simoes, R.S. [Universidade Federal de Sao Paulo (USP), SP (Brazil). Hospital Universitario; Camargo, L.M.; Simoes, M.J. [Universidade Federal de Sao Paulo (USP), SP (Brazil). Escola Paulista de Medicina; Marques, A.T.C. [Universidade de Cuiaba, MT (Brazil). Faculdade de Odontologia

    2012-11-15

    A 6mm segmental defect was performed on the metaphyseal region of the tibia of 12 rabbits and the autoclaved fragmented heterolog cortical bone conserved in glycerin (98%) and methylmethacrylate was used as a bone graft for the reconstruction. The graft was placed in the receptor bed and its integration was evaluated by computed tomography after 30, 60 and 90 days. There was gradual bone graft incorporation in the receptor bed during the time in 100% of the cases. Fragmented cortical bone heterograft and methylmethacrylate was biologically compatible and promotes bone defect reparation without signs of infection, migration and or rejection, featuring a new option of osseous substitute to fill in bone defects. (author)

  14. Comparison of interradicular distances and cortical bone thickness in Thai patients with class I and class II skeletal patterns using cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Khumsarn, Nattida [Dental Division of Lamphun Hospital, Lamphun (Thailand); Patanaporn, Virush; Janhom, Apirum; Jotikasthira, Dhirawat [Faculty of Dentistry, Chiang Mai University, Chiang Mai (Thailand)

    2016-06-15

    This study evaluated and compared interradicular distances and cortical bone thickness in Thai patients with Class I and Class II skeletal patterns, using cone-beam computed tomography (CBCT). Pretreatment CBCT images of 24 Thai orthodontic patients with Class I and Class II skeletal patterns were included in the study. Three measurements were chosen for investigation: the mesiodistal distance between the roots, the width of the buccolingual alveolar process, and buccal cortical bone thickness. All distances were recorded at five different levels from the cementoenamel junction (CEJ). Descriptive statistical analysis and t-tests were performed, with the significance level for all tests set at p<0.05. Patients with a Class II skeletal pattern showed significantly greater maxillary mesiodistal distances (between the first and second premolars) and widths of the buccolingual alveolar process (between the first and second molars) than Class I skeletal pattern patients at 10 mm above the CEJ. The maxillary buccal cortical bone thicknesses between the second premolar and first molar at 8 mm above the CEJ in Class II patients were likewise significantly greater than in Class I patients. Patients with a Class I skeletal pattern showed significantly wider mandibular buccolingual alveolar processes than did Class II patients (between the first and second molars) at 4, 6, and 8 mm below the CEJ. In both the maxilla and mandible, the mesiodistal distances, the width of the buccolingual alveolar process, and buccal cortical bone thickness tended to increase from the CEJ to the apex in both Class I and Class II skeletal patterns.

  15. Comparison of interradicular distances and cortical bone thickness in Thai patients with class I and class II skeletal patterns using cone-beam computed tomography

    International Nuclear Information System (INIS)

    Khumsarn, Nattida; Patanaporn, Virush; Janhom, Apirum; Jotikasthira, Dhirawat

    2016-01-01

    This study evaluated and compared interradicular distances and cortical bone thickness in Thai patients with Class I and Class II skeletal patterns, using cone-beam computed tomography (CBCT). Pretreatment CBCT images of 24 Thai orthodontic patients with Class I and Class II skeletal patterns were included in the study. Three measurements were chosen for investigation: the mesiodistal distance between the roots, the width of the buccolingual alveolar process, and buccal cortical bone thickness. All distances were recorded at five different levels from the cementoenamel junction (CEJ). Descriptive statistical analysis and t-tests were performed, with the significance level for all tests set at p<0.05. Patients with a Class II skeletal pattern showed significantly greater maxillary mesiodistal distances (between the first and second premolars) and widths of the buccolingual alveolar process (between the first and second molars) than Class I skeletal pattern patients at 10 mm above the CEJ. The maxillary buccal cortical bone thicknesses between the second premolar and first molar at 8 mm above the CEJ in Class II patients were likewise significantly greater than in Class I patients. Patients with a Class I skeletal pattern showed significantly wider mandibular buccolingual alveolar processes than did Class II patients (between the first and second molars) at 4, 6, and 8 mm below the CEJ. In both the maxilla and mandible, the mesiodistal distances, the width of the buccolingual alveolar process, and buccal cortical bone thickness tended to increase from the CEJ to the apex in both Class I and Class II skeletal patterns

  16. Cortical Composition Hierarchy Driven by Spine Proportion Economical Maximization or Wire Volume Minimization.

    Directory of Open Access Journals (Sweden)

    Jan Karbowski

    2015-10-01

    Full Text Available The structure and quantitative composition of the cerebral cortex are interrelated with its computational capacity. Empirical data analyzed here indicate a certain hierarchy in local cortical composition. Specifically, neural wire, i.e., axons and dendrites take each about 1/3 of cortical space, spines and glia/astrocytes occupy each about (1/3(2, and capillaries around (1/3(4. Moreover, data analysis across species reveals that these fractions are roughly brain size independent, which suggests that they could be in some sense optimal and thus important for brain function. Is there any principle that sets them in this invariant way? This study first builds a model of local circuit in which neural wire, spines, astrocytes, and capillaries are mutually coupled elements and are treated within a single mathematical framework. Next, various forms of wire minimization rule (wire length, surface area, volume, or conduction delays are analyzed, of which, only minimization of wire volume provides realistic results that are very close to the empirical cortical fractions. As an alternative, a new principle called "spine economy maximization" is proposed and investigated, which is associated with maximization of spine proportion in the cortex per spine size that yields equally good but more robust results. Additionally, a combination of wire cost and spine economy notions is considered as a meta-principle, and it is found that this proposition gives only marginally better results than either pure wire volume minimization or pure spine economy maximization, but only if spine economy component dominates. However, such a combined meta-principle yields much better results than the constraints related solely to minimization of wire length, wire surface area, and conduction delays. Interestingly, the type of spine size distribution also plays a role, and better agreement with the data is achieved for distributions with long tails. In sum, these results suggest

  17. Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation μCT

    International Nuclear Information System (INIS)

    Raum, K; Leguerney, I; Chandelier, F; Talmant, M; Saied, A; Peyrin, F; Laugier, P

    2006-01-01

    200 MHz scanning acoustic microscopy (SAM) and synchrotron radiation μCT (SR-μCT) were used to assess microstructural parameters and tissue properties in site-matched regions of interest in cortical bone. Anterior and postero-lateral regions of ten cross sections from human cortical radius were explored. Structural parameters, including diameter and number of Haversian canals per cortical area (Ca.Dm, N.Ca/Ar) and porosity Po were assessed with both methods using a custom-developed image fusion and analysis software. Acoustic impedance Z and degree of mineralization of bone DMB were extracted separately for osteonal and interstitial tissues from the fused images. Structural parameter estimations obtained from radiographic and acoustic images were almost identical. DMB and impedance values were in the range between 0.77 and 1.28 g cm -3 and 5.13 and 12.1 Mrayl, respectively. Interindividual and regional variations were observed, whereas the strongest difference was found between osteonal and interstitial tissues (Z: 7.2 ± 1.1 Mrayl versus 9.3 ± 1.0 Mrayl, DMB: 1.06 ± 0.07 g cm -3 versus 1.16 ± 0.05 g cm -3 , paired t-test, p 2 = 0.174, p -4 ) and for the pooled (osteonal and interstitial) data. The regression of the pooled osteonal and interstitial tissue data follows a second-order polynomial (R 2 = 0.39, p -4 ). Both modalities fulfil the requirement for a simultaneous evaluation of cortical bone microstructure and material properties at the tissue level. While SAM inspection is limited to the evaluation of carefully prepared sample surfaces, SR-μCT provides volumetric information on the tissue without substantial preparation requirements. However, SAM provides a quantitative estimate of elastic properties at the tissue level that cannot be captured by SR-μCT

  18. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    International Nuclear Information System (INIS)

    Ascenzi, Maria-Grazia; Kawas, Neal P.; Lutz, Andre; Kardas, Dieter; Nackenhorst, Udo; Keyak, Joyce H.

    2013-01-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing

  19. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Maria-Grazia, E-mail: mgascenzi@mednet.ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Kawas, Neal P., E-mail: nealkawas@ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Lutz, Andre, E-mail: andre.lutz@hotmail.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Kardas, Dieter, E-mail: kardas@ibnm.uni-hannover.de [ContiTech Vibration Control, Jaedekamp 30 None, 30419 Hannover (Germany); Nackenhorst, Udo, E-mail: nackenhorst@ibnm.uni-hannover.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Keyak, Joyce H., E-mail: jhkeyak@uci.edu [Department of Radiological Sciences, Medical Sciences I, Bldg 811, Room B140, University of California, Irvine, CA 92697-5000 (United States)

    2013-07-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.

  20. Sterilisation of allograft cortical bone using gamma irradiation: effect on strength and material ultrastructure

    International Nuclear Information System (INIS)

    Price, R.; Walters, M.

    1996-01-01

    Full text: The use of allograft bone in revision joint and limb salvage surgery is widespread and increasing (Buck B.E. et al, Clin Orthop 303: 8-17, 1994). To reduce the risk of disease transmission from donor graft contamination (particularly HIV and hepatitis) sterilisation is practiced worldwide. Gamma (γ)-irradiation using a dose of 1.5 - 2.5 Mrads is common. However, γ-irradiation is known to reduce bone strength, though the extent and mechanisms are controversial (eg Bright RW et al, Trans Orthop Res Soc 3: 210, 1978). We measured the effect of γ-irradiation on bone strength and properties reflecting bone material ultrastructure. Diaphyseal bone was obtained from the femur of a 47 year-old male would-be donor with suspicious hepatitis serology. Beams of cortical bone (long axes parallel to the femur) were cut using a low speed diamond saw bathed in Ringer's solution. Four groups were irradiated with γ-rays (0, 1.5, 2.5 and 5.0±0.5[SD] Mrads). Blinded investigations were performed: Ultimate stress (Ult Stress, N= 16 replicates in each dose group). Each beam was loaded at its midpoint at a rate of 25 mm/min until failure, while its ends were supported 40 mms apart. Ult stress was calculated from 3-point bending theory using the load vs displacement curve and the cross-sectional area of the break (Power RA et al, submitted to J Bone and Joint Surg). Differential scanning calorimetry (DSC) was performed over the range -15 to +5 deg C. Samples were demineralized and small (7-10 mg) blocks were cut and sealed in stainless steel calorimetry capsules. The enthalpy (reflecting the normalised free water content) was calculated from the sample mass plus area under the heat capacity curve. Pyridinoline collagen (acid-insoluble) crosslinks (Pyrid, N=10) (Randall D et al, JBone and Min Res, 1996, in press) were determined from 5-mm 3 demineralised, freeze dried samples. Small and medium angle X-ray diffraction (XRD, N=5). Demineralised bone was sliced into thin

  1. Comparison of grey matter volume and thickness for analysing cortical changes in chronic schizophrenia: a matter of surface area, grey/white matter intensity contrast, and curvature.

    Science.gov (United States)

    Kong, Li; Herold, Christina J; Zöllner, Frank; Salat, David H; Lässer, Marc M; Schmid, Lena A; Fellhauer, Iven; Thomann, Philipp A; Essig, Marco; Schad, Lothar R; Erickson, Kirk I; Schröder, Johannes

    2015-02-28

    Grey matter volume and cortical thickness are the two most widely used measures for detecting grey matter morphometric changes in various diseases such as schizophrenia. However, these two measures only share partial overlapping regions in identifying morphometric changes. Few studies have investigated the contributions of the potential factors to the differences of grey matter volume and cortical thickness. To investigate this question, 3T magnetic resonance images from 22 patients with schizophrenia and 20 well-matched healthy controls were chosen for analyses. Grey matter volume and cortical thickness were measured by VBM and Freesurfer. Grey matter volume results were then rendered onto the surface template of Freesurfer to compare the differences from cortical thickness in anatomical locations. Discrepancy regions of the grey matter volume and thickness where grey matter volume significantly decreased but without corresponding evidence of cortical thinning involved the rostral middle frontal, precentral, lateral occipital and superior frontal gyri. Subsequent region-of-interest analysis demonstrated that changes in surface area, grey/white matter intensity contrast and curvature accounted for the discrepancies. Our results suggest that the differences between grey matter volume and thickness could be jointly driven by surface area, grey/white matter intensity contrast and curvature. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur.

    Science.gov (United States)

    Malo, M K H; Rohrbach, D; Isaksson, H; Töyräs, J; Jurvelin, J S; Tamminen, I S; Kröger, H; Raum, K

    2013-04-01

    Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Trc33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, pbone tissue were observed. These findings may explain in part the increase in susceptibility to suffer low energy fractures during aging and highlight the potential of ultrasound in clinical osteoporosis diagnostics. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. [Bone graft reconstruction for posterior mandibular segment using the formwork technique].

    Science.gov (United States)

    Pascual, D; Roig, R; Chossegros, C

    2014-04-01

    Pre-implant bone graft in posterior mandibular segments is difficult because of masticatory and lingual mechanical constraints, because of the limited bone vascularization, and because of the difficulty to cover it with the mucosa. The formwork technique is especially well adapted to this topography. The recipient site is abraded with a drill. Grooves are created to receive and stabilize the grafts. The bone grafts were harvested from the ramus. The thinned cortices are assembled in a formwork and synthesized by mini-plates. The gaps are filled by bone powder collected during bone harvesting. The bone volume reconstructed with the formwork technique allows anchoring implants more than 8mm long. The proximity of the inferior alveolar nerve does not contra indicate this technique. The formwork size and its positioning on the alveolar crest can be adapted to prosthetic requirements by using osteosynthesis plates. The lateral implant walls are supported by the formwork cortices; the implant apex is anchored on the native alveolar crest. The primary stability of implants is high, and the torque is important. The ramus harvesting decreases operative risks. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Reduced frontal cortex thickness and cortical volume associated with pathological narcissism.

    Science.gov (United States)

    Mao, Yu; Sang, Na; Wang, Yongchao; Hou, Xin; Huang, Hui; Wei, Dongtao; Zhang, Jinfu; Qiu, Jiang

    2016-07-22

    Pathological narcissism is often characterized by arrogant behavior, a lack of empathy, and willingness to exploit other individuals. Generally, individuals with high levels of narcissism are more likely to suffer mental disorders. However, the brain structural basis of individual pathological narcissism trait among healthy people has not yet been investigated with surface-based morphometry. Thus, in this study, we investigated the relationship between cortical thickness (CT), cortical volume (CV), and individual pathological narcissism in a large healthy sample of 176 college students. Multiple regression was used to analyze the correlation between regional CT, CV, and the total Pathological Narcissism Inventory (PNI) score, adjusting for age, sex, and total intracranial volume. The results showed that the PNI score was significantly negatively associated with CT and CV in the right dorsolateral prefrontal cortex (DLPFC, key region of the central executive network, CEN), which might be associated with impaired emotion regulation processes. Furthermore, the PNI score showed significant negative associations with CV in the right postcentral gyrus, left medial prefrontal cortex (MPFC), and the CT in the right inferior frontal cortex (IFG, overlap with social brain network), which may be related to impairments in social cognition. Together, these findings suggest a unique structural basis for individual differences in pathological narcissism, distributed across different gray matter regions of the social brain network and CEN. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. The effect of surface demineralization of cortical bone allograft on the properties of recombinant adeno-associated virus coatings.

    Science.gov (United States)

    Yazici, Cemal; Yanoso, Laura; Xie, Chao; Reynolds, David G; Samulski, R Jude; Samulski, Jade; Yannariello-Brown, Judith; Gertzman, Arthur A; Zhang, Xinping; Awad, Hani A; Schwarz, Edward M

    2008-10-01

    Freeze-dried recombinant adeno-associated virus (rAAV) coated structural allografts have emerged as an approach to engender necrotic cortical bone with host factors that will persist for weeks following surgery to facilitate revascularization, osteointegration, and remodeling. However, one major limitation is the nonporous cortical surface that prohibits uniform distribution of the rAAV coating prior to freeze-drying. To overcome this we have developed a demineralization method to increase surface absorbance while retaining the structural integrity of the allograft. Demineralized bone wafers (DBW) made from human femoral allograft rings demonstrated a significant 21.1% (73.6+/-3.9% versus 52.5+/-2.6%; pcoating versus mineralized controls. Co-incubation of rAAV-luciferase (rAAV-Luc) coated DBW with a monolayer of C3H10T1/2 cells in culture led to peak luciferase levels that were not significantly different from soluble rAAV-Luc controls (p>0.05), although the peaks occurred at 60h and 12h, respectively. To assess the transduction efficiency of rAAV-Luc coated DBW in vivo, we first performed a dose response with allografts containing 10(7), 10(9) or 10(10) particles that were surgically implanted into the quadriceps of mice, and assayed by in vivo bioluminescence imaging (BLI) on days 1, 3, 5, 7, 10, 14, and 21. The results demonstrated a dose response in which the DBW coated with 10(10) rAAV-Luc particles achieved peak gene expression levels on day 3, which persisted until day 21, and was significantly greater than the 10(7) dose throughout this time period (pcoated with 10(10) rAAV-Luc particles failed to demonstrate any significant differences in transduction kinetics or efficiency in vivo. Thus, surface demineralization of human cortical bone allograft increases its absorbance for uniform rAAV coating, without affecting vector transduction efficiency.

  6. Ultrasonic wave propagation in viscoelastic cortical bone plate coupled with fluids: a spectral finite element study.

    Science.gov (United States)

    Nguyen, Vu-Hieu; Naili, Salah

    2013-01-01

    This work deals with the ultrasonic wave propagation in the cortical layer of long bones which is known as being a functionally graded anisotropic material coupled with fluids. The viscous effects are taken into account. The geometrical configuration mimics the one of axial transmission technique used for evaluating the bone quality. We present a numerical procedure adapted for this purpose which is based on the spectral finite element method (FEM). By using a combined Laplace-Fourier transform, the vibroacoustic problem may be transformed into the frequency-wavenumber domain in which, as radiation conditions may be exactly introduced in the infinite fluid halfspaces, only the heterogeneous solid layer needs to be analysed using FEM. Several numerical tests are presented showing very good performance of the proposed approach. We present some results to study the influence of the frequency on the first arriving signal velocity in (visco)elastic bone plate.

  7. A homogenization approach for the effective drained viscoelastic properties of 2D porous media and an application for cortical bone.

    Science.gov (United States)

    Nguyen, Sy-Tuan; Vu, Mai-Ba; Vu, Minh-Ngoc; To, Quy-Dong

    2018-02-01

    Closed-form solutions for the effective rheological properties of a 2D viscoelastic drained porous medium made of a Generalized Maxwell viscoelastic matrix and pore inclusions are developed and applied for cortical bone. The in-plane (transverse) effective viscoelastic bulk and shear moduli of the Generalized Maxwell rheology of the homogenized medium are expressed as functions of the porosity and the viscoelastic properties of the solid phase. When deriving these functions, the classical inverse Laplace-Carson transformation technique is avoided, due to its complexity, by considering the short and long term approximations. The approximated results are validated against exact solutions obtained from the inverse Laplace-Carson transform for a simple configuration when the later is available. An application for cortical bone with assumption of circular pore in the transverse plane shows that the proposed approximation fit very well with experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Acceleration of bone development and regeneration through the Wnt/β-catenin signaling pathway in mice heterozygously deficient for GSK-3β

    International Nuclear Information System (INIS)

    Arioka, Masaki; Takahashi-Yanaga, Fumi; Sasaki, Masanori; Yoshihara, Tatsuya; Morimoto, Sachio; Takashima, Akihiko; Mori, Yoshihide; Sasaguri, Toshiyuki

    2013-01-01

    Highlights: •The Wnt/β-catenin signaling pathway was activated in GSK-3β +/− mice. •The cortical and trabecular bone volumes were increased in GSK-3β +/− mice. •Regeneration of a partial bone defect was accelerated in GSK-3β +/− mice. -- Abstract: Glycogen synthase kinase (GSK)-3β plays an important role in osteoblastogenesis by regulating the Wnt/β-catenin signaling pathway. Therefore, we investigated whether GSK-3β deficiency affects bone development and regeneration using mice heterozygously deficient for GSK-3β (GSK-3β +/− ). The amounts of β-catenin, c-Myc, cyclin D1, and runt-related transcription factor-2 (Runx2) in the bone marrow cells of GSK-3β +/− mice were significantly increased compared with those of wild-type mice, indicating that Wnt/β-catenin signals were enhanced in GSK-3β +/− mice. Microcomputed tomography of the distal femoral metaphyses demonstrated that the volumes of both the cortical and trabecular bones were increased in GSK-3β +/− mice compared with those in wild-type mice. Subsequently, to investigate the effect of GSK-3β deficiency on bone regeneration, we established a partial bone defect in the femur and observed new bone at 14 days after surgery. The volume and mineral density of the new bone were significantly higher in GSK-3β +/− mice than those in wild-type mice. These results suggest that bone formation and regeneration in vivo are accelerated by inhibition of GSK-3β, probably through activation of the Wnt/β-catenin signaling pathway

  9. Maternal Dietary Supplementation with Oligofructose-Enriched Inulin in Gestating/Lactating Rats Preserves Maternal Bone and Improves Bone Microarchitecture in Their Offspring

    Science.gov (United States)

    Diaz-Castro, Javier; López-Aliaga, Inmaculada; Rueda, Ricardo

    2016-01-01

    Nutrition during pregnancy and lactation could exert a key role not only on maternal bone, but also could influence the skeletal development of the offspring. This study was performed in rats to assess the relationship between maternal dietary intake of prebiotic oligofructose-enriched inulin and its role in bone turnover during gestation and lactation, as well as its effect on offspring peak bone mass/architecture during early adulthood. Rat dams were fed either with standard rodent diet (CC group), calcium-fortified diet (Ca group), or prebiotic oligofructose-enriched inulin supplemented diet (Pre group), during the second half of gestation and lactation. Bone mineral density (BMD) and content (BMC), as well as micro-structure of dams and offspring at different stages were analysed. Dams in the Pre group had significantly higher trabecular thickness (Tb.Th), trabecular bone volume fraction (BV/TV) and smaller specific bone surface (BS/BV) of the tibia in comparison with CC dams. The Pre group offspring during early adulthood had an increase of the lumbar vertebra BMD when compared with offspring of CC and Ca groups. The Pre group offspring also showed significant increase versus CC in cancellous and cortical structural parameters of the lumbar vertebra 4 such as Tb.Th, cortical BMD and decreased BS/BV. The results indicate that oligofructose-enriched inulin supplementation can be considered as a plausible nutritional option for protecting against maternal bone loss during gestation and lactation preventing bone fragility and for optimizing peak bone mass and architecture of the offspring in order to increase bone strength. PMID:27115490

  10. Evaluating differential nuclear DNA yield rates and osteocyte numbers among human bone tissue types: A synchrotron radiation micro-CT approach.

    Science.gov (United States)

    Andronowski, Janna M; Mundorff, Amy Z; Pratt, Isaac V; Davoren, Jon M; Cooper, David M L

    2017-05-01

    Molecular human identification has conventionally focused on DNA sampling from dense, weight-bearing cortical bone tissue, typically from femora or tibiae. A comparison of skeletal elements from three contemporary individuals demonstrated that elements with high quantities of cancellous bone yielded nuclear DNA at the highest rates, suggesting that preferentially sampling cortical bone may be suboptimal (Mundorff & Davoren, 2014). Despite these findings, the reason for the differential DNA yields between cortical and cancellous bone tissues remains unknown. The primary goal of this work is to ascertain whether differences in bone microstructure can be used to explain differential nuclear DNA yield among bone tissue types observed by Mundorff and Davoren (2014), with a focus on osteocytes and the three-dimensional (3D) quantification of their associated lacunae. Osteocytes and other bone cells are recognized to house DNA in bone tissue, thus examining the density of their lacunae may explain why nuclear DNA yield rates differ among bone tissue types. Lacunae were visualized and quantified using synchrotron radiation-based micro-Computed Tomographic imaging (SR micro-CT). Volumes of interest (VOIs) from cortical and cancellous bone tissues (n=129) were comparatively analyzed from the three skeletons sampled for Mundorff and Davoren's (2014) study. Analyses tested the primary hypothesis that the abundance and density of osteocytes (inferred from their lacunar spaces) vary between cortical and cancellous bone tissue types. Results demonstrated that osteocyte lacunar abundance and density vary between cortical and cancellous bone tissue types, with cortical bone VOIs containing a higher lacunar abundance and density. We found that the osteocyte lacunar density values are independent of nuclear DNA yield, suggesting an alternative explanation for the higher nuclear DNA yields from bones with greater quantities of cancellous bone tissue. The use of SR micro-CT allowed for

  11. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone - a feasibility study

    NARCIS (Netherlands)

    Marcián, P.; Borák, L.; Valášek, J.; Kaiser, J.; Florian, Z.; Wolff, J.

    2014-01-01

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant

  12. Altered frontal cortical volume and decision making in adolescent cannabis users

    Directory of Open Access Journals (Sweden)

    John C Churchwell

    2010-12-01

    Full Text Available Anticipating future outcomes is central to decision making and a failure to consider long-term consequences may lead to impulsive choices. Adolescence is a vulnerable period during which underdeveloped prefrontal cortical systems may contribute to poor judgment, impulsive choices, and substance abuse. Conversely, substance abuse during this period may alter neural systems involved in decision making and lead to greater impulsivity. Although a broad neural network which supports decision making undergoes extensive change during adolescent development, one region that may be critical is the medial prefrontal cortex. Altered functional integrity of this region may be specifically related to reward perception, substance abuse, and dependence. In the present investigation, we acquired structural magnetic resonance images (MRI, using a 3T Siemens Trio scanner, from 18 cannabis abusing adolescents (CA; 2 female and 16 male subjects; mean age, 17.7 years; range 16-19 years and 18 healthy controls (HC; 6 female and 12 male subjects; mean age, 17.2 years; range 16-19 years. In order to measure medial orbital prefrontal cortex (moPFC morphology related to substance abuse and impulsivity, semi-automated cortical reconstruction and volumetric segmentation of MRIs was performed with FreeSurfer. Impulsivity was evaluated with the Barratt Impulsiveness Scale (BIS. Our results indicate that cannabis abusing adolescents have decreased right moPFC volume compared to controls, p =.01, d = .92, CI.95 = .21, 1.59. Cannabis abusing adolescents also show decreased future orientation, as indexed by the BIS nonplanning subscale, when compared to controls, p = .01, d = .89, CI.95 = .23, 1.55. Moreover, total moPFC volume was positively correlated with age of first use (18 = .49, p < .03, suggesting that alterations in this region may be related to initiation of cannabis use or that early initiation may lead to reduced moPFC volume.

  13. Low serum vitamin D is associated with higher cortical porosity in elderly men.

    Science.gov (United States)

    Sundh, D; Mellström, D; Ljunggren, Ö; Karlsson, M K; Ohlsson, C; Nilsson, M; Nilsson, A G; Lorentzon, M

    2016-11-01

    Bone loss at peripheral sites in the elderly is mainly cortical and involves increased cortical porosity. However, an association between bone loss at these sites and 25-hydroxyvitamin D has not been reported. To investigate the association between serum levels of 25-hydroxyvitamin D, bone microstructure and areal bone mineral density (BMD) in elderly men. A population-based cohort of 444 elderly men (mean ± SD age 80.2 ± 3.5 years) was investigated. Bone microstructure was measured by high-resolution peripheral quantitative computed tomography, areal BMD by dual-energy X-ray absorptiometry and serum 25-hydroxyvitamin D and parathyroid hormone levels by immunoassay. Mean cortical porosity at the distal tibia was 14.7% higher (12.5 ± 4.3% vs. 10.9 ± 4.1%, P vitamin D levels compared to the highest. In men with vitamin D deficiency (6.8 pmol L -1 )], cortical porosity was 17.2% higher than in vitamin D-sufficient men (P vitamin D supplementation and parathyroid hormone showed that 25-hydroxyvitamin D independently predicted cortical porosity (standardized β = -0.110, R 2 = 1.1%, P = 0.024), area (β = 0.123, R 2 = 1.4%, P = 0.007) and cortical volumetric BMD (β = 0.125, R 2 = 1.4%, P = 0.007) of the tibia as well as areal BMD of the femoral neck (β = 0.102, R 2 = 0.9%, P = 0.04). Serum vitamin D is associated with cortical porosity, area and density, indicating that bone fragility as a result of low vitamin D could be due to changes in cortical bone microstructure and geometry. © 2016 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.

  14. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull

    International Nuclear Information System (INIS)

    Wydra, A; Maev, R Gr

    2013-01-01

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us. (note)

  15. Polycythemia is associated with bone loss and reduced osteoblast activity in mice.

    Science.gov (United States)

    Oikonomidou, P R; Casu, C; Yang, Z; Crielaard, B; Shim, J H; Rivella, S; Vogiatzi, M G

    2016-04-01

    Increased fragility has been described in humans with polycythemia vera (PV). Herein, we describe an osteoporotic phenotype associated with decreased osteoblast activity in a mouse model of PV and another mouse of polycythemia and elevated circulating erythropoietin (EPO). Our results are important for patients with PV or those treated with recombinant EPO (rEPO). PV and other myeloproliferative syndromes have been recently associated with an increased risk for fractures. However, the presence of osteoporosis in these patients has not been well documented. EPO, a hormone primarily known to stimulate erythropoiesis, has been shown recently to regulate bone homeostasis in mice. The aim of this study was to examine the bone phenotype of a mouse model of PV and compare it to that of animals with polycythemia caused by elevated circulating EPO. Bone mass and remodeling were evaluated by micro-computed tomography and histomorphometry. The JAK2(V617F) knock-in mouse, a model of human PV, manifests polycythemia and low circulating EPO levels. Results from this mouse were compared to wild type (wt) controls and the tg6 transgenic mouse that shows polycythemia caused by increased constitutive expression of EPO. Compared to wt, both JAK2(V617F) and tg6 mice had a decrease in trabecular bone mass. Tg6 mice showed an additional modest decrease in cortical thickness and cortical bone volume per tissue volume (P Polycythemia caused by chronically elevated circulating EPO also results in bone loss, and implications on patients treated with rEPO should be evaluated.

  16. The alterations of cortical volume, thickness, surface and density in the intermediate sporadic Parkinson's disease from the Han population of Mainland China

    Directory of Open Access Journals (Sweden)

    Xia Deng

    2016-08-01

    Full Text Available Many symptoms of sporadic Parkinson's disease (sPD can’t be completely explained by the lesion of simple typical extrapyramidal circuit between striatum and substantia nigra. Therefore, we investigated the alteration of cortical volume, thickness, surface and density in the intermediate sPD from the Han population of Mainland China in order to find the new pathological brain regions associated with the complex clinical manifestations of sPD. The cortical volume, thickness, surface and density were examined using the voxel-based cortical morphometry and corticometry on magnetic resonance image (MRI in 67 intermediate sPD and 35 controls, the multiple adjusted comparisons analysis of all MRI data were employed to assess the relationships between the cortical morphometric alteration in the specific brain regions and sPD. Results showed that a significantly shrunk volume, thinned thickness and enlarged or reduced surface of cortex in some specific brain regions were closely associated with sPD, but all cortical densities were not different. The majority of morphometric alteration of hemisphere cortex was symmetric, but that in the left hemisphere was more significant. The cortical morphometric alterations in the frontal, temporal, parietal, occipital and limbic lobe, cerebellum, caudate and thalamus were closely related to the clinical neural dysfunction (Clinical manifestations of sPD. Our data indicated that the deficits of extensive brain regions involved in the development of sPD, resulted in a series of correspondent complex clinical manifestations in the disease.

  17. Cement stress predictions after anatomic total shoulder arthroplasty are correlated with preoperative glenoid bone quality.

    Science.gov (United States)

    Terrier, Alexandre; Obrist, Raphaël; Becce, Fabio; Farron, Alain

    2017-09-01

    We hypothesized that biomechanical parameters typically associated with glenoid implant failure after anatomic total shoulder arthroplasty (aTSA) would be correlated with preoperative glenoid bone quality. We developed an objective automated method to quantify preoperative glenoid bone quality in different volumes of interest (VOIs): cortical bone, subchondral cortical plate, subchondral bone after reaming, subchondral trabecular bone, and successive layers of trabecular bone. Average computed tomography (CT) numbers (in Hounsfield units [HU]) were measured in each VOI from preoperative CT scans. In parallel, we built patient-specific finite element models of simulated aTSAs to predict cement stress, bone-cement interfacial stress, and bone strain around the glenoid implant. CT measurements and finite element predictions were obtained for 20 patients undergoing aTSA for primary glenohumeral osteoarthritis. We tested all linear correlations between preoperative patient characteristics (age, sex, height, weight, glenoid bone quality) and biomechanical predictions (cement stress, bone-cement interfacial stress, bone strain). Average CT numbers gradually decreased from cortical (717 HU) to subchondral and trabecular (362 HU) bone. Peak cement stress (4-10 MPa) was located within the keel hole, above the keel, or behind the glenoid implant backside. Cement stress, bone-cement interfacial stress, and bone strain were strongly negatively correlated with preoperative glenoid bone quality, particularly in VOIs behind the implant backside (subchondral trabecular bone) but also in deeper trabecular VOIs. Our numerical study suggests that preoperative glenoid bone quality is an important parameter to consider in aTSA, which may be associated with aseptic loosening of the glenoid implant. These initial results should now be confronted with clinical and radiologic outcomes. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc

  18. Bone lead (Pb) content at the tibia is associated with thinner distal tibia cortices and lower volumetric bone density in postmenopausal women

    Science.gov (United States)

    Wong, Andy K.O.; Beattie, Karen A.; Bhargava, Aakash; Cheung, Marco; Webber, Colin E.; Chettle, David R.; Papaioannou, Alexandra; Adachi, Jonathan D.

    2016-01-01

    Conflicting evidence suggests that bone lead or blood lead may reduce areal bone mineral density (BMD). Little is known about how lead at either compartment affects bone structure. This study examined postmenopausal women (N = 38, mean age 76 ± 8, body mass index (BMI): 26.74 ± 4.26 kg/m2) within the Hamilton cohort of the Canadian Multicentre Osteoporosis Study (CaMos), measuring bone lead at 66% of the non-dominant leg and at the calcaneus using 109Cadmium X-ray fluorescence. Volumetric BMD and structural parameters were obtained from peripheral quantitative computed tomography images (200 μm in-plane resolution, 2.3 ± 0.5 mm slice thickness) of the same 66% site and of the distal 4% site of the tibia length. Blood lead was measured using atomic absorption spectrometry and blood-to-bone lead partition coefficients (PBB, log ratio) were computed. Multivariable linear regression examined each of bone lead at the 66% tibia, calcaneus, blood lead and PBB as related to each of volumetric BMD and structural parameters, adjusting for age and BMI, diabetes or antiresorptive therapy. Regression coefficients were reported along with 95% confidence intervals. Higher amounts of bone lead at the tibia were associated with thinner distal tibia cortices (−0.972 (−1.882, −0.061) per 100 μg Pb/g of bone mineral) and integral volumetric BMD (−3.05 (−6.05, −0.05) per μg Pb/g of bone mineral). A higher PBB was associated with larger trabecular separation (0.115 (0.053, 0.178)), lower trabecular volumetric BMD (−26.83 (−50.37, −3.29)) and trabecular number (−0.08 (−0.14, −0.02)), per 100 μg Pb/g of bone mineral after adjusting for age and BMI, and remained significant while accounting for diabetes or use of antiresorptives. Total lead exposure activities related to bone lead at the calcaneus (8.29 (0.11, 16.48)) and remained significant after age and antiresorptives-adjustment. Lead accumulated in bone can have a mild insult on bone structure; but

  19. Improving Soldier Recovery from Catastrophic Bone Injuries: Developing an Animal Model for Standardizing the Bone Reparative Potential of Emerging Progenitor Cell Therapies

    Science.gov (United States)

    2011-08-01

    cell matrix will anchor the developing bone of the outer cortical shell to the surface of intact cortical bone. •Between day 4-7, the three...periosteum so that by day 21 an outer cortical shell, well anchored to the cortical bone at the base of the arch, provides the major structureal support of...tibia was dissected free of the femur, ankle , and overlying skin, and sufficient muscle was retained to not disrupt the fracture zone. The sample was

  20. Micro-CT analyses of historical bone samples presenting with osteomyelitis

    Energy Technology Data Exchange (ETDEWEB)

    Lamm, C.; Pietschmann, P. [Medical University Vienna (MUV), Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Vienna (Austria); Dockner, M.; Weber, G.W. [University of Vienna, Department of Anthropology, Vienna (Austria); University of Vienna, Core Facility for Micro-Computed Tomography, Vienna (Austria); Pospischek, B.; Winter, E.; Patzak, B. [Museum of Natural History (NHM), Collection of Anatomical Pathology in the Madhouse Tower, Vienna (Austria); Pretterklieber, M. [Medical University of Vienna (MUV), Department of Applied Anatomy, Vienna (Austria)

    2015-10-15

    Osteomyelitis is an inflammation of the bone marrow mainly caused by bacteria such as Staphylococcus aureus. It typically affects long bones, e.g. femora, tibiae and humeri. Recently micro-computed tomography (μCT) techniques offer the opportunity to investigate bone micro-architecture in great detail. Since there is no information on long bone microstructure in osteomyelitis, we studied historic bone samples with osteomyelitis by μCT. We investigated 23 femora of 22 individuals suffering from osteomyelitis provided by the Collection of Anatomical Pathology, Museum of Natural History, Vienna (average age 44 ±19 years); 9 femora from body donors made available by the Department of Applied Anatomy, Medical University of Vienna (age range, 56-102 years) were studied as controls. Bone microstructure was assessed by μCT VISCOM X 8060 II with a minimal resolution of 18 μm. In the osteomyelitic femora, most prominent alterations were seen in the cortical compartment. In 71.4 % of the individuals with osteomyelitis, cortical porosity occurred. 57.1 % of the individuals showed cortical thinning. In 42.9 % trabecularisation of cortical bone was observed. Osteomyelitis is associated with severe alterations of cortical bone structure otherwise typically observed at old age such as cortical porosity and cortical thinning. (orig.)

  1. Repair of sheep long bone cortical defects filled with COLLOSS, COLLOSS E, OSSAPLAST, and fresh iliac crest autograft.

    Science.gov (United States)

    Huffer, William E; Benedict, James J; Turner, A S; Briest, Arne; Rettenmaier, Robert; Springer, Marco; Walboomers, X F

    2007-08-01

    COLLOSS and COLLOSS E are osteoinductive bone void fillers consisting of bone collagen and noncollagenous proteins from bovine and equine bone, respectively. The aim of this study was to compare COLLOSS, COLLOSS E, iliac bone autograft, sintered beta tricalcium phosphate (beta-TCP; OSSAPLAST), and COLLOSS E plus OSSAPLAST. Materials were placed for 4, 8, or 24 weeks in 5-mm cortical bone defects in sheep long bones. Histological sections in a plane perpendicular to the long axis of the bone were used to measure the total repair area (original defect plus callus) and the area of bone within the total repair area. The incidence of defect union was also evaluated. At 4 and 8 weeks, defects treated with COLLOSS and COLLOSS E with or without OSSAPLAST had total repair and bone areas equivalent to autograft, and larger than OSSAPLAST-treated defects. At 8 weeks, the incidence of defect union was higher in defects treated with autograft or COLLOSS E plus OSSAPLAST than in untreated defects. At 24 weeks, the incidence of union was 100% in all treatment groups and 0% in untreated defects. The incidence of union was related to the degree of remodeling between 8 and 24 weeks. This was greater in all treated than nontreated defects. In conclusion, COLLOSS and COLLOSS E were equivalent to each other and to autograft, and superior to beta-TCP, in this study model.

  2. Analysis of plastic deformation in cortical bone after insertion of coated and non-coated self-tapping orthopaedic screws.

    Science.gov (United States)

    Koistinen, A P; Korhonen, H; Kiviranta, I; Kröger, H; Lappalainen, R

    2011-07-01

    Insertion of internal fracture fixation devices, such as screws, mechanically weakens the bone. Diamond-like carbon has outstanding tribology properties which may decrease the amount of damage in tissue. The purpose of this study was to investigate methods for quantification of cortical bone damage after orthopaedic bone screw insertion and to evaluate the effect of surface modification on tissue damage. In total, 48 stainless steel screws were inserted into cadaver bones. Half of the screws were coated with a smooth amorphous diamond coating. Geometrical data of the bones was determined by peripheral quantitative computed tomography. Thin sections of the bone samples were prepared after screw insertion, and histomorphometric evaluation of damage was performed on images obtained using light microscopy. Micro-computed tomography and scanning electron microscopy were also used to examine tissue damage. A positive correlation was found between tissue damage and the geometric properties of the bone. The age of the cadaver significantly affected the bone mineral density, as well as the damage perimeter and diameter of the screw hole. However, the expected positive effect of surface modification was probably obscured by large variations in the results and, thus, statistically significant differences were not found in this study. This can be explained by natural variability in bone tissue, which also made automated image analysis difficult.

  3. Assessment of Cortical and Trabecular Bone Changes in Two Models of Post-Traumatic Osteoarthritis

    Science.gov (United States)

    Pauly, Hannah M; Larson, Blair E; Coatney, Garrett A; Button, Keith D.; DeCamp, Charlie E; Fajardo, Ryan S; Haut, Roger C; Donahue, Tammy L Haut

    2015-01-01

    Subchondral bone is thought to play a significant role in the initiation and progression of the post-traumatic osteoarthritis. The goal of this study was to document changes in tibial and femoral subchondral bone that occur as a result of two lapine models of anterior cruciate ligament injury, a modified ACL transection model and a closed-joint traumatic compressive impact model. Twelve weeks post-injury bones were scanned via micro-computed tomography. The subchondral bone of injured limbs from both models showed decreases in bone volume and bone mineral density. Surgical transection animals showed significant bone changes primarily in the medial hemijoint of femurs and tibias, while significant changes were noted in both the medial and lateral hemijoints of both bones for traumatic impact animals. It is believed that subchondral bone changes in the medial hemijoint were likely caused by compromised soft tissue structures seen in both models. Subchondral bone changes in the lateral hemijoint of traumatic impact animals are thought to be due to transmission of the compressive impact force through the joint. The joint-wide bone changes shown in the traumatic impact model were similar to clinical findings from studies investigating the progression of osteoarthritis in humans. PMID:26147652

  4. Acute development of cortical porosity and endosteal naïve bone formation from the daily but not weekly short-term administration of PTH in rabbit.

    Directory of Open Access Journals (Sweden)

    Hiroshi Yamane

    Full Text Available Teriparatide [human parathyroid hormone (1-34], which exerts an anabolic effect on bone, is used for the treatment of osteoporosis in patients who are at a high risk for fracture. That the once-daily administration of teriparatide causes an increase in cortical porosity in animal models and clinical studies has been a matter of concern. However, it is not well documented that the frequency of administration and/or the total dose of teriparatide affect the cortical porosity. The present study developed 4 teriparatide regimens [20 μg/kg/day (D20, 40 μg/kg/day (D40, 140 μg/kg/week (W140 and 280 μg/kg/week (W280] in the rabbit as a model animal with a well-developed Haversian system and osteons. The total weekly doses were equivalent in the low-dose groups (D20 and W140 and in the high-dose groups (D40 and W280. After the short-term (1 month administration of TPDT, micro-CT, histomorphometry and three-dimensional second harmonic generation (3D-SHG imaging to visualize the bone collagen demonstrated that daily regimens but not weekly regimens were associated with the significant development of cortical porosity and endosteal naïve bone formation by marrow fibrosis. We concomitantly monitored the pharmacokinetics of the plasma teriparatide levels as well as the temporal changes in markers of bone formation and resorption. The analyses in the present study suggested that the daily repeated administration of teriparatide causes more deleterious changes in the cortical microarchitecture than the less frequent administration of higher doses. The findings of the present study may have some implications for use of teriparatide in clinical treatment.

  5. Concentration dependence of fluorine impurity spin-lattice relaxation rate in bone mineral

    International Nuclear Information System (INIS)

    Code, R.F.; Armstrong, R.L.; Cheng, P.-T.

    1992-01-01

    The concentration dependence of the fluoride ion spin-lattice relaxation rate has been observed by nuclear magnetic resonance experiments on samples of defatted and dried bone. The 19 F spin-lattice relaxation rates increased linearly with bone fluoride concentration. Different results were obtained from trabecular than from cortical bone. For the same macroscopic fluoride content per gram of bone calcium, relaxation rate is significantly faster in cortical bone. Relaxation rates in cortical bone samples prepared from rats and dogs were apparently controlled by the same species-independent processes. For samples from beagle dogs, bulk fluoride concentrations measured by neutron activation analysis were 3.1±0.3 times greater in trabecular bone than in corresponding cortical bone. The beagle spin-lattice relaxation data suggest that microscopic fluoride concentrations in bone mineral were 1.8±0.4 times greater in trabecular bone than in cortical bone. It is concluded that accumulation of fluoride impurities in bone mineral is non-uniform. (author)

  6. Acceleration of bone development and regeneration through the Wnt/β-catenin signaling pathway in mice heterozygously deficient for GSK-3β

    Energy Technology Data Exchange (ETDEWEB)

    Arioka, Masaki [Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan); Department of Oral and Maxillofacial Surgery, Faculty of Dental Science, Kyushu University, Fukuoka (Japan); Takahashi-Yanaga, Fumi, E-mail: yanaga@clipharm.med.kyushu-u.ac.jp [Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan); Global Medical Science Education Unit, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan); Sasaki, Masanori [Department of Oral and Maxillofacial Surgery, Faculty of Dental Science, Kyushu University, Fukuoka (Japan); Yoshihara, Tatsuya; Morimoto, Sachio [Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan); Takashima, Akihiko [Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Oobu (Japan); Mori, Yoshihide [Department of Oral and Maxillofacial Surgery, Faculty of Dental Science, Kyushu University, Fukuoka (Japan); Sasaguri, Toshiyuki [Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan)

    2013-11-01

    Highlights: •The Wnt/β-catenin signaling pathway was activated in GSK-3β{sup +/−} mice. •The cortical and trabecular bone volumes were increased in GSK-3β{sup +/−} mice. •Regeneration of a partial bone defect was accelerated in GSK-3β{sup +/−} mice. -- Abstract: Glycogen synthase kinase (GSK)-3β plays an important role in osteoblastogenesis by regulating the Wnt/β-catenin signaling pathway. Therefore, we investigated whether GSK-3β deficiency affects bone development and regeneration using mice heterozygously deficient for GSK-3β (GSK-3β{sup +/−}). The amounts of β-catenin, c-Myc, cyclin D1, and runt-related transcription factor-2 (Runx2) in the bone marrow cells of GSK-3β{sup +/−} mice were significantly increased compared with those of wild-type mice, indicating that Wnt/β-catenin signals were enhanced in GSK-3β{sup +/−} mice. Microcomputed tomography of the distal femoral metaphyses demonstrated that the volumes of both the cortical and trabecular bones were increased in GSK-3β{sup +/−} mice compared with those in wild-type mice. Subsequently, to investigate the effect of GSK-3β deficiency on bone regeneration, we established a partial bone defect in the femur and observed new bone at 14 days after surgery. The volume and mineral density of the new bone were significantly higher in GSK-3β{sup +/−} mice than those in wild-type mice. These results suggest that bone formation and regeneration in vivo are accelerated by inhibition of GSK-3β, probably through activation of the Wnt/β-catenin signaling pathway.

  7. Changes in tissue morphology and collagen composition during the repair of cortical bone in the adult chicken.

    Science.gov (United States)

    Glimcher, M J; Shapiro, F; Ellis, R D; Eyre, D R

    1980-09-01

    An animal model was developed to study the histology and collagen chemistry of healing cortical bone. A hole was cut through the cortex of the mid-shaft of the humerus of the adult chicken, which allowed for repair at a mechanically stable site. After one to two weeks the collagen of the repair tissue, which consisted principally of woven bone, contained almost three times as much hydroxylysine as the collagen of normal adult bone and thus resembled the collagen of embryonic long bones. By eight weeks, when lamellar one predominated, the hydroxylysine content had fallen to normal levels. Type I was the major genetic type of collagen present throughout. No type-II collagen, characteristic of cartilage, was detected; this was consistent with the histological findings. The results established that hydroxylysine-rich type-I collagen can be made by osteoblasts of adult animals as well as by those of embryos and early postnates. In order to understand the biological characteristics of fracture healing, it is vital to study not only the macroscopic organization of the repair tissue but also the chemical properties of its molecular components. The strength of healing fractured bone, and indeed of normal bone, depends largely on the properties of the structural protein collagen. To date, it is not known whether the collagen in healing fractures is the same as that in normal bone, or whether it has distinct chemical features that may suit it for bone repair.

  8. The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography

    Science.gov (United States)

    2016-01-01

    Purpose The objective of this study was to investigate the relationships between primary implant stability as measured by impact response frequency and the structural parameters of trabecular bone using cone-beam computed tomography(CBCT), excluding the effect of cortical bone thickness. Methods We measured the impact response of a dental implant placed into swine bone specimens composed of only trabecular bone without the cortical bone layer using an inductive sensor. The peak frequency of the impact response spectrum was determined as an implant stability criterion (SPF). The 3D microstructural parameters were calculated from CT images of the bone specimens obtained using both micro-CT and CBCT. Results SPF had significant positive correlations with trabecular bone structural parameters (BV/TV, BV, BS, BSD, Tb.Th, Tb.N, FD, and BS/BV) (Pmicro-CT and CBCT (Pimplant stability prediction by combining BV/TV and SMI in the stepwise forward regression analysis. Bone with high volume density and low surface density shows high implant stability. Well-connected thick bone with small marrow spaces also shows high implant stability. The combination of bone density and architectural parameters measured using CBCT can predict the implant stability more accurately than the density alone in clinical diagnoses. PMID:27127692

  9. Excessive growth hormone expression in male GH transgenic mice adversely alters bone architecture and mechanical strength.

    Science.gov (United States)

    Lim, S V; Marenzana, M; Hopkinson, M; List, E O; Kopchick, J J; Pereira, M; Javaheri, B; Roux, J P; Chavassieux, P; Korbonits, M; Chenu, C

    2015-04-01

    Patients with acromegaly have a higher prevalence of vertebral fractures despite normal bone mineral density (BMD), suggesting that GH overexpression has adverse effects on skeletal architecture and strength. We used giant bovine GH (bGH) transgenic mice to analyze the effects of high serum GH levels on BMD, architecture, and mechanical strength. Five-month-old hemizygous male bGH mice were compared with age- and sex-matched nontransgenic littermates controls (NT; n=16/group). Bone architecture and BMD were analyzed in tibia and lumbar vertebrae using microcomputed tomography. Femora were tested to failure using three-point bending and bone cellular activity determined by bone histomorphometry. bGH transgenic mice displayed significant increases in body weight and bone lengths. bGH tibia showed decreases in trabecular bone volume fraction, thickness, and number compared with NT ones, whereas trabecular pattern factor and structure model index were significantly increased, indicating deterioration in bone structure. Although cortical tissue perimeter was increased in transgenic mice, cortical thickness was reduced. bGH mice showed similar trabecular BMD but reduced trabecular thickness in lumbar vertebra relative to controls. Cortical BMD and thickness were significantly reduced in bGH lumbar vertebra. Mechanical testing of femora confirmed that bGH femora have decreased intrinsic mechanical properties compared with NT ones. Bone turnover is increased in favor of bone resorption in bGH tibia and vertebra compared with controls, and serum PTH levels is also enhanced in bGH mice. These data collectively suggest that high serum GH levels negatively affect bone architecture and quality at multiple skeletal sites.

  10. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone – a feasibility study

    NARCIS (Netherlands)

    Marcian, P.; Borak, L.; Valasek, J.; Kaiser, J.; Florian, Z.; Wolff, J.E.H.

    2014-01-01

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant

  11. Periosteal PTHrP regulates cortical bone modeling during linear growth in mice.

    Science.gov (United States)

    Wang, Meina; VanHouten, Joshua N; Nasiri, Ali R; Tommasini, Steven M; Broadus, Arthur E

    2014-07-01

    The modeling of long bone surfaces during linear growth is a key developmental process, but its regulation is poorly understood. We report here that parathyroid hormone-related peptide (PTHrP) expressed in the fibrous layer of the periosteum (PO) drives the osteoclastic (OC) resorption that models the metaphyseal-diaphyseal junction (MDJ) in the proximal tibia and fibula during linear growth. PTHrP was conditionally deleted (cKO) in the PO via Scleraxis gene targeting (Scx-Cre). In the lateral tibia, cKO of PTHrP led to a failure of modeling, such that the normal concave MDJ was replaced by a mound-like deformity. This was accompanied by a failure to induce receptor activator of NF-kB ligand (RANKL) and a 75% reduction in OC number (P ≤ 0.001) on the cortical surface. The MDJ also displayed a curious threefold increase in endocortical osteoblast mineral apposition rate (P ≤ 0.001) and a thickened cortex, suggesting some form of coupling of endocortical bone formation to events on the PO surface. Because it fuses distally, the fibula is modeled only proximally and does so at an extraordinary rate, with an anteromedial cortex in CD-1 mice that was so moth-eaten that a clear PO surface could not be identified. The cKO fibula displayed a remarkable phenotype, with a misshapen club-like metaphysis and an enlargement in the 3D size of the entire bone, manifest as a 40-45% increase in the PO circumference at the MDJ (P ≤ 0.001) as well as the mid-diaphysis (P ≤ 0.001). These tibial and fibular phenotypes were reproduced in a Scx-Cre-driven RANKL cKO mouse. We conclude that PTHrP in the fibrous PO mediates the modeling of the MDJ of long bones during linear growth, and that in a highly susceptible system such as the fibula this surface modeling defines the size and shape of the entire bone. © 2014 Anatomical Society.

  12. Dipeptidyl Peptidase-4 Inhibitor, Vildagliptin, Improves Trabecular Bone Mineral Density and Microstructure in Obese, Insulin-Resistant, Pre-diabetic Rats.

    Science.gov (United States)

    Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Teerapornpuntakit, Jarinthorn; Aeimlapa, Ratchaneevan; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2018-02-02

    Obese insulin resistance and type 2 diabetes mellitus profoundly impair bone mechanical properties and bone quality. However, because several antidiabetes drugs, especially thiazolidinediones, further aggravate bone loss in individuals with diabetes, diabetic osteopathy should not be treated by using simply any glucose-lowering agents. Recently, incretins have been reported to affect osteoblast function positively. The present study aimed to investigate the effects of vildagliptin, an inhibitor of dipeptidyl peptidase-4, on bone of rats with high-fat-diet-induced prediabetes. Male rats were fed a high-fat diet for 12 weeks to induce obese insulin resistance and then treated with vildagliptin for 4 weeks. The effects of the drug on bone were determined by microcomputed tomography and bone histomorphometry. Vildagliptin markedly improved insulin resistance in these obese insulin-resistant rats. It also significantly increased volumetric bone mineral density. Specifically, vildagliptin-treated obese insulin-resistant rats exhibited higher trabecular volumetric bone mineral density than vehicle-treated obese insulin-resistant rats, whereas cortical volumetric bone mineral density, cortical thickness and area were not changed. Bone histomorphometric analysis in a trabecular-rich area (i.e. tibial metaphysis) revealed greater trabecular bone volume and number and less trabecular separation without change in trabecular thickness, osteocyte lacunar area or cortical thickness in the vildagliptin-treated group. Vildagliptin had a beneficial effect on the bone of obese insulin-resistant rats with prediabetes, particularly at the trabecular site. Such benefit probably results from enhanced bone formation rather than from suppressed bone resorption. Copyright © 2018 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  13. Increase in Prefrontal Cortical Volume following Cognitive Behavioural Therapy in Patients with Chronic Fatigue Syndrome

    Science.gov (United States)

    de Lange, Floris P.; Koers, Anda; Kalkman, Joke S.; Bleijenberg, Gijs; Hagoort, Peter; van der Meer, Jos W. M.; Toni, Ivan

    2008-01-01

    Chronic fatigue syndrome (CFS) is a disabling disorder, characterized by persistent or relapsing fatigue. Recent studies have detected a decrease in cortical grey matter volume in patients with CFS, but it is unclear whether this cerebral atrophy constitutes a cause or a consequence of the disease. Cognitive behavioural therapy (CBT) is an…

  14. Microstructural and Photoacoustic Infrared Spectroscopic Studies of Human Cortical Bone with Osteogenesis Imperfecta

    Science.gov (United States)

    Gu, Chunju; Katti, Dinesh R.; Katti, Kalpana S.

    2016-04-01

    The molecular basis of bone disease osteogenesis imperfecta (OI) and the mineralization of hydroxyapatite in OI bone have been of significant research interest. To further investigate the mechanism of OI disease and bone mineralization, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, and x-ray diffraction (XRD) are used in the present study to describe the structural and compositional differences between OI and healthy bone. OI bone exhibits more porous, fibrous features, abnormal collagen fibrils, and abnormal mineral deposits. Likewise, photoacoustic-FTIR experiments indicate an aberrant collagen structure and an altered mineral structure in OI. In contrast, there is neither significant difference in the non-collagenous proteins (NCPs) composition observed nor apparent change in the crystal structure between OI and healthy bone minerals as shown in XRD and energy-dispersive x-ray spectroscopy (EDS) results. This observation indicates that the biomineralization process is more controlled by the bone cells and non-collagenous phosphorylated proteins. The present study also confirms that there is an orientational influence on the stoichiometry of the mineral in OI bone. Also, a larger volume of the hydrated layer in the transverse plane than the longitudinal plane of the mineral crystal structure is proposed. The appearance of a new C-S band in the FTIR spectra in OI bone suggests the substitution of glycine by cysteine in collagen molecules or/and an increased amount of cysteine-rich osteonectin that relates to mineral nucleation and mineral crystal formation.

  15. USO DO ENXERTO ÓSSEO CORTICAL BOVINO CONSERVADO EM GLICERINA A 98% NA OSTEOTOMIA FEMORAL EM GATOS USE BOVINE CORTICAL BONE, PRESERVED IN 98% GLICERIN IN FEMORAL OSTEOTOMY IN CATS.

    Directory of Open Access Journals (Sweden)

    Lucia Helena de Carvalho Penha

    2008-12-01

    . The objective of this study was to evaluate clinically and radiographically the efficacy of xenografts as a substitute for methalic implants. Animals were divided into two groups: five young cats and five adult cats. Clinically, the weight-bearing on the operated limb was observed the day after surgery in all animals, with complete remission of lameness at 15 days and bone union in 16.6 weeks. In five young animals, in two of them, the grafts were fractured carrying a serious bone bending without fracture of feline femur. In the last two young cats, remodeling was noted in mean time of 75 days or 10.7 weeks. In five adult cats, all of them suffered overriding of the fragments of osteotomized bone with various degrees, where two cases were considered severe cases dut to fracture of feline femur without bone bending. In the three remaining animals with slightly overriding, one was a case of delayed union, one suffered tow surgical procedures due to graft fracture and one did not show a radiographic exuberant bone callus, with remodeling at 110 days. The use of the bonive xenograft preserved in 98% glycerol in young and adult cats used as intramedularry nails was perfectly employed, offering mechanical support in time of bone consolidation in all of 10 animals.

    KEY WORDS: Cortical bovine graft, cats, femur, fracture, osteotomy.

  16. Automatic MPST-cut for segmentation of carpal bones from MR volumes.

    Science.gov (United States)

    Gemme, Laura; Nardotto, Sonia; Dellepiane, Silvana G

    2017-08-01

    In the context of rheumatic diseases, several studies suggest that Magnetic Resonance Imaging (MRI) allows the detection of the three main signs of Rheumatoid Arthritis (RA) at higher sensitivities than available through conventional radiology. The rapid, accurate segmentation of bones is an essential preliminary step for quantitative diagnosis, erosion evaluation, and multi-temporal data fusion. In the present paper, a new, semi-automatic, 3D graph-based segmentation method to extract carpal bone data is proposed. The method is unsupervised, does not employ any a priori model or knowledge, and is adaptive to the individual variability of the acquired data. After selecting one source point inside the Region of Interest (ROI), a segmentation process is initiated, which consists of two automatic stages: a cost-labeling phase and a graph-cutting phase. The algorithm finds optimal paths based on a new cost function by creating a Minimum Path Spanning Tree (MPST). To extract the region, a cut of the obtained tree is necessary. A new criterion of the MPST-cut based on compactness shape factor was conceived and developed. The proposed approach is applied to a large database of 96 T1-weighted MR bone volumes. Performance quality is evaluated by comparing the results with gold-standard bone volumes manually defined by rheumatologists through the computation of metrics extracted from the confusion matrix. Furthermore, comparisons with the existing literature are carried out. The results show that this method is efficient and provides satisfactory performance for bone segmentation on low-field MR volumes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Nanoscale examination of microdamage in sheep cortical bone using synchrotron radiation transmission x-ray microscopy.

    Directory of Open Access Journals (Sweden)

    Garry R Brock

    Full Text Available Microdamage occurs in bone through repeated and excessive loading. Accumulation of microdamage weakens bone, leading to a loss of strength, stiffness and energy dissipation in the tissue. Imaging techniques used to examine microdamage have typically been limited to the microscale. In the current study microdamage was examined at the nanoscale using transmission x-ray microscopy with an x-ray negative stain, lead-uranyl acetate. Microdamage was generated in notched and unnotched beams of sheep cortical bone (2×2×20 mm, with monotonic and fatigue loading. Bulk sections were removed from beams and stained with lead-uranyl acetate to identify microdamage. Samples were sectioned to 50 microns and imaged using transmission x-ray microscopy producing projection images of microdamage with nanoscale resolution. Staining indicated microdamage occurred in both the tensile and compressive regions. A comparison between monotonic and fatigue loading indicated a statistically significant greater amount of stain present in fatigue loaded sections. Microdamage occurred in three forms: staining to existing bone structures, cross hatch damage and a single crack extending from the notch tip. Comparison to microcomputed tomography demonstrated differences in damage morphology and total damage between the microscale and nanoscale. This method has future applications for understanding the underlying mechanisms for microdamage formation as well as three-dimensional nanoscale examination of microdamage.

  18. Classification of micro-CT images using 3D characterization of bone canal patterns in human osteogenesis imperfecta

    Science.gov (United States)

    Abidin, Anas Z.; Jameson, John; Molthen, Robert; Wismüller, Axel

    2017-03-01

    Few studies have analyzed the microstructural properties of bone in cases of Osteogenenis Imperfecta (OI), or `brittle bone disease'. Current approaches mainly focus on bone mineral density measurements as an indirect indicator of bone strength and quality. It has been shown that bone strength would depend not only on composition but also structural organization. This study aims to characterize 3D structure of the cortical bone in high-resolution micro CT images. A total of 40 bone fragments from 28 subjects (13 with OI and 15 healthy controls) were imaged using micro tomography using a synchrotron light source (SRµCT). Minkowski functionals - volume, surface, curvature, and Euler characteristics - describing the topological organization of the bone were computed from the images. The features were used in a machine learning task to classify between healthy and OI bone. The best classification performance (mean AUC - 0.96) was achieved with a combined 4-dimensional feature of all Minkowski functionals. Individually, the best feature performance was seen using curvature (mean AUC - 0.85), which characterizes the edges within a binary object. These results show that quantitative analysis of cortical bone microstructure, in a computer-aided diagnostics framework, can be used to distinguish between healthy and OI bone with high accuracy.

  19. Changes in bone geometry and microarchitecture caused by intermittent administration of PTH. Comparison with those by exercise load

    International Nuclear Information System (INIS)

    Mori, Keiya

    2010-01-01

    area, bone volume fraction rates, fractal dimensions, connectivity density, trabecular thickness, trabecular bone number and degrees of anisotropy. They conversely showed significantly lower bone volume ratio values, trabecular bone separation, trabecular bone pattern factors, and structural model indices. However, the area values, thickness, and strength of femoral diaphysis cortical bone in the S+J group were significantly higher than those in the S+C group. The S+P group showed no significant difference other than cortical bone thickness. These data suggest that periodical intermittent medication with PTH could cause changes in the fine structure of the femoral metaphysic cancellous bone microarchitecture that are similar to changes caused by jumping exercise, but the effects of PTH seem to be small on the geometric properties and bone strength of the cortical bone. (author)

  20. A digital database of wrist bone anatomy and carpal kinematics.

    Science.gov (United States)

    Moore, Douglas C; Crisco, Joseph J; Trafton, Theodore G; Leventhal, Evan L

    2007-01-01

    The skeletal wrist consists of eight small, intricately shaped carpal bones. The motion of these bones is complex, occurs in three dimensions, and remains incompletely defined. Our previous efforts have been focused on determining the in vivo three-dimensional (3-D) kinematics of the normal and abnormal carpus. In so doing we have developed an extensive database of carpal bone anatomy and kinematics from a large number of healthy subjects. The purpose of this paper is to describe that database and to make it available to other researchers. CT volume images of both wrists from 30 healthy volunteers (15 males and 15 females) were acquired in multiple wrist positions throughout the normal range of wrist motion. The outer cortical surfaces of the carpal bones, radius and ulna, and proximal metacarpals were segmented and the 3-D motion of each bone was calculated for each wrist position. The database was constructed to include high-resolution surface models, measures of bone volume and shape, and the 3-D kinematics of each segmented bone. The database does not include soft tissues of the wrist. While there are numerous digital anatomical databases, this one is unique in that it includes a large number of subjects and it contains in vivo kinematic data as well as the bony anatomy.

  1. Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits

    International Nuclear Information System (INIS)

    Castaneda, S; Largo, R.; Marcos, M.E.; Herrero-Beaumont, G.; Calvo, E.; Rodriguez-Salvanes, F.; Diaz-Curiel, M.

    2006-01-01

    Experimental models of osteoporosis in rabbits are useful to investigate anabolic agents because this animal has a fast bone turnover with predominant remodelling over the modelling processes. For that purpose, it is necessary to characterize the densitometric values of each type of bony tissue. To determine areal bone mass measurement in the spine and in trabecular, cortical and subchondral bone of the knee in healthy and osteoporotic rabbits. Bone mineral content and bone mineral density were measured in lumbar spine, global knee, and subchondral and cortical bone of the knee with dual energy X-ray absorptiometry using a Hologic QDR-1000/W densitometer in 29 skeletally mature female healthy New Zealand rabbits. Ten rabbits underwent triplicate scans for evaluation of the effect of repositioning. Osteoporosis was experimentally induced in 15 rabbits by bilateral ovariectomy and postoperative corticosteroid treatment for 4 weeks. Identical dual energy X-ray absorptiometry (DXA) studies were performed thereafter. Mean values of bone mineral content at the lumbar spine, global knee, subchondral bone and cortical tibial metaphysis were: 1934±217 mg, 878±83 mg, 149±14 mg and 29±7.0 mg, respectively. The mean values of bone mineral density at the same regions were: 298±24 mg/cm 2 , 455±32 mg/cm 2 , 617±60 mg/cm 2 and 678±163 mg/cm 2 , respectively. (orig.)

  2. An in vitro biomechanical comparison of hydroxyapatite coated and uncoated ao cortical bone screws for a limited contact: dynamic compression plate fixation of osteotomized equine 3rd metacarpal bones.

    Science.gov (United States)

    Durham, Myra E; Sod, Gary A; Riggs, Laura M; Mitchell, Colin F

    2015-02-01

    To compare the monotonic biomechanical properties of a broad 4.5 mm limited contact-dynamic compression plate (LC-DCP) fixation secured with hydroxyapatite (HA) coated cortical bone screws (HA-LC-DCP) versus uncoated cortical bone screws (AO-LC-DCP) to repair osteotomized equine 3rd metacarpal (MC3) bones. Experimental. Adult equine cadaveric MC3 bones (n = 12 pair). Twelve pairs of equine MC3 were divided into 3 test groups (4 pairs each) for: (1) 4 point bending single cycle to failure testing; (2) 4 point bending cyclic fatigue testing; and (3) torsional single cycle to failure testing. For the HA-LC-DCP-MC3 construct, an 8-hole broad LC-DCP (Synthes Ltd, Paoli, PA) was secured on the dorsal surface of each randomly selected MC3 bone with a combination of four 5.5 mm and four 4.5 mm HA-coated cortical screws. For the AO-LC-DCP-MC3 construct, an 8-hole 4.5 mm broad LC-DCP was secured on the dorsal surface of the contralateral MC3 bone with a combination of four 5.5 mm and four 4.5 mm uncoated cortical screws. All MC3 bones had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P < .05. Mean yield load, yield bending moment, composite rigidity, failure load, and failure bending moment, under 4 point bending, single cycle to failure, of the HA-LC-DCP fixation were significantly greater than those of the AO-LC-DCP fixation. Mean ± SD values for the HA-LC-DCP and the AO-LC-DCP fixation techniques, respectively, in single cycle to failure under 4 point bending were: yield load, 26.7 ± 2.15 and 16.3 ± 1.38 kN; yield bending moment, 527.4 ± 42.4 and 322.9 ± 27.2 N-m; composite rigidity, 5306 ± 399 and 3003 ± 300 N-m/rad; failure load, 40.6 ± 3.94 and 26.5 ± 2.52 kN; and failure bending moment, 801.9 ± 77.9 and 522.9 ± 52.2 N-m. Mean cycles to failure in 4 point bending of the HA

  3. Bone formation in mono cortical mandibular critical size defects after augmentation with two synthetic nanostructured and one xenogenous hydroxyapatite bone substitute - in vivo animal study.

    Science.gov (United States)

    Dau, Michael; Kämmerer, Peer W; Henkel, Kai-Olaf; Gerber, Thomas; Frerich, Bernhard; Gundlach, Karsten K H

    2016-05-01

    Healing characteristics as well as level of tissue integration and degradation of two different nanostructured hydroxyapatite bone substitute materials (BSM) in comparison with a deproteinized hydroxyapatite bovine BSM were evaluated in an in vivo animal experiment. In the posterior mandible of 18 minipigs, bilateral mono cortical critical size bone defects were created. Randomized augmentation procedures with NanoBone(®) (NHA1), Ostim(®) (NHA2) or Bio-Oss(®) (DBBM) were conducted (each material n = 12). Samples were analyzed after five (each material n = 6) and 8 months (each material n = 6). Defect healing, formation of soft tissue and bone as well as the amount of remaining respective BSM were quantified both macro- and microscopically. For NHA2, the residual bone defect after 5 weeks was significantly less compared to NHA1 or DBBM. There was no difference in residual BSM between NHA1 and DBBM, but the amount in NHA2 was significantly lower. NHA2 also showed the least amount of soft tissue and the highest amount of new bone after 5 weeks. Eight months after implantation, no significant differences in the amount of residual bone defects, in soft tissue or in bone formation were detected between the groups. Again, NHA2 showed significant less residual material than NHA1 and DBBM. We observed non-significant differences in the biological hard tissue response of NHA1 and DBBM. The water-soluble NHA2 initially induced an increased amount of new bone but was highly compressed which may have a negative effect in less stable augmentations of the jaw. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. In vitro evaluation of allogeneic bone screws for use in internal fixation of transverse fractures created in proximal sesamoid bones obtained from equine cadavers.

    Science.gov (United States)

    Sasaki, Naoki; Takakuwa, Jun; Yamada, Haruo; Mori, Ryuji

    2010-04-01

    To evaluate effectiveness of allogeneic bone screws and pins for internal fixation of midbody transverse fractures of equine proximal sesamoid bones (PSBs) in vitro. 14 forelimbs from cadavers of 3-year-old Thoroughbreds. Allogeneic cortical bone fragments were collected from the limbs of a male Thoroughbred, and cortical bone screws were prepared from the tissue by use of a precision desktop microlathe programmed with the dimensions of a metal cortical bone screw. A midbody transverse osteotomy of each PSB was performed by use of a bone-shaping oscillating saw and repaired via 1 of 3 internal fixation techniques: 1 allogeneic bone screw with 1 allogeneic bone pin (type I; n = 6 PSBs), 2 allogeneic bone screws (type II; 8), or 1 stainless steel cortical bone screw (control repair; 6). Mechanical tension measurements were obtained by use of a commercially available materials testing system. Mean +/- SD tensile strength (TS) was 668.3 +/- 216.6 N for type I repairs, 854.4 +/- 253.2 N for type II repairs, and 1,150.0 +/- 451.7 N for control repairs. Internal fixation of PSB fractures by the use of allogeneic bone screws and bone pins was successful. Although mean TS of control repairs with stainless steel cortical bone screws was greater than the mean TS of type I and type II repairs, the difference between type II and control repairs was not significant. Allogeneic screws may advance healing and result in fewer complications in a clinical setting.

  5. Defects in cortical microarchitecture among African-American women with type 2 diabetes.

    Science.gov (United States)

    Yu, E W; Putman, M S; Derrico, N; Abrishamanian-Garcia, G; Finkelstein, J S; Bouxsein, M L

    2015-02-01

    Patients with type 2 diabetes mellitus (DM2) have increased fracture risk. We found that African-American women with DM2 have increased cortical porosity and lower cortical bone density at the radius than non-diabetic controls. These cortical deficits are associated with hyperglycemia and may contribute to skeletal fragility associated with DM2. Fracture risk is increased in patients with type 2 diabetes mellitus (DM2) despite normal areal bone mineral density (aBMD). DM2 is more common in African-Americans than in Caucasians. It is not known whether African-American women with DM2 have deficits in bone microstructure. We measured aBMD at the spine and hip by DXA, and volumetric BMD (vBMD) and microarchitecture at the distal radius and tibia by HR-pQCT in 22 DM2 and 78 non-diabetic African-American women participating in the Study of Women Across the Nation (SWAN). We also measured fasting glucose and HOMA-IR. Age, weight, and aBMD at all sites were similar in both groups. At the radius, cortical porosity was 26% greater, while cortical vBMD and tissue mineral density were lower in women with DM2 than in controls. There were no differences in radius total vBMD or trabecular vBMD between groups. Despite inferior cortical bone properties at the radius, FEA-estimated failure load was similar between groups. Tibia vBMD and microarchitecture were also similar between groups. There were no significant associations between cortical parameters and duration of DM2 or HOMA-IR. However, among women with DM2, higher fasting glucose levels were associated with lower cortical vBMD (r=-0.54, p=0.018). DM2 and higher fasting glucose are associated with unfavorable cortical bone microarchitecture at the distal radius in African-American women. These structural deficits may contribute to the increased fracture risk among women with DM2. Further, our results suggest that hyperglycemia may be involved in mechanisms of skeletal fragility associated with DM2.

  6. Efficacy of different bone volume expanders for augmenting lumbar fusions.

    Science.gov (United States)

    Epstein, Nancy E

    2008-01-01

    A wide variety of bone volume expanders are being used in performing posterolateral lumbar noninstrumented and instrumented lumbar fusions. This article presents a review of their efficacy based on fusion rates, complications, and outcomes. Lumbar noninstrumented and instrumented fusions frequently use laminar autografts and different bone graft expanders. This review presents the utility of multiple forms/ratios of DBMs containing allografts. It also discusses the efficacy of artificial bone graft substitutes, including HA and B-TCP. Dynamic x-ray and/or CT examinations were used to document fusion in most series. Outcomes were variously assessed using Odom's criteria or different outcome questionnaires (Oswestry Questionnaire, SF-36, Dallas Pain Questionnaire, and/or Low Back Pain Rating Scale). Performing noninstrumented and instrumented lumbar posterolateral fusions resulted in comparable fusion rates in many series. Similar outcomes were also documented based on Odom's criteria or the multiple patient-based questionnaires. However, in some studies, the addition of spinal instrumentation increased the reoperation rate, operative time, blood loss, and cost. Various forms of DBMs, applied in different ratios to autografts, effectively supplemented spinal fusions in animal models and patient series. beta-Tricalcium phosphate, which is used to augment autograft fusions addressing idiopathic scoliosis or lumbar disease, also proved to be effective. Different types of bone volume expanders, including various forms of allograft-based DBMs, and artificial bone graft substitutes (HA and B-TCP) effectively promote posterolateral lumbar noninstrumented and instrumented fusions when added to autografts.

  7. Alterations of bone microstructure and strength in end-stage renal failure.

    Science.gov (United States)

    Trombetti, A; Stoermann, C; Chevalley, T; Van Rietbergen, B; Herrmann, F R; Martin, P-Y; Rizzoli, R

    2013-05-01

    End-stage renal disease (ESRD) patients have a high risk of fractures. We evaluated bone microstructure and finite-element analysis-estimated strength and stiffness in patients with ESRD by high-resolution peripheral computed tomography. We observed an alteration of cortical and trabecular bone microstructure and of bone strength and stiffness in ESRD patients. Fragility fractures are common in ESRD patients on dialysis. Alterations of bone microstructure contribute to skeletal fragility, independently of areal bone mineral density. We compared microstructure and finite-element analysis estimates of strength and stiffness by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 33 ESRD patients on dialysis (17 females and 16 males; mean age, 47.0 ± 12.6 years) and 33 age-matched healthy controls. Dialyzed women had lower radius and tibia cortical density with higher radius cortical porosity and lower tibia cortical thickness, compared to controls. Radius trabecular number was lower with higher heterogeneity of the trabecular network. Male patients displayed only a lower radius cortical density. Radius and tibia cortical thickness correlated negatively with bone-specific alkaline phosphatase (BALP). Microstructure did not correlate with parathyroid hormone (PTH) levels. Cortical porosity correlated positively with "Kidney Disease: Improving Global Outcomes" working group PTH level categories (r = 0.36, p microstructure and calculated bone strength are altered in ESRD patients, predominantly in women. Bone microstructure and biomechanical assessment by HR-pQCT may be of major clinical relevance in the evaluation of bone fragility in ESRD patients.

  8. Molt performance and bone density of cortical, medullary, and cancellous bone in laying hens during feed restriction or alfalfa-based feed molt.

    Science.gov (United States)

    Kim, W K; Donalson, L M; Bloomfield, S A; Hogan, H A; Kubena, L F; Nisbet, D J; Ricke, S C

    2007-09-01

    A study was conducted to evaluate the effects of alfalfa-based molt diets on molting performance and bone qualities. A total of 36 Single Comb White Leghorn hens were used for the study. There were 6 treatments: pretrial control (PC), fully fed (FF), feed withdrawal (FW), 90% alfalfa:10% layer ration (A90), 80% alfalfa:20% layer ration (A80), and 70% alfalfa:30% layer ration (A70). For the PC treatment, hens were euthanized by CO(2) gas, and bones were collected before molt was initiated. At the end of the 9-d molt period, hens were euthanized, and femurs and tibias were collected to evaluate bone qualities by peripheral quantitative computed tomography, mechanical testing, and conventional ash weights. The hens fed alfalfa-based molt diets and FW stopped laying eggs within 5 d after molt started, and all hens in these groups had reduced ovary weights compared with those of the FF hens. In the FW and A90 groups, total femur volumetric bone mineral densities (vBMD) at the midshaft were significantly lower, but those of the A80 and A70 groups were not significantly different from the values for the PC and FF hens. In cortical bone density, the midshaft tibial vBMD were significantly higher for FF and A70 hens than for PC hens. The medullary bone densities at the midshaft femur or tibia of the FW, A90, A80, and A70 hens were reduced compared with those of the PC hens. Femur cancellous densities at the distal femur for the FW and A90 hens were significantly reduced compared with those of the PC and FF hens. The FW, A80, and A70 hens yielded significantly higher elastic moduli, and the A80 hens had higher ultimate stress compared with the PC hens, suggesting that the mechanical integrity of the midshaft bone was maintained even though the medullary vBMD was reduced. These results suggest that alfalfa-based molt diets exhibit molt performance similar to FW, that medullary and cancellous bones are labile bone compartments during molting, and that alfalfa-based molt diets

  9. Human bone hardness seems to depend on tissue type but not on anatomical site in the long bones of an old subject.

    Science.gov (United States)

    Ohman, Caroline; Zwierzak, Iwona; Baleani, Massimiliano; Viceconti, Marco

    2013-02-01

    It has been hypothesised that among different human subjects, the bone tissue quality varies as a function of the bone segment morphology. The aim of this study was to assess and compare the quality, evaluated in terms of hardness of packages of lamellae, of cortical and trabecular bones, at different anatomical sites within the human skeleton. The contralateral six long bones of an old human subject were indented at different levels along the diaphysis and at both epiphyses of each bone. Hardness value, which is correlated to the degree of mineralisation, of both cortical and trabecular bone tissues was calculated for each indentation location. It was found that the cortical bone tissue was harder (+18%) than the trabecular one. In general, the bone hardness was found to be locally highly heterogeneous. In fact, considering one single slice obtained for a bone segment, the coefficient of variation of the hardness values was up to 12% for cortical bone and up to 17% for trabecular bone. However, the tissue hardness was on average quite homogeneous within and among the long bones of the studied donor, although differences up to 9% among levels and up to 7% among bone segments were found. These findings seem not to support the mentioned hypothesis, at least not for the long bones of an old subject.

  10. Eldecalcitol improves mechanical strength of cortical bones by stimulating the periosteal bone formation in the senescence-accelerated SAM/P6 mice - a comparison with alfacalcidol.

    Science.gov (United States)

    Shiraishi, Ayako; Sakai, Sadaoki; Saito, Hitoshi; Takahashi, Fumiaki

    2014-10-01

    Eldecalcitol (ELD), a 2β-hydroxypropyloxy derivative of 1α,25(OH)2D3, is a potent inhibitor of bone resorption that has demonstrated a greater effect at reducing the risk of fracture in osteoporotic patients than alfacalcidol (ALF). In the present study, we used the senescence-accelerated mouse strain P6 (SAM/P6), which has low bone mass caused by osteoblast dysfunction, to evaluate the effect of ELD on cortical bone in comparison with ALF. Four-month-old SAM/P6 mice were given either ELD (0.025 or 0.05μg/kg) or ALF (0.2 or 0.4μg/kg) by oral gavage 5 times/week for 6 weeks. Both ELD and ALF increased serum calcium (Ca) in a dose-dependent manner. Serum Ca levels in the ELD 0.05μg/kg group were comparable to those of the ALF 0.2μg/kg group. ELD 0.05μg/kg significantly improved the bone biomechanical properties of the femur compared with the vehicle control group (pBone histomorphometry revealed that in the femoral endocortical surface, the suppression of bone resorption parameters (N.Oc/BS) and bone formation parameters (MS/BS) by ELD (0.05μg/kg) was greater than that by ALF (0.2μg/kg). In contrast, in the femoral periosteal surface, ELD 0.05μg/kg significantly increased bone formation parameters (BFR/BS, MS/BS) compared with the vehicle control group (pbone not only by inhibiting endocortical bone resorption but also by stimulating the periosteal bone formation in SAM/P6 mice. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Cortical splitting of the mandible after irradiation. Special reference to osteoradionecrosis

    International Nuclear Information System (INIS)

    Katsura, Kouji; Ito, Jusuke; Hayashi, Takafumi; Taira, Shuhzou; Nakajima, Syunichi

    2001-01-01

    The purpose of this study was to discuss the relationship between radiation bone injuries and a splitting of the cortical bone in the radiation field. Between January 1993 and September 1998, 53 patients with head and neck cancer received radiotherapy. The study cohort consisted of 23 patients who were followed with computed tomographic scans more than one year after radiotherapy. We evaluated clinical and computed tomographic features. Computed tomographic scanning was performed with a section thickness of 3 or 4 mm. Bone images were obtained with identical window width (4000 Haunsfield units) and window level (1000 Haunsfield units). Splitting of the cortical bone was defined as disappearance of bone density in the cortical bone, showing a linear shape running parallel to the surface of the cortex. Splitting appeared in 9 sites in 8 patients. All patients fulfilled UICC criteria for classifying oral cancer. Most of the patients received external irradiation with a total radiation dose of 50 or 60 Gy. In all cases, splitting was found in the mandibular cortex at the site of muscle attachment, that was included in the radiation field. Appearance of bone changes in chronological order were periosteal reaction, splitting and bone necrosis. We speculate that splitting results from injuries to bone structure cells caused by blood flow disturbance after surgery and radiotherapy. It is suggested that such splitting can be a predictor of osteoradionecrosis. (author)

  12. Evaluation of cortical bone mass, thickness and density by z-scores in osteopenic conditions and in relation to menopause and estrogen treatment

    International Nuclear Information System (INIS)

    Meema, S.; Meema, H.E.

    1982-01-01

    Z-scores express, differences from normals in standard deviation units, and are particularly useful for comparison of changes where normal values are age- and sex-dependent. We determined z-scores for bone mineral mass, cortical thickness, and bone mineral density in the radius in various conditions and diseases in both sexes. In the males, z-scores were calculated for age, but in the females z-scores for menopausal status (years postmenopausal exclusive of years on estrogen treatment) were found to be more appropriate. With few exceptions, changes in a disease were of a similar order in both sexes. For bone minerals mass few mean z-scores were significantly increased, but diseases with significantly decreased mean z-scores were numerous. The usefulness of z-scores in diagnosis and study of metabolic bone disease is discussed. (orig.)

  13. The effect of amyloid pathology and glucose metabolism on cortical volume loss over time in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Adriaanse, Sofie M. [VU University Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); VU University Medical Center, Department of Radiology and Nuclear Medicine, Alzheimer Center, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands); Van Dijk, Koene R.A. [Harvard University, Department of Psychology, Center for Brain Science, Cambridge, MA (United States); Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States); Ossenkoppele, Rik; Tolboom, Nelleke; Zwan, Marissa D.; Barkhof, Frederik; Berckel, Bart N.M. van [VU University Medical Center, Department of Radiology and Nuclear Medicine, Alzheimer Center, Neuroscience Campus Amsterdam, Amsterdam (Netherlands); Reuter, Martin [Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States); Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, Division of Health Sciences and Technology, Cambridge, MA (United States); Yaqub, Maqsood; Boellaard, Ronald; Windhorst, Albert D.; Lammertsma, Adriaan A. [VU University Medical Center, Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, Amsterdam (Netherlands); Flier, Wiesje M. van der; Scheltens, Philip [VU University Medical Center, Department of Neurology, Alzheimer Center, Neuroscience Campus Amsterdam, Amsterdam (Netherlands)

    2014-06-15

    The present multimodal neuroimaging study examined whether amyloid pathology and glucose metabolism are related to cortical volume loss over time in Alzheimer's disease (AD) patients and healthy elderly controls. Structural MRI scans of eleven AD patients and ten controls were available at baseline and follow-up (mean interval 2.5 years). Change in brain structure over time was defined as percent change of cortical volume within seven a-priori defined regions that typically show the strongest structural loss in AD. In addition, two PET scans were performed at baseline: [{sup 11}C]PIB to assess amyloid-β plaque load and [{sup 18}F]FDG to assess glucose metabolism. [{sup 11}C]PIB binding and [{sup 18}F]FDG uptake were measured in the precuneus, a region in which both amyloid deposition and glucose hypometabolism occur early in the course of AD. While amyloid-β plaque load at baseline was not related to cortical volume loss over time in either group, glucose metabolism within the group of AD patients was significantly related to volume loss over time (rho = 0.56, p < 0.05). The present study shows that in a group of AD patients amyloid-β plaque load as measured by [{sup 11}C]PIB behaves as a trait marker (i.e., all AD patients showed elevated levels of amyloid, not related to subsequent disease course), whilst hypometabolism as measured by [{sup 18}F]FDG changed over time indicating that it could serve as a state marker that is predictive of neurodegeneration. (orig.)

  14. Multiscale, Converging Defects of Macro-Porosity, Microstructure and Matrix Mineralization Impact Long Bone Fragility in NF1

    Science.gov (United States)

    Kühnisch, Jirko; Seto, Jong; Lange, Claudia; Schrof, Susanne; Stumpp, Sabine; Kobus, Karolina; Grohmann, Julia; Kossler, Nadine; Varga, Peter; Osswald, Monika; Emmerich, Denise; Tinschert, Sigrid; Thielemann, Falk; Duda, Georg; Seifert, Wenke; el Khassawna, Thaqif; Stevenson, David A.; Elefteriou, Florent; Kornak, Uwe; Raum, Kay; Fratzl, Peter; Mundlos, Stefan; Kolanczyk, Mateusz

    2014-01-01

    Bone fragility due to osteopenia, osteoporosis or debilitating focal skeletal dysplasias is a frequent observation in the Mendelian disease Neurofibromatosis type 1 (NF1). To determine the mechanisms underlying bone fragility in NF1 we analyzed two conditional mouse models, Nf1Prx1 (limb knock-out) and Nf1Col1 (osteoblast specific knock-out), as well as cortical bone samples from individuals with NF1. We examined mouse bone tissue with micro-computed tomography, qualitative and quantitative histology, mechanical tensile analysis, small-angle X-ray scattering (SAXS), energy dispersive X-ray spectroscopy (EDX), and scanning acoustic microscopy (SAM). In cortical bone of Nf1Prx1 mice we detected ectopic blood vessels that were associated with diaphyseal mineralization defects. Defective mineral binding in the proximity of blood vessels was most likely due to impaired bone collagen formation, as these areas were completely devoid of acidic matrix proteins and contained thin collagen fibers. Additionally, we found significantly reduced mechanical strength of the bone material, which was partially caused by increased osteocyte volume. Consistent with these observations, bone samples from individuals with NF1 and tibial dysplasia showed increased osteocyte lacuna volume. Reduced mechanical properties were associated with diminished matrix stiffness, as determined by SAM. In line with these observations, bone tissue from individuals with NF1 and tibial dysplasia showed heterogeneous mineralization and reduced collagen fiber thickness and packaging. Collectively, the data indicate that bone fragility in NF1 tibial dysplasia is partly due to an increased osteocyte-related micro-porosity, hypomineralization, a generalized defect of organic matrix formation, exacerbated in the regions of tensional and bending force integration, and finally persistence of ectopic blood vessels associated with localized macro-porotic bone lesions. PMID:24465906

  15. High-resolution-cone beam tomography analysis of bone microarchitecture in patients with acromegaly and radiological vertebral fractures.

    Science.gov (United States)

    Maffezzoni, Filippo; Maddalo, Michele; Frara, Stefano; Mezzone, Monica; Zorza, Ivan; Baruffaldi, Fabio; Doglietto, Francesco; Mazziotti, Gherardo; Maroldi, Roberto; Giustina, Andrea

    2016-11-01

    Vertebral fractures are an emerging complication of acromegaly but their prediction is still difficult occurring even in patients with normal bone mineral density. In this study we evaluated the ability of high-resolution cone-beam computed tomography to provide information on skeletal abnormalities associated with vertebral fractures in acromegaly. 40 patients (24 females, 16 males; median age 57 years, range 25-72) and 21 healthy volunteers (10 females, 11 males; median age 60 years, range: 25-68) were evaluated for trabecular (bone volume/trabecular volume ratio, mean trabecular separation, and mean trabecular thickness) and cortical (thickness and porosity) parameters at distal radius using a high-resolution cone-beam computed tomography system. All acromegaly patients were evaluated for morphometric vertebral fractures and for mineral bone density by dual-energy X-ray absorptiometry at lumbar spine, total hip, femoral neck, and distal radius. Acromegaly patients with vertebral fractures (15 cases) had significantly (p acromegaly patients did not have significant differences in bone density at either skeletal site. Patients with acromegaly showed lower bone volume/trabecular volume ratio (p = 0.003) and mean trabecular thickness (p acromegaly. High-resolution cone-beam computed tomography at the distal radius may be useful to evaluate and predict the effects of acromegaly on bone microstructure.

  16. Evidence for a cerebral cortical thickness network anti-correlated with amygdalar volume in healthy youths: implications for the neural substrates of emotion regulation.

    Science.gov (United States)

    Albaugh, Matthew D; Ducharme, Simon; Collins, D Louis; Botteron, Kelly N; Althoff, Robert R; Evans, Alan C; Karama, Sherif; Hudziak, James J

    2013-05-01

    Recent functional connectivity studies have demonstrated that, in resting humans, activity in a dorsally-situated neocortical network is inversely associated with activity in the amygdalae. Similarly, in human neuroimaging studies, aspects of emotion regulation have been associated with increased activity in dorsolateral, dorsomedial, orbital and ventromedial prefrontal regions, as well as concomitant decreases in amygdalar activity. These findings indicate the presence of two countervailing systems in the human brain that are reciprocally related: a dorsally-situated cognitive control network, and a ventrally-situated limbic network. We investigated the extent to which this functional reciprocity between limbic and dorsal neocortical regions is recapitulated from a purely structural standpoint. Specifically, we hypothesized that amygdalar volume would be related to cerebral cortical thickness in cortical regions implicated in aspects of emotion regulation. In 297 typically developing youths (162 females, 135 males; 572 MRIs), the relationship between cortical thickness and amygdalar volume was characterized. Amygdalar volume was found to be inversely associated with thickness in bilateral dorsolateral and dorsomedial prefrontal, inferior parietal, as well as bilateral orbital and ventromedial prefrontal cortices. Our findings are in line with previous work demonstrating that a predominantly dorsally-centered neocortical network is reciprocally related to core limbic structures such as the amygdalae. Future research may benefit from investigating the extent to which such cortical-limbic morphometric relations are qualified by the presence of mood and anxiety psychopathology. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    Science.gov (United States)

    Govey, Peter M.; Zhang, Yue; Donahue, Henry J.

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both pbones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104

  18. Right anterior cingulate cortical thickness and bilateral striatal volume correlate with child behavior checklist aggressive behavior scores in healthy children.

    Science.gov (United States)

    Ducharme, Simon; Hudziak, James J; Botteron, Kelly N; Ganjavi, Hooman; Lepage, Claude; Collins, D Louis; Albaugh, Matthew D; Evans, Alan C; Karama, Sherif

    2011-08-01

    The anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and basal ganglia have been implicated in pathological aggression. This study aimed at identifying neuroanatomical correlates of impulsive aggression in healthy children. Data from 193 representative 6- to 18-year-old healthy children were obtained from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development after a blinded quality control. Cortical thickness and subcortical volumes were obtained with automated software. Aggression levels were measured with the Aggressive Behavior scale (AGG) of the Child Behavior Checklist. AGG scores were regressed against cortical thickness and basal ganglia volumes using first- and second-order linear models while controlling for age, gender, scanner site, and total brain volume. Gender by AGG interactions were analyzed. There were positive associations between bilateral striatal volumes and AGG scores (right: r = .238, p = .001; left: r = .188, p = .01). A significant association was found with right ACC and subgenual ACC cortical thickness in a second-order linear model (p right ACC cortex. An AGG by gender interaction trend was found in bilateral OFC and ACC associations with AGG scores. This study shows the existence of relationships between impulsive aggression in healthy children and the structure of the striatum and right ACC. It also suggests the existence of gender-specific patterns of association in OFC/ACC gray matter. These results may guide research on oppositional-defiant and conduct disorders. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Psychopathic traits are associated with cortical and subcortical volume alterations in healthy individuals.

    Science.gov (United States)

    Vieira, Joana B; Ferreira-Santos, Fernando; Almeida, Pedro R; Barbosa, Fernando; Marques-Teixeira, João; Marsh, Abigail A

    2015-12-01

    Research suggests psychopathy is associated with structural brain alterations that may contribute to the affective and interpersonal deficits frequently observed in individuals with high psychopathic traits. However, the regional alterations related to different components of psychopathy are still unclear. We used voxel-based morphometry to characterize the structural correlates of psychopathy in a sample of 35 healthy adults assessed with the Triarchic Psychopathy Measure. Furthermore, we examined the regional grey matter alterations associated with the components described by the triarchic model. Our results showed that, after accounting for variation in total intracranial volume, age and IQ, overall psychopathy was negatively associated with grey matter volume in the left putamen and amygdala. Additional regression analysis with anatomical regions of interests revealed total triPM score was also associated with increased lateral orbitofrontal cortex (OFC) and caudate volume. Boldness was positively associated with volume in the right insula. Meanness was positively associated with lateral OFC and striatum volume, and negatively associated with amygdala volume. Finally, disinhibition was negatively associated with amygdala volume. Results highlight the contribution of both subcortical and cortical brain alterations for subclinical psychopathy and are discussed in light of prior research and theoretical accounts about the neurobiological bases of psychopathic traits. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. Differential response of risedronate on tibial and mandibular bone quality in glucocorticoid-treated growing rats

    International Nuclear Information System (INIS)

    Fujita, Yuko

    2008-01-01

    Glucocorticoids induce bone loss and retard bone growth in children. In this study we investigated the effect of treatment with risedronate on glucocorticoid -prednisolone-induced decreases in bone density, quality, strength and growth of the tibia and mandible in growing rats. Trabecular and cortical bone structure was measured by peripheral quantitative computed tomography (pQCT) and three-dimensional (3D) micro-computed tomography (micro-CT). Indicators of bone strength were calculated from cortical bone density and the modulus of sections obtained from pQCT analysis. Tibial and mandibular bone sizes were also measured. Prednisolone decreased the bone growth of both tibia and mandible. It also caused deterioration of trabecular and cortical bone structure and strength in the mandible, and in cortical bone in the tibia, but had no effect on trabecular bone in the tibia. Risedronate inhibited the prednisolone-induced decreases in tibial width and mandibular length and height but did not improve the retardation of longitudinal bone growth. Risedronate prevented prednisolone-induced deterioration of trabecular and cortical bone architecture. In the mandible, this protective effect of risedronate was accompanied by an increase in cortical bone density and in bone strength. These findings show that risedronate inhibits prednisolone-induced loss of bone density, structure, decrease in bone strength, and retardation of bone growth in the mandible in young growing rats. (author)

  1. Increased Cortical Thickness in Professional On-Line Gamers

    Science.gov (United States)

    Hyun, Gi Jung; Shin, Yong Wook; Kim, Bung-Nyun; Cheong, Jae Hoon; Jin, Seong Nam

    2013-01-01

    Objective The bulk of recent studies have tested whether video games change the brain in terms of activity and cortical volume. However, such studies are limited by several factors including cross-sectional comparisons, co-morbidity, and short-term follow-up periods. In the present study, we hypothesized that cognitive flexibility and the volume of brain cortex would be correlated with the career length of on-line pro-gamers. Methods High-resolution magnetic resonance scans were acquired in twenty-three pro-gamers recruited from StarCraft pro-game teams. We measured cortical thickness in each individual using FreeSurfer and the cortical thickness was correlated with the career length and the performance of the pro-gamers. Results Career length was positively correlated with cortical thickness in three brain regions: right superior frontal gyrus, right superior parietal gyrus, and right precentral gyrus. Additionally, increased cortical thickness in the prefrontal cortex was correlated with winning rates of the pro-game league. Increased cortical thickness in the prefrontal and parietal cortices was also associated with higher performance of Wisconsin Card Sorting Test. Conclusion Our results suggest that in individuals without pathologic conditions, regular, long-term playing of on-line games is associated with volume changes in the prefrontal and parietal cortices, which are associated with cognitive flexibility. PMID:24474988

  2. Post-adolescent developmental changes in cortical complexity.

    Science.gov (United States)

    Sandu, Anca-Larisa; Izard, Edouard; Specht, Karsten; Beneventi, Harald; Lundervold, Arvid; Ystad, Martin

    2014-11-27

    Post-adolescence is known to be a period of general maturation and development in the human brain. In brain imaging, volumetric and morphologic cortical grey-matter changes can easily be assessed, but the analysis of cortical complexity seems to have been broadly neglected for this age interval. Magnetic resonance imaging (MRI) was used to acquire structural brain images. The study involved 17 adolescents (mean age 14.1 ± 0.27, 11 girls) who were compared with 14 young adults (mean age 24.24 ± 2.76, 7 women) for measures of brain complexity (fractal dimension--FD), grey matter (GM) volume and surface-area of cortical ribbon. FD was calculated using box-counting and Minkowski-Bouligand methods; FD and GM volume were measured for the whole brain, each hemisphere and lobes: frontal, occipital, parietal and temporal. The results show that the adults have a lower cortical complexity than the adolescents, which was significant for whole brain, left and right hemisphere, frontal and parietal lobes for both genders; and only for males in left temporal lobe. The GM volume was smaller in men than in boys for almost all measurements, and smaller in women than in girls just for right parietal lobe. A significant Pearson correlation was found between FD and GM volume for whole brain and each hemisphere in both genders. The decrease of the GM surface-area was significant in post-adolescence for males, not for females. During post-adolescence there are common changes in cortical complexity in the same regions for both genders, but there are also gender specific changes in some cortical areas. The sex differences from different cortical measurements (FD, GM volume and surface-area of cortical ribbon) could suggest a maturation delay in specific brain regions for each gender in relation to the other and might be explained through the functional role of the corresponding regions reflected in gender difference of developed abilities.

  3. Influence and evolution mechanism of different sharpness contact forms to mechanical property of cortical bone by nanoindentation

    Science.gov (United States)

    Sun, Xingdong; Guo, Yue; Li, Lijia; Liu, Zeyang; Wu, Di; Shi, Dong; Zhao, Hongwei; Zhang, Shizhong

    2018-03-01

    Based on different damage forms of various contact forms to bone, the mechanical response and mechanism were investigated by nanoindentation under different sharpness contact forms. For the purpose of simulating the different sharpness contact forms, two kinds of indenters were used in experiments and finite elements simulations. Through nanoindentation experiments, it was concluded that the residual depth of sharp indenter was bigger than that of blunt indenter with small penetration depth. However, the contrary law was obtained with bigger penetration depth. There was a turning point of transition from blunt tendency to sharp tendency. By calculation, it was concluded that the sharper the indenter was, the bigger the proportion of plastic energy in total energy was. Basically, results of finite elements simulation could correspond with the experimental conclusions. By the observation of FE-SEM, the surface of cortical bone compressed was more seriously directly below the blunt indenter than the lateral face. For the berkovich indenter, the surface of indentation compressed was less directly below the indenter, but seriously on three lateral faces. This research may provide some new references to the studies of bone fracture mechanism in different load patterns in the initial press-in stage and offer new explanation for bone trauma diagnosis in clinical treatment and criminal investigation.

  4. Influence and evolution mechanism of different sharpness contact forms to mechanical property of cortical bone by nanoindentation

    Directory of Open Access Journals (Sweden)

    Xingdong Sun

    2018-03-01

    Full Text Available Based on different damage forms of various contact forms to bone, the mechanical response and mechanism were investigated by nanoindentation under different sharpness contact forms. For the purpose of simulating the different sharpness contact forms, two kinds of indenters were used in experiments and finite elements simulations. Through nanoindentation experiments, it was concluded that the residual depth of sharp indenter was bigger than that of blunt indenter with small penetration depth. However, the contrary law was obtained with bigger penetration depth. There was a turning point of transition from blunt tendency to sharp tendency. By calculation, it was concluded that the sharper the indenter was, the bigger the proportion of plastic energy in total energy was. Basically, results of finite elements simulation could correspond with the experimental conclusions. By the observation of FE-SEM, the surface of cortical bone compressed was more seriously directly below the blunt indenter than the lateral face. For the berkovich indenter, the surface of indentation compressed was less directly below the indenter, but seriously on three lateral faces. This research may provide some new references to the studies of bone fracture mechanism in different load patterns in the initial press-in stage and offer new explanation for bone trauma diagnosis in clinical treatment and criminal investigation.

  5. Semipermanent Volumization by an Absorbable Filler: Onlay Injection Technique to the Bone

    Directory of Open Access Journals (Sweden)

    Takanobu Mashiko, MD

    2013-04-01

    Conclusions: Semipermanent volumizing effects can be achieved by HA injection if the target area has an underlying bony floor. Periosteal stem cells may be activated by HA injection and may contribute to persistent volumizing effects. This treatment may be a much less invasive alternative to fat or bone grafting.

  6. Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters

    International Nuclear Information System (INIS)

    Prevrhal, S.; Engelke, K.; Kalender, W.A.

    1999-01-01

    In this study we analysed the accuracy of computed tomography (CT) measurements in assessing cortical bone. We determined the dependency of thickness and density measurements on the true width and density of the cortex and on the spatial resolution in the CT images using two optimized segmentation methods. As a secondary goal, we assessed the ability of CT to reflect small changes in cortical thickness. Two different bone-mimicking phantoms with varying cortical thickness were scanned with single-slice CT on a Somatom Plus 4 scanner. Images were reconstructed with both a standard and a high-resolution convolution kernel. Two special operator-independent segmentation methods were used to automatically detect the edges of the cortical shell. We measured cortical thickness and density and compared the phantom measurements with theoretical computations by simulating a cross-sectional shape of the cortical shell. Based on the simulations, we calculated CT's power to detect small changes in cortical thickness. Simulations and phantom measurements were in very good agreement. Cortical thickness could be measured with an error of less than 10% if the true thickness was larger than 0.9 (0.7) mm for the standard (high-resolution) kernel which is close to the full width at half maximum (FWHM) of the point spread functions for these kernels and our scanner. Density measurements yielded errors of less than 10% for true cortical thickness values above two to three times the FWHM corresponding to 2.5 (2) mm in our case. The simulations showed that a 10% change in cortical width would not be detected with satisfying probability in bones with a cortical shell thinner than 1.2 mm. An accurate determination of the cortical thickness is limited to bones with a thickness higher than the FWHM of the scanner's point spread function. Therefore, the use of a high-resolution reconstruction kernel is crucial. Cortical bone mineral density can only be measured accurately in bones two to three

  7. Fermented dairy products consumption is associated with attenuated cortical bone loss independently of total calcium, protein, and energy intakes in healthy postmenopausal women.

    Science.gov (United States)

    Biver, E; Durosier-Izart, C; Merminod, F; Chevalley, T; van Rietbergen, B; Ferrari, S L; Rizzoli, R

    2018-05-03

    A longitudinal analysis of bone microstructure in postmenopausal women of the Geneva Retirees Cohort indicates that age-related cortical bone loss is attenuated at non-bearing bone sites in fermented dairy products consumers, not in milk or ripened cheese consumers, independently of total energy, calcium, or protein intakes. Fermented dairy products (FDP), including yogurts, provide calcium, phosphorus, and proteins together with prebiotics and probiotics, all being potentially beneficial for bone. In this prospective cohort study, we investigated whether FDP, milk, or ripened cheese consumptions influence age-related changes of bone mineral density (BMD) and microstructure. Dietary intakes were assessed at baseline and after 3.0 ± 0.5 years with a food frequency questionnaire in 482 postmenopausal women enrolled in the Geneva Retirees Cohort. Cortical (Ct) and trabecular (Tb) volumetric (v) BMD and microstructure at the distal radius and tibia were assessed by high-resolution peripheral quantitative computerized tomography, in addition to areal (a) BMD and body composition by dual-energy X-ray absorptiometry, at the same time points. At baseline, FDP consumers had lower abdominal fat mass and larger bone size at the radius and tibia. Parathyroid hormone and β-carboxyterminal cross-linked telopeptide of type I collagen levels were inversely correlated with FDP consumption. In the longitudinal analysis, FDP consumption (mean of the two assessments) was associated with attenuated loss of radius total vBMD and of Ct vBMD, area, and thickness. There was no difference in aBMD and at the tibia. These associations were independent of total energy, calcium, or protein intakes. For other dairy products categories, only milk consumption was associated with lower decrease of aBMD and of failure load at the radius. In this prospective cohort of healthy postmenopausal women, age-related Ct bone loss was attenuated at non-bearing bone sites in FDP consumers, not in milk

  8. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager III, Joel W.; Ritchie, Robert O.

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.

  9. Bone development

    DEFF Research Database (Denmark)

    Tatara, M.R.; Tygesen, Malin Plumhoff; Sawa-Wojtanowicz, B.

    2007-01-01

    The objective of this study was to determine the long-term effect of alpha-ketoglutarate (AKG) administration during early neonatal life on skeletal development and function, with emphasis on bone exposed to regular stress and used to serve for systemic changes monitoring, the rib. Shropshire ram.......01). Furthermore, AKG administration induced significantly higher bone mineral density of the cortical bone by 7.1% (P

  10. Evaluation of the efficacy of zoledronic acid and amifostine on radiation induced bone loss in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Wook; Lee, Sueum; Kang, Sohi; Moon, Cahng Jong; Kim, Jong Choon; Kim, Sung Ho [College of Veterinary Medicine, Chonnam National University, Gwangju (Korea, Republic of); Jung, Uhee; Jo, Sung Kee [Advanced Radiation Technology Institute, Jeungeup (Korea, Republic of); Jang, Jong Sik [College of Ecology and Environmental Science, Kyungpook National University, Sangju (Korea, Republic of)

    2016-09-15

    This study investigated the effects of zoledronic acid (ZA) on radiation-induced bone loss in C3H/HeN mice. C3H/HeN mice were divided into sham control and three irradiated groups (3 Gy, gamma ray). The irradiated mice were treated for 12 weeks with vehicle, amifostine (intraperitoneal injection), or ZA (subcutaneous injection). Grip strength, uterus weight, and serum alkaline phosphatase (ALP), and tartrate-resistant acid phosphatase (TRAP) levels were measured. Tibiae were analyzed using micro-computed tomography. Treatment of ZA (100 μg·kg{sup -1}·week{sup -1}) significantly preserved trabecular bone volume, trabecular thickness, trabecular number, trabecular separation, bone mineral density of proximal tibia metaphysic, and cortical bone volume, but did not alter the uterus weight of the mice. The administration of ZA for 12 weeks lowered serum ALP and TRAP levels in irradiated mice, suggesting that ZA can reduce the bone turnover rate in mice. No differences were apparent between the amifostine-treated group and the irradiation control group. The results indicate that ZA can prevent radiation-induced bone loss in mice.

  11. In vitro deposition of hydroxyapatite on cortical bone collagen stimulated by deformation-induced piezoelectricity.

    Science.gov (United States)

    Noris-Suárez, Karem; Lira-Olivares, Joaquin; Ferreira, Ana Marina; Feijoo, José Luis; Suárez, Nery; Hernández, Maria C; Barrios, Esteban

    2007-03-01

    In the present work, we have studied the effect of the piezoelectricity of elastically deformed cortical bone collagen on surface using a biomimetic approach. The mineralization process induced as a consequence of the piezoelectricity effect was evaluated using scanning electron microscopy (SEM), thermally stimulated depolarization current (TSDC), and differential scanning calorimetry (DSC). SEM micrographs showed that mineralization occurred predominantly over the compressed side of bone collagen, due to the effect of piezoelectricity, when the sample was immersed in the simulated body fluid (SBF) in a cell-free system. The TSDC method was used to examine the complex collagen dielectric response. The dielectric spectra of deformed and undeformed collagen samples with different hydration levels were compared and correlated with the mineralization process followed by SEM. The dielectric measurements showed that the mineralization induced significant changes in the dielectric spectra of the deformed sample. DSC and TSDC results demonstrated a reduction of the collagen glass transition as the mineralization process advanced. The combined use of SEM, TSDC, and DSC showed that, even without osteoblasts present, the piezoelectric dipoles produced by deformed collagen can produce the precipitation of hydroxyapatite by electrochemical means, without a catalytic converter as occurs in classical biomimetic deposition.

  12. Modelling of Cortical Bone Tissue as a Fluid Saturated Double-Porous Material - Parametric Study

    Directory of Open Access Journals (Sweden)

    Jana TURJANICOVÁ

    2013-06-01

    Full Text Available In this paper, the cortical bone tissue is considered as a poroelastic material with periodic structure represented at microscopic and mesoscopic levels. The pores of microscopic scale are connected with the pores of mesoscopic scale creating one system of connected network filled with compressible fluid. The method of asymptotic homogenization is applied to upscale the microscopic model of the fluid-solid interaction under a static loading. Obtained homogenized coefficients describe material properties of the poroelastic matrix fractured by fluid-filled pores whose geometry is described at the mesoscopic level. The second-level upscaling provides homogenized poroelastic coefficients relevant on the macroscopic scale. Furthermore, we study the dependence of these coefficients on geometrical parameters on related microscopic and macroscopic scales.

  13. Quantitative 3D analysis of bone in hip osteoarthritis using clinical computed tomography.

    Science.gov (United States)

    Turmezei, Tom D; Treece, Graham M; Gee, Andrew H; Fotiadou, Anastasia F; Poole, Kenneth E S

    2016-07-01

    To assess the relationship between proximal femoral cortical bone thickness and radiological hip osteoarthritis using quantitative 3D analysis of clinical computed tomography (CT) data. Image analysis was performed on clinical CT imaging data from 203 female volunteers with a technique called cortical bone mapping (CBM). Colour thickness maps were created for each proximal femur. Statistical parametric mapping was performed to identify statistically significant differences in cortical bone thickness that corresponded with the severity of radiological hip osteoarthritis. Kellgren and Lawrence (K&L) grade, minimum joint space width (JSW) and a novel CT-based osteophyte score were also blindly assessed from the CT data. For each increase in K&L grade, cortical thickness increased by up to 25 % in distinct areas of the superolateral femoral head-neck junction and superior subchondral bone plate. For increasing severity of CT osteophytes, the increase in cortical thickness was more circumferential, involving a wider portion of the head-neck junction, with up to a 7 % increase in cortical thickness per increment in score. Results were not significant for minimum JSW. These findings indicate that quantitative 3D analysis of the proximal femur can identify changes in cortical bone thickness relevant to structural hip osteoarthritis. • CT is being increasingly used to assess bony involvement in osteoarthritis • CBM provides accurate and reliable quantitative analysis of cortical bone thickness • Cortical bone is thicker at the superior femoral head-neck with worse osteoarthritis • Regions of increased thickness co-locate with impingement and osteophyte formation • Quantitative 3D bone analysis could enable clinical disease prediction and therapy development.

  14. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface.

    Science.gov (United States)

    Walsh, William R; Bertollo, Nicky; Christou, Chrisopher; Schaffner, Dominik; Mobbs, Ralph J

    2015-05-01

    Rapid and stable fixation at the bone-implant interface would be regarded as one of the primary goals to achieve clinical efficacy, regardless of the surgical site. Although mechanical and physical properties of polyetheretherketone (PEEK) provide advantages for implant devices, the hydrophobic nature and the lack of direct bone contact remains a limitation. To examine the effects of a plasma-sprayed titanium coated PEEK on the mechanical and histologic properties at the bone-implant interface. A preclinical laboratory study. Polyetheretherketone and plasma-sprayed titanium coated PEEK implants (Ti-bond; Spinal Elements, Carlsbad, CA, USA) were placed in a line-to-line manner in cortical bone and in a press-fit manner in cancellous bone of adult sheep using an established ovine model. Shear strength was assessed in the cortical sites at 4 and 12 weeks, whereas histology was performed in cortical and cancellous sites at both time points. The titanium coating dramatically improved the shear strength at the bone-implant interface at 4 weeks and continued to improve with time compared with PEEK. Direct bone ongrowth in cancellous and cortical sites can be achieved using a plasma-sprayed titanium coating on PEEK. Direct bone to implant bonding can be achieved on PEEK in spite of its hydrophobic nature using a plasma-sprayed titanium coating. The plasma-sprayed titanium coating improved mechanical properties in the cortical sites and the histology in cortical and cancellous sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Anterior Cortical Development During Adolescence in Bipolar Disorder.

    Science.gov (United States)

    Najt, Pablo; Wang, Fei; Spencer, Linda; Johnston, Jennifer A Y; Cox Lippard, Elizabeth T; Pittman, Brian P; Lacadie, Cheryl; Staib, Lawrence H; Papademetris, Xenophon; Blumberg, Hilary P

    2016-02-15

    Increasing evidence supports a neurodevelopmental model for bipolar disorder (BD), with adolescence as a critical period in its development. Developmental abnormalities of anterior paralimbic and heteromodal frontal cortices, key structures in emotional regulation processes and central in BD, are implicated. However, few longitudinal studies have been conducted, limiting understanding of trajectory alterations in BD. In this study, we performed longitudinal neuroimaging of adolescents with and without BD and assessed volume changes over time, including changes in tissue overall and within gray and white matter. Larger decreases over time in anterior cortical volumes in the adolescents with BD were hypothesized. Gray matter decreases and white matter increases are typically observed during adolescence in anterior cortices. It was hypothesized that volume decreases over time in BD would reflect alterations in those processes, showing larger gray matter contraction and decreased white matter expansion. Two high-resolution magnetic resonance imaging scans were obtained approximately 2 years apart for 35 adolescents with bipolar I disorder (BDI) and 37 healthy adolescents. Differences over time between groups were investigated for volume overall and specifically for gray and white matter. Relative to healthy adolescents, adolescents with BDI showed greater volume contraction over time in a region including insula and orbitofrontal, rostral, and dorsolateral prefrontal cortices (p adolescence in BDI in anterior cortices, including altered developmental trajectories of anterior gray and white matter. Published by Elsevier Inc.

  16. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke.

    Science.gov (United States)

    Gao, Shu-guang; Cheng, Ling; Li, Kang-hua; Liu, Wen-He; Xu, Mai; Jiang, Wei; Wei, Li-Cheng; Zhang, Fang-jie; Xiao, Wen-feng; Xiong, Yi-lin; Tian, Jian; Zeng, Chao; Sun, Jin-peng; Xie, Qiang; Lei, Guang-hua

    2012-06-19

    Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF). However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day) in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC), bone mineral density (BMD), bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption), affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface), and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

  17. Mid-thigh cortical bone structural parameters, muscle mass and strength, and association with lower limb fractures in older men and women (AGES-Reykjavik Study).

    Science.gov (United States)

    Johannesdottir, Fjola; Aspelund, Thor; Siggeirsdottir, Kristin; Jonsson, Brynjolfur Y; Mogensen, Brynjolfur; Sigurdsson, Sigurdur; Harris, Tamara B; Gudnason, Vilmundur G; Lang, Thomas F; Sigurdsson, Gunnar

    2012-05-01

    In a cross-sectional study we investigated the relationship between muscle and bone parameters in the mid-thigh in older people using data from a single axial computed tomographic section through the mid-thigh. Additionally, we studied the association of these variables with incident low-trauma lower limb fractures. A total of 3,762 older individuals (1,838 men and 1,924 women), aged 66-96 years, participants in the AGES-Reykjavik study, were studied. The total cross-sectional muscular area and knee extensor strength declined with age similarly in both sexes. Muscle parameters correlated most strongly with cortical area and total shaft area (adjusted for age, height, and weight) but explained lower limb fractures. Small muscular area, low knee extensor strength, large MA, low cortical thickness, and high BR were significantly associated with fractures in both sexes. Our results show that bone and muscle loss proceed at different rates and with different gender patterns.

  18. Brain cortical characteristics of lifetime cognitive ageing.

    Science.gov (United States)

    Cox, Simon R; Bastin, Mark E; Ritchie, Stuart J; Dickie, David Alexander; Liewald, Dave C; Muñoz Maniega, Susana; Redmond, Paul; Royle, Natalie A; Pattie, Alison; Valdés Hernández, Maria; Corley, Janie; Aribisala, Benjamin S; McIntosh, Andrew M; Wardlaw, Joanna M; Deary, Ian J

    2018-01-01

    Regional cortical brain volume is the product of surface area and thickness. These measures exhibit partially distinct trajectories of change across the brain's cortex in older age, but it is unclear which cortical characteristics at which loci are sensitive to cognitive ageing differences. We examine associations between change in intelligence from age 11 to 73 years and regional cortical volume, surface area, and thickness measured at age 73 years in 568 community-dwelling older adults, all born in 1936. A relative positive change in intelligence from 11 to 73 was associated with larger volume and surface area in selective frontal, temporal, parietal, and occipital regions (r cognitive ageing and a thinner cortex for any region. Interestingly, thickness and surface area were phenotypically independent across bilateral lateral temporal loci, whose surface area was significantly related to change in intelligence. These findings suggest that associations between regional cortical volume and cognitive ageing differences are predominantly driven by surface area rather than thickness among healthy older adults. Regional brain surface area has been relatively underexplored, and is a potentially informative biomarker for identifying determinants of cognitive ageing differences.

  19. Analysis of cortical bone porosity using synchrotron radiation microtomography to evaluate the effects of chemotherapy

    Science.gov (United States)

    Alessio, R.; Nogueira, L. P.; Salata, C.; Mantuano, A.; Almeida, A. P.; Braz, D.; de Almeida, C. E.; Tromba, G.; Barroso, R. C.

    2015-11-01

    Microporosities play important biologic and mechanical roles on health. One of the side effects caused by some chemotherapy drugs is the induction of amenorrhea, temporary or not, in premenopausal women, with a consequent decrease in estrogen production, which can lead to cortical bone changes. In the present work, the femur diaphysis of rats treated with chemotherapy drugs were evaluated by 3D morphometric parameters using synchrotron radiation microtomography. Control animals were also evaluated for comparison. The 3D tomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the ELETTRA Synchrotron Laboratory in Trieste, Italy. Results showed significant differences in morphometric parameters measured from the 3D images of femur diaphysis of rats.

  20. Effects of parathyroid hormone on cortical porosity, non-enzymatic glycation and bone tissue mechanics in rats with type 2 diabetes mellitus.

    Science.gov (United States)

    Campbell, G M; Tiwari, S; Hofbauer, C; Picke, A-K; Rauner, M; Huber, G; Peña, J A; Damm, T; Barkmann, R; Morlock, M M; Hofbauer, L C; Glüer, C-C

    2016-01-01

    Type 2 diabetes mellitus increases skeletal fragility; however, the contributing mechanisms and the efficacy of bone-forming agents are unclear. We studied diabetes and parathyroid hormone (PTH) treatment effects on cortical porosity (Ct.Po), non-enzymatic glycation (NEG) and bone mechanics in Zucker diabetic fatty (ZDF) rats. Eleven-week old ZDF diabetic (DB) and non-diabetic (ND) rats were given 75μg/kg PTH (1-84) or vehicle 5days per week over 12weeks. The right femora and L4 vertebrae were excised, micro-CT scanned, and tested in 3-point bending and uniaxial compression, respectively. NEG of the samples was determined using fluorescence. Diabetes increased Ct.Po (vertebra (vert): +40.6%, femur (fem): +15.5% vs. ND group, pbone tissue mechanics where reductions in vertebral maximum strain (-22%) and toughness (-42%) were observed in the DB vs. ND group (pbone mechanics, which were not improved with PTH treatment. PTH therapy alone may worsen diabetic bone mechanics through formation of new bone with high AGEs cross-linking. Optimal treatment regimens must address both improvements of bone mass and glycemic control in order to successfully reduce diabetic bone fragility. This article is part of a Special Issue entitled "Bone and diabetes". Copyright © 2015 Elsevier Inc. All rights reserved.

  1. MR imaging characteristics in primary lymphoma of bone with emphasis on non-aggressive appearance

    International Nuclear Information System (INIS)

    Heyning, Fenna H.; Kroon, Herman M.J.A.; Hogendoorn, Pancras C.W.; Taminiau, Antonie H.M.; Woude, Henk-Jan van der

    2007-01-01

    To assess the heterogeneity of magnetic resonance (MR) imaging characteristics in primary lymphoma of bone (PLB), in particular the non-aggressive appearance. In a retrospective study, MR imaging features were analyzed in 29 patients with histologically proven PLB. The following parameters were evaluated: tumor size, bone marrow and extension into soft tissues, signal characteristics of bone marrow and soft-tissue components, including enhancement, and involvement of cortical bone (complete disruption, focal destruction, permeative destruction and cortical thickening). PLB presented with extension into the soft tissue in 22 (76%) of 29 patients, was only subtle in three of these 22 patients, and was absent in seven patients. Signal intensity (SI) of the soft-tissue part was most frequently homogeneously isointense with muscle on T1-weighted images (90%) and high on T2-weighted images (91%). Enhancement was predominantly homogeneous and diffuse (82%). In 93% of patients cortical bone appeared abnormal: among those patients complete cortical disruption was seen in 28%, with extension into soft tissues in all but one patient; a permeative pattern of destruction was present in 52% of patients, 66% of these had an associated soft-tissue mass. Two patients with normal-appearing cortical bone had no extension into soft tissues. In two patients focal cortical destruction was noticed; in one patient cortical bone was homogeneously thickened, and in one patient PLB was selectively localized within the cortical bone. SI of the bone marrow tumor component was more frequently heterogeneous (in 54%), compared with the soft-tissue component, being high on T2-weighted images in 89%, intermediate in 7% and low in 4%. Similarly, enhancement was heterogeneous in 59%. The MR imaging appearance of PLB is variable. In 31% of PLB patients, the tumor was intra-osseous, with linear cortical signal abnormalities or even normal-appearing or thickened cortical bone without soft-tissue mass

  2. Seaweed flour (“Lithothamnium calcareum” as a mineral supplement in the bone healing of a cortical autograft in dogs Farinha de algas marinhas (“Lithothamnium calcareum” como suplemento mineral na cicatrização óssea de autoenxerto cortical em cães

    Directory of Open Access Journals (Sweden)

    Emanoel Ferreira Martins Filho

    2010-03-01

    Full Text Available The influence of the seaweed flour (Lithothamnium calcareum was evaluated as a mineral supplement in during healing of bone failure reconstructed with a cortical autograft. Ten adult male mongrel dogs, weighing between 10 and 15kg, were used. The graft made of a cilinder block of the cortical bone was obtained by the ulna proximal diaphysis by ostectomy with a trephine of eight millimeters. In the same way, it was created a bone failure located in the middle-skull region of the proximal diaphysis of the ipsolateral tibia, and it served as a receptor bed. Two experimental groups were formed randomly, with five animals each. One group received a daily mineral supplement of seaweed flour for 30 consecutive days, and the other served as a control group. Clinical, radiological, and histopatological evaluations of bone healing were performed. Mineral supplementation with seaweed flour (Lithothamnium calcareum contributed to a better cicatricial performance, since both the degree of radiopacity and the number of osteoclasts were higher in treated animals.Foi avaliada, em cães, a influência da farinha de algas marinhas (Lithothamnium calcareum como suplemento mineral na cicatrização de falha óssea cortical reconstituída com autoenxerto cortical. Foram utilizados dez cães adultos, machos, sem raça definida, com peso entre 10 e 15kg. O enxerto, constituído de um bloco cilíndrico de osso cortical foi obtido da diáfise proximal da ulna, mediante ostectomia com trefina de oito milímetros de diâmetro. Igualmente criada, a falha óssea, localizada na região crânio-medial da diáfise proximal da tíbia ipsolateral, serviu como leito receptor. Efetuou-se separação aleatória em dois grupos experimentais, com cinco animais cada. Um grupo recebeu suplementação mineral diária à base de farinha de algas marinhas por 30 dias consecutivos, e o outro serviu como controle. Foram feitas avaliações clínicas, radiográficas e histopatológicas da

  3. Radiogrammetric analysis of upper limb long bones

    Directory of Open Access Journals (Sweden)

    Stojanović Zlatan

    2011-01-01

    Full Text Available Radiogrammetry is radiological method of bone mineral density quantification. Besides giving an insight in diagnostics and evolution of metabolic bone disorders (osteoporosis, osteomalacia, osteitis deformans- Paget's disease, it can also explain some specific biomechanical characteristics of bone structures. The aim of this study is to evaluate the significance and perspectives of radiogrammetry as a scientific model for further inquiry of skeletal system. The work demonstrates mathematical parameters (Ca-Cortical area, CI- Cortical index, GI- Garn's index, ESI- Exton Smith's index of upper limb long bones (humerus, radius, ulna. Two standard radiological projections of bones were taken: antero-posterior (AP and latero-lateral (LL. Correlation with metacarpal and lower limb bones was also performed. The value of the cortical area of humerus is significantly higher comparing with the two other examined bones (Xmean 2,2443 cm2, p < 0.01. Radial bone has the highest values of the relational mathematical parameters, which implicates its higher strength by volumetric unit concerning humerus and ulna. Despite the development of contemporary osteometric procedures (ultrasound densitometry, dual X-ray absorptiometry, digital X-ray radiogrammetry, the classical radiogrammetry sustains its important role in diagnostics of metabolic bone disorders and it can be successfully used for biomechanical inquiry of skeletal system.

  4. Ultrasound evaluation of cortical brain development in fetuses with intrauterine growth restriction.

    Science.gov (United States)

    Businelli, Caterina; de Wit, Charlotte; Visser, Gerard H A; Pistorius, Lourens R

    2014-09-10

    Abstract Objective: We evaluated the ultrasound appearance of brain volume and cortical development in fetuses with early growth restriction and placental insufficiency. Methods: We examined a cohort of 20 fetuses with severe intrauterine growth restriction (IUGR) and evidence of placental insufficiency by three-dimensional (3D) ultrasound between 24 and 34 weeks. We graded cortical development and measured the supratentorial intracranial volume. The cortical grading and volume were compared to data obtained from a reference population of 28 adequate for gestational age (AGA) fetuses. Results: Ultrasound examinations were performed in 20 fetuses with IUGR. The biometry and brain volume were significantly reduced in IUGR fetuses. There was evidence of accelerated cortical development in IUGR fetuses. Conclusion: This study confirms that the smaller brain volume in IUGR fetuses, with normal or accelerated cortical maturation as previously depicted with postnatal MRI examination, can be demonstrated by prenatal 3D ultrasound.

  5. Calcifying tendinitis of the rotator cuff with cortical bone erosion

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Roxanne; Kim, David H.; Millett, Peter J. [Harvard Medical School, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Weissman, Barbara N. [Harvard Medical School, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Brigham and Women' s Hospital, Department of Radiology, Musculoskeletal Division, Boston (United States)

    2004-10-01

    Calcifying tendinitis occurs most commonly in the rotator cuff tendons, particularly involving the supraspinatus tendon insertion, and is often asymptomatic. Cortical erosion secondary to calcifying tendinitis has been reported in multiple locations, including in the rotator cuff tendons. We present a pathologically proven case of symptomatic calcifying tendinitis involving the infraspinatus tendon with cortical erosion with correlative radiographic, CT, and MR findings. The importance of considering this diagnosis when evaluating lytic lesions of the humerus and the imaging differential diagnosis of calcifying tendinitis and cortical erosion are discussed. (orig.)

  6. Calcifying tendinitis of the rotator cuff with cortical bone erosion

    International Nuclear Information System (INIS)

    Chan, Roxanne; Kim, David H.; Millett, Peter J.; Weissman, Barbara N.

    2004-01-01

    Calcifying tendinitis occurs most commonly in the rotator cuff tendons, particularly involving the supraspinatus tendon insertion, and is often asymptomatic. Cortical erosion secondary to calcifying tendinitis has been reported in multiple locations, including in the rotator cuff tendons. We present a pathologically proven case of symptomatic calcifying tendinitis involving the infraspinatus tendon with cortical erosion with correlative radiographic, CT, and MR findings. The importance of considering this diagnosis when evaluating lytic lesions of the humerus and the imaging differential diagnosis of calcifying tendinitis and cortical erosion are discussed. (orig.)

  7. Accuracy of cancellous bone volume fraction measured by micro-CT scanning

    DEFF Research Database (Denmark)

    Ding, Ming; Odgaard, A; Hvid, I

    1999-01-01

    Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens...... which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner...

  8. Flat-Panel Detector—Based Volume Computed Tomography: A Novel 3D Imaging Technique to Monitor Osteolytic Bone Lesions in a Mouse Tumor Metastasis Model

    Directory of Open Access Journals (Sweden)

    Jeannine Missbach-Guentner

    2007-09-01

    Full Text Available Skeletal metastasis is an important cause of mortality in patients with breast cancer. Hence, animal models, in combination with various imaging techniques, are in high demand for preclinical assessment of novel therapies. We evaluated the applicability of flat-panel volume computed tomography (fpVCT to noninvasive detection of osteolytic bone metastases that develop in severe immunodeficient mice after intracardial injection of MDA-MB-231 breast cancer cells. A single fpVCT scan at 200-wm isotropic resolution was employed to detect osteolysis within the entire skeleton. Osteolytic lesions identified by fpVCT correlated with Faxitron X-ray analysis and were subsequently confirmed by histopathological examination. Isotropic three-dimensional image data sets obtained by fpVCT were the basis for the precise visualization of the extent of the lesion within the cortical bone and for the measurement of bone loss. Furthermore, fpVCT imaging allows continuous monitoring of growth kinetics for each metastatic site and visualization of lesions in more complex regions of the skeleton, such as the skull. Our findings suggest that fpVCT is a powerful tool that can be used to monitor the occurrence and progression of osteolytic lesions in vivo and can be further developed to monitor responses to antimetastatic therapies over the course of the disease.

  9. Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone.

    Directory of Open Access Journals (Sweden)

    Henry Todd

    Full Text Available Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an

  10. Spatial Differences in the Distribution of Bone Between Femoral Neck and Trochanteric Fractures.

    Science.gov (United States)

    Yu, Aihong; Carballido-Gamio, Julio; Wang, Ling; Lang, Thomas F; Su, Yongbin; Wu, Xinbao; Wang, Manyi; Wei, Jie; Yi, Chen; Cheng, Xiaoguang

    2017-08-01

    There is little knowledge about the spatial distribution differences in volumetric bone mineral density and cortical bone structure at the proximal femur between femoral neck fractures and trochanteric fractures. In this case-control study, a total of 93 women with fragility hip fractures, 72 with femoral neck fractures (mean ± SD age: 70.6 ± 12.7 years) and 21 with trochanteric fractures (75.6 ± 9.3 years), and 50 control subjects (63.7 ± 7.0 years) were included for the comparisons. Differences in the spatial distributions of volumetric bone mineral density, cortical bone thickness, cortical volumetric bone mineral density, and volumetric bone mineral density in a layer adjacent to the endosteal surface were investigated using voxel-based morphometry (VBM) and surface-based statistical parametric mapping (SPM). We compared these spatial distributions between controls and both types of fracture, and between the two types of fracture. Using VBM, we found spatially heterogeneous volumetric bone mineral density differences between control subjects and subjects with hip fracture that varied by fracture type. Interestingly, femoral neck fracture subjects, but not subjects with trochanteric fracture, showed significantly lower volumetric bone mineral density in the superior aspect of the femoral neck compared with controls. Using surface-based SPM, we found that compared with controls, both fracture types showed thinner cortices in regions in agreement with the type of fracture. Most outcomes of cortical and endocortical volumetric bone mineral density comparisons were consistent with VBM results. Our results suggest: 1) that the spatial distribution of trabecular volumetric bone mineral density might play a significant role in hip fracture; 2) that focal cortical bone thinning might be more relevant in femoral neck fractures; and 3) that areas of reduced cortical and endocortical volumetric bone mineral density might be more relevant for

  11. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  12. Alterations of bone density, microstructure, and strength of the distal radius in male patients with rheumatoid arthritis: a case-control study with HR-pQCT.

    Science.gov (United States)

    Zhu, Tracy Y; Griffith, James F; Qin, Ling; Hung, Vivian W; Fong, Tsz-Ning; Au, Sze-Ki; Li, Martin; Lam, Yvonne Yi-On; Wong, Chun-Kwok; Kwok, Anthony W; Leung, Ping-Chung; Li, Edmund K; Tam, Lai-Shan

    2014-09-01

    In this cross-sectional study, we investigated volumetric bone mineral density (vBMD), bone microstructure, and biomechanical competence of the distal radius in male patients with rheumatoid arthritis (RA). The study cohort comprised 50 male RA patients of average age of 61.1 years and 50 age-matched healthy males. Areal BMD (aBMD) of the hip, lumbar spine, and distal radius was measured by dual-energy X-ray absorptiometry. High-resolution peripheral quantitative computed tomography (HR-pQCT) of the distal radius provided measures of cortical and trabecular vBMD, microstructure, and biomechanical indices. aBMD of the hip but not the lumbar spine or ultradistal radius was significantly lower in RA patients than controls after adjustment for body weight. Total, cortical, and trabecular vBMD at the distal radius were, on average, -3.9% to -23.2% significantly lower in RA patients, and these differences were not affected by adjustment for body weight, testosterone level, or aBMD at the ultradistal radius. Trabecular microstructure indices were, on average, -8.1% (trabecular number) to 28.7% (trabecular network inhomogeneity) significantly inferior, whereas cortical pore volume and cortical porosity index were, on average, 80.3% and 63.9%, respectively, significantly higher in RA patients. RA patients also had significantly lower whole-bone stiffness, modulus, and failure load, with lower and more unevenly distributed cortical and trabecular stress. Density and microstructure indices significantly correlated with disease activity, severity, and levels of pro-inflammatory cytokines (interleukin [IL] 12p70, tumor necrosis factor, IL-6 and IL-1β). Ten RA patients had focal periosteal bone apposition most prominent at the ulnovolar aspect of the distal radius. These patients had shorter disease duration and significantly higher cortical porosity. In conclusion, HR-pQCT reveals significant alterations of bone density, microstructure, and strength of the distal radius in

  13. Altered grey matter volume and cortical thickness in patients with schizo-obsessive comorbidity

    DEFF Research Database (Denmark)

    Wang, Yongming; Zou, Lai-quan; Xie, Wen-lan

    2018-01-01

    healthy controls (HCs). We found that patients with SOC exhibited reduced GM volume in the left thalamus, the left inferior semi-lunar lobule of the cerebellum, the bilateral medial orbitofrontal cortex (medial oFC), the medial superior frontal gyrus (medial sFG), the rectus gyrus and the anterior...... cingulate cortex (aCC) compared with HCs. Patients with SOC also exhibited reduced cortical thickness in the right superior temporal gyrus (sTG), the right angular gyrus, the right supplementary motor area (SMA), the right middle cingulate cortex (mCC) and the right middle occipital gyrus (mOG) compared...

  14. Understanding age-induced cortical porosity in women

    DEFF Research Database (Denmark)

    Andreasen, Christina Møller; Delaisse, Jean-Marie; van der Eerden, Bram C J

    2018-01-01

    of a histomorphometric analysis of sections of iliac bone specimens from 35 women (age 16-78 years). Firstly, the study shows that the aging-induced cortical porosity reflects an increased pore size rather than an increased pore density. Secondly, it establishes a novel histomorphometric classification of the pores...... initiation of the subsequent bone formation. This article is protected by copyright. All rights reserved....

  15. Abnormal bone collagen morphology and decreased bone strength in growth hormone-deficient rats

    DEFF Research Database (Denmark)

    Lange, Martin; Qvortrup, Klaus; Svendsen, Ole Lander

    2004-01-01

    collagen morphology and bone mineralisation in cortical bone as well as bone strength in GHD rats to try to clarify the explanation for the increased fracture rate. The Dw-4 rat was used as a model for GHD. This strain of rats has an autosomal recessive disorder, reducing GH synthesis to approximately 10...

  16. Effect of Hydroxyapatite on Bone Integration in a Rabbit Tibial Defect Model

    Science.gov (United States)

    Sohn, Sung-Keun; Kim, Kyung-Taek; Kim, Chul-Hong; Ahn, Hee-Bae; Rho, Mee-Sook; Jeong, Min-Ho; Sun, Sang-Kyu

    2010-01-01

    Background The aim of the present study was to prepare hydroxyapatite (HA) and then characterize its effect on bone integration in a rabbit tibial defect model. The bone formation with different designs of HA was compared and the bony integration of several graft materials was investigated qualitatively by radiologic and histologic study. Methods Ten rabbits were included in this study; two holes were drilled bilaterally across the near cortex and the four holes in each rabbit were divided into four treatment groups (HAP, hydroxyapatite powder; HAC, hydroxyapatite cylinder; HA/TCP, hydroxyapatite/tri-calcium phosphate cylinder, and titanium cylinder). The volume of bone ingrowth and the change of bone mineral density were statistically calculated by computed tomography five times for each treatment group at 0, 2, 4, 6, and 8 weeks after grafting. Histologic analysis was performed at 8 weeks after grafting. Results The HAP group showed the most pronounced effect on the bone ingrowth surface area, which seen at 4, 6, and 8 weeks after graft (p 0.05). On histological examination, the HAP group revealed well-recovered cortical bone, but the bone was irregularly thickened and haphazardly admixed with powder. The HAC group showed similar histological features to those of the HA/TCP group; the cortical surface of the newly developed bone was smooth and the bone matrix on the surface of the cylinder was regularly arranged. Conclusions We concluded that both the hydroxyapatite powder and cylinder models investigated in our study may be suitable as a bone substitute in the rabbit tibial defect model, but their characteristic properties are quite different. In contrast to hydroxyapatite powder, which showed better results for the bone ingrowth surface, the hydroxyapatite cylinder showed better results for the sustained morphology. PMID:20514266

  17. Autotransplantation of Mandibular Third Molar with Buccal Cortical Plate to Replace Vertically Fractured Mandibular Second Molar: A Novel Technique.

    Science.gov (United States)

    Zufía, Juan; Abella, Francesc; Trebol, Ivan; Gómez-Meda, Ramón

    2017-09-01

    Tooth replacement often leads to inadequate vertical volume in the recipient site bone when a tooth has been extracted because of a vertical root fracture (VRF). This case report presents the autotransplantation of a mandibular third molar (tooth #32) with the attached buccal cortical plate to replace a mandibular second molar (tooth #31) diagnosed with a VRF. After extraction of tooth #31, the recipient socket was prepared based on the size measured in advance with cone-beam computed tomographic imaging. The precise and calculated osteotomy of the cortical bone of tooth #32 allowed for the exact placement of the donor tooth in the position of tooth #31. The total extraoral time was only 25 minutes. The block was fixed to the recipient socket with an osteosynthesis screw and splinted with a double resin wire for 8 weeks. At the 6-month follow-up, the screw was removed, and the stability of the tooth and the regeneration obtained throughout the vestibular area were confirmed. At the 2-year follow-up, the transplanted tooth was asymptomatic and maintained a normal bone level. Advantages of autotransplantation over dental implants include maintenance of proprioception, possible orthodontic movements, and a relatively low cost. This case report demonstrates that an autotransplantation of a third molar attached to its buccal cortical plate is a viable option to replace teeth with a VRF. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Scaling of Haversian canal surface area to secondary osteon bone volume in ribs and limb bones.

    Science.gov (United States)

    Skedros, John G; Knight, Alex N; Clark, Gunnar C; Crowder, Christian M; Dominguez, Victoria M; Qiu, Shijing; Mulhern, Dawn M; Donahue, Seth W; Busse, Björn; Hulsey, Brannon I; Zedda, Marco; Sorenson, Scott M

    2013-06-01

    Studies of secondary osteons in ribs have provided a great deal of what is known about remodeling dynamics. Compared with limb bones, ribs are metabolically more active and sensitive to hormonal changes, and receive frequent low-strain loading. Optimization for calcium exchange in rib osteons might be achieved without incurring a significant reduction in safety factor by disproportionally increasing central canal size with increased osteon size (positive allometry). By contrast, greater mechanical loads on limb bones might favor reducing deleterious consequences of intracortical porosity by decreasing osteon canal size with increased osteon size (negative allometry). Evidence of this metabolic/mechanical dichotomy between ribs and limb bones was sought by examining relationships between Haversian canal surface area (BS, osteon Haversian canal perimeter, HC.Pm) and bone volume (BV, osteonal wall area, B.Ar) in a broad size range of mature (quiescent) osteons from adult human limb bones and ribs (modern and medieval) and various adult and subadult non-human limb bones and ribs. Reduced major axis (RMA) and least-squares (LS) regressions of HC.Pm/B.Ar data show that rib and limb osteons cannot be distinguished by dimensional allometry of these parameters. Although four of the five rib groups showed positive allometry in terms of the RMA slopes, nearly 50% of the adult limb bone groups also showed positive allometry when negative allometry was expected. Consequently, our results fail to provide clear evidence that BS/BV scaling reflects a rib versus limb bone dichotomy whereby calcium exchange might be preferentially enhanced in rib osteons. Copyright © 2013 Wiley Periodicals, Inc.

  19. Influence of Screw Length and Bone Thickness on the Stability of Temporary Implants

    Directory of Open Access Journals (Sweden)

    Daniel Jogaib Fernandes

    2015-09-01

    Full Text Available The purpose of this work was to study the influence of screw length and bone thickness on the stability of temporary implants. A total of 96 self-drilling temporary screws with two different lengths were inserted into polyurethane blocks (n = 66, bovine femurs (n = 18 and rabbit tibia (n = 12 with different cortical thicknesses (1 to 8 mm. Screws insertion in polyurethane blocks was assisted by a universal testing machine, torque peaks were collected by a digital torquemeter and bone thickness was monitored by micro-CT. The results showed that the insertion torque was significantly increased with the thickness of cortical bone from polyurethane (p < 0.0001, bovine (p = 0.0035 and rabbit (p < 0.05 sources. Cancellous bone improved significantly the mechanical implant stability. Insertion torque and insertion strength was successfully moduled by equations, based on the cortical/cancellous bone behavior. Based on the results, insertion torque and bone strength can be estimate in order to prevent failure of the cortical layer during temporary screw placement. The stability provided by a cortical thickness of 2 or 1 mm coupled to cancellous bone was deemed sufficient for temporary implants stability.

  20. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Gao Shu-guang

    2012-06-01

    Full Text Available Abstract Background Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF. However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Methods Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC, bone mineral density (BMD, bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Results Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption, affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface, and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. Conclusion The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

  1. 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer

    Science.gov (United States)

    Ma, Hongshi; Li, Tao; Huan, Zhiguang; Zhang, Meng; Yang, Zezheng; Wang, Jinwu; Chang, Jiang; Wu, Chengtie

    2018-04-01

    The challenges in bone tumor therapy are how to repair the large bone defects induced by surgery and kill all possible residual tumor cells. Compared to cancellous bone defect regeneration, cortical bone defect regeneration has a higher demand for bone substitute materials. To the best of our knowledge, there are currently few bifunctional biomaterials with an ultra-high strength for both tumor therapy and cortical bone regeneration. Here, we designed Fe-CaSiO3 composite scaffolds (30CS) via 3D printing technique. First, the 30CS composite scaffolds possessed a high compressive strength that provided sufficient mechanical support in bone cortical defects; second, synergistic photothermal and ROS therapies achieved an enhanced tumor therapeutic effect in vitro and in vivo. Finally, the presence of CaSiO3 in the composite scaffolds improved the degradation performance, stimulated the proliferation and differentiation of rBMSCs, and further promoted bone formation in vivo. Such 30CS scaffolds with a high compressive strength can function as versatile and efficient biomaterials for the future regeneration of cortical bone defects and the treatment of bone cancer.

  2. The effect of excitation and preparation pulses on nonslice selective 2D UTE bicomponent analysis of bound and free water in cortical bone at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shihong [Department of Radiology, University of California, San Diego, California 92103-8226 (United States); Department of Radiology, Hua Dong Hospital, Fudan University, Shanghai 200040 (China); Yancheng Medical College, Jiangsu (China); The First People' s Hospital of Yancheng City, Jiangsu 224005 (China); Chang, Eric Y.; Chung, Christine B. [VA San Diego Healthcare System, San Diego, California 92161 and Department of Radiology, University of California, San Diego, California 92103-8226 (United States); Bae, Won C.; Du, Jiang, E-mail: jiangdu@ucsd.edu [Department of Radiology, University of California, San Diego, California 92103-8226 (United States); Hua, Yanqing [Department of Radiology, Hua Dong Hospital, Fudan University, Shanghai 200040 (China); Zhou, Yi [The First People' s Hospital of Yancheng City, Jiangsu 224005 (China)

    2014-02-15

    Purpose: The purpose of this study was to investigate the effect of excitation, fat saturation, long T2 saturation, and adiabatic inversion pulses on ultrashort echo time (UTE) imaging with bicomponent analysis of bound and free water in cortical bone for potential applications in osteoporosis. Methods: Six bovine cortical bones and six human tibial midshaft samples were harvested for this study. Each bone sample was imaged with eight sequences using 2D UTE imaging at 3T with half and hard excitation pulses, without and with fat saturation, long T2 saturation, and adiabatic inversion recovery (IR) preparation pulses. Single- and bicomponent signal models were utilized to calculate the T2{sup *}s and/or relative fractions of short and long T2{sup *}s. Results: For all bone samples UTE T2{sup *} signal decay showed bicomponent behavior. A higher short T2{sup *} fraction was observed on UTE images with hard pulse excitation compared with half pulse excitation (75.6% vs 68.8% in bovine bone, 79.9% vs 73.2% in human bone). Fat saturation pulses slightly reduced the short T2{sup *} fraction relative to regular UTE sequences (5.0% and 2.0% reduction, respectively, with half and hard excitation pulses for bovine bone, 6.3% and 8.2% reduction, respectively, with half and hard excitation pulses for human bone). Long T2 saturation pulses significantly reduced the long T2{sup *} fraction relative to regular UTE sequence (18.9% and 17.2% reduction, respectively, with half and hard excitation pulses for bovine bone, 26.4% and 27.7% reduction, respectively, with half and hard excitation pulses for human bone). With IR-UTE preparation the long T2{sup *} components were significantly reduced relative to regular UTE sequence (75.3% and 66.4% reduction, respectively, with half and hard excitation pulses for bovine bone, 87.7% and 90.3% reduction, respectively, with half and hard excitation pulses for human bone). Conclusions: Bound and free water T2{sup *}s and relative fractions can

  3. The effect of excitation and preparation pulses on nonslice selective 2D UTE bicomponent analysis of bound and free water in cortical bone at 3T

    International Nuclear Information System (INIS)

    Li, Shihong; Chang, Eric Y.; Chung, Christine B.; Bae, Won C.; Du, Jiang; Hua, Yanqing; Zhou, Yi

    2014-01-01

    Purpose: The purpose of this study was to investigate the effect of excitation, fat saturation, long T2 saturation, and adiabatic inversion pulses on ultrashort echo time (UTE) imaging with bicomponent analysis of bound and free water in cortical bone for potential applications in osteoporosis. Methods: Six bovine cortical bones and six human tibial midshaft samples were harvested for this study. Each bone sample was imaged with eight sequences using 2D UTE imaging at 3T with half and hard excitation pulses, without and with fat saturation, long T2 saturation, and adiabatic inversion recovery (IR) preparation pulses. Single- and bicomponent signal models were utilized to calculate the T2 * s and/or relative fractions of short and long T2 * s. Results: For all bone samples UTE T2 * signal decay showed bicomponent behavior. A higher short T2 * fraction was observed on UTE images with hard pulse excitation compared with half pulse excitation (75.6% vs 68.8% in bovine bone, 79.9% vs 73.2% in human bone). Fat saturation pulses slightly reduced the short T2 * fraction relative to regular UTE sequences (5.0% and 2.0% reduction, respectively, with half and hard excitation pulses for bovine bone, 6.3% and 8.2% reduction, respectively, with half and hard excitation pulses for human bone). Long T2 saturation pulses significantly reduced the long T2 * fraction relative to regular UTE sequence (18.9% and 17.2% reduction, respectively, with half and hard excitation pulses for bovine bone, 26.4% and 27.7% reduction, respectively, with half and hard excitation pulses for human bone). With IR-UTE preparation the long T2 * components were significantly reduced relative to regular UTE sequence (75.3% and 66.4% reduction, respectively, with half and hard excitation pulses for bovine bone, 87.7% and 90.3% reduction, respectively, with half and hard excitation pulses for human bone). Conclusions: Bound and free water T2 * s and relative fractions can be assessed using UTE bicomponent

  4. Bone Response to Dietary Co-Enrichment with Powdered Whole Grape and Probiotics

    Directory of Open Access Journals (Sweden)

    Cynthia Blanton

    2018-01-01

    Full Text Available Nutrition is a primary modifiable determinant of chronic noncommunicable disease, including osteoporosis. An etiology of osteoporosis is the stimulation of bone-resorbing osteoclasts by reactive oxygen species (ROS. Dietary polyphenols and probiotics demonstrate protective effects on bone that are associated with reduced ROS formation and suppressed osteoclast activity. This study tested the effect of dietary enrichment with powdered whole grape and probiotics (composed of equal parts Bifidobacterium bifidum, B. breve, Lactobacillus casei, L. plantarum, and L. bulgaricus on bone microarchitecture in a mouse model of age-related osteoporosis. Groups (n = 7 each of 10-month-old male mice were fed one of six diets for 6 months: 10% grape powder with sugar corrected to 20%; 20% grape powder; 1% probiotic with sugar corrected to 20%; 10% grape powder + 1% probiotic with sugar corrected to 20%; 20% grape powder + 1% probiotic; 20% sugar control. Femur, tibia and 4th lumbar vertebrae from 10-month-old mice served as comparator baseline samples. Bone microarchitecture was measured by micro-computed tomography and compared across diet groups using analysis of variance. Aging exerted a significant effect on tibia metaphysis trabecular bone, with baseline 10-month-old mice having significantly higher bone volume/total volume (BV/TV and trabecular number measurements and lower trabecular spacing measurements than all 16-month-old groups (p < 0.001. Neither grape nor probiotic enrichment significantly improved bone microarchitecture during aging compared to control diet. The combination of 20% grape + 1% probiotic exerted detrimental effects on tibia metaphysis BV/TV compared to 10% grape + 1% probiotic, and trabecular number and trabecular spacing compared to 10% grape + 1% probiotic, 1% probiotic and control groups (p < 0.05. Femur metaphysis trabecular bone displayed less pronounced aging effects than tibia bone, but also showed detrimental effects of the

  5. Tibial bone fractures occurring after medioproximal tibial bone grafts for oral and maxillofacial reconstruction.

    Science.gov (United States)

    Kim, Il-Kyu; Cho, Hyun-Young; Pae, Sang-Pill; Jung, Bum-Sang; Cho, Hyun-Woo; Seo, Ji-Hoon

    2013-12-01

    Oral and maxillofacial defects often require bone grafts to restore missing tissues. Well-recognized donor sites include the anterior and posterior iliac crest, rib, and intercalvarial diploic bone. The proximal tibia has also been explored as an alternative donor site. The use of the tibia for bone graft has many benefits, such as procedural ease, adequate volume of cancellous and cortical bone, and minimal complications. Although patients rarely complain of pain, swelling, discomfort, or dysfunction, such as gait disturbance, both patients and surgeons should pay close attention to such after effects due to the possibility of tibial fracture. The purpose of this study is to analyze tibial fractures that occurring after osteotomy for a medioproximal tibial graft. An analysis was intended for patients who underwent medioproximal tibial graft between March 2004 and December 2011 in Inha University Hospital. A total of 105 subjects, 30 females and 75 males, ranged in age from 17 to 78 years. We investigated the age, weight, circumstance, and graft timing in relation to tibial fracture. Tibial fractures occurred in four of 105 patients. There were no significant differences in graft region, shape, or scale between the fractured and non-fractured patients. Patients who undergo tibial grafts must be careful of excessive external force after the operation.

  6. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction.

    Science.gov (United States)

    Li, Zuoping; Kindig, Matthew W; Subit, Damien; Kent, Richard W

    2010-11-01

    The purpose of this paper was to investigate the sensitivity of the structural responses and bone fractures of the ribs to mesh density, cortical thickness, and material properties so as to provide guidelines for the development of finite element (FE) thorax models used in impact biomechanics. Subject-specific FE models of the second, fourth, sixth and tenth ribs were developed to reproduce dynamic failure experiments. Sensitivity studies were then conducted to quantify the effects of variations in mesh density, cortical thickness, and material parameters on the model-predicted reaction force-displacement relationship, cortical strains, and bone fracture locations for all four ribs. Overall, it was demonstrated that rib FE models consisting of 2000-3000 trabecular hexahedral elements (weighted element length 2-3mm) and associated quadrilateral cortical shell elements with variable thickness more closely predicted the rib structural responses and bone fracture force-failure displacement relationships observed in the experiments (except the fracture locations), compared to models with constant cortical thickness. Further increases in mesh density increased computational cost but did not markedly improve model predictions. A ±30% change in the major material parameters of cortical bone lead to a -16.7 to 33.3% change in fracture displacement and -22.5 to +19.1% change in the fracture force. The results in this study suggest that human rib structural responses can be modeled in an accurate and computationally efficient way using (a) a coarse mesh of 2000-3000 solid elements, (b) cortical shells elements with variable thickness distribution and (c) a rate-dependent elastic-plastic material model. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Intra- and inter-observer variation in histological criteria used in age at death determination based on femoral cortical bone

    DEFF Research Database (Denmark)

    Lynnerup, N; Thomsen, J L; Frohlich, B

    1998-01-01

    been carried out dealing with the intra- and inter-observer error. Furthermore, when such studies have been completed, the statistical tools for assessing variability have not been adequate. This study presents the results of applying simple quantitative statistics on several counts of microscopic...... elements as observed on photographic images of cortical bone, in order to assess intra- and inter-observer error. Overall, substantial error was present at the level of identifying and counting secondary osteons, osteon fragments and Haversian canals. Only secondary osteons can be reliably identified...

  8. The double cortical line: a sign of osteopenia

    International Nuclear Information System (INIS)

    Lamb, C.R.

    1990-01-01

    The double cortical line is a radiographic sign of osteopenia which results from intracortical resorption of bone. This sign is frequently seen in humans with osteopenia but has received minimal attention in the veterinary literature. This report describes the double cortical line in cases of senile osteopenia, nutritional secondary hyperparathyroidism, suspected renal secondary hyperparathyroidism and in the acetabulum following triple pelvic osteotomy for hip dysplasia

  9. Early Subchondral Bone Loss at Arthritis Onset Predicted Late Arthritis Severity in a Rat Arthritis Model.

    Science.gov (United States)

    Courbon, Guillaume; Cleret, Damien; Linossier, Marie-Thérèse; Vico, Laurence; Marotte, Hubert

    2017-06-01

    Synovitis is usually observed before loss of articular function in rheumatoid arthritis (RA). In addition to the synovium and according to the "Inside-Outside" theory, bone compartment is also involved in RA pathogenesis. Then, we investigated time dependent articular bone loss and prediction of early bone loss to late arthritis severity on the rat adjuvant-induced arthritis (AIA) model. Lewis female rats were longitudinally monitored from arthritis induction (day 0), with early (day 10) and late (day 17) steps. Trabecular and cortical microarchitecture parameters of four ankle bones were assessed by microcomputed tomography. Gene expression was determined at sacrifice. Arthritis occurred at day 10 in AIA rats. At this time, bone erosions were detected on four ankle bones, with cortical porosity increase (+67%) and trabecular alterations including bone volume fraction (BV/TV: -13%), and trabecular thickness decrease. Navicular bone assessment was the most reproducible and sensitive. Furthermore, strong correlations were observed between bone alterations at day 10 and arthritis severity or bone loss at day 17, including predictability of day 10 BV/TV to day 17 articular index (R 2  = 0.76). Finally, gene expression at day 17 confirmed massive osteoclast activation and interestingly provided insights on strong activation of bone formation inhibitor markers at the joint level. In rat AIA, bone loss was already observed at synovitis onset and was predicted late arthritis severity. Our results reinforced the key role of subchondral bone in arthritis pathogenesis, in favour to the "Inside-Outside" theory. Mechanisms of bone loss in rat AIA involved resorption activation and formation inhibition changes. J. Cell. Physiol. 232: 1318-1325, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Quantitative 3D analysis of bone in hip osteoarthritis using clinical computed tomography

    International Nuclear Information System (INIS)

    Turmezei, Tom D.; Treece, Graham M.; Gee, Andrew H.; Fotiadou, Anastasia F.; Poole, Kenneth E.S.

    2016-01-01

    To assess the relationship between proximal femoral cortical bone thickness and radiological hip osteoarthritis using quantitative 3D analysis of clinical computed tomography (CT) data. Image analysis was performed on clinical CT imaging data from 203 female volunteers with a technique called cortical bone mapping (CBM). Colour thickness maps were created for each proximal femur. Statistical parametric mapping was performed to identify statistically significant differences in cortical bone thickness that corresponded with the severity of radiological hip osteoarthritis. Kellgren and Lawrence (K and L) grade, minimum joint space width (JSW) and a novel CT-based osteophyte score were also blindly assessed from the CT data. For each increase in K and L grade, cortical thickness increased by up to 25 % in distinct areas of the superolateral femoral head-neck junction and superior subchondral bone plate. For increasing severity of CT osteophytes, the increase in cortical thickness was more circumferential, involving a wider portion of the head-neck junction, with up to a 7 % increase in cortical thickness per increment in score. Results were not significant for minimum JSW. These findings indicate that quantitative 3D analysis of the proximal femur can identify changes in cortical bone thickness relevant to structural hip osteoarthritis. (orig.)

  11. Normal epidermal growth factor receptor signaling is dispensable for bone anabolic effects of parathyroid hormone.

    Science.gov (United States)

    Schneider, Marlon R; Dahlhoff, Maik; Andrukhova, Olena; Grill, Jessica; Glösmann, Martin; Schüler, Christiane; Weber, Karin; Wolf, Eckhard; Erben, Reinhold G

    2012-01-01

    Although the bone anabolic properties of intermittent parathyroid hormone (PTH) have long been employed in the treatment of osteoporosis, the molecular mechanisms behind this action remain largely unknown. Previous studies showed that PTH increases the expression and the activity of epidermal growth factor receptor (EGFR) in osteoblasts, and activation of ERK1/2 by PTH in osteoblasts was demonstrated to induce the proteolytical release of EGFR ligands and EGFR transactivation. However, conclusive evidence for an important role of the EGFR system in mediating the anabolic actions of intermittent PTH on bone in vivo is lacking. Here, we evaluated the effects of intermittent PTH on bone in Waved-5 (Wa5) mice which carry an antimorphic Egfr allele whose product acts as a dominant negative receptor. Heterozygous Wa5 females and control littermates received a subcutaneous injection of PTH (80 μg/kg) or buffer on 5 days per week for 4 weeks. Wa5 mice had slightly lower total bone mineral density (BMD), but normal cancellous bone volume and turnover in the distal femoral metaphysis. The presence of the antimorphic Egfr allele neither influenced the PTH-induced increase in serum osteocalcin nor the increases in distal femoral BMD, cortical thickness, cancellous bone volume, and cancellous bone formation rate. Similarly, the PTH-induced rise in lumbar vertebral BMD was unchanged in Wa5 relative to wild-type mice. Wa5-derived osteoblasts showed considerably lower basal extracellular signal-regulated kinase 1/2 (ERK1/2) activation as compared to control osteoblasts. Whereas activation of ERK1/2 by the EGFR ligand amphiregulin was largely blocked in Wa5 osteoblasts, treatment with PTH induced ERK1/2 activation comparable to that observed in control osteoblasts, relative to baseline levels. Our data indicate that impairment of EGFR signaling does not affect the anabolic action of intermittent PTH on cancellous and cortical bone. Copyright © 2011. Published by Elsevier Inc.

  12. Food restriction causes low bone strength and microarchitectural deterioration in exercised growing male rats.

    Science.gov (United States)

    Hattori, Satoshi; Park, Jong-Hoon; Agata, Umon; Oda, Masaya; Higano, Michito; Aikawa, Yuki; Akimoto, Takayuki; Nabekura, Yoshiharu; Yamato, Hideyuki; Ezawa, Ikuko; Omi, Naomi

    2014-01-01

    The pathogenesis of bone disorders in young male athletes has not been well understood. We hypothesized that bone fragility is caused by low energy availability, due to insufficient food intake and excessive exercise energy expenditure in young male athletes. To examine this hypothesis, we investigated the influence of food restriction on bone strength and bone morphology in exercised growing male rats, using three-point bending test, dual-energy X-ray absormetry, and micro-computed tomography. Four-week-old male Sprague-Dawley rats were divided randomly into the following groups: the control (Con) group, exercise (Ex) group, food restriction (R) group, and food restriction plus exercise (REx) group after a 1-wk acclimatization period. Thirty-percent food restriction in the R and REx groups was carried out in comparison with that in the Con group. Voluntary running exercise was performed in the Ex and REx groups. The experimental period lasted 13 wk. At the endpoint of this experiment, the bone strength of the femurs and tibial BMD in the REx group were significantly lower than those in the Con group. Moreover, trabecular bone volume and cortical bone volume in the REx group were also significantly lower than those in the Con group. These findings indicate that food restriction causes low bone strength and microarchitectural deterioration in exercised growing male rats.

  13. Cortical changes in cerebral small vessel diseases: a 3D MRI study of cortical morphology in CADASIL

    International Nuclear Information System (INIS)

    Jouvent, E.; Bousser, M.G.; Chabriat, H.; Jouvent, E.; Bousser, M.G.; Chabriat, H.; Porcher, R.; Viswanathan, A.; Viswanathan, A.; Viswanathan, A.; O'Sullivan, M.; Dichgans, M.; Guichard, J.P.

    2008-01-01

    Brain atrophy represents a key marker of disease progression in cerebrovascular disorders. The 3D changes of cortex morphology occurring during the course of small vessel diseases of the brain (SVDB) remain poorly understood. The objective of this study was to assess the changes affecting depth and surface area of cortical sulci and their clinical and radiological correlates in a cohort of patients with cerebral autosomal dominant arteriolopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a genetic SVDB. Data were obtained from a series of 69 CADASIL patients. Validated methods were used to determine depth and surface area of four cortical sulci. The ratio of brain to intracranial cavity volumes (brain parenchymal fraction-BPF), volume of lacunar lesions (LL) and of white matter hyper-intensities, number of cerebral micro-haemorrhages, and mean apparent diffusion coefficient were also measured. Association between depth and surface area of the cortical sulci and BPF, clinical status and subcortical MRI lesions were tested. Depth and surface area of cortical sulci obtained in 54 patients were strongly correlated with both cognitive score and disability scales. Depth was related to the extent of subcortical lesions, surface area was related only to age. In additional analyses, the depth of the cingular sulcus was independently associated with the volume of LL (P 0.001), and that of the superior frontal sulcus with the mean apparent diffusion coefficient (P 0.003). In CADASIL, important morphological changes of cortical sulci occur in association with clinical worsening,extension of subcortical tissue damage and progression of global cerebral atrophy. These results suggest that the examination of cortical morphology may be of high clinical relevance in SVDB. (authors)

  14. Interstitial ultrasound ablation of tumors within or adjacent to bone: Contributions of preferential heating at the bone surface

    Science.gov (United States)

    Scott, Serena J.; Prakash, Punit; Salgaonkar, Vasant; Jones, Peter D.; Cam, Richard N.; Han, Misung; Rieke, Viola; Burdette, E. Clif; Diederich, Chris J.

    2013-02-01

    Preferential heating of bone due to high ultrasound attenuation may enhance thermal ablation performed with cathetercooled interstitial ultrasound applicators in or near bone. At the same time, thermally and acoustically insulating cortical bone may protect sensitive structures nearby. 3D acoustic and biothermal transient finite element models were developed to simulate temperature and thermal dose distributions during catheter-cooled interstitial ultrasound ablation near bone. Experiments in ex vivo tissues and tissue-mimicking phantoms were performed to validate the models and to quantify the temperature profiles and ablated volumes for various distances between the interstitial applicator and the bone surface. 3D patient-specific models selected to bracket the range of clinical usage were developed to investigate what types of tumors could be treated, applicator configurations, insertion paths, safety margins, and other parameters. Experiments show that preferential heating at the bone surface decreases treatment times compared to when bone is absent and that all tissue between an applicator and bone can be ablated when they are up to 2 cm apart. Simulations indicate that a 5-7 mm safety margin of normal bone is needed to protect (thermal dose tumors 1.0-3.8 cm (L) and 1.3-3.0 cm (D) near or within bone were ablated (thermal dose > 240 CEM43°C) within 10 min without damaging the nearby spinal cord, lungs, esophagus, trachea, or major vasculature. Preferential absorption of ultrasound by bone may provide improved localization, faster treatment times, and larger treatment zones in tumors in and near bone compared to other heating modalities.

  15. Scintigraphic findings of bone and bone-marrow and determination of bone mineral density using photon absorptiometry in osteopetrosis

    International Nuclear Information System (INIS)

    Otsuka, Nobuaki; Fukunaga, Masao; Morita, Koichi

    1988-01-01

    On a 15-year-old girl with osteopetrosis, bone and bonemarrow scintigraphy were performed. Also, bone mineral density (BMD) with quantitative CT (QCT), single photon absorptiometry (SPA) and dual photon absorptiometry (DPA) were measured. On bone scintigraphy the diffusely increased skeletal uptake and relatively diminished renal uptake were noted. On the other hand, on bone marrow scintigraphy poor accumulation in central marrow and peripheral expansion were shown. BMD value by QCT and DPA (mainly trabecular bone) was markedly high, while BMD by SPA (mainly cortical bone) was within normal range. Thus, it was shown that bone and bone-marrow scintigraphy combined with BMD measurement by photon absorptiometry were useful and essential in evaluating the pathophysiology of osteosclerosis. (author)

  16. Interpreting the three-dimensional orientation of vascular canals and cross-sectional geometry of cortical bone in birds and bats.

    Science.gov (United States)

    Pratt, Isaac V; Johnston, James D; Walker, Ernie; Cooper, David M L

    2018-06-01

    Cortical bone porosity and specifically the orientation of vascular canals is an area of growing interest in biomedical research and comparative/paleontological anatomy. The potential to explain microstructural adaptation is of great interest. However, the determinants of the development of canal orientation remain unclear. Previous studies of birds have shown higher proportions of circumferential canals (called laminarity) in flight bones than in hindlimb bones, and interpreted this as a sign that circumferential canals are a feature for resistance to the torsional loading created by flight. We defined the laminarity index as the percentage of circumferential canal length out of the total canal length. In this study we examined the vascular canal network in the humerus and femur of a sample of 31 bird and 24 bat species using synchrotron micro-computed tomography (micro-CT) to look for a connection between canal orientation and functional loading. The use of micro-CT provides a full three-dimensional (3D) map of the vascular canal network and provides measurements of the 3D orientation of each canal in the whole cross-section of the bone cortex. We measured several cross-sectional geometric parameters and strength indices including principal and polar area moments of inertia, principal and polar section moduli, circularity, buckling ratio, and a weighted cortical thickness index. We found that bat cortices are relatively thicker and poorly vascularized, whereas those of birds are thinner and more highly vascularized, and that according to our cross-sectional geometric parameters, bird bones have a greater resistance to torsional stress than the bats; in particular, the humerus in birds is more adapted to resist torsional stresses than the femur. Our results show that birds have a significantly (P = 0.031) higher laminarity index than bats, with birds having a mean laminarity index of 0.183 in the humerus and 0.232 in the femur, and bats having a mean laminarity

  17. Erythropoietic bone marrow in the pigeon: Development of its distribution and volume during growth and pneumatization of bones

    International Nuclear Information System (INIS)

    Schepelmann, K.

    1990-01-01

    During postnatal development of the pigeon, a large portion of the skeleton becomes pneumatized, displacing the hemopoietic bone marrow. The consequences of pneumatization on distribution and quantity of bone marrow as well as the availability of other sites for hemopoiesis have been investigated. Hemopoietic marrow of differently aged pigeons divided into five groups from 1 week posthatching (p.h.) up to 6 months p.h. was labeled with Fe-59 and examined by serial whole-body sections. Autoradiography and morphometry as well as scintillation counts of single bones and organs were also carried out. No sign of a reactivation of embryonic sites of erythropoiesis was found. Bone marrow weight and its proportion of whole-body weight increased during the first 4 weeks p.h. from 0.54% to 2.44% and decreased in the following months to about 1.0%. The developing bone marrow showed a progressive distribution during the first months of life, eventually being distributed proportionally over the entire skeleton, except for the skull. At the age of 6 months p.h. bone marrow had been displaced, its volume decreasing in correlation to increasing pneumaticity and conversion to fatty marrow. This generates the characteristic pattern of bone marrow distribution in adult pigeons, which shows hemopoietic bone marrow in ulna, radius, femur, tibiotarsus, scapula, furcula, and the caudal vertebrae

  18. EPR dosimetry of cortical bone and tooth enamel irradiated with X and gamma rays: Study of energy dependence

    International Nuclear Information System (INIS)

    Schauer, D.A.; Links, J.M.; Desrosiers, M.F.; Le, F.G.; Seltzer, S.M.

    1994-01-01

    Previous investigators have reported that the radiation-induced EPR signal intensity in compact or cortical bone increases up to a factor of two with decreasing photon energy for a given absorbed dose. If the EPR signal intensity was dependent on energy, it could limit the application of EPR spectrometry and the additive reirradiation method to obtain dose estimates. We have recently shown that errors in the assumptions governing conversion of measured exposure to absorbed dose can lead to similar open-quotes apparentclose quotes energy-dependence results. We hypothesized that these previous results were due to errors in the estimated dose in bone, rather than the effects of energy dependence per se. To test this hypothesis we studied human adult cortical bone from male and female donors ranging in age from 23 to 95 years, and bovine tooth enamel, using 34 and 138 keV average energy X-ray beams and 137 Cs (662 keV) and 60 Co (1250 keV) γ rays. In a femur from a 47-year-old male (subject 1), there was a difference of borderline significance at the α = 0.05 level in the mean radiation-induced hydroxyapatite signal intensities as a function of photon energy. No other statistically significant differences in EPR signal intensity as a function of photon energy were observed in this subject, or in the tibia from a 23-year-old male (subject 2) and the femur from a 75-year-old female (subject 3). However, there was a trend toward a decrease (12-15%) in signal intensity at the lowest energy compared with the highest energy in subjects 1 and 3. Further analysis of the data from subject 1 revealed that this trend, which is in the opposite direction of previous reports but is consistent with theory, is statistically significant. There were no efforts of energy dependence in the tooth samples. 16 refs., 7 figs., 5 tabs

  19. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Holly; Zimmermann, Elizabeth; Schaible, Eric; Tang, Simon; Alliston, Tamara; Ritchie, Robert

    2011-08-19

    Bone comprises a complex structure of primarily collagen, hydroxyapatite and water, where each hierarchical structural level contributes to its strength, ductility and toughness. These properties, however, are degraded by irradiation, arising from medical therapy or bone-allograft sterilization. We provide here a mechanistic framework for how irradiation affects the nature and properties of human cortical bone over a range of characteristic (nano to macro) length-scales, following x-­ray exposures up to 630 kGy. Macroscopically, bone strength, ductility and fracture resistance are seen to be progressively degraded with increasing irradiation levels. At the micron-­scale, fracture properties, evaluated using in-situ scanning electron microscopy and synchrotron x-ray computed micro-tomography, provide mechanistic information on how cracks interact with the bone-matrix structure. At sub-micron scales, strength properties are evaluated with in-situ tensile tests in the synchrotron using small-/wide-angle x-ray scattering/diffraction, where strains are simultaneously measured in the macroscopic tissue, collagen fibrils and mineral. Compared to healthy bone, results show that the fibrillar strain is decreased by ~40% following 70 kGy exposures, consistent with significant stiffening and degradation of the collagen. We attribute the irradiation-­induced deterioration in mechanical properties to mechanisms at multiple length-scales, including changes in crack paths at micron-­scales, loss of plasticity from suppressed fibrillar sliding at sub-­micron scales, and the loss and damage of collagen at the nano-­scales, the latter being assessed using Raman and Fourier-Transform-Infrared spectroscopy and a fluorometric assay.

  20. Increases in bone density during treatment of men with idiopathic hypogonadotropic hypogonadism

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, J.S.; Klibanski, A.; Neer, R.M.; Doppelt, S.H.; Rosenthal, D.I.; Segre, G.V.; Crowley, W.F. Jr. (Massachusetts General Hospital, Boston (USA))

    1989-10-01

    To assess the effects of gonadal steroid replacement on bone density in men with osteoporosis due to severe hypogonadism, we measured cortical bone density in the distal radius by 125I photon absorptiometry and trabecular bone density in the lumbar spine by quantitative computed tomography in 21 men with isolated GnRH deficiency while serum testosterone levels were maintained in the normal adult male range for 12-31 months (mean +/- SE, 23.7 +/- 1.1). In men who initially had fused epiphyses (n = 15), cortical bone density increased from 0.71 +/- 0.02 to 0.74 +/- 0.01 g/cm2 (P less than 0.01), while trabecular bone density did not change (116 +/- 9 compared with 119 +/- 7 mg/cm3). In men who initially had open epiphyses (n = 6), cortical bone density increased from 0.62 +/- 0.01 to 0.70 +/- 0.03 g/cm2 (P less than 0.01), while trabecular bone density increased from 96 +/- 13 to 109 +/- 12 mg/cm3 (P less than 0.01). Cortical bone density increased 0.03 +/- 0.01 g/cm2 in men with fused epiphyses and 0.08 +/- 0.02 g/cm2 in men with open epiphyses (P less than 0.05). Despite these increases, neither cortical nor trabecular bone density returned to normal levels. Histomorphometric analyses of iliac crest bone biopsies demonstrated that most of the men had low turnover osteoporosis, although some men had normal to high turnover osteoporosis. We conclude that bone density increases during gonadal steroid replacement of GnRH-deficient men, particularly in men who are skeletally immature.

  1. Increases in bone density during treatment of men with idiopathic hypogonadotropic hypogonadism

    International Nuclear Information System (INIS)

    Finkelstein, J.S.; Klibanski, A.; Neer, R.M.; Doppelt, S.H.; Rosenthal, D.I.; Segre, G.V.; Crowley, W.F. Jr.

    1989-01-01

    To assess the effects of gonadal steroid replacement on bone density in men with osteoporosis due to severe hypogonadism, we measured cortical bone density in the distal radius by 125I photon absorptiometry and trabecular bone density in the lumbar spine by quantitative computed tomography in 21 men with isolated GnRH deficiency while serum testosterone levels were maintained in the normal adult male range for 12-31 months (mean +/- SE, 23.7 +/- 1.1). In men who initially had fused epiphyses (n = 15), cortical bone density increased from 0.71 +/- 0.02 to 0.74 +/- 0.01 g/cm2 (P less than 0.01), while trabecular bone density did not change (116 +/- 9 compared with 119 +/- 7 mg/cm3). In men who initially had open epiphyses (n = 6), cortical bone density increased from 0.62 +/- 0.01 to 0.70 +/- 0.03 g/cm2 (P less than 0.01), while trabecular bone density increased from 96 +/- 13 to 109 +/- 12 mg/cm3 (P less than 0.01). Cortical bone density increased 0.03 +/- 0.01 g/cm2 in men with fused epiphyses and 0.08 +/- 0.02 g/cm2 in men with open epiphyses (P less than 0.05). Despite these increases, neither cortical nor trabecular bone density returned to normal levels. Histomorphometric analyses of iliac crest bone biopsies demonstrated that most of the men had low turnover osteoporosis, although some men had normal to high turnover osteoporosis. We conclude that bone density increases during gonadal steroid replacement of GnRH-deficient men, particularly in men who are skeletally immature

  2. Effect of calvarial burring on resorption of onlay cranial bone graft.

    Science.gov (United States)

    Hassanein, Aladdin H; Clune, James E; Mulliken, John B; Arany, Praveen R; Rogers, Gary F; Kulungowski, Ann M; Greene, Arin K

    2012-09-01

    Variable resorption occurs whenever calvarial bone graft is used for onlay cranioplasty. The recipient ectocortex may be burred to expose vessels and osteocytes to maximize healing. The purpose of this study was to determine whether abrading the recipient site improves the volume of onlay graft. The parietal bones of 17 rabbits were sectioned into split-thickness and full-thickness grafts. The right frontal cortex was abraded with a bur to punctate bleeding. Pairs of split-thickness (n = 48) or full-thickness (n = 20) grafts were onlayed to the burred right frontal bone and to the nonburred left frontal bone. Micro-computed tomography was used to determine graft volume immediately postoperatively and 16 weeks later. Histology, including tartrate-resistant acid phosphatase staining, was performed to quantify vascular channels and osteoclasts per high-power field 10 days postoperatively. Split-thickness graft volume decreased 58.0% when placed on the burred calvarial site, compared with grafts on the nonburred cortex (28.4%) (P = 0.01). Full-thickness grafts showed a similar trend: greater resorption (39.1%) when onlayed onto abraded calvaria compared with nonburred ectocortex (26.0%) (P = 0.11). Split-thickness graft orientation (cortical vs cancellous side in contact with the recipient site) did not affect resorption (P = 0.67). Onlay grafts placed on the burred recipient site had more vascular channels (11.8) and osteoclasts (5.7), compared with grafts over nonabraded cortex (3.4 and 4.2, respectively) (P cranial bone grafting promotes resorption, possibly by increasing vascularization and osteoclastic activity. This technique cannot be recommended.

  3. Effects of different loading patterns on the trabecular bone morphology of the proximal femur using adaptive bone remodeling.

    Science.gov (United States)

    Banijamali, S Mohammad Ali; Oftadeh, Ramin; Nazarian, Ara; Goebel, Ruben; Vaziri, Ashkan; Nayeb-Hashemi, Hamid

    2015-01-01

    In this study, the changes in the bone density of human femur model as a result of different loadings were investigated. The model initially consisted of a solid shell representing cortical bone encompassing a cubical network of interconnected rods representing trabecular bone. A computationally efficient program was developed that iteratively changed the structure of trabecular bone by keeping the local stress in the structure within a defined stress range. The stress was controlled by either enhancing existing beam elements or removing beams from the initial trabecular frame structure. Analyses were performed for two cases of homogenous isotropic and transversely isotropic beams.Trabecular bone structure was obtained for three load cases: walking, stair climbing and stumbling without falling. The results indicate that trabecular bone tissue material properties do not have a significant effect on the converged structure of trabecular bone. In addition, as the magnitude of the loads increase, the internal structure becomes denser in critical zones. Loading associated with the stumbling results in the highest density;whereas walking, considered as a routine daily activity, results in the least internal density in different regions. Furthermore, bone volume fraction at the critical regions of the converged structure is in good agreement with previously measured data obtained from combinations of dual X-ray absorptiometry (DXA) and computed tomography (CT). The results indicate that the converged bone architecture consisting of rods and plates are consistent with the natural bone morphology of the femur. The proposed model shows a promising means to understand the effects of different individual loading patterns on the bone density.

  4. High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures.

    Science.gov (United States)

    Pakdel, Amirreza; Fialkov, Jeffrey; Whyne, Cari M

    2016-06-14

    Accurate finite element (FE) modeling of complex skeletal anatomy requires high resolution in both meshing and the heterogeneous mapping of material properties onto the generated mesh. This study introduces Node-based elastic Modulus Assignment with Partial-volume correction (NMAP) as a new approach for FE material property assignment to thin bone structures. The NMAP approach incorporates point spread function based deblurring of CT images, partial-volume correction of CT image voxel intensities and anisotropic interpolation and mapping of CT intensity assignment to FE mesh nodes. The NMAP procedure combined with a derived craniomaxillo-facial skeleton (CMFS) specific density-isotropic elastic modulus relationship was applied to produce specimen-specific FE models of 6 cadaveric heads. The NMAP procedure successfully generated models of the complex thin bone structures with surface elastic moduli reflective of cortical bone material properties. The specimen-specific CMFS FE models were able to accurately predict experimental strains measured under in vitro temporalis and masseter muscle loading (r=0.93, slope=1.01, n=5). The strength of this correlation represents a robust validation for CMFS FE modeling that can be used to better understand load transfer in this complex musculoskeletal system. The developed methodology offers a systematic process-flow able to address the complexity of the CMFS that can be further applied to create high-fidelity models of any musculoskeletal anatomy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Cortical enhancement in chronic subdural hematoma

    International Nuclear Information System (INIS)

    Taguchi, Yoshio; Sato, Jun; Makita, Tadatoshi; Hayashi, Shigetoshi; Nakamura, Norio.

    1981-01-01

    In the CT findings of chronic subdural hematoma, brain enhancement adjacent to a subdural hematoma was seen occasionally after the injection of a contrast material. The authors called this finding ''cortical enhancement'', and 35 cases of chronic subdural hematoma were studied concerning cortical enhancement in relation to age, clinical signs and symptoms, hematoma density, and volume of the hematoma. Eight cases out of the 35 were subjected to measurements of the regional cerebral blood flow preoperatively by the method of the carotid injection of Xe-133. Cortical enhancement was apt to be seen in the cases which revealed intracranial hypertension or disturbance of consciousness, in isodensity or mixed-density hematomas, and in huge subdural hematomas. There was no specific correlation with age distribution. The pathogenesis of cortical enhancement seemed to be the result of cerebral compression with an increase in the contrast material per unit of volume and a prolonged venous outflow from the hemisphere, but no characteristic feature was detected in the average regional cerebral blood flow in our cases. (author)

  6. Effects of testosterone and growth hormone on the structural and mechanical properties of bone by micro-MRI in the distal tibia of men with hypopituitarism.

    Science.gov (United States)

    Al Mukaddam, Mona; Rajapakse, Chamith S; Bhagat, Yusuf A; Wehrli, Felix W; Guo, Wensheng; Peachey, Helen; LeBeau, Shane O; Zemel, Babette S; Wang, Christina; Swerdloff, Ronald S; Kapoor, Shiv C; Snyder, Peter J

    2014-04-01

    Severe deficiencies of testosterone (T) and GH are associated with low bone mineral density (BMD) and increased fracture risk. Replacement of T in hypogonadal men improves several bone parameters. Replacement of GH in GH-deficient men improves BMD. Our objective was to determine whether T and GH treatment together improves the structural and mechanical parameters of bone more than T alone in men with hypopituitarism. This randomized, prospective, 2-year study included 32 men with severe deficiencies of T and GH due to panhypopituitarism. Subjects were randomized to receive T alone (n = 15) or T and GH (n = 17) for 2 years. We evaluated magnetic resonance microimaging-derived structural (bone volume fraction [BVF] and trabecular thickness) and mechanical (axial stiffness [AS], a measure of bone strength) properties of the distal tibia at baseline and after 1 and 2 years of treatment. Treatment with T and GH did not affect BVF, thickness, or AS differently from T alone. T treatment in all subjects for 2 years increased trabecular BVF by 9.6% (P bone but decreased most of these properties of cortical bone, illustrating the potential importance of assessing trabecular and cortical bone separately in future studies of the effect of testosterone on bone.

  7. Fabrication and characterization of electrospun osteon mimicking scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Andric, T. [Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Sampson, A.C. [Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Freeman, J.W., E-mail: jwfreeman@vt.edu [Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)

    2011-01-01

    Skeletal loss and bone deficiencies are a major worldwide problem with over 600,000 procedures performed in the US alone annually, making bone one of the most transplanted tissues, second to blood only. Bone is a composite tissue composed of organic matrix, inorganic bone mineral, and water. Structurally bone is organized into two distinct types: trabecular (or cancellous) and cortical (or compact) bones. Trabecular bone is characterized by an extensive interconnected network of pores. Cortical bone is composed of tightly packed units, called osteons, oriented parallel along to the axis of the bone. While the majority of scaffolds attempt to replicate the structure of the trabecular bone, fewer attempts have been made to create scaffolds to mimic the structure of cortical bone. The aim of this study was to develop a technique to fabricate scaffolds that mimic the organization of an osteon, the structural unit of cortical bone. We successfully built a rotating stage for PGA fibers and utilized it for collecting electrospun nanofibers and creating scaffolds. Resulting scaffolds consisted of concentric layers of electrospun PLLA or gelatin/PLLA nanofibers wrapped around PGA microfiber core with diameters that ranged from 200 to 600 {mu}m. Scaffolds were mineralized by incubation in 10x simulated body fluid, and scaffolds composed of 10%gelatin/PLLA had significantly higher amounts of calcium phosphate. The electrospun scaffolds also supported cellular attachment and proliferation of MC3T3 cells over the period of 28 days.

  8. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage.

    Science.gov (United States)

    Flanagan, Christopher D; Unal, Mustafa; Akkus, Ozan; Rimnac, Clare M

    2017-11-01

    Thermal denaturation and monotonic mechanical damage alter the organic and water-related compartments of cortical bone. These changes can be detected using Raman spectroscopy. However, less is known regarding Raman sensitivity to detect the effects of cyclic fatigue damage and allograft sterilization doses of gamma radiation. To determine if Raman spectroscopic biomarkers of collagen denaturation and hydration are sensitive to the effects of (a) high cycle fatigue damage and (b) 25kGy irradiation. Unirradiated and gamma-radiation sterilized human cortical bone specimens previously tested in vitro under high-cycle (> 100,000 cycles) fatigue conditions at 15MPa, 25MPa, 35MPa, 45MPa, and 55MPa cyclic stress levels were studied. Cortical bone Raman spectral profiles from wavenumber ranges of 800-1750cm -1 and 2700-3800cm -1 were obtained and compared from: a) non-fatigue vs fatigue fracture sites and b) radiated vs. unirradiated states. Raman biomarker ratios 1670/1640 and 3220/2949, which reflect collagen denaturation and organic matrix (mainly collagen)-bound water, respectively, were assessed. One- and two-way ANOVA analyses were utilized to identify differences between groups along with interaction effects between cyclic fatigue and radiation-induced damage. Cyclic fatigue damage resulted in increases in collagen denaturation (1670/1640: 1.517 ± 0.043 vs 1.579 ± 0.021, p Raman spectroscopy can detect the effects of cyclic fatigue damage and 25kGy irradiation via increases in organic matrix (mainly collagen)-bound water. A Raman measure of collagen denaturation was sensitive to cyclic fatigue damage but not 25kGy irradiation. Collagen denaturation was correlated with organic matrix-bound water, suggesting that denaturation of collagen to gelatinous form may expose more binding sites to water by unwinding the triple alpha chains. This research may eventually be useful to help identify allograft quality and more appropriately match donors to recipients. Copyright

  9. Medullary bone and humeral breaking strength in laying hens

    International Nuclear Information System (INIS)

    Fleming, R.H.; McCormack, H.A.; McTeir, L.; Whitehead, C.C.

    1998-01-01

    To test the hypothesis that large amounts of medullary bone in the humeral diaphysis may increase breaking strength, various parameters of bone quality and quantity were examined in two large flocks of hens near end of lay. We conclude that the amount of medullary bone in the humerus of hens during the laying period influences bone strength. This medullary bone may not have any intrinsic strength, but may act by contributing to the fracture resistance of the surrounding cortical bone. Using a quantitative, low dose, radiographic technique, we can predict, from early in the laying period, those birds which will develop large amounts of medullary bone in their humeri by the end of the laying period. The formation of medullary bone in the humeral diaphysis is not at the expense of the surrounding radiographed cortical bone

  10. DON-induced changes in bone homeostasis in mink dams

    Directory of Open Access Journals (Sweden)

    Tomaszewska Ewa

    2017-09-01

    Full Text Available Introduction: The aim of the study was to investigate the mechanical and geometric properties as well as bone tissue and mineral density of long bones in mink dams exposed to deoxynivalenol (DON since one day after mating, throughout gestation (ca. 46 d and lactation to pelt harvesting. Material and Methods: Thirty clinically healthy multiparous minks (Neovison vison of the standard dark brown type were used. After the mating, the minks were randomly assigned into two equal groups: nontreated control group and DON group fed wheat contaminated naturally with DON at a concentration of 1.1 mg·kg-1 of feed. Results: The final body weight and weight and length of the femur did not differ between the groups. However, DON contamination decreased mechanical endurance of the femur. Furthermore, DON reduced the mean relative wall thickness and vertical wall thickness of the femur, while vertical cortical index, midshaft volume, and cross-sectional moment of inertia increased. Finally, DON contamination did not alter bone tissue density, bone mineral density, or bone mineral content, but decreased the values of all investigated structural and material properties. Conclusion: DON at applied concentration probably intensified the process of endosteal resorption, which was the main reason for bone wall thinning and the weakening of the whole bone.

  11. Bone mineral properties in growing Col1a2(+/G610C) mice, an animal model of osteogenesis imperfecta.

    Science.gov (United States)

    Masci, Marco; Wang, Min; Imbert, Laurianne; Barnes, Aileen M; Spevak, Lyudmila; Lukashova, Lyudmila; Huang, Yihe; Ma, Yan; Marini, Joan C; Jacobsen, Christina M; Warman, Matthew L; Boskey, Adele L

    2016-06-01

    The Col1a2(+/G610C) knock-in mouse, models osteogenesis imperfecta in a large old order Amish family (OOA) with type IV OI, caused by a G-to-T transversion at nucleotide 2098, which alters the gly-610 codon in the triple-helical domain of the α2(I) chain of type I collagen. Mineral and matrix properties of the long bones and vertebrae of male Col1a2(+/G610C) and their wild-type controls (Col1a2(+/+)), were characterized to gain insight into the role of α2-chain collagen mutations in mineralization. Additionally, we examined the rescuability of the composition by sclerostin inhibition initiated by crossing Col1a2(+/G610C) with an LRP(+/A214V) high bone mass allele. At age 10-days, vertebrae and tibia showed few alterations by micro-CT or Fourier transform infrared imaging (FTIRI). At 2-months-of-age, Col1a2(+/G610C) tibias had 13% fewer secondary trabeculae than Col1a2(+/+), these were thinner (11%) and more widely spaced (20%) than those of Col1a2(+/+) mice. Vertebrae of Col1a2(+/G610C) mice at 2-months also had lower bone volume fraction (38%), trabecular number (13%), thickness (13%) and connectivity density (32%) compared to Col1(a2+/+). The cortical bone of Col1a2(+/G610C) tibias at 2-months had 3% higher tissue mineral density compared to Col1a2(+/+); Col1a2(+/G610C) vertebrae had lower cortical thickness (29%), bone area (37%) and polar moment of inertia (38%) relative to Col1a2(+/+). FTIRI analysis, which provides information on bone chemical composition at ~7μm-spatial resolution, showed tibias at 10-days did not differ between genotypes. Comparing identical bone types in Col1a2(+/G610C) to Col1a2(+/+) at 2-months-of-age, tibias showed higher mineral-to-matrix ratio in trabeculae (17%) and cortices (31%). and in vertebral cortices (28%). Collagen maturity was 42% higher at 10-days-of-age in Col1a2(+/G610C) vertebral trabeculae and in 2-month tibial cortices (12%), vertebral trabeculae (42%) and vertebral cortices (12%). Higher acid-phosphate substitution

  12. Marrow Adipose Tissue in Older Men: Association with Visceral and Subcutaneous Fat, Bone Volume, Metabolism, and Inflammation.

    Science.gov (United States)

    Bani Hassan, Ebrahim; Demontiero, Oddom; Vogrin, Sara; Ng, Alvin; Duque, Gustavo

    2018-03-26

    Marrow (MAT) and subcutaneous (SAT) adipose tissues display different metabolic profiles and varying associations with aging, bone density, and fracture risk. Using a non-invasive imaging methodology, we aimed to investigate the associations between MAT, SAT, and visceral fat (VAT) with bone volume, bone remodeling markers, insulin resistance, and circulating inflammatory mediators in a population of older men. In this cross-sectional study, 96 healthy men (mean age 67 ± 5.5) were assessed for anthropometric parameters, body composition, serum biochemistry, and inflammatory panel. Using single-energy computed tomography images, MAT (in L2 and L3 and both hips), VAT, and SAT (at the level of L2-L3 and L4-L5) were measured employing Slice-O-Matic software (Tomovision), which enables specific tissue demarcation applying previously reported Hounsfield unit thresholds. MAT volume was similar in all anatomical sites and independent of BMI. In all femoral regions of interest (ROIs) there was a strong negative association between bone and MAT volumes (r = - 0.840 to - 0.972, p strong inverse correlations between MAT and bone mass, which have been previously observed in women, were also confirmed in older men. However, MAT volume in all ROIs was interrelated and unlike women, mainly independent of VAT or SAT. The lack of strong association between MAT vs VAT/SAT, and its discordant associations with metabolic and inflammatory mediators provide further evidence on MAT's distinct attributes in older men.

  13. Influence of estrogen deficiency and tibolone therapy on trabecular and cortical bone evaluated by computed radiography system in rats Influência da deficiência estrogênica e do tratamento com tibolona no osso trabecular e cortical avaliada pelo sistema de radiografia computadorizada em ratas

    Directory of Open Access Journals (Sweden)

    Ana Carolina Bergmann de Carvalho

    2012-03-01

    Full Text Available PURPOSE: To verify the effects of tibolone administration on trabecular and cortical bone of ovariectomized female rats by computed radiography system (CRS. METHODS: The experiment was performed on two groups of rats previously ovariectomized, one received tibolone (OVX+T while the other did not (OVX, those groups were compared to a control group (C not ovariectomized. Tibolone administration (1mg/day began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs and tibias collected. Computed radiographies of the bones were obtained and the digital images were used to determine the bone optical density and cortical thickness on every group. All results were statistically evaluated with significance set at POBJETIVO: Verificar o efeito da administração de tibolona no tecido ósseo cortical e trabecular de ratas castradas através de radiografia computadorizada. MÉTODOS: O experimento foi realizado em dois grupos de ratas previamente ooforectomizadas, onde um grupo recebeu tibolona (OVX+T e o outro não (OVX. Esses grupos foram comparados a um grupo controle (C não ooforectomizado. A administração de tibolona (1mg/dia começou trinta dias após a ooforectomia e o tratamento teve duração de cinco meses. No final, os animais foram mortos e fêmures e tibias coletados. As radiografias computadorizadas dos ossos foram obtidas e as imagens digitais usadas para determinar a densidade óssea e a espessura cortical em todos os grupos. Todos os resultados foram avaliados estatisticamente com significância estabelecida a 5%. RESULTADOS: A administração de tibolona mostrou ser benéfica apenas para análise densitométrica da cabeça do fêmur, apresentando maiores valores de densidade comparada ao grupo OVX. Nenhuma diferença significativa foi encontrada para espessura óssea cortical. CONCLUSÃO: A ooforectomia ocasionou perda óssea nas regiões analisadas e a tibolona

  14. Assessment of the Quality of Newly Formed Bone around Titanium Alloy Implants by Using X-Ray Photoelectron Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hiroshi Nakada

    2012-01-01

    Full Text Available The aim of this study was to evaluate differences in bones quality between newly formed bone and cortical bone formed around titanium alloy implants by using X-ray photoelectron spectroscopy. As a result of narrow scan measurement at 4 weeks, the newly formed bone of C1s, P2p, O1s, and Ca2p were observed at a different peak range and strength compared with a cortical bone. At 8 weeks, the peak range and strength of newly formed bone were similar to those of cortical bone at C1s, P2p, and Ca2p, but not O1s. The results from this analysis indicate that the peaks and quantities of each element of newly formed bone were similar to those of cortical bone at 8 weeks, suggestive of a strong physicochemical resemblance.

  15. Cortical Bone Stem Cell Therapy Preserves Cardiac Structure and Function After Myocardial Infarction.

    Science.gov (United States)

    Sharp, Thomas E; Schena, Giana J; Hobby, Alexander R; Starosta, Timothy; Berretta, Remus M; Wallner, Markus; Borghetti, Giulia; Gross, Polina; Yu, Daohai; Johnson, Jaslyn; Feldsott, Eric; Trappanese, Danielle M; Toib, Amir; Rabinowitz, Joseph E; George, Jon C; Kubo, Hajime; Mohsin, Sadia; Houser, Steven R

    2017-11-10

    Cortical bone stem cells (CBSCs) have been shown to reduce ventricular remodeling and improve cardiac function in a murine myocardial infarction (MI) model. These effects were superior to other stem cell types that have been used in recent early-stage clinical trials. However, CBSC efficacy has not been tested in a preclinical large animal model using approaches that could be applied to patients. To determine whether post-MI transendocardial injection of allogeneic CBSCs reduces pathological structural and functional remodeling and prevents the development of heart failure in a swine MI model. Female Göttingen swine underwent left anterior descending coronary artery occlusion, followed by reperfusion (ischemia-reperfusion MI). Animals received, in a randomized, blinded manner, 1:1 ratio, CBSCs (n=9; 2×10 7 cells total) or placebo (vehicle; n=9) through NOGA-guided transendocardial injections. 5-ethynyl-2'deoxyuridine (EdU)-a thymidine analog-containing minipumps were inserted at the time of MI induction. At 72 hours (n=8), initial injury and cell retention were assessed. At 3 months post-MI, cardiac structure and function were evaluated by serial echocardiography and terminal invasive hemodynamics. CBSCs were present in the MI border zone and proliferating at 72 hours post-MI but had no effect on initial cardiac injury or structure. At 3 months, CBSC-treated hearts had significantly reduced scar size, smaller myocytes, and increased myocyte nuclear density. Noninvasive echocardiographic measurements showed that left ventricular volumes and ejection fraction were significantly more preserved in CBSC-treated hearts, and invasive hemodynamic measurements documented improved cardiac structure and functional reserve. The number of EdU + cardiac myocytes was increased in CBSC- versus vehicle- treated animals. CBSC administration into the MI border zone reduces pathological cardiac structural and functional remodeling and improves left ventricular functional reserve

  16. Radiographic evaluation of bone adaptation adjacent to percutaneous osseointegrated prostheses in a sheep model.

    Science.gov (United States)

    Jeyapalina, Sujee; Beck, James Peter; Bachus, Kent N; Chalayon, Ornusa; Bloebaum, Roy D

    2014-10-01

    Percutaneous osseointegrated prostheses (POPs) are being investigated as an alternative to conventional socket suspension and require a radiographic followup in translational studies to confirm that design objectives are being met. In this 12-month animal study, we determined (1) radiographic signs of osseointegration and (2) radiographic signs of periprosthetic bone hypertrophy and resorption (adaptation) and (3) confirmed them with the histologic evidence of host bone osseointegration and adaptation around a novel, distally porous-coated titanium POP with a collar. A POP device was designed to fit the right metacarpal bone of sheep. Amputation and implantation surgeries (n = 14) were performed, and plane-film radiographs were collected quarterly for 12 months. Radiographs were assessed for osseointegration (fixation) and bone adaptation (resorption and hypertrophy). The cortical wall and medullary canal widths were used to compute the cortical index and expressed as a percentage. Based on the cortical index changes and histologic evaluations, bone adaptation was quantified. Radiographic data showed signs of osseointegration including those with incomplete seating against the collar attachment. Cortical index data indicated distal cortical wall thinning if the collar was not seated distally. When implants were bound proximally, bone resorbed distally and the diaphyseal cortex hypertrophied. Histopathologic evidence and cortical index measurements confirmed the radiographic indications of adaptation and osseointegration. Distal bone loading, through collar attachment and porous coating, limited the distal bone resorption. Serial radiographic studies, in either animal models or preclinical trials for new POP devices, will help to determine which designs are likely to be safe over time and avoid implant failures.

  17. Effect of a Particulate and a Putty-Like Tricalcium Phosphate-Based Bone-grafting Material on Bone Formation, Volume Stability and Osteogenic Marker Expression after Bilateral Sinus Floor Augmentation in Humans

    Directory of Open Access Journals (Sweden)

    Christine Knabe

    2017-07-01

    Full Text Available This study examines the effect of a hyaluronic acid (HyAc containing tricalcium phosphate putty scaffold material (TCP-P and of a particulate tricalcium phosphate (TCP-G graft on bone formation, volume stability and osteogenic marker expression in biopsies sampled 6 months after bilateral sinus floor augmentation (SFA in 7 patients applying a split-mouth design. 10% autogenous bone chips were added to the grafting material during surgery. The grain size of the TCP granules was 700 to 1400 µm for TCP-G and 125 to 250 µm and 500 to 700 µm (ratio 1:1 for TCP-P. Biopsies were processed for immunohistochemical analysis of resin-embedded sections. Sections were stained for collagen type I (Col I, alkaline phosphatase (ALP, osteocalcin (OC and bone sialoprotein (BSP. Furthermore, the bone area and biomaterial area fraction were determined histomorphometrically. Cone-beam CT data recorded after SFA and 6 months later were used for calculating the graft volume at these two time points. TCP-P displayed more advantageous surgical handling properties and a significantly greater bone area fraction and smaller biomaterial area fraction. This was accompanied by significantly greater expression of Col I and BSP and in osteoblasts and osteoid and a less pronounced reduction in grafting volume with TCP-P. SFA using both types of materials resulted in formation of sufficient bone volume for facilitating stable dental implant placement with all dental implants having been in function without any complications for 6 years. Since TCP-P displayed superior surgical handling properties and greater bone formation than TCP-G, without the HyAc hydrogel matrix having any adverse effect on bone formation or graft volume stability, TCP-P can be regarded as excellent grafting material for SFA in a clinical setting. The greater bone formation observed with TCP-P may be related to the difference in grain size of the TCP granules and/or the addition of the HyAc.

  18. Bone mineral density and computer tomographic measurements in correlation with failure strength of equine metacarpal bones

    Directory of Open Access Journals (Sweden)

    Péter Tóth

    2014-01-01

    Full Text Available Information regarding bone mineral density and fracture characteristics of the equine metacarpus are lacking. The aim of this study was to characterize the relationship between mechanical properties of the equine metacarpal bone and its biomechanical and morphometric properties. Third metacarpal bones were extracted from horses euthanized unrelated to musculoskeletal conditions. In total, bone specimens from 26 front limbs of 13 horses (7.8 ± 5.8 years old including Lipizzaner (n = 5, Hungarian Warmblood (n = 2, Holsteiner (n = 2, Thoroughbred (n = 1, Hungarian Sporthorse (n = 1, Friesian (n = 1, and Shagya Arabian (n = 1 were collected. The horses included 7 mares, 4 stallions and 2 geldings. Assessment of the bone mineral density of the whole bone across four specific regions of interest was performed using dual-energy X-ray absorptiometry. The bones were scanned using a computer tomographic scanner to measure cross-sectional morphometric properties such as bone mineral density and cross-sectional dimensions including cortical area and cortical width. Mechanical properties (breaking force, bending strength, elastic modulus were determined by a 3-point bending test. Significant positive linear correlations were found between the breaking force and bone mineral density of the entire third metacarpal bones (P P P in vivo investigations.

  19. Juxtacortical Lesions and Cortical Thinning in Multiple Sclerosis.

    Science.gov (United States)

    Pareto, D; Sastre-Garriga, J; Auger, C; Vives-Gilabert, Y; Delgado, J; Tintoré, M; Montalban, X; Rovira, A

    2015-12-01

    The role of juxtacortical lesions in brain volume loss in multiple sclerosis has not been fully clarified. The aim of this study was to explore the role of juxtacortical lesions on cortical atrophy and to investigate whether the presence of juxtacortical lesions is related to local cortical thinning in the early stages of MS. A total of 131 patients with clinically isolated syndrome or with relapsing-remitting MS were scanned on a 3T system. Patients with clinically isolated syndrome were classified into 3 groups based on the presence and topography of brain lesions: no lesions (n = 24), only non-juxtacortical lesions (n = 33), and juxtacortical lesions and non-juxtacortical lesions (n = 34). Patients with relapsing-remitting MS were classified into 2 groups: only non-juxtacortical lesions (n = 10) and with non-juxtacortical lesions and juxtacortical lesions (n = 30). A juxtacortical lesion probability map was generated, and cortical thickness was measured by using FreeSurfer. Juxtacortical lesion volume in relapsing-remitting MS was double that of patients with clinically isolated syndrome. The insula showed the highest density of juxtacortical lesions, followed by the temporal, parietal, frontal, and occipital lobes. Patients with relapsing-remitting MS with juxtacortical lesions showed significantly thinner cortices overall and in the parietal and temporal lobes compared with those with clinically isolated syndrome with normal brain MR imaging. The volume of subcortical structures (thalamus, pallidum, putamen, and accumbens) was significantly decreased in relapsing-remitting MS with juxtacortical lesions compared with clinically isolated syndrome with normal brain MR imaging. The spatial distribution of juxtacortical lesions was not found to overlap with areas of cortical thinning. Cortical thinning and subcortical gray matter volume loss in patients with a clinically isolated syndrome or relapsing-remitting MS was related to the presence of juxtacortical

  20. Low calcium-phosphate intakes modulate the low-protein diet-related effect on peak bone mass acquisition: a hormonal and bone strength determinants study in female growing rats.

    Science.gov (United States)

    Fournier, C; Rizzoli, R; Ammann, P

    2014-11-01

    Peak bone mass acquisition is influenced by environmental factors including dietary intake. A low-protein diet delays body and skeletal growth in association with a reduction in serum IGF-1 whereas serum FGF21 is increased by selective amino acid deprivation. Calcium (Ca) and phosphorous (P) are also key nutrients for skeletal health, and inadequate intakes reduce bone mass accrual in association with calciotropic hormone modulation. Besides, the effect of calcium supplementation on bone mass in prepubertal children appears to be influenced by protein intake. To further explore the interaction of dietary protein and Ca-P intake on bone growth, 1-month-old female rats were fed with an isocaloric 10%, 7.5%, or 5% casein diet containing normal or low Ca-P for an 8-week period (6 groups). Changes in tibia geometry, mineral content, microarchitecture, strength, and intrinsic bone quality were analyzed. At the hormonal level, serum IGF-1, fibroblast growth factor 21 (FGF21), PTH, 1,25-dihydroxyvitamin D3 (calcitriol), and FGF23 were investigated as well as the Ghr hepatic gene expression. In normal dietary Ca-P conditions, bone mineral content, trabecular and cortical bone volume, and bone strength were lower in the 5% casein group in association with a decrease in serum IGF-1 and an increase in FGF21 levels. Unexpectedly, the low-Ca-P diet attenuated the 5% casein diet-related reduction of serum IGF-1 and Ghr hepatic gene expression, as well as the low-protein diet-induced decrease in bone mass and strength. However, this was associated with lower cortical bone material level properties. The low-Ca-P diet increased serum calcitriol but decreased FGF23 levels. Calcitriol levels positively correlated with Ghr hepatic mRNA levels. These results suggest that hormonal modulation in response to a low-Ca-P diet may modify the low-protein diet-induced effect on Ghr hepatic mRNA levels and consequently the impact of low protein intakes on IGF-1 circulating levels and skeletal

  1. Development of cortical thickness and surface area in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Vincent T. Mensen

    2017-01-01

    Full Text Available Autism spectrum disorder (ASD is a neurodevelopmental disorder often associated with changes in cortical volume. The constituents of cortical volumecortical thickness and surface area – have separable developmental trajectories and are related to different neurobiological processes. However, little is known about the developmental trajectories of cortical thickness and surface area in ASD. In this magnetic resonance imaging (MRI study, we used an accelerated longitudinal design to investigate the cortical development in 90 individuals with ASD and 90 typically developing controls, aged 9 to 20 years. We quantified cortical measures using the FreeSurfer software package, and then used linear mixed model analyses to estimate the developmental trajectories for each cortical measure. Our primary finding was that the development of surface area follows a linear trajectory in ASD that differs from typically developing controls. In typical development, we found a decline in cortical surface area between the ages of 9 and 20 that was absent in ASD. We found this pattern in all regions where developmental trajectories for surface area differed between groups. When we applied a more stringent correction that takes the interdependency of measures into account, this effect on cortical surface area retained significance for left banks of superior temporal sulcus, postcentral area, and right supramarginal area. These areas have previously been implicated in ASD and are involved in the interpretation and processing of audiovisual social stimuli and distinction between self and others. Although some differences in cortical volume and thickness were found, none survived the more stringent correction for multiple testing. This study underscores the importance of distinguishing between cortical surface area and thickness in investigating cortical development, and suggests the development of cortical surface area is of importance to ASD.

  2. Computerized bone density analysis of the proximal phalanx of the horse

    International Nuclear Information System (INIS)

    Thompson, K.N.; Cheung, T.K.; Putnam, M.

    1996-01-01

    This study utilized computed tomography to determine the density patterns and the subchondral bone thickness of the first phalanx of the horse. An image processing system and commercially available software were used to process the computed tomographic slices obtained from the first phalanges of a 2-year-old Thoroughbred horse. The thickness and density of the medial and lateral cortices in the mid-shaft of the bone were similar; however, the cortex on the dorsal aspect was more dense and extended farther toward the proximal and distal aspects of the bone than the cortex on the palmar aspect. Density of the cortical bone was highest at the region of the bone with the smallest diameter. The cortical bone density at mid-shaft was approximately 3.5 times the cancellous bone density at the proximal aspect and 2.5 times that at the distal aspect of the bone. A moderate correlation (r = 0.53, p < 0.01)was found between the subchondral bone density and thickness. Despite limited numbers of specimens used, this study demonstrated the potential applications of computed tomography for investigating equine joint mechanics and diseases

  3. Low-intensity pulsed ultrasound enhances bone formation around miniscrew implants.

    Science.gov (United States)

    Ganzorig, Khaliunaa; Kuroda, Shingo; Maeda, Yuichi; Mansjur, Karima; Sato, Minami; Nagata, Kumiko; Tanaka, Eiji

    2015-06-01

    Miniscrew implants (MSIs) are currently used to provide absolute anchorage in orthodontics; however, their initial stability is an issue of concern. Application of low-intensity pulsed ultrasound (LIPUS) can promote bone healing. Therefore, LIPUS application may stimulate bone formation around MSIs and enhance their initial stability. To investigate the effect of LIPUS exposure on bone formation after implantation of titanium (Ti) and stainless steel (SS) MSIs. MSIs made of Ti-6Al-4V and 316L SS were placed on rat tibiae and treated with LIPUS. The bone morphology around MSIs was evaluated by scanning electron microscopy and three-dimensional micro-computed tomography. MC3T3-E1 cells cultured on Ti and SS discs were treated with LIPUS, and the temporary expression of alkaline phosphatase (ALP) was examined. Bone-implant contact increased gradually from day 3 to day 14 after MSI insertion. LIPUS application increased the cortical bone density, cortical bone thickness, and cortical bone rate after implantation of Ti and SS MSIs (P<0.05). LIPUS exposure induced ALP upregulation in MC3T3-E1 cells at day 3 (P<0.05). LIPUS enhanced bone formation around Ti and SS MSIs, enhancing the initial stability of MSIs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. MRI of fibrous cortical defect and non-ossifying fibroma

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, Yoshiko; Aoki, Takatoshi; Watanabe, Hideyuki; Nakata, Hajime; Hashimoto, Hiroshi; Nakamura, Toshitaka [Univ. of Occupational and Environmental Health, Kitakyushu, Fukuoka (Japan). School of Medicine

    1999-02-01

    Fibrous cortical defect and non-ossifying fibroma are the benign fibrous lesions of bone commonly involving children. Their diagnosis is usually done with radiography, and MR examinations are rarely performed. We evaluated MRI findings of 11 lesions in 10 cases of fibrous cortical defect and non-ossifying fibroma. Signal intensity of the lesions was varied and large lesions (2 cm<) tended to show heterogeneous signal intensity on both T1-weighted and T2-weighted images corresponding to a mixture of components including fibrous tissue, hemosiderin and foam cells. MRI helps to delineate the extent of the involved bone and to assess the various histological components of the lesions. However, their diagnosis is basically made on the radiographic findings and the role of MRI is limited. (author)

  5. Imaging the 3D structure of secondary osteons in human cortical bone using phase-retrieval tomography

    Energy Technology Data Exchange (ETDEWEB)

    Arhatari, B D; Peele, A G [Department of Physics, La Trobe University, Victoria 3086 (Australia); Cooper, D M L [Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon (Canada); Thomas, C D L; Clement, J G [Melbourne Dental School, University of Melbourne, Victoria 3010 (Australia)

    2011-08-21

    By applying a phase-retrieval step before carrying out standard filtered back-projection reconstructions in tomographic imaging, we were able to resolve structures with small differences in density within a densely absorbing sample. This phase-retrieval tomography is particularly suited for the three-dimensional segmentation of secondary osteons (roughly cylindrical structures) which are superimposed upon an existing cortical bone structure through the process of turnover known as remodelling. The resulting images make possible the analysis of the secondary osteon structure and the relationship between an osteon and the surrounding tissue. Our observations have revealed many different and complex 3D structures of osteons that could not be studied using previous methods. This work was carried out using a laboratory-based x-ray source, which makes obtaining these sorts of images readily accessible.

  6. Comparison of bone-implant contact and bone-implant volume between 2D-histological sections and 3D-SRµCT slices

    Directory of Open Access Journals (Sweden)

    R Bernhardt

    2012-04-01

    Full Text Available Histological imaging is still considered the gold standard for analysing bone formation around metallic implants. Generally, a limited number of histological sections per sample are used for the approximation of mean values of peri-implant bone formation. In this study we compared statistically the results of bone-implant contact (BIC and bone-implant volume (BIV obtained by histological sections, with those obtained by X-ray absorption images from synchrotron radiation micro-computed tomography (SRµCT using osseointegrated screw-shaped implants from a mini-pig study. Comparing the BIC results of 3-4 histological sections per implant sample with the appropriate 3-4 SRµCT slices showed a non-significant difference of 1.9 % (p = 0.703. The contact area assessed by the whole 3D information from the SRµCT measurement in comparison to the histomorphometric results showed a non-significant difference in BIC of 4.9 % (p = 0.171. The amount of the bone-implant volume in the histological sections and the appropriate SRµCT slices showed a non-significant difference by only 1.4 % (p = 0.736 and also remains non-significant with 2.6 % (p = 0.323 using the volumetric SRµCT information. We conclude that for a clinical evaluation of implant osseointegration with histological imaging at least 3-4 sections per sample are sufficient to represent the BIC or BIV for a sample. Due to the fact that in this study we have found a significant intra-sample variation in BIC of up to ± 35 % the selection of only one or two histological sections per sample may strongly influence the determined BIC.

  7. Prader-Willi Critical Region, a Non-Translated, Imprinted Central Regulator of Bone Mass: Possible Role in Skeletal Abnormalities in Prader-Willi Syndrome.

    Directory of Open Access Journals (Sweden)

    Ee-Cheng Khor

    Full Text Available Prader-Willi Syndrome (PWS, a maternally imprinted disorder and leading cause of obesity, is characterised by insatiable appetite, poor muscle development, cognitive impairment, endocrine disturbance, short stature and osteoporosis. A number of causative loci have been located within the imprinted Prader-Willi Critical Region (PWCR, including a set of small non-translated nucleolar RNA's (snoRNA. Recently, micro-deletions in humans identified the snoRNA Snord116 as a critical contributor to the development of PWS exhibiting many of the classical symptoms of PWS. Here we show that loss of the PWCR which includes Snord116 in mice leads to a reduced bone mass phenotype, similar to that observed in humans. Consistent with reduced stature in PWS, PWCR KO mice showed delayed skeletal development, with shorter femurs and vertebrae, reduced bone size and mass in both sexes. The reduction in bone mass in PWCR KO mice was associated with deficiencies in cortical bone volume and cortical mineral apposition rate, with no change in cancellous bone. Importantly, while the length difference was corrected in aged mice, consistent with continued growth in rodents, reduced cortical bone formation was still evident, indicating continued osteoblastic suppression by loss of PWCR expression in skeletally mature mice. Interestingly, deletion of this region included deletion of the exclusively brain expressed Snord116 cluster and resulted in an upregulation in expression of both NPY and POMC mRNA in the arcuate nucleus. Importantly, the selective deletion of the PWCR only in NPY expressing neurons replicated the bone phenotype of PWCR KO mice. Taken together, PWCR deletion in mice, and specifically in NPY neurons, recapitulates the short stature and low BMD and aspects of the hormonal imbalance of PWS individuals. Moreover, it demonstrates for the first time, that a region encoding non-translated RNAs, expressed solely within the brain, can regulate bone mass in health

  8. Effects of anti-sclerostin antibody and running on bone remodeling and strength

    Directory of Open Access Journals (Sweden)

    H. Toumi

    2015-06-01

    Full Text Available Sclerostin antibody (Scl-Ab represents a promising therapeutic approach to treat patients with osteoporosis. Purpose: The aim of this study was to investigate the effects of Scl-Ab, running and a combination of both on bone formation. Methods: Sixty female Wistar rats, aged 8 months were randomly assigned to five groups (subcutaneous injections performed twice a week: (1 (Sham: sedentary rats + saline, (2 (OVX: ovariectomized rats + saline, (3 (OVX + E: OVX rats + saline + treadmill training (5 times/week, 1 h/day, (4 (OVX + E + S: OVX rats + treadmill training + 5 mg/kg Scl-Ab and (5 (OVX + S: OVX rats + 5 mg/kg Scl-Ab. After 14 weeks, body composition, whole body and femoral BMDs were determined by DXA and serum was collected for analysis of osteocalcin and NTX. Bone microarchitecture was analyzed using μCT and bone strength was assessed at the femur mid-shaft in 3-point bending. Results: Running exercise decreased fat mass as well as the bone resorption marker NTX relative to the non-exercised control groups, effects that were associated with a prevention of the deleterious effects of OVX on whole body and femoral BMDs. Scl-Ab increased the bone formation marker osteocalcin, which resulted in robust increases in BMD and femoral metaphyseal bone volume to levels greater than in the Sham group. OVX + S + E group did not further impact on bone mass relative to the OVX + S group. At the cortical femur diaphysis, Scl-Ab prevented the decreases in bone strength after OVX, while exercise did not affect cortical strength. Conclusion: We suggest that while running on a treadmill can prevent some bone loss through a modest antiresorptive effect, it did not contribute to the robust bone-forming effects of Scl-Ab when combined in an estrogen ablation model.

  9. Preventive effects of running exercise on bones in heavy ion particle irradiated rats

    International Nuclear Information System (INIS)

    Fukuda, Satoshi; Iida, Haruzo; Yan, Xueming

    2002-01-01

    We examined the effects of running exercise on preventing decreases in bone mineral and tissue volume after heavy ion particle irradiation in rats. Male Wistar rats experienced whole-body irradiation by heavy ion particle beam (C-290 MeV) at doses of 0.5, 1.0, and 5.0 Gy and were divided into voluntary running groups and control groups. Rats in the running groups ran on the treadmill 15 m/mim, 90 min/day for 35 days after exposure. At the end of the experiment, a tibia was obtained from each rat for measurement of bone mineral density (BMD) and cross-sectional area, strength strain index, and bone histomorphometric analysis. The weights of muscles and concentration of serum calcium were measured. Total BMD and trabecular BMD in the metaphysis and cortical BMD of the diaphysis of tibia in the running groups increased. Bone volume and trabecular thickness increased while trabecular separation decreased in the running groups compared to those in the control groups at respective doses. However, the osteoid surface and eroded surface varied in the running groups compared to those of the respective corresponding groups. The dynamic parameters such as mineralizing surface, mineral apposition rate, and bone formation rate in the running groups were varied, probably due to the differences in radiation-induced sensitivities of bones following radiation exposure. The overall results suggest that running exercise might have a beneficial effect on preventing bone mineral loss and changes in bone structure induced by space radiation, but it is necessary to examine the optimal conditions of running exercise response to doses. (author)

  10. About the inevitable compromise between spatial resolution and accuracy of strain measurement for bone tissue: a 3D zero-strain study.

    Science.gov (United States)

    Dall'Ara, E; Barber, D; Viceconti, M

    2014-09-22

    The accurate measurement of local strain is necessary to study bone mechanics and to validate micro computed tomography (µCT) based finite element (FE) models at the tissue scale. Digital volume correlation (DVC) has been used to provide a volumetric estimation of local strain in trabecular bone sample with a reasonable accuracy. However, nothing has been reported so far for µCT based analysis of cortical bone. The goal of this study was to evaluate accuracy and precision of a deformable registration method for prediction of local zero-strains in bovine cortical and trabecular bone samples. The accuracy and precision were analyzed by comparing scans virtually displaced, repeated scans without any repositioning of the sample in the scanner and repeated scans with repositioning of the samples. The analysis showed that both precision and accuracy errors decrease with increasing the size of the region analyzed, by following power laws. The main source of error was found to be the intrinsic noise of the images compared to the others investigated. The results, once extrapolated for larger regions of interest that are typically used in the literature, were in most cases better than the ones previously reported. For a nodal spacing equal to 50 voxels (498 µm), the accuracy and precision ranges were 425-692 µε and 202-394 µε, respectively. In conclusion, it was shown that the proposed method can be used to study the local deformation of cortical and trabecular bone loaded beyond yield, if a sufficiently high nodal spacing is used. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Evaluation of bone microstructure in CRPS-affected upper limbs by HR-pQCT.

    Science.gov (United States)

    Mussawy, Haider; Schmidt, Tobias; Rolvien, Tim; Rüther, Wolfgang; Amling, Michael

    2017-01-01

    Complex regional pain syndrome (CRPS) is a major complication after trauma, surgery, and/or immobilization of an extremity. The disease often starts with clinical signs of local inflammation and develops into a prolonged phase that is characterized by trophic changes and local osteoporosis and sometimes results in functional impairment of the affected limb. While the pathophysiology of CRPS remains poorly understood, increased local bone resorption plays an undisputed pivotal role. The aim of this retrospective clinical study was to assess the bone microstructure in patients with CRPS. Patients with CRPS type I of the upper limb whose affected and unaffected distal radii were analyzed by high-resolution peripheral quantitative computed tomography (HR-pQCT) were identified retrospectively. The osteology laboratory data and dual-energy X-ray absorptiometry (DXA) images of the left femoral neck and lumbar spine, which were obtained on the same day as HR-pQCT, were extracted from the medical records. Five patients were identified. The CRPS-affected upper limbs had significantly lower trabecular numbers and higher trabecular thicknesses than the unaffected upper limbs. However, the trabecular bone volume to total bone volume and cortical thickness values of the affected and unaffected sides were similar. Trabecular thickness tended to increase with time since disease diagnosis. CRPS associated with significant alterations in the bone microstructure of the affected upper limb that may amplify as the duration of disease increases.

  12. Is orbital volume associated with eyeball and visual cortex volume in humans?

    Science.gov (United States)

    Pearce, Eiluned; Bridge, Holly

    2013-01-01

    In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (n = 88) and brain and visual cortex (n = 99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes and (iii) different visual cortical areas, independently of overall brain volume. In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices.

  13. Effect of Integration Patterns Around Implant Neck on Stress Distribution in Peri-Implant Bone: A Finite Element Analysis.

    Science.gov (United States)

    Han, Jingyun; Sun, Yuchun; Wang, Chao

    2017-08-01

    To investigate the biomechanical performance of different osseointegration patterns between cortical bone and implants using finite element analysis. Fifteen finite element models were constructed of the mandibular fixed prosthesis supported by implants. Masticatory loads (200 N axial, 100 N oblique, 40 N horizontal) were applied. The cortical bone/implant interface was divided equally into four layers: upper, upper-middle, lower-middle, and lower. The bone stress and implant displacement were calculated for 5 degrees of uniform integration (0, 20%, 40%, 60%, and 100%) and 10 integration patterns. The stress was concentrated in the bone margin and gradually decreased as osseointegration progressed, when the integrated and nonintegrated areas were alternated on the bone-implant surface. Compared with full integration, the integration of only the lower-middle layer or lower half layers significantly decreased von Mises, tensile, and compressive stresses in cortical bone under oblique and horizontal loads, and these patterns did not induce higher stress in the cancellous bone. For the integration of only the upper or upper-middle layer, stress in the cortical and cancellous bones significantly increased and was considerably higher than in the case of nonintegration. In addition, the maximum stress in the cortical bone was sensitive to the quantity of integrated nodes at the bone margin; lower quantity was associated with higher stress. There was no significant difference in the displacement of implants among 15 models. Integration patterns of cortical bone significantly affect stress distribution in peri-implant bone. The integration of only the lower-middle or lower half layers helps to increase the load-bearing capacity of peri-implant bone and decrease the risk of overloading, while upper integration may further increase the risk of bone resorption. © 2016 by the American College of Prosthodontists.

  14. Abnormalities of hippocampal-cortical connectivity in temporal lobe epilepsy patients with hippocampal sclerosis

    Science.gov (United States)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Wang, Chunheng; Li, Meng; Lv, Bin; Jin, Zhengyu

    2011-03-01

    Hippocampal sclerosis (HS) is the most common damage seen in the patients with temporal lobe epilepsy (TLE). In the present study, the hippocampal-cortical connectivity was defined as the correlation between the hippocampal volume and cortical thickness at each vertex throughout the whole brain. We aimed to investigate the differences of ipsilateral hippocampal-cortical connectivity between the unilateral TLE-HS patients and the normal controls. In our study, the bilateral hippocampal volumes were first measured in each subject, and we found that the ipsilateral hippocampal volume significantly decreased in the left TLE-HS patients. Then, group analysis showed significant thinner average cortical thickness of the whole brain in the left TLE-HS patients compared with the normal controls. We found significantly increased ipsilateral hippocampal-cortical connectivity in the bilateral superior temporal gyrus, the right cingulate gyrus and the left parahippocampal gyrus of the left TLE-HS patients, which indicated structural vulnerability related to the hippocampus atrophy in the patient group. However, for the right TLE-HS patients, no significant differences were found between the patients and the normal controls, regardless of the ipsilateral hippocampal volume, the average cortical thickness or the patterns of hippocampal-cortical connectivity, which might be related to less atrophies observed in the MRI scans. Our study provided more evidence for the structural abnormalities in the unilateral TLE-HS patients.

  15. Bone mass determination from microradiographs by computer-assisted videodensitometry. Pt. 2

    International Nuclear Information System (INIS)

    Kaelebo, P.; Strid, K.G.

    1988-01-01

    Aluminium was evaluated as a reference substance in the assessment of rabbit cortical bone by microradiography followed by videodensitometry. Ten dense, cortical-bone specimens from the same tibia diaphysis were microradiographed using prefiltered 27 kV roentgen radiation together with aluminium step wedges and bone simulating phantoms for calibration. Optimally exposed and processed plates were analysed by previously described computer-assisted videodensitometry. For comparison, the specimens were analysed by physico-chemical methods. A strict proportionality was found between the 'aluminium equivalent mass' and the ash weight of the specimens. The total random error was low with a coefficient of variation within 1.5 per cent. It was concluded that aluminium is an appropriate reference material in the determination of cortical bone, which it resembles in effective atomic number and thus X-ray attenuation characteristics. The 'aluminium equivalent mass' is suitably established as the standard of expressing the results of bone assessment by microradiography. (orig.)

  16. Comparison of bioengineered human bone construct from four sources of osteogenic cells.

    Science.gov (United States)

    Ng, Angela Min-Hwei; Saim, Aminuddin Bin; Tan, Kok-Keong; Tan, G H; Mokhtar, Sabarul Afian; Rose, Isa Mohamed; Othman, Fauziah; Idrus, Ruszymah Binti Haji

    2005-01-01

    Osteoprogenitor cells have been reported to be present in periosteum, cancellous and cortical bone, and bone marrow; but no attempt to identify the best cell source for bone tissue engineering has yet been reported. In this study, we aimed to investigate the growth and differentiation pattern of cells derived from these four sources in terms of cell doubling time and expression of osteoblast-specific markers in both monolayer cells and three-dimensional cell constructs in vitro. In parallel, human plasma derived-fibrin was evaluated for use as biomaterial when forming three-dimensional bone constructs. Our findings showed osteoprogenitor cells derived from periosteum to be most proliferative followed by cortical bone, cancellous bone, and then bone marrow aspirate. Bone-forming activity was observed in constructs formed with cells derived from periosteum, whereas calcium deposition was seen throughout the constructs formed with cells derived from cancellous and cortical bones. Although no mineralization activity was seen in constructs formed with osteoprogenitor cells derived from bone marrow, well-organized lacunae as would appear in the early phase of bone reconstruction were noted. Scanning electron microscopy evaluation showed cell proliferation throughout the fibrin matrix, suggesting the possible application of human fibrin as the bioengineered tissue scaffold at non-load-bearing sites.

  17. Anatomical abnormalities in gray and white matter of the cortical surface in persons with schizophrenia.

    Directory of Open Access Journals (Sweden)

    Tiziano Colibazzi

    Full Text Available Although schizophrenia has been associated with abnormalities in brain anatomy, imaging studies have not fully determined the nature and relative contributions of gray matter (GM and white matter (WM disturbances underlying these findings. We sought to determine the pattern and distribution of these GM and WM abnormalities. Furthermore, we aimed to clarify the contribution of abnormalities in cortical thickness and cortical surface area to the reduced GM volumes reported in schizophrenia.We recruited 76 persons with schizophrenia and 57 healthy controls from the community and obtained measures of cortical and WM surface areas, of local volumes along the brain and WM surfaces, and of cortical thickness.We detected reduced local volumes in patients along corresponding locations of the brain and WM surfaces in addition to bilateral greater thickness of perisylvian cortices and thinner cortex in the superior frontal and cingulate gyri. Total cortical and WM surface areas were reduced. Patients with worse performance on the serial-position task, a measure of working memory, had a higher burden of WM abnormalities.Reduced local volumes along the surface of the brain mirrored the locations of abnormalities along the surface of the underlying WM, rather than of abnormalities of cortical thickness. Moreover, anatomical features of white matter, but not cortical thickness, correlated with measures of working memory. We propose that reductions in WM and smaller total cortical surface area could be central anatomical abnormalities in schizophrenia, driving, at least partially, the reduced regional GM volumes often observed in this illness.

  18. Six months of disuse during hibernation does not increase intracortical porosity or decrease cortical bone geometry, strength, or mineralization in black bear (Ursus americanus) femurs.

    Science.gov (United States)

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Bunnell, Kevin; Auger, Janene; Black, Hal L; Donahue, Seth W

    2009-07-22

    Disuse typically uncouples bone formation from resorption, leading to bone loss which compromises bone mechanical properties and increases the risk of bone fracture. Previous studies suggest that bears can prevent bone loss during long periods of disuse (hibernation), but small sample sizes have limited the conclusions that can be drawn regarding the effects of hibernation on bone structure and strength in bears. Here we quantified the effects of hibernation on structural, mineral, and mechanical properties of black bear (Ursus americanus) cortical bone by studying femurs from large groups of male and female bears (with wide age ranges) killed during pre-hibernation (fall) and post-hibernation (spring) periods. Bone properties that are affected by body mass (e.g. bone geometrical properties) tended to be larger in male compared to female bears. There were no differences (p>0.226) in bone structure, mineral content, or mechanical properties between fall and spring bears. Bone geometrical properties differed by less than 5% and bone mechanical properties differed by less than 10% between fall and spring bears. Porosity (fall: 5.5+/-2.2%; spring: 4.8+/-1.6%) and ash fraction (fall: 0.694+/-0.011; spring: 0.696+/-0.010) also showed no change (p>0.304) between seasons. Statistical power was high (>72%) for these analyses. Furthermore, bone geometrical properties and ash fraction (a measure of mineral content) increased with age and porosity decreased with age. These results support the idea that bears possess a biological mechanism to prevent disuse and age-related osteoporoses.

  19. SU-E-T-143: Effect of X-Ray and Cone Beam CT Reconstruction Parameters On Estimation of Bone Volume of Mice Used in Aging Research

    Energy Technology Data Exchange (ETDEWEB)

    Russ, M; Pang, M; Troen, B; Rudin, S; Ionita, C [University at Buffalo, Buffalo, NY (United States)

    2014-06-01

    Purpose: To investigate the variations in bone volume calculations in mice involved in aging research when changing cone beam micro-CT x-ray and reconstruction parameters. Methods: Mouse spines were placed on an indexed turn table that rotated 0.5° per projection and imaged by a self-built micro CT machine containing a CCD-based high-resolution x-ray detector. After the full 360° rotation data set of object images was obtained, a standard filtered back-projection cone beam reconstruction was performed. Four different kVp's between 40–70 kVp in 10kVp increments were selected. For each kVp two mAs settings were used. Each acquisition was reconstructed using two voxel sizes (12 and 25μm) and two step angles, 0.5° and 1°, respectively. A LabView program was written to determine the total bone volume contained in the mouse's total spine volume (bone plus gaps) as a measure of spine health. First, the user selected the desired 512×512 reconstruction to view the whole spine volume which was then used to select a gray-level threshold that allowed for viewing of the bone structure, then another threshold to include gaps. The program returned bone volume, bone × gap volume, and their ratio, BVF. Results: The calculated bone volume fractions were compared as a function of tube potential. Cases with 25μm slice thickness showed trials with lower kVp's had greater image contrast, which resulted in higher calculated bone volume fractions. Cases with 12μm reconstructed slice thickness were significantly noisier, and showed no clear maximum BVF. Conclusion: Using the projection images and reconstructions acquired from the micro CT, it can be shown that the micro-CT x-ray and reconstruction parameters significantly affect the total bone volume calculations. When comparing mice cohorts treated with different therapies researchers need to be aware of such details and use volumes which were acquired and processed in identical conditions.

  20. Relationships between age and microarchitectural descriptors of iliac trabecular bone determined by microCT.

    Science.gov (United States)

    Deguette, C; Ramond-Roquin, A; Rougé-Maillart, C

    2017-06-01

    Estimation of age at death is a major issue in anthropology. The main anthropological histological methods propose studying the architecture of cortical bone. In bone histomorphometry, researches on metabolic bone diseases have provided normative tables for trabecular bone volume (BV/TV) according to age and gender of individuals on trans-iliac bone biopsies. We have used microCT, a non-destructive tool for measuring bone volume and trabecular descriptors to compare the French tables to a series of forensic anthropological population and if the two iliac bones could be used interchangeably. Coxal bone of a personal forensic collection whose age and gender were known (DNA identification) were used. Bone samples, centered on the same area than bone biopsy. MicroCT (pixel size: 36μm) was used to measure BV/TV and morphometric trabecular parameters of microarchitecture. An adjusted Z-score was calculated for BV/TV to compare with normative tables and a right/left comparison of trabecular parameters was provided. Twenty-seven iliac bones, which 20 forming 10 complete pelvises, aged between 24 and 73y.o. (average of 47.7 y.o.) were used. All adjusted Z-score were within normal values. There was a strong positive correlation between right and left sides for Tb.Th, Tb.N and Tb.Sp, but an insignificant correlation was obtained for BV/TV. Normative tables between age and BV/TV are valid and therefore usable in anthropology. They may represent an alternative to determine the age at death. Nevertheless, it requires a precise technique that could be a drawback in current practice. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Experimental Traumatic Brain Injury Induces Bone Loss in Rats.

    Science.gov (United States)

    Brady, Rhys D; Shultz, Sandy R; Sun, Mujun; Romano, Tania; van der Poel, Chris; Wright, David K; Wark, John D; O'Brien, Terence J; Grills, Brian L; McDonald, Stuart J

    2016-12-01

    Few studies have investigated the influence of traumatic brain injury (TBI) on bone homeostasis; however, pathophysiological mechanisms involved in TBI have potential to be detrimental to bone. The current study assessed the effect of experimental TBI in rats on the quantity and quality of two different weight-bearing bones, the femur and humerus. Rats were randomly assigned into either sham or lateral fluid percussion injury (FPI) groups. Open-field testing to assess locomotion was conducted at 1, 4, and 12 weeks post-injury, with the rats killed at 1 and 12 weeks post-injury. Bones were analyzed using peripheral quantitative computed tomography (pQCT), histomorphometric analysis, and three-point bending. pQCT analysis revealed that at 1 and 12 weeks post-injury, the distal metaphyseal region of femora from FPI rats had reduced cortical content (10% decrease at 1 week, 8% decrease at 12 weeks; p in trabecular bone volume ratio at 1 week post-injury and a 27% reduction at 12 weeks post-injury in FPI rats compared to sham (p in bone quantity and mechanical properties of the femoral midshaft between sham and TBI animals. There were no differences in locomotor outcomes, which suggested that post-TBI changes in bone were not attributed to immobility. Taken together, these findings indicate that this rat model of TBI was detrimental to bone and suggests a link between TBI and altered bone remodeling.

  2. Age-related differences in the bone mineralization pattern of rats following exercise

    International Nuclear Information System (INIS)

    McDonald, R.; Hegenauer, J.; Saltman, P.

    1986-01-01

    The effect of 12 weeks of treadmill exercise on the mineralization of trabecular and cortical bone was studied in rats 7, 14, and 19 months of age. Bone mineralization was evaluated by measuring concentrations of Ca, Mg, and hydroxyproline as well as uptake of 45Ca concentration in the femur, humerus, rib and calvaria. The 7- and 14-month-old rats increased mineralization in those cortical bones directly involved in exercise. The 19-month animal responded to exercise by increasing mineralization in all bones examined, including the nonweight bearing trabecular calvaria and cortical rib. From these data, it is apparent that the older animals undergo a total skeletal mineralization in response to exercise compared with local adaptation in the younger animal. Further, we provide evidence to support the use of the rat as a model in which to study mammalian bone physiology during the aging process

  3. Cell lineage in vascularized bone transplantation.

    Science.gov (United States)

    Willems, Wouter F; Larsen, Mikko; Friedrich, Patricia F; Bishop, Allen T

    2014-01-01

    The biology behind vascularized bone allotransplantation remains largely unknown. We aim to study cell traffic between donor and recipient following bone auto-, and allografting. Vascularized femoral transplantation was performed with arteriovenous bundle implantation and short-term immunosuppression. Twenty male Piebald Virol Glaxo (PVG; RT1(c) ) rats received isotransplants from female PVG (RT1(c) ) rats and 22 male PVG rats received allografts from female Dark Agouti rats (DA, RT1(a) ), representing a major histocompatibility mismatch. Both groups were randomly analyzed at 4 or 18 weeks. Bone remodeling areas (inner and outer cortical samples) were labeled and laser capture microdissected. Analysis of sex-mismatch genes by real-time reverse transcription-polymerase chain reaction provided the relative Expression Ratio (rER) of donor (female) to recipient (male) cells. The rER was 0.456 ± 0.266 at 4 weeks and 0.749 ± 0.387 at 18 weeks (p = 0.09) in allotransplants. In isotransplants, the rER was 0.412 ± 0.239 and 0.467 ± 0.252 at 4 and 18 weeks, respectively (p = 0.21). At 4 weeks, the rER at the outer cortical area of isotransplants was significantly lower in isotransplants as compared with allotransplants (0.247 ± 0.181 vs. 0.549 ± 0.184, p = 0.007). Cells in the inner and outer cortical bone remodeling areas in isotransplants were mainly donor derived (rER 0.5) at 18 weeks. Applying novel methodology, we describe detailed cell traffic in vascularized bone transplants, elaborating our comprehension on bone transplantation. Copyright © 2013 Wiley Periodicals, Inc.

  4. Analysis of the volumetric relationship among human ocular, orbital and fronto-occipital cortical morphology

    Science.gov (United States)

    Masters, Michael; Bruner, Emiliano; Queer, Sarah; Traynor, Sarah; Senjem, Jess

    2015-01-01

    Recent research on the visual system has focused on investigating the relationship among eye (ocular), orbital, and visual cortical anatomy in humans. This issue is relevant in evolutionary and medical fields. In terms of evolution, only in modern humans and Neandertals are the orbits positioned beneath the frontal lobes, with consequent structural constraints. In terms of medicine, such constraints can be associated with minor deformation of the eye, vision defects, and patterns of integration among these features, and in association with the frontal lobes, are important to consider in reconstructive surgery. Further study is therefore necessary to establish how these variables are related, and to what extent ocular size is associated with orbital and cerebral cortical volumes. Relationships among these anatomical components were investigated using magnetic resonance images from a large sample of 83 individuals, which also included each subject’s body height, age, sex, and uncorrected visual acuity score. Occipital and frontal gyri volumes were calculated using two different cortical parcellation tools in order to provide a better understanding of how the eye and orbit vary in relation to visual cortical gyri, and frontal cortical gyri which are not directly related to visual processing. Results indicated that ocular and orbital volumes were weakly correlated, and that eye volume explains only a small proportion of the variance in orbital volume. Ocular and orbital volumes were also found to be equally and, in most cases, more highly correlated with five frontal lobe gyri than with occipital lobe gyri associated with V1, V2, and V3 of the visual cortex. Additionally, after accounting for age and sex variation, the relationship between ocular and total visual cortical volume was no longer statistically significant, but remained significantly related to total frontal lobe volume. The relationship between orbital and visual cortical volumes remained significant for

  5. Analysis of the volumetric relationship among human ocular, orbital and fronto-occipital cortical morphology.

    Science.gov (United States)

    Masters, Michael; Bruner, Emiliano; Queer, Sarah; Traynor, Sarah; Senjem, Jess

    2015-10-01

    Recent research on the visual system has focused on investigating the relationship among eye (ocular), orbital, and visual cortical anatomy in humans. This issue is relevant in evolutionary and medical fields. In terms of evolution, only in modern humans and Neandertals are the orbits positioned beneath the frontal lobes, with consequent structural constraints. In terms of medicine, such constraints can be associated with minor deformation of the eye, vision defects, and patterns of integration among these features, and in association with the frontal lobes, are important to consider in reconstructive surgery. Further study is therefore necessary to establish how these variables are related, and to what extent ocular size is associated with orbital and cerebral cortical volumes. Relationships among these anatomical components were investigated using magnetic resonance images from a large sample of 83 individuals, which also included each subject's body height, age, sex, and uncorrected visual acuity score. Occipital and frontal gyri volumes were calculated using two different cortical parcellation tools in order to provide a better understanding of how the eye and orbit vary in relation to visual cortical gyri, and frontal cortical gyri which are not directly related to visual processing. Results indicated that ocular and orbital volumes were weakly correlated, and that eye volume explains only a small proportion of the variance in orbital volume. Ocular and orbital volumes were also found to be equally and, in most cases, more highly correlated with five frontal lobe gyri than with occipital lobe gyri associated with V1, V2, and V3 of the visual cortex. Additionally, after accounting for age and sex variation, the relationship between ocular and total visual cortical volume was no longer statistically significant, but remained significantly related to total frontal lobe volume. The relationship between orbital and visual cortical volumes remained significant for a

  6. Cortical thickness patterns as state biomarker of anorexia nervosa.

    Science.gov (United States)

    Lavagnino, Luca; Mwangi, Benson; Cao, Bo; Shott, Megan E; Soares, Jair C; Frank, Guido K W

    2018-03-01

    Only few studies have investigated cortical thickness in anorexia nervosa (AN), and it is unclear whether patterns of altered cortical thickness can be identified as biomarkers for AN. Cortical thickness was measured in 19 adult women with restricting-type AN, 24 individuals recovered from restricting-type AN (REC-AN) and 24 healthy controls. Those individuals with current or recovered from AN had previously shown altered regional cortical volumes across orbitofrontal cortex and insula. A linear relevance vector machine-learning algorithm estimated patterns of regional thickness across 24 subdivisions of those regions. Region-based analysis showed higher cortical thickness in AN and REC-AN, compared to controls, in the right medial orbital (olfactory) sulcus, and greater cortical thickness for short insular gyri in REC-AN versus controls bilaterally. The machine-learning algorithm identified a pattern of relatively higher right orbital, right insular and left middle frontal cortical thickness, but lower left orbital, right middle and inferior frontal, and bilateral superior frontal cortical thickness specific to AN versus controls (74% specificity and 74% sensitivity, χ 2 p < .004); predicted probabilities differed significantly between AN and controls (p < .023). No pattern significantly distinguished the REC-AN group from controls. Higher cortical thickness in medial orbitofrontal cortex and insula probably contributes to higher gray matter volume in AN in those regions. The machine-learning algorithm identified a mixed pattern of mostly higher orbital and insular, but relatively lower superior frontal cortical thickness in individuals with current AN. These novel results suggest that regional cortical thickness patterns could be state markers for AN. © 2018 Wiley Periodicals, Inc.

  7. Relationship among panoramic radiography findings, biochemical markers of bone turnover and hip bone mineral density in the diagnosis of postmenopausal osteoporosis

    International Nuclear Information System (INIS)

    Johari Khatoonabad, M.; Aghamohammadzade, N.; Taghilu, H.; Esmaeili, F.; Jabbari Khamnei, H.

    2011-01-01

    Recent investigations have shown that panoramic radiography might be a useful tool in the early diagnosis of osteoporosis. In addition, bone turnover biochemical marker might be valuable in predicting osteoporosis and fracture risks in the elderly, especially in post-menopausal women. The aim of the present study was to evaluate the relationship among the radio morphometric indices of the mandible, biochemical markers of the bone turnover and hip bone mineral density in a group of post-menopausal women. Patients and Methods: Evaluations of mandibular cortical width, mandibular cortical index, panoramic index and alveolar crest resorption ration (M/M ration) were carried out on panoramic radiographs of 140 post-menopausal women with an age range of 44-82 years. Hip bone mineral density was measured by dual-energy X-ray absorptiometry method. Bone mineral density values were divided into three groups of normal (T score>-1.0), Osteopenic (T score, -2.5 to -1.0) and Osteoporotic (T score<-2.5). Serum alkaline phosphatase and 25(OH) D3 were measured. Results: A decrease in mandibular cortical width by 1 mm increases the likelihood of osteopenia or osteoporosis up to 40%, having taken into consideration the effect of menopause duration. A 1 mm decrease in mandibular cortical width increased the likelihood of moderate or severe erosion of the lower cortex of the mandible up to 28% by taking age into consideration. The results did not demonstrate a statistically significant relationship between bone turnover markers and mandibular radio morphometric indices. Conclusion: Panoramic radiography gives sufficient information to make an early diagnosis regarding osteoporosis in post-menopausal women. Panoramic radiographs may be valuable in the prevention of osteoporotic fractures in elderly women.

  8. Multidisciplinary characterization of the long-bone cortex growth patterns through sheep's ontogeny.

    Science.gov (United States)

    Cambra-Moo, Oscar; Nacarino-Meneses, Carmen; Díaz-Güemes, Idoia; Enciso, Silvia; García Gil, Orosia; Llorente Rodríguez, Laura; Rodríguez Barbero, Miguel Ángel; de Aza, Antonio H; González Martín, Armando

    2015-07-01

    Bone researches have studied extant and extinct taxa extensively trying to disclose a complete view of the complex structural and chemical transformations that model and remodel the macro and microstructure of bone during growth. However, to approach bone growth variations is not an easy task, and many aspects related with histological transformations during ontogeny remain unresolved. In the present study, we conduct a holistic approach using different techniques (polarized microscopy, Raman spectroscopy and X-ray diffraction) to examine the histomorphological and histochemical variations in the cortical bone of sheep specimens from intrauterine to adult stages, using environmentally controlled specimens from the same species. Our results suggest that during sheep bone development, the most important morphological (shape and size) and chemical transformations in the cortical bone occur during the first weeks of life; synchronized but dissimilar variations are established in the forelimb and hind limb cortical bone; and the patterns of bone tissue maturation in both extremities are differentiated in the adult stage. All of these results indicate that standardized histological models are useful not only for evaluating many aspects of normal bone growth but also to understand other important influences on the bones, such as pathologies that remain unknown. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Immobilization and long-term recovery results in large changes in bone structure and strength but no corresponding alterations of osteocyte lacunar properties.

    Science.gov (United States)

    Bach-Gansmo, Fiona Linnea; Wittig, Nina Kølln; Brüel, Annemarie; Thomsen, Jesper Skovhus; Birkedal, Henrik

    2016-10-01

    The ability of osteocytes to demineralize the perilacunar matrix, osteocytic osteolysis, and thereby participate directly in bone metabolism, is an aspect of osteocyte biology that has received increasing attention during the last couple of years. The aim of the present work was to investigate whether osteocyte lacunar properties change during immobilization and subsequent recovery. A rat cortical bone model with negligible Haversian remodeling effects was used, with temporary immobilization of one hindlimb induced by botulinum toxin. Several complementary techniques covering multiple length scales enabled correlation of osteocyte lacunar properties to changes observed on the organ and tissue level of femoral bone. Bone structural parameters measured by μCT and mechanical properties were compared to sub-micrometer resolution SR μCT data mapping an unprecedented number (1.85 million) of osteocyte lacunae. Immobilization induced a significant reduction in aBMD, bone volume, tissue volume, and load to fracture, as well as the muscle mass of rectus femoris. During the subsequent recovery period, the bone structural and mechanical properties were only partly regained in spite of a long-term (28weeks) study period. No significant changes in osteocyte lacunar volume, density, oblateness, stretch, or orientation were detected upon immobilization or subsequent recovery. In conclusion, the bone architecture and not osteocyte lacunar properties or bone material characteristics dominate the immobilization response as well as the subsequent recovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Bone formation induced in an infant by systemic prostaglandin-E2 administration

    DEFF Research Database (Denmark)

    Jørgensen, H R; Svanholm, H; Høst, A

    1988-01-01

    We report a case of long-term systemic administration of prostaglandin E2 (PGE2) to a newborn infant with ductus-dependent congenital heart disease. After 46 days of treatment, radiography showed cortical hyperostosis of the long bones. The child died 62 days after discontinuation of prostaglandin...... treatment. Histologic examination of tubular bones showed hyperostosis presumably due to prostaglandin-induced rapid formation of primitive bone. The additional finding of extensive resorption of the outer cortical surface and bone formation at the inner surface suggested a reversible phase after...

  11. Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice.

    Directory of Open Access Journals (Sweden)

    Sara H Windahl

    Full Text Available Androgens are important regulators of bone mass but the relative importance of testosterone (T versus dihydrotestosterone (DHT for the activation of the androgen receptor (AR in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2, encoded by separate genes (Srd5a1 and Srd5a2. 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1⁻/⁻ mice. Four-month-old male Srd5a1⁻/⁻ mice had reduced trabecular bone mineral density (-36%, p<0.05 and cortical bone mineral content (-15%, p<0.05 but unchanged serum androgen levels compared with wild type (WT mice. The cortical bone dimensions were reduced in the male Srd5a1⁻/⁻ mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05 in orchidectomized WT mice but not in orchidectomized Srd5a1⁻/⁻ mice. Male Srd5a1⁻/⁻ mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05. Female Srd5a1⁻/⁻ mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1⁻/⁻ mice, is an indirect effect mediated by elevated circulating androgen levels.

  12. Bone formation in cranial, mandibular, tibial and iliac bone grafts in rats

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Talsnes, O

    1995-01-01

    Several studies have suggested that grafts from membranous derived bone (e.g., calvarial grafts) retain their volume better than those from endochondral derived bone (e.g., iliac bone grafts). Increased osteogenesis in grafts of the former type has been offered as the explanation. However, simple...... volume measurements of the recovered grafts do not differentiate between viable and dead bone. We studied fresh syngeneic full-thickness bone grafts from calvaria, mandibula, tibia diaphysis, and iliac bone implanted in the back muscles of young Lewis rats. Bone formation in grafts recovered 3 weeks...... that the anatomical area of harvest is important regarding new bone formation in syngeneic bone grafts. However, the results do not support the contention that better maintenance of volume of calvarial grafts compared with iliac bone grafts is due to enhanced osteogenesis in the former....

  13. Visceral Adipose Tissue Is Associated With Bone Microarchitecture in the Framingham Osteoporosis Study.

    Science.gov (United States)

    Liu, Ching-Ti; Broe, Kerry E; Zhou, Yanhua; Boyd, Steven K; Cupples, L Adrienne; Hannan, Marian T; Lim, Elise; McLean, Robert R; Samelson, Elizabeth J; Bouxsein, Mary L; Kiel, Douglas P

    2017-01-01

    Obesity has been traditionally considered to protect the skeleton against osteoporosis and fracture. Recently, body fat, specifically visceral adipose tissue (VAT), has been associated with lower bone mineral density (BMD) and increased risk for some types of fractures. We studied VAT and bone microarchitecture in 710 participants (58% women, age 61.3 ± 7.7 years) from the Framingham Offspring cohort to determine whether cortical and trabecular BMD and microarchitecture differ according to the amount of VAT. VAT was measured from CT imaging of the abdomen. Cortical and trabecular BMD and microarchitecture were measured at the distal tibia and radius using high-resolution peripheral quantitative computed tomography (HR-pQCT). We focused on 10 bone parameters: cortical BMD (Ct.BMD), cortical tissue mineral density (Ct.TMD), cortical porosity (Ct.Po), cortical thickness (Ct.Th), cortical bone area fraction (Ct.A/Tt.A), trabecular density (Tb.BMD), trabecular number (Tb.N), trabecular thickness (Tb.Th), total area (Tt.Ar), and failure load (FL) from micro-finite element analysis. We assessed the association between sex-specific quartiles of VAT and BMD, microarchitecture, and strength in all participants and stratified by sex. All analyses were adjusted for age, sex, and in women, menopausal status, then repeated adjusting for body mass index (BMI) or weight. At the radius and tibia, Ct.Th, Ct.A/Tt.A, Tb.BMD, Tb.N, and FL were positively associated with VAT (all p-trend <0.05), but no other associations were statistically significant except for higher levels of cortical porosity with higher VAT in the radius. Most of these associations were only observed in women, and were no longer significant when adjusting for BMI or weight. Higher amounts of VAT are associated with greater BMD and better microstructure of the peripheral skeleton despite some suggestions of significant deleterious changes in cortical measures in the non-weight bearing radius. Associations were

  14. Histone deacetylase 3 depletion in osteo/chondroprogenitor cells decreases bone density and increases marrow fat.

    Directory of Open Access Journals (Sweden)

    David F Razidlo

    2010-07-01

    Full Text Available Histone deacetylase (Hdac3 is a nuclear enzyme that contributes to epigenetic programming and is required for embryonic development. To determine the role of Hdac3 in bone formation, we crossed mice harboring loxP sites around exon 7 of Hdac3 with mice expressing Cre recombinase under the control of the osterix promoter. The resulting Hdac3 conditional knockout (CKO mice were runted and had severe deficits in intramembranous and endochondral bone formation. Calvarial bones were significantly thinner and trabecular bone volume in the distal femur was decreased 75% in the Hdac3 CKO mice due to a substantial reduction in trabecular number. Hdac3-CKO mice had fewer osteoblasts and more bone marrow adipocytes as a proportion of tissue area than their wildtype or heterozygous littermates. Bone formation rates were depressed in both the cortical and trabecular regions of Hdac3 CKO femurs. Microarray analyses revealed that numerous developmental signaling pathways were affected by Hdac3-deficiency. Thus, Hdac3 depletion in osterix-expressing progenitor cells interferes with bone formation and promotes bone marrow adipocyte differentiation. These results demonstrate that Hdac3 inhibition is detrimental to skeletal health.

  15. Clinical cone beam computed tomography compared to high-resolution peripheral computed tomography in the assessment of distal radius bone.

    Science.gov (United States)

    de Charry, C; Boutroy, S; Ellouz, R; Duboeuf, F; Chapurlat, R; Follet, H; Pialat, J B

    2016-10-01

    Clinical cone beam computed tomography (CBCT) was compared to high-resolution peripheral quantitative computed tomography (HR-pQCT) for the assessment of ex vivo radii. Strong correlations were found for geometry, volumetric density, and trabecular structure. Using CBCT, bone architecture assessment was feasible but compared to HR-pQCT, trabecular parameters were overestimated whereas cortical ones were underestimated. HR-pQCT is the most widely used technique to assess bone microarchitecture in vivo. Yet, this technology has been only applicable at peripheral sites, in only few research centers. Clinical CBCT is more widely available but quantitative assessment of the bone structure is usually not performed. We aimed to compare the assessment of bone structure with CBCT (NewTom 5G, QR, Verona, Italy) and HR-pQCT (XtremeCT, Scanco Medical AG, Brüttisellen, Switzerland). Twenty-four distal radius specimens were scanned with these two devices with a reconstructed voxel size of 75 μm for Newtom 5G and 82 μm for XtremeCT, respectively. A rescaling-registration scheme was used to define the common volume of interest. Cortical and trabecular compartments were separated using a semiautomated double contouring method. Density and microstructure were assessed with the HR-pQCT software on both modality images. Strong correlations were found for geometry parameters (r = 0.98-0.99), volumetric density (r = 0.91-0.99), and trabecular structure (r = 0.94-0.99), all p < 0.001. Correlations were lower for cortical microstructure (r = 0.80-0.89), p < 0.001. However, absolute differences were observed between modalities for all parameters, with an overestimation of the trabecular structure (trabecular number, 1.62 ± 0.37 vs. 1.47 ± 0.36 mm(-1)) and an underestimation of the cortical microstructure (cortical porosity, 3.3 ± 1.3 vs. 4.4 ± 1.4 %) assessed on CBCT images compared to HR-pQCT images. Clinical CBCT devices are able to

  16. A high-fat diet induces bone loss in mice lacking the Alox5 gene.

    Science.gov (United States)

    Le, Phuong; Kawai, Masanobu; Bornstein, Sheila; DeMambro, Victoria E; Horowitz, Mark C; Rosen, Clifford J

    2012-01-01

    5-Lipoxygenase catalyzes leukotriene generation from arachidonic acid. The gene that encodes 5-lipoxygenase, Alox5, has been identified in genome-wide association and mouse Quantitative Trait Locus studies as a candidate gene for obesity and low bone mass. Thus, we tested the hypothesis that Alox5(-/-) mice would exhibit metabolic and skeletal changes when challenged by a high-fat diet (HFD). On a regular diet, Alox5(-/-) mice did not differ in total body weight, percent fat mass, or bone mineral density compared with wild-type (WT) controls (P < 0.05). However, when placed on a HFD, Alox5(-/-) gained more fat mass and lost greater areal bone mass vs. WT (P < 0.05). Microarchitectural analyses revealed that on a HFD, WT showed increases in cortical area (P < 0.01) and trabecular thickness (P < 0.01), whereas Alox5(-/-) showed no change in cortical parameters but a decrease in trabecular number (P < 0.05) and bone volume fraction compared with WT controls (P < 0.05). By histomorphometry, a HFD did not change bone formation rates of either strain but produced an increase in osteoclast number per bone perimeter in Alox5(-/-) mice (P < 0.03). In vitro, osteoclastogenesis of marrow stromal cells was enhanced in mutant but not WT mice fed a HFD. Gene expression for Rankl, Pparg, and Cox-2 was greater in the femur of Alox5(-/-) than WT mice on a HFD (P < 0.01), but these increases were suppressed in the Alox5(-/-) mice after 8 wk of treatment with celecoxib, a cyclooxygenase-2 inhibitor. In sum, there is a strong gene by environmental interaction for bone mass when mice lacking the Alox5 gene are fed a HFD.

  17. Osteostatin-coated porous titanium can improve early bone regeneration of cortical bone defects in rats

    NARCIS (Netherlands)

    Van Der Stok, Johan; Lozano, Daniel; Chai, Yoke Chin; Amin Yavari, Saber; Bastidas Coral, Angela P.; Verhaar, Jan A N; Gómez-Barrena, Enrique; Schrooten, Jan; Jahr, Holger; Zadpoor, Amir A.; Esbrit, Pedro; Weinans, Harrie

    2015-01-01

    A promising bone graft substitute is porous titanium. Porous titanium, produced by selective laser melting (SLM), can be made as a completely open porous and load-bearing scaffold that facilitates bone regeneration through osteoconduction. In this study, the bone regenerative capacity of porous

  18. Effect of long-term growth hormone treatment on bone mass and bone metabolism in growth hormone-deficient men

    NARCIS (Netherlands)

    Bravenboer, N; Holzmann, PJ; ter Maaten, JC; Stuurman, LM; Roos, JC; Lips, P

    2005-01-01

    Long-term GH treatment in GH-deficient men resulted in a continuous increase in bone turnover as shown by histomorphometry. BMD continuously increased in all regions of interest, but more in the regions with predominantly cortical bone. Introduction: Adults with growth hormone (GH) deficiency have

  19. The penetration of cefazolin, erythromycin and methicillin into human bone tissue

    DEFF Research Database (Denmark)

    Sørensen, T S; Colding, H; Schroeder, E

    1978-01-01

    The penetration of cefazolin, erythromycin and methicillin into normal bone was studied in 20 patients undergoing surgery for fracture in the trochanteric region of the femur. The antibiotic concentrations were determined in serum, bone marrow, and cancellous and cortical bone. For all three...... antibiotics the bone marrow concentrations were of the same order of magnitude as the serum concentrations. In the eight patients receiving erythromycin, detectable concentrations were found in all the cancellous bone specimens (ranging from 1/7 to 1/2 of the serum concentration) and in three cortical bone...... specimens (ranging from 1/50 to 1/5 of the serum concentration). In the six patients receiving cefazolin, a detectable concentration was found in only one cancellous bone sample. In the six patients receiving methicillin, detectable concentrations were found only in the blood contaminated specimens of one...

  20. Effects of Testosterone and Growth Hormone on the Structural and Mechanical Properties of Bone by Micro-MRI in the Distal Tibia of Men With Hypopituitarism

    Science.gov (United States)

    Al Mukaddam, Mona; Rajapakse, Chamith S.; Bhagat, Yusuf A.; Wehrli, Felix W.; Guo, Wensheng; Peachey, Helen; LeBeau, Shane O.; Zemel, Babette S.; Wang, Christina; Swerdloff, Ronald S.; Kapoor, Shiv C.

    2014-01-01

    Context: Severe deficiencies of testosterone (T) and GH are associated with low bone mineral density (BMD) and increased fracture risk. Replacement of T in hypogonadal men improves several bone parameters. Replacement of GH in GH-deficient men improves BMD. Objective: Our objective was to determine whether T and GH treatment together improves the structural and mechanical parameters of bone more than T alone in men with hypopituitarism. Design and Subjects: This randomized, prospective, 2-year study included 32 men with severe deficiencies of T and GH due to panhypopituitarism. Intervention: Subjects were randomized to receive T alone (n = 15) or T and GH (n = 17) for 2 years. Main Outcome Measures: We evaluated magnetic resonance microimaging-derived structural (bone volume fraction [BVF] and trabecular thickness) and mechanical (axial stiffness [AS], a measure of bone strength) properties of the distal tibia at baseline and after 1 and 2 years of treatment. Results: Treatment with T and GH did not affect BVF, thickness, or AS differently from T alone. T treatment in all subjects for 2 years increased trabecular BVF by 9.6% (P hypopituitarism for 2 years did not improve the measured structural or mechanical parameters of the distal tibia more than T alone. However, testosterone significantly increased the structural and mechanical properties of trabecular bone but decreased most of these properties of cortical bone, illustrating the potential importance of assessing trabecular and cortical bone separately in future studies of the effect of testosterone on bone. PMID:24423356

  1. Relationships between in vivo microdamage and the remarkable regional material and strain heterogeneity of cortical bone of adult deer, elk, sheep and horse calcanei

    Science.gov (United States)

    Skedros, John G; Sybrowsky, Christian L; Anderson, Wm Erick; Chow, Frank

    2011-01-01

    Natural loading of the calcanei of deer, elk, sheep and horses produces marked regional differences in prevalent/predominant strain modes: compression in the dorsal cortex, shear in medial–lateral cortices, and tension/shear in the plantar cortex. This consistent non-uniform strain distribution is useful for investigating mechanisms that mediate the development of the remarkable regional material variations of these bones (e.g. collagen orientation, mineralization, remodeling rates and secondary osteon morphotypes, size and population density). Regional differences in strain-mode-specific microdamage prevalence and/or morphology might evoke and sustain the remodeling that produces this material heterogeneity in accordance with local strain characteristics. Adult calcanei from 11 animals of each species (deer, elk, sheep and horses) were transversely sectioned and examined using light and confocal microscopy. With light microscopy, 20 linear microcracks were identified (deer: 10; elk: six; horse: four; sheep: none), and with confocal microscopy substantially more microdamage with typically non-linear morphology was identified (deer: 45; elk: 24; horse: 15; sheep: none). No clear regional patterns of strain-mode-specific microdamage were found in the three species with microdamage. In these species, the highest overall concentrations occurred in the plantar cortex. This might reflect increased susceptibility of microdamage in habitual tension/shear. Absence of detectable microdamage in sheep calcanei may represent the (presumably) relatively greater physical activity of deer, elk and horses. Absence of differences in microdamage prevalence/morphology between dorsal, medial and lateral cortices of these bones, and the general absence of spatial patterns of strain-mode-specific microdamage, might reflect the prior emergence of non-uniform osteon-mediated adaptations that reduce deleterious concentrations of microdamage by the adult stage of bone development. PMID

  2. A new implementation of digital X-ray radiogrammetry and reference curves of four indices of cortical bone for healthy European adults

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik; Böttcher, Joachim; Lomholt, Jens

    2016-01-01

    UNLABELLED: Digital X-ray radiogrammetry performs measurements on a hand radiograph in digital form. We present an improved implementation of the method and provide reference curves for four indices for the amount of bone. We collected 1662 hand radiographs of healthy subjects of age 9-100 years....... PURPOSE: The digital X-ray radiogrammetry (DXR) method has been shown to be efficient for diagnosis of osteoporosis and for assessment of progression of rheumatoid arthritis. The aim of this work is to present a new DXR implementation and reference curves of four indices of cortical bone and to compare...... their relative SDs in healthy subjects at fixed age and gender. MATERIALS AND METHODS: A total of 1662 hand radiographs of healthy subjects of age 9-100 years were collected in Jena in 2001-2005. We also used a longitudinal study of 116 Danish children born in 1952 with on average 11 images taken over the age...

  3. Proximal Femur Volumetric Bone Mineral Density and Mortality: 13 Years of Follow-Up of the AGES-Reykjavik Study.

    Science.gov (United States)

    Marques, Elisa A; Elbejjani, Martine; Gudnason, Vilmundur; Sigurdsson, Gunnar; Lang, Thomas; Sigurdsson, Sigurdur; Aspelund, Thor; Meirelles, Osorio; Siggeirsdottir, Kristin; Launer, Lenore; Eiriksdottir, Gudny; Harris, Tamara B

    2017-06-01

    Bone mineral density (BMD) has been linked to mortality, but little is known about the independent contribution of each endosteal bone compartment and also the rate of bone loss to risk of mortality. We examined the relationships between (1) baseline trabecular and cortical volumetric BMD (vBMD) at the proximal femur, and (2) the rate of trabecular and cortical bone loss and all-cause mortality in older adults from the AGES-Reykjavik study. The analysis of trabecular and cortical vBMD and mortality was based on the baseline cohort of 4654 participants (aged ≥66 years) with a median follow-up of 9.4 years; the association between rate of bone loss and mortality was based on 2653 participants with bone loss data (median follow-up of 5.6 years). Analyses employed multivariable Cox-proportional models to estimate hazard ratios (HRs) with time-varying fracture status; trabecular and cortical variables were included together in all models. Adjusted for important confounders, Cox models showed that participants in the lowest quartile of trabecular vBMD had an increased risk of mortality compared to participants in other quartiles (HR = 1.12; 95% confidence interval (CI), 1.01 to 1.25); baseline cortical vBMD was not related to mortality (HR = 1.08; 95% CI, 0.97 to 1.20). After adjustment for time-dependent fracture status, results were attenuated and not statistically significant. A faster loss (quartile 1 versus quartiles 2-4) in both trabecular and cortical bone was associated with higher mortality risk (HR = 1.37 and 1.33, respectively); these associations were independent of major potential confounders including time-dependent incident fractures (HR = 1.32 and 1.34, respectively). Overall, data suggest that faster bone losses over time in both the trabecular and cortical bone compartments are associated with mortality risk and that measurements of change in bone health may be more informative than single-point measurements in explaining mortality

  4. Biomechanics of the Proximal Radius Following Drilling of the Bicipital Tuberosity to Mimic Cortical Button Distal Biceps Repair Technique.

    Science.gov (United States)

    Oak, Nikhil R; Lien, John R; Brunfeldt, Alexander; Lawton, Jeffrey N

    2018-05-01

    A fracture through the proximal radius is a theoretical concern after cortical button distal biceps fixation in an active patient. The permanent, nonossified cortical defect and medullary tunnel is at risk during a fall eliciting rotational and compressive forces. We hypothesized that during simulated torsion and compression, in comparison with unaltered specimens, the cortical button distal biceps repair model would have decreased torsional and compressive strength and would fracture in the vicinity of the bicipital tuberosity bone tunnel. Sixteen fourth-generation composite radius Sawbones models were used in this controlled laboratory study. A bone tunnel was created through the bicipital tuberosity to mimic the exact bone tunnel, 8 mm near cortex and 3.2 mm far cortex, made for the BicepsButton distal biceps tendon repair. The radius was then prepared and mounted on either a torsional or compression testing device and compared with undrilled control specimens. Compression tests resulted in average failure loads of 9015.2 N in controls versus 8253.25 N in drilled specimens ( P = .074). Torsional testing resulted in an average failure torque of 27.3 Nm in controls and 19.3 Nm in drilled specimens ( P = .024). Average fracture angle was 35.1° in controls versus 21.1° in drilled. Gross fracture patterns were similar in compression testing; however, in torsional testing all fractures occurred through the bone tunnel in the drilled group. There are weaknesses in the vicinity of the bone tunnel in the proximal radius during biomechanical stress testing which may not be clinically relevant in nature. In cortical button fixation, distal biceps repairs creates a permanent, nonossified cortical defect with tendon interposed in the bone tunnel, which can alter the biomechanical properties of the proximal radius during compressive and torsional loading.

  5. Alveolar bone changes after asymmetric rapid maxillary expansion.

    Science.gov (United States)

    Akin, Mehmet; Baka, Zeliha Muge; Ileri, Zehra; Basciftci, Faruk Ayhan

    2015-09-01

    To quantitatively evaluate the effects of asymmetric rapid maxillary expansion (ARME) on cortical bone thickness and buccal alveolar bone height (BABH), and to determine the formation of dehiscence and fenestration in the alveolar bone surrounding the posterior teeth, using cone-beam computed tomography (CBCT). The CBCT records of 23 patients with true unilateral posterior skeletal crossbite (10 boys, 14.06 ± 1.08 years old, and 13 girls, 13.64 ± 1.32 years old) who had undergone ARME were selected from our clinic archives. The bonded acrylic ARME appliance, including an occlusal stopper, was used on all patients. CBCT records had been taken before ARME (T1) and after the 3-month retention period (T2). Axial slices of the CBCT images at 3 vertical levels were used to evaluate the buccal and palatal aspects of the canines, first and second premolars, and first molars. Paired samples and independent sample t-tests were used for statistical comparison. The results suggest that buccal cortical bone thickness of the affected side was significantly more affected by the expansion than was the unaffected side (P ARME significantly reduced the BABH of the canines (P ARME also increased the incidence of dehiscence and fenestration on the affected side. ARME may quantitatively decrease buccal cortical bone thickness and height on the affected side.

  6. Intracortical stiffness of mid-diaphysis femur bovine bone: lacunar-canalicular based homogenization numerical solutions and microhardness measurements.

    Science.gov (United States)

    Hage, Ilige S; Hamade, Ramsey F

    2017-09-01

    Microscale lacunar-canalicular (L-C) porosity is a major contributor to intracortical bone stiffness variability. In this work, such variability is investigated experimentally using micro hardness indentation tests and numerically using a homogenization scheme. Cross sectional rings of cortical bones are cut from the middle tubular part of bovine femur long bone at mid-diaphysis. A series of light microscopy images are taken along a line emanating from the cross-section center starting from the ring's interior (endosteum) ring surface toward the ring's exterior (periosteum) ring surface. For each image in the line, computer vision analysis of porosity is conducted employing an image segmentation methodology based on pulse coupled neural networks (PCNN) recently developed by the authors. Determined are size and shape of each of the lacunar-canalicular (L-C) cortical micro constituents: lacunae, canaliculi, and Haversian canals. Consequently, it was possible to segment and quantify the geometrical attributes of all individual segmented pores leading to accurate determination of derived geometrical measures such as L-C cortical pores' total porosity (pore volume fraction), (elliptical) aspect ratio, orientation, location, and number of pores in secondary and primary osteons. Porosity was found to be unevenly (but linearly) distributed along the interior and exterior regions of the intracortical bone. The segmented L-C porosity data is passed to a numerical microscale-based homogenization scheme, also recently developed by the authors, that analyses a composite made up of lamella matrix punctuated by multi-inclusions and returns corresponding values for longitudinal and transverse Young's modulus (matrix stiffness) for these micro-sized spatial locations. Hence, intracortical stiffness variability is numerically quantified using a combination of computer vision program and numerical homogenization code. These numerically found stiffness values of the homogenization

  7. Bone fractures following external beam radiotherapy and limb-preservation surgery for lower extremity soft tissue sarcoma: relationship to irradiated bone length, volume, tumor location and dose.

    Science.gov (United States)

    Dickie, Colleen I; Parent, Amy L; Griffin, Anthony M; Fung, Sharon; Chung, Peter W M; Catton, Charles N; Ferguson, Peter C; Wunder, Jay S; Bell, Robert S; Sharpe, Michael B; O'Sullivan, Brian

    2009-11-15

    To examine the relationship between tumor location, bone dose, and irradiated bone length on the development of radiation-induced fractures for lower extremity soft tissue sarcoma (LE-STS) patients treated with limb-sparing surgery and radiotherapy (RT). Of 691 LE-STS patients treated from 1989 to 2005, 31 patients developed radiation-induced fractures. Analysis was limited to 21 fracture patients (24 fractures) who were matched based on tumor size and location, age, beam arrangement, and mean total cumulative RT dose to a random sample of 53 nonfracture patients and compared for fracture risk factors. Mean dose to bone, RT field size (FS), maximum dose to a 2-cc volume of bone, and volume of bone irradiated to >or=40 Gy (V40) were compared. Fracture site dose was determined by comparing radiographic images and surgical reports to fracture location on the dose distribution. For fracture patients, mean dose to bone was 45 +/- 8 Gy (mean dose at fracture site 59 +/- 7 Gy), mean FS was 37 +/- 8 cm, maximum dose was 64 +/- 7 Gy, and V40 was 76 +/- 17%, compared with 37 +/- 11 Gy, 32 +/- 9 cm, 59 +/- 8 Gy, and 64 +/- 22% for nonfracture patients. Differences in mean, maximum dose, and V40 were statistically significant (p = 0.01, p = 0.02, p = 0.01). Leg fractures were more common above the knee joint. The risk of radiation-induced fracture appears to be reduced if V40 Fracture incidence was lower when the mean dose to bone was lower mean FS for nonfracture patients.

  8. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects.

    Science.gov (United States)

    Van der Stok, Johan; Van der Jagt, Olav P; Amin Yavari, Saber; De Haas, Mirthe F P; Waarsing, Jan H; Jahr, Holger; Van Lieshout, Esther M M; Patka, Peter; Verhaar, Jan A N; Zadpoor, Amir A; Weinans, Harrie

    2013-05-01

    Porous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut size reduces the stiffness of the structure and may have a positive effect on bone formation. Two scaffolds with struts of 120-µm (titanium-120) or 230-µm (titanium-230) were studied in a load-bearing critical femoral bone defect in rats. The defect was stabilized with an internal plate and treated with titanium-120, titanium-230, or left empty. In vivo micro-CT scans at 4, 8, and 12 weeks showed more bone in the defects treated with scaffolds. Finally, 18.4 ± 7.1 mm(3) (titanium-120, p = 0.015) and 18.7 ± 8.0 mm(3) (titanium-230, p = 0.012) of bone was formed in those defects, significantly more than in the empty defects (5.8 ± 5.1 mm(3) ). Bending tests on the excised femurs after 12 weeks showed that the fusion strength reached 62% (titanium-120) and 45% (titanium-230) of the intact contralateral femurs, but there was no significant difference between the two scaffolds. This study showed that in addition to adequate mechanical support, porous titanium scaffolds facilitate bone formation, which results in high mechanical integrity of the treated large bone defects. Copyright © 2012 Orthopaedic Research Society.

  9. Effects of local single and fractionated X-ray doses on rat bone marrow blood flow and red blood cell volume

    International Nuclear Information System (INIS)

    Pitkaenen, M.A.; Hopewell, J.W.

    1985-01-01

    Time and dose dependent changes in blood flow and red blood cell volume were studied in the locally irradiated bone marrow of the rat femur after single and fractionated doses of X-rays. With the single dose of 10 Gy the bone marrow blood flow although initially reduced returned to the control levels by seven months after irradiation. With doses >=15 Gy the blood flow was still significantly reduced at seven months. The total dose levels predicted by the nominal standard dose equation for treatments in three, six or nine fractions produced approximately the same degree of reduction in the bone marrow blood flow seven months after the irradiation. However, the fall in the red blood cell volume was from 23 to 37% greater in the three fractions groups compared with that in the nine fractions groups. Using the red blood cell volume as a parameter the nominal standard dose formula underestimated the severity of radiation damage in rat bone marrow at seven months for irradiation with small numbers of large dose fractions. (orig.) [de

  10. Bone remodelling: its local regulation and the emergence of bone fragility.

    Science.gov (United States)

    Martin, T John; Seeman, Ego

    2008-10-01

    Bone modelling prevents the occurrence of damage by adapting bone structure - and hence bone strength - to its loading circumstances. Bone remodelling removes damage, when it inevitably occurs, in order to maintain bone strength. This cellular machinery is successful during growth, but fails during advancing age because of the development of a negative balance between the volumes of bone resorbed and formed during remodelling by the basic multicellular unit (BMU), high rates of remodelling during midlife in women and late in life in both sexes, and a decline in periosteal bone formation. together resulting in bone loss and structural decay each time a remodelling event occurs. The two steps in remodelling - resorption of a volume of bone by osteoclasts and formation of a comparable volume by osteoblasts - are sequential, but the regulatory events leading to these two fully differentiated functions are not. Reparative remodelling is initiated by damage producing osteocyte apoptosis, which signals the location of damage via the osteocyte canalicular system to endosteal lining cells which forms the canopy of a bone-remodelling compartment (BRC). Within the BRC, local recruitment of osteoblast precursors from the lining cells, the marrow and circulation, direct contact with osteoclast precursors, osteoclastogenesis and molecular cross-talk between precursors, mature cells, cells of the immune system, and products of the resorbed matrix, titrate the birth, work and lifespan of the cells of this multicellular remodelling machinery to either remove or form a net volume of bone appropriate to the mechanical requirements.

  11. Effects of chronic mild stress on parameters of bone assessment in adult male and female rats

    Directory of Open Access Journals (Sweden)

    Fabrício L. Valente

    Full Text Available Abstract: Osteoporosis is a multifactorial disease of high prevalence and has great impact on quality of life, because the effects on bone structure increase the risk of fractures, what may be very debilitating. Based on the observation that patients with depression have lower bone mineral density than healthy individuals, many studies have indicated that stress could be an aggravating factor for bone loss. This study evaluates the effect of a protocol of chronic mild stress (CMS on parameters of bone assessment in male and female rats. Five 5-monh-old rats of each sex underwent a schedule of stressor application for 28 days. Stressors included cold, heat, restraint, cage tilt, isolation, overnight illumination, and water and food deprivation. Five rats of each sex were kept under minimum intervention as control group. The animals were weighed at beginning and end of the period, and after euthanasia had their bones harvested. Femur, tibia and lumbar vertebrae were analyzed by bone densitometry. Biomechanical tests were performed in femoral head and diaphysis. Trabecular bone volume was obtained from histomorphometric analysis of femoral head and vertebral body, as well as of femoral midshaft cross-sectional measures. Not all parameters analyzed showed effect of CMS. However, tibial and L4 vertebral bone mineral density and cross-sectional cortical/medullar ratio of femoral shaft were lower in female rats submitted to the CMS protocol. Among male rats, the differences were significant for femoral trabecular bone volume and maximum load obtained by biomechanical test. Thus, it could be confirmed that CMS can affect the balance of bone homeostasis in rats, what may contribute to the establishment of osteopenia or osteoporosis.

  12. Evidence for Ongoing Modeling-Based Bone Formation in Human Femoral Head Trabeculae via Forming Minimodeling Structures: A Study in Patients with Fractures and Arthritis.

    Science.gov (United States)

    Sano, Hiroshige; Kondo, Naoki; Shimakura, Taketoshi; Fujisawa, Junichi; Kijima, Yasufumi; Kanai, Tomotake; Poole, Kenneth E S; Yamamoto, Noriaki; Takahashi, Hideaki E; Endo, Naoto

    2018-01-01

    Bone modeling is a biological process of bone formation that adapts bone size and shape to mechanical loads, especially during childhood and adolescence. Bone modeling in cortical bone can be easily detected using sequential radiographic images, while its assessment in trabecular bone is challenging. Here, we performed histomorphometric analysis in 21 bone specimens from biopsies collected during hip arthroplasty, and we proposed the criteria for histologically identifying an active modeling-based bone formation, which we call a "forming minimodeling structure" (FMiS). Evidence of FMiSs was found in 9 of 20 specimens (45%). In histomorphometric analysis, bone volume was significant higher in specimens displaying FMiSs compared with the specimens without these structures (BV/TV, 31.7 ± 10.2 vs. 23.1 ± 3.9%; p  modeling-based bone formation on trabecular bone surfaces occurs even during adulthood. As FMiSs can represent histological evidence of modeling-based bone formation, understanding of this physiology in relation to bone homeostasis is crucial.

  13. Midline lumbar fusion using cortical bone trajectory screws. Preliminary report

    Directory of Open Access Journals (Sweden)

    Mateusz Bielecki

    2016-09-01

    Full Text Available Introduction : Midline lumbar fusion (MIDLF using cortical bone trajectory is an alternative method of transpedicular spinal fusion for degenerative disease. The new entry points’ location and screwdriving direction allow the approach-related morbidity to be reduced. Aim: To present our preliminary experience with the MIDLF technique on the first 5 patients with lumbar degenerative disease and with follow-up of at least 6 months. Material and methods: Retrospective analysis was performed on the first 5 patients with foraminal (4 or central (1 stenosis operated on between December 2014 and February 2015. Three patients were fused at L4–L5 and two at the L5–S1 level. Results: No intra- or post-operative complications occurred with this approach. An improvement regarding the leading symptom in the early postoperative period (sciatica 4/4, claudication 1/1 was achieved in all patients. The mean improvements in the visual analogue scale for low back and leg pain were 2.2 and 4.8 respectively. The mean Oswestry Disability Index scores were 52% (range: 16–82% before surgery and 33% (range: 12–56% at 3-month follow-up (mean improvement 19%. At the most recent follow-up, 4 patients reported the maintenance of the satisfactory result. The early standing and follow-up X-rays showed satisfactory screw placement in all patients. Conclusions : In our initial experience, the MIDLF technique seems to be an encouraging alternative to traditional transpedicular trajectory screws when short level lumbar fusion is needed. Nevertheless, longer observations on larger groups of patients are needed to reliably evaluate the safety of the method and the sustainability of the results.

  14. Distribution of plutonium amongst and within selected bones from an injection case

    International Nuclear Information System (INIS)

    Larsen, R.P.; Oldham, R.D.; Martin, S.M.

    1979-01-01

    The burden and macrodistribution of plutonium in the skeleton of a man who received 0.38 μCi of 239 Pu by injection were determined. The relative concentrations in the bones analyzed are comparable to those obtained in a study of another subject. The concentrations in the trabecular and cortical portions of these bones were determined; the concentration ratio ranged from 1.9 to 4.7. The data show that (1) within a bone the plutonium concentration in the trabecular portion is always higher than it is in the cortical portion, but (2) within a group of bones plutonium concentration is not correlated with degree of trabecularity

  15. Bone growth and turnover in progesterone receptor knockout mice.

    Energy Technology Data Exchange (ETDEWEB)

    Rickard, David J.; Iwaniec, Urszula T.; Evans, Glenda; Hefferan, Theresa E.; Hunter, Jaime C.; Waters, Katrina M.; Lydon, John P.; O' Malley, Bert W.; Khosla, Sundeep; Spelsberg, Thomas C.; Turner, Russell T.

    2008-05-01

    The role of progesterone receptor (PR) signaling in skeletal metabolism is controversial. To address whether signaling through the PR is necessary for normal bone growth and turnover, we performed histomorphometric and mCT analyses of bone from homozygous female PR knockout (PRKO) mice at 6, 12, and 26 weeks of age. These mice possess a null mutation of the PR locus, which blocks the gene expression of A and B isoforms of PR. Body weight gain, uterine weight gain and tibia longitudinal bone growth was normal in PRKO mice. In contrast, total and cortical bone mass were increased in long bones of post-pubertal (12 and 26-week-old) PRKO mice, whereas cancellous bone mass was normal in the tibia but increased in the humerus. The striking 57% decrease in cancellous bone from the proximal tibia metaphysis which occurred between 6 and 26 weeks in WT mice was abolished in PRKO mice. The improved bone balance in aging PRKO mice was associated with elevated bone formation and a tendency toward reduced osteoclast perimeter. Taken together, these findings suggest that PR signaling in mice attenuates the accumulation of cortical bone mass during adolescence and is required for early age-related loss of cancellous bone.

  16. The Effect of Rosiglitazone on Bone Quality in a Rat Model of Insulin Resistance and Osteoporosis

    Science.gov (United States)

    Sardone, Laura Donata

    Rosiglitazone (RSG) is an insulin-sensitizing drug used to treat Type 2 Diabetes Mellitus (T2DM). Clinical trials show that women taking RSG experience more limb fractures than patients taking other T2DM drugs. The purpose of this study is to understand how RSG (3mg/kg/day and 10mg/kg/day) and the bisphosphonate alendronate (0.7mg/kg/week) alter bone quality in the male, female and female ovariectomized (OVX) Zucker fatty rat model over a 12 week period. Bone quality was evaluated by mechanical testing of cortical and trabecular bone. Microarchitecture, bone mineral density (BMD), cortical bone porosity, bone formation/resorption and mineralization were also measured. Female OVX RSG10mg/kg rats had significantly lower vertebral BMD and compromised trabecular architecture versus OVX controls. Increased cortical porosity and decreased mechanical properties occurred in these rats. ALN treatment prevented these negative effects in the OVX RSG model. Evidence of reduced bone formation and excess bone resorption was detected in female RSG-treated rats.

  17. Utilizing time-lapse micro-CT-correlated bisphosphonate binding kinetics and soft tissue-derived input functions to differentiate site-specific changes in bone metabolism in vivo.

    Science.gov (United States)

    Tower, R J; Campbell, G M; Müller, M; Glüer, C C; Tiwari, S

    2015-05-01

    The turnover of bone is a tightly regulated process between bone formation and resorption to ensure skeletal homeostasis. This process differs between bone types, with trabecular bone often associated with higher turnover than cortical bone. Analyses of bone by micro-computed tomography (micro-CT) reveal changes in structure and mineral content, but are limited in the study of metabolic activity at a single time point, while analyses of serum markers can reveal changes in bone metabolism, but cannot delineate the origin of any aberrant findings. To obtain a site-specific assessment of bone metabolic status, bisphosphonate binding kinetics were utilized. Using a fluorescently-labeled bisphosphonate, we show that early binding kinetics monitored in vivo using fluorescent molecular tomography (FMT) can monitor changes in bone metabolism in response to bone loss, stimulated by ovariectomy (OVX), or bone gain, resulting from treatment with the anabolic bone agent parathyroid hormone (PTH), and is capable of distinguishing different, metabolically distinct skeletal sites. Using time-lapse micro-CT, longitudinal bone turnover was quantified. The spine showed a significantly greater percent resorbing volume and surface in response to OVX, while mice treated with PTH showed significantly greater resorbing volume per bone surface in the spine and significantly greater forming surfaces in the knee. Correlation studies between binding kinetics and micro-CT suggest that forming surfaces, as assessed by time-lapse micro-CT, are preferentially reflected in the rate constant values while forming and resorbing bone volumes primarily affect plateau values. Additionally, we developed a blood pool correction method which now allows for quantitative multi-compartment analyses to be conducted using FMT. These results further expand our understanding of bisphosphonate binding and the use of bisphosphonate binding kinetics as a tool to monitor site-specific changes in bone metabolism in

  18. The behavior of adaptive bone-remodeling simulation models

    NARCIS (Netherlands)

    H.H. Weinans (Harrie); R. Huiskes (Rik); H.J. Grootenboer

    1992-01-01

    textabstractThe process of adaptive bone remodeling can be described mathematically and simulated in a computer model, integrated with the finite element method. In the model discussed here, cortical and trabecular bone are described as continuous materials with variable density. The remodeling rule

  19. The correlation between metacarpal bone mineral content and bone mineral density of the jawbone in implant patients

    International Nuclear Information System (INIS)

    Kuroda, Toshinobu; Takamori, Hitoshi; Yosue, Takashi

    2006-01-01

    This study estimated the relationship between metacarpal bone mineral content and jawbone density. The subjects were 141 patients who desired implant treatment and had undergone a thorough pre-operative CT examination. In the maxilla, bone mineral density (BMD) was measured at the cancellous bone between the nasal cavity and the maxillary sinus. In the mandible, BMD was measured at the cancellous bone beneath the mental foramen. The CT numbers were corrected by the quantitative computer tomography (QCT) method. Furthermore, the cortical indices of the mandible, i.e. C-PMI (Central-Panoramic Mandibular Index), and MCW (Mandibular Cortical Width) were measured and calculated from panoramic radiographs. The bone mineral content of the total body was obtained by ΣGS/D and MCI through Microdensitometry. The following results were obtained. Between the maxillary BMD and ΣGS/D and between the mandibular BMD and ΣGS/D, there was a correlation in females but no correlation in males. Between the maxillary BMD and MCI, there was a correlation in females but no correlation in males. However, in the mandibular BMD and MCI there was no correlation in females and males. Between C-PMI and ΣGS/D there was a correlation in both females and males. Between C-PMI and MCI there was a correlation in both females and males. Between MCW and ΣGS/D there was a correlation in both females and males. Between MCW and MCI there was a correlation in females, but no correlation in males. From the above results, it was concluded that the maxillary BMD and the cortical index of the mandible reflected changes in the metacarpal bone mineral content, while mandibular BMD did not. (author)

  20. Effect of Denosumab on Peripheral Compartmental Bone Density, Microarchitecture and Estimated Bone Strength in De Novo Kidney Transplant Recipients.

    Science.gov (United States)

    Bonani, Marco; Meyer, Ursina; Frey, Diana; Graf, Nicole; Bischoff-Ferrari, Heike A; Wüthrich, Rudolf P

    2016-01-01

    In a randomized controlled clinical trial in kidney transplant recipients (NCT01377467) we have recently shown that RANKL inhibition with denosumab significantly improved areal bone mineral density (aBMD) when given during the first year after transplantation. The effect of denosumab on skeletal microstructure and bone strength in kidney transplant recipients is not known. The purpose of the present bone microarchitecture ancillary study was to investigate high-resolution peripheral quantitative computed tomography (HRpQCT) data from the distal tibia and distal radius in 24 study patients that had been randomized to receive either two injections of denosumab 60 mg at baseline and after 6 months (n=10) or no treatment (n=14). Consistent with the full trial findings, denosumab reduced biomarkers of bone turnover, and significantly increased aBMD at the lumbar spine (median difference of 4.7%; 95% confidence interval [CI] 2.6 - 7.8; pBone quality as assessed by total and cortical volumetric bone mineral density (Tot. vBMD, Ct.vBMD) and cortical thickness (Ct.Th) increased significantly at the tibia, while changes at the radius were less pronounced. The trabecular volumetric BMD (Tb.vBMD), thickness (Tb. Th), separation (Tb.Sp) and number (Tb.N) and the cortical porosity (Ct.Po) at the tibia and the radius did not significantly change in both treatment groups. Micro-finite element analysis (µFEA) showed that bone stiffness increased significantly at the tibia (median difference 5.6%; 95% CI 1.8% - 9.2%; p=0.002) but not at the radius (median difference 2.9%, 95% CI -3.7% - 9.1%; p=0.369). Likewise, failure load increased significantly at the tibia (median difference 5.1%; 95% CI 2.1% - 8.1%; p=0.002) but not at the radius (median difference 2.4%, 95% CI -3.2% - 8.5%; p=0.336). These findings demonstrate that denosumab improves bone density and bone quality in first-year kidney transplant recipients at risk to develop osteoporosis. © 2016 The Author(s) Published by S

  1. Bone Fractures Following External Beam Radiotherapy and Limb-Preservation Surgery for Lower Extremity Soft Tissue Sarcoma: Relationship to Irradiated Bone Length, Volume, Tumor Location and Dose

    International Nuclear Information System (INIS)

    Dickie, Colleen I.; Parent, Amy L.; Griffin, Anthony M.; Fung, Sharon; Chung, Peter W.M.; Catton, Charles N.; Ferguson, Peter C.; Wunder, Jay S.; Bell, Robert S.; Sharpe, Michael B.; O'Sullivan, Brian

    2009-01-01

    Purpose: To examine the relationship between tumor location, bone dose, and irradiated bone length on the development of radiation-induced fractures for lower extremity soft tissue sarcoma (LE-STS) patients treated with limb-sparing surgery and radiotherapy (RT). Methods and Materials: Of 691 LE-STS patients treated from 1989 to 2005, 31 patients developed radiation-induced fractures. Analysis was limited to 21 fracture patients (24 fractures) who were matched based on tumor size and location, age, beam arrangement, and mean total cumulative RT dose to a random sample of 53 nonfracture patients and compared for fracture risk factors. Mean dose to bone, RT field size (FS), maximum dose to a 2-cc volume of bone, and volume of bone irradiated to ≥40 Gy (V40) were compared. Fracture site dose was determined by comparing radiographic images and surgical reports to fracture location on the dose distribution. Results: For fracture patients, mean dose to bone was 45 ± 8 Gy (mean dose at fracture site 59 ± 7 Gy), mean FS was 37 ± 8 cm, maximum dose was 64 ± 7 Gy, and V40 was 76 ± 17%, compared with 37 ± 11 Gy, 32 ± 9 cm, 59 ± 8 Gy, and 64 ± 22% for nonfracture patients. Differences in mean, maximum dose, and V40 were statistically significant (p = 0.01, p = 0.02, p = 0.01). Leg fractures were more common above the knee joint. Conclusions: The risk of radiation-induced fracture appears to be reduced if V40 <64%. Fracture incidence was lower when the mean dose to bone was <37 Gy or maximum dose anywhere along the length of bone was <59 Gy. There was a trend toward lower mean FS for nonfracture patients.

  2. Technical note: cortical thickness and density estimation from clinical CT using a prior thickness-density relationship

    NARCIS (Netherlands)

    Humbert, L.; Hazrati Marangalou, J.; Del Río Barquero, L.M.; van Lenthe, G.H.; van Rietbergen, B.

    2016-01-01

    Purpose: Cortical thickness and density are critical components in determining the strength of bony structures. Computed tomography (CT) is one possible modality for analyzing the cortex in 3D. In this paper, a model-based approach for measuring the cortical bone thickness and density from clinical

  3. Uranium's effects on bone integrity

    International Nuclear Information System (INIS)

    Souidi, Maamar; Wade-Gueye, Ndeye Marieme; Manens, Line; Blanchardon, Eric; Aigueperse, Jocelyne

    2018-01-01

    Uranium is a radioactive heavy metal naturally present in the environment. Its recent use in various civilian and military applications sometimes result in its release into the environment. After chronic ingestion, uranium accumulates in various organs, preferentially in bones. Several studies have shown that exposure to high concentrations of uranium affects bone growth. Little is known, however, about the effects of chronic exposure to low doses of uranium on bone, especially when ingested via drinking water, the main route by which the public is exposed to this radionuclide. This study examined the effects of chronic exposure to natural uranium through drinking water on bone integrity and bone turnover. Rats were contaminated with different concentrations of natural uranium (15, 10, and 40 mg / l) for 9 months. A high-resolution three-dimensional microtomography scanner was used for the first time to study uranium's impact on bone metabolism and thus on bone tissue integrity. After nine months of uranium exposure, micro-architecture analysis revealed that the cortical bone diameter of the femoral diaphysis of rats contaminated at a concentration of 40 mg/L of uranium had decreased significantly. In conclusion, our findings that chronic ingestion of uranium at low concentrations affects growth of cortical bone width suggests that it may affect bone strength. These results thus suggest the need to pay special attention to children during chronic low-dose exposure to this radionuclide. (authors)

  4. Distraction-like phenomena in maxillary bone due to application of orthodontic forces in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Apostolos I Tsolakis

    2012-01-01

    Full Text Available Background: Orthodontic forces may not only influence the dentoalveolar system, but also the adjacent and surrounding cortical bone. Aim: Since there is very limited information on this issue, we aimed to study the possible changes in maxillary cortical bone following the application of heavy orthodontic forces in mature normal and osteoporotic rats. Materials and Methods: Twenty-four 6-month-old female rats were selected and divided into an ovariectomized group and a normal group. In both groups, the rats were subjected to a 60 grFNx01 orthodontic force on the upper right first molar for 14 days. Results: In both groups, histological sections showed that the application of this force caused hypertrophy and fatigue failure of the cortical maxillary bone. The osteogenic reaction to distraction is expressed by the formation of subperiosteal callus on the outer bony side, resembling that seen in distracted bones. Conclusion: From this study we concluded that heavy experimental orthodontic forces in rats affect the maxillary cortical bone. The osteogenic reaction to these forces, expressed histologically by subperiosteal callus formation, is similar to that seen in distraction osteogenesis models.

  5. Bone Densitometry of the Femoral Midshaft the Protein-Deprived Rat*

    African Journals Online (AJOL)

    rats, has shown a significant loss of total bone density in the protein-deprived group. This reduction is no greater than can be accounted for by the loss of cortical bone surface area, suggesting that while bone mass is reduced as a result of protein deprivation, the mineral composition of the residual bone is likely to be ...

  6. Censoring distances based on labeled cortical distance maps in cortical morphometry.

    Science.gov (United States)

    Ceyhan, Elvan; Nishino, Tomoyuki; Alexopolous, Dimitrios; Todd, Richard D; Botteron, Kelly N; Miller, Michael I; Ratnanather, J Tilak

    2013-01-01

    It has been demonstrated that shape differences in cortical structures may be manifested in neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM) which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM) voxels with respect to GM/white matter (WM) surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information contained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs) of subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy control (Ctrl) subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface) for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  7. Censoring Distances Based on Labeled Cortical Distance Maps in Cortical Morphometry

    Directory of Open Access Journals (Sweden)

    Elvan eCeyhan

    2013-10-01

    Full Text Available It has been demonstrated that shape differences are manifested in cortical structures due to neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM voxels with respect to GM/white matter (WM surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information con-tained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs of subjects with major depressive disorder (MDD, subjects at high risk (HR of MDD, and healthy control (Ctrl subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  8. Influence of Piezosurgery on Bone Healing around Titanium Implants: A Histological Study in Rats.

    Science.gov (United States)

    Sirolli, Marcelo; Mafra, Carlos Eduardo Secco; Santos, Rodrigo Albuquerque Basílio Dos; Saraiva, Luciana; Holzhausen, Marinella; César, João Batista

    2016-01-01

    The aim of this study was to evaluate histomorphometrically the influence of two techniques of dental implant site preparation on bone healing around titanium implants. Fifteen male Wistar rats (±300 g) were used in the study. Each tibia was randomly assigned to receive the implant site preparation either with a conventional drilling technique (control - DRILL group) or with a piezoelectric device (PIEZO group). The animals were sacrificed after 30 days and then the following histomorphometric parameters were evaluated (percentage) separately for cortical and cancellous regions: proportion of mineralized tissue (PMT) adjacent to implant threads (500 μm adjacent); bone area within the threads (BA) and bone-implant contact (BIC). The results demonstrated that there were no statistically significant differences between both groups for cancellous BIC (p>0.05) and cortical PMT (p>0.05). On the other hand, a higher percentage of BA was observed in the PIEZO group in the cortical (71.50±6.91 and 78.28±4.38 for DRILL and PIEZO groups, respectively; ppiezosurgery also showed higher PMT values in the cancellous zone (9.35±5.54 and 18.72±13.21 for DRILL and PIEZO groups, respectively; ppiezosurgery was beneficial to bone healing rates in the cancellous bone region, while the drill technique produced better results in the cortical bone.

  9. Adipose tissue depot volume relationships with spinal trabecular bone mineral density in African Americans with diabetes.

    Directory of Open Access Journals (Sweden)

    Gary C Chan

    Full Text Available Changes in select adipose tissue volumes may differentially impact bone mineral density. This study was performed to assess cross-sectional and longitudinal relationships between computed tomography-determined visceral (VAT, subcutaneous (SAT, inter-muscular (IMAT, and pericardial adipose tissue (PAT volumes with respective changes in thoracic vertebral and lumbar vertebral volumetric trabecular bone mineral density (vBMD in African Americans with type 2 diabetes. Generalized linear models were fitted to test relationships between baseline and change in adipose volumes with change in vBMD in 300 African American-Diabetes Heart Study participants; adjustment was performed for age, sex, diabetes duration, study interval, smoking, hypertension, BMI, kidney function, and medications. Participants were 50% female with mean ± SD age 55.1±9.0 years, diabetes duration 10.2±7.2 years, and BMI 34.7±7.7 kg/m2. Over 5.3 ± 1.4 years, mean vBMD decreased in thoracic/lumbar spine, while mean adipose tissue volumes increased in SAT, IMAT, and PAT, but not VAT depots. In fully-adjusted models, changes in lumbar and thoracic vBMD were positively associated with change in SAT (β[SE] 0.045[0.011], p<0.0001; 0.40[0.013], p = 0.002, respectively. Change in thoracic vBMD was positively associated with change in IMAT (p = 0.029 and VAT (p = 0.016; and change in lumbar vBMD positively associated with baseline IMAT (p<0.0001. In contrast, vBMD was not associated with change in PAT. After adjusting for BMI, baseline and change in volumes of select adipose depots were associated with increases in thoracic and lumbar trabecular vBMD in African Americans. Effects of adiposity on trabecular bone appear to be site-specific and related to factors beyond mechanical load.

  10. Anatomic relationships of the distal and proximal radioulnar joints articulating surface areas, and of the radius and ulna bone volumes – implications for biomechanical studies of the distal and proximal radioulnar joints and forearm bones

    Directory of Open Access Journals (Sweden)

    Paul S C Malone

    2016-07-01

    Full Text Available BackgroundPrevious work from this laboratory has evidenced the biomechanical role of forearm osseoligamentous structures in load transfer of applied forces. It has shown that transmitted forces across the distal radioulnar joint (DRUJ and proximal radioulnar joint (PRUJ are similar though not identical under axial loading conditions. The purpose of the study was to assess the articulating surface areas of the radioulnar joints and the volumes of the forearm bones addressing the hypothesis that there may be anatomic adaptations that reflect the biomechanical function of the integrated forearm unit.MethodsThe articulating surface areas of PRUJ and DRUJ were assessed using a laser scanner in 24 cadaver forearms. The articulating joint surfaces were additionally delineated from standardized photographs assessed by three observers. The surface areas of matched pairs of joints were compared on the null hypothesis that these were the same within a given forearm specimen. An additional 44 pairs of matched forearm bone volumes were measured using water displacement technique and again compared through statistical analysis (paired sample t-test, and Bland Altman analysis.ResultsThe findings of this study are that the articulating surface areas of the DRUJ and PRUJ as well as the bone volumes are significantly different and yet strongly correlated. The paired sample t-test showed a significant difference between the surface areas of the DRUJ and PRUJ (p<0.05. The PRUJ articulating surface area was marginally larger than the DRUJ with a PRUJ : DRUJ ratio of 1.02. Paired sample t-test showed a significant difference between the two bone volumes (p<0.01 with a radius to ulna bone volume ratio of 0.81. When the olecranon was disregarded, radius volume was on average 4% greater than ulna volume.ConclusionsThis study demonstrated defines the anatomical relationships between the two forearm bones and their articulating joints when matched for specimen. The data

  11. Unusual cortical bone features in a patient with gorlin-goltz syndrome: a case report.

    Science.gov (United States)

    Tarnoki, Adam Domonkos; Tarnoki, David Laszlo; Klara Kiss, Katalin; Bata, Pal; Karlinger, Kinga; Banvolgyi, Andras; Wikonkal, Norbert; Berczi, Viktor

    2014-12-01

    Gorlin-Goltz syndrome (GGS) consists of ectodermal and mesodermal abnormalities. In this case report we will investigate lower extremity lesions of GGS. A 52-year-old man with GGS underwent skull and lower extremity computer tomography. Radiographic findings included cervical spondylosis, transparent areas with slurred margins, and cerebral falx calcification. Tibial and fibular specific cortical lesions (thin cortical and subcortical cystic lesions) were seen on the radiography, which was confirmed by computer tomography. To our knowledge, this is the first report of such a long lesion of the tibia and fibula. Specific lower extremity cortical lesions (thin cortical and subcortical cystic lesions) may occur and these abnormalities can be found on radiography or CT, which are most probably attributed to retinoid treatment.

  12. Unusual Cortical Bone Features in a Patient with Gorlin-Goltz Syndrome: A Case Report

    International Nuclear Information System (INIS)

    Tarnoki, Adam Domonkos; Tarnoki, David Laszlo; Klara Kiss, Katalin; Bata, Pal; Karlinger, Kinga; Banvolgyi, Andras; Wikonkal, Norbert; Berczi, Viktor

    2014-01-01

    Gorlin-Goltz syndrome (GGS) consists of ectodermal and mesodermal abnormalities. In this case report we will investigate lower extremity lesions of GGS. A 52-year-old man with GGS underwent skull and lower extremity computer tomography. Radiographic findings included cervical spondylosis, transparent areas with slurred margins, and cerebral falx calcification. Tibial and fibular specific cortical lesions (thin cortical and subcortical cystic lesions) were seen on the radiography, which was confirmed by computer tomography. To our knowledge, this is the first report of such a long lesion of the tibia and fibula. Specific lower extremity cortical lesions (thin cortical and subcortical cystic lesions) may occur and these abnormalities can be found on radiography or CT, which are most probably attributed to retinoid treatment

  13. Sex Steroid Actions in Male Bone

    Science.gov (United States)

    Laurent, Michaël R.; Claessens, Frank; Gielen, Evelien; Lagerquist, Marie K.; Vandenput, Liesbeth; Börjesson, Anna E.; Ohlsson, Claes

    2014-01-01

    Sex steroids are chief regulators of gender differences in the skeleton, and male gender is one of the strongest protective factors against osteoporotic fractures. This advantage in bone strength relies mainly on greater cortical bone expansion during pubertal peak bone mass acquisition and superior skeletal maintenance during aging. During both these phases, estrogens acting via estrogen receptor-α in osteoblast lineage cells are crucial for male cortical and trabecular bone, as evident from conditional genetic mouse models, epidemiological studies, rare genetic conditions, genome-wide meta-analyses, and recent interventional trials. Genetic mouse models have also demonstrated a direct role for androgens independent of aromatization on trabecular bone via the androgen receptor in osteoblasts and osteocytes, although the target cell for their key effects on periosteal bone formation remains elusive. Low serum estradiol predicts incident fractures, but the highest risk occurs in men with additionally low T and high SHBG. Still, the possible clinical utility of serum sex steroids for fracture prediction is unknown. It is likely that sex steroid actions on male bone metabolism rely also on extraskeletal mechanisms and cross talk with other signaling pathways. We propose that estrogens influence fracture risk in aging men via direct effects on bone, whereas androgens exert an additional antifracture effect mainly via extraskeletal parameters such as muscle mass and propensity to fall. Given the demographic trends of increased longevity and consequent rise of osteoporosis, an increased understanding of how sex steroids influence male bone health remains a high research priority. PMID:25202834

  14. Altered Regional Brain Cortical Thickness in Pediatric Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Paul M. Macey

    2018-01-01

    Full Text Available RationaleObstructive sleep apnea (OSA affects 2–5% of all children and is associated with cognitive and behavioral deficits, resulting in poor school performance. These psychological deficits may arise from brain injury, as seen in preliminary findings of lower gray matter volume among pediatric OSA patients. However, the psychological deficits in OSA are closely related to functions in the cortex, and such brain areas have not been specifically assessed. The objective was to determine whether cortical thickness, a marker of possible brain injury, is altered in children with OSA.MethodsWe examined regional brain cortical thicknesses using high-resolution T1-weighted magnetic resonance images in 16 pediatric OSA patients (8 males; mean age ± SD = 8.4 ± 1.2 years; mean apnea/hypopnea index ± SD = 11 ± 6 events/h and 138 controls (8.3 ± 1.1 years; 62 male; 138 subjects from the NIH Pediatric MRI database to identify cortical thickness differences in pediatric OSA subjects.ResultsCortical thinning occurred in multiple regions including the superior frontal, ventral medial prefrontal, and superior parietal cortices. The left side showed greater thinning in the superior frontal cortex. Cortical thickening was observed in bilateral precentral gyrus, mid-to-posterior insular cortices, and left central gyrus, as well as right anterior insula cortex.ConclusionChanges in cortical thickness are present in children with OSA and likely indicate disruption to neural developmental processes, including maturational patterns of cortical volume increases and synaptic pruning. Regions with thicker cortices may reflect inflammation or astrocyte activation. Both the thinning and thickening associated with OSA in children may contribute to the cognitive and behavioral dysfunction frequently found in the condition.

  15. The impact of ADHD persistence, recent cannabis use, and age of regular cannabis use onset on subcortical volume and cortical thickness in young adults.

    Science.gov (United States)

    Lisdahl, Krista M; Tamm, Leanne; Epstein, Jeffery N; Jernigan, Terry; Molina, Brooke S G; Hinshaw, Stephen P; Swanson, James M; Newman, Erik; Kelly, Clare; Bjork, James M

    2016-04-01

    Both Attention Deficit Hyperactivity Disorder (ADHD) and chronic cannabis (CAN) use have been associated with brain structural abnormalities, although little is known about the effects of both in young adults. Participants included: those with a childhood diagnosis of ADHD who were CAN users (ADHD_CAN; n=37) and non-users (NU) (ADHD_NU; n=44) and a local normative comparison group (LNCG) who did (LNCG_CAN; n=18) and did not (LNCG_NU; n=21) use CAN regularly. Multiple regressions and MANCOVAs were used to examine the independent and interactive effects of a childhood ADHD diagnosis and CAN group status and age of onset (CUO) on subcortical volumes and cortical thickness. After controlling for age, gender, total brain volume, nicotine use, and past-year binge drinking, childhood ADHD diagnosis did not predict brain structure; however, persistence of ADHD was associated with smaller left precentral/postcentral cortical thickness. Compared to all non-users, CAN users had decreased cortical thickness in right hemisphere superior frontal sulcus, anterior cingulate, and isthmus of cingulate gyrus regions and left hemisphere superior frontal sulcus and precentral gyrus regions. Early cannabis use age of onset (CUO) in those with ADHD predicted greater right hemisphere superior frontal and postcentral cortical thickness. Young adults with persistent ADHD demonstrated brain structure abnormalities in regions underlying motor control, working memory and inhibitory control. Further, CAN use was linked with abnormal brain structure in regions with high concentrations of cannabinoid receptors. Additional large-scale longitudinal studies are needed to clarify how substance use impacts neurodevelopment in youth with and without ADHD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Bone mineral content in the senescent rat femur: an assessment using single photon absorptiometry

    International Nuclear Information System (INIS)

    Kiebzak, G.M.; Smith, R.; Howe, J.C.; Sacktor, B.

    1988-01-01

    The single photon absorptiometry technique was evaluated for measuring bone mineral content (BMC) of the excised femurs of the rat, and the system was used to examine the changes in cortical and trabecular bone from young adult (6 mo), mature adult (12 mo), and senescent (24 mo) male and female animals. BMC of the femur midshaft, representing cortical bone, apparently increased progressively with advancing age. The width of the femur at the scan site also increased with age. Normalizing the midshaft BMC by width partially compensated for the age-associated increase. However, when bone mineral values were normalized by the cortical area at the scan site, to take into account the geometric differences in the femurs of different aged animals, maximum bone densities were found in the mature adult and these values decreased slightly in the femurs from senescent rats. In contrast, the BMC of the femur distal metaphysis, representing trabecular bone, decreased markedly in the aged rat. The loss of trabecular bone was also evident from morphological examination of the distal metaphysis. These findings indicated that bone mineral loss with age was site specific in the rat femur. These studies provided additional evidence that the rat might serve as a useful animal model for specific experiments related to the pathogenesis of age-associated osteopenia

  17. Shell bone histology indicates terrestrial palaeoecology of basal turtles.

    Science.gov (United States)

    Scheyer, Torsten M; Sander, P Martin

    2007-08-07

    The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well-known turtles, i.e. the Upper Triassic Proterochersis robusta and Proganochelys quenstedti. Comparison of their shell bone histology with that of extant turtles preferring either aquatic habitats or terrestrial habitats clearly reveals congruence with terrestrial turtle taxa. Similarities in the shell bones of these turtles are a diploe structure with well-developed external and internal cortices, weak vascularization of the compact bone layers and a dense nature of the interior cancellous bone with overall short trabeculae. On the other hand, 'aquatic' turtles tend to reduce cortical bone layers, while increasing overall vascularization of the bone tissue. In contrast to the study of limb bone proportions, the present study is independent from the uncommon preservation of appendicular skeletal elements in fossil turtles, enabling the palaeoecological study of a much broader range of incompletely known turtle taxa in the fossil record.

  18. Incorporating simvastatin/poloxamer 407 hydrogel into 3D-printed porous Ti6Al4V scaffolds for the promotion of angiogenesis, osseointegration and bone ingrowth.

    Science.gov (United States)

    Liu, Hao; Li, Wei; Liu, Can; Tan, Jie; Wang, Hong; Hai, Bao; Cai, Hong; Leng, Hui-Jie; Liu, Zhong-Jun; Song, Chun-Li

    2016-10-27

    Three-dimensional porous titanium alloys printed via electron beam melting have low stiffness similar to that of cortical bone and are promising scaffolds for orthopedic applications. However, the bio-inert nature of titanium alloy is poorly compatible with bone ingrowth. We previously observed that simvastatin/poloxamer 407 thermosensitive hydrogel induces endogenous angiogenic/osteogenic growth factors and promotes angiogenesis and osteogenesis, but the mechanical properties of this hydrogel are poor. The purpose of this study was to construct 3D-printed porous titanium scaffolds (pTi scaffolds) filled with simvastatin/hydrogel and evaluate the effects of this composite on osseointegration, bone ingrowth and neovascularization using a tibial defect rabbit model. Four and eight weeks after implantation, the bone volume, bone mineral density, mineral apposition rate, and push-in maximum force of the pTi scaffolds filled with simvastatin/hydrogel were significantly higher than those without simvastatin (p bone and neovascularization (p bone ingrowth.

  19. Limited Associations between Keel Bone Damage and Bone Properties Measured with Computer Tomography, Three-Point Bending Test, and Analysis of Minerals in Swiss Laying Hens

    Directory of Open Access Journals (Sweden)

    Sabine G. Gebhardt-Henrich

    2017-08-01

    Full Text Available Keel bone damage is a wide-spread welfare problem in laying hens. It is unclear so far whether bone quality relates to keel bone damage. The goal of the present study was to detect possible associations between keel bone damage and bone properties of intact and damaged keel bones and of tibias in end-of-lay hens raised in loose housing systems. Bones were palpated and examined by peripheral quantitative computer tomography (PQCT, a three-point bending test, and analyses of bone ash. Contrary to our expectations, PQCT revealed higher cortical and trabecular contents in fractured than in intact keel bones. This might be due to structural bone repair after fractures. Density measurements of cortical and trabecular tissues of keel bones did not differ between individuals with and without fractures. In the three-point bending test of the tibias, ultimate shear strength was significantly higher in birds with intact vs. fractured keel bones. Likewise, birds with intact or slightly deviated keel bones had higher mineral and calcium contents of the keel bone than birds with fractured keel bones. Calcium content in keel bones was correlated with calcium content in tibias. Although there were some associations between bone traits related to bone strength and keel bone damage, other factors such as stochastic events related to housing such as falls and collisions seem to be at least as important for the prevalence of keel bone damage.

  20. Heat accumulation during sequential cortical bone drilling.

    Science.gov (United States)

    Palmisano, Andrew C; Tai, Bruce L; Belmont, Barry; Irwin, Todd A; Shih, Albert; Holmes, James R

    2016-03-01

    Significant research exists regarding heat production during single-hole bone drilling. No published data exist regarding repetitive sequential drilling. This study elucidates the phenomenon of heat accumulation for sequential drilling with both Kirschner wires (K wires) and standard two-flute twist drills. It was hypothesized that cumulative heat would result in a higher temperature with each subsequent drill pass. Nine holes in a 3 × 3 array were drilled sequentially on moistened cadaveric tibia bone kept at body temperature (about 37 °C). Four thermocouples were placed at the center of four adjacent holes and 2 mm below the surface. A battery-driven hand drill guided by a servo-controlled motion system was used. Six samples were drilled with each tool (2.0 mm K wire and 2.0 and 2.5 mm standard drills). K wire drilling increased temperature from 5 °C at the first hole to 20 °C at holes 6 through 9. A similar trend was found in standard drills with less significant increments. The maximum temperatures of both tools increased from drill sizes was found to be insignificant (P > 0.05). In conclusion, heat accumulated during sequential drilling, with size difference being insignificant. K wire produced more heat than its twist-drill counterparts. This study has demonstrated the heat accumulation phenomenon and its significant effect on temperature. Maximizing the drilling field and reducing the number of drill passes may decrease bone injury. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Bone mineral content of the forearm in healthy Dutch women

    NARCIS (Netherlands)

    Barentsen, R.; Raymakers, J.A.; Landman, J.O.; Duursma, S.A.

    1988-01-01

    Single energy photon absorptiometry is a reliable technique for assessing the bone mineral content (BMC) of cortical bone in the forearm. It can also be used for BMC measurement in the ultradistal part of the forearm, where there is a considerable proportion of trabecular bone. The results of a BMC

  2. Magnetic Resonance Perfusion Imaging in Malformations of Cortical Development

    International Nuclear Information System (INIS)

    Widjaja, ED.; Wilkinson, I.D.; Griffiths, P.D.

    2007-01-01

    Background: Malformations of cortical development vary in neuronal maturity and level of functioning. Purpose: To characterize regional relative cerebral blood volume (rCBV) and difference in first moment transit time (TTfm) in polymicrogyria and cortical tubers using magnetic resonance (MR) perfusion imaging. Material and Methods: MR imaging and dynamic T2*-weighted MR perfusion imaging were performed in 13 patients with tuberous sclerosis complex, 10 with polymicrogyria, and 18 controls with developmental delay but no macroscopic brain abnormality. Regions of interest were placed in cortical tubers or polymicrogyric cortex and in the contralateral normal-appearing side in patients with malformations. In 'control' subjects, regions of interest were placed in the frontal and parietal lobes in both hemispheres. The rCBV and TTfm of the tuber/contralateral side (rCBVRTSC and TTFMTSC) as well as those of the polymicrogyria/contralateral side (rCBVRPMG and TTFMPMG) were assessed. The right-to-left asymmetry of rCBV and TTfm in the control group was also assessed (rCBVRControls and TTFMControls). Results: There was no significant asymmetry between right and left rCBV or TTfm (P>0.05) in controls. There was significant reduction in rCBVRTSC compared to rCBVRControls (P 0.05). There were no significant differences between rCBVRPMG and rCBVRControls (P>0.05) or TTFMPMG and TTFMControls (P>0.05). Conclusion: Our findings imply that cerebral blood volume of polymicrogyria is similar to normal cortex, but there is reduced cerebral blood volume in cortical tubers. The lower rCBV ratio of cortical tubers may be related to known differences in pathogenetic timing of the underlying abnormalities during brain development or the presence of gliosis

  3. Response of cortical bone to antiresorptive treatment

    DEFF Research Database (Denmark)

    Hyldstrup, Lars; Jørgensen, J T; Sørensen, T K

    2001-01-01

    A total of 113 postmenopausal women (69 controls, 33 using hormone replacement therapy (HRT), and 11 using bisphosphonate) were evaluated twice over 2 years with a new noninvasive, radiogrammetry-based technique called digital X-ray radiogrammetry (DXR) and conventional bone densitometry of the s...

  4. Cytokines in Gaucher disease: Role in the pathogenesis of bone ...

    African Journals Online (AJOL)

    Azza A.G. Tantawy

    2015-03-03

    Mar 3, 2015 ... The impact of therapy on bone manifestations of Gaucher disease . ... types: classical or alternative, depending on the predominant cytokine in the .... avascular necrosis, bone infarcts and localised cortical thin- ning may be ...

  5. Computer modelling of RF ablation in cortical osteoid osteoma: Assessment of the insulating effect of the reactive zone.

    Science.gov (United States)

    Irastorza, Ramiro M; Trujillo, Macarena; Martel Villagrán, Jose; Berjano, Enrique

    2016-05-01

    The aim was to study by computer simulations the insulating role of the reactive zone surrounding a cortical osteoid osteoma (OO) in terms of electrical and thermal performance during radiofrequency ablation (RFA). We modelled a cortical OO consisting of a nidus (10 mm diameter) enclosed by a reactive zone. The OO was near a layer of cortical bone 1.5 mm thick. Trabecular bone partially surrounds the OO and there was muscle around the cortical bone layer. We modelled RF ablations with a non-cooled-tip 17-gauge needle electrode (300 s duration and 90 °C target temperature). Sensitivity analyses were conducted assuming a reactive zone electrical conductivity value (σrz) within the limits of the cortical and trabecular bone, i.e. 0.02 S/m and 0.087 S/m, respectively. In this way we were really modelling the different degrees of osteosclerosis associated with the reactive zone. The presence of the reactive zone drastically reduced the maximum temperature reached outside it. The temperature drop was proportional to the thickness of the reactive zone: from 68 °C when it was absent to 44 °C when it is 7.5 mm thick. Higher nidus conductivity values (σn) implied higher temperatures, while lower temperatures meant higher σrz values. Changing σrz from 0.02 S/m to 0.087 S/m reduced lesion diameters from 2.4 cm to 1.8 cm. The computer results suggest that the reactive zone plays the role of insulator in terms of reducing the temperature in the surrounding area.

  6. Retrospective Reconstructions of Active Bone Marrow Dose-Volume Histograms

    International Nuclear Information System (INIS)

    Veres, Cristina; Allodji, Rodrigue S.; Llanas, Damien; Vu Bezin, Jérémi; Chavaudra, Jean; Mège, Jean Pierre; Lefkopoulos, Dimitri; Quiniou, Eric; Deutsh, Eric; Vathaire, Florent de; Diallo, Ibrahima

    2014-01-01

    Purpose: To present a method for calculating dose-volume histograms (DVH's) to the active bone marrow (ABM) of patients who had undergone radiation therapy (RT) and subsequently developed leukemia. Methods and Materials: The study focuses on 15 patients treated between 1961 and 1996. Whole-body RT planning computed tomographic (CT) data were not available. We therefore generated representative whole-body CTs similar to patient anatomy. In addition, we developed a method enabling us to obtain information on the density distribution of ABM all over the skeleton. Dose could then be calculated in a series of points distributed all over the skeleton in such a way that their local density reflected age-specific data for ABM distribution. Dose to particular regions and dose-volume histograms of the entire ABM were estimated for all patients. Results: Depending on patient age, the total number of dose calculation points generated ranged from 1,190,970 to 4,108,524. The average dose to ABM ranged from 0.3 to 16.4 Gy. Dose-volume histograms analysis showed that the median doses (D 50% ) ranged from 0.06 to 12.8 Gy. We also evaluated the inhomogeneity of individual patient ABM dose distribution according to clinical situation. It was evident that the coefficient of variation of the dose for the whole ABM ranged from 1.0 to 5.7, which means that the standard deviation could be more than 5 times higher than the mean. Conclusions: For patients with available long-term follow-up data, our method provides reconstruction of dose-volume data comparable to detailed dose calculations, which have become standard in modern CT-based 3-dimensional RT planning. Our strategy of using dose-volume histograms offers new perspectives to retrospective epidemiological studies

  7. Role of paraoxonase-1 in bone anabolic effects of parathyroid hormone in hyperlipidemic mice

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinxiu [Department of Physiology, University of California, Los Angeles (United States); Cheng, Henry [Department of Medicine, University of California, Los Angeles (United States); Atti, Elisa [Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles (United States); Shih, Diana M. [Department of Medicine, University of California, Los Angeles (United States); Demer, Linda L. [Department of Physiology, University of California, Los Angeles (United States); Department of Medicine, University of California, Los Angeles (United States); Department of Bioengineering, University of California, Los Angeles (United States); Tintut, Yin, E-mail: ytintut@mednet.ucla.edu [Department of Medicine, University of California, Los Angeles (United States)

    2013-02-01

    Highlights: ► Anabolic effects of PTH were tested in hyperlipidemic mice overexpressing PON1. ► Expression of antioxidant regulatory genes was induced in PON1 overexpression. ► Bone resorptive activity was reduced in PON1 overexpressing hyperlipidemic mice. ► PON1 restored responsiveness to intermittent PTH in bones of hyperlipidemic mice. -- Abstract: Hyperlipidemia blunts anabolic effects of intermittent parathyroid hormone (PTH) on cortical bone, and the responsiveness to PTH are restored in part by oral administration of the antioxidant ApoA-I mimetic peptide, D-4F. To evaluate the mechanism of this rescue, hyperlipidemic mice overexpressing the high-density lipoprotein-associated antioxidant enzyme, paraoxonase 1 (Ldlr{sup −/−}PON1{sup tg}) were generated, and daily PTH injections were administered to Ldlr{sup −/−}PON1{sup tg} and to littermate Ldlr{sup −/−} mice. Expression of bone regulatory genes was determined by realtime RT-qPCR, and cortical bone parameters of the femoral bones by micro-computed tomographic analyses. PTH-treated Ldlr{sup −/−}PON1{sup tg} mice had significantly greater expression of PTH receptor (PTH1R), activating transcription factor-4 (ATF4), and osteoprotegerin (OPG) in femoral cortical bone, as well as significantly greater cortical bone mineral content, thickness, and area in femoral diaphyses compared with untreated Ldlr{sup −/−}PON1{sup tg} mice. In contrast, in control mice (Ldlr{sup −/−}) without PON1 overexpression, PTH treatment did not induce these markers. Calvarial bone of PTH-treated Ldlr{sup −/−}PON1{sup tg} mice also had significantly greater expression of osteoblastic differentiation marker genes as well as BMP-2-target and Wnt-target genes. Untreated Ldlr{sup −/−}PON1{sup tg} mice had significantly greater expression of PTHR1 than untreated Ldlr{sup −/−} mice, whereas sclerostin expression was reduced. In femoral cortical bones, expression levels of transcription factors, Fox

  8. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects

    NARCIS (Netherlands)

    J. van der Stok (Johan); O.P. van der Jagt (Olav); S. Amin Yavari (Saber); M.F.P. de Haas (Mirthe); J.H. Waarsing (Jan); H. Jahr (Holger); E.M.M. van Lieshout (Esther); P. Patka (Peter); J.A.N. Verhaar (Jan); A.A. Zadpoor (Amir Abbas); H.H. Weinans (Harrie)

    2013-01-01

    textabstractPorous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut

  9. Effects of fatigue on microstructure and mechanical properties of bone organic matrix under compression

    International Nuclear Information System (INIS)

    Trębacz, Hanna; Zdunek, Artur; Cybulska, Justyna; Pieczywek, Piotr

    2013-01-01

    The aim of the study was to investigate whether a fatigue induced weakening of cortical bone was revealed in microstructure and mechanical competence of demineralized bone matrix. Two types of cortical bone samples (plexiform and Haversian) were use. Bone slabs from the midshaft of bovine femora were subjected to cyclical bending. Fatigued and adjacent control samples were cut into cubes and demineralized in ethylenediaminetetraacetic acid. Demineralized samples were either subjected to microscopic quantitative image analysis, or compressed to failure (in longitudinal or transverse direction) with a simultaneous analysis of acoustic emission (AE). In fatigued samples porosity of organic matrix and average area of pores have risen, along with a change in the pores shape. The effect of fatigue depended on the type of the bone, being more pronounced in the plexiform than in Haversian tissue. Demineralized bone matrix was anisotropic under compressive loads in both types of cortical structure. The main result of fatigue pretreatment on mechanical parameters was a significant decrease of ultimate strain in the transverse direction in plexiform samples. The decrease of strain in this group was accompanied by a considerable increase of the fraction of large pores and a significant change in AE energy.

  10. PTH treatment activates intracortical bone remodeling in patients with hypoparathyroidism

    DEFF Research Database (Denmark)

    Sikjær, Tanja Tvistholm; Rejnmark, Lars; Thomsen, Jesper Skovhus

    2017-01-01

    Hypoparathyroidism (hypoPT) is characterized by a state of low bone turnover and high BMD. We have previously shown that hypoPT patients treated with PTH(1-84) for six months have highly increased bone turnover markers and a decrease in aBMD at the hip and spine(1). The present study aims...... to investigate the effect of PTH(1-84) on cortical bone and intracortical bone remodeling in hypoPT. The study was conducted on 20 transiliac bone biopsies from hypoPT patients after six months of treatment with either PTH(1-84) 100 µg s.c./day N=10 or placebo N=10. The groups were age- (±6 years) and gender...... and diameter were measured. Cortical porosity and pore density did not differ between groups, but PTH treatment had a marked effect on the remodeling status of the pores. The percentage of pores undergoing remodeling was higher in the PTH-group than in placebo-group reported as median values (IQR[25-75%]) (52...

  11. Bone strength estimates relative to vertical ground reaction force discriminates women runners with stress fracture history.

    Science.gov (United States)

    Popp, Kristin L; McDermott, William; Hughes, Julie M; Baxter, Stephanie A; Stovitz, Steven D; Petit, Moira A

    2017-01-01

    To determine differences in bone geometry, estimates of bone strength, muscle size and bone strength relative to load, in women runners with and without a history of stress fracture. We recruited 32 competitive distance runners aged 18-35, with (SFX, n=16) or without (NSFX, n=16) a history of stress fracture for this case-control study. Peripheral quantitative computed tomography (pQCT) was used to assess volumetric bone mineral density (vBMD, mg/mm 3 ), total (ToA) and cortical (CtA) bone areas (mm 2 ), and estimated compressive bone strength (bone strength index; BSI, mg/mm 4 ) at the distal tibia. ToA, CtA, cortical vBMD, and estimated strength (section modulus; Zp, mm 3 and strength strain index; SSIp, mm 3 ) were measured at six cortical sites along the tibia. Mean active peak vertical (pkZ) ground reaction forces (GRFs), assessed from a fatigue run on an instrumented treadmill, were used in conjunction with pQCT measurements to estimate bone strength relative to load (mm 2 /N∗kg -1 ) at all cortical sites. SSIp and Zp were 9-11% lower in the SFX group at mid-shaft of the tibia, while ToA and vBMD did not differ between groups at any measurement site. The SFX group had 11-17% lower bone strength relative to mean pkZ GRFs (phistory of stress fracture. Bone strength relative to load is also lower in this same region suggesting that strength deficits in the middle 1/3 of the tibia and altered gait biomechanics may predispose an individual to stress fracture. Copyright © 2016. Published by Elsevier Inc.

  12. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    Science.gov (United States)

    Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2016-01-01

    cancellous tibia. Treatment caused bone loss in wildtype mice, as expected. Treatment also caused deficits in microarchitecture of mCAT mice, although less severe than wildtype mice in some parameters (percent bone volume, structural model index and cortical area). In conclusion, our results indicate that endogenous ROS signaling in both osteoblast and osteoclast lineage cells contributes to skeletal growth and remodeling, and quenching oxidative damage could play a role in bone loss prevention.

  13. Quantification of bone quality using different cone beam computed tomography devices: Accuracy assessment for edentulous human mandibles.

    Science.gov (United States)

    Van Dessel, Jeroen; Nicolielo, Laura Ferreira Pinheiro; Huang, Yan; Slagmolen, Pieter; Politis, Constantinus; Lambrichts, Ivo; Jacobs, Reinhilde

    To determine the accuracy of the latest cone beam computed tomography (CBCT) machines in comparison to multi-slice computer tomography (MSCT) and micro computed tomography (micro-CT) for objectively assessing trabecular and cortical bone quality prior to implant placement. Eight edentulous human mandibular bone samples were scanned with seven CBCT scanners (3D Accuitomo 170, i-CAT Next Generation, ProMax 3D Max, Scanora 3D, Cranex 3D, Newtom GiANO and Carestream 9300) and one MSCT system (Somatom Definition Flash) using the clinical exposure protocol with the highest resolution. Micro-CT (SkyScan 1174) images served as a gold standard. A volume of interest (VOI) comprising trabecular and cortical bone only was delineated on the micro-CT. After spatial alignment of all scan types, micro-CT VOIs were overlaid on the CBCT and MSCT images. Segmentation was applied and morphometric parameters were calculated for each scanner. CBCT and MSCT morphometric parameters were compared with micro-CT using mixed-effect models. Intraclass correlation analysis was used to grade the accuracy of each scanner in assessing trabecular and cortical quality in comparison with the gold standard. Bone structure patterns of each scanner were compared with micro-CT in 2D and 3D to facilitate the interpretation of the morphometric analysis. Morphometric analysis showed an overestimation of the cortical and trabecular bone quantity during CBCT and MSCT evaluation compared to the gold standard micro-CT. The trabecular thickness (Tb.Th) was found to be significantly (P 3D Max (180 µm), followed by the 3D Accuitomo 170 (200 µm), Carestream 9300 (220 µm), Newtom GiANO (240 µm), Cranex 3D (280 µm), Scanora 3D (300 µm), high resolution MSCT (310 µm), i-CAT Next Generation (430 µm) and standard resolution MSCT (510 µm). The underestimation of the cortical thickness (Ct.Th) in ProMax 3D Max (-10 µm), the overestimation in Newtom GiANO (10 µm) and the high resolution

  14. Three-dimensional quantitative CT of the proximal femur: Relationship to vertebral trabecular bone density

    International Nuclear Information System (INIS)

    Bhasin, S.; Zlatkin, M.B.; Sartoris, D.J.; Andre, M.; Resnick, D.

    1987-01-01

    Integrated cancellous, cortical, and total bone density in the femoral neck and inter-trochanteric region was measured bilaterally in 25 women aged 35-90 years (mean age, 65). Contiguous-section (1-cm-thick) data were analyzed using three-dimensional histogram software on a Cemax 1000 image processor. Single-section quantitative CT was used to determine mean mineral equivalent values for vertebral cancellous bone from T-11 to L-3 in each woman. Significant correlation was found between cancellous bone density at the two sites. Cortical and total bone densities in the proximal femur were predicted less well with vertebral cancellous data, suggesting a greater dependence on weight-bearing and activity factors

  15. Radiodiagnosis of hemophiliac bone pseudotumors

    International Nuclear Information System (INIS)

    Fedorov, V.V.; Chantseva, E.A.

    1992-01-01

    Of 259 hemophiliacs bone pseudotumors were diagnosed in 11 (4.3 %); they were localised in the femur (6 cases), calcaneus (4) and in the iliac bone (3). Two cases of combined fermoral and calcaneal lesions and 4 cases of bone fracture were observed. As a rule, pseudotumors developed in hemophiliacs with severe disease. An x-ray picture of a pseudotumor depended on its site and was characterized by a large soft tissue tumor shadow, often with calcinosis, and serious destructive changes in bones in the form or round foci of 7 cm in diameter with clear-cut contours. An adge defect of the cortical layer was defined in the diaphysis of the femoral bone (15 cm long). Destructive changes were often accompanied by osteosclerosis and periostitis

  16. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits

    Science.gov (United States)

    Ramanathan, Dhakshin S.; Conner, James M.; Anilkumar, Arjun A.

    2014-01-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia. PMID:25505106

  17. Magnetic Resonance Perfusion Imaging in Malformations of Cortical Development

    Energy Technology Data Exchange (ETDEWEB)

    Widjaja, ED.; Wilkinson, I.D.; Griffiths, P.D. [Academic Section of Radiolog y, Univ. of Sheffield, Sheffield (United Kingdom)

    2007-10-15

    Background: Malformations of cortical development vary in neuronal maturity and level of functioning. Purpose: To characterize regional relative cerebral blood volume (rCBV) and difference in first moment transit time (TTfm) in polymicrogyria and cortical tubers using magnetic resonance (MR) perfusion imaging. Material and Methods: MR imaging and dynamic T2*-weighted MR perfusion imaging were performed in 13 patients with tuberous sclerosis complex, 10 with polymicrogyria, and 18 controls with developmental delay but no macroscopic brain abnormality. Regions of interest were placed in cortical tubers or polymicrogyric cortex and in the contralateral normal-appearing side in patients with malformations. In 'control' subjects, regions of interest were placed in the frontal and parietal lobes in both hemispheres. The rCBV and TTfm of the tuber/contralateral side (rCBVRTSC and TTFMTSC) as well as those of the polymicrogyria/contralateral side (rCBVRPMG and TTFMPMG) were assessed. The right-to-left asymmetry of rCBV and TTfm in the control group was also assessed (rCBVRControls and TTFMControls). Results: There was no significant asymmetry between right and left rCBV or TTfm (P>0.05) in controls. There was significant reduction in rCBVRTSC compared to rCBVRControls (P<0.05), but no significant difference in TTFMTSC compared to TTFMControls (P>0.05). There were no significant differences between rCBVRPMG and rCBVRControls (P>0.05) or TTFMPMG and TTFMControls (P>0.05). Conclusion: Our findings imply that cerebral blood volume of polymicrogyria is similar to normal cortex, but there is reduced cerebral blood volume in cortical tubers. The lower rCBV ratio of cortical tubers may be related to known differences in pathogenetic timing of the underlying abnormalities during brain development or the presence of gliosis.

  18. A multiscale theoretical investigation of electric measurements in living bone : piezoelectricity and electrokinetics.

    Science.gov (United States)

    Lemaire, T; Capiez-Lernout, E; Kaiser, J; Naili, S; Rohan, E; Sansalone, V

    2011-11-01

    This paper presents a theoretical investigation of the multiphysical phenomena that govern cortical bone behaviour. Taking into account the piezoelectricity of the collagen-apatite matrix and the electrokinetics governing the interstitial fluid movement, we adopt a multiscale approach to derive a coupled poroelastic model of cortical tissue. Following how the phenomena propagate from the microscale to the tissue scale, we are able to determine the nature of macroscopically observed electric phenomena in bone.

  19. Methods and application of bone densitometry in clinical diagnosis

    International Nuclear Information System (INIS)

    Wahner, H.W.; Riggs, B.L.

    1986-01-01

    With the awareness of osteoporosis as a major health problem for an aging population, there is great interest in early recognition and treatment of abnormal bone loss. Effective prevention of bone loss has to occur prior to the occurrence of irreparable damage. Standard radiographic procedures are not sensitive enough for the task. Therefore, a number of alternative procedures to estimate bone loss have been developed over the years, ranging from efforts to quantitate information obtained from radiographic images to sophisticated procedures such as neutron activation analysis or procedures based on the Compton scatter phenomenon. Only two procedures, photon absorptiometry and computed tomography (CT), have emerged as applicable for routine clinical use. In photon absorptiometry the entire bone mineral (cortical and trabecular bone) of a specific skeletal site is measured. CT allows measuring of bone mineral of trabecular or cortical bone alone. Normally, bone mass reaches a maximum in the third decade and then continuously declines. This age-related bone loss is greater in women in whom an accelerated rate of loss occurs at the menopause. When bone density reaches a critical fracture threshold, skeletal fractures occur (spine, hip, and distal long bones). The age at which this critical fracture threshold is reached depends on the maximal bone mass achieved in early adulthood and the rate of loss with increasing age. With the exception of NaF, present-day therapeutic efforts only retard or prevent bone loss but do not significantly add bone mineral to the skeleton. Recognition of high-risk groups and early treatment are therefore required. 79 references

  20. Amygdala Volume and Social Network Size in Humans

    OpenAIRE

    Bickart, Kevin C.; Wright, Christopher I.; Dautoff, Rebecca J.; Dickerson, Bradford C.; Barrett, Lisa Feldman

    2010-01-01

    We demonstrated that amygdala volume (corrected for total intracranial volume) positively correlated with the size and complexity of social networks in adult humans ranging in age from 19 to 83 years. This relationship was specific to the amygdala as compared to other subcortical structures. An exploratory analysis of the entire cortical mantle also revealed an association between social network variables and cortical thickness in three cortical areas, two of which share dense connectivity wi...

  1. Dietary phosphorus depletion in sheep: Longterm effects on bone structure

    International Nuclear Information System (INIS)

    Breves, G.; Prokop, M.

    1990-01-01

    Experiments were performed on 6 sheep from 8 months old to study effects of dietary phosphorus depletion on bone structure. Sheep were given a semisynthetic diet of chopped straw and pellets for 38 weeks. Mean daily P in the diet was 0.97 g and 3 sheep were given additional NaH2PO4.H2O, increasing daily P supply to 4.5 g (controls). Bone density was estimated photometrically within the laterodistal metaphysis of the foreleg and standardized by a copper step wedge. Metacarpal cortical thickness was also measured. Cortical thickness and bone density started to decrease about 4 weeks after start of P depletion. The trabecular structure of the distal radius was coarser and less dense with reduced cross-linking between trabeculae

  2. Effects of microstructure and water on the electrical potentials in bone induced by ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tsuneda, H.; Matsukawa, S.; Takayanagi, S.; Matsukawa, M., E-mail: mmatsuka@mail.doshisha.ac.jp [Wave Electronics Research Center, Laboratory of Ultrasonic Electronics, Doshisha University, 1-3, Tatara Miyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Mizuno, K. [Underwater Technology Collaborative Research Center, Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Yanagitani, T. [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso cho, Showa-ku, Nagoya 466-8555 (Japan)

    2015-02-16

    The healing mechanism of bone fractures by low intensity pulse ultrasound is yet to be fully understood. There have been many discussions regarding how the high frequency dynamic stress can stimulate numerous cell types through various pathways. As one possible initial process of this mechanism, we focus on the piezoelectricity of bone and demonstrate that bone can generate electrical potentials by ultrasound irradiation in the MHz range. We have fabricated ultrasonic bone transducers using bovine cortical bone as the piezoelectric device. The ultrasonically induced electrical potentials in the transducers change as a function of time during immersed ultrasonic pulse measurements and become stable when the bone is fully wet. In addition, the magnitude of the induced electrical potentials changes owing to the microstructure in the cortical bone. The potentials of transducers with haversian structure bone are higher than those of plexiform structure bone, which informs about the effects of bone microstructure on the piezoelectricity.

  3. Impact of Non-Invasively Induced Motor Deficits on Tibial Cortical Properties in Mutant Lurcher Mice.

    Directory of Open Access Journals (Sweden)

    Alena Jindrová

    Full Text Available It has been shown that Lurcher mutant mice have significantly altered motor abilities, regarding their motor coordination and muscular strength because of olivorecebellar degeneration. We assessed the response of the cross-sectional geometry and lacuno-canalicular network properties of the tibial mid-diaphyseal cortical bone to motor differences between Lurcher and wild-type (WT male mice from the B6CBA strain. The first data set used in the cross-sectional geometry analysis consists of 16 mice of 4 months of age and 32 mice of 9 months of age. The second data set used in the lacunar-canalicular network analysis consists of 10 mice of 4 months of age. We compared two cross-sectional geometry and four lacunar-canalicular properties by I-region using the maximum and minimum second moment of area and anatomical orientation as well as H-regions using histological differences within a cross section. We identified inconsistent differences in the studied cross-sectional geometry properties between Lurcher and WT mice. The biggest significant difference between Lurcher and WT mice is found in the number of canaliculi, whereas in the other studied properties are only limited. Lurcher mice exhibit an increased number of canaliculi (p < 0.01 in all studied regions compared with the WT controls. The number of canaliculi is also negatively correlated with the distance from the centroid in the Lurcher and positively correlated in the WT mice. When the Lurcher and WT sample is pooled, the number of canaliculi and lacunar volume is increased in the posterior Imax region, and in addition, midcortical H-region exhibit lower number of canaliculi, lacuna to lacuna distance and increased lacunar volume. Our results indicate, that the importance of precise sample selection within cross sections in future studies is highlighted because of the histological heterogeneity of lacunar-canalicular network properties within the I-region and H-region in the mouse cortical

  4. Assessment of bone quality in the isolated femoral head for intracapsular fractures of the femoral head. Analysis of bone architecture using micro-CT and pQCT, and comparison with extracapsular fractures

    International Nuclear Information System (INIS)

    Sando, Masaru

    2003-01-01

    Block sections were prepared from the five locations, central portion, superior portion, inferior portion, anterior portion, and posterior portion, of the region around the fracture of the femoral head isolated from 21 patients (16 patients with intracapsular fracture, 5 patients with extracapsular fracture). Cancellous bone microstructure, cortical bone thickness, and bone density were evaluated and analyzed for differences in the mechanism from which intracapsular versus extracapsular fracture and fragility developed. The method of evaluating the bone architecture differed from conventional bone histomorphometry of hard tissues and involved non-invasive micro-CT measurements, while the bone density was measured by peripheral quantitative computed topography (pQCT). The results indicate that in comparison to patients with extracapsular fractures, patients with intracapsular fractures showed significant decreases in the trabecular thickness of superior and posterior portions in the cancellous bone. The cortical bone thickness was significantly decreased in the superior portion. Bone density was significantly decreased in the superior portion, while in the extracapsular fracture group density tended to be lower in the inferior, anterior, and posterior portions, although this was not statistically significant. Although there have been previous studies on the bone quality of the femoral head isolated from intracapsular fracture of the femoral head, most reports are of two-dimensional analysis of coronal sections. As far as we are aware, there have been no previous reports comparing individual locations to extracapsular fractures. In view of the various reports that bone density is lower in the extracapsular fracture compared to the intracapsular fracture, we speculate that extracapsular fracture results from the effects of external forces on decreased bone density, while in the intracapsular fracture type, thinning of the superior portion of the cortical bone creates

  5. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons.

    Science.gov (United States)

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew Cn; Swindale, Nicholas V; Murphy, Timothy H

    2017-02-04

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps.

  6. Contrast Agents for Micro-Computed Tomography of Microdamage in Bone

    National Research Council Canada - National Science Library

    Roeder, Ryan K

    2008-01-01

    ...) and contrast agents with higher x-ray attenuation than bone. The ability to detect the presence and to a limited extent the morphology of microdamage in cortical and trabecular bone using micro-CT was demonstrated using a barium sulfate (BaSO4) stain...

  7. Quantification of bone mineral density at 3rd lumbar vertebra by dual photon absorptiometry

    International Nuclear Information System (INIS)

    Fukunaga, Masao; Otsuka, Nobuaki; Ono, Shimato; Nagai, Kiyohisa; Muranaka, Akira; Furukawa, Takako; Yanagimoto, Shinichi; Tomomitsu, Tatsushi; Morita, Rikushi

    1987-01-01

    To know bone mineral content of both cortical and spongy bones with aging and pathologic changes, bone mineral density (BMD) in the 3rd lumbar vertebra (L3) and distal radius (DR) was measured using dual photon absorptiometry and single photon absorptiometry, respectively, in 151 normal subjects (N) and four patients with primary hyperparathyroidism (PHP). In the N group, BMD in both L3 and DR decreased with aging. This was more noted, and occurred earlier in L3, irrespective of sex, than DR. In three PHP patients manifested as bone type, BMD was high in L3, and low in DR. Such a tendency was not seen in the remaining one patient with stone type PHP. The findings suggest the need to measure BMD in both cortical (L3) and spongy (DR) bones for elucidating bone pathophysiology in metabolic bone disease. (Namekawa, K.)

  8. Comparison of bone densitometry methods in healthy and osteoporotic women

    International Nuclear Information System (INIS)

    Reinbold, W.D.; Dinkel, E.; Genant, H.K.

    1988-01-01

    To compare methods of noninvasive measurement of bone mineral content, 40 healthy early postmenopausal women and 68 postmenopausal women with osteoporosis were studied. The methods included mono- and dual-energy quantitative computed tomography (QCT) and dual-photon absorptiometry (DPA) of the lumbar spine, single-photon absorptiometry (SPA) of the distal third of the radius, and combined cortical thickness (CCT) of the second metacarpal shaft. Lateral thoracolumbar radiographic studies were performed and the spinal fracture index calculated. There was good correlation between QCT and DPA methods in early postmenopausal women and moderate correlation in postmenopausal osteoporotic women. Correlations between spinal measurements (QCT or DPA) and appendicular cortical measurements (SPA or CCT) were moderate in healthy women and poor in osteoporotic women. Measurements resulting from one method were not predictive of measurements obtained by another method for individual patients. The strongest correlation with severity of vertebral fracture was provided by QCT and the weakest by SPA. There was good correlation between single- and dual-energy QCT results. Osteoporotic women and younger healthy women can be distinguished by the measurement of spinal trabecular bone density using QCT, and this method is more sensitive than the measurement of spinal integral bone by DPA or of appendicular cortical bone by SPA or CCT. (orig.) [de

  9. The effect of intramedullary bone endoscopy on the endosteal blood supply in long bones. An experimental study in sheep.

    Science.gov (United States)

    Herget, Georg W; Haberstroh, Jörg; Südkamp, Norbert; Riede, Ursus; Oberst, Michael

    2011-02-01

    This study investigated whether the Intramedullary Bone Endoscopy (IBE) procedure within the cavity of an intact long bone will interfere with the local endosteal blood supply. In a sheep model, 10 animals underwent the IBE procedure with complete perioperative anaesthesiology monitoring. After the femora were harvested, histological analysis was performed to examine destruction of the endosteum and consecutive reduction in perfusion. Only one animal showed evidence of detachment of the endosteum with destruction of several microns of the endosteum, although this did not interfere with the cortical perfusion. None of the vessels were occluded by fat or other causes of occlusion, e.g. blood coagulation. Our findings indicate that with the IBE procedure under visual control there is a potential risk to damage the endosteum. However, the interference was limited to a small part of the endosteum and did not lead to a reduction in the cortical perfusion. Clinical use could be in localized intramedullary lesions such as osteomyelitis or benign bone tumours.

  10. Bone mineral content (BMC) of the lumbar vertebrae (L2-L4) measured by quantitative computed tomography (QCT) and dual energy X-ray absorptiometry (DXA) in 21 hemodialysis (HD) patients

    International Nuclear Information System (INIS)

    Takahashi, Nobuyoshi; Suzuki, Tadashi; Sato, Motoaki; Oh, Songchol; Sato, Atsushi; Saito, Hisao; Funyu, Tomihisa.

    1996-01-01

    BMC of lumbar vertebrae (L2-L4) was measured by QCT and DXA in 21 HD patients. The effect of sex, aging, HD duration, postmenopausal years and various blood parameters of bone metabolism on BMC was assessed statistically. BMC showed a good positive correlation not only with DXA and QCT (trabecular and cortical bone), but with QCT (trabecular bone) and QCT (cortical bone). A significant age-related decrease in BMC, particularly by QCT (trabecular bone), was found in both sexes. BMC measured by QCT (trabecular bone) increased with the duration of HD in male patients. A negative relationship between postmenopausal years and BMC measured by QCT (trabecular and cortical bone) was prominent. BMC was not found to be correlated with various blood parameters of bone metabolism. Thus, measurement of BMC (L2-L4) by QCT has the advantage of allowing more precise examination of changes in cortical and trabecular bone. (author)

  11. Maternal perinatal diet induces developmental programming of bone architecture.

    Science.gov (United States)

    Devlin, M J; Grasemann, C; Cloutier, A M; Louis, L; Alm, C; Palmert, M R; Bouxsein, M L

    2013-04-01

    Maternal high-fat (HF) diet can alter offspring metabolism via perinatal developmental programming. This study tests the hypothesis that maternal HF diet also induces perinatal programming of offspring bone mass and strength. We compared skeletal acquisition in pups from C57Bl/6J mice fed HF or normal diet from preconception through lactation. Three-week-old male and female pups from HF (HF-N) and normal mothers (N-N) were weaned onto normal diet. Outcomes at 14 and 26 weeks of age included body mass, body composition, whole-body bone mineral content (WBBMC) via peripheral dual-energy X-ray absorptiometry, femoral cortical and trabecular architecture via microcomputed tomography, and glucose tolerance. Female HF-N had normal body mass and glucose tolerance, with lower body fat (%) but higher serum leptin at 14 weeks vs. N-N (Pbone volume fraction was 20% higher at 14 weeks in female HF-N vs. N-N (Pbone area was 6% higher at 14 weeks vs. N-N (Pbone, supporting the hypothesis that maternal diet alters postnatal skeletal homeostasis.

  12. Evaluation of tibolone administration in bone architectural by MicroCT

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, A. C. B.; Henriques, H. N. [Patology Dept., Fluminense Federal Univ., Niteroi (Brazil); Granjeiro, J. M. [Molecular and Cell Biology Dept., Fluminense Federal Univ., Niteroi, Rio de Janeiro (Brazil); Guzman-Silva, M. A. [Patology Dept., Fluminense Federal Univ., Niteroi (Brazil); Lopes, R. T.; Lima, I. [Nuclear Engineering Laboratory, Federal Univ. of Rio de Janeiro (Brazil)

    2011-07-01

    Elderly women are at higher risk for hip fracture because of additional and relatively rapid bone loss due to estrogen deficiency by loss of the ovarian function and a longer average life span than men. The early application of agents that suppress the increase in bone turnover due to estrogen deficiency is essential to prevent bone loss and reduce the risk of osteoporosis. Some advanced imaging techniques may be required to investigate osteoporosis. X-ray micro-computed tomography has been used to generate high-resolution 3D images of cancellous and cortical bone morphology from normal and pathologic human and animal specimens. The aim of this study is to verify the effects of tibolone administration by evaluating the trabecular bone region. The experiment was performed on two groups of rats previously ovariectomized in which one received tibolone while the other did not. Tibolone administration (1 mg/day) began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs were collected. The scan was obtained using a Hamamatsu 10 Mp camera with a pixel size of 11.59 {mu}m and trabecular region in the right femoral head were quantified. All results were statistically evaluated with significance set at P<0.05%. Tibolone administration was shown to be beneficial in some analysis of the femoral head, performing higher bone volume and reducing the porosity when compared to ovariectomized. It can be concluded that tibolone administered to ovariectomized rats significantly preserved bone mass in the femoral head and microtomography was an efficient method to identify bone loss process and to evaluate potential therapies, as tibolone administration. (authors)

  13. Evaluation of tibolone administration in bone architectural by MicroCT

    International Nuclear Information System (INIS)

    Carvalho, A. C. B.; Henriques, H. N.; Granjeiro, J. M.; Guzman-Silva, M. A.; Lopes, R. T.; Lima, I.

    2011-01-01

    Elderly women are at higher risk for hip fracture because of additional and relatively rapid bone loss due to estrogen deficiency by loss of the ovarian function and a longer average life span than men. The early application of agents that suppress the increase in bone turnover due to estrogen deficiency is essential to prevent bone loss and reduce the risk of osteoporosis. Some advanced imaging techniques may be required to investigate osteoporosis. X-ray micro-computed tomography has been used to generate high-resolution 3D images of cancellous and cortical bone morphology from normal and pathologic human and animal specimens. The aim of this study is to verify the effects of tibolone administration by evaluating the trabecular bone region. The experiment was performed on two groups of rats previously ovariectomized in which one received tibolone while the other did not. Tibolone administration (1 mg/day) began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs were collected. The scan was obtained using a Hamamatsu 10 Mp camera with a pixel size of 11.59 μm and trabecular region in the right femoral head were quantified. All results were statistically evaluated with significance set at P<0.05%. Tibolone administration was shown to be beneficial in some analysis of the femoral head, performing higher bone volume and reducing the porosity when compared to ovariectomized. It can be concluded that tibolone administered to ovariectomized rats significantly preserved bone mass in the femoral head and microtomography was an efficient method to identify bone loss process and to evaluate potential therapies, as tibolone administration. (authors)

  14. Honey preserved cortical allografts in the repair of diaphyseal femoral defect in dogs: clinical and radiographic

    International Nuclear Information System (INIS)

    Alievi, Marcelo Meller; Wallau Schossler, João Eduardo; Christo de Oliveira, Ana Néri; Almeida Ferreira, Carolina Kist TraeslelIV Patrícia; Dambrósio Guimarães, Luciana

    2007-01-01

    Fourteen adult mongrel dogs were used to evaluate the honey preserved cortical allografts in the repair of diaphyseal femoral defect. The allografts were inserted into a 5cm segmental defect created in the mid-diaphysis of the right femur in each dog. The bones were stabilized with a dynamic compression plate and eight bone screws. Healing was followed clinically and femora were evaluated radiographically, periodically. Nineteen (79.2%) of the twenty-four host-graft interfaces were radiographically incorporated. Average time to allograft incorporation was 67.1 days (range 45 days to 90 days). There was no statistical difference in the allograft incorporation time between proximal and distal host-graft interfaces. Complications observed were nonunion, allograft fracture, and allograft resorption. The conclusion is that despite the complications, honey preserved cortical allografts are a viable option to bone reconstruction [pt

  15. Deciphering seasonal variations in the diet and drinking water of modern White-Tailed deer by in situ analysis of osteons in cortical bone

    Science.gov (United States)

    Larson, T. E.; Longstaffe, F. J.

    2007-12-01

    In situ carbon and oxygen isotope values for bioapatite were obtained from longitudinal slices of cortical bone from modern domesticated sheep and free-range White-Tailed deer. The analyses were obtained using an IR-laser coupled to a GC-IRMS interface. Ablation pits averaged 200 × 50 μm, making it possible to sample individual or small bundles of osteons. Cortical bone is remodeled along osteons throughout a mammal's life. Therefore, data at this scale can record seasonal variations in diet and drinking water during the adult stages of a mammal, whereas teeth provide may provide information about the juvenile years of a mammal. Average δ18O and δ13C values for the sheep from southwestern Ontario, Canada, were 14.0 and -16.1‰, respectively. No trend was observed in the isotopic composition of the sheep's osteons, consistent with its constant diet and water supply. The δ18O (14.2 to 16.6‰) and δ13C (-19.2 to -15.6‰) values of osteons from White-Tailed deer from nearby Pinery Provincial Park, however, varied systematically and were negatively correlated. Oxygen isotope values of the osteons correlated well with changes in the δ18O values of the main water source for these deer: winter average, -10.7‰; summer average, -8.6‰. The variation in δ13C values of the osteons reflects changes in diet; summer diet consisted mainly of leafy C3 vegetation (-28.4‰), whereas winter diet comprised bark (-25.6‰), C4 grasses (δ13C, -12.7‰), and corn stalks and husks (-11.3‰).

  16. The Effects of FreeSurfer Version, Workstation Type, and Macintosh Operating System Version on Anatomical Volume and Cortical Thickness Measurements

    OpenAIRE

    Gronenschild, Ed H. B. M.; Habets, Petra; Jacobs, Heidi I. L.; Mengelers, Ron; Rozendaal, Nico; van Os, Jim; Marcelis, Machteld

    2012-01-01

    FreeSurfer is a popular software package to measure cortical thickness and volume of neuroanatomical structures. However, little if any is known about measurement reliability across various data processing conditions. Using a set of 30 anatomical T1-weighted 3T MRI scans, we investigated the effects of data processing variables such as FreeSurfer version (v4.3.1, v4.5.0, and v5.0.0), workstation (Macintosh and Hewlett-Packard), and Macintosh operating system version (OSX 10.5 and OSX 10.6). S...

  17. [Bone Cell Biology Assessed by Microscopic Approach. The effect of parathyroid hormone and teriparatide on bone].

    Science.gov (United States)

    Takahata, Masahiko

    2015-10-01

    Continuous exposure to parathyroid hormone (PTH) leads to hypercalcemia and a decrease in bone volume, which is referred to as its catabolic effect, while intermittent exogenously administered PTH leads to an anabolic effect on bone. Intermittent administration of PTH dramatically increases bone remodeling and modeling through their direct and indirect effects on the functional cells of bone remodeling units and their precursors. These effects on bone metabolism differ according to dosing frequency of PTH. Therefore, different dosing frequency of PTH shows different therapeutic effects on bone in terms of bone volume and bone quality in patients with osteoporosis.

  18. Microdamage of the cortical bone during mini-implant insertion with self-drilling and self-tapping techniques: a randomized controlled trial.

    Science.gov (United States)

    Yadav, Sumit; Upadhyay, Madhur; Liu, Sean; Roberts, Eugene; Neace, William P; Nanda, Ravindra

    2012-05-01

    The purpose of this research was to evaluate microdamage accumulation after mini-implant placement by self-drilling (without a pilot hole) and self-tapping (screwed into a pilot hole) insertion techniques. The null hypothesis was that the mini-implant insertion technique would have no influence on microcrack accumulation and propagation in the cortical bones of the maxillae and mandibles of adult hounds. Mini-implants (n = 162; diameter, 1.6 mm; length, 6 mm) were placed in the maxillae and mandibles of 9 hounds (12-14 months old) with self-drilling and self-tapping insertion techniques. The techniques were randomly assigned to the left or the right side of each jaw. Each hound received 18 mini-implants (10 in the mandible, 8 in the maxilla). Histomorphometric parameters including total crack length and crack surface density were measured. The null hypothesis was rejected in favor of an alternate hypothesis: that the self-drilling technique results in more microdamage (microcracks) accumulation in the adjacent cortical bone in both the maxilla and the mandible immediately after mini-implant placement. A cluster level analysis was used to analyze the data on the outcome measured. Since the measurements were clustered within dogs, a paired-samples t test was used to analyze the average differences between insertion methods at both jaw locations. A significance level of 0.05 was used for both analyses. The self-drilling technique resulted in greater total crack lengths in both the maxilla and the mandible (maxilla: mean difference, 18.70 ± 7.04 μm/mm(2); CI, 13.29-24.11; mandible: mean difference, 22.98 ± 6.43 μm/mm(2); CI, 18.04-27.93; P hounds in both the maxilla and the mandible by the self-drilling insertion technique compared with the self-tapping technique. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  19. Altitude, pasture type, and sheep breed affect bone metabolism and serum 25-hydroxyvitamin D in grazing lambs.

    Science.gov (United States)

    Willems, Helen; Leiber, Florian; Kohler, Martina; Kreuzer, Michael; Liesegang, Annette

    2013-05-15

    This study aimed to investigate the bone development of two mountain sheep breeds during natural summer grazing either in the lowlands or on different characteristic alpine pastures. Pasture types differed in topographic slope, plant species composition, general nutritional feeding value, Ca and P content, and Ca:P ratio of herbage. Twenty-seven Engadine sheep (ES) lambs and 27 Valaisian Black Nose sheep (VS) lambs were divided into four groups of 6 to 7 animals per breed and allocated to three contrasting alpine pasture types and one lowland pasture type. The lambs were slaughtered after 9 wk of experimental grazing. The steep alpine pastures in combination with a high (4.8) to very high (13.6) Ca:P ratio in the forage decreased total bone mineral content as measured in the middle of the left metatarsus of the lambs from both breeds, and cortical bone mineral content and cortical bone mineral density of ES lambs. Breed × pasture type interactions occurred in the development of total and cortical bone mineral content, and in cortical thickness, indicating that bone metabolism of different genotypes obviously profited differently from the varying conditions. An altitude effect occurred for 25-hydroxyvitamin D with notably higher serum concentrations on the three alpine sites, and a breed effect led to higher concentrations for ES than VS. Despite a high variance, there were pasture-type effects on serum markers of bone formation and resorption.

  20. Additive Genetic Effects on Circulating Periostin Contribute to the Heritability of Bone Microstructure.

    Science.gov (United States)

    Bonnet, N; Biver, E; Durosier, C; Chevalley, T; Rizzoli, R; Ferrari, S

    2015-07-01

    Genetic factors account for 60-80% of the areal bone mineral density (aBMD) variance, whereas the heritability of bone microstructure is not clearly established. aBMD and microstructure are under the control of osteocytes, which regulate bone formation through the expression of molecules such as sclerostin (SOST) and periostin (POSTN). We hypothesized that additive genetic effects contribute to serum levels of SOST and POSTN and thereby to the individual variance of bone microstructure. In a retrospective analysis of 432 subjects from the Geneva Retiree Cohort age 64.9 ± 1.4 years and 96 of their offspring age 37.9 ± 5.7 years, we measured serum SOST (sSOST) and serum POSTN (sPOSTN), distal radius and tibia microstructure, hip and lumbar spine aBMD, and bone turnover markers, Heritability (h(2), %) was calculated as twice the slope of the regression (β) between parents and offspring. cPOSTN levels were significantly higher in men than women and in offspring than parents. h(2) values for bone microstructural traits ranged from 22-64% depending on the envelope (trabecular [Tb] or cortical [Ct]) and skeletal site (radius or tibia), whereas h(2) for sPOSTN and sSOST was 50% and 40%, respectively. sPOSTN was positively associated with Tb bone volume on total volume and Ct thickness, and negatively with Ct porosity. The associations for Ct parameters remain significant after adjustment for propetide of type-I procollagen, cross-linked telopeptide of type I collagen, femoral neck aBMD, sex or age. After adjustment of bone traits for sPOSTN, h(2) values decreased for several Tb and Ct bone parameters, but not for aBMD. In contrast, adjusting for sSOST did not alter h(2) values for bone traits. Additive genetic effects account for a substantial proportion of the individual variance of bone microstructure, sPOSTN, and sSOST. sPOSTN is largely inherited as a sex-related trait and carries an important contribution to the heritability of bone microstructure, indicating that