WorldWideScience

Sample records for cortical bone geometry

  1. The Hounsfield value for cortical bone geometry in the proximal humerus - an in vitro study

    International Nuclear Information System (INIS)

    Lim Fat, Daren; Kennedy, Jim; Galvin, Rose; O'Brien, Fergal; Mc Grath, Frank; Mullett, Hannan

    2012-01-01

    Fractures of the proximal humerus represent a major osteoporotic burden. Recent developments in CT imaging have emphasized the importance of cortical bone thickness distribution in the prevention and management of fragility fractures. We aimed to experimentally define the CT density of cortical bone in the proximal humerus for building cortical geometry maps. With ethical approval, we used ten fresh-frozen human proximal humeri. These were stripped of all soft tissue and high-resolution CT images were then taken. The humeral heads were then subsequently resected to allow access to the metaphyseal area. Using curettes, cancellous bone was removed down to hard cortical bone. Another set of CT images of the reamed specimen was then taken. Using CT imaging software and a CAD interface, we then compared cortical contours at different CT density thresholds to the reference inner cortical contour of our reamed specimens. Working with 3D model representations of these cortical maps, we were able to accurately make distance comparison analyses based on different CT thresholds. We could compute a single closest value at 700 HU. No difference was found in the HU-based contours generated along the 500-900 HU pixels (p = 1.000). The contours were significantly different from those generated at 300, 400, 1,000, and 1,100 HU. A Hounsfield range of 500-900 HU can accurately depict cortical bone geometry in the proximal humerus. Thresholding outside this range leads to statistically significant inaccuracies. Our results concur with a similar range reported in the literature for the proximal femur. Knowledge of regional variations in cortical bone thickness has direct implications for basic science studies on osteoporosis and its treatment, but is also important for the orthopedic surgeon since our decision for treatment options is often guided by local bone quality. (orig.)

  2. Is cortical bone hip? What determines cortical bone properties?

    Science.gov (United States)

    Epstein, Sol

    2007-07-01

    Increased bone turnover may produce a disturbance in bone structure which may result in fracture. In cortical bone, both reduction in turnover and increase in hip bone mineral density (BMD) may be necessary to decrease hip fracture risk and may require relatively greater proportionate changes than for trabecular bone. It should also be noted that increased porosity produces disproportionate reduction in bone strength, and studies have shown that increased cortical porosity and decreased cortical thickness are associated with hip fracture. Continued studies for determining the causes of bone strength and deterioration show distinct promise. Osteocyte viability has been observed to be an indicator of bone strength, with viability as the result of maintaining physiological levels of loading and osteocyte apoptosis as the result of a decrease in loading. Osteocyte apoptosis and decrease are major factors in the bone loss and fracture associated with aging. Both the osteocyte and periosteal cell layer are assuming greater importance in the process of maintaining skeletal integrity as our knowledge of these cells expand, as well being a target for pharmacological agents to reduce fracture especially in cortical bone. The bisphosphonate alendronate has been seen to have a positive effect on cortical bone by allowing customary periosteal growth, while reducing the rate of endocortical bone remodeling and slowing bone loss from the endocortical surface. Risedronate treatment effects were attributed to decrease in bone resorption and thus a decrease in fracture risk. Ibandronate has been seen to increase BMD as the spine and femur as well as a reduced incidence of new vertebral fractures and non vertebral on subset post hoc analysis. And treatment with the anabolic agent PTH(1-34) documented modeling and remodelling of quiescent and active bone surfaces. Receptor activator of nuclear factor kappa B ligand (RANKL) plays a key role in bone destruction, and the human monoclonal

  3. Cortical bone metastases

    International Nuclear Information System (INIS)

    Davis, T.M. Jr.; Rogers, L.F.; Hendrix, R.W.

    1986-01-01

    Twenty-five cases of bone metastases involving the cortex alone are reviewed. Seven patients had primary lung carcinoma, while 18 had primary tumors not previously reported to produce cortical bone metastases (tumors of the breast, kidney, pancreas, adenocarcinoma of unknown origin, multiple myeloma). Radiographically, these cortical lesions were well circumscribed, osteolytic, and produced soft-tissue swelling and occasional periosteal reaction. A recurrent pattern of metadiaphyseal involvement of the long bones of the lower extremity (particularly the femur) was noted, and is discussed. Findings reported in the literature, review, pathophysiology, and the role of skeletal radiographs, bone scans, and CT scans in evaluating cortical bone metastases are addressed

  4. Development and design of a bone-equivalent cortical shell phantom to determine accuracy measures on DXA and PQCT scanners

    International Nuclear Information System (INIS)

    Khoo, B.C.C.; Beck, T.J. Johns; Turk, B.; Price, R.I.

    2004-01-01

    Full text: Hip Structural Analysis (HSA), is an algorithm that computes bone-structural geometry from dual energy X-ray absorptiometry (DXA) derived hip images and may be used in a complementary manner to DXA areal bone mineral density (BMD) for bone strength interpretation. DXA is normally used to facilitate the diagnosis and management of bone metabolic diseases such as osteoporosis. HSA provides a biomechanical interpretation of BMD, using its mass profiles to compute cross-sectional structural geometry. In essence, HSA provides insight into bone structural and biomechanical properties, particularly of long bones, which BMD alone cannot. While conventional (vendor-provided) phantoms calibrate DXA machines for densitometric precision, analogous phantoms for calibrating structural geometry are lacking. This paper describes the design and preliminary testing of a densitometric bone-equivalent cylindrical phantom with 'cortical' shells and 'cancellous' core, and the use of this phantom to do a performance test of structural geometry variables such as cortical thickness, bone width and section modulus derived, from pQCT and DXA scan data. Powdered calcium-sulphate (CSC) was water-mixed in vacuum and cured. This mixture exhibited hydroxyapatite-like DXA photon-attenuation properties with density monotonically related to added water-mass. Its mass and BMD maintained temporal stability (CV%=0.03%, n=4 specimens over 321 d). Using CSC designed for a BMD=1.04g/cm, (for plate-thickness 10mm), a cylindrical phantom with cortical shell thicknesses of 0.5, 1.0, 2.0, 4.0mm, an acrylic-based internal core diameter of 26mm, and an acrylic surrounding 'soft-tissue' were constructed. The phantom was scanned using a DXA scanner (Hologic QDRl000W) and pQCT (Stratec XCT2000, pixel resolution 0.15mm). Selected cortical structural-geometric variables, derived from calculated geometry; pQCT mass-projections, and DXA HSA. In conclusion, dimensions of this novel cortical-shell phantom

  5. Insulin Resistance Is Associated With Smaller Cortical Bone Size in Nondiabetic Men at the Age of Peak Bone Mass.

    Science.gov (United States)

    Verroken, Charlotte; Zmierczak, Hans-Georg; Goemaere, Stefan; Kaufman, Jean-Marc; Lapauw, Bruno

    2017-06-01

    In type 2 diabetes mellitus, fracture risk is increased despite preserved areal bone mineral density. Although this apparent paradox may in part be explained by insulin resistance affecting bone structure and/or material properties, few studies have investigated the association between insulin resistance and bone geometry. We aimed to explore this association in a cohort of nondiabetic men at the age of peak bone mass. Nine hundred ninety-six nondiabetic men aged 25 to 45 years were recruited in a cross-sectional, population-based sibling pair study at a university research center. Insulin resistance was evaluated using the homeostasis model assessment of insulin resistance (HOMA-IR), with insulin and glucose measured from fasting serum samples. Bone geometry was assessed using peripheral quantitative computed tomography at the distal radius and the radial and tibial shafts. In age-, height-, and weight-adjusted analyses, HOMA-IR was inversely associated with trabecular area at the distal radius and with cortical area, periosteal and endosteal circumference, and polar strength strain index at the radial and tibial shafts (β ≤ -0.13, P insulin-like growth factor 1, or sex steroid levels. In this cohort of nondiabetic men at the age of peak bone mass, insulin resistance is inversely associated with trabecular and cortical bone size. These associations persist after adjustment for body composition, muscle size or function, or sex steroid levels, suggesting an independent effect of insulin resistance on bone geometry. Copyright © 2017 Endocrine Society

  6. Dynamic Mechanical Testing Techniques for Cortical and Cancellous Bone

    Science.gov (United States)

    Cloete, Trevor

    2017-06-01

    Bone fracture typically occurs as an impact loading event (sporting accidents, vehicle collisions), the simulation of which requires in-depth understanding of dynamic bone behavior. Bone is a natural composite material with a complex multi length-scale hierarchical microstructure. At a macroscopic level, it is classified into hard/compact cortical bone and soft/spongy cancellous (trabecular) bone, though both are low-impedance materials relative to steels. Cortical bone is predominant in long bones, while in complex bone geometries (joints, flat bones) a cancellous bone core supports a thin cortical shell. Bone has primarily been studied at quasi-static strain rates (ɛ˙ failure, with interrupted quasi-static tests revealing a strong microstructure dependence. However, bone specimens are typically destroyed during dynamic tests, leading to a lack of dynamic microstructural damage investigations. In this paper, a short overview of dynamic bone testing is presented to give context to the challenges of testing low impedance, strain-rate dependent, non-linear, visco-elastic-brittle materials. Recent state-of-the-art experimental developments in dynamic bone testing are reviewed, with emphasis on pulse shaping, momentum trapping and ISR testing. These techniques allow for dynamic bone testing at small strains and near-constant strain rates with intact specimen recovery. The results are compared to those obtained with varying strain rate tests. Interrupted dynamic test results with microstructural analysis of the recovered specimens are presented and discussed. The paper concludes with a discussion of the experimental and modeling challenges that lie ahead in the field of dynamic bone behavior. The financial assistance of the National Research Foundation and the University of Cape Town towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the author alone.

  7. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    Science.gov (United States)

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  8. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.

  9. Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain

    Science.gov (United States)

    Pacheco-Costa, Rafael; Davis, Hannah M.; Sorenson, Chad; Hon, Mary C.; Hassan, Iraj; Reginato, Rejane D.; Allen, Matthew R.; Bellido, Teresita; Plotkin, Lilian I.

    2015-01-01

    Connexin43 (Cx43) forms gap junction channels and hemichannels that allow the communication among osteocytes, osteoblasts, and osteoclasts. Cx43 carboxy-terminal (CT) domain regulates channel opening and intracellular signaling by acting as a scaffold for structural and signaling proteins. To determine the role of Cx43 CT domain in bone, mice in which one allele of full length Cx43 was replaced by a mutant lacking the CT domain (Cx43ΔCT/fl) were studied. Cx43ΔCT/fl mice exhibit lower cancellous bone volume but higher cortical thickness than Cx43fl/fl controls, indicating that the CT domain is involved in normal cancellous bone gain but opposes cortical bone acquisition. Further, Cx43ΔCT is able to exert the functions of full length osteocytic Cx43 on cortical bone geometry and mechanical properties, demonstrating that domains other than the CT are responsible for Cx43 function in cortical bone. In addition, parathyroid hormone (PTH) failed to increase endocortical bone formation or energy to failure, a mechanical property that indicates resistance to fracture, in cortical bone in Cx43ΔCT mice with or without osteocytic full length Cx43. On the other hand, bone mass and bone formation markers were increased by the hormone in all mouse models, regardless of whether full length or Cx43ΔCT were or not expressed. We conclude that Cx43 CT domain is involved in proper bone acquisition; and that Cx43 expression in osteocytes is dispensable for some but not all PTH anabolic actions. PMID:26409319

  10. Bone geometry in young male and female football players: a peripheral quantitative computed tomography (pQCT) study.

    Science.gov (United States)

    Lozano-Berges, Gabriel; Matute-Llorente, Ángel; Gómez-Bruton, Alejandro; González-Agüero, Alex; Vicente-Rodríguez, Germán; Casajús, José A

    2018-05-08

    The present study shows that football practice during growth may improve bone geometry in male and female football players. However, only females had better bone strength in comparison with controls. The aim of this study was to compare bone geometry in adolescent football players and controls. A total of 107 football players (71 males/36 females; mean age 12.7 ± 0.6/12.7 ± 0.6 years) and 42 controls (20 males/22 females; mean age 13.1 ± 1.4/12.7 ± 1.3 years) participated in this study. Total and trabecular volumetric bone mineral content (Tt.BMC/Tb.BMC), cross-sectional area (Tt.Ar/Tb.Ar), and bone strength index (BSI) were measured at 4% site of the non-dominant tibia by peripheral quantitative computed tomography (pQCT). Moreover, Tt.BMC, cortical BMC (Ct.BMC), Tt.Ar, cortical Ar (Ct.Ar), cortical thickness (Ct.Th), periosteal circumference (PC), endosteal circumference (EC), fracture load in X-axis, and polar strength strain index (SSIp) were measured at 38% site of the tibia. Multivariate analyses of covariance were used to compare bone pQCT variables between football players and controls using the tibia length and maturity offset as covariates. Female football players demonstrated 13.8-16.4% higher BSI, Ct.Th, fracture load in X-axis, and SSIp than controls (p  .0036). In relation to bone mineral content and area, male football players showed 8.8% higher Tt.Ar and Tb.Ar at the 4% site of the tibia when compared to controls; whereas 13.8-15.8% higher Tt.BMC, Ct.BMC, and Ct.Ar at the 38% site of the tibia were found in female football players than controls (p female adolescent football players presented better bone geometry and strength values than controls. In contrast, only bone geometry was higher in male football players than controls.

  11. Adaptations in tibial cortical thickness and total volumetric bone density in postmenopausal South Asian women with small bone size.

    Science.gov (United States)

    Darling, Andrea L; Hakim, Ohood A; Horton, Khim; Gibbs, Michelle A; Cui, Liang; Berry, Jacqueline L; Lanham-New, Susan A; Hart, Kathryn H

    2013-07-01

    There is some evidence that South Asian women may have an increased risk of osteoporosis compared with Caucasian women, although whether South Asians are at increased risk of fracture is not clear. It is unknown whether older South Asian women differ from Caucasian women in bone geometry. This is the first study, to the authors' knowledge, to use peripheral Quantitative Computed Tomography (pQCT) to measure radial and tibial bone geometry in postmenopausal South Asian women. In comparison to Caucasian women, Asian women had smaller bone size at the 4% (-18% pAsians had increased cortical thickness (-17% p=0.04) at the 38% tibia, (in proportion to bone size (-30% p=0.003)). Furthermore, at the 4% and 14% tibia there were increased total densities (+12% to +29% pAsians. These differences at the 14% and 38% (but not 4%) remained statistically significant after adjustment for Body Mass Index (BMI). These adaptations are similar to those seen previously in Chinese women. Asian women had reduced strength at the radius and tibia, evidenced by the 20-40% reduction in both polar Strength Strain Index (SSIp) and fracture load (under bending). Overall, the smaller bone size in South Asians is likely to be detrimental to bone strength, despite some adaptations in tibial cortical thickness and tibial and radial density which may partially compensate for this. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Skeletal Geometry and Indices of Bone Strength in Artistic Gymnasts

    Science.gov (United States)

    Dowthwaite, Jodi N.; Scerpella, Tamara A.

    2010-01-01

    This review addresses bone geometry and indices of skeletal strength associated with exposure to gymnastic loading during growth. A brief background characterizes artistic gymnastics as a mechanical loading model and outlines densitometric techniques, skeletal outcomes and challenges in assessment of skeletal adaptation. The literature on bone geometric adaptation to gymnastic loading is sparse and consists of results for disparate skeletal sites, maturity phases, gender compositions and assessment methods, complicating synthesis of an overriding view. Furthermore, most studies assess only females, with little information on males and adults. Nonetheless, gymnastic loading during growth appears to yield significant enlargement of total and cortical bone geometry (+10 to 30%) and elevation of trabecular density (+20%) in the forearm, yielding elevated indices of skeletal strength (+20 to +50%). Other sites exhibit more moderate geometric and densitometric adaptations (5 to 15%). Mode of adaptation appears to be site-specific; some sites demonstrate marked periosteal and endosteal expansion, whereas other sites exhibit negligible or moderate periosteal expansion coupled with endocortical contraction. Further research is necessary to address sex-, maturity- and bone tissue-specific adaptation, as well as maintenance of benefits beyond loading cessation. PMID:19949278

  13. Paradiaphyseal calcific tendinitis with cortical bone erosion.

    Science.gov (United States)

    Fritz, P; Bardin, T; Laredo, J D; Ziza, J M; D'Anglejan, G; Lansaman, J; Bucki, B; Forest, M; Kuntz, D

    1994-05-01

    To determine the clinical, radiologic, and histologic features of calcific tendinitis with cortical bone erosion. The records of 6 patients with paradiaphyseal calcific tendinitis and adjacent bone cortex erosion were reviewed. Calcific tendinitis involved the linea aspera in 4 patients, the bicipital groove in 1 patient, and the deltoid insertion in another. Calcium deposits were associated with cortical bone erosions, revealed on plain radiographs in 4 patients and computed tomography scans in 2. Bone scans were performed in 2 patients and showed local hyperfixation of the isotope. In 4 patients, suspicion of a neoplasm led to a biopsy. Calcium deposits appeared to be surrounded by a foreign body reaction with numerous giant cells. Apatite crystals were identified by transmission electron microscopy and elemental analysis in 1 surgical sample. Paradiaphyseal calcific tendinitis with cortical bone erosion is an uncommon presentation of apatite deposition disease.

  14. Site-Specific Difference of Bone Geometry Indices in Hypoparathyroid Patients

    Directory of Open Access Journals (Sweden)

    Hye-Sun Park

    2017-02-01

    Full Text Available BackgroundHypoparathyroid patients often have a higher bone mineral density (BMD than the general population. However, an increase in BMD does not necessarily correlate with a solid bone microstructure. This study aimed to evaluate the bone microstructure of hypoparathyroid patients by using hip structure analysis (HSA.MethodsNinety-five hypoparathyroid patients >20 years old were enrolled and 31 of them had eligible data for analyzing bone geometry parameters using HSA. And among the control data, we extracted sex-, age-, and body mass index-matched three control subjects to each patient. The BMD data were reviewed retrospectively and the bone geometry parameters of the patients were analyzed by HSA.ResultsThe mean Z-scores of hypoparathyroid patients at the lumbar spine, femoral neck, and total hip were above zero (0.63±1.17, 0.48±1.13, and 0.62±1.10, respectively. The differences in bone geometric parameters were site specific. At the femoral neck and intertrochanter, the cross-sectional area (CSA and cortical thickness (C.th were higher, whereas the buckling ratio (BR was lower than in controls. However, those trends were opposite at the femoral shaft; that is, the CSA and C.th were low and the BR was high.ConclusionOur study shows the site-specific effects of hypoparathyroidism on the bone. Differences in bone components, marrow composition, or modeling based bone formation may explain these findings. However, further studies are warranted to investigate the mechanism, and its relation to fracture risk.

  15. Response of cortical bone to antiresorptive treatment

    DEFF Research Database (Denmark)

    Hyldstrup, Lars; Jørgensen, J T; Sørensen, T K

    2001-01-01

    of the spine, hip, and forearm. Longitudinal changes in bone densitometry were compared with changes captured by DXR: BMD evaluated by DXR (BMDDXR), cortical thickness of the second metacarpal (CTMC2), and porosity of cortical bone. The expected annual postmenopausal reduction in BMD in the control group...... treatment regimens used in the prevention of osteoporosis....

  16. Restoration of Thickness, Density, and Volume for Highly Blurred Thin Cortical Bones in Clinical CT Images.

    Science.gov (United States)

    Pakdel, Amirreza; Hardisty, Michael; Fialkov, Jeffrey; Whyne, Cari

    2016-11-01

    In clinical CT images containing thin osseous structures, accurate definition of the geometry and density is limited by the scanner's resolution and radiation dose. This study presents and validates a practical methodology for restoring information about thin bone structure by volumetric deblurring of images. The methodology involves 2 steps: a phantom-free, post-reconstruction estimation of the 3D point spread function (PSF) from CT data sets, followed by iterative deconvolution using the PSF estimate. Performance of 5 iterative deconvolution algorithms, blind, Richardson-Lucy (standard, plus Total Variation versions), modified residual norm steepest descent (MRNSD), and Conjugate Gradient Least-Squares were evaluated using CT scans of synthetic cortical bone phantoms. The MRNSD algorithm resulted in the highest relative deblurring performance as assessed by a cortical bone thickness error (0.18 mm) and intensity error (150 HU), and was subsequently applied on a CT image of a cadaveric skull. Performance was compared against micro-CT images of the excised thin cortical bone samples from the skull (average thickness 1.08 ± 0.77 mm). Error in quantitative measurements made from the deblurred images was reduced 82% (p < 0.01) for cortical thickness and 55% (p < 0.01) for bone mineral mass. These results demonstrate a significant restoration of geometrical and radiological density information derived for thin osseous features.

  17. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone - a feasibility study.

    Science.gov (United States)

    Marcián, Petr; Borák, Libor; Valášek, Jiří; Kaiser, Jozef; Florian, Zdeněk; Wolff, Jan

    2014-12-18

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant geometries and the levels of bone-to-implant contact (BIC) on the surrounding bone. Six mandibular bone segments demonstrating different grades of mandibular bone atrophy and various bone volume fractions (from 0.149 to 0.471) were imaged using a micro-CT device. The acquired bone STL models and implant (Brånemark, Straumann, Ankylos) were merged into a three-dimensional finite elements structure. The mean displacement value for all implants was 3.1 ±1.2 µm. Displacements were lower in the group with a strong BIC. The results indicated that the maximum strain values of cortical and cancellous bone increased with lower bone density. Strain distribution is the first and foremost dependent on the shape of bone and architecture of cancellous bone. The geometry of the implant, thread patterns, grade of bone atrophy and BIC all affect the displacement and micro-strain on the mandible bone. Preoperative finite element analysis could offer improved predictability in the long-term outlook of dental implant restorations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Evaluation of trabecular bone patterns on dental radiographic images: influence of cortical bone

    Science.gov (United States)

    Amouriq, Yves; Evenou, Pierre; Arlicot, Aurore; Normand, Nicolas; Layrolle, Pierre; Weiss, Pierre; Guédon, Jean-Pierre

    2010-03-01

    For some authors trabecular bone is highly visible in intraoral radiographs. For other authors, the observed intrabony trabecular pattern is a representation of only the endosteal surface of cortical bone, not of intermedullary striae. The purpose of this preliminary study was to investigate the true anatomical structures that are visible in routine dental radiographs and classically denoted trabecular bone. This is a major point for bone texture analysis on radiographs. Computed radiography (CR) images of dog mandible section in molar region were compared with simulations calculated from high-resolution micro-CT volumes. Calculated simulations were obtained using the Mojette Transform. By digitally editing the CT volume, the simulations were separated into trabecular and cortical components into a region of interest. Different images were compared and correlated, some bone micro-architecture parameters calculated. A high correlation was found between computed radiographs and calculated simulations from micro-CT. The Mojette transform was successful to obtain high quality images. Cortical bone did not contribute to change in a major way simulated images. These first results imply that intrabony trabecular pattern observed on radiographs can not only be a representation of the cortical bone endosteal surface and that trabecular bone is highly visible in intraoral radiographs.

  19. Cortical bone drilling: An experimental and numerical study.

    Science.gov (United States)

    Alam, Khurshid; Bahadur, Issam M; Ahmed, Naseer

    2014-12-16

    Bone drilling is a common surgical procedure in orthopedics, dental and neurosurgeries. In conventional bone drilling process, the surgeon exerts a considerable amount of pressure to penetrate the drill into the bone tissue. Controlled penetration of drill in the bone is necessary for safe and efficient drilling. Development of a validated Finite Element (FE) model of cortical bone drilling. Drilling experiments were conducted on bovine cortical bone. The FE model of the bone drilling was based on mechanical properties obtained from literature data and additionally conducted microindentation tests on the cortical bone. The magnitude of stress in bone was found to decrease exponentially away from the lips of the drill in simulations. Feed rate was found to be the main influential factor affecting the force and torque in the numerical simulations and experiments. The drilling thrust force and torque were found to be unaffected by the drilling speed in numerical simulations. Simulated forces and torques were compared with experimental results for similar drilling conditions and were found in good agreement.CONCLUSIONS: FE schemes may be successfully applied to model complex kinematics of bone drilling process.

  20. Ultrasonically-induced electrical potentials in demineralized bovine cortical bone

    Science.gov (United States)

    Mori, Shunki; Makino, Taiki; Koyama, Daisuke; Takayanagi, Shinji; Yanagitani, Takahiko; Matsukawa, Mami

    2018-04-01

    While the low-intensity pulsed ultrasound technique has proved useful for healing of bone fractures, the ultrasound healing mechanism is not yet understood. To understand the initial physical effects of the ultrasound irradiation process on bone, we have studied the anisotropic piezoelectric properties of bone in the MHz range. Bone is known to be composed of collagen and hydroxyapatite (HAp) and shows strong elastic anisotropy. In this study, the effects of HAp on the piezoelectricity were investigated experimentally. To remove the HAp crystallites from the bovine cortical bone, demineralization was performed using ethylene diamine tetra-acetic acid (EDTA) solutions. To investigate the piezoelectricity, we have fabricated ultrasound transducers using the cortical bone or demineralized cortical bone. The induced electrical potentials due to the piezoelectricity were observed as the output of these transducers under pulsed ultrasound irradiation in the MHz range. The cortical bone transducer (before mineralization) showed anisotropic piezoelectric behavior. When the ultrasound irradiation was applied normal to the transducer surface, the observed induced electrical potentials had minimum values. The potential increased under off-axis ultrasound irradiation with changes in polarization. In the demineralized bone transducer case, however, the anisotropic behavior was not observed in the induced electrical potentials. These results therefore indicate that the HAp crystallites affect the piezoelectric characteristics of bone.

  1. Using modern human cortical bone distribution to test the systemic robusticity hypothesis.

    Science.gov (United States)

    Baab, Karen L; Copes, Lynn E; Ward, Devin L; Wells, Nora; Grine, Frederick E

    2018-06-01

    The systemic robusticity hypothesis links the thickness of cortical bone in both the cranium and limb bones. This hypothesis posits that thick cortical bone is in part a systemic response to circulating hormones, such as growth hormone and thyroid hormone, possibly related to physical activity or cold climates. Although this hypothesis has gained popular traction, only rarely has robusticity of the cranium and postcranial skeleton been considered jointly. We acquired computed tomographic scans from associated crania, femora and humeri from single individuals representing 11 populations in Africa and North America (n = 228). Cortical thickness in the parietal, frontal and occipital bones and cortical bone area in limb bone diaphyses were analyzed using correlation, multiple regression and general linear models to test the hypothesis. Absolute thickness values from the crania were not correlated with cortical bone area of the femur or humerus, which is at odds with the systemic robusticity hypothesis. However, measures of cortical bone scaled by total vault thickness and limb cross-sectional area were positively correlated between the cranium and postcranium. When accounting for a range of potential confounding variables, including sex, age and body mass, variation in relative postcranial cortical bone area explained ∼20% of variation in the proportion of cortical cranial bone thickness. While these findings provide limited support for the systemic robusticity hypothesis, cranial cortical thickness did not track climate or physical activity across populations. Thus, some of the variation in cranial cortical bone thickness in modern humans is attributable to systemic effects, but the driving force behind this effect remains obscure. Moreover, neither absolute nor proportional measures of cranial cortical bone thickness are positively correlated with total cranial bone thickness, complicating the extrapolation of these findings to extinct species where only cranial

  2. Comparative cortical bone thickness between the long bones of humans and five common non-human mammal taxa.

    Science.gov (United States)

    Croker, Sarah L; Reed, Warren; Donlon, Denise

    2016-03-01

    The task of identifying fragments of long bone shafts as human or non-human is difficult but necessary, for both forensic and archaeological cases, and a fast simple method is particularly useful. Previous literature suggests there may be differences in the thickness of the cortical bone between these two groups, but this has not been tested thoroughly. The aim of this study was not only to test this suggestion, but also to provide data that could be of practical assistance for future comparisons. The major limb bones (humerus, radius, femur and tibia) of 50 Caucasoid adult skeletons of known age and sex were radiographed, along with corresponding skeletal elements from sheep, pigs, cattle, large dogs and kangaroos. Measurements were taken from the radiographs at five points along the bone shaft, of shaft diameter, cortical bone thickness, and a cortical thickness index (sum of cortices divided by shaft diameter) in both anteroposterior and mediolateral orientations. Each variable for actual cortical bone thickness as well as cortical thickness indices were compared between the human group (split by sex) and each of the non-human groups in turn, using Student's t-tests. Results showed that while significant differences did exist between the human groups and many of the non-human groups, these were not all in the same direction. That is, some variables in the human groups were significantly greater than, and others were significantly less than, the corresponding variable in the non-human groups, depending on the particular non-human group, sex of the human group, or variable under comparison. This was the case for measurements of both actual cortical bone thickness and cortical thickness index. Therefore, for bone shaft fragments for which the skeletal element is unknown, the overlap in cortical bone thickness between different areas of different bones is too great to allow identification using this method alone. However, by providing extensive cortical bone

  3. Bone geometry, strength, and muscle size in runners with a history of stress fracture.

    Science.gov (United States)

    Popp, Kristin L; Hughes, Julie M; Smock, Amanda J; Novotny, Susan A; Stovitz, Steven D; Koehler, Scott M; Petit, Moira A

    2009-12-01

    Our primary aim was to explore differences in estimates of tibial bone strength, in female runners with and without a history of stress fractures. Our secondary aim was to explore differences in bone geometry, volumetric density, and muscle size that may explain bone strength outcomes. A total of 39 competitive distance runners aged 18-35 yr, with (SFX, n = 19) or without (NSFX, n = 20) a history of stress fracture were recruited for this cross-sectional study. Peripheral quantitative computed tomography (XCT 3000; Orthometrix, White Plains, NY) was used to assess volumetric bone mineral density (vBMD, mg x mm(-3)), bone area (ToA, mm(2)), and estimated compressive bone strength (bone strength index (BSI) = ToA x total volumetric density (ToD(2))) at the distal tibia (4%). Total (ToA, mm(2)) and cortical (CoA, mm(2)) bone area, cortical vBMD, and estimated bending strength (strength-strain index (SSIp), mm(3)) were measured at the 15%, 25%, 33%, 45%, 50%, and 66% sites. Muscle cross-sectional area (MCSA) was measured at the 50% and 66% sites. Participants in the SFX group had significantly smaller (7%-8%) CoA at the 45%, 50%, and 66% sites (P stress fracture. However, the lower strength was appropriate for the smaller muscle size, suggesting that interventions to reduce stress fracture risk might be aimed at improving muscle size and strength.

  4. Influence of cortical endplates on ultrasonic properties of trabecular bone

    International Nuclear Information System (INIS)

    Kim, Yoon Mi; Lee, Kang Il

    2015-01-01

    The present study investigated the influence of thick cortical endplates on the ultrasonic properties of trabecular bone in a femur with a high fracture risk. Twelve trabecular bone samples were prepared from bovine femurs, and acrylic plates with thicknesses of 1.25, 1.80, and 2.75 mm were manufactured to simulate the cortical endplates using acrylic with a density and a sound speed similar to cortical bone. Although the thickness of the acrylic plates attached to the two sides of the trabecular bone increased, high correlations were observed between the speed of sound and the apparent bone density of the trabecular bone, with Pearson's correlation coefficients of 0.80-0.86. High correlations were also observed between the attenuation coefficient at 0.5 mm and the apparent bone density of the trabecular bone, with Pearson's correlation coefficients of 0.84-0.91. These results suggest that the speed of sound and attenuation coefficient at a specific frequency measured in a femur with relatively thick cortical endplates compared to the calcaneus could be used as indices for predicting the bone mineral density of the femur.

  5. An optimized process flow for rapid segmentation of cortical bones of the craniofacial skeleton using the level-set method.

    Science.gov (United States)

    Szwedowski, T D; Fialkov, J; Pakdel, A; Whyne, C M

    2013-01-01

    Accurate representation of skeletal structures is essential for quantifying structural integrity, for developing accurate models, for improving patient-specific implant design and in image-guided surgery applications. The complex morphology of thin cortical structures of the craniofacial skeleton (CFS) represents a significant challenge with respect to accurate bony segmentation. This technical study presents optimized processing steps to segment the three-dimensional (3D) geometry of thin cortical bone structures from CT images. In this procedure, anoisotropic filtering and a connected components scheme were utilized to isolate and enhance the internal boundaries between craniofacial cortical and trabecular bone. Subsequently, the shell-like nature of cortical bone was exploited using boundary-tracking level-set methods with optimized parameters determined from large-scale sensitivity analysis. The process was applied to clinical CT images acquired from two cadaveric CFSs. The accuracy of the automated segmentations was determined based on their volumetric concurrencies with visually optimized manual segmentations, without statistical appraisal. The full CFSs demonstrated volumetric concurrencies of 0.904 and 0.719; accuracy increased to concurrencies of 0.936 and 0.846 when considering only the maxillary region. The highly automated approach presented here is able to segment the cortical shell and trabecular boundaries of the CFS in clinical CT images. The results indicate that initial scan resolution and cortical-trabecular bone contrast may impact performance. Future application of these steps to larger data sets will enable the determination of the method's sensitivity to differences in image quality and CFS morphology.

  6. INAA of cortical and trabecular bone samples from animals

    International Nuclear Information System (INIS)

    Takata, M.K.; Saiki, M.

    2004-01-01

    Instrumental neutron activation analysis (INAA) was applied to determine Ba, Br, Ca, Cl, Fe, K, Mg, Mn, Na, P, Sr and Zn in bovine and porcine rib bones. Precise results were obtained in analyses of freeze-dried cortical and trabecular bones separately, and also of whole bone ashes. Cortical tissues presented higher concentrations of Ba, Ca, Mg, Mn, Na, P, Sr and Zn than those obtained in trabecular ones. Comparisons were also made between the results obtained for bovine and porcine rib bones. (author)

  7. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    Science.gov (United States)

    Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H; Farman, Helen H; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara

    2014-01-01

    The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  8. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    Directory of Open Access Journals (Sweden)

    Claes Ohlsson

    Full Text Available The gut microbiota (GM modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L strain, L. paracasei DSM13434 (L. para or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  9. Swine cortical and cancellous bone: histomorphometric and densitometric characterisation

    Directory of Open Access Journals (Sweden)

    Maria Elena Andreis

    2017-06-01

    Full Text Available Introduction: Swine bone morphology, composition and remodelling are similar to humans’, therefore they are considered good models in bone-related research. They have been used for several studies involving bone growth, bone and cartilage fractures and femoral head osteonecrosis. Nevertheless, the literature about pig normal bone features is incomplete. This work aims to fill the literature gaps on the microarchitecture and Bone Mineral Density (BMD of swine femoral diaphysis and distal epiphysis and tibial plateau and diaphysis. Materials and methods: Five hind limbs were collected from slaughtered 80-100 kg pigs. Microscopic analysis of cortical and cancellous bone from middle/distal femur and proximal/middle tibia was performed to determine basic histomorphometric parameters at different sites. Dual-energy X-Rays Absorptiometry was also employed to evaluate BMD. ANOVA and correlation between BMD, bone area (BA and cortical thickness were performed. Results and discussion: Diaphyseal cortical bone was mostly plexiform both in the tibia and the femur; primary/secondary osteons without clear organization were also found. Mean values for bone area, bone perimeter, trabecular width, number and separation and BMD at different anatomical sites were defined. No significant difference was found for these values at different anatomical sites. BMD proved to be positively correlated with cortical thickness (r=0,80; p<0,01. Despite the small sample size, these results seem homogeneous. They could therefore represent reference values for normal bone parameters in pigs. Applied anatomy and regenerative medicine, in fact, demand very precise information about bone micromorphology, composition and density to provide reliable indication in bone substitutes building. Moreover, since the interpretation of bone abnormalities is based on mastering normal bone characteristics, the definition of reference parameters is mandatory to avoid misinterpretation and

  10. Effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats.

    Science.gov (United States)

    Iwamoto, Jun; Matsumoto, Hideo; Takeda, Tsuyoshi; Sato, Yoshihiro; Yeh, James K

    2010-09-01

    The purpose of the present study was to examine the effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats. Thirty-four female Sprague-Dawley retired breeder rats were randomized into three groups: age-matched control, sciatic neurectomy (NX), and NX + vitamin K2 administration (menatetrenone, 30 mg/kg/day p.o., three times a week). At the end of the 8-week experiment, bone histomorphometric analysis was performed on cortical and cancellous bone of the tibial diaphysis and proximal metaphysis, respectively, and osteocyte lacunar system and porosity were evaluated on cortical bone of the tibial diaphysis. NX decreased cortical and cancellous bone mass compared with age-matched controls as a result of increased endocortical and trabecular bone erosion and decreased trabecular mineral apposition rate (MAR). Vitamin K2 ameliorated the NX-induced increase in bone erosion, prevented the NX-induced decrease in MAR, and increased bone formation rate (BFR/bone surface) in cancellous bone, resulting in an attenuation of NX-induced cancellous bone loss. However, vitamin K2 did not significantly influence cortical bone mass. NX also decreased osteocyte density and lacunar occupancy and increased porosity in cortical bone compared with age-matched controls. Vitamin K2 ameliorated the NX-induced decrease in lacunar occupancy by viable osteocytes and the NX-induced increase in porosity. The present study showed the efficacy of vitamin K2 for cancellous bone mass and cortical lacunar occupancy by viable osteocytes and porosity in sciatic NX rats.

  11. Cortical bone mineral content in primary hyperparathyroidism

    International Nuclear Information System (INIS)

    Mautalen, C.; Reyes, H.R.; Ghiringhelli, G.; Fromm, G.

    1986-01-01

    The bone mineral content (BMC) of 35 patients with primary hyperparathyroidism (PHPT) was measured at the mid radius (95% cortical bone) by photon absorptiometry of a 241 Am source. The majority of the patients had an overt disease of moderate to severe degree. Average serum calcium of the group was 12.3 mg/100 ml (range 10.6 to 18.0 mg/100 ml). The percentage of normality of the BMC was (Av +- 1 SD) 75.1 +- 13.0% for the whole group. The average increment of BMC in 14 patients 9 to 26 months after parathyroidectomy was 9.9%, with a wide dispersion. However, a highly significant negative correlation (r: 0.83; P < 0.01) was found between the initial bone mass and the percentage increment per month after surgery. No furhter gain was observed 2 years after parathyroidectomy except in one patient with an extremely severe bone loss. In spite of the gain obtained after surgery the bone mass remained markedly diminished in most patients showing that the cortical bone loss caused by PHPT is mainly irreversible. (author)

  12. Repair of microdamage in osteonal cortical bone adjacent to bone screw.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available Up to date, little is known about the repair mode of microdamage in osteonal cortical bone resulting from bone screw implantation. In this study, self-tapping titanium cortical bone screws were inserted into the tibial diaphyses of 24 adult male rabbits. The animals were sacrificed at 1 day, 2 weeks, 1 month and 2 months after surgery. Histomorphometric measurement and confocal microscopy were performed on basic fuchsin stained bone sections to examine the morphological characteristics of microdamage, bone resorption activity and spatial relationship between microdamage and bone resorption. Diffuse and linear cracks were coexisted in peri-screw bone. Intracortical bone resorption was significantly increased 2 weeks after screw installation and reach to the maximum at 1 month. There was no significant difference in bone resorption between 1-month and 2-months groups. Microdamage was significantly decreased within 1 month after surgery. Bone resorption was predisposed to occur in the region of <100 µm from the bone-screw interface, where had extensive diffuse damage mixed with linear cracks. Different patterns of resorption cavities appeared in peri-screw bone. These data suggest that 1 the complex microdamage composed of diffuse damage and linear cracks is a strong stimulator for initiating targeted bone remodeling; 2 bone resorption activities taking place on the surfaces of differently oriented Haversian and Volkmann canals work in a team for the repair of extensive microdamage; 3 targeted bone remodeling is a short-term reaction to microdamage and thereby it may not be able to remove all microdamage resulting from bone screw insertion.

  13. Determinants of bone mass and bone geometry in adolescent and young adult women

    NARCIS (Netherlands)

    Kardinaal, A.F.M.; Hoorneman, G.; Väänänen, K.; Charles, P.; Ando, S.; Maggiolini, M.; Charzewska, J.; Rotily, M.; Deloraine, A.; Heikkinen, J.; Juvin, R.; Schaafsma, G.

    2000-01-01

    Bone mass and bone geometry are considered to have independent effects on bone strength. The purpose of this study was to obtain data on bone mass and geometry in young female populations and how they are influenced by body size and lifestyle factors. In a cross-sectional, observational study in six

  14. Women Build Long Bones With Less Cortical Mass Relative to Body Size and Bone Size Compared With Men.

    Science.gov (United States)

    Jepsen, Karl J; Bigelow, Erin M R; Schlecht, Stephen H

    2015-08-01

    The twofold greater lifetime risk of fracturing a bone for white women compared with white men and black women has been attributed in part to differences in how the skeletal system accumulates bone mass during growth. On average, women build more slender long bones with less cortical area compared with men. Although slender bones are known to have a naturally lower cortical area compared with wider bones, it remains unclear whether the relatively lower cortical area of women is consistent with their increased slenderness or is reduced beyond that expected for the sex-specific differences in bone size and body size. Whether this sexual dimorphism is consistent with ethnic background and is recapitulated in the widely used mouse model also remains unclear. We asked (1) do black women build bones with reduced cortical area compared with black men; (2) do white women build bones with reduced cortical area compared with white men; and (3) do female mice build bones with reduced cortical area compared with male mice? Bone strength and cross-sectional morphology of adult human and mouse bone were calculated from quantitative CT images of the femoral midshaft. The data were tested for normality and regression analyses were used to test for differences in cortical area between men and women after adjusting for body size and bone size by general linear model (GLM). Linear regression analysis showed that the femurs of black women had 11% lower cortical area compared with those of black men after adjusting for body size and bone size (women: mean=357.7 mm2; 95% confidence interval [CI], 347.9-367.5 mm2; men: mean=400.1 mm2; 95% CI, 391.5-408.7 mm2; effect size=1.2; pbone size (women: mean=350.1 mm2; 95% CI, 340.4-359.8 mm2; men: mean=394.3 mm2; 95% CI, 386.5-402.1 mm2; effect size=1.3; pbone size (female: mean=0.73 mm2; 95% CI, 0.71-0.74 mm2; male: mean=0.70 mm2; 95% CI, 0.68-0.71 mm2; effect size=0.74; p=0.04, GLM). Female femurs are not simply a more slender version of male

  15. Influence of bone mineral density and hip geometry on the different types of hip fracture.

    Science.gov (United States)

    Li, Yizhong; Lin, Jinkuang; Cai, Siqing; Yan, Lisheng; Pan, Yuancheng; Yao, Xuedong; Zhuang, Huafeng; Wang, Peiwen; Zeng, Yanjun

    2016-01-01

    The aim of this study was to assess the influence of bone mineral density and hip geometry on the fragility fracture of femoral neck and trochanteric region. There were 95 menopausal females of age ≥ 50 years with fragility fracture of hip, including 55 cases of femoral neck fracture and 40 cases of trochanteric fracture. Another 63 non-fractured females with normal bone mineral density (BMD) were chosen as control. BMD, hip axis length, neck-shaft angle and structural parameters including cross surface area, cortical thickness and buckling ratio were detected and compared. Compared with control group, the patients with femoral neck fracture or trochanteric fractures had significantly lower BMD of femoral neck, as well as lower cross surface area and cortical thickness and higher buckling ratio in femoral neck and trochanteric region. There were no significant differences of BMD and structural parameters in the femoral neck fracture group and intertrochanteric fracture group. Hip axis length and neck-shaft angle were not significantly different among three groups. The significant changes of BMD and proximal femur geometry were present in the fragility fracture of femoral neck and trochanteric region. The different types of hip fractures cannot be explained by these changes.

  16. Influence of bone mineral density and hip geometry on the different types of hip fracture

    Directory of Open Access Journals (Sweden)

    Yizhong Li

    2016-01-01

    Full Text Available The aim of this study was to assess the influence of bone mineral density and hip geometry on the fragility fracture of femoral neck and trochanteric region. There were 95 menopausal females of age ≥ 50 years with fragility fracture of hip, including 55 cases of femoral neck fracture and 40 cases of trochanteric fracture. Another 63 non-fractured females with normal bone mineral density (BMD were chosen as control. BMD, hip axis length, neck-shaft angle and structural parameters including cross surface area, cortical thickness and buckling ratio were detected and compared. Compared with control group, the patients with femoral neck fracture or trochanteric fractures had significantly lower BMD of femoral neck, as well as lower cross surface area and cortical thickness and higher buckling ratio in femoral neck and trochanteric region. There were no significant differences of BMD and structural parameters in the femoral neck fracture group and intertrochanteric fracture group. Hip axis length and neck-shaft angle were not significantly different among three groups. The significant changes of BMD and proximal femur geometry were present in the fragility fracture of femoral neck and trochanteric region. The different types of hip fractures cannot be explained by these changes.

  17. Effect of microstructure on micromechanical performance of dry cortical bone tissues

    International Nuclear Information System (INIS)

    Yin Ling; Venkatesan, Sudharshan; Kalyanasundaram, Shankar; Qin Qinghua

    2009-01-01

    The mechanical properties of bone depend on composition and structure. Previous studies have focused on macroscopic fracture behavior of bone. In the present study, we performed microindentation studies to understand the deformation properties and microcrack-microstructure interactions of dry cortical bone. Dry cortical bone tissues from lamb femurs were tested using Vickers indentation with loads of 0.245-9.8 N. We examined the effect of bone microstructure on deformation and crack propagation using scanning electron microscopy (SEM). The results showed the significant effect of cortical bone microstructure on indentation deformation and microcrack propagation. The indentation deformation of the dry cortical bone was basically plastic at any applied load with a pronounced viscoelastic recovery, in particular at lower loads. More microcracks up to a length of approximately 20 μm occurred when the applied load was increased. At loads of 4.9 N and higher, most microcracks were found to develop from the boundaries of haversian canals, osteocyte lacunae and canaliculi. Some microcracks propagated from the parallel direction of the longitudinal interstitial lamellae. At loads 0.45 N and lower, no visible microcracks were observed.

  18. Evolution of bone disease after kidney transplantation: A prospective histomorphometric analysis of trabecular and cortical bone.

    Science.gov (United States)

    Carvalho, Catarina; Magalhães, Juliana; Pereira, Luciano; Simões-Silva, Liliana; Castro-Ferreira, Inês; Frazão, João Miguel

    2016-01-01

    Post-transplant bone disease results from multiple factors, including previous bone and mineral metabolism disturbances and effects from transplant-related medications. Bone biopsy remains the gold-standard diagnostic tool. We aimed to prospectively evaluate trabecular and cortical bone by histomorphometry after kidney transplantation. Seven patients, willing to perform follow-up bone biopsy, were included in the study. Dual-X-ray absorptiometry and trans-iliac bone biopsy were performed within the first 2 months after renal transplantation and repeated after 2-5 years of follow-up. Follow-up biopsy revealed a significant decrease in osteoblast surface/bone surface (0.91 ± 0.81 to 0.47 ± 0.12%, P = 0.036), osteoblasts number/bone surface (0.45 (0.23, 0.94) to 0.00/mm(2) , P = 0.018) and erosion surface/bone surface (3.75 ± 2.02 to 2.22 ± 1.38%, P = 0.044). A decrease in trabecular number (3.55 (1.81, 2.89) to 1.55/mm (1.24, 2.06), P = 0.018) and increase in trabecular separation (351.65 ± 135.04 to 541.79 ± 151.91 μm, P = 0.024) in follow-up biopsy suggest loss in bone quantity. We found no significant differences in cortical analysis, except a reduction in external cortical osteonal eroded surface (5.76 (2.94, 13.97) to 3.29% (0.00, 6.67), P = 0.043). Correlations between bone histomorphometric and dual-X-ray absorptiometry parameters gave inconsistent results. The results show a reduction in bone activity, suggesting increased risk of adynamic bone and loss of bone volume. Cortical bone seems less affected by post-transplant biological changes in the first years after kidney transplantation. © 2015 Asian Pacific Society of Nephrology.

  19. A technique for developing CAD geometry of long bones using clinical CT data.

    Science.gov (United States)

    Davis, Matthew L; Vavalle, Nicholas A; Stitzel, Joel D; Gayzik, F Scott

    2015-11-01

    Computed tomography scans are a valuable tool for developing computational models of bones. The objective of this study is to present a method to generate CAD representations of long bones from clinically based CT scans. A secondary aim is to apply the method to six long bones from a sample of three individuals. Periosteal and endosteal bone surfaces were segmented and used to calculate the characteristic cortical thickness, Tc, at 1 mm increments along the bone axis. In the epiphyses where the value of Tc fell below the scanner threshold, the endosteal bone layer was replaced using literature values projected inward from the periosteal surface. On average, 74.7 ± 7.4% of the bone geometry was above the scanner cut-off and was therefore derived from the CT scan data. The thickness measurement was also compared to experimental measurements of cadaveric bone and was found to predict Tc with an error of 3.1%. This method presents a possible solution for the characterization of characteristic thickness along the length of the bone and may also aid in the development of orthopedic implant design and subject specific finite element models. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. The cortical representation of sensory inputs arising from bone.

    Science.gov (United States)

    Ivanusic, Jason J; Sahai, Vineet; Mahns, David A

    2009-05-07

    In the present study, we show that sensory information from bone reaches the discriminative areas of the somatosensory cortices by electrically stimulating the nerve to the cat humerus and recording evoked potentials on the surface of the primary (SI) and secondary (SII) somatosensory cortex. The SI focus was located over the rostral part of the postcruciate cortex, caudal to the lateral aspect of the cruciate sulcus. The SII focus was identified on the anterior ectosylvian gyrus, lateral to the suprasylvian sulcus. These foci were located adjacent to, or within areas that responded to stimulation of the median, ulnar and/or musculocutaneous nerves. The latency (6-11 ms) to onset of cortical responses in SI and SII were indistinguishable (unpaired t-test; P>0.05), and were consistent with activation of A delta fibers in the peripheral nerve. The amplitudes of the cortical responses were graded as a function of stimulus intensity, and may reflect a mechanism for intensity coding. We did not observe long latency cortical responses (50-300 ms) that would be consistent with C fiber activation in the peripheral nerve, and provide evidence that this may be attributable to inhibition of cortical responsiveness following the initial A delta response. Our finding of discrete, short latency evoked potentials (presumably of A delta origin) in the primary and secondary somatosensory cortices, following stimulation of a nerve innervating bone, may reflect a mechanism for the discriminative component of bone pain.

  1. Pharmacokinetics of Cefuroxime in Cortical and Cancellous Bone Obtained by Microdialysis - a Porcine Study

    DEFF Research Database (Denmark)

    Tøttrup, Mikkel; Forsingdal Hardlei, Tore; Bendtsen, Michael

    2014-01-01

    . As reference, free and total plasma concentrations were also measured. The animals received a bolus of 1500 mg cefuroxime over 30 min. No significant differences between key pharmacokinetic parameters for sealed and unsealed drill holes in cortical bone were found. The mean area under the concentration...... (MD) technique for measurement of cefuroxime in bone, and to obtain pharmacokinetic profiles for the same drug in porcine cortical and cancellous bone. Measurements were conducted in bone-wax sealed and unsealed drill holes in cortical bone, in drill holes in cancellous bone and in subcutaneous tissue...

  2. Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow–derived counterparts

    Directory of Open Access Journals (Sweden)

    Daniel Blashki

    2016-08-01

    Full Text Available In this study, we show that matrix dense cortical bone is the more potent compartment of bone than bone marrow as a stromal source for mesenchymal stem cells as isolated from adult rats. Lineage-depleted cortical bone-mesenchymal stem cells demonstrated >150-fold enrichment of colony forming unit–fibroblasts per cell incidence. compared to lineage-depleted bone marrow-mesenchymal stem cells, corresponding to a 70-fold increase in absolute recovered colony forming unit–fibroblasts. The composite phenotype Lin−/CD45−/CD31−/VLA-1+/Thy-1+ enriched for clonogenic mesenchymal stem cells solely from cortical bone–derived cells from which 70% of clones spontaneously differentiated into all lineages of bone, cartilage, and adipose. Both populations generated vascularized bone tissue within subcutaneous implanted collagen scaffolds; however, cortical bone–derived cells formed significantly more osteoid than bone marrow counterparts, quantified by histology. The data demonstrate that our isolation protocol identifies and validates mesenchymal stem cells with superior clonal, proliferative, and developmental potential from cortical bone compared to the bone marrow niche although marrow persists as the typical source for mesenchymal stem cells both in the literature and current pre-clinical therapies.

  3. Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls.

    Science.gov (United States)

    Farr, Joshua N; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B

    2010-04-01

    Understanding the influence of total body fat mass (TBFM) on bone during the peri-pubertal years is critical for the development of future interventions aimed at improving bone strength and reducing fracture risk. Thus, we evaluated the relationship of TBFM to volumetric bone mineral density (vBMD), geometry, and strength at metaphyseal and diaphyseal sites of the femur and tibia of young girls. Data from 396 girls aged 8-13 years from the "Jump-In: Building Better Bones" study were analyzed. Bone parameters were assessed using peripheral quantitative computed tomography (pQCT) at the 4% and 20% distal femur and 4% and 66% distal tibia of the non-dominant leg. Bone parameters at the 4% sites included trabecular vBMD, periosteal circumference, and bone strength index (BSI), while at the 20% femur and 66% tibia, parameters included cortical vBMD, periosteal circumference, and strength-strain index (SSI). Multiple linear regression analyses were used to assess associations between bone parameters and TBFM, controlling for muscle cross-sectional area (MCSA). Regression analyses were then repeated with maturity, bone length, physical activity, and ethnicity as additional covariates. Analysis of covariance (ANCOVA) was used to compare bone parameters among tertiles of TBFM. In regression models with TBFM and MCSA, associations between TBFM and bone parameters at all sites were not significant. TBFM explained very little variance in all bone parameters (0.2-2.3%). In contrast, MCSA was strongly related (p<0.001) to all bone parameters, except cortical vBMD. The addition of maturity, bone length, physical activity, and ethnicity did not alter the relationship between TBFM and bone parameters. With bone parameters expressed relative to total body mass, ANCOVA showed that all outcomes were significantly (p<0.001) greater in the lowest compared to the middle and highest tertiles of TBFM. Although TBFM is correlated with femur and tibia vBMD, periosteal circumference, and

  4. Effects of short-term swimming exercise on bone mineral density, geometry, and microstructural properties in sham and ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Foong Kiew Ooi

    2014-12-01

    Full Text Available Little information exists about the effects of swimming exercise on bone health in ovariectomized animals with estrogen deficiency, which resembles the postmenopausal state and age-related bone loss in humans. This study investigated the effects of swimming exercise on tibia and femur bone mineral density (BMD, geometry, and microstructure in sham and ovariectomized rats. Forty 3-month-old female rats were divided into four groups: sham operated-sedentary control (Sham-control, sham operated with swimming exercise group (Sham-Swim, ovariectomy-sedentary control (OVx-control, and ovariectomy and swimming exercise (OVx-Swim groups. Swimming sessions were performed by the rats 90 minutes/day for 5 days/week for a total of 8 weeks. At the end of the study, tibial and femoral proximal volumetric total BMD, midshaft cortical volumetric BMD, cross-sectional area, and cross-sectional moment of inertia (MOI, and bone microstructural properties were measured for comparison. Data were analyzed using one-way analysis of variance (ANOVA. The Sham-Swim group exhibited significantly (p < 0.05; one-way ANOVA greater values in bone geometry parameters, that is, tibial midshaft cortical area and MOI compared to the Sham-control group. However, no significant differences were observed in these parameters between the Ovx-Swim and Ovx-control groups. There were no significant differences in femoral BMD between the Sham-Swim and Sham-control groups. Nevertheless, the Ovx-Swim group elicited significantly (p < 0.05; one-way ANOVA higher femoral proximal total BMD and improved bone microstructure compared to the Ovx-Sham group. In conclusion, the positive effects of swimming on bone properties in the ovariectomized rats in the present study may suggest that swimming as a non- or low-weight-bearing exercise may be beneficial for enhancing bone health in the postmenopausal population.

  5. Effects of Habitual Physical Activity and Fitness on Tibial Cortical Bone Mass, Structure and Mass Distribution in Pre-pubertal Boys and Girls: The Look Study.

    Science.gov (United States)

    Duckham, Rachel L; Rantalainen, Timo; Ducher, Gaele; Hill, Briony; Telford, Richard D; Telford, Rohan M; Daly, Robin M

    2016-07-01

    Targeted weight-bearing activities during the pre-pubertal years can improve cortical bone mass, structure and distribution, but less is known about the influence of habitual physical activity (PA) and fitness. This study examined the effects of contrasting habitual PA and fitness levels on cortical bone density, geometry and mass distribution in pre-pubertal children. Boys (n = 241) and girls (n = 245) aged 7-9 years had a pQCT scan to measure tibial mid-shaft total, cortical and medullary area, cortical thickness, density, polar strength strain index (SSIpolar) and the mass/density distribution through the bone cortex (radial distribution divided into endo-, mid- and pericortical regions) and around the centre of mass (polar distribution). Four contrasting PA and fitness groups (inactive-unfit, inactive-fit, active-unfit, active-fit) were generated based on daily step counts (pedometer, 7-days) and fitness levels (20-m shuttle test and vertical jump) for boys and girls separately. Active-fit boys had 7.3-7.7 % greater cortical area and thickness compared to inactive-unfit boys (P girls, but active-fit girls had 6.1 % (P girls, which was likely due to their 6.7 % (P active-fit girls. Higher levels of habitual PA-fitness were associated with small regional-specific gains in 66 % tibial cortical bone mass in pre-pubertal children, particularly boys.

  6. Thickened cortical bones in congenital neutropenia

    International Nuclear Information System (INIS)

    Boechat, M.I.; Gormley, L.S.; O'Laughlin, B.J.

    1987-01-01

    Congenital neutropenia is an uncommon entity which may be familial and has a wide spectrum of clinical expression. Three sisters with the severe form of the disease, that suffered from recurrent infections which lead to their demise are described. Review of their radiographs revealed the presence of cortical thickening of the bones. Although several syndroms with different bone abnormalities have been reported associated with neutropenia, the radiographic finding of thickened cortex in children with congenital neutropenia has not been previously described. (orig.)

  7. Thickened cortical bones in congenital neutropenia

    Energy Technology Data Exchange (ETDEWEB)

    Boechat, M.I.; Gormley, L.S.; O' Laughlin, B.J.

    1987-02-01

    Congenital neutropenia is an uncommon entity which may be familial and has a wide spectrum of clinical expression. Three sisters with the severe form of the disease, that suffered from recurrent infections which lead to their demise are described. Review of their radiographs revealed the presence of cortical thickening of the bones. Although several syndroms with different bone abnormalities have been reported associated with neutropenia, the radiographic finding of thickened cortex in children with congenital neutropenia has not been previously described.

  8. Comparative study on inorganic composition and crystallographic properties of cortical and cancellous bone.

    Science.gov (United States)

    Wang, Xiao-Yan; Zuo, Yi; Huang, Di; Hou, Xian-Deng; Li, Yu-Bao

    2010-12-01

    To comparatively investigate the inorganic composition and crystallographic properties of cortical and cancellous bone via thermal treatment under 700 °C. Thermogravimetric measurement, infrared spectrometer, X-ray diffraction, chemical analysis and X-ray photo-electron spectrometer were used to test the physical and chemical properties of cortical and cancellous bone at room temperature 250 °C, 450 °C, and 650 °C, respectively. The process of heat treatment induced an extension in the a-lattice parameter and changes of the c-lattice parameter, and an increase in the crystallinity reflecting lattice rearrangement after release of lattice carbonate and possible lattice water. The mineral content in cortical and cancellous bone was 73.2wt% and 71.5wt%, respectively. For cortical bone, the weight loss was 6.7% at the temperature from 60 °C to 250 °C, 17.4% from 250 °C to 450 °C, and 2.7% from 450 °C to 700 °C. While the weight loss for the cancellous bone was 5.8%, 19.9%, and 2.8 % at each temperature range, the Ca/P ratio of cortical bone was 1.69 which is higher than the 1.67 of stoichiometric HA due to the B-type CO₃²⁻ substitution in apatite lattice. The Ca/P ratio of cancellous bone was lower than 1.67, suggesting the presence of more calcium deficient apatite. The collagen fibers of cortical bone were arrayed more orderly than those of cancellous bone, while their mineralized fibers ollkded similar. The minerals in both cortical and cancellous bone are composed of poorly crystallized nano-size apatite crystals with lattice carbonate and possible lattice water. The process of heat treatment induces a change of the lattice parameter, resulting in lattice rearrangement after the release of lattice carbonate and lattice water and causing an increase in crystal size and crystallinity. This finding is helpful for future biomaterial design, preparation and application. Copyright © 2010 The Editorial Board of Biomedical and Environmental Sciences

  9. Osteocyte lacunar properties in rat cortical bone

    DEFF Research Database (Denmark)

    Bach-Gansmo, Fiona Linnea; Weaver, James C.; Jensen, Mads Hartmann

    2015-01-01

    Recently, the roles of osteocytes in bone maintenance have gained increasing attention. Osteocytes reside in lacunae that are interconnected by canaliculi resulting in a vast cellular network within the mineralized bone matrix. As the structure of the lacuno-canalicular network is highly connected......-species but also inter-site variation in lacunar properties. Here, osteocyte lacunae in rat cortical bone have been studied using synchrotron radiation micro computed tomography (SR μCT) and backscattered electron (BE) microscopy. Quantitative lacunar geometric characteristics are reported based on the synchrotron...... radiation data, differentiating between circumferential lamellar bone and a central, more disordered bone type. From these studies, no significant differences were found in lacunar volumes between lamellar and central bone, whereas significant differences in lacunar orientation, shape and density values...

  10. Low cortical bone density measured by computed tomography in children and adolescents with untreated hyperthyroidism.

    Science.gov (United States)

    Numbenjapon, Nawaporn; Costin, Gertrude; Gilsanz, Vicente; Pitukcheewanont, Pisit

    2007-05-01

    To determine whether increased thyroid hormones levels have an effect on various bone components (cortical vs cancellous bone). The anthropometric and 3-dimensional quantitative computed tomography (CT) bone measurements, including bone density (BD), cross-sectional area (CSA) of the lumbar spine and femur, and cortical bone area (CBA) of the femur, of 18 children and adolescents with untreated hyperthyroidism were reviewed and compared with those of age-, sex-, and ethnicity-matched historical controls. No significant differences in height, weight, body mass index (BMI), or pubertal staging between patients and controls were found. Cortical BD was significantly lower (P hyperthyroidism compared with historical controls. After adjusting for weight and height, no difference in femur CSA between hyperthyroid children and historical controls was evident. No significant correlations among thyroid hormone levels, antithyroid antibody levels, and cortical BD values were found. As determined by CT, cortical bone is the preferential site of bone loss in children and adolescents with untreated hyperthyroidism.

  11. Associations of muscle force, power, cross-sectional muscle area and bone geometry in older UK men.

    Science.gov (United States)

    Zengin, Ayse; Pye, Stephen R; Cook, Michael J; Adams, Judith E; Rawer, Rainer; Wu, Frederick C W; O'Neill, Terence W; Ward, Kate A

    2017-08-01

    Ageing is associated with sarcopenia, osteoporosis, and increased fall risk, all of which contribute to increased fracture risk. Mechanically, bone strength adapts in response to forces created by muscle contractions. Adaptations can be through changes in bone size, geometry, and bending strength. Muscle mass is often used as a surrogate for muscle force; however, force can be increased without changes in muscle mass. Increased fall risk with ageing has been associated with a decline in muscle power-which is a measure of mobility. The aims of this study were as follows: (i) to investigate the relationship between muscle parameters in the upper and lower limbs with age in UK men and the influence of ethnicity on these relationships; (ii) to examine the relationships between jump force/grip strength/cross-sectional muscle area (CSMA) with bone outcomes at the radius and tibia. White European, Black Afro-Caribbean, and South Asian men aged 40-79 years were recruited from Manchester, UK. Cortical bone mineral content, cross-sectional area, cortical area, cross-sectional moment of inertia, and CSMA were measured at the diaphysis of the radius and tibia using peripheral quantitative computed tomography. Lower limb jump force and power were measured from a single two-legged jump performed on a ground-reaction force platform. Grip strength was measured using a dynamometer. Associations between muscle and bone outcomes was determined using linear regression with adjustments for age, height, weight, and ethnicity. Three hundred and one men were recruited. Jump force was negatively associated with age; for every 10 year increase in age, there was a 4% reduction in jump force (P force was positively associated with tibial bone outcomes: a 1 standard deviation greater jump force was associated with significantly higher cortical bone mineral content 3.1%, cross-sectional area 4.2%, cortical area 3.4%, and cross-sectional moment of inertia 6.8% (all P force and power are

  12. Demineralized Freeze-Dried Bovine Cortical Bone: Its Potential for Guided Bone Regeneration Membrane

    Directory of Open Access Journals (Sweden)

    David B. Kamadjaja

    2017-01-01

    Full Text Available Background. Bovine pericardium collagen membrane (BPCM had been widely used in guided bone regeneration (GBR whose manufacturing process usually required chemical cross-linking to prolong its biodegradation. However, cross-linking of collagen fibrils was associated with poorer tissue integration and delayed vascular invasion. Objective. This study evaluated the potential of bovine cortical bone collagen membrane for GBR by evaluating its antigenicity potential, cytotoxicity, immune and tissue response, and biodegradation behaviors. Material and Methods. Antigenicity potential of demineralized freeze-dried bovine cortical bone membrane (DFDBCBM was done with histology-based anticellularity evaluation, while cytotoxicity was analyzed using MTT Assay. Evaluation of immune response, tissue response, and biodegradation was done by randomly implanting DFDBCBM and BPCM in rat’s subcutaneous dorsum. Samples were collected at 2, 5, and 7 days and 7, 14, 21, and 28 days for biocompatibility and tissue response-biodegradation study, respectively. Result. DFDBCBM, histologically, showed no retained cells; however, it showed some level of in vitro cytotoxicity. In vivo study exhibited increased immune response to DFDBCBM in early healing phase; however, normal tissue response and degradation rate were observed up to 4 weeks after DFDBCBM implantation. Conclusion. Demineralized freeze-dried bovine cortical bone membrane showed potential for clinical application; however, it needs to be optimized in its biocompatibility to fulfill all requirements for GBR membrane.

  13. In Vivo Assessment of Elasticity of Child Rib Cortical Bone Using Quantitative Computed Tomography

    Directory of Open Access Journals (Sweden)

    Y. Zhu

    2017-01-01

    Full Text Available Elasticity of the child rib cortical bone is poorly known due to the difficulties in obtaining specimens to perform conventional tests. It was shown on the femoral cortical bone that elasticity is strongly correlated with density for both children and adults through a unique relationship. Thus, it is assumed that the relationships between the elasticity and density of adult rib cortical bones could be expanded to include that of children. This study estimated in vivo the elasticity of the child rib cortical bone using quantitative computed tomography (QCT. Twenty-eight children (from 1 to 18 y.o. were considered. Calibrated QCT images were prescribed for various thoracic pathologies. The Hounsfield units were converted to bone mineral density (BMD. A relationship between the BMD and the elasticity of the rib cortical bone was applied to estimate the elasticity of children’s ribs in vivo. The estimated elasticity increases with growth (7.1 ± 2.5 GPa at 1 y.o. up to 11.6 ± 1.9 GPa at 18 y.o.. This data is in agreement with the few previous values obtained using direct measurements. This methodology paves the way for in vivo assessment of the elasticity of the child cortical bone based on calibrated QCT images.

  14. Computed tomography evaluation of human mandibles with regard to layer thickness and bone density of the cortical bone

    International Nuclear Information System (INIS)

    Markwardt, Jutta; Meissner, H.; Weber, A.; Reitemeier, B.; Laniado, M.

    2013-01-01

    Application of function-restoring individual implants for the bridging of defects in mandibles with continuity separation requires a stable fixation with special use of the cortical bone stumps. Five section planes each of 100 computed tomographies of poly-traumatized patients' jaws were used for measuring the thickness of the cortical layer and the bone density of the mandible. The CT scans of 28 female and 72 male candidates aged between 12 and 86 years with different dentition of the mandible were available. The computed tomographic evaluations of human mandibles regarding the layer thickness of the cortical bone showed that the edge of the mandible in the area of the horizontal branch possesses the biggest layer thickness of the whole of the lower jaws. The highest medians of the cortical bone layer thickness were found in the area of the molars and premolars at the lower edge of the lower jaws in 6-o'clock position, in the area of the molars in the vestibular cranial 10-o'clock position and in the chin region lingual-caudal in the 4-o'clock position. The measurement of the bone density showed the highest values in the 8-o'clock position (vestibular-caudal) in the molar region in both males and females. The average values available of the bone density and the layer thickness of the cortical bone in the various regions of the lower jaw, taking into consideration age, gender and dentition, are an important aid in practice for determining a safe fixation point for implants in the area of the surface layer of the mandible by means of screws or similar fixation elements. (orig.)

  15. Increased resistance during jump exercise does not enhance cortical bone formation.

    Science.gov (United States)

    Boudreaux, Ramon D; Swift, Joshua M; Gasier, Heath G; Wiggs, Michael P; Hogan, Harry A; Fluckey, James D; Bloomfield, Susan A

    2014-01-01

    This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cortical bone of the tibia and femur mid-diaphyses. Sprague-Dawley rats (male, 6 months old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE for 5 wk. Load in the HRE group was progressively increased from 80 g added to a weighted vest (50 repetitions) to 410 g (16 repetitions). The LRE rats completed the same protocol as the HRE group (same number of repetitions), with only a 30-g vest applied. Low- and high-load jump RE resulted in 6%-11% higher cortical bone mineral content and cortical bone area compared with controls, as determined by in vivo peripheral quantitative computed tomography measurements. In the femur, however, only LRE demonstrated improvements in cortical volumetric bone mineral density (+11%) and cross-sectional moment of inertia (+20%) versus the CC group. The three-point bending to failure revealed a marked increase in tibial maximum force (25%-29%), stiffness (19%-22%), and energy to maximum force (35%-55%) and a reduction in elastic modulus (-11% to 14%) in both LRE and HRE compared with controls. Dynamic histomorphometry assessed at the tibia mid-diaphysis determined that both LRE and HRE resulted in 20%-30% higher periosteal mineralizing surface versus the CC group. Mineral apposition rate and bone formation rate were significantly greater in animals in the LRE group (27%, 39%) than those in the HRE group. These data demonstrate that jump training with minimal loading is equally, and sometimes more, effective at augmenting cortical bone integrity compared with overload training in skeletally mature rats.

  16. Observation of the bone mineral density of newly formed bone using rabbits. Compared with newly formed bone around implants and cortical bone

    International Nuclear Information System (INIS)

    Nakada, Hiroshi; Numata, Yasuko; Sakae, Toshiro; Tamaki, Hiroyuki; Kato, Takao

    2009-01-01

    There have been many studies reporting that newly formed bone around implants is spongy bone. However, although the morphology is reported as being like spongy bone, it is difficult to discriminate whether the bone quality of newly formed bone appears similar to osteoid or cortical bone; therefore, evaluation of bone quality is required. The aims of this study were to measure the bone mineral density (BMD) values of newly formed bone around implants after 4, 8, 16, 24 and 48 weeks, to represent these values on three-dimensional color mapping (3Dmap), and to evaluate the change in bone quality associated with newly formed bone around implants. The animal experimental protocol of this study was approved by the Ethics Committee for Animal Experiments of our University. This experiment used 20 surface treatment implants (Ti-6Al-4V alloy: 3.1 mm in diameter and 30.0 mm in length) by grit-blasting. They were embedded into surgically created flaws in femurs of 20 New Zealand white rabbits (16 weeks old, male). The rabbits were sacrificed with an ear intravenous overdose of pentobarbital sodium under general anesthesia each period, and the femurs were resected. We measured BMD of newly formed bone around implants and cortical bone using Micro-CT, and the BMD distribution map of 3Dmap (TRI/3D Bon BMD, Ratoc System Engineering). The BMD of cortical bone was 1,026.3±44.3 mg/cm 3 at 4 weeks, 1,023.8±40.9 mg/cm 3 at 8 weeks, 1,048.2±45.6 mg/cm 3 at 16 weeks, 1,067.2±60.2 mg/cm 3 at 24 weeks, and 1,069.3±50.7 mg/cm 3 at 48 weeks after implantation, showing a non-significant increase each period. The BMD of newly formed bone around implants was 296.8±25.6 mg/cm 3 at 4 weeks, 525.0±72.4 mg/cm 3 at 8 weeks, 691.2±26.0 mg/cm 3 at 16 weeks, 776.9±27.7 mg/cm 3 at 24 weeks, and 845.2±23.1 mg/cm 3 at 48 weeks after implantation, showing a significant increase after each period. It was revealed that the color scale of newly formed bone was Low level at 4 weeks, and then it

  17. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Eneh, C. T. M., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Töyräs, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Jurvelin, J. S., E-mail: jukka.jurvelin@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland and Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029 (Finland); Malo, M. K. H., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Liukkonen, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211 (Finland); Karjalainen, J. P., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Bone Index Finland Ltd., P.O. Box 1188, Kuopio FI-70211 (Finland)

    2016-05-15

    Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessment by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R{sup 2} ≥ 0.493, p < 0.01 and R{sup 2} ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated

  18. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    International Nuclear Information System (INIS)

    Eneh, C. T. M.; Töyräs, J.; Jurvelin, J. S.; Malo, M. K. H.; Liukkonen, J.; Karjalainen, J. P.

    2016-01-01

    Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessment by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R"2 ≥ 0.493, p < 0.01 and R"2 ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated in vivo

  19. Automatic Detection of Cortical Bones Haversian Osteonal Boundaries

    Directory of Open Access Journals (Sweden)

    Ilige Hage

    2015-10-01

    Full Text Available This work aims to automatically detect cement lines in decalcified cortical bone sections stained with H&E. Employed is a methodology developed previously by the authors and proven to successfully count and disambiguate the micro-architectural features (namely Haversian canals, canaliculi, and osteocyte lacunae present in the secondary osteons/Haversian system (osteon of cortical bone. This methodology combines methods typically considered separately, namely pulse coupled neural networks (PCNN, particle swarm optimization (PSO, and adaptive threshold (AT. In lieu of human bone, slides (at 20× magnification from bovid cortical bone are used in this study as proxy of human bone. Having been characterized, features with same orientation are used to detect the cement line viewed as the next coaxial layer adjacent to the outermost lamella of the osteon. Employed for this purpose are three attributes for each and every micro-sized feature identified in the osteon lamellar system: (1 orientation, (2 size (ellipse perimeter and (3 Euler number (a topological measure. From a training image, automated parameters for the PCNN network are obtained by forming fitness functions extracted from these attributes. It is found that a 3-way combination of these features attributes yields good representations of the overall osteon boundary (cement line. Near-unity values of classical metrics of quality (precision, sensitivity, specificity, accuracy, and dice suggest that the segments obtained automatically by the optimized artificial intelligent methodology are of high fidelity as compared with manual tracing. For bench marking, cement lines segmented by k-means did not fare as well. An analysis based on the modified Hausdorff distance (MHD of the segmented cement lines also testified to the quality of the detected cement lines vis-a-vis the k-means method.

  20. Postnatal Changes in Humerus Cortical Bone Thickness Reflect the Development of Metabolic Bone Disease in Preterm Infants

    Directory of Open Access Journals (Sweden)

    Shuko Tokuriki

    2016-01-01

    Full Text Available Objective. To use cortical bone thickness (CBT of the humerus to identify risk factors for the development of metabolic bone disease in preterm infants. Methods. Twenty-seven infants born at <32 weeks of gestational age, with a birth weight of <1,500 g, were enrolled. Humeral CBT was measured from chest radiographs at birth and at 27-28, 31-32, and 36–44 weeks of postmenstrual age (PMA. The risk factors for the development of osteomalacia were statistically analyzed. Results. The humeral CBT at 36–44 weeks of PMA was positively correlated with gestational age and birth weight and negatively correlated with the duration of mechanical ventilation. CBT increased with PMA, except in six very early preterm infants in whom it decreased. Based on logistic regression analysis, gestational age and duration of mechanical ventilation were identified as risk factors for cortical bone thinning. Conclusions. Humeral CBT may serve as a radiologic marker of metabolic bone disease at 36–44 weeks of PMA in preterm infants. Cortical bones of extremely preterm infants are fragile, even when age is corrected for term, and require extreme care to lower the risk of fractures.

  1. Growth hormone effects on cortical bone dimensions in young adults with childhood-onset growth hormone deficiency

    DEFF Research Database (Denmark)

    Hyldstrup, L; Conway, G S; Racz, K

    2012-01-01

    Growth hormone (GH) treatment in young adults with childhood-onset GH deficiency has beneficial effects on bone mass. The present study shows that cortical bone dimensions also benefit from GH treatment, with endosteal expansion and increased cortical thickness leading to improved bone strength....... INTRODUCTION: In young adults with childhood-onset growth hormone deficiency (CO GHD), GH treatment after final height is reached has been shown to have beneficial effects on spine and hip bone mineral density. The objective of the study was to evaluate the influence of GH on cortical bone dimensions. METHODS...

  2. Effect of random microstructure on crack propagation in cortical bone tissue under dynamic loading

    International Nuclear Information System (INIS)

    Gao, X; Li, S; Adel-Wahab, A; Silberschmidt, V

    2013-01-01

    A fracture process in a cortical bone tissue depends on various factors, such as bone loss, heterogeneous microstructure, variation of its material properties and accumulation of microcracks. Therefore, it is crucial to comprehend and describe the effect of microstructure and material properties of the components of cortical bone on crack propagation in a dynamic loading regime. At the microscale level, osteonal bone demonstrates a random distribution of osteons imbedded in an interstitial matrix and surrounded by a thin layer known as cement line. Such a distribution of osteons can lead to localization of deformation processes. The global mechanical behavior of bone and the crack-propagation process are affected by such localization under external loads. Hence, the random distribution of microstructural features plays a key role in the fracture process of cortical bone. The purpose of this study is two-fold: firstly, to develop two-dimensional microstructured numerical models of cortical bone tissue in order to examine the interaction between the propagating crack and bone microstructure using an extended finite-element method under both quasi-static and dynamic loading conditions; secondly, to investigate the effect of randomly distributed microstructural constituents on the crack propagation processes and crack paths. The obtained results of numerical simulations showed the influence of random microstructure on the global response of bone tissue at macroscale and on the crack-propagation process for quasi-static and dynamic loading conditions

  3. Regional bone geometry of the tibia in triathletes and stress reactions--an observational study.

    Science.gov (United States)

    Newsham-West, Richard J; Lyons, Brett; Milburn, Peter D

    2014-03-01

    The association between tibial morphology and tibial stress fractures or tibial stress syndrome was examined in triathletes with an unusually high incidence of these injuries. A cross-sectional study design examined associations between tibial geometry from MRI images and training and injury data between male and female triathletes and between stress fracture (SF) and non-stress fracture (NSF) groups. Fifteen athletes (7 females, 8 males) aged 17-23 years who were currently able to train and race were recruited from the New Zealand Triathlete Elite Development Squad. Geometric measurements were taken at 5 zones along the tibia using MRI and compared between symptomatic and asymptomatic tibiae subjects. SF tibiae displayed either oedema within the cancellous bone and/or stress fracture on MRI. When collapsed across levels, symptomatic tibiae had thicker medial cortices (F1,140=9.285, p=0.003), thicker lateral cortices (F1,140=10.129, p=0.002) and thinner anterior cortices (F1,140=14.517, p=0.000) than NSF tibiae. Only medial cortex thickness in SF tibia was significantly different (F4,140=3.358, p=0.012) at different levels. Follow-up analysis showed that athletes showing oedema within the cancellous bone and/or stress fracture on MRI had, within 2 years of analysis, subsequently taken time off training and racing due a tibial stress fracture. The thinner anterior cortex in SF tibiae is associated with a stress reaction in these triathletes. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. Assessment of compressive failure process of cortical bone materials using damage-based model.

    Science.gov (United States)

    Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R

    2017-02-01

    The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Spatial relationship between bone formation and mechanical stimulus within cortical bone: Combining 3D fluorochrome mapping and poroelastic finite element modelling.

    Science.gov (United States)

    Carrieroa, A; Pereirab, A F; Wilson, A J; Castagno, S; Javaheri, B; Pitsillides, A A; Marenzana, M; Shefelbine, S J

    2018-06-01

    Bone is a dynamic tissue and adapts its architecture in response to biological and mechanical factors. Here we investigate how cortical bone formation is spatially controlled by the local mechanical environment in the murine tibia axial loading model (C57BL/6). We obtained 3D locations of new bone formation by performing 'slice and view' 3D fluorochrome mapping of the entire bone and compared these sites with the regions of high fluid velocity or strain energy density estimated using a finite element model, validated with ex-vivo bone surface strain map acquired ex-vivo using digital image correlation. For the comparison, 2D maps of the average bone formation and peak mechanical stimulus on the tibial endosteal and periosteal surface across the entire cortical surface were created. Results showed that bone formed on the periosteal and endosteal surface in regions of high fluid flow. Peak strain energy density predicted only the formation of bone periosteally. Understanding how the mechanical stimuli spatially relates with regions of cortical bone formation in response to loading will eventually guide loading regime therapies to maintain or restore bone mass in specific sites in skeletal pathologies.

  6. Disuse exaggerates the detrimental effects of alcohol on cortical bone

    Science.gov (United States)

    Hefferan, Theresa E.; Kennedy, Angela M.; Evans, Glenda L.; Turner, Russell T.

    2003-01-01

    BACKGROUND: Alcohol abuse is associated with an increased risk for osteoporosis. However, comorbidity factors may play an important role in the pathogenesis of alcohol-related bone fractures. Suboptimal mechanical loading of the skeleton, an established risk factor for bone loss, may occur in some alcohol abusers due to reduced physical activity, muscle atrophy, or both. The effect of alcohol consumption and reduced physical activity on bone metabolism has not been well studied. The purpose of this study was to determine whether mechanical disuse alters bone metabolism in a rat model for chronic alcohol abuse. METHODS: Alcohol was administered in the diet (35% caloric intake) of 6-month-old male rats for 4 weeks. Rats were hindlimb-unloaded the final 2 weeks of the experiment to prevent dynamic weight bearing. Afterward, cortical bone histomorphometry was evaluated at the tibia-fibula synostosis. RESULTS: At the periosteal surface of the tibial diaphysis, alcohol and hindlimb unloading independently decreased the mineralizing perimeter, mineral apposition rate, and bone formation rate. In addition, alcohol, but not hindlimb unloading, increased endocortical bone resorption. The respective detrimental effects of alcohol and hindlimb unloading to inhibit bone formation were additive; there was no interaction between the two variables. CONCLUSIONS: Reduced weight bearing accentuates the detrimental effects of alcohol on cortical bone in adult male rats by further inhibiting bone formation. This finding suggests that reduced physical activity may be a comorbidity factor for osteoporosis in alcohol abusers.

  7. Acute hypothalamic suppression significantly affects trabecular bone but not cortical bone following recovery and ovariectomy surgery in a rat model

    Directory of Open Access Journals (Sweden)

    Vanessa R. Yingling

    2016-01-01

    Full Text Available Background. Osteoporosis is “a pediatric disease with geriatric consequences.” Bone morphology and tissue quality co-adapt during ontogeny for sufficient bone stiffness. Altered bone morphology from hypothalamic amenorrhea, a risk factor for low bone mass in women, may affect bone strength later in life. Our purpose was to determine if altered morphology following hypothalamic suppression during development affects cortical bone strength and trabecular bone volume (BV/TV at maturity.Methods. Female rats (25 days old were assigned to a control (C group (n = 45 that received saline injections (.2 cc or an experimental group (GnRH-a (n = 45 that received gonadotropin releasing hormone antagonist injections (.24 mg per dose for 25 days. Fifteen animals from each group were sacrificed immediately after the injection protocol at Day 50 (C, GnRH-a. The remaining animals recovered for 135 days and a subset of each group was sacrificed at Day 185 ((C-R (n = 15 and (G-R (n = 15. The remaining animals had an ovariectomy surgery (OVX at 185 days of age and were sacrificed 40 days later (C-OVX (n = 15 and (G-OVX (n = 15. After sacrifice femurs were mechanically tested and scanned using micro CT. Serum C-terminal telopeptides (CTX and insulin-like growth factor 1 (IGF-1 were measured. Two-way ANOVA (2 groups (GnRH-a and Control X 3 time points (Injection Protocol, Recovery, post-OVX was computed.Results. GnRH-a injections suppressed uterine weights (72% and increased CTX levels by 59%. Bone stiffness was greater in the GnRH-a groups compared to C. Ash content and cortical bone area were similar between groups at all time points. Polar moment of inertia, a measure of bone architecture, was 15% larger in the GnRH-a group and remained larger than C (19% following recovery. Both the polar moment of inertia and cortical area increased linearly with the increases in body weight. Following the injection protocol, trabecular BV/TV was 31% lower in the Gn

  8. Age-related changes in cortical and trabecular bone mineral status: A quantitative CT study in lumbar vertebrae

    International Nuclear Information System (INIS)

    Tanno, M.; Horiuchi, T.; Nakajima, I.; Maeda, S.; Igarashi, M.; Yamada, H.

    2000-01-01

    To investigate the age and sex dependence of the bone mineral status of human lumbar vertebrae with special regard to differences between cortical and trabecular bone. The study group comprised 125 normal Japanese healthy volunteers (54 males and 71 females), and was subdivided into adult male and female groups (subjects younger than 40 years), intermediate male and female groups (ages ranging between 41 and 64 years) and old male and female groups (subjects older than 65 years). The cortical bone mineral status was estimated using a single-energy quantitative CT (SE-QCT) technique, whereas trabecular bone mineral density (BMD) was estimated using a dual-energy (DE-QCT) technique. A considerable gender difference in the age-related cortical bone status was found. There was a significant reduction of the mean values of the cortical volume and BMD in the old female group compared with those obtained in the old male group. The results suggest that in men, cortical and trabecular bone volume decrease very little with age. In women, cortical volume and BMD and trabecular BMD decrease with age while trabecular bone volume does not. The study showed that all variables had higher values in men than in women and that the difference increased with age

  9. Mechanical properties of bovine cortical bone based on the automated ball indentation technique and graphics processing method.

    Science.gov (United States)

    Zhang, Airong; Zhang, Song; Bian, Cuirong

    2018-02-01

    Cortical bone provides the main form of support in humans and other vertebrates against various forces. Thus, capturing its mechanical properties is important. In this study, the mechanical properties of cortical bone were investigated by using automated ball indentation and graphics processing at both the macroscopic and microstructural levels under dry conditions. First, all polished samples were photographed under a metallographic microscope, and the area ratio of the circumferential lamellae and osteons was calculated through the graphics processing method. Second, fully-computer-controlled automated ball indentation (ABI) tests were performed to explore the micro-mechanical properties of the cortical bone at room temperature and a constant indenter speed. The indentation defects were examined with a scanning electron microscope. Finally, the macroscopic mechanical properties of the cortical bone were estimated with the graphics processing method and mixture rule. Combining ABI and graphics processing proved to be an effective tool to obtaining the mechanical properties of the cortical bone, and the indenter size had a significant effect on the measurement. The methods presented in this paper provide an innovative approach to acquiring the macroscopic mechanical properties of cortical bone in a nondestructive manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects of age and loading rate on equine cortical bone failure.

    Science.gov (United States)

    Kulin, Robb M; Jiang, Fengchun; Vecchio, Kenneth S

    2011-01-01

    Although clinical bone fractures occur predominantly under impact loading (as occurs during sporting accidents, falls, high-speed impacts or other catastrophic events), experimentally validated studies on the dynamic fracture behavior of bone, at the loading rates associated with such events, remain limited. In this study, a series of tests were performed on femoral specimens obtained post-mortem from equine donors ranging in age from 6 months to 28 years. Fracture toughness and compressive tests were performed under both quasi-static and dynamic loading conditions in order to determine the effects of loading rate and age on the mechanical behavior of the cortical bone. Fracture toughness experiments were performed using a four-point bending geometry on single and double-notch specimens in order to measure fracture toughness, as well as observe differences in crack initiation between dynamic and quasi-static experiments. Compressive properties were measured on bone loaded parallel and transverse to the osteonal growth direction. Fracture propagation was then analyzed using scanning electron and scanning confocal microscopy to observe the effects of microstructural toughening mechanisms at different strain rates. Specimens from each horse were also analyzed for dry, wet and mineral densities, as well as weight percent mineral, in order to investigate possible influences of composition on mechanical behavior. Results indicate that bone has a higher compressive strength, but lower fracture toughness when tested dynamically as compared to quasi-static experiments. Fracture toughness also tends to decrease with age when measured quasi-statically, but shows little change with age under dynamic loading conditions, where brittle "cleavage-like" fracture behavior dominates. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Influence of basis images and skull position on evaluation of cortical bone thickness in cone beam computed tomography.

    Science.gov (United States)

    Nascimento, Monikelly do Carmo Chagas; Boscolo, Solange Maria de Almeida; Haiter-Neto, Francisco; Santos, Emanuela Carla Dos; Lambrichts, Ivo; Pauwels, Ruben; Jacobs, Reinhilde

    2017-06-01

    The aim of this study was to assess the influence of the number of basis images and the orientation of the skull on the evaluation of cortical alveolar bone in cone beam computed tomography (CBCT). Eleven skulls with a total of 59 anterior teeth were selected. CBCT images were acquired by using 4 protocols, by varying the rotation of the tube-detector arm and the orientation of the skull (protocol 1: 360°/0°; protocol 2: 180°/0°; protocol 3: 180°/90°; protocol 4: 180°/180°). Observers evaluated cortical bone as absent, thin, or thick. Direct observation of the skulls was used as the gold standard. Intra- and interobserver agreement, as well as agreement of scoring between the 3 bone thickness classifications, were calculated by using the κ statistic. The Wilcoxon signed-rank test was used to compare the 4 protocols. For lingual cortical bone, protocol 1 showed no statistical difference from the gold standard. Higher reliability was found in protocol 3 for absent (κ = 0.80) and thin (κ = 0.47) cortices, whereas for thick cortical bone, protocol 2 was more consistent (κ = 0.60). In buccal cortical bone, protocol 1 obtained the highest agreement for absent cortices (κ = 0.61), whereas protocol 4 was better for thin cortical plates (κ = 0.38) and protocol 2 for thick cortical plates (κ = 0.40). No consistent effect of the number of basis images or head orientation for visual detection of alveolar bone was detected, except for lingual cortical bone, for which full rotation scanning showed improved visualization. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Weibull analysis of fracture test data on bovine cortical bone: influence of orientation.

    Science.gov (United States)

    Khandaker, Morshed; Ekwaro-Osire, Stephen

    2013-01-01

    The fracture toughness, K IC, of a cortical bone has been experimentally determined by several researchers. The variation of K IC values occurs from the variation of specimen orientation, shape, and size during the experiment. The fracture toughness of a cortical bone is governed by the severest flaw and, hence, may be analyzed using Weibull statistics. To the best of the authors' knowledge, however, no studies of this aspect have been published. The motivation of the study is the evaluation of Weibull parameters at the circumferential-longitudinal (CL) and longitudinal-circumferential (LC) directions. We hypothesized that Weibull parameters vary depending on the bone microstructure. In the present work, a two-parameter Weibull statistical model was applied to calculate the plane-strain fracture toughness of bovine femoral cortical bone obtained using specimens extracted from CL and LC directions of the bone. It was found that the Weibull modulus of fracture toughness was larger for CL specimens compared to LC specimens, but the opposite trend was seen for the characteristic fracture toughness. The reason for these trends is the microstructural and extrinsic toughening mechanism differences between CL and LC directions bone. The Weibull parameters found in this study can be applied to develop a damage-mechanics model for bone.

  13. Does cortical bone thickness in the last sacral vertebra differ among tail types in primates?

    Science.gov (United States)

    Nishimura, Abigail C; Russo, Gabrielle A

    2017-04-01

    The external morphology of the sacrum is demonstrably informative regarding tail type (i.e., tail presence/absence, length, and prehensility) in living and extinct primates. However, little research has focused on the relationship between tail type and internal sacral morphology, a potentially important source of functional information when fossil sacra are incomplete. Here, we determine if cortical bone cross-sectional thickness of the last sacral vertebral body differs among tail types in extant primates and can be used to reconstruct tail types in extinct primates. Cortical bone cross-sectional thickness in the last sacral vertebral body was measured from high-resolution CT scans belonging to 20 extant primate species (N = 72) assigned to tail type categories ("tailless," "nonprehensile short-tailed," "nonprehensile long-tailed," and "prehensile-tailed"). The extant dataset was then used to reconstruct the tail types for four extinct primate species. Tailless primates had significantly thinner cortical bone than tail-bearing primates. Nonprehensile short-tailed primates had significantly thinner cortical bone than nonprehensile long-tailed primates. Cortical bone cross-sectional thickness did not distinguish between prehensile-tailed and nonprehensile long-tailed taxa. Results are strongly influenced by phylogeny. Corroborating previous studies, Epipliopithecus vindobonensis was reconstructed as tailless, Archaeolemur edwardsi as long-tailed, Megaladapis grandidieri as nonprehensile short-tailed, and Palaeopropithecus kelyus as nonprehensile short-tailed or tailless. Results indicate that, in the context of phylogenetic clade, measures of cortical bone cross-sectional thickness can be used to allocate extinct primate species to tail type categories. © 2017 Wiley Periodicals, Inc.

  14. Interpreting the three-dimensional orientation of vascular canals and cross-sectional geometry of cortical bone in birds and bats.

    Science.gov (United States)

    Pratt, Isaac V; Johnston, James D; Walker, Ernie; Cooper, David M L

    2018-06-01

    Cortical bone porosity and specifically the orientation of vascular canals is an area of growing interest in biomedical research and comparative/paleontological anatomy. The potential to explain microstructural adaptation is of great interest. However, the determinants of the development of canal orientation remain unclear. Previous studies of birds have shown higher proportions of circumferential canals (called laminarity) in flight bones than in hindlimb bones, and interpreted this as a sign that circumferential canals are a feature for resistance to the torsional loading created by flight. We defined the laminarity index as the percentage of circumferential canal length out of the total canal length. In this study we examined the vascular canal network in the humerus and femur of a sample of 31 bird and 24 bat species using synchrotron micro-computed tomography (micro-CT) to look for a connection between canal orientation and functional loading. The use of micro-CT provides a full three-dimensional (3D) map of the vascular canal network and provides measurements of the 3D orientation of each canal in the whole cross-section of the bone cortex. We measured several cross-sectional geometric parameters and strength indices including principal and polar area moments of inertia, principal and polar section moduli, circularity, buckling ratio, and a weighted cortical thickness index. We found that bat cortices are relatively thicker and poorly vascularized, whereas those of birds are thinner and more highly vascularized, and that according to our cross-sectional geometric parameters, bird bones have a greater resistance to torsional stress than the bats; in particular, the humerus in birds is more adapted to resist torsional stresses than the femur. Our results show that birds have a significantly (P = 0.031) higher laminarity index than bats, with birds having a mean laminarity index of 0.183 in the humerus and 0.232 in the femur, and bats having a mean laminarity

  15. Cortical bone deficit and fat infiltration of bone marrow and skeletal muscle in ambulatory children with mild spastic cerebral palsy.

    Science.gov (United States)

    Whitney, Daniel G; Singh, Harshvardhan; Miller, Freeman; Barbe, Mary F; Slade, Jill M; Pohlig, Ryan T; Modlesky, Christopher M

    2017-01-01

    Nonambulatory children with severe cerebral palsy (CP) have underdeveloped bone architecture, low bone strength and a high degree of fat infiltration in the lower extremity musculature. The present study aims to determine if such a profile exists in ambulatory children with mild CP and if excess fat infiltration extends into the bone marrow. Ambulatory children with mild spastic CP and typically developing children (4 to 11years; 12/group) were compared. Magnetic resonance imaging was used to estimate cortical bone, bone marrow and total bone volume and width, bone strength [i.e., section modulus (Z) and polar moment of inertia (J)], and bone marrow fat concentration in the midtibia, and muscle volume, intermuscular, subfascial, and subcutaneous adipose tissue (AT) volume and intramuscular fat concentration in the midleg. Accelerometer-based activity monitors worn on the ankle were used to assess physical activity. There were no group differences in age, height, body mass, body mass percentile, BMI, BMI percentile or tibia length, but children with CP had lower height percentile (19th vs. 50th percentile) and total physical activity counts (44%) than controls (both pChildren with CP also had lower cortical bone volume (30%), cortical bone width in the posterior (16%) and medial (32%) portions of the shaft, total bone width in the medial-lateral direction (15%), Z in the medial-lateral direction (34%), J (39%) and muscle volume (39%), and higher bone marrow fat concentration (82.1±1.8% vs. 80.5±1.9%), subfascial AT volume (3.3 fold) and intramuscular fat concentration (25.0±8.0% vs. 16.1±3.3%) than controls (all pfat infiltration estimates, except posterior cortical bone width, were still present (all pchildren with CP compared to controls emerged (pchildren with mild spastic CP exhibit an underdeveloped bone architecture and low bone strength in the midtibia and a greater infiltration of fat in the bone marrow and surrounding musculature compared to typically

  16. Insulin Resistance and the IGF-I-Cortical Bone Relationship in Children Ages 9 to 13 Years.

    Science.gov (United States)

    Kindler, Joseph M; Pollock, Norman K; Laing, Emma M; Oshri, Assaf; Jenkins, Nathan T; Isales, Carlos M; Hamrick, Mark W; Ding, Ke-Hong; Hausman, Dorothy B; McCabe, George P; Martin, Berdine R; Hill Gallant, Kathleen M; Warden, Stuart J; Weaver, Connie M; Peacock, Munro; Lewis, Richard D

    2017-07-01

    IGF-I is a pivotal hormone in pediatric musculoskeletal development. Although recent data suggest that the role of IGF-I in total body lean mass and total body bone mass accrual may be compromised in children with insulin resistance, cortical bone geometric outcomes have not been studied in this context. Therefore, we explored the influence of insulin resistance on the relationship between IGF-I and cortical bone in children. A secondary aim was to examine the influence of insulin resistance on the lean mass-dependent relationship between IGF-I and cortical bone. Children were otherwise healthy, early adolescent black and white boys and girls (ages 9 to 13 years) and were classified as having high (n = 147) or normal (n = 168) insulin resistance based on the homeostasis model assessment of insulin resistance (HOMA-IR). Cortical bone at the tibia diaphysis (66% site) and total body fat-free soft tissue mass (FFST) were measured by peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA), respectively. IGF-I, insulin, and glucose were measured in fasting sera and HOMA-IR was calculated. Children with high HOMA-IR had greater unadjusted IGF-I (p insulin resistance as a potential suppressor of IGF-I-dependent cortical bone development, though prospective studies are needed. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  17. Modelling of Cortical Bone Tissue as a Fluid Saturated Double-Porous Material - Parametric Study

    Directory of Open Access Journals (Sweden)

    Jana TURJANICOVÁ

    2013-06-01

    Full Text Available In this paper, the cortical bone tissue is considered as a poroelastic material with periodic structure represented at microscopic and mesoscopic levels. The pores of microscopic scale are connected with the pores of mesoscopic scale creating one system of connected network filled with compressible fluid. The method of asymptotic homogenization is applied to upscale the microscopic model of the fluid-solid interaction under a static loading. Obtained homogenized coefficients describe material properties of the poroelastic matrix fractured by fluid-filled pores whose geometry is described at the mesoscopic level. The second-level upscaling provides homogenized poroelastic coefficients relevant on the macroscopic scale. Furthermore, we study the dependence of these coefficients on geometrical parameters on related microscopic and macroscopic scales.

  18. Quantitative CBCT evaluation of maxillary and mandibular cortical bone thickness and density variability for orthodontic miniplate placement.

    Science.gov (United States)

    Rossi, Margherita; Bruno, Giovanni; De Stefani, Alberto; Perri, Alessandro; Gracco, Antonio

    2017-12-01

    To assess whether cortical bone thickness and density vary in relation to age, sex and skeletal pattern at the maxillary and mandibular areas suitable for miniplates placement for orthodontic purposes. CBCT of 92 subjects (42 males and 50 females) with skeletal class I, II or III malocclusion, divided between adolescents and adults, were examined. InVivoDental ® software (Anatomage Inc, USA) was used to measure 34 maxillary areas and 40 mandibular areas per side. Values obtained were then compared between the groups of subjects. Statistical analysis was performed using the non-parametric Wilcoxon-Mann-Whitney rank-sum test for independent samples. No significant differences were found in the cortical bone thickness values between the three skeletal patterns, and according to sex and age. Both maxilla and mandible showed an increase in cortical bone thickness from the anterior towards the posterior regions, and from the alveolar boneto the basal bone. Cortical bone density significantly varied in relation to the subject's age, with adults always showing higher values. Slight clinically significant differences were found between the three skeletal patterns and sex. In terms of cortical bone thickness, age, sex and skeletal pattern do not represent valid decision criteria for the evaluation of the best insertion areas for miniplates, while in terms of cortical bone density, only age is useful as a decision criterion. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.

  19. The relationship between age and the mandibular cortical bone thickness by using panoramic radiograph

    International Nuclear Information System (INIS)

    Kim, Yun Suk; Kim, Kyoung A; Koh, Kwang Joon

    2010-01-01

    This study was to determine the relationship between age and the mandibular cortical bone thickness on panoramic radiograph. Panoramic radiographs of 360 patients (180 men and 180 women) over 20 years old, who visited the Chonbuk National University Hospital from January to December in 2007, were assessed. The subjects were divided into 5 age groups. Five indices such as cortical bone thickness at the gonion (GI), antegonion (AI), and below the mental foramen (MI), the panoramic mandibular index (PMI), the mandibular cortical index (MCI) were measured on panoramic radiographs. All five indices including GI, AI, MI, PMI, and MCI showed significant differences between third decade and over 8 decade groups (p,0.05). PMI, MI and GI showed significant differences with gender statistically (p<0.05). The mandibular cortical bone thickness showed negative correlation with age, and the value of the thickness (PMI, MI, and GI) was greater in men than in women.

  20. Noncontact ultrasound imaging applied to cortical bone phantoms.

    Science.gov (United States)

    Bulman, J B; Ganezer, K S; Halcrow, P W; Neeson, Ian

    2012-06-01

    The purpose of this paper was to take the first steps toward applying noncontact ultrasound (NCU) to the tasks of monitoring osteoporosis and quantitative ultrasound imaging (QUS) of cortical bone. The authors also focused on the advantages of NCU, such as its lack of reliance on a technologist to apply transducers and a layer of acoustical coupling gel, the ability of the transducers to operate autonomously as specified by preprogrammed software, and the likely reduction in statistical and systematic errors associated with the variability in the pressure applied by the clinician to the transmitting transducer that NCU might provide. The authors also undertook this study in order to find additional applications of NCU beyond its past limited usage in assessing the severity of third degree burns. A noncontact ultrasound imaging system using a pair of specially designed broadband, 1.5 MHz noncontact piezoelectric transducers and cortical bone phantoms, were used to determine bone mineral density (BMD), speed of sound (SOS), integrated response (IR), and ultrasonic transmittance. Air gaps of greater than 3 cm, two transmission and two reflection paths, and a digital signal processor were also used in the collection of data from phantoms of nominal mass densities that varied from 1.17 to 2.25 g/cm(3) and in bone mineral density from 0 to 1.7 g/cm(3). Good correlations between known BMD and measured SOS, IR, and transmittance were obtained for all 17 phantoms, and methods for quantifying and minimizing sources of systematic errors were outlined. The BMD of the phantom sets extended through most of the in vivo range found in cortical bone. A total of 16-20 repeated measurements of the SOS, thickness, and IR for the phantom set that were conducted over a period of several months showed a small variation in the range of measurements of ±1%-2%. These NCU data were shown to be in agreement with similar results using contact ultrasound to be within 1%-2%. Transmittance

  1. How Tough is Human Cortical Bone? In-Situ Measurements on Realistically Short Cracks

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, Robert O; Koester, K. J.; Ager III, J. W.; Ritchie, R.O.

    2008-05-10

    Bone is more difficult to break than to split. Although this is well known, and many studies exist on the behavior of long cracks in bone, there is a need for data on the orientation-dependent crack-growth resistance behavior of human cortical bone which accurately assesses its toughness at appropriate size-scales. Here we use in-situ mechanical testing in the scanning electron microscope and x-ray computed tomography to examine how physiologically-pertinent short (<600 mu m) cracks propagate in both the transverse and longitudinal orientations in cortical bone, using both crack-deflection/twist mechanics and nonlinear-elastic fracture mechanics to determine crack-resistance curves. We find that after only 500 mu m of cracking, the driving force for crack propagation was more than five times higher in the transverse (breaking) direction than in the longitudinal (splitting) direction due to major crack deflections/twists principally at cement sheathes. Indeed, our results show that the true transverse toughness of cortical bone is far higher than previously reported. However, the toughness in the longitudinal orientation, where cracks tend to follow the cement lines, is quite low at these small crack sizes; it is only when cracks become several millimeters in length that bridging mechanisms can develop leading to the (larger-crack) toughnesses generally quoted for bone.

  2. Correlation between the thickness of the crestal and buccolingual cortical bone at varying depths and implant stability quotients.

    Directory of Open Access Journals (Sweden)

    Kanthanat Chatvaratthana

    Full Text Available Resonance frequency analysis (RFA is clinically used in dentistry to access the stiffness of dental implants in surrounding bone. However, the clear advantages and disadvantages of this method are still inconclusive. The aim of this study was to investigate and compare implant stability quotient (ISQ values obtained from RFA with parameters obtained from a cone beam computed tomography (CBCT scan of the same region.Nineteen implants (Conelog were inserted in the posterior maxillary and mandibular partially edentulous regions of 16 patients. At the time of implant placement, the ISQ values were obtained using RFA (Osstell. CBCT was used to measure the thickness of the crestal, cortical, buccolingual cortical, and cancellous bone at 3, 6, and 9 mm below the crestal bone level, as indicated by radiographic markers. The ratio of the thickness of the cortical to cancellous bone at varying depths was also calculated and classified into 4 groups (Group 1-4.There was a strong correlation between the crestal cortical bone thickness and ISQ values (P<0.001. The thickness of the buccolingual cortical bone and ratio of the cortical to cancellous bone thickness at 3 mm were significantly related to the ISQ (P = 0.018 and P = 0.034, respectively. Furthermore, the ISQs in Group 1 were the highest compared with those in Group 2 and Group 3, whereas the CBCT parameters at 6 and 9 mm did not have any specific correlation with the ISQ values.This study showed that the ISQ values obtained from RFA highly correlated with the quantity and quality of bone 3 mm below the crestal bone level. The correlation between the ISQ and bone surrounding the implant site was dependent on the depth of measurement. Therefore, RFA can help to predict the marginal bone level, as confirmed in this study.

  3. Femoral Cortical Bone Mineral Density and Biomechanical Properties in Sheep Consuming an Acidifying Diet

    Directory of Open Access Journals (Sweden)

    Eileen S. Hackett

    2009-01-01

    Full Text Available Dietary acidity is a likely contributor to the development of osteoporosis. Dietary acidosis in an ovine model has effects on trabecular bone that have been previously shown to mimic human osteoporosis. Effects on cortical bone using this model have not been investigated. The objective of this study was to examine the effects of dietary acidosis on cortical bone mineral density and material properties. Skeletally mature ovariectomized (OVX sheep consumed either a normal diet (ND or a metabolic acidosis diet (MA for 6 or 12 months. Whole femoral and cortical bone beam BMD was determined using dual energy x-ray absorptiometry (DEXA. Beams were then subjected to three point flexure monotonically to failure to determine strength and modulus and then ashed to determine percent mineralization. Femoral BMD in adult OVX ND 6 mo sheep was significantly greater than those in the non-OVX ND group. The BMD in the MA groups was lower than the control non-OVX ND group. Cortical beams had significantly decreased modulus in all MA and OVX groups when compared with the non-OVX ND group and a tendency towards decreased strength in all groups with significance only in the OVX ND 6 mo sheep. Percent mineralization increased in MA and OVX groups when compared to the non-OVX ND group and was significantly increased in the OVX ND 6 mo and OVX MA 12 mo groups. A significant correlation was seen between BMD of the beam and breaking strength and modulus. Dietary acidity impacts cortical bone and results in reduced material properties that may contribute to failure.

  4. Proximal Femoral Geometry and the Risk of Fractures: Literature Review

    Directory of Open Access Journals (Sweden)

    N.V. Grygorieva

    2016-02-01

    Full Text Available This article presents the literature review of the impact of the upper third of the femur geometry (hip axis length, femoral neck angle, inter-trochanteric length, horizontal offset, thickness of the cortical bone, etc. on the risk of fractures. The article demonstrates the capabilities of techniques for measurement of hip geometry, namely conventional X-ray of pelvic bones, dual-energy X-ray absorptiometry, computed tomography. Possible correlation is shown between some genetic markers and features of the geometry of the upper third of the femur. Also, there are presented the results of own researches of age and sex characteristics of proximal hip geometry parameters in patients without fractures, as well as in patients of older age groups with internal and extraarticular femoral fractures.

  5. Computed tomography to evaluate the association of fragmented heterolog cortical bone and methylmethacrylate to repare segmental bone defect produced in tibia of rabbits

    International Nuclear Information System (INIS)

    Freitas, S.H.; Doria, R.G.S.; Mendonca, F.S.; Santos, M.D.; Moreira, R.; Simoes, R.S.; Camargo, L.M.; Simoes, M.J.; Marques, A.T.C.

    2012-01-01

    A 6mm segmental defect was performed on the metaphyseal region of the tibia of 12 rabbits and the autoclaved fragmented heterolog cortical bone conserved in glycerin (98%) and methylmethacrylate was used as a bone graft for the reconstruction. The graft was placed in the receptor bed and its integration was evaluated by computed tomography after 30, 60 and 90 days. There was gradual bone graft incorporation in the receptor bed during the time in 100% of the cases. Fragmented cortical bone heterograft and methylmethacrylate was biologically compatible and promotes bone defect reparation without signs of infection, migration and or rejection, featuring a new option of osseous substitute to fill in bone defects. (author)

  6. Dietary Pseudopurpurin Improves Bone Geometry Architecture and Metabolism in Red-Bone Guishan Goats

    Science.gov (United States)

    Han, TieSuo; Li, Peng; Wang, JianGuo; Liu, GuoWen; Wang, Zhe; Ge, ChangRong; Gao, ShiZheng

    2012-01-01

    Red-colored bones were found initially in some Guishan goats in the 1980s, and they were designated red-boned goats. However, it is not understood what causes the red color in the bone, or whether the red material changes the bone geometry, architecture, and metabolism of red-boned goats. Pseudopurpurin was identified in the red-colored material of the bone in red-boned goats by high-performance liquid chromatography–electrospray ionization–mass spetrometry and nuclear magnetic resonance analysis. Pseudopurpurin is one of the main constituents of Rubia cordifolia L, which is eaten by the goats. The assessment of the mechanical properties and micro-computed tomography showed that the red-boned goats displayed an increase in the trabecular volume fraction, trabecular thickness, and the number of trabeculae in the distal femur. The mean thickness, inner perimeter, outer perimeter, and area of the femoral diaphysis were also increased. In addition, the trabecular separation and structure model index of the distal femur were decreased, but the bone mineral density of the whole femur and the mechanical properties of the femoral diaphysis were enhanced in the red-boned goats. Meanwhile, expression of alkaline phosphatase and osteocalcin mRNA was higher, and the ratio of the receptor activator of the nuclear factor kappa B ligand to osteoprotegerin was markedly lower in the bone marrow of the red-boned goats compared with common goats. To confirm further the effect of pseudopurpurin on bone geometry, architecture, and metabolism, Wistar rats were fed diets to which pseudopurpurin was added for 5 months. Similar changes were observed in the femurs of the treated rats. The above results demonstrate that pseudopurpurin has a close affinity with the mineral salts of bone, and consequently a high level of mineral salts in the bone cause an improvement in bone strength and an enhancement in the structure and metabolic functions of the bone. PMID:22624037

  7. Safe Harvesting of Outer Table Parietal Bone Grafts Using an Oscillating Saw and a Bone Scraper : A Refinement of Technique for Harvesting Cortical and "Cancellous"-Like Calvarial Bone

    NARCIS (Netherlands)

    Schortinghuis, Jurjen; Putters, Thomas F.; Raghoebar, Gerry M.

    Calvarial bone is a readily available source of bone for preimplantation augmentation procedures of the alveolar process. However, the calvaria consist mostly of cortical bone, and cancellous bone of the diploic space is scarce. A bone scraper (Safescraper Twist; META, Reggio Emilia, Italy) was used

  8. Propagation of a dorsal cortical fracture of the third metacarpal bone in two horses

    International Nuclear Information System (INIS)

    Spurlock, G.H.

    1988-01-01

    Seemingly, propagation of a dorsal cortical fracture in the third metacarpal bone developed after continued race performance in 2 horses. Historically, both horses had intermittent lameness that had responded to nonsteroidal anti-inflammatory drugs and brief rest periods. However, lameness in both horses had increased in severity. Radiography revealed a dorsal cortical fracture of the third metacarpal bone, with propagation of the fracture plane proximally. Fractures were incomplete and healed with stall rest in both horses

  9. Accounting for beta-particle energy loss to cortical bone via paired-image radiation transport (PIRT)

    International Nuclear Information System (INIS)

    Shah, Amish P.; Rajon, Didier A.; Patton, Phillip W.; Jokisch, Derek W.; Bolch, Wesley E.

    2005-01-01

    Current methods of skeletal dose assessment in both medical physics (radionuclide therapy) and health physics (dose reconstruction and risk assessment) rely heavily on a single set of bone and marrow cavity chord-length distributions in which particle energy deposition is tracked within an infinite extent of trabecular spongiosa, with no allowance for particle escape to cortical bone. In the present study, we introduce a paired-image radiation transport (PIRT) model which provides a more realistic three-dimensional (3D) geometry for particle transport in the skeletal site at both microscopic and macroscopic levels of its histology. Ex vivo CT scans were acquired of the pelvis, cranial cap, and individual ribs excised from a 66-year male cadaver (BMI of 22.7 kg m -2 ). For the three skeletal sites, regions of trabecular spongiosa and cortical bone were identified and segmented. Physical sections of interior spongiosa were taken and subjected to microCT imaging. Voxels within the resulting microCT images were then segmented and labeled as regions of bone trabeculae, endosteum, active marrow, and inactive marrow through application of image processing algorithms. The PIRT methodology was then implemented within the EGSNRC radiation transport code whereby electrons of various initial energies are simultaneously tracked within both the ex vivo CT macroimage and the CT microimage of the skeletal site. At initial electron energies greater than 50-200 keV, a divergence in absorbed fractions to active marrow are noted between PIRT model simulations and those estimated under existing techniques of infinite spongiosa transport. Calculations of radionuclide S values under both methodologies imply that current chord-based models may overestimate the absorbed dose to active bone marrow in these skeletal sites by 0% to 27% for low-energy beta emitters ( 33 P, 169 Er, and 177 Lu), by ∼4% to 49% for intermediate-energy beta emitters ( 153 Sm, 186 Re, and 89 Sr), and by ∼14% to

  10. The effect of high voltage, high frequency pulsed electric field on slain ovine cortical bone.

    Science.gov (United States)

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-04-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  11. Effects of treadmill exercise on cortical bone in the third metacarpus of young horses

    International Nuclear Information System (INIS)

    McCarthy, R.N.; Jeffcott, L.B.

    1992-01-01

    The effects of exercise and relative inactivity on cortical bone were compared in young horses. Two groups were used; one was given a 14-week programme of exercise (n = 6) and the other kept as unexercised controls (n = 6). The first nine weeks of exercise involved trotting and cantering (2 to 4 km d-1 at speeds up to 12 m s-1) on a treadmill set at an incline of 3 degrees. Over the next five weeks the horses were trained at near maximal speeds (that is, up to 14.5 m s-1) with no incline of the treadmill. At the end of the programme marked differences in cortical porosity and distribution of subperiosteal osteogenesis at the mid-shaft of the third metacarpal bone were found between the groups. Histomorphometrical examination of the dorsal cortex showed minimal bone remodelling in the exercised horses, but extensive modelling as evidenced by the large amount of subperiosteal bone formation. In contrast, the unexercised horses had significantly more bone remodelling and less formation of subperiosteal bone. The histomorphometric and microradiographic findings provided an explanation for changes in the non-invasive bone measurements that occurred during training. Bone mineral content of the mid-metacarpus was found to increase more in the exercised than the unexercised horses despite a lower overall growth in bodyweight. In those horses that completed the full training programme, ultrasound speed increased significantly by the end of the training programme. It remained unchanged in the horse that did not complete the full exercise programme and decreased slightly in the unexercised horses. The difference in ultrasound speed between the groups was considered to reflect differences in intracortical bone porosity, endosteal bone formation and alterations in skin thickness. The stiffness of cortical bone increased significantly in the exercised horses but remained unaltered in the unexercised horses

  12. Neutron activation analysis of medullar and cortical bone tissues from animals

    International Nuclear Information System (INIS)

    Takata, Marcelo Kazuo; Saiki, Mitiko

    2000-01-01

    In this work, neutron activation analysis was applied in the determination of the elements Ba, Br, Ca, Cl, Cr, Fe, K, Mg, Mn, Na, P, Rb, Sb, Sc, Sr and Zn present in animal bone tissues. The obtained results indicated a significant difference between the elemental concentrations present in medullar and cortical tissues. The results obtained for bone tissues from distinct animal species were also different. (author)

  13. The resistance of cortical bone tissue to failure under cyclic loading is reduced with alendronate.

    Science.gov (United States)

    Bajaj, Devendra; Geissler, Joseph R; Allen, Matthew R; Burr, David B; Fritton, J C

    2014-07-01

    Bisphosphonates are the most prescribed preventative treatment for osteoporosis. However, their long-term use has recently been associated with atypical fractures of cortical bone in patients who present with low-energy induced breaks of unclear pathophysiology. The effects of bisphosphonates on the mechanical properties of cortical bone have been exclusively studied under simple, monotonic, quasi-static loading. This study examined the cyclic fatigue properties of bisphosphonate-treated cortical bone at a level in which tissue damage initiates and is accumulated prior to frank fracture in low-energy situations. Physiologically relevant, dynamic, 4-point bending applied to beams (1.5 mm × 0.5 mm × 10 mm) machined from dog rib (n=12/group) demonstrated mechanical failure and micro-architectural features that were dependent on drug dose (3 groups: 0, 0.2, 1.0mg/kg/day; alendronate [ALN] for 3 years) with cortical bone tissue elastic modulus (initial cycles of loading) reduced by 21% (pbone remodeling, such as the size of osteons (-14%; ALN1.0: 10.5±1.8, VEH: 12.2±1.6, ×10(3) μm2; pbone tissue are altered by high-dose ALN treatment and contribute to reduced mechanical properties under cyclic loading conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Low serum vitamin D is associated with higher cortical porosity in elderly men.

    Science.gov (United States)

    Sundh, D; Mellström, D; Ljunggren, Ö; Karlsson, M K; Ohlsson, C; Nilsson, M; Nilsson, A G; Lorentzon, M

    2016-11-01

    Bone loss at peripheral sites in the elderly is mainly cortical and involves increased cortical porosity. However, an association between bone loss at these sites and 25-hydroxyvitamin D has not been reported. To investigate the association between serum levels of 25-hydroxyvitamin D, bone microstructure and areal bone mineral density (BMD) in elderly men. A population-based cohort of 444 elderly men (mean ± SD age 80.2 ± 3.5 years) was investigated. Bone microstructure was measured by high-resolution peripheral quantitative computed tomography, areal BMD by dual-energy X-ray absorptiometry and serum 25-hydroxyvitamin D and parathyroid hormone levels by immunoassay. Mean cortical porosity at the distal tibia was 14.7% higher (12.5 ± 4.3% vs. 10.9 ± 4.1%, P vitamin D levels compared to the highest. In men with vitamin D deficiency (6.8 pmol L -1 )], cortical porosity was 17.2% higher than in vitamin D-sufficient men (P vitamin D supplementation and parathyroid hormone showed that 25-hydroxyvitamin D independently predicted cortical porosity (standardized β = -0.110, R 2 = 1.1%, P = 0.024), area (β = 0.123, R 2 = 1.4%, P = 0.007) and cortical volumetric BMD (β = 0.125, R 2 = 1.4%, P = 0.007) of the tibia as well as areal BMD of the femoral neck (β = 0.102, R 2 = 0.9%, P = 0.04). Serum vitamin D is associated with cortical porosity, area and density, indicating that bone fragility as a result of low vitamin D could be due to changes in cortical bone microstructure and geometry. © 2016 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.

  15. Cortical bone resorption rate in elderly persons: Estimates from long-term in vivo measurements of 90Sr in the skeleton

    Energy Technology Data Exchange (ETDEWEB)

    Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.; Anspaugh, L. R.; Napier, Bruce A.

    2012-06-01

    The rate of cortical bone resorption was assessed from long-term in vivo measurements of 90Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of 90Sr were conducted with a whole body counter for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of 90Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based on the use of accidentally ingested 90Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.

  16. Cortical bone resorption rate in elderly persons: Estimates from long-term in vivo measurements of 90Sr in the skeleton

    International Nuclear Information System (INIS)

    Shagina, N.B.; Tolstykh, E.I.; Degteva, M.O.; Anspaugh, L.R.; Napier, Bruce A.

    2012-01-01

    The rate of cortical bone resorption was assessed from long-term in vivo measurements of 90Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of 90Sr were conducted with a whole body counter for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of 90Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based on the use of accidentally ingested 90Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.

  17. A case of monostotic fibrous dysplasia of proximal femur managed with curettage and cortical bone grafting

    Directory of Open Access Journals (Sweden)

    A D Sud

    2013-01-01

    Full Text Available We present a case report of a young military personnel with monostotic fibrous dysplasia of proximal femur with painful, dysplasticlesion of the femoral neck and fatigue fracture who underwent cortical bone grafting using autogenous fibular strut graft and iliac crest bone graft. The fibular cortical grafts was used to bridge the lesion in the femoral neck and were securely anchored to the normal bone of the lateral femoral cortex and a head of the femur. No supplemental internal fixation was required.

  18. Comparative Analysis of Bone Structural Parameters Reveals Subchondral Cortical Plate Resorption and Increased Trabecular Bone Remodeling in Human Facet Joint Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Cordula Netzer

    2018-03-01

    Full Text Available Facet joint osteoarthritis is a prominent feature of degenerative spine disorders, highly prevalent in ageing populations, and considered a major cause for chronic lower back pain. Since there is no targeted pharmacological therapy, clinical management of disease includes analgesic or surgical treatment. The specific cellular, molecular, and structural changes underpinning facet joint osteoarthritis remain largely elusive. The aim of this study was to determine osteoarthritis-related structural alterations in cortical and trabecular subchondral bone compartments. To this end, we conducted comparative micro computed tomography analysis in healthy (n = 15 and osteoarthritic (n = 22 lumbar facet joints. In osteoarthritic joints, subchondral cortical plate thickness and porosity were significantly reduced. The trabecular compartment displayed a 42 percent increase in bone volume fraction due to an increase in trabecular number, but not trabecular thickness. Bone structural alterations were associated with radiological osteoarthritis severity, mildly age-dependent but not gender-dependent. There was a lack of association between structural parameters of cortical and trabecular compartments in healthy and osteoarthritic specimens. The specific structural alterations suggest elevated subchondral bone resorption and turnover as a potential treatment target in facet joint osteoarthritis.

  19. Age-related changes in trabecular and cortical bone microstructure.

    Science.gov (United States)

    Chen, Huayue; Zhou, Xiangrong; Fujita, Hiroshi; Onozuka, Minoru; Kubo, Kin-Ya

    2013-01-01

    The elderly population has substantially increased worldwide. Aging is a complex process, and the effects of aging are myriad and insidious, leading to progressive deterioration of various organs, including the skeleton. Age-related bone loss and resultant osteoporosis in the elderly population increase the risk for fractures and morbidity. Osteoporosis is one of the most common conditions associated with aging, and age is an independent risk factor for osteoporotic fractures. With the development of noninvasive imaging techniques such as computed tomography (CT), micro-CT, and high resolution peripheral quantitative CT (HR-pQCT), imaging of the bone architecture provides important information about age-related changes in bone microstructure and estimates of bone strength. In the past two decades, studies of human specimens using imaging techniques have revealed decreased bone strength in older adults compared with younger adults. The present paper addresses recently studied age-related changes in trabecular and cortical bone microstructure based primarily on HR-pQCT and micro-CT. We specifically focus on the three-dimensional microstructure of the vertebrae, femoral neck, and distal radius, which are common osteoporotic fracture sites.

  20. [The periosteum: the "umbilical cord" of bone. Quantification of the blood supply of cortical bone of periosteal origin].

    Science.gov (United States)

    Chanavaz, M

    1995-01-01

    The Periosteum or periosteal membrane is a continuous composite fibroelastic covering membrane of the bone to which it is intimately linked. It consists of multipotent mesodermal cells (11, 15). Although the bone cortex is the main beneficiary of the principal anatomical and physiological functions of the periosteal membrane, the behaviour of the entire bone remains closely influenced by the periosteal activity. These principal functions are related to the cortical blood supply, osteogenesis, muscle and ligament attachments. Through its elastic and contractile nature, it participates in the maintenance of bone shape, and plays an important role in metabolic ionic exchange and physiological distribution of electro-chemical potential difference across its membranous structure. It has also been suggested that the periosteum may have its own specific proprioceptive property. This presentation will study the histo-anatomy and physiology of the periosteum and will discuss in detail its main functions of cortical blood supply and osteogenesis (fig. 1 and 2). It will also present the third intermediary report on a current study of the quantification of cortical vascularisation of femoral bone via the periosteum, using an isotonic salt solution of 85Strontium. The afferent-efferent (arterio-venous) flows of this solution in the thigh vascular system of guinea pigs were measured by gamma spectrometry after a series of selective macro and micro injections of radioactive salt into the femoral arterial system were carried out. Each vascular territory was meticulously selected and the injections were made according to size, starting with the larger vessels, with or without ligatures of neighbouring vessels, going progressively to smaller and smaller vessels not exceeding 100m in diameter.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Preliminary determination of calcium, phosphorus, and the calcium/phosphorus ratio in cortical bone of Chinstrap penguin using synchrotron X-ray fluorescence analysis

    Institute of Scientific and Technical Information of China (English)

    Xie Zhouqing; Cheng Bangbo; Sun Liguang; Huang Yuying; He Wei; Zhao Sanping

    2006-01-01

    Synchrotron radiation X-ray fluorescence (SR-XRF) approach was applied to analyzing of Chinstrap penguin (Pygoscelis Antarctica) cortical bone. The method enabled the in situ determination of Ca and P concentrations and the Ca/P ratio in cortical bone. The preliminary results show that: (1) there is the bone site-related difference for Ca and P concentrations. The mean values for the investigated parameters ( on a dry-weight basis) are: 30.7% (Ca) and 14.9% (P) for the femoral cortical bone, 21.4% (Ca) and 11.5% (P) for wing cortical bone. (2) The variation for the Ca/P ratio in cortical bone is lower than those for Ca and P separately.This is in agreement with the previous report that the specificity of the Ca/P ratio is better than that of Ca and P concentrations and is more reliable for the diagnosis of bone disorders. The authors suggest that further studies be conducted to establish normal values of Ca, P and Ca/P ratio for polar animals and provide a basis for the diagnosis of bone disorders.

  2. Marked disparity between trabecular and cortical bone loss with age in healthy men. Measurement by vertebral computed tomography and radial photon absorptiometry

    International Nuclear Information System (INIS)

    Meier, D.E.; Orwoll, E.S.; Jones, J.M.

    1984-01-01

    To define age-related changes in bone mineral content in normal men, we measured radial (proximal and distal) and vertebral bone mineral content in 62 men aged 30 to 92 years. Radial bone mineral content (largely cortical bone) was measured by single photon absorptiometry, and trabecular vertebral content (T12, L1 to L3) by computed tomography. Radial bone mineral content fell gradually (2% to 3.4% per decade) with age, but vertebral trabecular content fell more rapidly (12% per decade). Body size was not associated with the rate of bone loss from the distal radial and vertebral sites, but men with lower surface areas lost bone more rapidly at the predominantly cortical proximal radial site. The fact that radial cortical bone mineral content falls much less rapidly than vertebral trabecular content with age and is also associated with surface area indicates that trabecular and cortical bone compartments may be independently modulated. Age-related bone loss should not be considered a homogeneous process

  3. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones.

    Science.gov (United States)

    Sugiyama, Toshihiro; Price, Joanna S; Lanyon, Lance E

    2010-02-01

    In order to validate whether bones' functional adaptation to mechanical loading is a local phenomenon, we randomly assigned 21 female C57BL/6 mice at 19 weeks of age to one of three equal numbered groups. All groups were treated with isoflurane anesthesia three times a week for 2 weeks (approximately 7 min/day). During each anaesthetic period, the right tibiae/fibulae in the DYNAMIC+STATIC group were subjected to a peak dynamic load of 11.5 N (40 cycles with 10-s intervals between cycles) superimposed upon a static "pre-load" of 2.0 N. This total load of 13.5 N engendered peak longitudinal strains of approximately 1400 microstrain on the medial surface of the tibia at a middle/proximal site. The right tibiae/fibulae in the STATIC group received the static "pre-load" alone while the NOLOAD group received no artificial loading. After 2 weeks, the animals were sacrificed and both tibiae, fibulae, femora, ulnae and radii analyzed by three-dimensional high-resolution (5 mum) micro-computed tomography (microCT). In the DYNAMIC+STATIC group, the proximal trabecular percent bone volume and cortical bone volume at the proximal and middle levels of the right tibiae as well as the cortical bone volume at the middle level of the right fibulae were markedly greater than the left. In contrast, the left bones in the DYNAMIC+STATIC group showed no differences compared to the left or right bones in the NOLOAD or STATIC group. These microCT data were confirmed by two-dimensional examination of fluorochrome labels in bone sections which showed the predominantly woven nature of the new bone formed in the loaded bones. We conclude that the adaptive response in both cortical and trabecular regions of bones subjected to short periods of dynamic loading, even when this response is sufficiently vigorous to stimulate woven bone formation, is confined to the loaded bones and does not involve changes in other bones that are adjacent, contra-lateral or remote to them. (c) 2009 Elsevier Inc

  4. A Retrospective Study on Indian Population to evaluate Cortical Bone Thickness in Maxilla and Mandible using Computed Tomography Images

    Directory of Open Access Journals (Sweden)

    Jeegar Ketan Vakil

    2014-01-01

    Conclusion: Mini-implants have gained considerable popularity due to their low cost, effectiveness, clinical management and stability. Among the factors related to microimplant stability, bone density and cortical bone thickness appear to be critical for successful placement. This study will provide knowledge of cortical bone thickness in various areas which can guide the clinicians in selecting the placement site.

  5. Bone Geometry, Volumetric Density, Microarchitecture and Estimated Bone Strength Assessed by HR-pQCT in Adult Patients with Hypophosphatemic Rickets

    DEFF Research Database (Denmark)

    Shanbhogue, Vikram Vinod; Hansen, Stinus; Folkestad, Lars

    2015-01-01

    Hypophosphatemic rickets (HR) is characterized by a generalized mineralization defect. Although densitometric studies have found the patients to have an elevated bone mineral density (BMD), data on bone geometry and microstructure are scarce. The aim of this cross-sectional in vivo study was to a......Hypophosphatemic rickets (HR) is characterized by a generalized mineralization defect. Although densitometric studies have found the patients to have an elevated bone mineral density (BMD), data on bone geometry and microstructure are scarce. The aim of this cross-sectional in vivo study...

  6. Differences in Femoral Geometry and Structure Due to Immobilization

    Science.gov (United States)

    Kiratli, Beatrice Jenny; Yamada, M.; Smith, A.; Marcus, R. M.; Arnaud, S.; vanderMeulen, M. C. H.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    Reduction in bone mass of the lower extremity is well documented in individuals with paralysis resulting from spinal cord injury (SCI). The consequent osteopenia leads to elevated fracture risk with fractures occurring more commonly in the femoral shaft and supracondylar regions than the hip. A model has recently been described to estimate geometry and structure of the femoral midshaft from whole body scans by dual X-ray absorptiometry (DXA). Increases in femoral geometric and structural properties during growth were primarily related to mechanical loading as reflected by body mass. In this study, we investigate the relationship between body mass and femoral geometry and structure in adults with normal habitual mechanical loading patterns and those with severely reduced loading. The subjects were 78 ambulatory men (aged 20-72 yrs) and 113 men with complete paralysis from SCI of more than 4 years duration (aged 21 73 yrs). Subregional analysis was performed on DXA whole body scans to obtain bone mineral content (BMC, g), cortical thickness (cm), crosssectional moment of inertia (CSMI, cm4), and section modulus (cm3) of the femoral midshaft. All measured bone variables were significantly lower in SCI compared with ambulatory subjects: -29% (BMC), -33% (cortical thickness), -23% (CSMI), and -22% (section modulus) while body mass was not significantly different. However, the associations between body mass and bone properties were notably different; r2 values were higher for ambulatory than SCI subjects in regressions of body mass on BMC (0.48 vs 0.20), CSMI (0.59 vs 0.32), and section modulus (0.59 vs 0.31). No association was seen between body mass and cortical thickness for either group. The greatest difference between groups is in the femoral cortex, consistent with reduced bone mass via endosteal expansion. The relatively lesser difference in geometric and structural properties implies that there is less effect on mechanical integrity than would be expected from

  7. Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom

    International Nuclear Information System (INIS)

    Deuerling, Justin M.; Rudy, David J.; Niebur, Glen L.; Roeder, Ryan K.

    2010-01-01

    Purpose: Microcomputed tomography (micro-CT) is increasingly used as a nondestructive alternative to ashing for measuring bone mineral content. Phantoms are utilized to calibrate the measured x-ray attenuation to discrete levels of mineral density, typically including levels up to 1000 mg HA/cm 3 , which encompasses levels of bone mineral density (BMD) observed in trabecular bone. However, levels of BMD observed in cortical bone and levels of tissue mineral density (TMD) in both cortical and trabecular bone typically exceed 1000 mg HA/cm 3 , requiring extrapolation of the calibration regression, which may result in error. Therefore, the objectives of this study were to investigate (1) the relationship between x-ray attenuation and an expanded range of hydroxyapatite (HA) density in a less attenuating polymer matrix and (2) the effects of the calibration on the accuracy of subsequent measurements of mineralization in human cortical bone specimens. Methods: A novel HA-polymer composite phantom was prepared comprising a less attenuating polymer phase (polyethylene) and an expanded range of HA density (0-1860 mg HA/cm 3 ) inclusive of characteristic levels of BMD in cortical bone or TMD in cortical and trabecular bone. The BMD and TMD of cortical bone specimens measured using the new HA-polymer calibration phantom were compared to measurements using a conventional HA-polymer phantom comprising 0-800 mg HA/cm 3 and the corresponding ash density measurements on the same specimens. Results: The HA-polymer composite phantom exhibited a nonlinear relationship between x-ray attenuation and HA density, rather than the linear relationship typically employed a priori, and obviated the need for extrapolation, when calibrating the measured x-ray attenuation to high levels of mineral density. The BMD and TMD of cortical bone specimens measured using the conventional phantom was significantly lower than the measured ash density by 19% (p<0.001, ANCOVA) and 33% (p<0.05, Tukey's HSD

  8. Modalities for visualization of cortical bone remodeling: the past, present and near future

    Directory of Open Access Journals (Sweden)

    Kimberly Dawn Harrison

    2015-08-01

    Full Text Available Bone’s ability to respond to load-related phenomena and repair microdamage is achieved through the remodeling process which renews bone by activating groups of cells known as Basic Multicellular Units (BMUs. The products of BMUs, secondary osteons, have been extensively studied via classic two-dimensional (2D techniques which have provided a wealth of information on how histomorphology relates to skeletal structure and function. Remodeling is critical in maintaining healthy bone tissue; however, in osteoporotic bone imbalanced resorption results in increased bone fragility and fracture. With increasing life expectancy, such degenerative bone diseases are a growing concern. The three-dimensional (3D morphology of BMUs and their correlation to function, however, are not well characterized and little is known about the specific mechanisms that initiate and regulate their activity within cortical bone. We believe a key limitation has been the lack 3D information about BMU morphology and activity. Thus, this paper reviews methodologies for 3D investigation of cortical bone remodeling and, specifically, structures associated with BMU activity (resorption spaces and the structures they create (secondary osteons, spanning from histology to modern ex vivo imaging modalities, culminating with the growing potential of in vivo imaging. This collection of papers focuses on the theme of putting the why back into bone archytecture. Remodeling is one of two mechanisms how bone structure is dynamically modified and thus an improved 3D understanding of this fundamental process is crucial to ultimately understanding the why.

  9. Age-Related Changes in Trabecular and Cortical Bone Microstructure

    Directory of Open Access Journals (Sweden)

    Huayue Chen

    2013-01-01

    Full Text Available The elderly population has substantially increased worldwide. Aging is a complex process, and the effects of aging are myriad and insidious, leading to progressive deterioration of various organs, including the skeleton. Age-related bone loss and resultant osteoporosis in the elderly population increase the risk for fractures and morbidity. Osteoporosis is one of the most common conditions associated with aging, and age is an independent risk factor for osteoporotic fractures. With the development of noninvasive imaging techniques such as computed tomography (CT, micro-CT, and high resolution peripheral quantitative CT (HR-pQCT, imaging of the bone architecture provides important information about age-related changes in bone microstructure and estimates of bone strength. In the past two decades, studies of human specimens using imaging techniques have revealed decreased bone strength in older adults compared with younger adults. The present paper addresses recently studied age-related changes in trabecular and cortical bone microstructure based primarily on HR-pQCT and micro-CT. We specifically focus on the three-dimensional microstructure of the vertebrae, femoral neck, and distal radius, which are common osteoporotic fracture sites.

  10. Six months of disuse during hibernation does not increase intracortical porosity or decrease cortical bone geometry, strength, or mineralization in black bear (Ursus americanus) femurs.

    Science.gov (United States)

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Bunnell, Kevin; Auger, Janene; Black, Hal L; Donahue, Seth W

    2009-07-22

    Disuse typically uncouples bone formation from resorption, leading to bone loss which compromises bone mechanical properties and increases the risk of bone fracture. Previous studies suggest that bears can prevent bone loss during long periods of disuse (hibernation), but small sample sizes have limited the conclusions that can be drawn regarding the effects of hibernation on bone structure and strength in bears. Here we quantified the effects of hibernation on structural, mineral, and mechanical properties of black bear (Ursus americanus) cortical bone by studying femurs from large groups of male and female bears (with wide age ranges) killed during pre-hibernation (fall) and post-hibernation (spring) periods. Bone properties that are affected by body mass (e.g. bone geometrical properties) tended to be larger in male compared to female bears. There were no differences (p>0.226) in bone structure, mineral content, or mechanical properties between fall and spring bears. Bone geometrical properties differed by less than 5% and bone mechanical properties differed by less than 10% between fall and spring bears. Porosity (fall: 5.5+/-2.2%; spring: 4.8+/-1.6%) and ash fraction (fall: 0.694+/-0.011; spring: 0.696+/-0.010) also showed no change (p>0.304) between seasons. Statistical power was high (>72%) for these analyses. Furthermore, bone geometrical properties and ash fraction (a measure of mineral content) increased with age and porosity decreased with age. These results support the idea that bears possess a biological mechanism to prevent disuse and age-related osteoporoses.

  11. Structural and Biomechanical Adaptations to Free-Fall Landing in Hindlimb Cortical Bone of Growing Female Rats

    Directory of Open Access Journals (Sweden)

    Hsin-Shih Lin, Ho-Seng Wang, Hung-Ta Chiu, Kuang-You B. Cheng, Ar-Tyan Hsu, Tsang-Hai Huang

    2018-06-01

    Full Text Available The purpose of the study was to investigate the adaptation process of hindlimb cortical bone subjected to free-fall landing training. Female Wistar rats (7 weeks old were randomly assigned to four landing (L groups and four age-matched control (C groups (n = 12 per group: L1, L2, L4 L8, C1, C2, C4 and C8. Animals in the L1, L2, L4 and L8 groups were respectively subjected to 1, 2, 4 and 8 weeks of free-fall-landing training (40 cm height, 30 times/day and 5 days/week while the C1, C2, C4 and C8 groups served as age-matched control groups. The tibiae of the L8 group were higher in cortical bone mineral content (BMC than those in the C8 group (p < 0.05. Except for the higher bone mineralization over bone surface ratio (MS/BS, % shown in the tibiae of the L1 group (p < 0.05, dynamic histomorphometry in the tibial and femoral cortical bone showed no difference between landing groups and their age-matched control groups. In the femora, the L1 group was lower than the C1 group in cortical bone area (Ct.Ar and cortical thickness (Ct.Th (p < 0.05; however, the L4 group was higher than the C4 group in Ct.Ar and Ct.Th (p <0 .05. In the tibiae, the moment of inertia about the antero-posterior axis (Iap, Ct.Ar and Ct.Th was significantly higher in the L8 group than in the C8 group (p < 0.05. In biomechanical testing, fracture load (FL of femora was lower in the L1 group than in the C1 group (p < 0.05. Conversely, yield load (YL, FL and yield load energy (YE of femora, as well as FL of tibiae were all significantly higher in the L8 group than in the C8 group (p < 0.05. Free-fall landing training may initially compromise bone material. However, over time, the current free-fall landing training induced improvements in biomechanical properties and/or the structure of growing bones.

  12. Structural and Biomechanical Adaptations to Free-Fall Landing in Hindlimb Cortical Bone of Growing Female Rats.

    Science.gov (United States)

    Lin, Hsin-Shih; Wang, Ho-Seng; Chiu, Hung-Ta; Cheng, Kuang-You B; Hsu, Ar-Tyan; Huang, Tsang-Hai

    2018-06-01

    The purpose of the study was to investigate the adaptation process of hindlimb cortical bone subjected to free-fall landing training. Female Wistar rats (7 weeks old) were randomly assigned to four landing (L) groups and four age-matched control (C) groups (n = 12 per group): L1, L2, L4 L8, C1, C2, C4 and C8. Animals in the L1, L2, L4 and L8 groups were respectively subjected to 1, 2, 4 and 8 weeks of free-fall-landing training (40 cm height, 30 times/day and 5 days/week) while the C1, C2, C4 and C8 groups served as age-matched control groups. The tibiae of the L8 group were higher in cortical bone mineral content (BMC) than those in the C8 group (p < 0.05). Except for the higher bone mineralization over bone surface ratio (MS/BS, %) shown in the tibiae of the L1 group (p < 0.05), dynamic histomorphometry in the tibial and femoral cortical bone showed no difference between landing groups and their age-matched control groups. In the femora, the L1 group was lower than the C1 group in cortical bone area (Ct.Ar) and cortical thickness (Ct.Th) (p < 0.05); however, the L4 group was higher than the C4 group in Ct.Ar and Ct.Th (p <0 .05). In the tibiae, the moment of inertia about the antero-posterior axis ( I ap ), Ct.Ar and Ct.Th was significantly higher in the L8 group than in the C8 group (p < 0.05). In biomechanical testing, fracture load (FL) of femora was lower in the L1 group than in the C1 group (p < 0.05). Conversely, yield load (YL), FL and yield load energy (YE) of femora, as well as FL of tibiae were all significantly higher in the L8 group than in the C8 group (p < 0.05). Free-fall landing training may initially compromise bone material. However, over time, the current free-fall landing training induced improvements in biomechanical properties and/or the structure of growing bones.

  13. Noncontact ultrasound imaging applied to cortical bone phantoms

    OpenAIRE

    Bulman, J. B.; Ganezer, K. S.; Halcrow, P. W.; Neeson, Ian

    2012-01-01

    Purpose: The purpose of this paper was to take the first steps toward applying noncontact ultrasound (NCU) to the tasks of monitoring osteoporosis and quantitative ultrasound imaging (QUS) of cortical bone. The authors also focused on the advantages of NCU, such as its lack of reliance on a technologist to apply transducers and a layer of acoustical coupling gel, the ability of the transducers to operate autonomously as specified by preprogrammed software, and the likely reduction in statisti...

  14. Bone geometry, volumetric density, microarchitecture, and estimated bone strength assessed by HR-pQCT in Klinefelter syndrome

    DEFF Research Database (Denmark)

    Shanbhogue, Vikram V; Hansen, Stinus; Jørgensen, Niklas Rye

    2014-01-01

    Although the expected skeletal manifestations of testosterone deficiency in Klinefelter's syndrome (KS) are osteopenia and osteoporosis, the structural basis for this is unclear. The aim of this study was to assess bone geometry, volumetric bone mineral density (vBMD), microarchitecture...

  15. Mechanotransduction in cortical bone and the role of piezoelectricity: a numerical approach.

    Science.gov (United States)

    Stroe, M C; Crolet, J M; Racila, M

    2013-01-01

    This paper is a contribution to a plausible explanation of the mechanotransduction phenomenon in cortical bone during its remodelling. Our contribution deals only with the mechanical processes and the biological aspects have not been taken into account. It is well known that osteoblasts are able to generate bone in a suitable bony substitute only under fluid action. But the bone created in this manner is not organised to resist specific mechanical stress. Our aim was to suggest the nature of the physical information that can be transmitted - directly or via a biological or biochemical process - to the cell to initiate a cellular activity inducing the reconstruction of the osteon that is best adapted to local mechanical stresses. For this, the cell must have, from our point of view, a good knowledge of its structural environment. But this knowledge exists at the cellular scale while the bone is loaded at the macroscopic scale. This study is based on the SiNuPrOs model that allows exchange of information between the different structural scales of cortical bone. It shows that more than the fluid, the collagen - via its piezoelectric properties - plays an essential role in the transmission of information between the macroscopic and nanoscopic scales. Moreover, this process allows us to explain various dysfunctions and even some diseases.

  16. Synergistic effect of parathyroid hormone and growth hormone on trabecular and cortical bone formation in hypophysectomized rats.

    Science.gov (United States)

    Guevarra, Maria Sarah N; Yeh, James K; Castro Magana, Mariano; Aloia, John F

    2010-01-01

    Growth hormone (GH) deficiency in pediatric patients results in short stature and osteopenia. We postulated that the GH and parathyroid hormone (PTH) combination would result in improvement in bone growth and bone formation. Forty hypophysectomized female rats at age 8 weeks were divided into hypophysectomy (HX), HX + PTH (62.5 microg/kg, s.c. daily), HX + GH (3.33 mg/kg, s.c. daily), and HX + PTH + GH for a 4-week study. GH increased body weight, bone growth, bone mineral content (BMC) and bone mineral density (BMD), whereas PTH increased BMC and BMD without a significant effect on bone size. GH increased both periosteal and endocortical bone formation and cortical size, while PTH increased only endocortical bone formation. GH mitigated the trabecular bone loss by increasing bone formation, while PTH increased bone mass by increasing bone formation and suppressing osteoclast number per bone area. The result of combined intervention shows an increase in trabecular, periosteal and endocortical bone formation and suppression of bone resorption resulting in a synergistic effect on increasing trabecular and cortical bone volume and BMD. The combination treatment of PTH and GH increases bone growth, bone formation, decreases bone resorption and has a synergistic effect on increasing bone density and bone mass. Copyright (c) 2010 S. Karger AG, Basel.

  17. Adaptations in the Microarchitecture and Load Distribution of Maternal Cortical and Trabecular Bone in Response to Multiple Reproductive Cycles in Rats

    Science.gov (United States)

    de Bakker, Chantal M. J.; Altman-Singles, Allison R.; Li, Yihan; Tseng, Wei-Ju; Li, Connie; Liu, X. Sherry

    2017-01-01

    Pregnancy, lactation, and weaning result in dramatic changes in maternal calcium metabolism. In particular, the increased calcium demand during lactation causes a substantial degree of maternal bone loss. This reproductive bone loss has been suggested to be largely reversible, as multiple clinical studies have found that parity and lactation history have no adverse effect on post-menopausal fracture risk. However, the precise effects of pregnancy, lactation, and post-weaning recovery on maternal bone structure are not well understood. Our study aimed to address this question by longitudinally tracking changes in trabecular and cortical bone microarchitecture at the proximal tibia in rats throughout three cycles of pregnancy, lactation, and post-weaning using in vivo μCT. We found that the trabecular thickness underwent a reversible deterioration during pregnancy and lactation, which was fully recovered after weaning, while other parameters of trabecular microarchitecture (including trabecular number, spacing, connectivity density, and structure model index) underwent a more permanent deterioration which recovered minimally. Thus, pregnancy and lactation resulted in both transient and long-lasting alterations in trabecular microstructure. In the meantime, multiple reproductive cycles appeared to improve the robustness of cortical bone (resulting in an elevated cortical area and polar moment of inertia), as well as increase the proportion of the total load carried by the cortical bone at the proximal tibia. Taken together, changes in the cortical and trabecular compartments suggest that while rat tibial trabecular bone appears to be highly involved in maintaining calcium homeostasis during female reproduction, cortical bone adapts to increase its load-bearing capacity, allowing the overall mechanical function of the tibia to be maintained. PMID:28109138

  18. Glycation of human cortical and cancellous bone captures differences in the formation of Maillard reaction products between glucose and ribose.

    Directory of Open Access Journals (Sweden)

    Grażyna E Sroga

    Full Text Available To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs at the levels that corresponded to approx. 25-30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation or ribose (ribosylation. Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women. More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples. Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar

  19. Suppression of autophagy in osteocytes does not modify the adverse effects of glucocorticoids on cortical bone.

    Science.gov (United States)

    Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Wang, Yiying; Almeida, Maria; Thostenson, Jeff D; Weinstein, Robert S; Manolagas, Stavros C; O'Brien, Charles A

    2015-06-01

    Glucocorticoid excess decreases bone mass and strength in part by acting directly on osteoblasts and osteocytes, but the mechanisms remain unclear. Macroautophagy (herein referred to as autophagy) is a lysosome-based recycling pathway that promotes the turnover of intracellular components and can promote cell function and survival under stressful conditions. Recent studies have shown that glucocorticoids stimulate autophagy in osteocytes, suggesting that autophagy may oppose the negative actions of glucocorticoids on this cell type. To address this possibility, we compared the impact of prednisolone administration on the skeletons of adult mice in which autophagy was suppressed in osteocytes, via deletion of Atg7 with a Dmp1-Cre transgene, to their control littermates. In control mice, prednisolone increased autophagic flux in osteocyte-enriched bone as measured by LC3 conversion, but this change did not occur in the mice lacking Atg7 in osteocytes. Nonetheless, prednisolone reduced femoral cortical thickness, increased cortical porosity, and reduced bone strength to similar extents in mice with and without autophagy in osteocytes. Prednisolone also suppressed osteoblast number and bone formation in the cancellous bone of control mice. As shown previously, Atg7 deletion in osteocytes reduced osteoblast number and bone formation in cancellous bone, but these parameters were not further reduced by prednisolone administration. In cortical bone, prednisolone elevated osteoclast number to a similar extent in both genotypes. Taken together, these results demonstrate that although glucocorticoids stimulate autophagy in osteocytes, suppression of autophagy in this cell type does not worsen the negative impact of glucocorticoids on the skeleton. Published by Elsevier Inc.

  20. Physical and chemical characteristics of the demineralized lyophylized bovine cortical bone sterilized by gamma irradiation

    International Nuclear Information System (INIS)

    Basril, A.; Febrida, A.; Hilmy, N.; Surtipanti, S.; Petrus, Z.

    1999-01-01

    The purpose of the studies were: 1) to ascertain the relationship between immersion time of bone in the Hydrochloride acid (HCl) solution and Calcium and Phosphor content in the bone and 2) to study the effects of irradiation on bone hardness. The methods used in these studies were according to American Association of Tissue Bank. The samples of bovine cortical bone in shape of I cm x I cm were demineralised in 0.6 N of HCl at room temperature until 72 hours. At 12, 24, 48, and 72 hours after demineralisation, 10 grams of demineralised samples were removed and labelled to reflect the demineralisation time. The pH values were monitored at 15 minutes intervals until the end of the process. Subsequently the wet samples were freeze-dried and Calcium and phosphor content were determined by X-ray diffraction. To observe the effects of radiation on bone hardness, the lyophilised cortical bovine bone was irradiated with gamma rays at the doses of 0, 10, 20, and 30 kGy and then were stored until 6 months. Results indicate that the beginning pH of the solution is 1. 1 and it increase sharply up to 2.3 after 12 hours of demineralisation and that pH become constant at 2.5 until the end of process. Calcium and phosphor content in the bone reduce in correlation with increasing of the pH. The beginning of Calcium and phosphor content in the bone are 36.4% and 25.3%, respectively and they reduce to 10.8% and 8.4% at the end of the process. The hardness of non irradiated and non demineralised, demineralised, irradiated, and demineralised irradiated of the cortical bone are 77.67; 65.21; 63.67; and 55.15 Vickers, respectively. The effects of irradiation up to 30 kGy on the hardness of the bone are not significant, but the storage time until 6 months give a significant of reduction. It can be concluded using this method the minimum residual of Calcium concentration in the bone is 10.8%

  1. Micro-computed tomography of fatigue microdamage in cortical bone using a barium sulfate contrast agent.

    Science.gov (United States)

    Leng, Huijie; Wang, Xiang; Ross, Ryan D; Niebur, Glen L; Roeder, Ryan K

    2008-01-01

    Accumulation of microdamage during fatigue can lead to increased fracture susceptibility in bone. Current techniques for imaging microdamage in bone are inherently destructive and two-dimensional. Therefore, the objective of this study was to image the accumulation of fatigue microdamage in cortical bone using micro-computed tomography (micro-CT) with a barium sulfate (BaSO(4)) contrast agent. Two symmetric notches were machined on the tensile surface of bovine cortical bone beams in order to generate damage ahead of the stress concentrations during four-point bending fatigue. Specimens were loaded to a specified number of cycles or until one notch fractured, such that the other notch exhibited the accumulation of microdamage prior to fracture. Microdamage ahead of the notch was stained in vitro by precipitation of BaSO(4) and imaged using micro-CT. Reconstructed images showed a distinct region of bright voxels around the notch tip or along propagating cracks due to the presence of BaSO(4), which was verified by backscattered electron imaging and energy dispersive spectroscopy. The shape of the stained region ahead of the notch tip was consistent with principal strain contours calculated by finite element analysis. The relative volume of the stained region was correlated with the number of loading cycles by non-linear regression using a power-law. This study demonstrates new methods for the non-destructive and three-dimensional detection of fatigue microdamage accumulation in cortical bone in vitro, which may be useful to gain further understanding into the role of microdamage in bone fragility.

  2. The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization

    Science.gov (United States)

    Parnell, William J; Grimal, Quentin

    2008-01-01

    Recently, the mesoscale of cortical bone has been given particular attention in association with novel experimental techniques such as nanoindentation, micro-computed X-ray tomography and quantitative scanning acoustic microscopy (SAM). A need has emerged for reliable mathematical models to interpret the related microscopic and mesoscopic data in terms of effective elastic properties. In this work, a new model of cortical bone elasticity is developed and used to assess the influence of mesoscale porosity on the induced anisotropy of the material. Only the largest pores (Haversian canals and resorption cavities), characteristic of the mesoscale, are considered. The input parameters of the model are derived from typical mesoscale experimental data (e.g. SAM data). We use the method of asymptotic homogenization to determine the local effective elastic properties by modelling the propagation of low-frequency elastic waves through an idealized material that models the local mesostructure. We use a novel solution of the cell problem developed by Parnell & Abrahams. This solution is stable for the physiological range of variation of mesoscopic porosity and elasticity found in bone. Results are computed efficiently (in seconds) and the solutions can be implemented easily by other workers. Parametric studies are performed in order to assess the influence of mesoscopic porosity, the assumptions regarding the material inside the mesoscale pores (drained or undrained bone) and the shape of pores. Results are shown to be in good qualitative agreement with existing schemes and we describe the potential of the scheme for future use in modelling more complex microstructures for cortical bone. In particular, the scheme is shown to be a useful tool with which to predict the qualitative changes in anisotropy due to variations in the structure at the mesoscale. PMID:18628200

  3. Mechanical test and fractal analysis on anisotropic fracture of cortical bone

    International Nuclear Information System (INIS)

    Yin, Dagang; Chen, Bin; Ye, Wei; Gou, Jihua; Fan, Jinghong

    2015-01-01

    Highlights: • The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. • SEM observation shows that the roughness of the fracture surfaces of the three different directions of the bone are remarkably different. • The fractal dimensions of the different fracture surfaces of the bone are calculated by box-counting method in MATLAB. • The fracture energies of the different fracture directions are calculated based on their fractal models. - Abstract: The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. It is indicated that the fracture energy along the transversal direction of the bone is distinctly larger than those of the longitudinal and radial directions. The fracture surfaces of the three different directions are observed by scanning electron microscope (SEM). It is shown that the roughness of the fracture surface of the transversal direction is obviously larger than those of the fracture surfaces of the longitudinal and radial directions. It is also revealed that the osteons in the bone are perpendicular to the fracture surface of the transversal direction and parallel to the fracture surfaces of the longitudinal and radial directions. Based on these experimental results, the fractal dimensions of the fracture surfaces of different directions are calculated by box-counting method in MATLAB. The calculated results show that the fractal dimension of the fracture surface of the transversal direction is remarkably larger than those of the fracture surfaces of the longitudinal and radial directions. The fracture energies of different directions are also calculated based on their fractal models. It is denoted that the fracture energy of the transversal direction is remarkably larger than those of the longitudinal and radial directions. The calculated results are in

  4. Mechanical test and fractal analysis on anisotropic fracture of cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Dagang [State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044 (China); College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Chen, Bin, E-mail: bchen@cqu.edu.cn [State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044 (China); College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Ye, Wei [College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Gou, Jihua [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Fan, Jinghong [Division of Mechanical Engineering, Alfred University, Alfred, NY 14802 (United States)

    2015-12-01

    Highlights: • The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. • SEM observation shows that the roughness of the fracture surfaces of the three different directions of the bone are remarkably different. • The fractal dimensions of the different fracture surfaces of the bone are calculated by box-counting method in MATLAB. • The fracture energies of the different fracture directions are calculated based on their fractal models. - Abstract: The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. It is indicated that the fracture energy along the transversal direction of the bone is distinctly larger than those of the longitudinal and radial directions. The fracture surfaces of the three different directions are observed by scanning electron microscope (SEM). It is shown that the roughness of the fracture surface of the transversal direction is obviously larger than those of the fracture surfaces of the longitudinal and radial directions. It is also revealed that the osteons in the bone are perpendicular to the fracture surface of the transversal direction and parallel to the fracture surfaces of the longitudinal and radial directions. Based on these experimental results, the fractal dimensions of the fracture surfaces of different directions are calculated by box-counting method in MATLAB. The calculated results show that the fractal dimension of the fracture surface of the transversal direction is remarkably larger than those of the fracture surfaces of the longitudinal and radial directions. The fracture energies of different directions are also calculated based on their fractal models. It is denoted that the fracture energy of the transversal direction is remarkably larger than those of the longitudinal and radial directions. The calculated results are in

  5. Development of a Three-Dimensional (3D) Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft

    Science.gov (United States)

    Chou, Ying-Chao; Lee, Demei; Chang, Tzu-Min; Hsu, Yung-Heng; Yu, Yi-Hsun; Liu, Shih-Jung; Ueng, Steve Wen-Neng

    2016-01-01

    This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D) printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire) fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft. PMID:27104525

  6. Development of a Three-Dimensional (3D Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft

    Directory of Open Access Journals (Sweden)

    Ying-Chao Chou

    2016-04-01

    Full Text Available This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft.

  7. Determination of a tissue-level failure evaluation standard for rat femoral cortical bone utilizing a hybrid computational-experimental method.

    Science.gov (United States)

    Fan, Ruoxun; Liu, Jie; Jia, Zhengbin; Deng, Ying; Liu, Jun

    2018-01-01

    Macro-level failure in bone structure could be diagnosed by pain or physical examination. However, diagnosing tissue-level failure in a timely manner is challenging due to the difficulty in observing the interior mechanical environment of bone tissue. Because most fractures begin with tissue-level failure in bone tissue caused by continually applied loading, people attempt to monitor the tissue-level failure of bone and provide corresponding measures to prevent fracture. Many tissue-level mechanical parameters of bone could be predicted or measured; however, the value of the parameter may vary among different specimens belonging to a kind of bone structure even at the same age and anatomical site. These variations cause difficulty in representing tissue-level bone failure. Therefore, determining an appropriate tissue-level failure evaluation standard is necessary to represent tissue-level bone failure. In this study, the yield and failure processes of rat femoral cortical bones were primarily simulated through a hybrid computational-experimental method. Subsequently, the tissue-level strains and the ratio between tissue-level failure and yield strains in cortical bones were predicted. The results indicated that certain differences existed in tissue-level strains; however, slight variations in the ratio were observed among different cortical bones. Therefore, the ratio between tissue-level failure and yield strains for a kind of bone structure could be determined. This ratio may then be regarded as an appropriate tissue-level failure evaluation standard to represent the mechanical status of bone tissue.

  8. Femtosecond laser ablation of bovine cortical bone

    Science.gov (United States)

    Cangueiro, Liliana T.; Vilar, Rui; Botelho do Rego, Ana M.; Muralha, Vania S. F.

    2012-12-01

    We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.

  9. Radiographic healing and remodelling of cortical and cancellous bone grafts after rigid plate fixation

    International Nuclear Information System (INIS)

    Waris, P.; Karaharju, E.; Slaetis, P.; Paavolainen, P.

    1980-01-01

    Cortical and cancellous interposition grafts, with rigid plate fixation, in the tibiofibular bones of 130 rabbits were followed radiographically for one year. The cancellous grafts healed earlier, but by 12 weeks both graft types had been incorporated, the distal host-graft interface being the last to heal. Progressive cancellous transformation in both the graft and host bone led to an increased over-all bone diameter, a widened medullary canal and a thinned porotic wall. (Auth.)

  10. Sex-specific patterns in cortical and trabecular bone microstructure in the Kirsten Skeletal Collection, South Africa.

    Science.gov (United States)

    Beresheim, Amy C; Pfeiffer, Susan K; Grynpas, Marc D; Alblas, Amanda

    2018-02-07

    The purpose of this study was to provide bone histomorphometric reference data for South Africans of the Western Cape who likely dealt with health issues under the apartheid regime. The 206 adult individuals ( n female = 75, n male = 131, mean = 47.9 ± 15.8 years) from the Kirsten Skeletal Collection, U. Stellenbosch, lived in the Cape Town metropole from the late 1960s to the mid-1990s. To study age-related changes in cortical and trabecular bone microstructure, photomontages of mid-thoracic rib cross-sections were quantitatively examined. Variables include relative cortical area (Rt.Ct.Ar), osteon population density (OPD), osteon area (On.Ar), bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular spacing (Tb.Sp). All cortical variables demonstrated significant relationships with age in both sexes, with women showing stronger overall age associations. Peak bone mass was compromised in some men, possibly reflecting poor nutritional quality and/or substance abuse issues throughout adolescence and early adulthood. In women, greater predicted decrements in On.Ar and Rt.Ct.Ar suggest a structural disadvantage with age, consistent with postmenopausal bone loss. Age-related patterns in trabecular bone microarchitecture are variable and difficult to explain. Except for Tb.Th, there are no statistically significant relationships with age in women. Men demonstrate significant negative correlations between BV/TV, Tb.N, and age, and a significant positive correlation between Tb.Sp and age. This research highlights sex-specific differences in patterns of age-related bone loss, and provides context for discussion of contemporary South African bone health. While the study sample demonstrates indicators of poor bone quality, osteoporosis research continues to be under-prioritized in South Africa. © 2018 Wiley Periodicals, Inc.

  11. Collagen and mineral deposition in rabbit cortical bone during maturation and growth: effects on tissue properties.

    Science.gov (United States)

    Isaksson, Hanna; Harjula, Terhi; Koistinen, Arto; Iivarinen, Jarkko; Seppänen, Kari; Arokoski, Jari P A; Brama, Pieter A; Jurvelin, Jukka S; Helminen, Heikki J

    2010-12-01

    We characterized the composition and mechanical properties of cortical bone during maturation and growth and in adult life in the rabbit. We hypothesized that the collagen network develops earlier than the mineralized matrix. Growth was monitored, and the rabbits were euthanized at birth (newborn), and at 1, 3, 6, 9, and 18 months of age. The collagen network was assessed biochemically (collagen content, enzymatic and non-enzymatic cross-links) in specimens from the mid-diaphysis of the tibia and femur and biomechanically (tensile testing) from decalcified whole tibia specimens. The mineralized matrix was analyzed using pQCT and 3-point bend tests from intact femur specimens. The collagen content and the Young's modulus of the collagen matrix increased significantly until the rabbits were 3 months old, and thereafter remained stable. The amount of HP and LP collagen cross-links increased continuously from newborn to 18 months of age, whereas PEN cross-links increased after 6 months of age. Bone mineral density and the Young's modulus of the mineralized bone increased until the rabbits were at least 6 months old. We concluded that substantial changes take place during the normal process of development in both the biochemical and biomechanical properties of rabbit cortical bone. In cortical bone, the collagen network reaches its mature composition and mechanical strength prior to the mineralized matrix. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Exploring thermal anisotropy of cortical bone using temperature measurements in drilling.

    Science.gov (United States)

    Alam, Khurshid

    2016-05-12

    Bone drilling is widely used in orthopaedics for fracture treatment, reconstructive surgery and bone biopsy. Heat generation in bone drilling can cause rise in bone temperature resulting in prolonged healing time or loosening of fixation. The purpose of this study was to investigate thermal anisotropy of bone by measuring the level of temperature in bone drilling with and without cooling conditions in two anatomical directions. Drilling tests were performed on bovine cortical bone. A total of fifteen specimens were used to obtain data for statistical analysis. Temperature near the cutting zone was measured in two anatomical directions. i.e. along the longitudinal and circumferential direction. Temperature distribution was also found in the two prescribed directions. Analysis of variance (ANOVA) was used to identify significant drilling parameter affecting bone temperature. Drilling speed, feed rate and drill size were found influential parameters affecting bone temperature. Higher drilling speed, feed rate, and large drill size were found to cause elevated temperature in bone. Much lower temperature was measured in bone when cooling fluid was supplied to the drilling region. Experimental results revealed lower temperatures in the circumferential direction compared to the longitudinal direction. Thermal anisotropy for heat transport was found in the bone. This study recommends lower drilling speed and feed rate and cooling for controlling rise in bone temperature.

  13. Interaction between LRP5 and periostin gene polymorphisms on serum periostin levels and cortical bone microstructure.

    Science.gov (United States)

    Pepe, J; Bonnet, N; Herrmann, F R; Biver, E; Rizzoli, R; Chevalley, T; Ferrari, S L

    2018-02-01

    We investigated the interaction between periostin SNPs and the SNPs of the genes assumed to modulate serum periostin levels and bone microstructure in a cohort of postmenopausal women. We identified an interaction between LRP5 SNP rs648438 and periostin SNP rs9547970 on serum periostin levels and on radial cortical porosity. The purpose of this study is to investigate the interaction between periostin gene polymorphisms (SNPs) and other genes potentially responsible for modulating serum periostin levels and bone microstructure in a cohort of postmenopausal women. In 648 postmenopausal women from the Geneva Retirees Cohort, we analyzed 6 periostin SNPs and another 149 SNPs in 14 genes, namely BMP2, CTNNB1, ESR1, ESR2, LRP5, LRP6, PTH, SPTBN1, SOST, TGFb1, TNFRSF11A, TNFSF11, TNFRSF11B and WNT16. Volumetric BMD and bone microstructure were measured by high-resolution peripheral quantitative computed tomography at the distal radius and tibia. Serum periostin levels were associated with radial cortical porosity, including after adjustment for age, BMI, and years since menopause (p = 0.036). Sixteen SNPs in the ESR1, LRP5, TNFRSF11A, SOST, SPTBN1, TNFRSF11B and TNFSF11 genes were associated with serum periostin levels (p range 0.03-0.001) whereas 26 SNPs in 9 genes were associated with cortical porosity at the radius and/or at the tibia. WNT 16 was the gene with the highest number of SNPs associated with both trabecular and cortical microstructure. The periostin SNP rs9547970 was also associated with cortical porosity (p = 0.04). In particular, SNPs in LRP5, ESR1 and near the TNFRSF11A gene were associated with both cortical porosity and serum periostin levels. Eventually, we identified an interaction between LRP5 SNP rs648438 and periostin SNP rs9547970 on serum periostin levels (interaction p = 0.01) and on radial cortical porosity (interaction p = 0.005). These results suggest that periostin expression is genetically modulated, particularly by polymorphisms

  14. Influence of estrogen deficiency and tibolone therapy on trabecular and cortical bone evaluated by computed radiography system in rats

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ana Carolina Bergmann de; Henriques, Helene Nara [Postgraduate Program in Pathology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Fernandes, Gustavo Vieira Oliveira [Postgraduate Program in Medical Sciences, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Lima, Inaya; Oliveira, Davi Ferreira de; Lopes, Ricardo Tadeu [Nuclear Engineering Program, Federal University of Rio de Janeiro (UFRJ), RJ (Brazil); Pantaleao, Jose Augusto Soares [Maternal and Child Department, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Granjeiro, Jose Mauro [Department of Cellular and Molecular Biology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Silva, Maria Angelica Guzman [Department of Pathology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-03-15

    Purpose: To verify the effects of tibolone administration on trabecular and cortical bone of ovariectomized female rats by computed radiography system (CRS). Methods: The experiment was performed on two groups of rats previously ovariectomized, one received tibolone (OVX+T) while the other did not (OVX), those groups were compared to a control group (C) not ovariectomized. Tibolone administration (1 mg/day) began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs and tibias collected. Computed radiographs of the bones were obtained and the digital images were used to determine the bone optical density and cortical thickness on every group. All results were statistically evaluated with significance set at P<0.05%. Results: Tibolone administration was shown to be beneficial only in the densitometric analysis of the femoral head, performing higher optical density compared to OVX. No difference was found in cortical bone thickness. Conclusion: Ovariectomy caused bone loss in the analyzed regions and tibolone administered in high doses over a long period showed not to be fully beneficial, but preserved bone mass in the femoral head. (author)

  15. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone.

    Science.gov (United States)

    Fletcher, Lloyd; Codrington, John; Parkinson, Ian

    2014-07-01

    As a composite material, cortical bone accumulates fatigue microdamage through the repetitive loading of everyday activity (e.g. walking). The accumulation of fatigue microdamage is thought to contribute to the occurrence of fragility fractures in older people. Therefore it is beneficial to understand the relationship between microcrack accumulation and the fracture resistance of cortical bone. Twenty longitudinally orientated compact tension fracture specimens were machined from a single bovine femur, ten specimens were assigned to both the control and fatigue damaged groups. The damaged group underwent a fatigue loading protocol to induce microdamage which was assessed via fluorescent microscopy. Following fatigue loading, non-linear fracture resistance tests were undertaken on both the control and damaged groups using the J-integral method. The interaction of the crack path with the fatigue induced damage and inherent toughening mechanisms were then observed using fluorescent microscopy. The results of this study show that fatigue induced damage reduces the initiation toughness of cortical bone and the growth toughness within the damage zone by three distinct mechanisms of fatigue-fracture interaction. Further analysis of the J-integral fracture resistance showed both the elastic and plastic component were reduced in the damaged group. For the elastic component this was attributed to a decreased number of ligament bridges in the crack wake while for the plastic component this was attributed to the presence of pre-existing fatigue microcracks preventing energy absorption by the formation of new microcracks.

  16. Edentulation alters material properties of cortical bone in the human craniofacial skeleton: functional implications for craniofacial structure in primate evolution

    Science.gov (United States)

    Dechow, Paul C.; Wang, Qian; Peterson, Jill

    2011-01-01

    Skeletal adaptations to reduced function are an important source of skeletal variation and may be indicative of environmental pressures that lead to evolutionary changes. Humans serve as a model animal to investigate the effects of loss of craniofacial function through edentulation. In the human maxilla, it is known that edentulation leads to significant changes in skeletal structure such as residual ridge resorption and loss of cortical thickness. However, little is known about changes in bone tissue structure and material properties, which are also important for understanding skeletal mechanics but are often ignored. The aims of this study were to determine cortical material properties in edentulous crania and to evaluate differences with dentate crania and thus examine the effects of loss of function on craniofacial structure. Cortical bone samples from fifteen edentulous human skulls were measured for thickness and density. Elastic properties and directions of maximum stiffness were determined by using ultrasonic techniques. These data were compared to those from dentate crania reported in a previous investigation. Cortical bone from all regions of the facial skeleton of edentulous individuals is thinner than in dentate skulls. Elastic and shear moduli, and density are similar or greater in the zygoma and cranial vault of edentulous individuals, while these properties are less in the maxilla. Most cortical bone, especially in edentulous maxillae, has reduced directional orientation. The loss of significant occlusal loads following edentulation may contribute to the change in material properties and the loss of orientation over time during the normal process of bone remodeling. These results suggest that area-specific cortical microstructural changes accompany bone resorption following edentulation. They also suggest that functional forces are important for maintaining bone mass throughout the craniofacial skeleton, even in areas such as the browridges, which

  17. Contribution of the endosteal surface of cortical bone to the trabecular pattern seen on IOPA radiographs: an in vitro study

    Directory of Open Access Journals (Sweden)

    P T Ravikumar

    2012-01-01

    Full Text Available Objectives: A study was conducted to assess the contribution of the cancellous and endosteal surface of the cortical bone to the trabecular pattern seen in an IOPA radiograph. Materials and methods: An in vitro study analyzing the contribution of the endosteal surface of cortical bone and cancellous bone to the trabecular pattern was conducted, using 60 specimens of desiccated human mandibles. The mode of execution involved IOPA radiographic evaluation of premolarmolar segments in the specimens before and after removal of cancellous bone. The radiographs were numbered for identification and subjected to evaluation by 5 dentomaxillofacial radiologists who were doubleblinded to ensure an unbiased interpretation. Results: The trabecular pattern appreciation by the experts in the IOPA radiographs before and after removal of cancellous bone displayed immaculate correlation as per the Goodman-Kruskal Gamma Coefficient values which was 0.78 indicating a very large correlation. The relative density of trabecular pattern was significantly higher in radiograph before than after removal of cancellous bone with p-value less than 0.05. Conclusion: Based on these results it was adjudged that both the cancellous and endosteal surface of cortical bone contributed significantly to the trabecular pattern in an IOPA radiograph.

  18. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl Christian; Overgaard, Søren

    2011-01-01

    of 3 months without treatment. Group 3 was left untreated and served as controls. All sheep received a restricted diet with low calcium and phosphorus. At sacrifice, cortical bone samples from the femur midshaft of each sheep were harvested, micro-CT scanned and subjected to three-point bending...... and tensile strength testing. Bone collagen and mineral were determined. Cortical porosity was significantly increased in the glucocorticoid-2 compared with the glucocorticoid-1 and control groups. Apparent density was significantly decreased in the glucocorticoid-2 compared with the glucocorticoid-1 group....... Collagen content was significantly increased in the glucocorticoid-2 compared with the glucocorticoid-1 and control groups. Bone mineral content did not differ between the groups. Neither the three-point bending mechanical properties nor the tensile mechanical properties differed significantly between...

  19. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl C; Overgaard, Søren

    2010-01-01

    The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone – Validation of large animal model for tissue engineering and biomaterial research Ming Ding,1* Carl Christian Danielsen,2 Søren Overgaard1 1Orthopaedic Research Laboratory......, Department of Orthopaedics and Traumatology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark 2Department of Connective Tissue Biology, Institute of Anatomy, University of Aarhus, Aarhus C, Denmark Osteopenia in sheep has been successfully induced...... by glucocorticoid treatment and the changes in properties of cancellous bone were comparable with those observed in humans after long-term glucocorticoid treatment. However, the influence on cortical bone has not been thoroughly elucidated. This study aimed to investigate the influence of glucocorticoid on sheep...

  20. The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Launey, Maximilien E.; Ritchie, Robert O.

    2010-03-25

    The majority of fracture mechanics studies on the toughness of bone have been performed under tensile loading. However, it has recently been shown that the toughness of human cortical bone in the transverse (breaking) orientation is actually much lower in shear (mode II) than in tension (mode I); a fact that is physiologically relevant as in vivo bone is invariably loaded multiaxially. Since bone is a material that derives its fracture resistance primarily during crack growth through extrinsic toughening mechanisms, such as crack deflection and bridging, evaluation of its toughness is best achieved through measurements of the crack-resistance or R-curve, which describes the fracture toughness as a function of crack extension. Accordingly, in this study, we attempt to measure for the first time the R-curve fracture toughness of human cortical bone under physiologically relevant mixed-mode loading conditions. We show that the resulting mixed-mode (mode I + II) toughness depends strongly on the crack trajectory and is the result of the competition between the paths of maximum mechanical driving force and 'weakest' microstructural resistance.

  1. Evaluation of the Cortical Bone Reaction Around of Implants Using a Single-Use Final Drill: A Histologic Study.

    Science.gov (United States)

    Gehrke, Sergio Alexandre

    2015-07-01

    This study was designed to compare the cortical bone reaction following traditional osteotomy or the use of a single-use final drill in the osseointegration of implants in the tibia of rabbits. For this study, 48 conical implants, of standard surface type and design and manufactured by the same company, were inserted into the tibiae of 12 rabbits and removed after 30 or 60 days for histologic analysis. Two test groups were prepared according to the drill sequence used for the osteotomy at the preparation sites: in the control group was used a conventional drill sequence with several uses, whereas the test group (tesG) used a single-use final drill. The bone-to-implant contact and qualitative factors of the resulting cortical bone were assessed. Both techniques produced good implant integration. Differences in the linear bone-to-implant contact were observed between the drilling procedures as time elapsed in vivo, with the tesG appearing to have clinical advantages. Both groups exhibited new bone in quantity and in quality; however, the tesG exhibited a higher level of new bone deposition than the control group. Within the limitations of this study, the findings suggest that the use of a single-use final drill leads to better and faster organization of the cortical bone area during the evaluated period and may avoid the possible problems that can be caused by worn drills.

  2. Effect of synthetic cell-binding peptide on the healing of cortical segmental bone defects

    International Nuclear Information System (INIS)

    Cakmak, G.; Bolukbasi, S.; Simsek, A.; Senkoylu, A.; Erdem, O.; Yilmaz, G.

    2006-01-01

    To determine the effect of inorganic bone matric/Pepgen P-15 (ABM/P-15) on the healing of a critical sized segmental defect in a rat radius using a radiological and histological grading system. We carried out this study at the Research Laboratories, Gazi University School of Medicine in 2004. Critical sized segmental defects were created in the radius of 36 Wistar rats. Thirteen defects were filled with ABM/P-15 Flow (gel form), 12 defects were filled with ABM/P-15, and 11 defects were used as a control group. The rats were sacrified at the tenth week, and healing of the defects was evaluated radiographically and histologically. The usage of ABM/P-15 and ABM/P-15 Flow were demonstrated to improve healing of segmental bone defects compared with the control group. Statistical evaluation showed that there were significant differences between control sites, and the sites treated with P-15 and P-15 Flow (p=0.011). The highest radiological and histological grades were achieved by P-15. Segmental cortical bone defects may be treated with ABM/P-15 instead of bone allografts, and autografts. According to the radiological and histological parameters measured in this study, the implantation of ABM/P-15 resulted in optimum healing of the segmental cortical bone defects. Pepgen P-15 has a positive effect on bone healing, without any immunogenic features and disease transmission risk. Therefore, ABM/P-15 can also be used for orthopedic surgery. (author)

  3. Are bone turnover markers associated with volumetric bone density, size, and strength in older men and women? The AGES-Reykjavik study.

    Science.gov (United States)

    Marques, E A; Gudnason, V; Sigurdsson, G; Lang, T; Johannesdottir, F; Siggeirsdottir, K; Launer, L; Eiriksdottir, G; Harris, T B

    2016-05-01

    Association between serum bone formation and resorption markers and bone mineral, structural, and strength variables derived from quantitative computed tomography (QCT) in a population-based cohort of 1745 older adults was assessed. The association was weak for lumbar spine and femoral neck areal and volumetric bone mineral density. The aim of this study was to examine the relationship between levels of bone turnover markers (BTMs; osteocalcin (OC), C-terminal cross-linking telopeptide of type I collagen (CTX), and procollagen type 1N propeptide (P1NP)) and quantitative computed tomography (QCT)-derived bone density, geometry, and strength indices in the lumbar spine and femoral neck (FN). A total of 1745 older individuals (773 men and 972 women, aged 66-92 years) from the Age, Gene/Environment Susceptibility (AGES)-Reykjavik cohort were studied. QCT was performed in the lumbar spine and hip to estimate volumetric trabecular, cortical, and integral bone mineral density (BMD), areal BMD, bone geometry, and bone strength indices. Association between BTMs and QCT variables were explored using multivariable linear regression. Major findings showed that all BMD measures, FN cortical index, and compressive strength had a low negative correlation with the BTM levels in both men and women. Correlations between BTMs and bone size parameters were minimal or not significant. No associations were found between BTMs and vertebral cross-sectional area in women. BTMs alone accounted for only a relatively small percentage of the bone parameter variance (1-10 %). Serum CTX, OC, and P1NP were weakly correlated with lumbar spine and FN areal and volumetric BMD and strength measures. Most of the bone size indices were not associated with BTMs; thus, the selected bone remodeling markers do not reflect periosteal bone formation. These results confirmed the limited ability of the most sensitive established BTMs to predict bone structural integrity in older adults.

  4. Does the presence of tumor-induced cortical bone destruction at CT have any prognostic value in newly diagnosed diffuse large B-cell lymphoma?

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Hugo J.A.; Nievelstein, Rutger A.J.; Kwee, Thomas C. [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine, Utrecht (Netherlands); Klerk, John M.H. de [Meander Medical Center, Department of Nuclear Medicine, Amersfoort (Netherlands); Fijnheer, Rob [Meander Medical Center, Department of Hematology, Amersfoort (Netherlands); Heggelman, Ben G.F. [Meander Medical Center, Department of Radiology, Amersfoort (Netherlands); Dubois, Stefan V. [Meander Medical Center, Department of Pathology, Amersfoort (Netherlands)

    2015-05-01

    To determine the prognostic value of tumor-induced cortical bone destruction at computed tomography (CT) in newly diagnosed diffuse large B-cell lymphoma (DLBCL). This retrospective study included 105 patients with newly diagnosed DLBCL who had undergone CT and bone marrow biopsy (BMB) before R-CHOP (rituximab, cyclophosphamide, hydroxydaunorubicin, Oncovin, and prednisolone) chemo-immunotherapy. Cox regression analyses were used to determine the associations of cortical bone status at CT (absence vs. presence of tumor-induced cortical bone destruction), BMB findings (negative vs. positive for lymphomatous involvement), and dichotomized National Comprehensive Cancer Network International Prognostic Index (NCCN-IPI) strata (low risk vs. high risk) with progression-free survival (PFS) and overall survival (OS). Univariate Cox regression analysis indicated that cortical bone status at CT was no significant predictor of either PFS or OS (p = 0.358 and p = 0.560, respectively), whereas BMB findings (p = 0.002 and p = 0.013, respectively) and dichotomized NCCN-IPI risk strata (p = 0.002 and p = 0.003, respectively) were significant predictors of both PFS and OS. In the multivariate Cox proportional hazards model, only the dichotomized NCCN-IPI score was an independent predictive factor of PFS and OS (p = 0.004 and p = 0.003, respectively). The presence of tumor-induced cortical bone destruction at CT was not found to have any prognostic implications in newly diagnosed DLBCL. (orig.)

  5. Aging and Fracture of Human Cortical Bone and Tooth Dentin

    Energy Technology Data Exchange (ETDEWEB)

    Ager, Joel; Koester, Kurt J.; Ager III, Joel W.; Ritchie, Robert O.

    2008-05-07

    Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms which function primarily behind the tip, such as crack bridging in ceramics. Bone and dentin derive their resistance to fracture principally from extrinsic toughening mechanisms which have their origins in the hierarchical microstructure of these mineralized tissues. Experimentally, quantification of these toughening mechanisms requires a crack-growth resistance approach, which can be achieved by measuring the crack-driving force, e.g., the stress intensity, as a function of crack extension ("R-curve approach"). Here this methodology is used to study of the effect of aging on the fracture properties of human cortical bone and human dentin in order to discern the microstructural origins of toughness in these materials.

  6. Age-related changes in cortical bone mass: data from a German female cohort

    International Nuclear Information System (INIS)

    Toledo, V.A. Molina; Jergas, M.

    2006-01-01

    To describe data from digital radiogrammetry (DXR) in an unselected German female cohort over a wide age range. Using a retrospective study design we analyzed radiographs of the hand from 540 German women (aged 5-96 years) using an automated assessment of cortical thickness, metacarpal index (MCI), and estimated cortical bone mineral density (DXR-BMD) on digitized radiographs. Both hands were radiographed in 97 women. In this group DXR-BMD and cortical thickness were significantly higher in the right metacarpals while there was no significant difference in MCI. To study the association with age we differentiated young ( 45 years). In young women all parameters increased significantly with age in a linear fashion (r=0.8 for DXR-BMD, r=0.7 for MCI). In those aged 25-45 years DXR-BMD and MCI were highest (peak bone mass). In women aged 45 or older all parameters decreased with age in an almost linear fashion with an annual change ranging from 0.7% to 0.9%. Our results for an unselected German female cohort indicate that DXR is a reliable, widely available osteodensitometric technique based on the refinement of conventional radiogrammetry. These findings are comparable to those from other studies and represent a valid resource for clinical application and for comparisons with other ethnic groups. (orig.)

  7. Effectiveness of various isometric exercises at improving bone strength in cortical regions prone to distal tibial stress fractures.

    Science.gov (United States)

    Florio, C S

    2018-06-01

    A computational model was used to compare the local bone strengthening effectiveness of various isometric exercises that may reduce the likelihood of distal tibial stress fractures. The developed model predicts local endosteal and periosteal cortical accretion and resorption based on relative local and global measures of the tibial stress state and its surface variation. Using a multisegment 3-dimensional leg model, tibia shape adaptations due to 33 combinations of hip, knee, and ankle joint angles and the direction of a single or sequential series of generated isometric resultant forces were predicted. The maximum stress at a common fracture-prone region in each optimized geometry was compared under likely stress fracture-inducing midstance jogging conditions. No direct correlations were found between stress reductions over an initially uniform circular hollow cylindrical geometry under these critical design conditions and the exercise-based sets of active muscles, joint angles, or individual muscle force and local stress magnitudes. Additionally, typically favorable increases in cross-sectional geometric measures did not guarantee stress decreases at these locations. Instead, tibial stress distributions under the exercise conditions best predicted strengthening ability. Exercises producing larger anterior distal stresses created optimized tibia shapes that better resisted the high midstance jogging bending stresses. Bent leg configurations generating anteriorly directed or inferiorly directed resultant forces created favorable adaptations. None of the studied loads produced by a straight leg was significantly advantageous. These predictions and the insight gained can provide preliminary guidance in the screening and development of targeted bone strengthening techniques for those susceptible to distal tibial stress fractures. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Tibial loading increases osteogenic gene expression and cortical bone volume in mature and middle-aged mice.

    Directory of Open Access Journals (Sweden)

    Matthew J Silva

    Full Text Available There are conflicting data on whether age reduces the response of the skeleton to mechanical stimuli. We examined this question in female BALB/c mice of different ages, ranging from young to middle-aged (2, 4, 7, 12 months. We first assessed markers of bone turnover in control (non-loaded mice. Serum osteocalcin and CTX declined significantly from 2 to 4 months (p<0.001. There were similar age-related declines in tibial mRNA expression of osteoblast- and osteoclast-related genes, most notably in late osteoblast/matrix genes. For example, Col1a1 expression declined 90% from 2 to 7 months (p<0.001. We then assessed tibial responses to mechanical loading using age-specific forces to produce similar peak strains (-1300 µε endocortical; -2350 µε periosteal. Axial tibial compression was applied to the right leg for 60 cycles/day on alternate days for 1 or 6 weeks. qPCR after 1 week revealed no effect of loading in young (2-month mice, but significant increases in osteoblast/matrix genes in older mice. For example, in 12-month old mice Col1a1 was increased 6-fold in loaded tibias vs. controls (p = 0.001. In vivo microCT after 6 weeks revealed that loaded tibias in each age group had greater cortical bone volume (BV than contralateral control tibias (p<0.05, due to relative periosteal expansion. The loading-induced increase in cortical BV was greatest in 4-month old mice (+13%; p<0.05 vs. other ages. In summary, non-loaded female BALB/c mice exhibit an age-related decline in measures related to bone formation. Yet when subjected to tibial compression, mice from 2-12 months have an increase in cortical bone volume. Older mice respond with an upregulation of osteoblast/matrix genes, which increase to levels comparable to young mice. We conclude that mechanical loading of the tibia is anabolic for cortical bone in young and middle-aged female BALB/c mice.

  9. Effects on bone geometry, density, and microarchitecture in the distal radius but not the tibia in women with primary hyperparathyroidism

    DEFF Research Database (Denmark)

    Hansen, Stinus; Beck Jensen, Jens-Erik; Rasmussen, Lars

    2010-01-01

    Patients with primary hyperparathyroidism (PHPT) have continuously elevated parathyroid hormone (PTH) and consequently increased bone turnover with negative effects on cortical (Ct) bone with preservation of trabecular (Tb) bone. High-resolution peripheral quantitative computed tomography (HR...

  10. Mitochondrial Point Mutation m.3243A>G Associates With Lower Bone Mineral Density, Thinner Cortices, and Reduced Bone Strength

    DEFF Research Database (Denmark)

    Langdahl, Jakob Høgild; Frederiksen, Anja Lisbeth; Hansen, Stinus Jørn

    2017-01-01

    Mitochondrial dysfunction is associated with several clinical manifestations including diabetes mellitus (DM), neurological disorders, renal and hepatic diseases, and myopathy. Although mitochondrial dysfunction is associated with increased bone resorption and decreased bone formation in mouse...... at the lumbar spine, total hip, and femoral neck in cases. Mean lumbar spine, total hip, and femoral neck T-scores were -1.5, -1.3, and -1.6 in cases, respectively, and -0.8, -0.3, and -0.7 in controls (all p G mutation was associated with lower BMD, cortical but not trabecular density...

  11. Surface structural damage study in cortical bone due to medical drilling.

    Science.gov (United States)

    Tavera R, Cesar G; De la Torre-I, Manuel H; Flores-M, Jorge M; Hernandez M, Ma Del Socorro; Mendoza-Santoyo, Fernando; Briones-R, Manuel de J; Sanchez-P, Jorge

    2017-05-01

    A bone's fracture could be produced by an excessive, repetitive, or sudden load. A regular medical practice to heal it is to fix it in two possible ways: external immobilization, using a ferule, or an internal fixation, using a prosthetic device commonly attached to the bone by means of surgical screws. The bone's volume loss due to this drilling modifies its structure either in the presence or absence of a fracture. To observe the bone's surface behavior caused by the drilling effects, a digital holographic interferometer is used to analyze the displacement surface's variations in nonfractured post-mortem porcine femoral bones. Several nondrilled post-mortem bones are compressed and compared to a set of post-mortem bones with a different number of cortical drillings. During each compression test, a series of digital interferometric holograms were recorded using a high-speed CMOS camera. The results are presented as pseudo 3D mesh displacement maps for comparisons in the physiological range of load (30 and 50 lbs) and beyond (100, 200, and 400 lbs). The high resolution of the optical phase gives a better understanding about the bone's microstructural modifications. Finally, a relationship between compression load and bone volume loss due to the drilling was observed. The results prove that digital holographic interferometry is a viable technique to study the conditions that avoid the surgical screw from loosening in medical procedures of this kind.

  12. Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study.

    Science.gov (United States)

    Rivadeneira, Fernando; Zillikens, M Carola; De Laet, Chris Edh; Hofman, Albert; Uitterlinden, André G; Beck, Thomas J; Pols, Huibert Ap

    2007-11-01

    We studied HSA measurements in relation to hip fracture risk in 4,806 individuals (2,740 women). Hip fractures (n = 147) occurred at the same absolute levels of bone instability in both sexes. Cortical instability (propensity of thinner cortices in wide diameters to buckle) explains why hip fracture risk at different BMD levels is the same across sexes. Despite the sexual dimorphism of bone, hip fracture risk is very similar in men and women at the same absolute BMD. We aimed to elucidate the main structural properties of bone that underlie the measured BMD and that ultimately determines the risk of hip fracture in elderly men and women. This study is part of the Rotterdam Study (a large prospective population-based cohort) and included 147 incident hip fracture cases in 4,806 participants with DXA-derived hip structural analysis (mean follow-up, 8.6 yr). Indices compared in relation to fracture included neck width, cortical thickness, section modulus (an index of bending strength), and buckling ratio (an index of cortical bone instability). We used a mathematical model to calculate the hip fracture distribution by femoral neck BMD, BMC, bone area, and hip structure analysis (HSA) parameters (cortical thickness, section modulus narrow neck width, and buckling ratio) and compared it with prospective data from the Rotterdam Study. In the prospective data, hip fracture cases in both sexes had lower BMD, thinner cortices, greater bone width, lower strength, and higher instability at baseline. In fractured individuals, men had an average BMD that was 0.09 g/cm(2) higher than women (p men and women. No significant differences were observed between the areas under the ROC curves of BMD (0.8146 in women and 0.8048 in men) and the buckling ratio (0.8161 in women and 0.7759 in men). The buckling ratio (an index of bone instability) portrays in both sexes the critical balance between cortical thickness and bone width. Our findings suggest that extreme thinning of cortices in

  13. Organ and tissue level properties are more sensitive to age than osteocyte lacunar characteristics in rat cortical bone

    DEFF Research Database (Denmark)

    Wittig, Nina; Bach-Gansmo, Fiona Linnea; Birkbak, Mie Elholm

    2016-01-01

    orientation with animal age. Hence, the evolution of organ and tissue level properties with age in rat cortical bone is not accompanied by related changes in osteocyte lacunar properties. This suggests that bone microstructure and bone matrix material properties and not the geometric properties...... of bone on the organ and tissue level, whereas features on the nano- and micrometer scale are much less explored. We investigated the age-related development of organ and tissue level bone properties such as bone volume, bone mineral density, and load to fracture and correlated these with osteocyte...

  14. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    OpenAIRE

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100?150?MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110?MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1?10?MPa compressive...

  15. Extraskeletal and intraskeletal new bone formation induced by demineralized bone matrix combined with bone marrow cells

    International Nuclear Information System (INIS)

    Lindholm, T.S.; Nilsson, O.S.; Lindholm, T.C.

    1982-01-01

    Dilutions of fresh autogenous bone marrow cells in combination with allogeneic demineralized cortical bone matrix were tested extraskeletally in rats using roentgenographic, histologic, and 45 Ca techniques. Suspensions of bone marrow cells (especially diluted 1:2 with culture media) combined with demineralized cortical bone seemed to induce significantly more new bone than did demineralized bone, bone marrow, or composite grafts with whole bone marrow, respectively. In a short-term spinal fusion experiment, demineralized cortical bone combined with fresh bone marrow produced new bone and bridged the interspace between the spinous processes faster than other transplantation procedures. The induction of undifferentiated host cells by demineralized bone matrix is further complemented by addition of autogenous, especially slightly diluted, bone marrow cells

  16. High Insulin Levels in KK-Ay Diabetic Mice Cause Increased Cortical Bone Mass and Impaired Trabecular Micro-Structure

    Directory of Open Access Journals (Sweden)

    Cen Fu

    2015-04-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a chronic disease characterized by hyperglycemia, hyperinsulinemia and complications, including obesity and osteoporosis. Rodents have been widely used to model human T2DM and investigate its effect on the skeleton. We aimed to investigate skeletal alterations in Yellow Kuo Kondo (KK-Ay diabetic mice displaying high insulin and glucose levels. Bone mineral density (BMD, micro-architecture and bone metabolism-related genes were analyzed. The total femoral areal BMD (aBMD, cortical volumetric BMD (vBMD and thickness were significantly increased in KK-Ay mice, while the trabecular vBMD and mineralized bone volume/tissue volume (BV/TV, trabecular thickness and number were decreased compared to C57BL mice. The expression of both osteoblast-related genes, such as osteocalcin (OC, bone sialoprotein, Type I Collagen, osteonectin, RUNX2 and OSX, and osteoclast-related genes, such as TRAP and TCIRG, were up-regulated in KK-Ay mice. Correlation analyses showed that serum insulin levels were positively associated with aBMD, cortical vBMD and thickness and negatively associated with trabecular vBMD and micro-architecture. In addition, serum insulin levels were positively related to osteoblast-related and osteoclast-related gene expression. Our data suggest that high insulin levels in KK-Ay diabetic mice may increase cortical bone mass and impair trabecular micro-structure by up-regulating osteoblast-and osteoclast-related gene expression.

  17. Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach.

    Directory of Open Access Journals (Sweden)

    Antonio Boccaccio

    Full Text Available Functionally Graded Scaffolds (FGSs are porous biomaterials where porosity changes in space with a specific gradient. In spite of their wide use in bone tissue engineering, possible models that relate the scaffold gradient to the mechanical and biological requirements for the regeneration of the bony tissue are currently missing. In this study we attempt to bridge the gap by developing a mechanobiology-based optimization algorithm aimed to determine the optimal graded porosity distribution in FGSs. The algorithm combines the parametric finite element model of a FGS, a computational mechano-regulation model and a numerical optimization routine. For assigned boundary and loading conditions, the algorithm builds iteratively different scaffold geometry configurations with different porosity distributions until the best microstructure geometry is reached, i.e. the geometry that allows the amount of bone formation to be maximized. We tested different porosity distribution laws, loading conditions and scaffold Young's modulus values. For each combination of these variables, the explicit equation of the porosity distribution law-i.e the law that describes the pore dimensions in function of the spatial coordinates-was determined that allows the highest amounts of bone to be generated. The results show that the loading conditions affect significantly the optimal porosity distribution. For a pure compression loading, it was found that the pore dimensions are almost constant throughout the entire scaffold and using a FGS allows the formation of amounts of bone slightly larger than those obtainable with a homogeneous porosity scaffold. For a pure shear loading, instead, FGSs allow to significantly increase the bone formation compared to a homogeneous porosity scaffolds. Although experimental data is still necessary to properly relate the mechanical/biological environment to the scaffold microstructure, this model represents an important step towards

  18. Bone microarchitecture and estimated bone strength in men with active acromegaly.

    Science.gov (United States)

    Silva, Paula P B; Amlashi, Fatemeh G; Yu, Elaine W; Pulaski-Liebert, Karen J; Gerweck, Anu V; Fazeli, Pouneh K; Lawson, Elizabeth; Nachtigall, Lisa B; Biller, Beverly M K; Miller, Karen K; Klibanski, Anne; Bouxsein, Mary; Tritos, Nicholas A

    2017-11-01

    Both acromegaly and adult growth hormone deficiency (GHD) are associated with increased fracture risk. Sufficient data are lacking regarding cortical bone microarchitecture and bone strength, as assessed by microfinite element analysis (µFEA). To elucidate both cortical and trabecular bone microarchitecture and estimated bone strength in men with active acromegaly or GHD compared to healthy controls. Cross-sectional study at a clinical research center, including 48 men (16 with acromegaly, 16 with GHD and 16 healthy controls). Areal bone mineral density (aBMD), cortical and trabecular bone microarchitecture and estimated bone strength (µFEA) at the radius and tibia. aBMD was not different between the 3 groups at any skeletal site. At the radius, patients with acromegaly had greater cortical area ( P  acromegaly had lower trabecular bone density ( P  = 0.0082), but no differences in cortical bone microstructure. Compressive strength and failure load did not significantly differ between groups. These findings persisted after excluding patients with hypogonadism. Bone microarchitecture was not deficient in patients with GHD. Both cortical and trabecular microarchitecture are altered in men with acromegaly. Our data indicate that GH excess is associated with distinct effects in cortical vs trabecular bone compartments. Our observations also affirm the limitations of aBMD testing in the evaluation of patients with acromegaly. © 2017 European Society of Endocrinology.

  19. Influence of Different Implant Geometry in Clinical Longevity and Maintenance of Marginal Bone: A Systematic Review.

    Science.gov (United States)

    Lovatto, Sabrina Telles; Bassani, Rafaela; Sarkis-Onofre, Rafael; Dos Santos, Mateus Bertolini Fernandes

    2018-03-26

    To assess, through a systematic review, the influence of different implant geometries on clinical longevity and maintenance of marginal bone tissue. An electronic search was conducted in MEDLINE, Scopus, and Web of Science databases, limited to studies written in English from 1996 to 2017 using specific search strategies. Only randomized controlled trials (RCTs) that compared dental implants and their geometries were included. Two reviewers independently selected studies, extracted data, and assessed the risk of bias of included studies. From the 4006 references identified by the search, 24 were considered eligible for full-text analysis, after which 10 studies were included in this review. A similar behavior of marginal bone loss between tapered and cylindrical geometries was observed; however, implants that had micro-threads in the neck presented a slight decrease of marginal bone loss compared to implants with straight or smooth neck. Success and survival rates were high, with cylindrical implants presenting higher success and survival rates than tapered ones. Implant geometry seems to have little influence on marginal bone loss (MBL) and survival and success rates after 1 year of implant placement; however, the evidence in this systematic review was classified as very low due to limitations such as study design, sample size, and publication bias. Thus, more well-designed RCTs should be conducted to provide evidence regarding the influence of implant geometry on MBL and survival and success rates after 1 year of implant placement. © 2018 by the American College of Prosthodontists.

  20. Growth and Age-Related Abnormalities in Cortical Structure and Fracture Risk

    Directory of Open Access Journals (Sweden)

    Ego Seeman

    2015-12-01

    Full Text Available Vertebral fractures and trabecular bone loss have dominated thinking and research into the pathogenesis and the structural basis of bone fragility during the last 70 years. However, 80% of all fractures are non-vertebral and occur at regions assembled using large amounts of cortical bone; only 20% of fractures are vertebral. Moreover, ~80% of the skeleton is cortical and ~70% of all bone loss is cortical even though trabecular bone is lost more rapidly than cortical bone. Bone is lost because remodelling becomes unbalanced after midlife. Most cortical bone loss occurs by intracortical, not endocortical remodelling. Each remodelling event removes more bone than deposited enlarging existing canals which eventually coalesce eroding and thinning the cortex from 'within.' Thus, there is a need to study the decay of cortical as well as trabecular bone, and to develop drugs that restore the strength of both types of bone. It is now possible to accurately quantify cortical porosity and trabecular decay in vivo. The challenges still to be met are to determine whether measurement of porosity identifies persons at risk for fracture, whether this approach is compliments information obtained using bone densitometry, and whether changes in cortical porosity and other microstructural traits have the sensitivity to serve as surrogates of treatment success or failure.

  1. 3D printed phantoms mimicking cortical bone for the assessment of ultrashort echo time magnetic resonance imaging.

    Science.gov (United States)

    Rai, Robba; Manton, David; Jameson, Michael G; Josan, Sonal; Barton, Michael B; Holloway, Lois C; Liney, Gary P

    2018-02-01

    Human cortical bone has a rapid T2∗ decay, and it can be visualized using ultrashort echo time (UTE) techniques in magnetic resonance imaging (MRI). These sequences operate at the limits of gradient and transmit-receive signal performance. Development of multicompartment anthropomorphic phantoms that can mimic human cortical bone can assist with quality assurance and optimization of UTE sequences. The aims of this study were to (a) characterize the MRI signal properties of a photopolymer resin that can be 3D printed, (b) develop multicompartment phantoms based on the resin, and (c) demonstrate the feasibility of using these phantoms to mimic human anatomy in the assessment of UTE sequences. A photopolymer resin (Prismlab China Ltd, Shanghai, China) was imaged on a 3 Tesla MRI system (Siemens Skyra) to characterize its MRI properties with emphasis on T2∗ signal and longevity. Two anthropomorphic phantoms, using the 3D printed resin to simulate skeletal anatomy, were developed and imaged using UTE sequences. A skull phantom was developed and used to assess the feasibility of using the resin to develop a complex model with realistic morphological human characteristics. A tibia model was also developed to assess the suitability of the resin at mimicking a simple multicompartment anatomical model and imaged using a three-dimensional UTE sequence (PETRA). Image quality measurements of signal-to-noise ratio (SNR) and contrast factor were calculated and these were compared to in vivo values. The T2∗ and T 1 (mean ± standard deviation) of the photopolymer resin was found to be 411 ± 19 μs and 74.39 ± 13.88 ms, respectively, and demonstrated no statistically significant change during 4 months of monitoring. The resin had a similar T2∗ decay to human cortical bone; however, had lower T 1 properties. The bone water concentration of the resin was 59% relative to an external water reference phantom, and this was higher than in vivo values reported for human cortical

  2. MRI of the temporo-mandibular joint: which sequence is best suited to assess the cortical bone of the mandibular condyle? A cadaveric study using micro-CT as the standard of reference.

    Science.gov (United States)

    Karlo, Christoph A; Patcas, Raphael; Kau, Thomas; Watzal, Helmut; Signorelli, Luca; Müller, Lukas; Ullrich, Oliver; Luder, Hans-Ulrich; Kellenberger, Christian J

    2012-07-01

    To determine the best suited sagittal MRI sequence out of a standard temporo-mandibular joint (TMJ) imaging protocol for the assessment of the cortical bone of the mandibular condyles of cadaveric specimens using micro-CT as the standard of reference. Sixteen TMJs in 8 human cadaveric heads (mean age, 81 years) were examined by MRI. Upon all sagittal sequences, two observers measured the cortical bone thickness (CBT) of the anterior, superior and posterior portions of the mandibular condyles (i.e. objective analysis), and assessed for the presence of cortical bone thinning, erosions or surface irregularities as well as subcortical bone cysts and anterior osteophytes (i.e. subjective analysis). Micro-CT of the condyles was performed to serve as the standard of reference for statistical analysis. Inter-observer agreements for objective (r = 0.83-0.99, P < 0.01) and subjective (κ = 0.67-0.88) analyses were very good. Mean CBT measurements were most accurate, and cortical bone thinning, erosions, surface irregularities and subcortical bone cysts were best depicted on the 3D fast spoiled gradient echo recalled sequence (3D FSPGR). The most reliable MRI sequence to assess the cortical bone of the mandibular condyles on sagittal imaging planes is the 3D FSPGR sequence. MRI may be used to assess the cortical bone of the TMJ. • Depiction of cortical bone is best on 3D FSPGR sequences. • MRI can assess treatment response in patients with TMJ abnormalities.

  3. A grape-enriched diet increases bone calcium retention and cortical bone properties in ovariectomized rats.

    Science.gov (United States)

    Hohman, Emily E; Weaver, Connie M

    2015-02-01

    Grapes and their associated phytochemicals have been investigated for beneficial effects on cardiovascular health, cancer prevention, and other chronic diseases, but the effect of grape consumption on bone health has not been fully determined. We previously found short-term benefits of grape products on reducing bone turnover in ovariectomized rats. The objective of this study was to determine the long-term benefits of a grape-enriched diet on bone in ovariectomized rats. Rats were ovariectomized at 3 mo of age and were administered a single dose of (45)Ca to prelabel bones at 4 mo of age. After a 1-mo equilibration period, baseline urinary (45)Ca excretion was determined. Rats (n = 22/group) were then randomly assigned to a modified AIN93M diet containing 25% freeze-dried grape powder or to a control diet for 8 wk. Urinary (45)Ca excretion was monitored throughout the study to determine changes in bone (45)Ca retention. Calcium balance was assessed after 1 and 8 wk of consuming the experimental diets, and a calcium kinetic study was performed at 8 wk. After 8 wk, femurs were collected for micro-computed tomographic imaging, 3-point bending, and reference point indentation. Rats fed the grape-enriched diet had 44% greater net bone calcium retention than did rats fed the control diet. There were no differences in calcium balance due to diet at either week 1 or week 8, but there was a significant increase in net calcium absorption (10.6%) and retention (5.7%) from week 1 to week 8 in the grape-enriched diet group only. Grape-enriched diet-fed rats had 3% greater cortical thickness and 11% greater breaking strength. There were no differences in femur bone mineral density, trabecular microarchitecture, or reference point indentation variables due to diet. This study of ovariectomized rats indicates that the consumption of grape products may improve calcium utilization and suppress bone turnover, resulting in improvements in bone quality. © 2015 American Society for

  4. Fatigue crack growth behavior in equine cortical bone

    Science.gov (United States)

    Shelton, Debbie Renee

    2001-07-01

    Objectives for this research were to experimentally determine crack growth rates, da/dN, as a function of alternating stress intensity factor, DeltaK, for specimens from lateral and dorsal regions of equine third metacarpal cortical bone tissue, and to determine if the results were described by the Paris law. In one set of experiments, specimens were oriented for crack propagation in the circumferential direction with the crack plane transverse to the long axis of the bone. In the second set of experiments, specimens were oriented for radial crack growth with the crack plane parallel to the long axis of the bone. Results of fatigue tests from the latter specimens were used to evaluate the hypothesis that crack growth rates differ regionally. The final experiments were designed to determine if crack resistance was dependent on region, proportion of hooped osteons (those with circumferentially oriented collagen fibers in the outer lamellae) or number of osteons penetrated by the crack, and to address the hypothesis that hooped osteons resist invasion by cracks better than other osteonal types. The transverse crack growth data for dorsal specimens were described by the Paris law with an exponent of 10.4 and suggested a threshold stress intensity factor, DeltaKth, of 2.0 MPa·m1/2 and fracture toughness of 4.38 MPa·m 1/2. Similar results were not obtained for lateral specimens because the crack always deviated from the intended path and ran parallel to the loading direction. Crack growth for the dorsal and lateral specimens in the radial orientation was described by the Paris law with exponents of 8.7 and 10.2, respectively, and there were no regional differences in the apparent DeltaK th (0.5 MPa·m1/2) or fracture toughness (1.2 MPa·m 1/2). Crack resistance was not associated with cortical region, proportion of hooped osteons or the number of osteons penetrated by the crack. The extent to which cracks penetrate osteons was influenced by whether the collagen fiber

  5. Effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture.

    Science.gov (United States)

    Jain, R; Podworny, N; Hearn, T; Anderson, G I; Schemitsch, E H

    1997-10-01

    Comparison of the effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture. Randomized, prospective. Orthopaedic research laboratory. Ten large (greater than twenty-five kilogram) adult dogs. A short, midshaft spiral tibial fracture was created, followed by lag screw fixation and neutralization with an eight-hole, 3.5-millimeter, low-contact dynamic compression plate (LCDCP) made of either 316L stainless steel (n = five) or commercially pure titanium (n = five). After surgery, animals were kept with unrestricted weight-bearing in individual stalls for ten weeks. Cortical bone blood flow was assessed by laser Doppler flowmetry using a standard metalshafted probe (Periflux Pf303, Perimed, Jarfalla, Sweden) applied through holes in the custom-made LCDCPs at five sites. Bone blood flow was determined at four times: (a) prefracture, (b) postfracture, (c) postplating, and (d) ten weeks postplating. After the dogs were killed, the implant was removed and both the treated tibia and contralateral tibia were tested for bending stiffness and load to failure. Fracture creation decreased cortical perfusion in both groups at the fracture site (p = 0.02). The application of neither stainless steel nor titanium LCDCPs further decreased cortical bone blood flow after fracture creation. However, at ten weeks postplating, cortical perfusion significantly increased compared with acute postplating levels in the stainless steel (p = 0.003) and titanium (p = 0.001) groups. Cortical bone blood flow ten weeks postplating was not significantly different between the titanium group and the stainless steel group. Biomechanical tests performed on the tibiae with the plates removed did not reveal any differences in bending stiffness nor load required to cause failure between the two groups. Both titanium and stainless steel LCDCPs were equally effective in allowing revascularization, and

  6. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  7. Changes in bone geometry and microarchitecture caused by intermittent administration of PTH. Comparison with those by exercise load

    International Nuclear Information System (INIS)

    Mori, Keiya

    2010-01-01

    area, bone volume fraction rates, fractal dimensions, connectivity density, trabecular thickness, trabecular bone number and degrees of anisotropy. They conversely showed significantly lower bone volume ratio values, trabecular bone separation, trabecular bone pattern factors, and structural model indices. However, the area values, thickness, and strength of femoral diaphysis cortical bone in the S+J group were significantly higher than those in the S+C group. The S+P group showed no significant difference other than cortical bone thickness. These data suggest that periodical intermittent medication with PTH could cause changes in the fine structure of the femoral metaphysic cancellous bone microarchitecture that are similar to changes caused by jumping exercise, but the effects of PTH seem to be small on the geometric properties and bone strength of the cortical bone. (author)

  8. Effect of glucose on fatigue-induced changes in the microstructure and mechanical properties of demineralized bovine cortical bone.

    Science.gov (United States)

    Trębacz, Hanna; Zdunek, Artur; Wlizło-Dyś, Ewa; Cybulska, Justyna; Pieczywek, Piotr

    2015-10-16

    The aim of this study was to test a hypothesis that fatigue-induced weakening of cortical bone was intensified in bone incubated in glucose and that this weakening is revealed in the microstructure and mechanical competence of the bone matrix. Cubic specimens of bovine femoral shaft were incubated in glucose solution (G) or in buffer (NG). One half of G samples and one half of NG were axially loaded in 300 cycles (30 mm/min) at constant deformation (F); the other half was a control (C). Samples from each group (GF, NGF, GC, NGC) were completely demineralized. Slices from demineralized samples were used for microscopic image analysis. A combined effect of glycation and fatigue on demineralized bone was tested in compression (10 mm/min). Damage of samples during the test was examined in terms of acoustic emission analysis (AE). During the fatigue procedure, resistance to loading in glycated samples decreased by 14.5% but only by 8.1% in nonglycated samples. In glycated samples fatigue resulted in increased porosity with pores significantly larger than in the other groups. Under compression, strain at failure in demineralized bone was significantly affected by glucose and fatigue. AE from demineralized bone matrix was considerably related to the largest pores in the tissue. The results confirm the hypothesis that the effect of fatigue on cortical bone tissue was intensified after incubation in glucose, both in the terms of the mechanical competence of bone tissue and the structural changes in the collagenous matrix of bone.

  9. Bone heat generated using conventional implant drills versus piezosurgery unit during apical cortical plate perforation.

    Science.gov (United States)

    Lajolo, Carlo; Valente, Nicola Alberto; Romandini, William Giuseppe; Petruzzi, Massimo; Verdugo, Fernando; D'Addona, Antonio

    2018-03-09

    The apical portion of the implant osteotomy receives less irrigation and cooling during surgical preparation. High bone temperatures, above the critical 10°C threshold, may impair osseointegration, particularly, around dense cortical bone. The aim of this study is to evaluate the apical cortical plate temperature increase with two different devices and pressure loads in a porcine rib ex-vivo model. Twenty-four implant sites were prepared on porcine ribs divided into 4 groups of 6 samples each according to the device used (conventional drill system or piezosurgery) and pressure load applied (1000 g or 1500 g). A rubber dam was used to isolate the apical cortical plate from the cooling effect of irrigation. Temperature variation measurements were taken using an infrared thermometer. The piezosurgery unit was 2 times more likely to increase the osteotomy temperature by 10.0°C (OR = 2; 95% CI = 1.136-3.522; p piezosurgery-1000 g) and 8.17°C (SD = 6.12) for group 4 (piezosurgery-1,500 g). The piezosurgery site preparation caused significantly higher temperature increase than conventional drills (p piezosurgery unit is a potential risk during implant site preparation. The piezosurgical device reached significantly higher temperatures than conventional drilling at the apical cortical portion of the osteotomy. The temperature increase is often higher than the critical 10°C threshold. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Histological analysis of the alterations on cortical bone channels network after radiotherapy: A rabbit study.

    Science.gov (United States)

    Rabelo, Gustavo Davi; Beletti, Marcelo Emílio; Dechichi, Paula

    2010-10-01

    The aim of this study was to evaluate the effects of radiotherapy in cortical bone channels network. Fourteen rabbits were divided in two groups and test group received single dose of 15 Gy cobalt-60 radiation in tibia, bilaterally. The animals were sacrificed and a segment of tibia was removed and histologically processed. Histological images were taken and had their bone channels segmented and called regions of interest (ROI). Images were analyzed through developed algorithms using the SCILAB mathematical environment, getting percentage of bone matrix, ROI areas, ROI perimeters, their standard deviations and Lacunarity. The osteocytes and empty lacunae were also counted. Data were evaluated using Kolmogorov-Smirnov, Mann Whitney, and Student's t test (P < 0.05). Significant differences in bone matrix percentage, area and perimeters of the channels, their respective standard deviations and lacunarity were found between groups. In conclusion, the radiotherapy causes reduction of bone matrix and modifies the morphology of bone channels network. © 2010 Wiley-Liss, Inc.

  11. Histologic Evaluation of Wound Healing After Ridge Preservation With Cortical, Cancellous, and Combined Cortico-Cancellous Freeze-Dried Bone Allograft: A Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Demetter, Randy S; Calahan, Blaine G; Mealey, Brian L

    2017-09-01

    Cortical and cancellous mineralized freeze-dried bone allografts (FDBA) are available for use in alveolar ridge preservation after tooth extraction. There are currently no data regarding use of a combination 50%/50% cortico-cancellous FDBA compared with a 100% cortical or 100% cancellous FDBA in ridge preservation. The primary objective of this study is to dimensionally and histologically evaluate healing after ridge preservation in non-molar sites using 50%/50% cortico-cancellous FDBA versus 100% cortical and 100% cancellous FDBA. Sixty-six patients requiring extraction of a non-molar tooth were enrolled and randomized into three groups to receive ridge preservation with the following: 1) 100% cortical FDBA; 2) 100% cancellous FDBA; or 3) 50%/50% cortico-cancellous FDBA. After 18 to 20 weeks of healing, a biopsy was harvested, and an implant was placed. The alveolar ridge was measured pre- and postoperatively to evaluate change in ridge height and width. Percentages of vital bone, residual graft, and connective tissue (CT)/other were determined via histomorphometric analysis. Histomorphometric analysis revealed no significant differences among groups regarding percentage of vital bone or CT/other. The 100% cortical FDBA group had significantly greater residual graft material (P = 0.04). Dimensional analysis revealed no significant between-group differences in any parameter measured. To the best knowledge of the authors, this study offers the first histologic evidence demonstrating no significant difference in vital bone formation or dimensional changes among 50%/50% cortico-cancellous FDBA, 100% cortical FDBA, and 100% cancellous FDBA when used in ridge preservation of non-molar tooth sites.

  12. Instrumental neutron-activation analysis applications in the age dynamics assessment of Ca, Cl, K, Mg. Mn, Na, P, and Sr contents in the human cortical bone

    International Nuclear Information System (INIS)

    Zaichick, V.

    2003-01-01

    Full text: Senile osteoporosis and particularly osteoporosis among postmenopausal women represents an urgent problem of modern medicine. One of the main osteoporosis symptoms is a decrease in both bone mineral density and subsequent bone strength. The upper extremity of the femur in humans is a particularly vulnerable section of the skeleton, being subject to fracture and necrosis and to destruction of its cartilage. Iliac crest biopsies are commonly taken clinically on patients. It is known that the control of the mineral component providing bone strength is a good indicator to detect bone diseases like osteoporosis. Despite this, changes of chemical element contents occurring with age in the femoral head and the iliac crest of female and male separately have been little studied, but in iliac cortical bone have not been studied at all. The effect of age and sex on chemical element contents in intact cortical bone of femoral neck and iliac crest of 81 relatively healthy 15-55 years old women (n=36) and men (n=45) was investigated. All subjects had died suddenly and bone samples were obtained at necropsy from the right side of bodies within twenty-four hours after death. A tool made of titanium and plastic was used to clear samples from soft tissues and blood and to cut cortical part of bone. The IAEA and NIST reference materials (H-5 animal bone and SRM1486 bone meal) were used to estimate the precision and accuracy of results. Contents of Ca, Cl, K, Mg> Mn, Na, P, and Sr in intact bone samples were determined by instrumental neutron activation analysis using short-lived radionuclides. Our means data for each element of reference materials were within the certified 95 % confidence interval, and indicate an acceptable accuracy of the obtained results. No age- and sex-related differences in the cortical femoral neck composition were detected. Mean values (M±S.E.M.) of Ca, Cl, K, Mg, Mn, Na, P, and Sr mass fractions (on dry weight basis) for female and male all

  13. TONNEAU2/FASS Regulates the Geometry of Microtubule Nucleation and Cortical Array Organization in Interphase Arabidopsis Cells[C][W

    Science.gov (United States)

    Kirik, Angela; Ehrhardt, David W.; Kirik, Viktor

    2012-01-01

    Organization of microtubules into ordered arrays involves spatial and temporal regulation of microtubule nucleation. Here, we show that acentrosomal microtubule nucleation in plant cells involves a previously unknown regulatory step that determines the geometry of microtubule nucleation. Dynamic imaging of interphase cortical microtubules revealed that the ratio of branching to in-bundle microtubule nucleation on cortical microtubules is regulated by the Arabidopsis thaliana B′′ subunit of protein phosphatase 2A, which is encoded by the TONNEAU2/FASS (TON2) gene. The probability of nucleation from γ-tubulin complexes localized at the cell cortex was not affected by a loss of TON2 function, suggesting a specific role of TON2 in regulating the nucleation geometry. Both loss of TON2 function and ectopic targeting of TON2 to the plasma membrane resulted in defects in cell shape, suggesting the importance of TON2-mediated regulation of the microtubule cytoskeleton in cell morphogenesis. Loss of TON2 function also resulted in an inability for cortical arrays to reorient in response to light stimulus, suggesting an essential role for TON2 and microtubule branching nucleation in reorganization of microtubule arrays. Our data establish TON2 as a regulator of interphase microtubule nucleation and provide experimental evidence for a novel regulatory step in the process of microtubule-dependent nucleation. PMID:22395485

  14. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P < 0.05) in longitudinal bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P < 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  15. Alendronate treatment alters bone tissues at multiple structural levels in healthy canine cortical bone.

    Science.gov (United States)

    Acevedo, Claire; Bale, Hrishikesh; Gludovatz, Bernd; Wat, Amy; Tang, Simon Y; Wang, Mingyue; Busse, Björn; Zimmermann, Elizabeth A; Schaible, Eric; Allen, Matthew R; Burr, David B; Ritchie, Robert O

    2015-12-01

    Bisphosphonates are widely used to treat osteoporosis, but have been associated with atypical femoral fractures (AFFs) in the long term, which raises a critical health problem for the aging population. Several clinical studies have suggested that the occurrence of AFFs may be related to the bisphosphonate-induced changes of bone turnover, but large discrepancies in the results of these studies indicate that the salient mechanisms responsible for any loss in fracture resistance are still unclear. Here the role of bisphosphonates is examined in terms of the potential deterioration in fracture resistance resulting from both intrinsic (plasticity) and extrinsic (shielding) toughening mechanisms, which operate over a wide range of length-scales. Specifically, we compare the mechanical properties of two groups of humeri from healthy beagles, one control group comprising eight females (oral doses of saline vehicle, 1 mL/kg/day, 3 years) and one treated group comprising nine females (oral doses of alendronate used to treat osteoporosis, 0.2mg/kg/day, 3 years). Our data demonstrate treatment-specific reorganization of bone tissue identified at multiple length-scales mainly through advanced synchrotron x-ray experiments. We confirm that bisphosphonate treatments can increase non-enzymatic collagen cross-linking at molecular scales, which critically restricts plasticity associated with fibrillar sliding, and hence intrinsic toughening, at nanoscales. We also observe changes in the intracortical architecture of treated bone at microscales, with partial filling of the Haversian canals and reduction of osteon number. We hypothesize that the reduced plasticity associated with BP treatments may induce an increase in microcrack accumulation and growth under cyclic daily loadings, and potentially increase the susceptibility of cortical bone to atypical (fatigue-like) fractures. Published by Elsevier Inc.

  16. An investigation of the mineral in ductile and brittle cortical mouse bone.

    Science.gov (United States)

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J

    2015-05-01

    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size

  17. MRI of the temporo-mandibular joint: which sequence is best suited to assess the cortical bone of the mandibular condyle? A cadaveric study using micro-CT as the standard of reference

    International Nuclear Information System (INIS)

    Karlo, Christoph A.; Patcas, Raphael; Signorelli, Luca; Mueller, Lukas; Kau, Thomas; Watzal, Helmut; Kellenberger, Christian J.; Ullrich, Oliver; Luder, Hans-Ulrich

    2012-01-01

    To determine the best suited sagittal MRI sequence out of a standard temporo-mandibular joint (TMJ) imaging protocol for the assessment of the cortical bone of the mandibular condyles of cadaveric specimens using micro-CT as the standard of reference. Sixteen TMJs in 8 human cadaveric heads (mean age, 81 years) were examined by MRI. Upon all sagittal sequences, two observers measured the cortical bone thickness (CBT) of the anterior, superior and posterior portions of the mandibular condyles (i.e. objective analysis), and assessed for the presence of cortical bone thinning, erosions or surface irregularities as well as subcortical bone cysts and anterior osteophytes (i.e. subjective analysis). Micro-CT of the condyles was performed to serve as the standard of reference for statistical analysis. Inter-observer agreements for objective (r = 0.83-0.99, P < 0.01) and subjective (κ = 0.67-0.88) analyses were very good. Mean CBT measurements were most accurate, and cortical bone thinning, erosions, surface irregularities and subcortical bone cysts were best depicted on the 3D fast spoiled gradient echo recalled sequence (3D FSPGR). The most reliable MRI sequence to assess the cortical bone of the mandibular condyles on sagittal imaging planes is the 3D FSPGR sequence. (orig.)

  18. MRI of the temporo-mandibular joint: which sequence is best suited to assess the cortical bone of the mandibular condyle? A cadaveric study using micro-CT as the standard of reference

    Energy Technology Data Exchange (ETDEWEB)

    Karlo, Christoph A. [University Hospital Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); Patcas, Raphael; Signorelli, Luca; Mueller, Lukas [University of Zurich, Clinic for Orthodontics and Pediatric Dentistry, Center of Dental Medicine, Zurich (Switzerland); Kau, Thomas; Watzal, Helmut; Kellenberger, Christian J. [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); Ullrich, Oliver [University of Zurich, Institute of Anatomy, Faculty of Medicine, Zurich (Switzerland); Luder, Hans-Ulrich [University of Zurich, Section of Orofacial Structures and Development, Center of Dental Medicine, Zurich (Switzerland)

    2012-07-15

    To determine the best suited sagittal MRI sequence out of a standard temporo-mandibular joint (TMJ) imaging protocol for the assessment of the cortical bone of the mandibular condyles of cadaveric specimens using micro-CT as the standard of reference. Sixteen TMJs in 8 human cadaveric heads (mean age, 81 years) were examined by MRI. Upon all sagittal sequences, two observers measured the cortical bone thickness (CBT) of the anterior, superior and posterior portions of the mandibular condyles (i.e. objective analysis), and assessed for the presence of cortical bone thinning, erosions or surface irregularities as well as subcortical bone cysts and anterior osteophytes (i.e. subjective analysis). Micro-CT of the condyles was performed to serve as the standard of reference for statistical analysis. Inter-observer agreements for objective (r = 0.83-0.99, P < 0.01) and subjective ({kappa} = 0.67-0.88) analyses were very good. Mean CBT measurements were most accurate, and cortical bone thinning, erosions, surface irregularities and subcortical bone cysts were best depicted on the 3D fast spoiled gradient echo recalled sequence (3D FSPGR). The most reliable MRI sequence to assess the cortical bone of the mandibular condyles on sagittal imaging planes is the 3D FSPGR sequence. (orig.)

  19. k-space sampling optimization for ultrashort TE imaging of cortical bone: Applications in radiation therapy planning and MR-based PET attenuation correction

    International Nuclear Information System (INIS)

    Hu, Lingzhi; Traughber, Melanie; Su, Kuan-Hao; Pereira, Gisele C.; Grover, Anu; Traughber, Bryan; Muzic, Raymond F. Jr.

    2014-01-01

    Purpose: The ultrashort echo-time (UTE) sequence is a promising MR pulse sequence for imaging cortical bone which is otherwise difficult to image using conventional MR sequences and also poses strong attenuation for photons in radiation therapy and PET imaging. The authors report here a systematic characterization of cortical bone signal decay and a scanning time optimization strategy for the UTE sequence through k-space undersampling, which can result in up to a 75% reduction in acquisition time. Using the undersampled UTE imaging sequence, the authors also attempted to quantitatively investigate the MR properties of cortical bone in healthy volunteers, thus demonstrating the feasibility of using such a technique for generating bone-enhanced images which can be used for radiation therapy planning and attenuation correction with PET/MR. Methods: An angularly undersampled, radially encoded UTE sequence was used for scanning the brains of healthy volunteers. Quantitative MR characterization of tissue properties, including water fraction and R2 ∗ = 1/T2 ∗ , was performed by analyzing the UTE images acquired at multiple echo times. The impact of different sampling rates was evaluated through systematic comparison of the MR image quality, bone-enhanced image quality, image noise, water fraction, and R2 ∗ of cortical bone. Results: A reduced angular sampling rate of the UTE trajectory achieves acquisition durations in proportion to the sampling rate and in as short as 25% of the time required for full sampling using a standard Cartesian acquisition, while preserving unique MR contrast within the skull at the cost of a minimal increase in noise level. The R2 ∗ of human skull was measured as 0.2–0.3 ms −1 depending on the specific region, which is more than ten times greater than the R2 ∗ of soft tissue. The water fraction in human skull was measured to be 60%–80%, which is significantly less than the >90% water fraction in brain. High-quality, bone

  20. Generalized method for computation of true thickness and x-ray intensity information in highly blurred sub-millimeter bone features in clinical CT images.

    Science.gov (United States)

    Pakdel, Amirreza; Robert, Normand; Fialkov, Jeffrey; Maloul, Asmaa; Whyne, Cari

    2012-12-07

    In clinical computed tomography (CT) images, cortical bone features with sub-millimeter (sub-mm) thickness are substantially blurred, such that their thickness is overestimated and their intensity appears underestimated. Therefore, any inquiry of the geometry or the density of such bones based on these images is severely error prone. We present a model-based method for estimating the true thickness and intensity magnitude of cortical and trabecular bone layers at localized regions of complex shell bones down to 0.25 mm. The method also computes the width of the corresponding point spread function. This approach is applicable on any CT image data, and does not rely on any scanner-specific parameter inputs beyond what is inherently available in the images themselves. The method applied on CT intensity profiles of custom phantoms mimicking shell-bones produced average cortical thickness errors of 0.07 ± 0.04 mm versus an average error of 0.47 ± 0.29 mm in the untreated cases (t(55) = 10.92, p ≪ 0.001)). Similarly, the average error of intensity magnitude estimates of the method were 22 ± 2.2 HU versus an error of 445 ± 137 HU in the untreated cases (t(55) = 26.48, p ≪ 0.001)). The method was also used to correct the CT intensity profiles from a cadaveric specimen of the craniofacial skeleton (CFS) in 15 different regions. There was excellent agreement between the corrections and µCT intensity profiles of the same regions used as a 'gold standard' measure. These results set the groundwork towards restoring cortical bone geometry and intensity information in entire image data sets. This information is essential for the generation of finite element models of the CFS that can accurately describe the biomechanical behavior of its complex thin bone structures.

  1. Propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of); Choi, Bok Kyoung [Maritime Security Research Center, KIOST, Ansan (Korea, Republic of)

    2014-12-15

    The present study aims to investigate the propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom. The velocities of the guided waves in a 5-mm-thick acrylic plate were measured by using the axial transmission technique. A pure A0 Lamb mode could be successfully launched in the 5-mm-thick acrylic plate through a time reversal process of Lamb waves, consistent with the fact that the time reversal process can automatically compensate for the dispersive nature of Lamb waves. The experimental velocities of the slow guided wave (SGW) and the time-reversed Lamb wave were found to be in reasonable agreement with the theoretical group velocity of the A0 Lamb mode, suggesting that both the SGW and the time-reversed Lamb wave excited in the 5-mm-thick acrylic plate correspond to the A0 Lamb mode. These results suggest that the time reversal process of Lamb waves can be usefully applied to noninvasive characterization of long cortical bones.

  2. Propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom

    International Nuclear Information System (INIS)

    Lee, Kang Il; Choi, Bok Kyoung

    2014-01-01

    The present study aims to investigate the propagation of ultrasonic guided waves in an acrylic plate as a cortical-bone-mimicking phantom. The velocities of the guided waves in a 5-mm-thick acrylic plate were measured by using the axial transmission technique. A pure A0 Lamb mode could be successfully launched in the 5-mm-thick acrylic plate through a time reversal process of Lamb waves, consistent with the fact that the time reversal process can automatically compensate for the dispersive nature of Lamb waves. The experimental velocities of the slow guided wave (SGW) and the time-reversed Lamb wave were found to be in reasonable agreement with the theoretical group velocity of the A0 Lamb mode, suggesting that both the SGW and the time-reversed Lamb wave excited in the 5-mm-thick acrylic plate correspond to the A0 Lamb mode. These results suggest that the time reversal process of Lamb waves can be usefully applied to noninvasive characterization of long cortical bones.

  3. Dynamics of body composition and bone in patients with juvenile idiopathic arthritis treated with growth hormone.

    Science.gov (United States)

    Bechtold, Susanne; Ripperger, Peter; Dalla Pozza, Robert; Roth, Johannes; Häfner, Renate; Michels, Hartmut; Schwarz, Hans Peter

    2010-01-01

    GH has a positive impact on growth, bone, and muscle development. The objectives of this study were to demonstrate the effects of GH treatment on regional body composition and bone geometry at final height in patients with juvenile idiopathic arthritis (JIA). In this longitudinal study, parameters of bone mineral density and geometry as well as muscle and fat cross-sectional area (CSA) in the nondominant forearm were recorded using peripheral quantitative computed tomography at yearly intervals until final height in 12 patients (seven females) receiving GH treatment. Data at final height were compared with 13 patients (nine females) with JIA not treated with GH. Patients were treated with GH for a mean of 5.35 +/- 0.7 yr. Correcting for height, total bone CSA (+0.89 +/- 0.5 sd) and muscle CSA (+1.14 +/- 0.6 sd) increased significantly and normalized at final height. Compared with JIA patients without GH at final height, there was a significantly higher muscle CSA and a lower fat CSA in GH-treated patients. Additionally, in relation to total bone CSA, there was significantly more cortical and less marrow CSA in boys with GH treatment. During GH treatment, there was a significant increase and normalization of total bone and muscle CSA at final height. In accordance with an anabolic effect of GH, fat mass stabilized at the lower limit of healthy children. At final height, cortical and marrow CSA, relative to total bone CSA, were normalized in GH-treated patients.

  4. Mapping the fine structure of cortical activity with different micro-ECoG electrode array geometries

    Science.gov (United States)

    Wang, Xi; Gkogkidis, C. Alexis; Iljina, Olga; Fiederer, Lukas D. J.; Henle, Christian; Mader, Irina; Kaminsky, Jan; Stieglitz, Thomas; Gierthmuehlen, Mortimer; Ball, Tonio

    2017-10-01

    Objective. Innovations in micro-electrocorticography (µECoG) electrode array manufacturing now allow for intricate designs with smaller contact diameters and/or pitch (i.e. inter-contact distance) down to the sub-mm range. The aims of the present study were: (i) to investigate whether frequency ranges up to 400 Hz can be reproducibly observed in µECoG recordings and (ii) to examine how differences in topographical substructure between these frequency bands and electrode array geometries can be quantified. We also investigated, for the first time, the influence of blood vessels on signal properties and assessed the influence of cortical vasculature on topographic mapping. Approach. The present study employed two µECoG electrode arrays with different contact diameters and inter-contact distances, which were used to characterize neural activity from the somatosensory cortex of minipigs in a broad frequency range up to 400 Hz. The analysed neural data were recorded in acute experiments under anaesthesia during peripheral electrical stimulation. Main results. We observed that µECoG recordings reliably revealed multi-focal cortical somatosensory response patterns, in which response peaks were often less than 1 cm apart and would thus not have been resolvable with conventional ECoG. The response patterns differed by stimulation site and intensity, they were distinct for different frequency bands, and the results of functional mapping proved independent of cortical vascular. Our analysis of different frequency bands exhibited differences in the number of activation peaks in topographical substructures. Notably, signal strength and signal-to-noise ratios differed between the two electrode arrays, possibly due to their different sensitivity for variations in spatial patterns and signal strengths. Significance. Our findings that the geometry of µECoG electrode arrays can strongly influence their recording performance can help to make informed decisions that maybe

  5. The Role of Water Compartments in the Material Properties of Cortical Bone.

    Science.gov (United States)

    Granke, Mathilde; Does, Mark D; Nyman, Jeffry S

    2015-09-01

    Comprising ~20% of the volume, water is a key determinant of the mechanical behavior of cortical bone. It essentially exists in two general compartments: within pores and bound to the matrix. The amount of pore water-residing in the vascular-lacunar-canalicular space-primarily reflects intracortical porosity (i.e., open spaces within the matrix largely due to Haversian canals and resorption sites) and as such is inversely proportional to most mechanical properties of bone. Movement of water according to pressure gradients generated during dynamic loading likely confers hydraulic stiffening to the bone as well. Nonetheless, bound water is a primary contributor to the mechanical behavior of bone in that it is responsible for giving collagen the ability to confer ductility or plasticity to bone (i.e., allows deformation to continue once permanent damage begins to form in the matrix) and decreases with age along with fracture resistance. Thus, dehydration by air-drying or by solvents with less hydrogen bonding capacity causes bone to become brittle, but interestingly, it also increases stiffness and strength across the hierarchical levels of organization. Despite the importance of matrix hydration to fracture resistance, little is known about why bound water decreases with age in hydrated human bone. Using (1)H nuclear magnetic resonance (NMR), both bound and pore water concentrations in bone can be measured ex vivo because the proton relaxation times differ between the two water compartments, giving rise to two distinct signals. There are also emerging techniques to measure bound and pore water in vivo with magnetic resonance imaging (MRI). The NMR/MRI-derived bound water concentration is positively correlated with both the strength and toughness of hydrated bone and may become a useful clinical marker of fracture risk.

  6. Bone strength estimates relative to vertical ground reaction force discriminates women runners with stress fracture history.

    Science.gov (United States)

    Popp, Kristin L; McDermott, William; Hughes, Julie M; Baxter, Stephanie A; Stovitz, Steven D; Petit, Moira A

    2017-01-01

    To determine differences in bone geometry, estimates of bone strength, muscle size and bone strength relative to load, in women runners with and without a history of stress fracture. We recruited 32 competitive distance runners aged 18-35, with (SFX, n=16) or without (NSFX, n=16) a history of stress fracture for this case-control study. Peripheral quantitative computed tomography (pQCT) was used to assess volumetric bone mineral density (vBMD, mg/mm 3 ), total (ToA) and cortical (CtA) bone areas (mm 2 ), and estimated compressive bone strength (bone strength index; BSI, mg/mm 4 ) at the distal tibia. ToA, CtA, cortical vBMD, and estimated strength (section modulus; Zp, mm 3 and strength strain index; SSIp, mm 3 ) were measured at six cortical sites along the tibia. Mean active peak vertical (pkZ) ground reaction forces (GRFs), assessed from a fatigue run on an instrumented treadmill, were used in conjunction with pQCT measurements to estimate bone strength relative to load (mm 2 /N∗kg -1 ) at all cortical sites. SSIp and Zp were 9-11% lower in the SFX group at mid-shaft of the tibia, while ToA and vBMD did not differ between groups at any measurement site. The SFX group had 11-17% lower bone strength relative to mean pkZ GRFs (phistory of stress fracture. Bone strength relative to load is also lower in this same region suggesting that strength deficits in the middle 1/3 of the tibia and altered gait biomechanics may predispose an individual to stress fracture. Copyright © 2016. Published by Elsevier Inc.

  7. The impact of voxel size-based inaccuracies on the mechanical behavior of thin bone structures.

    Science.gov (United States)

    Maloul, Asmaa; Fialkov, Jeffrey; Whyne, Cari

    2011-03-01

    Computed tomography (CT)-based measures of skeletal geometry and material properties have been widely used to develop finite element (FE) models of bony structures. However, in the case of thin bone structures, the ability to develop FE models with accurate geometry derived from clinical CT data presents a challenge due to the thinness of the bone and the limited resolution of the imaging devices. The purpose of this study was to quantify the impact of voxel size on the thickness and intensity values of thin bone structure measurements and to assess the effect of voxel size on strains through FE modeling. Cortical bone thickness and material properties in five thin bone specimens were quantified at voxel sizes ranging from 16.4 to 488 μm. The measurements derived from large voxel size scans showed large increases in cortical thickness (61.9-252.2%) and large decreases in scan intensity (12.9-49.5%). Maximum principal strains from FE models generated using scans at 488 μm were decreased as compared to strains generated at 16.4 μm voxel size (8.6-64.2%). A higher level of significance was found in comparing intensity (p = 0.0001) vs. thickness (p = 0.005) to strain measurements. These findings have implications in developing methods to generate accurate FE models to predict the biomechanical behavior of thin bone structures.

  8. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects

    Science.gov (United States)

    Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala

    2016-01-01

    A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100-150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1-10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications.

  9. Histomorphometry and cortical robusticity of the adult human femur.

    Science.gov (United States)

    Miszkiewicz, Justyna Jolanta; Mahoney, Patrick

    2018-01-13

    Recent quantitative analyses of human bone microanatomy, as well as theoretical models that propose bone microstructure and gross anatomical associations, have started to reveal insights into biological links that may facilitate remodeling processes. However, relationships between bone size and the underlying cortical bone histology remain largely unexplored. The goal of this study is to determine the extent to which static indicators of bone remodeling and vascularity, measured using histomorphometric techniques, relate to femoral midshaft cortical width and robusticity. Using previously published and new quantitative data from 450 adult human male (n = 233) and female (n = 217) femora, we determine if these aspects of femoral size relate to bone microanatomy. Scaling relationships are explored and interpreted within the context of tissue form and function. Analyses revealed that the area and diameter of Haversian canals and secondary osteons, and densities of secondary osteons and osteocyte lacunae from the sub-periosteal region of the posterior midshaft femur cortex were significantly, but not consistently, associated with femoral size. Cortical width and bone robusticity were correlated with osteocyte lacunae density and scaled with positive allometry. Diameter and area of osteons and Haversian canals decreased as the width of cortex and bone robusticity increased, revealing a negative allometric relationship. These results indicate that microscopic products of cortical bone remodeling and vascularity are linked to femur size. Allometric relationships between more robust human femora with thicker cortical bone and histological products of bone remodeling correspond with principles of bone functional adaptation. Future studies may benefit from exploring scaling relationships between bone histomorphometric data and measurements of bone macrostructure.

  10. The micro-damage process zone during transverse cortical bone fracture: No ears at crack growth initiation.

    Science.gov (United States)

    Willett, Thomas; Josey, David; Lu, Rick Xing Ze; Minhas, Gagan; Montesano, John

    2017-10-01

    Apply high-resolution benchtop micro-computed tomography (micro-CT) to gain greater understanding and knowledge of the formation of the micro-damage process zone formed during traverse fracture of cortical bone. Bovine cortical bone was cut into single edge notch (bending) fracture testing specimens with the crack on the transverse plane and oriented to grow in the circumferential direction. We used a multi-specimen technique and deformed the specimens to various individual secant modulus loss levels (P-values) up to and including maximum load (Pmax). Next, the specimens were infiltrated with a BaSO 4 precipitation stain and scanned at 3.57-μm isotropic voxel size using a benchtop high resolution-micro-CT. Measurements of the micro-damage process zone volume, width and height were made. These were compared with the simple Irwin's process zone model and with finite element models. Electron and confocal microscopy confirmed the formation of BaSO 4 precipitate in micro-cracks and other porosity, and an interesting novel mechanism similar to tunneling. Measurable micro-damage was detected at low P values and the volume of the process zone increased according to a second order polynomial trend. Both width and height grew linearly up to Pmax, at which point the process zone cross-section (perpendicular to the plane of the crack) was almost circular on average with a radius of approximately 550µm (approximately one quarter of the unbroken ligament thickness) and corresponding to the shape expected for a biological composite under plane stress conditions. This study reports details of the micro-damage fracture process zone previously unreported for cortical bone. High-resolution micro-CT enables 3D visualization and measurement of the process zone and confirmation that the crack front edge and process zone are affected by microstructure. It is clear that the process zone for the specimens studied grows to be meaningfully large, confirming the need for the J

  11. Seaweed flour (“Lithothamnium calcareum”) as a mineral supplement in the bone healing of a cortical autograft in dogs Farinha de algas marinhas (“Lithothamnium calcareum”) como suplemento mineral na cicatrização óssea de autoenxerto cortical em cães

    OpenAIRE

    Emanoel Ferreira Martins Filho; Marcelo Weinstein Teixeira; Glauber Sergio Jacinto-Aragão; Alessandra Estrela Lima; Marcelo Jorge Cavalcanti de Sá; Raquel Graça Teixeira; João Moreira Costa Neto; Julia Morena de Miranda Leão Toríbio; Adílio Santos de Azevedo

    2010-01-01

    The influence of the seaweed flour (Lithothamnium calcareum) was evaluated as a mineral supplement in during healing of bone failure reconstructed with a cortical autograft. Ten adult male mongrel dogs, weighing between 10 and 15kg, were used. The graft made of a cilinder block of the cortical bone was obtained by the ulna proximal diaphysis by ostectomy with a trephine of eight millimeters. In the same way, it was created a bone failure located in the middle-skull region of the proximal diap...

  12. The influence of water removal on the strength and toughness of cortical bone

    OpenAIRE

    Nyman, Jeffry S.; Roy, Anuradha; Shen, Xinmei; Acuna, Rae L.; Tyler, Jerrod H.; Wang, Xiaodu

    2006-01-01

    Although the effects of dehydration on the mechanical behavior of cortical bone are known, the underlying mechanisms for such effects are not clear. We hypothesize that the interactions of water with the collagen and mineral phases each have a unique influence on mechanical behavior. To study this, strength, toughness, and stiffness were measured with three-point bend specimens made from the mid-diaphysis of human cadaveric femurs and divided into six test groups: control (hydrated), drying i...

  13. Bone Geometry, Volumetric Density, Microarchitecture, and Estimated Bone Strength Assessed by HR-pQCT in Adult Patients With Type 1 Diabetes Mellitus

    DEFF Research Database (Denmark)

    Shanbhogue, Vikram V; Hansen, Stinus; Frost, Morten

    2015-01-01

    The primary goal of this cross-sectional in vivo study was to assess peripheral bone microarchitecture, bone strength, and bone remodeling in adult type 1 diabetes (T1D) patients with and without diabetic microvascular disease (MVD+ and MVD-, respectively) and to compare them with age-, gender......-, and height-matched healthy control subjects (CoMVD+ and CoMVD-, respectively). The secondary goal was to assess differences in MVD- and MVD+ patients. Fifty-five patients with T1DM (MVD+ group: n = 29) were recruited from the Funen Diabetes Database. Dual-energy X-ray absorptiometry (DXA), high...... in MVD+ and MVD- groups in comparison to controls, they were similar between the MVD+ and MVD- groups. The results of our study suggest that the presence of MVD was associated with deficits in cortical and trabecular bone vBMD and microarchitecture that could partly explain the excess skeletal fragility...

  14. Benefits of mineralized bone cortical allograft for immediate implant placement in extraction sites: an in vivo study in dogs.

    Science.gov (United States)

    Orti, Valérie; Bousquet, Philippe; Tramini, Paul; Gaitan, Cesar; Mertens, Brenda; Cuisinier, Frédéric

    2016-10-01

    The aim of the present study was to evaluate the effectiveness of using a mineralized bone cortical allograft (MBCA), with or without a resorbable collagenous membrane derived from bovine pericardium, on alveolar bone remodeling after immediate implant placement in a dog model. Six mongrel dogs were included. The test and control sites were randomly selected. Four biradicular premolars were extracted from the mandible. In control sites, implants without an allograft or membrane were placed immediately in the fresh extraction sockets. In the test sites, an MBCA was placed to fill the gap between the bone socket wall and implant, with or without a resorbable collagenous membrane. Specimens were collected after 1 and 3 months. The amount of residual particles and new bone quality were evaluated by histomorphometry. Few residual graft particles were observed to be closely embedded in the new bone without any contact with the implant surface. The allograft combined with a resorbable collagen membrane limited the resorption of the buccal wall in height and width. The histological quality of the new bone was equivalent to that of the original bone. The MBCA improved the quality of new bone formation, with few residual particles observed at 3 months. The preliminary results of this animal study indicate a real benefit in obtaining new bone as well as in enhancing osseointegration due to the high resorbability of cortical allograft particles, in comparison to the results of xenografts or other biomaterials (mineralized or demineralized cancellous allografts) that have been presented in the literature. Furthermore, the use of an MBCA combined with a collagen membrane in extraction and immediate implant placement limited the extent of post-extraction resorption.

  15. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method.

    Science.gov (United States)

    Barkaoui, Abdelwahed; Chamekh, Abdessalem; Merzouki, Tarek; Hambli, Ridha; Mkaddem, Ali

    2014-03-01

    The complexity and heterogeneity of bone tissue require a multiscale modeling to understand its mechanical behavior and its remodeling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network (NN) computation and homogenization equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained NN simulation. Finite element calculation is performed at nanoscopic levels to provide a database to train an in-house NN program; and (iii) in steps 2-10 from fibril to continuum cortical bone tissue, homogenization equations are used to perform the computation at the higher scales. The NN outputs (elastic properties of the microfibril) are used as inputs for the homogenization computation to determine the properties of mineralized collagen fibril. The mechanical and geometrical properties of bone constituents (mineral, collagen, and cross-links) as well as the porosity were taken in consideration. This paper aims to predict analytically the effective elastic constants of cortical bone by modeling its elastic response at these different scales, ranging from the nanostructural to mesostructural levels. Our findings of the lowest scale's output were well integrated with the other higher levels and serve as inputs for the next higher scale modeling. Good agreement was obtained between our predicted results and literature data. Copyright © 2013 John Wiley & Sons, Ltd.

  16. On the effect of x-ray irradiation on the deformation and fracture behavior of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Holly D.; Launey, Maximilien E.; McDowell, Alastair A.; Ager III, Joel W.; Ritchie, Robert O.

    2010-01-10

    In situ mechanical testing coupled with imaging using high-energy synchrotron x-ray diffraction or tomography imaging is gaining in popularity as a technique to investigate micrometer and even sub-micrometer deformation and fracture mechanisms in mineralized tissues, such as bone and teeth. However, the role of the irradiation in affecting the nature and properties of the tissue is not always taken into account. Accordingly, we examine here the effect of x-ray synchrotron-source irradiation on the mechanistic aspects of deformation and fracture in human cortical bone. Specifically, the strength, ductility and fracture resistance (both work-of-fracture and resistance-curve fracture toughness) of human femoral bone in the transverse (breaking) orientation were evaluated following exposures to 0.05, 70, 210 and 630 kGy irradiation. Our results show that the radiation typically used in tomography imaging can have a major and deleterious impact on the strength, post-yield behavior and fracture toughness of cortical bone, with the severity of the effect progressively increasing with higher doses of radiation. Plasticity was essentially suppressed after as little as 70 kGy of radiation; the fracture toughness was decreased by a factor of five after 210 kGy of radiation. Mechanistically, the irradiation was found to alter the salient toughening mechanisms, manifest by the progressive elimination of the bone's capacity for plastic deformation which restricts the intrinsic toughening from the formation 'plastic zones' around crack-like defects. Deep-ultraviolet Raman spectroscopy indicated that this behavior could be related to degradation in the collagen integrity.

  17. Bone Geometry, Volumetric Bone Mineral Density, Microarchitecture and Estimated Bone Strength in Caucasian Females with Systemic Lupus Erythematosus. A Cross-Sectional Study Using HR-pQCT

    DEFF Research Database (Denmark)

    Hansen, Stinus; Gudex, Claire; Ahrberg, Fabian

    2014-01-01

    by finite element analysis (FEA) at the distal radius and tibia to assess bone characteristics beyond BMD that may contribute to the increased risk of fracture. Thirty-three Caucasian women with SLE (median age 48, range 21-64 years) and 99 controls (median age 45, range 21-64 years) were studied. Groups.......01), cortical area (-14 %, p TV); -17 %, p ....01], trabecular number (-9 %, p TV (-15 %, p

  18. Magnetic resonance imaging of trabecular and cortical bone in mice: comparison of high resolution in vivo and ex vivo MR images with corresponding histology

    International Nuclear Information System (INIS)

    Weber, Michael H.; Sharp, Jonathan C.; Latta, Peter; Sramek, Milos; Hassard, H. Thomas; Orr, F. William

    2005-01-01

    Measurements of bone morphometry and remodeling have been shown to reflect bone strength and can be used to diagnose degenerative bone disease. In this study, in vivo and ex vivo magnetic resonance imaging (MRI) techniques to assess trabecular and cortical bone properties have been compared to each other and to histology as a novel means for the quantification of bone. Femurs of C57Bl/6 mice were examined both in vivo and ex vivo on an 11.7 T MRI scanner, followed by histologic processing and morphometry. A thresholding analysis technique was applied to the MRI images to generate contour lines and to delineate the boundaries between bone and marrow. Using MRI, an optimal correlation with histology was obtained with an in vivo longitudinal sectioned short echo time gradient-echo versus an in vivo long echo time spin-echo sequence or an ex vivo pulse sequence. Gradient-echo images were acquired with a maximum in-plane resolution of 35 μm. Our results demonstrated that in both the in vivo and ex vivo data sets, the percent area of marrow increases and percent area of trabecular bone and cortical bone thickness decreases moving from the epiphyseal growth plate to the diaphysis. These changes, observed with MRI, correlate with the histological data. Investigations using in vivo MRI gradient-echo sequences consistently gave the best correlation with histology. Our quantitative evaluation using both ex vivo and in vivo MRI was found to be an effective means to visualize non-invasively the normal variation in trabecular and cortical bone as compared to a histological 'gold standard' The experiments validated in vivo MRI as a potential high resolution technique for investigating both soft tissue, such as marrow, and bone without radiation exposure

  19. Rhombicuboctahedron unit cell based scaffolds for bone regeneration: geometry optimization with a mechanobiology - driven algorithm.

    Science.gov (United States)

    Boccaccio, Antonio; Fiorentino, Michele; Uva, Antonio E; Laghetti, Luca N; Monno, Giuseppe

    2018-02-01

    In a context more and more oriented towards customized medical solutions, we propose a mechanobiology-driven algorithm to determine the optimal geometry of scaffolds for bone regeneration that is the most suited to specific boundary and loading conditions. In spite of the huge number of articles investigating different unit cells for porous biomaterials, no studies are reported in the literature that optimize the geometric parameters of such unit cells based on mechanobiological criteria. Parametric finite element models of scaffolds with rhombicuboctahedron unit cell were developed and incorporated into an optimization algorithm that combines them with a computational mechanobiological model. The algorithm perturbs iteratively the geometry of the unit cell until the best scaffold geometry is identified, i.e. the geometry that allows to maximize the formation of bone. Performances of scaffolds with rhombicuboctahedron unit cell were compared with those of other scaffolds with hexahedron unit cells. We found that scaffolds with rhombicuboctahedron unit cell are particularly suited for supporting medium-low loads, while, for higher loads, scaffolds with hexahedron unit cells are preferable. The proposed algorithm can guide the orthopaedic/surgeon in the choice of the best scaffold to be implanted in a patient-specific anatomic region. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Experimental investigations and finite element simulation of cutting heat in vibrational and conventional drilling of cortical bone.

    Science.gov (United States)

    Wang, Yu; Cao, Meng; Zhao, Xiangrui; Zhu, Gang; McClean, Colin; Zhao, Yuanyuan; Fan, Yubo

    2014-11-01

    Heat generated during bone drilling could cause irreversible thermal damage, which can lead to bone necrosis or even osteomyelitis. In this study, vibrational drilling was applied to fresh bovine bones to investigate the cutting heat in comparison with conventional drilling through experimental investigation and finite element analysis (FEA). The influence of vibrational frequency and amplitude on cutting heat generation and conduction were studied. The experimental results showed that, compared with the conventional drilling, vibrational drilling could significantly reduce the cutting temperature in drilling of cortical bone (P<0.05): the cutting temperature tended to decrease with increasing vibrational frequency and amplitude. The FEA results also showed that the vibrational amplitude holds a significant effect on the cutting heat conduction. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Bone fragility induced by X-ray irradiation in relation to cortical bone-mineral content

    International Nuclear Information System (INIS)

    Nyaruba, M.M.; Yamamoto, I.; Morita, R.; Kimura, H.

    1998-01-01

    The purpose of this study was to investigate the effects of fractional irradiation on the biomechanical properties of bone in the rat in relation to the cortical bone-mineral content (BMC), and to compare these effects with those brought about by single-dose irradiation. Seventy-five veteran female Wistar rats were divided into 4 groups. Group 1 was the control group. The left tibiae of the remaining rats were exposed to irradiation. Group 2 received one single dose of X-rays at 10-60 Gy. Groups 3 and 4 received fractional irradiation up to different cumulative doses (10-60 Gy): group 3 received 2.5 Gy once a day; group 4 received 1.25 Gy twice a day. Twenty-four weeks after irradiation, the rats were killed and the BMC in each tibial diaphysis was determined by dual-energy X-ray absorptiometry (DXA). The bones were then loaded to failure in a three-point bending test. The control group showed no difference (p>0.05) between left and right tibiae, neither in BMC nor in the maximum load at fracture. Single-dose irradiation caused a 16% (p=0.0366) decrease in the maximum load at 40 Gy, and a 19% (p=0.008) decrease at 60 Gy. The once-daily fractional dose of irradiation caused a 10% (p=0.0022) decrease in the maximum load of the irradiated tibiae at 60 Gy when compared to the intact contralateral tibiae. The twice-daily fractional dose of irradiation had no observable effect on the maximum load of the irradiated tibiae. Neither fractional irradiation modality had an effect on BMC. (orig./MG)

  2. Determination of calcium, phosphorus, and the calcium/phosphorus ratio in cortical bone from the human femoral neck by neutron activation analysis

    International Nuclear Information System (INIS)

    Zaichick, Vladimir; Tzaphlidou, Margaret

    2002-01-01

    Concentrations of Ca and P as well as the Ca/P ratio were estimated in intact cortical bone samples from the femoral neck of healthy humans, 33 women and 45 men, aged from 15 to 55 yr using instrumental neutron activation analysis. Mean values (M±SD) for the investigated parameters (on dry weight basis) were: 23.0±3.9%, 10.7±2.4% and 2.17±0.31, respectively. No statistically significant differences of the above parameters were observed related either to age or sex. The mean values for Ca, P and Ca/P ratio were within a very wide range of published data and close to their median. The individual variation for the Ca/P ratio in cortical bone from the healthy human femoral neck was lower than those for Ca and P separately. This means that specificity of Ca/P ratio is better than those of Ca and P concentrations are and may be more reliable for diagnosis of bone disorders

  3. Relationships between bone strength and bone quality. Three-dimensional imaging analysis in ovariectomized mice

    International Nuclear Information System (INIS)

    Wakabayashi, Suguru; Sakurai, Takashi; Kashima, Isamu

    2004-01-01

    Low-energy trauma resulting in fractures of the distal femur is often observed in elderly patients with osteoporosis; such fractures are often associated with treatment difficulties and poor prognosis. The purpose of this study was to clarify the factors that affect the bone strength of the distal femur. We used ovariectomized mice to demonstrate bone quality factors associated with deterioration of the strength of the distal femur. Ten-week old ICR-strain mice were ovariectomized or sham-ovariectomized. Total bone mineral density (BMD), total bone area, cortical BMD, cortical thickness, and trabecular BMD were measured by peripheral quantitative computed tomography in the distal metaphyseal region of the femora. As three-dimensional architectural parameters, the trabecular number, trabecular thickness (Tb.Th), trabecular separation, and connectivity density were measured in the same region by micro-computed tomography. The maximum load measured by compression testing of the distal metaphyseal region was regarded as the bone strength of each sample. No significant differences in total bone area or in cortical BMD were found between the groups. Bone strength showed the closest relationship with total BMD (r=0.834). Multiple regression analysis demonstrated that total BMD greatly depended on cortical thickness. The addition of Tb.Th to trabecular BMD markedly reflected bone strength (R=0.857), suggesting that Tb.Th affected bone strength more significantly than trabecular BMD. These findings suggested that deterioration of bone strength of the distal femur (metaphysis) was not caused by a reduction in cortical BMD, but was related to reduced cortical thickness, which reduced total BMD, and to trabecular BMD and architecture, in particular to reduced Tb.Th. (author)

  4. AN INVESTIGATION OF THE MINERAL IN DUCTILE AND BRITTLE CORTICAL MOUSE BONE

    Science.gov (United States)

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J.; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J.

    2015-01-01

    Bone is a strong and tough material composed of apatite mineral, organic matter and water. Changes in composition and organization of these building blocks affect bone’s mechanical integrity. Skeletal disorders often affect bone’s mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta murine (oim−/−) mice were used to model brittle bone; PHOSPHO1 mutants (Phospho1−/−) had ductile bone. They were compared to their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD), and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification, to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (qbSEM). Interestingly, the mineral of brittle oim−/− and ductile Phospho1−/− bones had many similar characteristics. Both pathology models had smaller apatite crystals, lower mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild-types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. The degree of mineralization of the bone matrix was different for each strain: oim−/− were hypermineralized, while Phospho1−/− were hypomineralized. However, alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results revealed that despite having extremely different whole bone mechanics, the mineral of oim−/− and Phospho1−/− has several similar trends at smaller length scales. This

  5. Intraskeletal variation in human cortical osteocyte lacunar density: Implications for bone quality assessment

    Directory of Open Access Journals (Sweden)

    Randee L. Hunter

    2016-12-01

    Full Text Available Osteocytes and their lacunocanalicular network have been identified as the regulator of bone quality and function by exerting extensive influence over metabolic processes, mechanical adaptation, and mineral homeostasis. Recent research has shown that osteocyte apoptosis leads to a decrease in bone quality and increase in bone fragility mediated through its effects on remodeling. The purpose of this study is to investigate variation in cortical bone osteocyte lacunar density with respect to major factors including sex, age, and intracortical porosity to establish both regional and systemic trends. Samples from the midshaft femur, midshaft rib and distal one-third diaphysis of the radius were recovered from 30 modern cadaveric individuals (15 males and 15 females ranging from 49 to 100 years old. Thick ground undecalcified histological (80 μm cross-sections were made and imaged under bright field microscopy. Osteocyte lacunar density (Ot.Lc.N/B.Ar and intracortical porosity (%Po.Ar were quantified. No significant sex differences in Ot.Lc.N/B.Ar or %Po.Ar were found in any element. Linear regressions demonstrated a significant decrease in osteocyte lacunar density (Ot.Lc.N/B.Ar and increase in intracortical porosity (%Po.Ar with age for the sex-pooled sample in the femur (R2 = 0.208, 0.297 respectively and radius (R2 = 0.108, 0.545 respectively. Age was unable to significantly predict osteocyte lacunar density or intracortical porosity in the rib (R2 = 0.058, 0.114 respectively. Comparisons of regression coefficients demonstrated a systemic trend in the decrease in osteocyte lacunar density (Ot.Lc.N/B.Ar and increase in intracortical porosity (%Po.Ar with age. In each element, intracortical porosity was significantly negatively correlated with lacunar density for which the radius demonstrated the strongest relationship (r = −0.746. Using pore number (Po.N as a proxy for available vascularity to support the osteocyte population, Po

  6. Predicting Hip Fracture Type With Cortical Bone Mapping (CBM) in the Osteoporotic Fractures in Men (MrOS) Study.

    Science.gov (United States)

    Treece, Graham M; Gee, Andrew H; Tonkin, Carol; Ewing, Susan K; Cawthon, Peggy M; Black, Dennis M; Poole, Kenneth E S

    2015-11-01

    Hip fracture risk is known to be related to material properties of the proximal femur, but fracture prediction studies adding richer quantitative computed tomography (QCT) measures to dual-energy X-ray (DXA)-based methods have shown limited improvement. Fracture types have distinct relationships to predictors, but few studies have subdivided fracture into types, because this necessitates regional measurements and more fracture cases. This work makes use of cortical bone mapping (CBM) to accurately assess, with no prior anatomical presumptions, the distribution of properties related to fracture type. CBM uses QCT data to measure the cortical and trabecular properties, accurate even for thin cortices below the imaging resolution. The Osteoporotic Fractures in Men (MrOS) study is a predictive case-cohort study of men over 65 years old: we analyze 99 fracture cases (44 trochanteric and 55 femoral neck) compared to a cohort of 308, randomly selected from 5994. To our knowledge, this is the largest QCT-based predictive hip fracture study to date, and the first to incorporate CBM analysis into fracture prediction. We show that both cortical mass surface density and endocortical trabecular BMD are significantly different in fracture cases versus cohort, in regions appropriate to fracture type. We incorporate these regions into predictive models using Cox proportional hazards regression to estimate hazard ratios, and logistic regression to estimate area under the receiver operating characteristic curve (AUC). Adding CBM to DXA-based BMD leads to a small but significant (p fracture, with AUC increasing from 0.78 to 0.79, assessed using leave-one-out cross-validation. For specific fracture types, the improvement is more significant (p trochanteric fractures and 0.76 to 0.82 for femoral neck fractures. In contrast, adding DXA-based BMD to a CBM-based predictive model does not result in any significant improvement. © 2015 The Authors. Journal of Bone and Mineral Research

  7. Computed tomography to evaluate the association of fragmented heterolog cortical bone and methylmethacrylate to repare segmental bone defect produced in tibia of rabbits; Tomografia computadorizada da matriz ossea mineralizada heterologa fragmentada e metilmetacrilato na reparacao de falhas osseas segmentares produzidas em tibia de coelhos

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, S.H. [Universidade Federal de Sao Paulo (USP), SP (Brazil); Doria, R.G.S. [Universidade Federal de Sao Paulo (USP), SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos; Mendonca, F.S.; Santos, M.D.; Moreira, R. [Universidade de Cuiaba, MT (Brazil). Faculdade de Medicina Veterinaria; Simoes, R.S. [Universidade Federal de Sao Paulo (USP), SP (Brazil). Hospital Universitario; Camargo, L.M.; Simoes, M.J. [Universidade Federal de Sao Paulo (USP), SP (Brazil). Escola Paulista de Medicina; Marques, A.T.C. [Universidade de Cuiaba, MT (Brazil). Faculdade de Odontologia

    2012-11-15

    A 6mm segmental defect was performed on the metaphyseal region of the tibia of 12 rabbits and the autoclaved fragmented heterolog cortical bone conserved in glycerin (98%) and methylmethacrylate was used as a bone graft for the reconstruction. The graft was placed in the receptor bed and its integration was evaluated by computed tomography after 30, 60 and 90 days. There was gradual bone graft incorporation in the receptor bed during the time in 100% of the cases. Fragmented cortical bone heterograft and methylmethacrylate was biologically compatible and promotes bone defect reparation without signs of infection, migration and or rejection, featuring a new option of osseous substitute to fill in bone defects. (author)

  8. Comparison of interradicular distances and cortical bone thickness in Thai patients with class I and class II skeletal patterns using cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Khumsarn, Nattida [Dental Division of Lamphun Hospital, Lamphun (Thailand); Patanaporn, Virush; Janhom, Apirum; Jotikasthira, Dhirawat [Faculty of Dentistry, Chiang Mai University, Chiang Mai (Thailand)

    2016-06-15

    This study evaluated and compared interradicular distances and cortical bone thickness in Thai patients with Class I and Class II skeletal patterns, using cone-beam computed tomography (CBCT). Pretreatment CBCT images of 24 Thai orthodontic patients with Class I and Class II skeletal patterns were included in the study. Three measurements were chosen for investigation: the mesiodistal distance between the roots, the width of the buccolingual alveolar process, and buccal cortical bone thickness. All distances were recorded at five different levels from the cementoenamel junction (CEJ). Descriptive statistical analysis and t-tests were performed, with the significance level for all tests set at p<0.05. Patients with a Class II skeletal pattern showed significantly greater maxillary mesiodistal distances (between the first and second premolars) and widths of the buccolingual alveolar process (between the first and second molars) than Class I skeletal pattern patients at 10 mm above the CEJ. The maxillary buccal cortical bone thicknesses between the second premolar and first molar at 8 mm above the CEJ in Class II patients were likewise significantly greater than in Class I patients. Patients with a Class I skeletal pattern showed significantly wider mandibular buccolingual alveolar processes than did Class II patients (between the first and second molars) at 4, 6, and 8 mm below the CEJ. In both the maxilla and mandible, the mesiodistal distances, the width of the buccolingual alveolar process, and buccal cortical bone thickness tended to increase from the CEJ to the apex in both Class I and Class II skeletal patterns.

  9. Comparison of interradicular distances and cortical bone thickness in Thai patients with class I and class II skeletal patterns using cone-beam computed tomography

    International Nuclear Information System (INIS)

    Khumsarn, Nattida; Patanaporn, Virush; Janhom, Apirum; Jotikasthira, Dhirawat

    2016-01-01

    This study evaluated and compared interradicular distances and cortical bone thickness in Thai patients with Class I and Class II skeletal patterns, using cone-beam computed tomography (CBCT). Pretreatment CBCT images of 24 Thai orthodontic patients with Class I and Class II skeletal patterns were included in the study. Three measurements were chosen for investigation: the mesiodistal distance between the roots, the width of the buccolingual alveolar process, and buccal cortical bone thickness. All distances were recorded at five different levels from the cementoenamel junction (CEJ). Descriptive statistical analysis and t-tests were performed, with the significance level for all tests set at p<0.05. Patients with a Class II skeletal pattern showed significantly greater maxillary mesiodistal distances (between the first and second premolars) and widths of the buccolingual alveolar process (between the first and second molars) than Class I skeletal pattern patients at 10 mm above the CEJ. The maxillary buccal cortical bone thicknesses between the second premolar and first molar at 8 mm above the CEJ in Class II patients were likewise significantly greater than in Class I patients. Patients with a Class I skeletal pattern showed significantly wider mandibular buccolingual alveolar processes than did Class II patients (between the first and second molars) at 4, 6, and 8 mm below the CEJ. In both the maxilla and mandible, the mesiodistal distances, the width of the buccolingual alveolar process, and buccal cortical bone thickness tended to increase from the CEJ to the apex in both Class I and Class II skeletal patterns

  10. Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic–inorganic composite scaffolds for bone repair

    International Nuclear Information System (INIS)

    Chatzinikolaidou, Maria; Rekstyte, Sima; Danilevicius, Paulius; Pontikoglou, Charalampos; Papadaki, Helen; Farsari, Maria; Vamvakaki, Maria

    2015-01-01

    Engineering biomaterial scaffolds that promote attachment and growth of mesenchymal stem cells in three dimensions is a crucial parameter for successful bone tissue engineering. Towards this direction, a lot of research effort has focused recently into the development of three-dimensional porous scaffolds, aiming to elicit positive cellular behavior. However, the fabrication of three-dimensional tissue scaffolds with a precise geometry and complex micro- and nano-features, supporting cell in-growth remains a challenge. In this study we report on a positive cellular response of human bone marrow-derived (BM) mesenchymal stem cells (MSCs) onto hybrid material scaffolds consisting of methacryloxypropyl trimethoxysilane, zirconium propoxide, and 2-(dimethylamino)ethyl methacrylate (DMAEMA). First, we use Direct fs Laser Writing, a 3D scaffolding technology to fabricate the complex structures. Subsequently, we investigate the morphology, viability and proliferation of BM-MSCs onto the hybrid scaffolds and examine the cellular response from different donors. Finally, we explore the effect of the materials' chemical composition on cell proliferation, employing three different material surfaces: (i) a hybrid consisting of methacryloxypropyl trimethoxysilane, zirconium propoxide and 50 mol% DMAEMA, (ii) a hybrid material comprising methacryloxypropyl trimethoxysilane and zirconium propoxide, and (iii) a purely organic polyDMAEMA. Our results show a strong adhesion of BM-MSCs onto the hybrid material containing 50% DMAEMA from the first 2 h after seeding, and up to several days, and a proliferation increase after 14 and 21 days, similar to the polystyrene control, independent of cell donor. These findings support the potential use of our proposed cell–material combination in bone tissue engineering. - Graphical abstract: Scanning electron microscopy image depicting cell adhesion of bone marrow mesenchymal stem cells into a pore of a hybrid Direct Laser Writing

  11. Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic–inorganic composite scaffolds for bone repair

    Energy Technology Data Exchange (ETDEWEB)

    Chatzinikolaidou, Maria, E-mail: mchatzin@materials.uoc.gr [Department of Materials Science and Technology, University of Crete (Greece); Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH) (Greece); Rekstyte, Sima; Danilevicius, Paulius [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH) (Greece); Pontikoglou, Charalampos; Papadaki, Helen [Hematology Laboratory, School of Medicine, University of Crete (Greece); Farsari, Maria [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH) (Greece); Vamvakaki, Maria [Department of Materials Science and Technology, University of Crete (Greece); Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH) (Greece)

    2015-03-01

    Engineering biomaterial scaffolds that promote attachment and growth of mesenchymal stem cells in three dimensions is a crucial parameter for successful bone tissue engineering. Towards this direction, a lot of research effort has focused recently into the development of three-dimensional porous scaffolds, aiming to elicit positive cellular behavior. However, the fabrication of three-dimensional tissue scaffolds with a precise geometry and complex micro- and nano-features, supporting cell in-growth remains a challenge. In this study we report on a positive cellular response of human bone marrow-derived (BM) mesenchymal stem cells (MSCs) onto hybrid material scaffolds consisting of methacryloxypropyl trimethoxysilane, zirconium propoxide, and 2-(dimethylamino)ethyl methacrylate (DMAEMA). First, we use Direct fs Laser Writing, a 3D scaffolding technology to fabricate the complex structures. Subsequently, we investigate the morphology, viability and proliferation of BM-MSCs onto the hybrid scaffolds and examine the cellular response from different donors. Finally, we explore the effect of the materials' chemical composition on cell proliferation, employing three different material surfaces: (i) a hybrid consisting of methacryloxypropyl trimethoxysilane, zirconium propoxide and 50 mol% DMAEMA, (ii) a hybrid material comprising methacryloxypropyl trimethoxysilane and zirconium propoxide, and (iii) a purely organic polyDMAEMA. Our results show a strong adhesion of BM-MSCs onto the hybrid material containing 50% DMAEMA from the first 2 h after seeding, and up to several days, and a proliferation increase after 14 and 21 days, similar to the polystyrene control, independent of cell donor. These findings support the potential use of our proposed cell–material combination in bone tissue engineering. - Graphical abstract: Scanning electron microscopy image depicting cell adhesion of bone marrow mesenchymal stem cells into a pore of a hybrid Direct Laser Writing

  12. Bone Microarchitecture and Estimated Strength in 499 Adult Danish Women and Men: A Cross-Sectional, Population-Based High-Resolution Peripheral Quantitative Computed Tomographic Study on Peak Bone Structure

    DEFF Research Database (Denmark)

    Hansen, Stinus; Shanbhogue, V.; Folkestad, L.

    2014-01-01

    High-resolution peripheral quantitative computed tomography (HR-pQCT) allows in vivo assessment of cortical and trabecular bone mineral density (BMD), geometry, and microarchitecture at the distal radius and tibia in unprecedented detail. In this cross-sectional study, we provide normative and de...... and descriptive HR-pQCT data from a large population-based sample of Danish Caucasian women and men (n = 499) aged 20-80 years. In young adults (...

  13. Association of neck strength with upper femoral geometry and bone mineral density in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Monika Gupta

    2016-01-01

    Full Text Available Background: Hip fracture is a severe health burden in the elderly population. In order to prevent, it is to evaluate the bone strength by establishing the relation between bone mineral density (BMD, neck strength, and geometry. Materials and Methods: The subjects under study were 100 postmenopausal women who visited bone clinic of Bharat Scan Centre. After recording general profile such as age, body mass index (BMI, geometric measures such as hip axis length (HAL, neck shaft angle (NSA, and neck width (NW were measured from digital X-ray. For the same individuals, BMD was measured using dual energy X-ray absorptiometry (DXA scan. From the DXA print out neck strength was calculated using the formula = sectional modulus/HAL. Results: The correlation test was analyzed among BMD, neck strength, anthropometric, and geometric factors using Statistical packages for social services (SPSS software. BMD is inversely related with age and positively correlated with height, weight, and BMI. HAL, NSA, and NW had a weaker association with BMD. Age, BMD, and NSA had a negative relation with neck strength. HAL and NW had a positive relation with neck strength. Conclusion: Noninvasive means of associating neck strength with BMD and geometry will provide improved estimates for fracture risk beyond any other invasive method of assessing bone mineral properties.

  14. Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation μCT

    International Nuclear Information System (INIS)

    Raum, K; Leguerney, I; Chandelier, F; Talmant, M; Saied, A; Peyrin, F; Laugier, P

    2006-01-01

    200 MHz scanning acoustic microscopy (SAM) and synchrotron radiation μCT (SR-μCT) were used to assess microstructural parameters and tissue properties in site-matched regions of interest in cortical bone. Anterior and postero-lateral regions of ten cross sections from human cortical radius were explored. Structural parameters, including diameter and number of Haversian canals per cortical area (Ca.Dm, N.Ca/Ar) and porosity Po were assessed with both methods using a custom-developed image fusion and analysis software. Acoustic impedance Z and degree of mineralization of bone DMB were extracted separately for osteonal and interstitial tissues from the fused images. Structural parameter estimations obtained from radiographic and acoustic images were almost identical. DMB and impedance values were in the range between 0.77 and 1.28 g cm -3 and 5.13 and 12.1 Mrayl, respectively. Interindividual and regional variations were observed, whereas the strongest difference was found between osteonal and interstitial tissues (Z: 7.2 ± 1.1 Mrayl versus 9.3 ± 1.0 Mrayl, DMB: 1.06 ± 0.07 g cm -3 versus 1.16 ± 0.05 g cm -3 , paired t-test, p 2 = 0.174, p -4 ) and for the pooled (osteonal and interstitial) data. The regression of the pooled osteonal and interstitial tissue data follows a second-order polynomial (R 2 = 0.39, p -4 ). Both modalities fulfil the requirement for a simultaneous evaluation of cortical bone microstructure and material properties at the tissue level. While SAM inspection is limited to the evaluation of carefully prepared sample surfaces, SR-μCT provides volumetric information on the tissue without substantial preparation requirements. However, SAM provides a quantitative estimate of elastic properties at the tissue level that cannot be captured by SR-μCT

  15. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    International Nuclear Information System (INIS)

    Ascenzi, Maria-Grazia; Kawas, Neal P.; Lutz, Andre; Kardas, Dieter; Nackenhorst, Udo; Keyak, Joyce H.

    2013-01-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing

  16. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Maria-Grazia, E-mail: mgascenzi@mednet.ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Kawas, Neal P., E-mail: nealkawas@ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Lutz, Andre, E-mail: andre.lutz@hotmail.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Kardas, Dieter, E-mail: kardas@ibnm.uni-hannover.de [ContiTech Vibration Control, Jaedekamp 30 None, 30419 Hannover (Germany); Nackenhorst, Udo, E-mail: nackenhorst@ibnm.uni-hannover.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Keyak, Joyce H., E-mail: jhkeyak@uci.edu [Department of Radiological Sciences, Medical Sciences I, Bldg 811, Room B140, University of California, Irvine, CA 92697-5000 (United States)

    2013-07-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.

  17. Sterilisation of allograft cortical bone using gamma irradiation: effect on strength and material ultrastructure

    International Nuclear Information System (INIS)

    Price, R.; Walters, M.

    1996-01-01

    Full text: The use of allograft bone in revision joint and limb salvage surgery is widespread and increasing (Buck B.E. et al, Clin Orthop 303: 8-17, 1994). To reduce the risk of disease transmission from donor graft contamination (particularly HIV and hepatitis) sterilisation is practiced worldwide. Gamma (γ)-irradiation using a dose of 1.5 - 2.5 Mrads is common. However, γ-irradiation is known to reduce bone strength, though the extent and mechanisms are controversial (eg Bright RW et al, Trans Orthop Res Soc 3: 210, 1978). We measured the effect of γ-irradiation on bone strength and properties reflecting bone material ultrastructure. Diaphyseal bone was obtained from the femur of a 47 year-old male would-be donor with suspicious hepatitis serology. Beams of cortical bone (long axes parallel to the femur) were cut using a low speed diamond saw bathed in Ringer's solution. Four groups were irradiated with γ-rays (0, 1.5, 2.5 and 5.0±0.5[SD] Mrads). Blinded investigations were performed: Ultimate stress (Ult Stress, N= 16 replicates in each dose group). Each beam was loaded at its midpoint at a rate of 25 mm/min until failure, while its ends were supported 40 mms apart. Ult stress was calculated from 3-point bending theory using the load vs displacement curve and the cross-sectional area of the break (Power RA et al, submitted to J Bone and Joint Surg). Differential scanning calorimetry (DSC) was performed over the range -15 to +5 deg C. Samples were demineralized and small (7-10 mg) blocks were cut and sealed in stainless steel calorimetry capsules. The enthalpy (reflecting the normalised free water content) was calculated from the sample mass plus area under the heat capacity curve. Pyridinoline collagen (acid-insoluble) crosslinks (Pyrid, N=10) (Randall D et al, JBone and Min Res, 1996, in press) were determined from 5-mm 3 demineralised, freeze dried samples. Small and medium angle X-ray diffraction (XRD, N=5). Demineralised bone was sliced into thin

  18. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur.

    Science.gov (United States)

    Malo, M K H; Rohrbach, D; Isaksson, H; Töyräs, J; Jurvelin, J S; Tamminen, I S; Kröger, H; Raum, K

    2013-04-01

    Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Trc33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, pbone tissue were observed. These findings may explain in part the increase in susceptibility to suffer low energy fractures during aging and highlight the potential of ultrasound in clinical osteoporosis diagnostics. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Piroxicam treatment augments bone abnormalities in interleukin-10 knockout mice.

    Science.gov (United States)

    Holgersen, Kristine; Dobie, Ross; Farquharson, Colin; vanʼt Hof, Rob; Ahmed, Syed Faisal; Hansen, Axel Kornerup; Holm, Thomas L

    2015-02-01

    Osteoporosis and fractures are common complications of inflammatory bowel disease. The pathogenesis is multifactorial and has been partly attributed to intestinal inflammation. The aim of this study was to evaluate bone status and assess the association between bone loss and gut inflammation in an experimental colitis model. Colitis was induced in interleukin-10 knockout mice (PAC IL-10 k.o.) by peroral administration of piroxicam for 12 days. The degree of colitis was assessed by clinical, macroscopic, and microscopic evaluation. Trabecular and cortical bone microarchitecture of tibia were determined using micro-computed tomography. Moreover, the serum levels of bone formation and bone resorption biomarkers were measured, and inflammatory protein profiling was performed on colons. PAC IL-10 k.o. mice developed severe colitis, characterized by hyperplasia and focal transmural inflammation, which was consistent with Crohn's disease-like pathology. The gut inflammation was accompanied by a 14% and 12% reduction in trabecular thickness relative to piroxicam-treated wild type and untreated wild type mice, respectively (P < 0.001). The trabecular bone structure was also changed in PAC IL-10 k.o. mice, whereas no differences in cortical bone geometry were observed. The trabecular thickness was inversely correlated with serum levels of CTX (r = -0.93, P = 0.006). Moreover, numerous inflammatory mediators, including RANKL and osteoprotegerin, were significantly increased in the colon of PAC IL-10 k.o. mice. PAC IL-10 k.o. mice develop bone loss and changed trabecular structure, as a result of increased bone resorption. Thus, the PAC IL-10 k.o. model could be a useful experimental model in preclinical research of inflammatory bowel disease-associated bone loss.

  20. Clinical cone beam computed tomography compared to high-resolution peripheral computed tomography in the assessment of distal radius bone.

    Science.gov (United States)

    de Charry, C; Boutroy, S; Ellouz, R; Duboeuf, F; Chapurlat, R; Follet, H; Pialat, J B

    2016-10-01

    Clinical cone beam computed tomography (CBCT) was compared to high-resolution peripheral quantitative computed tomography (HR-pQCT) for the assessment of ex vivo radii. Strong correlations were found for geometry, volumetric density, and trabecular structure. Using CBCT, bone architecture assessment was feasible but compared to HR-pQCT, trabecular parameters were overestimated whereas cortical ones were underestimated. HR-pQCT is the most widely used technique to assess bone microarchitecture in vivo. Yet, this technology has been only applicable at peripheral sites, in only few research centers. Clinical CBCT is more widely available but quantitative assessment of the bone structure is usually not performed. We aimed to compare the assessment of bone structure with CBCT (NewTom 5G, QR, Verona, Italy) and HR-pQCT (XtremeCT, Scanco Medical AG, Brüttisellen, Switzerland). Twenty-four distal radius specimens were scanned with these two devices with a reconstructed voxel size of 75 μm for Newtom 5G and 82 μm for XtremeCT, respectively. A rescaling-registration scheme was used to define the common volume of interest. Cortical and trabecular compartments were separated using a semiautomated double contouring method. Density and microstructure were assessed with the HR-pQCT software on both modality images. Strong correlations were found for geometry parameters (r = 0.98-0.99), volumetric density (r = 0.91-0.99), and trabecular structure (r = 0.94-0.99), all p < 0.001. Correlations were lower for cortical microstructure (r = 0.80-0.89), p < 0.001. However, absolute differences were observed between modalities for all parameters, with an overestimation of the trabecular structure (trabecular number, 1.62 ± 0.37 vs. 1.47 ± 0.36 mm(-1)) and an underestimation of the cortical microstructure (cortical porosity, 3.3 ± 1.3 vs. 4.4 ± 1.4 %) assessed on CBCT images compared to HR-pQCT images. Clinical CBCT devices are able to

  1. The effect of surface demineralization of cortical bone allograft on the properties of recombinant adeno-associated virus coatings.

    Science.gov (United States)

    Yazici, Cemal; Yanoso, Laura; Xie, Chao; Reynolds, David G; Samulski, R Jude; Samulski, Jade; Yannariello-Brown, Judith; Gertzman, Arthur A; Zhang, Xinping; Awad, Hani A; Schwarz, Edward M

    2008-10-01

    Freeze-dried recombinant adeno-associated virus (rAAV) coated structural allografts have emerged as an approach to engender necrotic cortical bone with host factors that will persist for weeks following surgery to facilitate revascularization, osteointegration, and remodeling. However, one major limitation is the nonporous cortical surface that prohibits uniform distribution of the rAAV coating prior to freeze-drying. To overcome this we have developed a demineralization method to increase surface absorbance while retaining the structural integrity of the allograft. Demineralized bone wafers (DBW) made from human femoral allograft rings demonstrated a significant 21.1% (73.6+/-3.9% versus 52.5+/-2.6%; pcoating versus mineralized controls. Co-incubation of rAAV-luciferase (rAAV-Luc) coated DBW with a monolayer of C3H10T1/2 cells in culture led to peak luciferase levels that were not significantly different from soluble rAAV-Luc controls (p>0.05), although the peaks occurred at 60h and 12h, respectively. To assess the transduction efficiency of rAAV-Luc coated DBW in vivo, we first performed a dose response with allografts containing 10(7), 10(9) or 10(10) particles that were surgically implanted into the quadriceps of mice, and assayed by in vivo bioluminescence imaging (BLI) on days 1, 3, 5, 7, 10, 14, and 21. The results demonstrated a dose response in which the DBW coated with 10(10) rAAV-Luc particles achieved peak gene expression levels on day 3, which persisted until day 21, and was significantly greater than the 10(7) dose throughout this time period (pcoated with 10(10) rAAV-Luc particles failed to demonstrate any significant differences in transduction kinetics or efficiency in vivo. Thus, surface demineralization of human cortical bone allograft increases its absorbance for uniform rAAV coating, without affecting vector transduction efficiency.

  2. Ultrasonic wave propagation in viscoelastic cortical bone plate coupled with fluids: a spectral finite element study.

    Science.gov (United States)

    Nguyen, Vu-Hieu; Naili, Salah

    2013-01-01

    This work deals with the ultrasonic wave propagation in the cortical layer of long bones which is known as being a functionally graded anisotropic material coupled with fluids. The viscous effects are taken into account. The geometrical configuration mimics the one of axial transmission technique used for evaluating the bone quality. We present a numerical procedure adapted for this purpose which is based on the spectral finite element method (FEM). By using a combined Laplace-Fourier transform, the vibroacoustic problem may be transformed into the frequency-wavenumber domain in which, as radiation conditions may be exactly introduced in the infinite fluid halfspaces, only the heterogeneous solid layer needs to be analysed using FEM. Several numerical tests are presented showing very good performance of the proposed approach. We present some results to study the influence of the frequency on the first arriving signal velocity in (visco)elastic bone plate.

  3. Bone geometry, density, and microarchitecture in the distal radius and tibia in adults with osteogenesis imperfecta type I assessed by high-resolution pQCT

    DEFF Research Database (Denmark)

    Folkestad, Lars; Hald, Jannie Dahl; Hansen, Stinus

    2012-01-01

    Osteogenesis imperfecta (OI) is a hereditary disorder characterized by decreased biosynthesis or impaired morphology of type I collagen that leads to decreased bone mass and increased bone fragility. We hypothesized that patients with OI have altered bone microstructure and bone geometry...

  4. A homogenization approach for the effective drained viscoelastic properties of 2D porous media and an application for cortical bone.

    Science.gov (United States)

    Nguyen, Sy-Tuan; Vu, Mai-Ba; Vu, Minh-Ngoc; To, Quy-Dong

    2018-02-01

    Closed-form solutions for the effective rheological properties of a 2D viscoelastic drained porous medium made of a Generalized Maxwell viscoelastic matrix and pore inclusions are developed and applied for cortical bone. The in-plane (transverse) effective viscoelastic bulk and shear moduli of the Generalized Maxwell rheology of the homogenized medium are expressed as functions of the porosity and the viscoelastic properties of the solid phase. When deriving these functions, the classical inverse Laplace-Carson transformation technique is avoided, due to its complexity, by considering the short and long term approximations. The approximated results are validated against exact solutions obtained from the inverse Laplace-Carson transform for a simple configuration when the later is available. An application for cortical bone with assumption of circular pore in the transverse plane shows that the proposed approximation fit very well with experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone - a feasibility study

    NARCIS (Netherlands)

    Marcián, P.; Borák, L.; Valášek, J.; Kaiser, J.; Florian, Z.; Wolff, J.

    2014-01-01

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant

  6. Impact of Non-Invasively Induced Motor Deficits on Tibial Cortical Properties in Mutant Lurcher Mice.

    Directory of Open Access Journals (Sweden)

    Alena Jindrová

    Full Text Available It has been shown that Lurcher mutant mice have significantly altered motor abilities, regarding their motor coordination and muscular strength because of olivorecebellar degeneration. We assessed the response of the cross-sectional geometry and lacuno-canalicular network properties of the tibial mid-diaphyseal cortical bone to motor differences between Lurcher and wild-type (WT male mice from the B6CBA strain. The first data set used in the cross-sectional geometry analysis consists of 16 mice of 4 months of age and 32 mice of 9 months of age. The second data set used in the lacunar-canalicular network analysis consists of 10 mice of 4 months of age. We compared two cross-sectional geometry and four lacunar-canalicular properties by I-region using the maximum and minimum second moment of area and anatomical orientation as well as H-regions using histological differences within a cross section. We identified inconsistent differences in the studied cross-sectional geometry properties between Lurcher and WT mice. The biggest significant difference between Lurcher and WT mice is found in the number of canaliculi, whereas in the other studied properties are only limited. Lurcher mice exhibit an increased number of canaliculi (p < 0.01 in all studied regions compared with the WT controls. The number of canaliculi is also negatively correlated with the distance from the centroid in the Lurcher and positively correlated in the WT mice. When the Lurcher and WT sample is pooled, the number of canaliculi and lacunar volume is increased in the posterior Imax region, and in addition, midcortical H-region exhibit lower number of canaliculi, lacuna to lacuna distance and increased lacunar volume. Our results indicate, that the importance of precise sample selection within cross sections in future studies is highlighted because of the histological heterogeneity of lacunar-canalicular network properties within the I-region and H-region in the mouse cortical

  7. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull

    International Nuclear Information System (INIS)

    Wydra, A; Maev, R Gr

    2013-01-01

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us. (note)

  8. Global spectral graph wavelet signature for surface analysis of carpal bones

    Science.gov (United States)

    Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A.

    2018-02-01

    Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.

  9. Bone lead (Pb) content at the tibia is associated with thinner distal tibia cortices and lower volumetric bone density in postmenopausal women

    Science.gov (United States)

    Wong, Andy K.O.; Beattie, Karen A.; Bhargava, Aakash; Cheung, Marco; Webber, Colin E.; Chettle, David R.; Papaioannou, Alexandra; Adachi, Jonathan D.

    2016-01-01

    Conflicting evidence suggests that bone lead or blood lead may reduce areal bone mineral density (BMD). Little is known about how lead at either compartment affects bone structure. This study examined postmenopausal women (N = 38, mean age 76 ± 8, body mass index (BMI): 26.74 ± 4.26 kg/m2) within the Hamilton cohort of the Canadian Multicentre Osteoporosis Study (CaMos), measuring bone lead at 66% of the non-dominant leg and at the calcaneus using 109Cadmium X-ray fluorescence. Volumetric BMD and structural parameters were obtained from peripheral quantitative computed tomography images (200 μm in-plane resolution, 2.3 ± 0.5 mm slice thickness) of the same 66% site and of the distal 4% site of the tibia length. Blood lead was measured using atomic absorption spectrometry and blood-to-bone lead partition coefficients (PBB, log ratio) were computed. Multivariable linear regression examined each of bone lead at the 66% tibia, calcaneus, blood lead and PBB as related to each of volumetric BMD and structural parameters, adjusting for age and BMI, diabetes or antiresorptive therapy. Regression coefficients were reported along with 95% confidence intervals. Higher amounts of bone lead at the tibia were associated with thinner distal tibia cortices (−0.972 (−1.882, −0.061) per 100 μg Pb/g of bone mineral) and integral volumetric BMD (−3.05 (−6.05, −0.05) per μg Pb/g of bone mineral). A higher PBB was associated with larger trabecular separation (0.115 (0.053, 0.178)), lower trabecular volumetric BMD (−26.83 (−50.37, −3.29)) and trabecular number (−0.08 (−0.14, −0.02)), per 100 μg Pb/g of bone mineral after adjusting for age and BMI, and remained significant while accounting for diabetes or use of antiresorptives. Total lead exposure activities related to bone lead at the calcaneus (8.29 (0.11, 16.48)) and remained significant after age and antiresorptives-adjustment. Lead accumulated in bone can have a mild insult on bone structure; but

  10. Improving Soldier Recovery from Catastrophic Bone Injuries: Developing an Animal Model for Standardizing the Bone Reparative Potential of Emerging Progenitor Cell Therapies

    Science.gov (United States)

    2011-08-01

    cell matrix will anchor the developing bone of the outer cortical shell to the surface of intact cortical bone. •Between day 4-7, the three...periosteum so that by day 21 an outer cortical shell, well anchored to the cortical bone at the base of the arch, provides the major structureal support of...tibia was dissected free of the femur, ankle , and overlying skin, and sufficient muscle was retained to not disrupt the fracture zone. The sample was

  11. Micro-CT analyses of historical bone samples presenting with osteomyelitis

    Energy Technology Data Exchange (ETDEWEB)

    Lamm, C.; Pietschmann, P. [Medical University Vienna (MUV), Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Vienna (Austria); Dockner, M.; Weber, G.W. [University of Vienna, Department of Anthropology, Vienna (Austria); University of Vienna, Core Facility for Micro-Computed Tomography, Vienna (Austria); Pospischek, B.; Winter, E.; Patzak, B. [Museum of Natural History (NHM), Collection of Anatomical Pathology in the Madhouse Tower, Vienna (Austria); Pretterklieber, M. [Medical University of Vienna (MUV), Department of Applied Anatomy, Vienna (Austria)

    2015-10-15

    Osteomyelitis is an inflammation of the bone marrow mainly caused by bacteria such as Staphylococcus aureus. It typically affects long bones, e.g. femora, tibiae and humeri. Recently micro-computed tomography (μCT) techniques offer the opportunity to investigate bone micro-architecture in great detail. Since there is no information on long bone microstructure in osteomyelitis, we studied historic bone samples with osteomyelitis by μCT. We investigated 23 femora of 22 individuals suffering from osteomyelitis provided by the Collection of Anatomical Pathology, Museum of Natural History, Vienna (average age 44 ±19 years); 9 femora from body donors made available by the Department of Applied Anatomy, Medical University of Vienna (age range, 56-102 years) were studied as controls. Bone microstructure was assessed by μCT VISCOM X 8060 II with a minimal resolution of 18 μm. In the osteomyelitic femora, most prominent alterations were seen in the cortical compartment. In 71.4 % of the individuals with osteomyelitis, cortical porosity occurred. 57.1 % of the individuals showed cortical thinning. In 42.9 % trabecularisation of cortical bone was observed. Osteomyelitis is associated with severe alterations of cortical bone structure otherwise typically observed at old age such as cortical porosity and cortical thinning. (orig.)

  12. Repair of sheep long bone cortical defects filled with COLLOSS, COLLOSS E, OSSAPLAST, and fresh iliac crest autograft.

    Science.gov (United States)

    Huffer, William E; Benedict, James J; Turner, A S; Briest, Arne; Rettenmaier, Robert; Springer, Marco; Walboomers, X F

    2007-08-01

    COLLOSS and COLLOSS E are osteoinductive bone void fillers consisting of bone collagen and noncollagenous proteins from bovine and equine bone, respectively. The aim of this study was to compare COLLOSS, COLLOSS E, iliac bone autograft, sintered beta tricalcium phosphate (beta-TCP; OSSAPLAST), and COLLOSS E plus OSSAPLAST. Materials were placed for 4, 8, or 24 weeks in 5-mm cortical bone defects in sheep long bones. Histological sections in a plane perpendicular to the long axis of the bone were used to measure the total repair area (original defect plus callus) and the area of bone within the total repair area. The incidence of defect union was also evaluated. At 4 and 8 weeks, defects treated with COLLOSS and COLLOSS E with or without OSSAPLAST had total repair and bone areas equivalent to autograft, and larger than OSSAPLAST-treated defects. At 8 weeks, the incidence of defect union was higher in defects treated with autograft or COLLOSS E plus OSSAPLAST than in untreated defects. At 24 weeks, the incidence of union was 100% in all treatment groups and 0% in untreated defects. The incidence of union was related to the degree of remodeling between 8 and 24 weeks. This was greater in all treated than nontreated defects. In conclusion, COLLOSS and COLLOSS E were equivalent to each other and to autograft, and superior to beta-TCP, in this study model.

  13. Analysis of plastic deformation in cortical bone after insertion of coated and non-coated self-tapping orthopaedic screws.

    Science.gov (United States)

    Koistinen, A P; Korhonen, H; Kiviranta, I; Kröger, H; Lappalainen, R

    2011-07-01

    Insertion of internal fracture fixation devices, such as screws, mechanically weakens the bone. Diamond-like carbon has outstanding tribology properties which may decrease the amount of damage in tissue. The purpose of this study was to investigate methods for quantification of cortical bone damage after orthopaedic bone screw insertion and to evaluate the effect of surface modification on tissue damage. In total, 48 stainless steel screws were inserted into cadaver bones. Half of the screws were coated with a smooth amorphous diamond coating. Geometrical data of the bones was determined by peripheral quantitative computed tomography. Thin sections of the bone samples were prepared after screw insertion, and histomorphometric evaluation of damage was performed on images obtained using light microscopy. Micro-computed tomography and scanning electron microscopy were also used to examine tissue damage. A positive correlation was found between tissue damage and the geometric properties of the bone. The age of the cadaver significantly affected the bone mineral density, as well as the damage perimeter and diameter of the screw hole. However, the expected positive effect of surface modification was probably obscured by large variations in the results and, thus, statistically significant differences were not found in this study. This can be explained by natural variability in bone tissue, which also made automated image analysis difficult.

  14. Acute development of cortical porosity and endosteal naïve bone formation from the daily but not weekly short-term administration of PTH in rabbit.

    Directory of Open Access Journals (Sweden)

    Hiroshi Yamane

    Full Text Available Teriparatide [human parathyroid hormone (1-34], which exerts an anabolic effect on bone, is used for the treatment of osteoporosis in patients who are at a high risk for fracture. That the once-daily administration of teriparatide causes an increase in cortical porosity in animal models and clinical studies has been a matter of concern. However, it is not well documented that the frequency of administration and/or the total dose of teriparatide affect the cortical porosity. The present study developed 4 teriparatide regimens [20 μg/kg/day (D20, 40 μg/kg/day (D40, 140 μg/kg/week (W140 and 280 μg/kg/week (W280] in the rabbit as a model animal with a well-developed Haversian system and osteons. The total weekly doses were equivalent in the low-dose groups (D20 and W140 and in the high-dose groups (D40 and W280. After the short-term (1 month administration of TPDT, micro-CT, histomorphometry and three-dimensional second harmonic generation (3D-SHG imaging to visualize the bone collagen demonstrated that daily regimens but not weekly regimens were associated with the significant development of cortical porosity and endosteal naïve bone formation by marrow fibrosis. We concomitantly monitored the pharmacokinetics of the plasma teriparatide levels as well as the temporal changes in markers of bone formation and resorption. The analyses in the present study suggested that the daily repeated administration of teriparatide causes more deleterious changes in the cortical microarchitecture than the less frequent administration of higher doses. The findings of the present study may have some implications for use of teriparatide in clinical treatment.

  15. Concentration dependence of fluorine impurity spin-lattice relaxation rate in bone mineral

    International Nuclear Information System (INIS)

    Code, R.F.; Armstrong, R.L.; Cheng, P.-T.

    1992-01-01

    The concentration dependence of the fluoride ion spin-lattice relaxation rate has been observed by nuclear magnetic resonance experiments on samples of defatted and dried bone. The 19 F spin-lattice relaxation rates increased linearly with bone fluoride concentration. Different results were obtained from trabecular than from cortical bone. For the same macroscopic fluoride content per gram of bone calcium, relaxation rate is significantly faster in cortical bone. Relaxation rates in cortical bone samples prepared from rats and dogs were apparently controlled by the same species-independent processes. For samples from beagle dogs, bulk fluoride concentrations measured by neutron activation analysis were 3.1±0.3 times greater in trabecular bone than in corresponding cortical bone. The beagle spin-lattice relaxation data suggest that microscopic fluoride concentrations in bone mineral were 1.8±0.4 times greater in trabecular bone than in cortical bone. It is concluded that accumulation of fluoride impurities in bone mineral is non-uniform. (author)

  16. Changes in tissue morphology and collagen composition during the repair of cortical bone in the adult chicken.

    Science.gov (United States)

    Glimcher, M J; Shapiro, F; Ellis, R D; Eyre, D R

    1980-09-01

    An animal model was developed to study the histology and collagen chemistry of healing cortical bone. A hole was cut through the cortex of the mid-shaft of the humerus of the adult chicken, which allowed for repair at a mechanically stable site. After one to two weeks the collagen of the repair tissue, which consisted principally of woven bone, contained almost three times as much hydroxylysine as the collagen of normal adult bone and thus resembled the collagen of embryonic long bones. By eight weeks, when lamellar one predominated, the hydroxylysine content had fallen to normal levels. Type I was the major genetic type of collagen present throughout. No type-II collagen, characteristic of cartilage, was detected; this was consistent with the histological findings. The results established that hydroxylysine-rich type-I collagen can be made by osteoblasts of adult animals as well as by those of embryos and early postnates. In order to understand the biological characteristics of fracture healing, it is vital to study not only the macroscopic organization of the repair tissue but also the chemical properties of its molecular components. The strength of healing fractured bone, and indeed of normal bone, depends largely on the properties of the structural protein collagen. To date, it is not known whether the collagen in healing fractures is the same as that in normal bone, or whether it has distinct chemical features that may suit it for bone repair.

  17. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone – a feasibility study

    NARCIS (Netherlands)

    Marcian, P.; Borak, L.; Valasek, J.; Kaiser, J.; Florian, Z.; Wolff, J.E.H.

    2014-01-01

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant

  18. Periosteal PTHrP regulates cortical bone modeling during linear growth in mice.

    Science.gov (United States)

    Wang, Meina; VanHouten, Joshua N; Nasiri, Ali R; Tommasini, Steven M; Broadus, Arthur E

    2014-07-01

    The modeling of long bone surfaces during linear growth is a key developmental process, but its regulation is poorly understood. We report here that parathyroid hormone-related peptide (PTHrP) expressed in the fibrous layer of the periosteum (PO) drives the osteoclastic (OC) resorption that models the metaphyseal-diaphyseal junction (MDJ) in the proximal tibia and fibula during linear growth. PTHrP was conditionally deleted (cKO) in the PO via Scleraxis gene targeting (Scx-Cre). In the lateral tibia, cKO of PTHrP led to a failure of modeling, such that the normal concave MDJ was replaced by a mound-like deformity. This was accompanied by a failure to induce receptor activator of NF-kB ligand (RANKL) and a 75% reduction in OC number (P ≤ 0.001) on the cortical surface. The MDJ also displayed a curious threefold increase in endocortical osteoblast mineral apposition rate (P ≤ 0.001) and a thickened cortex, suggesting some form of coupling of endocortical bone formation to events on the PO surface. Because it fuses distally, the fibula is modeled only proximally and does so at an extraordinary rate, with an anteromedial cortex in CD-1 mice that was so moth-eaten that a clear PO surface could not be identified. The cKO fibula displayed a remarkable phenotype, with a misshapen club-like metaphysis and an enlargement in the 3D size of the entire bone, manifest as a 40-45% increase in the PO circumference at the MDJ (P ≤ 0.001) as well as the mid-diaphysis (P ≤ 0.001). These tibial and fibular phenotypes were reproduced in a Scx-Cre-driven RANKL cKO mouse. We conclude that PTHrP in the fibrous PO mediates the modeling of the MDJ of long bones during linear growth, and that in a highly susceptible system such as the fibula this surface modeling defines the size and shape of the entire bone. © 2014 Anatomical Society.

  19. USO DO ENXERTO ÓSSEO CORTICAL BOVINO CONSERVADO EM GLICERINA A 98% NA OSTEOTOMIA FEMORAL EM GATOS USE BOVINE CORTICAL BONE, PRESERVED IN 98% GLICERIN IN FEMORAL OSTEOTOMY IN CATS.

    Directory of Open Access Journals (Sweden)

    Lucia Helena de Carvalho Penha

    2008-12-01

    . The objective of this study was to evaluate clinically and radiographically the efficacy of xenografts as a substitute for methalic implants. Animals were divided into two groups: five young cats and five adult cats. Clinically, the weight-bearing on the operated limb was observed the day after surgery in all animals, with complete remission of lameness at 15 days and bone union in 16.6 weeks. In five young animals, in two of them, the grafts were fractured carrying a serious bone bending without fracture of feline femur. In the last two young cats, remodeling was noted in mean time of 75 days or 10.7 weeks. In five adult cats, all of them suffered overriding of the fragments of osteotomized bone with various degrees, where two cases were considered severe cases dut to fracture of feline femur without bone bending. In the three remaining animals with slightly overriding, one was a case of delayed union, one suffered tow surgical procedures due to graft fracture and one did not show a radiographic exuberant bone callus, with remodeling at 110 days. The use of the bonive xenograft preserved in 98% glycerol in young and adult cats used as intramedularry nails was perfectly employed, offering mechanical support in time of bone consolidation in all of 10 animals.

    KEY WORDS: Cortical bovine graft, cats, femur, fracture, osteotomy.

  20. Nanoscale examination of microdamage in sheep cortical bone using synchrotron radiation transmission x-ray microscopy.

    Directory of Open Access Journals (Sweden)

    Garry R Brock

    Full Text Available Microdamage occurs in bone through repeated and excessive loading. Accumulation of microdamage weakens bone, leading to a loss of strength, stiffness and energy dissipation in the tissue. Imaging techniques used to examine microdamage have typically been limited to the microscale. In the current study microdamage was examined at the nanoscale using transmission x-ray microscopy with an x-ray negative stain, lead-uranyl acetate. Microdamage was generated in notched and unnotched beams of sheep cortical bone (2×2×20 mm, with monotonic and fatigue loading. Bulk sections were removed from beams and stained with lead-uranyl acetate to identify microdamage. Samples were sectioned to 50 microns and imaged using transmission x-ray microscopy producing projection images of microdamage with nanoscale resolution. Staining indicated microdamage occurred in both the tensile and compressive regions. A comparison between monotonic and fatigue loading indicated a statistically significant greater amount of stain present in fatigue loaded sections. Microdamage occurred in three forms: staining to existing bone structures, cross hatch damage and a single crack extending from the notch tip. Comparison to microcomputed tomography demonstrated differences in damage morphology and total damage between the microscale and nanoscale. This method has future applications for understanding the underlying mechanisms for microdamage formation as well as three-dimensional nanoscale examination of microdamage.

  1. Bone Parameters in Anorexia Nervosa and Athletic Amenorrhea: Comparison of Two Hypothalamic Amenorrhea States.

    Science.gov (United States)

    Kandemir, Nurgun; Slattery, Meghan; Ackerman, Kathryn E; Tulsiani, Shreya; Bose, Amita; Singhal, Vibha; Baskaran, Charumathi; Ebrahimi, Seda; Goldstein, Mark; Eddy, Kamryn; Klibanski, Anne; Misra, Madhusmita

    2018-04-05

    We have reported low bone mineral density (BMD), impaired bone structure, and increased fracture risk in anorexia nervosa (AN) and normal-weight, oligo-amenorrheic athletes (OA). However, data directly comparing compartment-specific bone parameters in AN, OA and controls are lacking. 426 females 14-21.9 years old were included; 231 AN, 94 OA and 101 normal-weight eumenorrheic controls. Dual energy x-ray absorptiometry was used to assess areal BMD (aBMD) of the whole body less head (WBLH), spine, and hip. High resolution peripheral quantitative CT was used to assess volumetric BMD (vBMD), bone geometry and structure at the non-weight bearing distal radius and weight-bearing distal tibia. AN had lower WBLH and hip aBMD Z-scores than OA and controls (p<0.0001). AN and OA had lower spine aBMD Z-scores than controls (p<0.01). At the radius, total and cortical vBMD, percent cortical area and thickness were lower in AN and OA vs. controls (p≤0.04); trabecular vBMD was lower in AN than controls. At the tibia, AN had lower measures for most parameters vs. OA and controls (p<0.05); OA had lower cortical vBMD than controls (p=0.002). AN and OA had higher fracture rates vs. controls. Stress fracture prevalence was highest in OA (p<0.0001); non-stress fracture prevalence was highest in AN (p<0.05). AN is deleterious to bone at all sites and both bone compartments. A high stress fracture rate in OA, who have comparable WBLH and hip aBMD measures to controls, indicates that BMD in these women may need to be even higher to avoid fractures.

  2. Metabolic Syndrome and Bone: Pharmacologically Induced Diabetes has Deleterious Effect on Bone in Growing Obese Rats.

    Science.gov (United States)

    Bagi, Cedo M; Edwards, Kristin; Berryman, Edwin

    2017-12-01

    Metabolic syndrome and osteoporosis share similar risk factors. Also, patients with diabetes have a higher risk of osteoporosis and fracture. Liver manifestations, such as non-alcoholic steatohepatitis (NASH), of metabolic syndrome are further aggravated in diabetics and often lead to liver failure. Our objective was to create a rat model of human metabolic syndrome and determine the long-term impact of early-onset T1D on bone structure and strength in obese growing rats. Male rats were given either standard chow and RO water (Controls) or a high-fat, high-cholesterol diet and sugar water containing 55% fructose and 45% glucose (HFD). A third group of rats received the HFD diet and a single dose of streptozotocin to induce type 1 diabetes (HFD/Sz). Body weight and glucose tolerance tests were conducted several times during the course of the study. Serum chemistry, liver enzymes, and biomarkers of bone metabolism were evaluated at 10 and 28 weeks. Shear wave elastography and histology were used to assess liver fibrosis. Cancellous bone structure and cortical bone geometry were evaluated by mCT and strength by the 3-point bending method. Body mass and fat accumulation was significantly higher in HFD and HFD/Sz rats compared to Controls. Rats in both the HFD and HFD/Sz groups developed NASH, although the change was more severe in diabetic rats. Although both groups of obese rats had larger bones, their cancellous structure and cortical thickness were reduced, resulting in diminished strength that was further aggravated by diabetes. The HFD and HFD/Sz rats recapitulate MeSy in humans with liver pathology consistent with NASH. Our data provide strong indication that obesity accompanied by type 1 diabetes significantly aggravates comorbidities of MeSy, including the development of osteopenia and weaker bones. The juvenile rat skeleton seems to be more vulnerable to damage imposed by obesity and diabetes and may offer a model to inform the underlying pathology associated

  3. Rural versus nonrural differences in BMC, volumetric BMD, and bone size: a population-based cross-sectional study.

    Science.gov (United States)

    Specker, Bonny; Binkley, Teresa; Fahrenwald, Nancy

    2004-12-01

    Despite reports of lower fracture risk among rural versus urban populations, few studies have investigated rural versus urban differences in bone mineral content (BMC) and bone mineral density (BMD). Population differences in cross-sectional bone geometry and understanding lifestyle factors responsible for these differences may reveal insights into the reason for differences in fracture risk. We hypothesized that if lifestyle differences in bone mass, size, and geometry are a result of muscle strength, activity, or dietary differences, Hutterite and rural populations should have greater bone mass compared to nonrural populations. The study population consisted of 1189 individuals: 504 rural Hutterites (188 men), 349 rural individuals (>75% life farming, 184 men), and 336 nonrural individuals (never lived on farm, 134 men) aged 20 to 66 years. BMC, bone area, and areal BMD (aBMD) of the total body (TB), hip, femoral neck (FN), and spine by DXA; volumetric BMD (vBMD) and bone geometry at the 4% and 20% radius; polar stress strain index (pSSI), a measure of bone strength, at the 20% pQCT site; and strength, 7-day activity recall, and 24-h diet recall were collected and compared among groups. Hutterite women and men had greater grip strength compared to rural and nonrural populations (both, P BMC and areal size than the nonrural population, while Hutterites had greater BMC and areal size than rural population at some (TB, FN for females only), but not all (proximal hip), sites. Cortical vBMD was inversely associated with periosteal circumference at the 20% radius in women (r=-0.25, P BMC, aBMD, vBMD, or bone size.

  4. Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits

    International Nuclear Information System (INIS)

    Castaneda, S; Largo, R.; Marcos, M.E.; Herrero-Beaumont, G.; Calvo, E.; Rodriguez-Salvanes, F.; Diaz-Curiel, M.

    2006-01-01

    Experimental models of osteoporosis in rabbits are useful to investigate anabolic agents because this animal has a fast bone turnover with predominant remodelling over the modelling processes. For that purpose, it is necessary to characterize the densitometric values of each type of bony tissue. To determine areal bone mass measurement in the spine and in trabecular, cortical and subchondral bone of the knee in healthy and osteoporotic rabbits. Bone mineral content and bone mineral density were measured in lumbar spine, global knee, and subchondral and cortical bone of the knee with dual energy X-ray absorptiometry using a Hologic QDR-1000/W densitometer in 29 skeletally mature female healthy New Zealand rabbits. Ten rabbits underwent triplicate scans for evaluation of the effect of repositioning. Osteoporosis was experimentally induced in 15 rabbits by bilateral ovariectomy and postoperative corticosteroid treatment for 4 weeks. Identical dual energy X-ray absorptiometry (DXA) studies were performed thereafter. Mean values of bone mineral content at the lumbar spine, global knee, subchondral bone and cortical tibial metaphysis were: 1934±217 mg, 878±83 mg, 149±14 mg and 29±7.0 mg, respectively. The mean values of bone mineral density at the same regions were: 298±24 mg/cm 2 , 455±32 mg/cm 2 , 617±60 mg/cm 2 and 678±163 mg/cm 2 , respectively. (orig.)

  5. An in vitro biomechanical comparison of hydroxyapatite coated and uncoated ao cortical bone screws for a limited contact: dynamic compression plate fixation of osteotomized equine 3rd metacarpal bones.

    Science.gov (United States)

    Durham, Myra E; Sod, Gary A; Riggs, Laura M; Mitchell, Colin F

    2015-02-01

    To compare the monotonic biomechanical properties of a broad 4.5 mm limited contact-dynamic compression plate (LC-DCP) fixation secured with hydroxyapatite (HA) coated cortical bone screws (HA-LC-DCP) versus uncoated cortical bone screws (AO-LC-DCP) to repair osteotomized equine 3rd metacarpal (MC3) bones. Experimental. Adult equine cadaveric MC3 bones (n = 12 pair). Twelve pairs of equine MC3 were divided into 3 test groups (4 pairs each) for: (1) 4 point bending single cycle to failure testing; (2) 4 point bending cyclic fatigue testing; and (3) torsional single cycle to failure testing. For the HA-LC-DCP-MC3 construct, an 8-hole broad LC-DCP (Synthes Ltd, Paoli, PA) was secured on the dorsal surface of each randomly selected MC3 bone with a combination of four 5.5 mm and four 4.5 mm HA-coated cortical screws. For the AO-LC-DCP-MC3 construct, an 8-hole 4.5 mm broad LC-DCP was secured on the dorsal surface of the contralateral MC3 bone with a combination of four 5.5 mm and four 4.5 mm uncoated cortical screws. All MC3 bones had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P < .05. Mean yield load, yield bending moment, composite rigidity, failure load, and failure bending moment, under 4 point bending, single cycle to failure, of the HA-LC-DCP fixation were significantly greater than those of the AO-LC-DCP fixation. Mean ± SD values for the HA-LC-DCP and the AO-LC-DCP fixation techniques, respectively, in single cycle to failure under 4 point bending were: yield load, 26.7 ± 2.15 and 16.3 ± 1.38 kN; yield bending moment, 527.4 ± 42.4 and 322.9 ± 27.2 N-m; composite rigidity, 5306 ± 399 and 3003 ± 300 N-m/rad; failure load, 40.6 ± 3.94 and 26.5 ± 2.52 kN; and failure bending moment, 801.9 ± 77.9 and 522.9 ± 52.2 N-m. Mean cycles to failure in 4 point bending of the HA

  6. Bone formation in mono cortical mandibular critical size defects after augmentation with two synthetic nanostructured and one xenogenous hydroxyapatite bone substitute - in vivo animal study.

    Science.gov (United States)

    Dau, Michael; Kämmerer, Peer W; Henkel, Kai-Olaf; Gerber, Thomas; Frerich, Bernhard; Gundlach, Karsten K H

    2016-05-01

    Healing characteristics as well as level of tissue integration and degradation of two different nanostructured hydroxyapatite bone substitute materials (BSM) in comparison with a deproteinized hydroxyapatite bovine BSM were evaluated in an in vivo animal experiment. In the posterior mandible of 18 minipigs, bilateral mono cortical critical size bone defects were created. Randomized augmentation procedures with NanoBone(®) (NHA1), Ostim(®) (NHA2) or Bio-Oss(®) (DBBM) were conducted (each material n = 12). Samples were analyzed after five (each material n = 6) and 8 months (each material n = 6). Defect healing, formation of soft tissue and bone as well as the amount of remaining respective BSM were quantified both macro- and microscopically. For NHA2, the residual bone defect after 5 weeks was significantly less compared to NHA1 or DBBM. There was no difference in residual BSM between NHA1 and DBBM, but the amount in NHA2 was significantly lower. NHA2 also showed the least amount of soft tissue and the highest amount of new bone after 5 weeks. Eight months after implantation, no significant differences in the amount of residual bone defects, in soft tissue or in bone formation were detected between the groups. Again, NHA2 showed significant less residual material than NHA1 and DBBM. We observed non-significant differences in the biological hard tissue response of NHA1 and DBBM. The water-soluble NHA2 initially induced an increased amount of new bone but was highly compressed which may have a negative effect in less stable augmentations of the jaw. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. In vitro evaluation of allogeneic bone screws for use in internal fixation of transverse fractures created in proximal sesamoid bones obtained from equine cadavers.

    Science.gov (United States)

    Sasaki, Naoki; Takakuwa, Jun; Yamada, Haruo; Mori, Ryuji

    2010-04-01

    To evaluate effectiveness of allogeneic bone screws and pins for internal fixation of midbody transverse fractures of equine proximal sesamoid bones (PSBs) in vitro. 14 forelimbs from cadavers of 3-year-old Thoroughbreds. Allogeneic cortical bone fragments were collected from the limbs of a male Thoroughbred, and cortical bone screws were prepared from the tissue by use of a precision desktop microlathe programmed with the dimensions of a metal cortical bone screw. A midbody transverse osteotomy of each PSB was performed by use of a bone-shaping oscillating saw and repaired via 1 of 3 internal fixation techniques: 1 allogeneic bone screw with 1 allogeneic bone pin (type I; n = 6 PSBs), 2 allogeneic bone screws (type II; 8), or 1 stainless steel cortical bone screw (control repair; 6). Mechanical tension measurements were obtained by use of a commercially available materials testing system. Mean +/- SD tensile strength (TS) was 668.3 +/- 216.6 N for type I repairs, 854.4 +/- 253.2 N for type II repairs, and 1,150.0 +/- 451.7 N for control repairs. Internal fixation of PSB fractures by the use of allogeneic bone screws and bone pins was successful. Although mean TS of control repairs with stainless steel cortical bone screws was greater than the mean TS of type I and type II repairs, the difference between type II and control repairs was not significant. Allogeneic screws may advance healing and result in fewer complications in a clinical setting.

  8. Defects in cortical microarchitecture among African-American women with type 2 diabetes.

    Science.gov (United States)

    Yu, E W; Putman, M S; Derrico, N; Abrishamanian-Garcia, G; Finkelstein, J S; Bouxsein, M L

    2015-02-01

    Patients with type 2 diabetes mellitus (DM2) have increased fracture risk. We found that African-American women with DM2 have increased cortical porosity and lower cortical bone density at the radius than non-diabetic controls. These cortical deficits are associated with hyperglycemia and may contribute to skeletal fragility associated with DM2. Fracture risk is increased in patients with type 2 diabetes mellitus (DM2) despite normal areal bone mineral density (aBMD). DM2 is more common in African-Americans than in Caucasians. It is not known whether African-American women with DM2 have deficits in bone microstructure. We measured aBMD at the spine and hip by DXA, and volumetric BMD (vBMD) and microarchitecture at the distal radius and tibia by HR-pQCT in 22 DM2 and 78 non-diabetic African-American women participating in the Study of Women Across the Nation (SWAN). We also measured fasting glucose and HOMA-IR. Age, weight, and aBMD at all sites were similar in both groups. At the radius, cortical porosity was 26% greater, while cortical vBMD and tissue mineral density were lower in women with DM2 than in controls. There were no differences in radius total vBMD or trabecular vBMD between groups. Despite inferior cortical bone properties at the radius, FEA-estimated failure load was similar between groups. Tibia vBMD and microarchitecture were also similar between groups. There were no significant associations between cortical parameters and duration of DM2 or HOMA-IR. However, among women with DM2, higher fasting glucose levels were associated with lower cortical vBMD (r=-0.54, p=0.018). DM2 and higher fasting glucose are associated with unfavorable cortical bone microarchitecture at the distal radius in African-American women. These structural deficits may contribute to the increased fracture risk among women with DM2. Further, our results suggest that hyperglycemia may be involved in mechanisms of skeletal fragility associated with DM2.

  9. Alterations of bone microstructure and strength in end-stage renal failure.

    Science.gov (United States)

    Trombetti, A; Stoermann, C; Chevalley, T; Van Rietbergen, B; Herrmann, F R; Martin, P-Y; Rizzoli, R

    2013-05-01

    End-stage renal disease (ESRD) patients have a high risk of fractures. We evaluated bone microstructure and finite-element analysis-estimated strength and stiffness in patients with ESRD by high-resolution peripheral computed tomography. We observed an alteration of cortical and trabecular bone microstructure and of bone strength and stiffness in ESRD patients. Fragility fractures are common in ESRD patients on dialysis. Alterations of bone microstructure contribute to skeletal fragility, independently of areal bone mineral density. We compared microstructure and finite-element analysis estimates of strength and stiffness by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 33 ESRD patients on dialysis (17 females and 16 males; mean age, 47.0 ± 12.6 years) and 33 age-matched healthy controls. Dialyzed women had lower radius and tibia cortical density with higher radius cortical porosity and lower tibia cortical thickness, compared to controls. Radius trabecular number was lower with higher heterogeneity of the trabecular network. Male patients displayed only a lower radius cortical density. Radius and tibia cortical thickness correlated negatively with bone-specific alkaline phosphatase (BALP). Microstructure did not correlate with parathyroid hormone (PTH) levels. Cortical porosity correlated positively with "Kidney Disease: Improving Global Outcomes" working group PTH level categories (r = 0.36, p microstructure and calculated bone strength are altered in ESRD patients, predominantly in women. Bone microstructure and biomechanical assessment by HR-pQCT may be of major clinical relevance in the evaluation of bone fragility in ESRD patients.

  10. Molt performance and bone density of cortical, medullary, and cancellous bone in laying hens during feed restriction or alfalfa-based feed molt.

    Science.gov (United States)

    Kim, W K; Donalson, L M; Bloomfield, S A; Hogan, H A; Kubena, L F; Nisbet, D J; Ricke, S C

    2007-09-01

    A study was conducted to evaluate the effects of alfalfa-based molt diets on molting performance and bone qualities. A total of 36 Single Comb White Leghorn hens were used for the study. There were 6 treatments: pretrial control (PC), fully fed (FF), feed withdrawal (FW), 90% alfalfa:10% layer ration (A90), 80% alfalfa:20% layer ration (A80), and 70% alfalfa:30% layer ration (A70). For the PC treatment, hens were euthanized by CO(2) gas, and bones were collected before molt was initiated. At the end of the 9-d molt period, hens were euthanized, and femurs and tibias were collected to evaluate bone qualities by peripheral quantitative computed tomography, mechanical testing, and conventional ash weights. The hens fed alfalfa-based molt diets and FW stopped laying eggs within 5 d after molt started, and all hens in these groups had reduced ovary weights compared with those of the FF hens. In the FW and A90 groups, total femur volumetric bone mineral densities (vBMD) at the midshaft were significantly lower, but those of the A80 and A70 groups were not significantly different from the values for the PC and FF hens. In cortical bone density, the midshaft tibial vBMD were significantly higher for FF and A70 hens than for PC hens. The medullary bone densities at the midshaft femur or tibia of the FW, A90, A80, and A70 hens were reduced compared with those of the PC hens. Femur cancellous densities at the distal femur for the FW and A90 hens were significantly reduced compared with those of the PC and FF hens. The FW, A80, and A70 hens yielded significantly higher elastic moduli, and the A80 hens had higher ultimate stress compared with the PC hens, suggesting that the mechanical integrity of the midshaft bone was maintained even though the medullary vBMD was reduced. These results suggest that alfalfa-based molt diets exhibit molt performance similar to FW, that medullary and cancellous bones are labile bone compartments during molting, and that alfalfa-based molt diets

  11. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    International Nuclear Information System (INIS)

    Herlin, Maria; Finnilä, Mikko A.J.; Zioupos, Peter; Aula, Antti; Risteli, Juha; Miettinen, Hanna M.; Jämsä, Timo; Tuukkanen, Juha; Korkalainen, Merja; Håkansson, Helen; Viluksela, Matti

    2013-01-01

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr −/− ) and wild-type (Ahr +/+ ) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr +/+ mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr −/− mice displayed a slightly modified bone phenotype as compared with untreated Ahr +/+ mice, while TCDD exposure caused only a few changes in bones of Ahr −/− mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr +/+ mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation results in increased trabecular bone

  12. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    Energy Technology Data Exchange (ETDEWEB)

    Herlin, Maria, E-mail: maria.herlin@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Finnilä, Mikko A.J., E-mail: mikko.finnila@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Zioupos, Peter, E-mail: p.zioupos@cranfield.ac.uk [Biomechanics Laboratories, Department of Engineering and Applied Science, Cranfield University, Shrivenham SN6 8LA (United Kingdom); Aula, Antti, E-mail: antti.aula@gmail.com [Department of Medical Physics, Imaging Centre, Tampere University Hospital, Tampere (Finland); Department of Biomedical Engineering, Tampere University of Technology, Tampere (Finland); Risteli, Juha, E-mail: juha.risteli@ppshp.fi [Department of Clinical Chemistry, Oulu University Hospital, Oulu (Finland); Miettinen, Hanna M., E-mail: hanna.miettinen@crl.com [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Jämsä, Timo, E-mail: timo.jamsa@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Diagnostic Radiology, Oulu University Hospital, Oulu (Finland); Tuukkanen, Juha, E-mail: juha.tuukkanen@oulu.fi [Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Korkalainen, Merja, E-mail: merja.korkalainen@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Håkansson, Helen, E-mail: Helen.Hakansson@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Viluksela, Matti, E-mail: matti.viluksela@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Department of Environmental Science, University of Eastern Finland, Kuopio (Finland)

    2013-11-15

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr{sup −/−}) and wild-type (Ahr{sup +/+}) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr{sup +/+} mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr{sup −/−} mice displayed a slightly modified bone phenotype as compared with untreated Ahr{sup +/+} mice, while TCDD exposure caused only a few changes in bones of Ahr{sup −/−} mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr{sup +/+} mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation

  13. Human bone hardness seems to depend on tissue type but not on anatomical site in the long bones of an old subject.

    Science.gov (United States)

    Ohman, Caroline; Zwierzak, Iwona; Baleani, Massimiliano; Viceconti, Marco

    2013-02-01

    It has been hypothesised that among different human subjects, the bone tissue quality varies as a function of the bone segment morphology. The aim of this study was to assess and compare the quality, evaluated in terms of hardness of packages of lamellae, of cortical and trabecular bones, at different anatomical sites within the human skeleton. The contralateral six long bones of an old human subject were indented at different levels along the diaphysis and at both epiphyses of each bone. Hardness value, which is correlated to the degree of mineralisation, of both cortical and trabecular bone tissues was calculated for each indentation location. It was found that the cortical bone tissue was harder (+18%) than the trabecular one. In general, the bone hardness was found to be locally highly heterogeneous. In fact, considering one single slice obtained for a bone segment, the coefficient of variation of the hardness values was up to 12% for cortical bone and up to 17% for trabecular bone. However, the tissue hardness was on average quite homogeneous within and among the long bones of the studied donor, although differences up to 9% among levels and up to 7% among bone segments were found. These findings seem not to support the mentioned hypothesis, at least not for the long bones of an old subject.

  14. Eldecalcitol improves mechanical strength of cortical bones by stimulating the periosteal bone formation in the senescence-accelerated SAM/P6 mice - a comparison with alfacalcidol.

    Science.gov (United States)

    Shiraishi, Ayako; Sakai, Sadaoki; Saito, Hitoshi; Takahashi, Fumiaki

    2014-10-01

    Eldecalcitol (ELD), a 2β-hydroxypropyloxy derivative of 1α,25(OH)2D3, is a potent inhibitor of bone resorption that has demonstrated a greater effect at reducing the risk of fracture in osteoporotic patients than alfacalcidol (ALF). In the present study, we used the senescence-accelerated mouse strain P6 (SAM/P6), which has low bone mass caused by osteoblast dysfunction, to evaluate the effect of ELD on cortical bone in comparison with ALF. Four-month-old SAM/P6 mice were given either ELD (0.025 or 0.05μg/kg) or ALF (0.2 or 0.4μg/kg) by oral gavage 5 times/week for 6 weeks. Both ELD and ALF increased serum calcium (Ca) in a dose-dependent manner. Serum Ca levels in the ELD 0.05μg/kg group were comparable to those of the ALF 0.2μg/kg group. ELD 0.05μg/kg significantly improved the bone biomechanical properties of the femur compared with the vehicle control group (pBone histomorphometry revealed that in the femoral endocortical surface, the suppression of bone resorption parameters (N.Oc/BS) and bone formation parameters (MS/BS) by ELD (0.05μg/kg) was greater than that by ALF (0.2μg/kg). In contrast, in the femoral periosteal surface, ELD 0.05μg/kg significantly increased bone formation parameters (BFR/BS, MS/BS) compared with the vehicle control group (pbone not only by inhibiting endocortical bone resorption but also by stimulating the periosteal bone formation in SAM/P6 mice. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Cortical splitting of the mandible after irradiation. Special reference to osteoradionecrosis

    International Nuclear Information System (INIS)

    Katsura, Kouji; Ito, Jusuke; Hayashi, Takafumi; Taira, Shuhzou; Nakajima, Syunichi

    2001-01-01

    The purpose of this study was to discuss the relationship between radiation bone injuries and a splitting of the cortical bone in the radiation field. Between January 1993 and September 1998, 53 patients with head and neck cancer received radiotherapy. The study cohort consisted of 23 patients who were followed with computed tomographic scans more than one year after radiotherapy. We evaluated clinical and computed tomographic features. Computed tomographic scanning was performed with a section thickness of 3 or 4 mm. Bone images were obtained with identical window width (4000 Haunsfield units) and window level (1000 Haunsfield units). Splitting of the cortical bone was defined as disappearance of bone density in the cortical bone, showing a linear shape running parallel to the surface of the cortex. Splitting appeared in 9 sites in 8 patients. All patients fulfilled UICC criteria for classifying oral cancer. Most of the patients received external irradiation with a total radiation dose of 50 or 60 Gy. In all cases, splitting was found in the mandibular cortex at the site of muscle attachment, that was included in the radiation field. Appearance of bone changes in chronological order were periosteal reaction, splitting and bone necrosis. We speculate that splitting results from injuries to bone structure cells caused by blood flow disturbance after surgery and radiotherapy. It is suggested that such splitting can be a predictor of osteoradionecrosis. (author)

  16. Genetic and environmental variances of bone microarchitecture and bone remodeling markers: a twin study.

    Science.gov (United States)

    Bjørnerem, Åshild; Bui, Minh; Wang, Xiaofang; Ghasem-Zadeh, Ali; Hopper, John L; Zebaze, Roger; Seeman, Ego

    2015-03-01

    All genetic and environmental factors contributing to differences in bone structure between individuals mediate their effects through the final common cellular pathway of bone modeling and remodeling. We hypothesized that genetic factors account for most of the population variance of cortical and trabecular microstructure, in particular intracortical porosity and medullary size - void volumes (porosity), which establish the internal bone surface areas or interfaces upon which modeling and remodeling deposit or remove bone to configure bone microarchitecture. Microarchitecture of the distal tibia and distal radius and remodeling markers were measured for 95 monozygotic (MZ) and 66 dizygotic (DZ) white female twin pairs aged 40 to 61 years. Images obtained using high-resolution peripheral quantitative computed tomography were analyzed using StrAx1.0, a nonthreshold-based software that quantifies cortical matrix and porosity. Genetic and environmental components of variance were estimated under the assumptions of the classic twin model. The data were consistent with the proportion of variance accounted for by genetic factors being: 72% to 81% (standard errors ∼18%) for the distal tibial total, cortical, and medullary cross-sectional area (CSA); 67% and 61% for total cortical porosity, before and after adjusting for total CSA, respectively; 51% for trabecular volumetric bone mineral density (vBMD; all p accounted for 47% to 68% of the variance (all p ≤ 0.001). Cross-twin cross-trait correlations between tibial cortical porosity and medullary CSA were higher for MZ (rMZ  = 0.49) than DZ (rDZ  = 0.27) pairs before (p = 0.024), but not after (p = 0.258), adjusting for total CSA. For the remodeling markers, the data were consistent with genetic factors accounting for 55% to 62% of the variance. We infer that middle-aged women differ in their bone microarchitecture and remodeling markers more because of differences in their genetic factors than

  17. Evaluation of cortical bone mass, thickness and density by z-scores in osteopenic conditions and in relation to menopause and estrogen treatment

    International Nuclear Information System (INIS)

    Meema, S.; Meema, H.E.

    1982-01-01

    Z-scores express, differences from normals in standard deviation units, and are particularly useful for comparison of changes where normal values are age- and sex-dependent. We determined z-scores for bone mineral mass, cortical thickness, and bone mineral density in the radius in various conditions and diseases in both sexes. In the males, z-scores were calculated for age, but in the females z-scores for menopausal status (years postmenopausal exclusive of years on estrogen treatment) were found to be more appropriate. With few exceptions, changes in a disease were of a similar order in both sexes. For bone minerals mass few mean z-scores were significantly increased, but diseases with significantly decreased mean z-scores were numerous. The usefulness of z-scores in diagnosis and study of metabolic bone disease is discussed. (orig.)

  18. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    Science.gov (United States)

    Govey, Peter M.; Zhang, Yue; Donahue, Henry J.

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both pbones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104

  19. Differential response of risedronate on tibial and mandibular bone quality in glucocorticoid-treated growing rats

    International Nuclear Information System (INIS)

    Fujita, Yuko

    2008-01-01

    Glucocorticoids induce bone loss and retard bone growth in children. In this study we investigated the effect of treatment with risedronate on glucocorticoid -prednisolone-induced decreases in bone density, quality, strength and growth of the tibia and mandible in growing rats. Trabecular and cortical bone structure was measured by peripheral quantitative computed tomography (pQCT) and three-dimensional (3D) micro-computed tomography (micro-CT). Indicators of bone strength were calculated from cortical bone density and the modulus of sections obtained from pQCT analysis. Tibial and mandibular bone sizes were also measured. Prednisolone decreased the bone growth of both tibia and mandible. It also caused deterioration of trabecular and cortical bone structure and strength in the mandible, and in cortical bone in the tibia, but had no effect on trabecular bone in the tibia. Risedronate inhibited the prednisolone-induced decreases in tibial width and mandibular length and height but did not improve the retardation of longitudinal bone growth. Risedronate prevented prednisolone-induced deterioration of trabecular and cortical bone architecture. In the mandible, this protective effect of risedronate was accompanied by an increase in cortical bone density and in bone strength. These findings show that risedronate inhibits prednisolone-induced loss of bone density, structure, decrease in bone strength, and retardation of bone growth in the mandible in young growing rats. (author)

  20. Unique effects of energy versus estrogen deficiency on multiple components of bone strength in exercising women.

    Science.gov (United States)

    Southmayd, E A; Mallinson, R J; Williams, N I; Mallinson, D J; De Souza, M J

    2017-04-01

    Many female athletes are energy and/or estrogen deficient, but the independent effects on bone health have not been isolated. Energy deficiency was detrimental at the tibia while estrogen deficiency was detrimental at the radius. Nutrition must be considered alongside menstrual recovery when addressing compromised bone health in female athletes. The purpose of this study was to describe volumetric bone mineral density (vBMD), bone geometry, and estimated bone strength in exercising women (n = 60) grouped according to energy status (energy replete (EnR: n = 30) vs. energy deficient (EnD: n = 30)) and estrogen status (estrogen replete (E 2 R: n = 33) vs. estrogen deficient (E 2 D: n = 27)), resulting in four distinct groups: EnR + E 2 R (n = 17), EnR + E 2 D (n = 13), EnD + E 2 R (n = 16), EnD + E 2 D (n = 14). Energy status was determined using the ratio of measured to predicted resting energy expenditure (mREE/pREE). Estrogen status was based on self-reported menstrual status confirmed by daily evaluation of urinary estrone-1-glucoronide (E1G), pregnanediol glucuronide (PdG), and luteinizing hormone (LH). Eumenorrheic women were considered E 2 R, amenorrheic women were E 2 D, and oligomenorrheic women were categorized based on history of menses in the past year. Bone was assessed using peripheral quantitative computed tomography (pQCT). EnD women exhibited lower total vBMD, trabecular vBMD, cortical area, and BSI at the distal tibia and lower total vBMD, smaller cortical area and cortical thickness, and larger endosteal circumference at the proximal tibia compared to EnR women (p < 0.042). E 2 D women had lower total and cortical vBMD, larger total and trabecular area, and lower BSI at the distal radius and lower cortical vBMD at the proximal radius compared to E 2 R women (p < 0.023). Energy and estrogen interacted to affect total and trabecular area at the distal tibia (p < 0.021). Efforts to correct energy deficiency, which in turn may

  1. Influence and evolution mechanism of different sharpness contact forms to mechanical property of cortical bone by nanoindentation

    Science.gov (United States)

    Sun, Xingdong; Guo, Yue; Li, Lijia; Liu, Zeyang; Wu, Di; Shi, Dong; Zhao, Hongwei; Zhang, Shizhong

    2018-03-01

    Based on different damage forms of various contact forms to bone, the mechanical response and mechanism were investigated by nanoindentation under different sharpness contact forms. For the purpose of simulating the different sharpness contact forms, two kinds of indenters were used in experiments and finite elements simulations. Through nanoindentation experiments, it was concluded that the residual depth of sharp indenter was bigger than that of blunt indenter with small penetration depth. However, the contrary law was obtained with bigger penetration depth. There was a turning point of transition from blunt tendency to sharp tendency. By calculation, it was concluded that the sharper the indenter was, the bigger the proportion of plastic energy in total energy was. Basically, results of finite elements simulation could correspond with the experimental conclusions. By the observation of FE-SEM, the surface of cortical bone compressed was more seriously directly below the blunt indenter than the lateral face. For the berkovich indenter, the surface of indentation compressed was less directly below the indenter, but seriously on three lateral faces. This research may provide some new references to the studies of bone fracture mechanism in different load patterns in the initial press-in stage and offer new explanation for bone trauma diagnosis in clinical treatment and criminal investigation.

  2. Influence and evolution mechanism of different sharpness contact forms to mechanical property of cortical bone by nanoindentation

    Directory of Open Access Journals (Sweden)

    Xingdong Sun

    2018-03-01

    Full Text Available Based on different damage forms of various contact forms to bone, the mechanical response and mechanism were investigated by nanoindentation under different sharpness contact forms. For the purpose of simulating the different sharpness contact forms, two kinds of indenters were used in experiments and finite elements simulations. Through nanoindentation experiments, it was concluded that the residual depth of sharp indenter was bigger than that of blunt indenter with small penetration depth. However, the contrary law was obtained with bigger penetration depth. There was a turning point of transition from blunt tendency to sharp tendency. By calculation, it was concluded that the sharper the indenter was, the bigger the proportion of plastic energy in total energy was. Basically, results of finite elements simulation could correspond with the experimental conclusions. By the observation of FE-SEM, the surface of cortical bone compressed was more seriously directly below the blunt indenter than the lateral face. For the berkovich indenter, the surface of indentation compressed was less directly below the indenter, but seriously on three lateral faces. This research may provide some new references to the studies of bone fracture mechanism in different load patterns in the initial press-in stage and offer new explanation for bone trauma diagnosis in clinical treatment and criminal investigation.

  3. Gender-dependence of bone structure and properties in adult osteogenesis imperfecta murine model.

    Science.gov (United States)

    Yao, Xiaomei; Carleton, Stephanie M; Kettle, Arin D; Melander, Jennifer; Phillips, Charlotte L; Wang, Yong

    2013-06-01

    Osteogenesis imperfecta (OI) is a dominant skeletal disorder characterized by bone fragility and deformities. Though the oim mouse model has been the most widely studied of the OI models, it has only recently been suggested to exhibit gender-dependent differences in bone mineralization. To characterize the impact of gender on the morphometry/ultra-structure, mechanical properties, and biochemical composition of oim bone on the congenic C57BL/J6 background, 4-month-old oim/oim, +/oim, and wild-type (wt) female and male tibiae were evaluated using micro-computed tomography, three-point bending, and Raman spectroscopy. Dramatic gender differences were evident in both cortical and trabecular bone morphological and geometric parameters. Male mice had inherently more bone and increased moment of inertia than genotype-matched female counterparts with corresponding increases in bone biomechanical strength. The primary influence of gender was structure/geometry in bone growth and mechanical properties, whereas the mineral/matrix composition and hydroxyproline content of bone were influenced primarily by the oim collagen mutation. This study provides evidence of the importance of gender in the evaluation and interpretation of potential therapeutic strategies when using mouse models of OI.

  4. Material model of pelvic bone based on modal analysis: a study on the composite bone.

    Science.gov (United States)

    Henyš, Petr; Čapek, Lukáš

    2017-02-01

    Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's modulus or on the apparent density of bone obtained from computer tomography (CT) data. The Young's modulus of bone is described in many experimental works with large variations in the results. The concept of measuring and validating the material model of the pelvic bone based on modal analysis is introduced in this pilot study. The modal frequencies, damping, and shapes of the composite bone were measured precisely by an impact hammer at 239 points. An FE model was built using the data pertaining to the geometry and apparent density obtained from the CT of the composite bone. The isotropic homogeneous Young's modulus and Poisson's ratio of the cortical and trabecular bone were estimated from the optimisation procedure including Gaussian statistical properties. The performance of the updated model was investigated through the sensitivity analysis of the natural frequencies with respect to the material parameters. The maximal error between the numerical and experimental natural frequencies of the bone reached 1.74 % in the first modal shape. Finally, the optimised parameters were matched with the data sheets of the composite bone. The maximal difference between the calibrated material properties and that obtained from the data sheet was 34 %. The optimisation scheme of the FE model based on the modal analysis data provides extremely useful calibration of the FE models with the uncertainty bounds and without the influence of the boundary conditions.

  5. Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters

    International Nuclear Information System (INIS)

    Prevrhal, S.; Engelke, K.; Kalender, W.A.

    1999-01-01

    In this study we analysed the accuracy of computed tomography (CT) measurements in assessing cortical bone. We determined the dependency of thickness and density measurements on the true width and density of the cortex and on the spatial resolution in the CT images using two optimized segmentation methods. As a secondary goal, we assessed the ability of CT to reflect small changes in cortical thickness. Two different bone-mimicking phantoms with varying cortical thickness were scanned with single-slice CT on a Somatom Plus 4 scanner. Images were reconstructed with both a standard and a high-resolution convolution kernel. Two special operator-independent segmentation methods were used to automatically detect the edges of the cortical shell. We measured cortical thickness and density and compared the phantom measurements with theoretical computations by simulating a cross-sectional shape of the cortical shell. Based on the simulations, we calculated CT's power to detect small changes in cortical thickness. Simulations and phantom measurements were in very good agreement. Cortical thickness could be measured with an error of less than 10% if the true thickness was larger than 0.9 (0.7) mm for the standard (high-resolution) kernel which is close to the full width at half maximum (FWHM) of the point spread functions for these kernels and our scanner. Density measurements yielded errors of less than 10% for true cortical thickness values above two to three times the FWHM corresponding to 2.5 (2) mm in our case. The simulations showed that a 10% change in cortical width would not be detected with satisfying probability in bones with a cortical shell thinner than 1.2 mm. An accurate determination of the cortical thickness is limited to bones with a thickness higher than the FWHM of the scanner's point spread function. Therefore, the use of a high-resolution reconstruction kernel is crucial. Cortical bone mineral density can only be measured accurately in bones two to three

  6. Fermented dairy products consumption is associated with attenuated cortical bone loss independently of total calcium, protein, and energy intakes in healthy postmenopausal women.

    Science.gov (United States)

    Biver, E; Durosier-Izart, C; Merminod, F; Chevalley, T; van Rietbergen, B; Ferrari, S L; Rizzoli, R

    2018-05-03

    A longitudinal analysis of bone microstructure in postmenopausal women of the Geneva Retirees Cohort indicates that age-related cortical bone loss is attenuated at non-bearing bone sites in fermented dairy products consumers, not in milk or ripened cheese consumers, independently of total energy, calcium, or protein intakes. Fermented dairy products (FDP), including yogurts, provide calcium, phosphorus, and proteins together with prebiotics and probiotics, all being potentially beneficial for bone. In this prospective cohort study, we investigated whether FDP, milk, or ripened cheese consumptions influence age-related changes of bone mineral density (BMD) and microstructure. Dietary intakes were assessed at baseline and after 3.0 ± 0.5 years with a food frequency questionnaire in 482 postmenopausal women enrolled in the Geneva Retirees Cohort. Cortical (Ct) and trabecular (Tb) volumetric (v) BMD and microstructure at the distal radius and tibia were assessed by high-resolution peripheral quantitative computerized tomography, in addition to areal (a) BMD and body composition by dual-energy X-ray absorptiometry, at the same time points. At baseline, FDP consumers had lower abdominal fat mass and larger bone size at the radius and tibia. Parathyroid hormone and β-carboxyterminal cross-linked telopeptide of type I collagen levels were inversely correlated with FDP consumption. In the longitudinal analysis, FDP consumption (mean of the two assessments) was associated with attenuated loss of radius total vBMD and of Ct vBMD, area, and thickness. There was no difference in aBMD and at the tibia. These associations were independent of total energy, calcium, or protein intakes. For other dairy products categories, only milk consumption was associated with lower decrease of aBMD and of failure load at the radius. In this prospective cohort of healthy postmenopausal women, age-related Ct bone loss was attenuated at non-bearing bone sites in FDP consumers, not in milk

  7. Tributyltin induces distinct effects on cortical and trabecular bone in female C57Bl/6J mice.

    Science.gov (United States)

    Watt, James; Baker, Amelia H; Meeks, Brett; Pajevic, Paola D; Morgan, Elise F; Gerstenfeld, Louis C; Schlezinger, Jennifer J

    2018-09-01

    The retinoid X receptors (RXR), peroxisome proliferator activated receptor gamma (PPARγ), and liver X receptors (LXR) all have been shown to regulate bone homeostasis. Tributyltin (TBT) is an environmental contaminant that is a dual RXRα/β and PPARγ agonist. TBT induces RXR, PPARγ, and LXR-mediated gene transcription and suppresses osteoblast differentiation in vitro. Bone marrow multipotent mesenchymal stromal cells derived from female C57BL/6J mice were more sensitive to suppression of osteogenesis by TBT than those derived from male mice. In vivo, oral gavage of 12 week old female, C57Bl/6J mice with 10 mg/kg TBT for 10 weeks resulted in femurs with a smaller cross-sectional area and thinner cortex. Surprisingly, TBT induced significant increases in trabecular thickness, number, and bone volume fraction. TBT treatment did not change the Rankl:Opg RNA ratio in whole bone, and histological analyses showed that osteoclasts in the trabecular space were minimally reduced. In contrast, expression of cardiotrophin-1, an osteoblastogenic cytokine secreted by osteoclasts, increased. In primary bone marrow macrophage cultures, TBT marginally inhibited the number of osteoclasts that differentiated, in spite of significantly suppressing expression of osteoclast markers Nfatc1, Acp5, and Ctsk and resorptive activity. TBT induced expression of RXR- and LXR-dependent genes in whole bone and in vitro osteoclast cultures. However, only an RXR antagonist, but not an LXR antagonist, significantly inhibited TBTs ability to suppress osteoclast differentiation. These results suggest that TBT has distinct effects on cortical versus trabecular bone, likely resulting from independent effects on osteoblast and osteoclast differentiation that are mediated through RXR. © 2018 Wiley Periodicals, Inc.

  8. MicroCT evaluation of bone mineral density loss in human bones

    International Nuclear Information System (INIS)

    Nogueira, Liebert P.; Braz, Delson; Lopes, Ricardo T.; Barroso, Regina C.; Oliveira, Luis F.

    2007-01-01

    Bone is a connective tissue largely composed of an organic protein, collagen and the inorganic mineral hydroxyapatite [Ca 10 (PO 4 ) 6 OH 2 ], which combine to provide a mechanical and supportive role in the body. Depending on the orientation of collagen fibers, two types of bone can be distinguished: trabecular and cortical bone. Degree of mineralization is considered an important feature of bone quality. Changes in the degree of mineralization is generally due to osteoporosis, but many recent studies have already shown that alterations in degree of mineralization can occur due to a large variety of factors. The transmission X-ray microtomography is one of the most popular methods, which provides the spatial distribution of the total absorption coefficient inside the sample. The aim of this study was to investigate the suitability of using microCT as a supplementary tool for the diagnosis of the health status of human bones. Eleven samples were constructed simulating the physiological range of bone mineral density (BMD) found in cortical human bone. The samples represent healthy mixtures of swine compact bone dried at room temperature, powdered and mixed with fat (0 - 100 % by mass). The samples were imaged by a microfocus tube (Fein-Focus) with focal size of about 60 μm (±5%), and a CCD camera (0.143 mm pixel size) coupled with an intensifier tube with fluoroscope screen at the Nuclear Instrumentation Laboratory (COPPE/UFRJ), Brazil. The images were reconstructed and treated with suitable software developed at the Nuclear Instrumentation Laboratory. The mineral content in cortical bone is defined by the volume of dry, fat-free bone per unit bulk volume of the bone. The volumes were calculated from the bone density using the relationship between volume and density. The densities of fat and bone were taken to be 0.95 g.cm -3 and 1.92 g.cm -3 respectively. The correlation of the measured absorption coefficient with the mineral content in the samples was then

  9. MicroCT evaluation of bone mineral density loss in human bones

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Liebert P.; Braz, Delson; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mails: lnogueira@con.ufrj.br; Barroso, Regina C.; Oliveira, Luis F. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail: cely@uerj.br

    2007-07-01

    Bone is a connective tissue largely composed of an organic protein, collagen and the inorganic mineral hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}OH{sub 2}], which combine to provide a mechanical and supportive role in the body. Depending on the orientation of collagen fibers, two types of bone can be distinguished: trabecular and cortical bone. Degree of mineralization is considered an important feature of bone quality. Changes in the degree of mineralization is generally due to osteoporosis, but many recent studies have already shown that alterations in degree of mineralization can occur due to a large variety of factors. The transmission X-ray microtomography is one of the most popular methods, which provides the spatial distribution of the total absorption coefficient inside the sample. The aim of this study was to investigate the suitability of using microCT as a supplementary tool for the diagnosis of the health status of human bones. Eleven samples were constructed simulating the physiological range of bone mineral density (BMD) found in cortical human bone. The samples represent healthy mixtures of swine compact bone dried at room temperature, powdered and mixed with fat (0 - 100 % by mass). The samples were imaged by a microfocus tube (Fein-Focus) with focal size of about 60 {mu}m ({+-}5%), and a CCD camera (0.143 mm pixel size) coupled with an intensifier tube with fluoroscope screen at the Nuclear Instrumentation Laboratory (COPPE/UFRJ), Brazil. The images were reconstructed and treated with suitable software developed at the Nuclear Instrumentation Laboratory. The mineral content in cortical bone is defined by the volume of dry, fat-free bone per unit bulk volume of the bone. The volumes were calculated from the bone density using the relationship between volume and density. The densities of fat and bone were taken to be 0.95 g.cm{sup -3} and 1.92 g.cm{sup -3} respectively. The correlation of the measured absorption coefficient with the mineral content

  10. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager III, Joel W.; Ritchie, Robert O.

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.

  11. Bone development

    DEFF Research Database (Denmark)

    Tatara, M.R.; Tygesen, Malin Plumhoff; Sawa-Wojtanowicz, B.

    2007-01-01

    The objective of this study was to determine the long-term effect of alpha-ketoglutarate (AKG) administration during early neonatal life on skeletal development and function, with emphasis on bone exposed to regular stress and used to serve for systemic changes monitoring, the rib. Shropshire ram.......01). Furthermore, AKG administration induced significantly higher bone mineral density of the cortical bone by 7.1% (P

  12. In vitro deposition of hydroxyapatite on cortical bone collagen stimulated by deformation-induced piezoelectricity.

    Science.gov (United States)

    Noris-Suárez, Karem; Lira-Olivares, Joaquin; Ferreira, Ana Marina; Feijoo, José Luis; Suárez, Nery; Hernández, Maria C; Barrios, Esteban

    2007-03-01

    In the present work, we have studied the effect of the piezoelectricity of elastically deformed cortical bone collagen on surface using a biomimetic approach. The mineralization process induced as a consequence of the piezoelectricity effect was evaluated using scanning electron microscopy (SEM), thermally stimulated depolarization current (TSDC), and differential scanning calorimetry (DSC). SEM micrographs showed that mineralization occurred predominantly over the compressed side of bone collagen, due to the effect of piezoelectricity, when the sample was immersed in the simulated body fluid (SBF) in a cell-free system. The TSDC method was used to examine the complex collagen dielectric response. The dielectric spectra of deformed and undeformed collagen samples with different hydration levels were compared and correlated with the mineralization process followed by SEM. The dielectric measurements showed that the mineralization induced significant changes in the dielectric spectra of the deformed sample. DSC and TSDC results demonstrated a reduction of the collagen glass transition as the mineralization process advanced. The combined use of SEM, TSDC, and DSC showed that, even without osteoblasts present, the piezoelectric dipoles produced by deformed collagen can produce the precipitation of hydroxyapatite by electrochemical means, without a catalytic converter as occurs in classical biomimetic deposition.

  13. Low calcium-phosphate intakes modulate the low-protein diet-related effect on peak bone mass acquisition: a hormonal and bone strength determinants study in female growing rats.

    Science.gov (United States)

    Fournier, C; Rizzoli, R; Ammann, P

    2014-11-01

    Peak bone mass acquisition is influenced by environmental factors including dietary intake. A low-protein diet delays body and skeletal growth in association with a reduction in serum IGF-1 whereas serum FGF21 is increased by selective amino acid deprivation. Calcium (Ca) and phosphorous (P) are also key nutrients for skeletal health, and inadequate intakes reduce bone mass accrual in association with calciotropic hormone modulation. Besides, the effect of calcium supplementation on bone mass in prepubertal children appears to be influenced by protein intake. To further explore the interaction of dietary protein and Ca-P intake on bone growth, 1-month-old female rats were fed with an isocaloric 10%, 7.5%, or 5% casein diet containing normal or low Ca-P for an 8-week period (6 groups). Changes in tibia geometry, mineral content, microarchitecture, strength, and intrinsic bone quality were analyzed. At the hormonal level, serum IGF-1, fibroblast growth factor 21 (FGF21), PTH, 1,25-dihydroxyvitamin D3 (calcitriol), and FGF23 were investigated as well as the Ghr hepatic gene expression. In normal dietary Ca-P conditions, bone mineral content, trabecular and cortical bone volume, and bone strength were lower in the 5% casein group in association with a decrease in serum IGF-1 and an increase in FGF21 levels. Unexpectedly, the low-Ca-P diet attenuated the 5% casein diet-related reduction of serum IGF-1 and Ghr hepatic gene expression, as well as the low-protein diet-induced decrease in bone mass and strength. However, this was associated with lower cortical bone material level properties. The low-Ca-P diet increased serum calcitriol but decreased FGF23 levels. Calcitriol levels positively correlated with Ghr hepatic mRNA levels. These results suggest that hormonal modulation in response to a low-Ca-P diet may modify the low-protein diet-induced effect on Ghr hepatic mRNA levels and consequently the impact of low protein intakes on IGF-1 circulating levels and skeletal

  14. Quantitative 3D analysis of bone in hip osteoarthritis using clinical computed tomography.

    Science.gov (United States)

    Turmezei, Tom D; Treece, Graham M; Gee, Andrew H; Fotiadou, Anastasia F; Poole, Kenneth E S

    2016-07-01

    To assess the relationship between proximal femoral cortical bone thickness and radiological hip osteoarthritis using quantitative 3D analysis of clinical computed tomography (CT) data. Image analysis was performed on clinical CT imaging data from 203 female volunteers with a technique called cortical bone mapping (CBM). Colour thickness maps were created for each proximal femur. Statistical parametric mapping was performed to identify statistically significant differences in cortical bone thickness that corresponded with the severity of radiological hip osteoarthritis. Kellgren and Lawrence (K&L) grade, minimum joint space width (JSW) and a novel CT-based osteophyte score were also blindly assessed from the CT data. For each increase in K&L grade, cortical thickness increased by up to 25 % in distinct areas of the superolateral femoral head-neck junction and superior subchondral bone plate. For increasing severity of CT osteophytes, the increase in cortical thickness was more circumferential, involving a wider portion of the head-neck junction, with up to a 7 % increase in cortical thickness per increment in score. Results were not significant for minimum JSW. These findings indicate that quantitative 3D analysis of the proximal femur can identify changes in cortical bone thickness relevant to structural hip osteoarthritis. • CT is being increasingly used to assess bony involvement in osteoarthritis • CBM provides accurate and reliable quantitative analysis of cortical bone thickness • Cortical bone is thicker at the superior femoral head-neck with worse osteoarthritis • Regions of increased thickness co-locate with impingement and osteophyte formation • Quantitative 3D bone analysis could enable clinical disease prediction and therapy development.

  15. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface.

    Science.gov (United States)

    Walsh, William R; Bertollo, Nicky; Christou, Chrisopher; Schaffner, Dominik; Mobbs, Ralph J

    2015-05-01

    Rapid and stable fixation at the bone-implant interface would be regarded as one of the primary goals to achieve clinical efficacy, regardless of the surgical site. Although mechanical and physical properties of polyetheretherketone (PEEK) provide advantages for implant devices, the hydrophobic nature and the lack of direct bone contact remains a limitation. To examine the effects of a plasma-sprayed titanium coated PEEK on the mechanical and histologic properties at the bone-implant interface. A preclinical laboratory study. Polyetheretherketone and plasma-sprayed titanium coated PEEK implants (Ti-bond; Spinal Elements, Carlsbad, CA, USA) were placed in a line-to-line manner in cortical bone and in a press-fit manner in cancellous bone of adult sheep using an established ovine model. Shear strength was assessed in the cortical sites at 4 and 12 weeks, whereas histology was performed in cortical and cancellous sites at both time points. The titanium coating dramatically improved the shear strength at the bone-implant interface at 4 weeks and continued to improve with time compared with PEEK. Direct bone ongrowth in cancellous and cortical sites can be achieved using a plasma-sprayed titanium coating on PEEK. Direct bone to implant bonding can be achieved on PEEK in spite of its hydrophobic nature using a plasma-sprayed titanium coating. The plasma-sprayed titanium coating improved mechanical properties in the cortical sites and the histology in cortical and cancellous sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Mid-thigh cortical bone structural parameters, muscle mass and strength, and association with lower limb fractures in older men and women (AGES-Reykjavik Study).

    Science.gov (United States)

    Johannesdottir, Fjola; Aspelund, Thor; Siggeirsdottir, Kristin; Jonsson, Brynjolfur Y; Mogensen, Brynjolfur; Sigurdsson, Sigurdur; Harris, Tamara B; Gudnason, Vilmundur G; Lang, Thomas F; Sigurdsson, Gunnar

    2012-05-01

    In a cross-sectional study we investigated the relationship between muscle and bone parameters in the mid-thigh in older people using data from a single axial computed tomographic section through the mid-thigh. Additionally, we studied the association of these variables with incident low-trauma lower limb fractures. A total of 3,762 older individuals (1,838 men and 1,924 women), aged 66-96 years, participants in the AGES-Reykjavik study, were studied. The total cross-sectional muscular area and knee extensor strength declined with age similarly in both sexes. Muscle parameters correlated most strongly with cortical area and total shaft area (adjusted for age, height, and weight) but explained lower limb fractures. Small muscular area, low knee extensor strength, large MA, low cortical thickness, and high BR were significantly associated with fractures in both sexes. Our results show that bone and muscle loss proceed at different rates and with different gender patterns.

  17. Analysis of cortical bone porosity using synchrotron radiation microtomography to evaluate the effects of chemotherapy

    Science.gov (United States)

    Alessio, R.; Nogueira, L. P.; Salata, C.; Mantuano, A.; Almeida, A. P.; Braz, D.; de Almeida, C. E.; Tromba, G.; Barroso, R. C.

    2015-11-01

    Microporosities play important biologic and mechanical roles on health. One of the side effects caused by some chemotherapy drugs is the induction of amenorrhea, temporary or not, in premenopausal women, with a consequent decrease in estrogen production, which can lead to cortical bone changes. In the present work, the femur diaphysis of rats treated with chemotherapy drugs were evaluated by 3D morphometric parameters using synchrotron radiation microtomography. Control animals were also evaluated for comparison. The 3D tomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the ELETTRA Synchrotron Laboratory in Trieste, Italy. Results showed significant differences in morphometric parameters measured from the 3D images of femur diaphysis of rats.

  18. Effects of parathyroid hormone on cortical porosity, non-enzymatic glycation and bone tissue mechanics in rats with type 2 diabetes mellitus.

    Science.gov (United States)

    Campbell, G M; Tiwari, S; Hofbauer, C; Picke, A-K; Rauner, M; Huber, G; Peña, J A; Damm, T; Barkmann, R; Morlock, M M; Hofbauer, L C; Glüer, C-C

    2016-01-01

    Type 2 diabetes mellitus increases skeletal fragility; however, the contributing mechanisms and the efficacy of bone-forming agents are unclear. We studied diabetes and parathyroid hormone (PTH) treatment effects on cortical porosity (Ct.Po), non-enzymatic glycation (NEG) and bone mechanics in Zucker diabetic fatty (ZDF) rats. Eleven-week old ZDF diabetic (DB) and non-diabetic (ND) rats were given 75μg/kg PTH (1-84) or vehicle 5days per week over 12weeks. The right femora and L4 vertebrae were excised, micro-CT scanned, and tested in 3-point bending and uniaxial compression, respectively. NEG of the samples was determined using fluorescence. Diabetes increased Ct.Po (vertebra (vert): +40.6%, femur (fem): +15.5% vs. ND group, pbone tissue mechanics where reductions in vertebral maximum strain (-22%) and toughness (-42%) were observed in the DB vs. ND group (pbone mechanics, which were not improved with PTH treatment. PTH therapy alone may worsen diabetic bone mechanics through formation of new bone with high AGEs cross-linking. Optimal treatment regimens must address both improvements of bone mass and glycemic control in order to successfully reduce diabetic bone fragility. This article is part of a Special Issue entitled "Bone and diabetes". Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Reduced bone formation markers, and altered trabecular and cortical bone mineral densities of non-paretic femurs observed in rats with ischemic stroke: A randomized controlled pilot study.

    Directory of Open Access Journals (Sweden)

    Karen N Borschmann

    Full Text Available Immobility and neural damage likely contribute to accelerated bone loss after stroke, and subsequent heightened fracture risk in humans.To investigate the skeletal effect of middle cerebral artery occlusion (MCAo stroke in rats and examine its utility as a model of human post-stroke bone loss.Twenty 15-week old spontaneously hypertensive male rats were randomized to MCAo or sham surgery controls. Primary outcome: group differences in trabecular bone volume fraction (BV/TV measured by Micro-CT (10.5 micron istropic voxel size at the ultra-distal femur of stroke affected left legs at day 28. Neurological impairments (stroke behavior and foot-faults and physical activity (cage monitoring were assessed at baseline, and days 1 and 27. Serum bone turnover markers (formation: N-terminal propeptide of type 1 procollagen, PINP; resorption: C-terminal telopeptide of type 1 collagen, CTX were assessed at baseline, and days 7 and 27.No effect of stroke was observed on BV/TV or physical activity, but PINP decreased by -24.5% (IQR -34.1, -10.5, p = 0.046 at day 27. In controls, cortical bone volume (5.2%, IQR 3.2, 6.9 and total volume (6.4%, IQR 1.2, 7.6 were higher in right legs compared to left legs, but these side-to-side differences were not evident in stroke animals.MCAo may negatively affect bone formation. Further investigation of limb use and physical activity patterns after MCAo is required to determine the utility of this current model as a representation of human post-stroke bone loss.

  20. MR imaging characteristics in primary lymphoma of bone with emphasis on non-aggressive appearance

    International Nuclear Information System (INIS)

    Heyning, Fenna H.; Kroon, Herman M.J.A.; Hogendoorn, Pancras C.W.; Taminiau, Antonie H.M.; Woude, Henk-Jan van der

    2007-01-01

    To assess the heterogeneity of magnetic resonance (MR) imaging characteristics in primary lymphoma of bone (PLB), in particular the non-aggressive appearance. In a retrospective study, MR imaging features were analyzed in 29 patients with histologically proven PLB. The following parameters were evaluated: tumor size, bone marrow and extension into soft tissues, signal characteristics of bone marrow and soft-tissue components, including enhancement, and involvement of cortical bone (complete disruption, focal destruction, permeative destruction and cortical thickening). PLB presented with extension into the soft tissue in 22 (76%) of 29 patients, was only subtle in three of these 22 patients, and was absent in seven patients. Signal intensity (SI) of the soft-tissue part was most frequently homogeneously isointense with muscle on T1-weighted images (90%) and high on T2-weighted images (91%). Enhancement was predominantly homogeneous and diffuse (82%). In 93% of patients cortical bone appeared abnormal: among those patients complete cortical disruption was seen in 28%, with extension into soft tissues in all but one patient; a permeative pattern of destruction was present in 52% of patients, 66% of these had an associated soft-tissue mass. Two patients with normal-appearing cortical bone had no extension into soft tissues. In two patients focal cortical destruction was noticed; in one patient cortical bone was homogeneously thickened, and in one patient PLB was selectively localized within the cortical bone. SI of the bone marrow tumor component was more frequently heterogeneous (in 54%), compared with the soft-tissue component, being high on T2-weighted images in 89%, intermediate in 7% and low in 4%. Similarly, enhancement was heterogeneous in 59%. The MR imaging appearance of PLB is variable. In 31% of PLB patients, the tumor was intra-osseous, with linear cortical signal abnormalities or even normal-appearing or thickened cortical bone without soft-tissue mass

  1. Seaweed flour (“Lithothamnium calcareum” as a mineral supplement in the bone healing of a cortical autograft in dogs Farinha de algas marinhas (“Lithothamnium calcareum” como suplemento mineral na cicatrização óssea de autoenxerto cortical em cães

    Directory of Open Access Journals (Sweden)

    Emanoel Ferreira Martins Filho

    2010-03-01

    Full Text Available The influence of the seaweed flour (Lithothamnium calcareum was evaluated as a mineral supplement in during healing of bone failure reconstructed with a cortical autograft. Ten adult male mongrel dogs, weighing between 10 and 15kg, were used. The graft made of a cilinder block of the cortical bone was obtained by the ulna proximal diaphysis by ostectomy with a trephine of eight millimeters. In the same way, it was created a bone failure located in the middle-skull region of the proximal diaphysis of the ipsolateral tibia, and it served as a receptor bed. Two experimental groups were formed randomly, with five animals each. One group received a daily mineral supplement of seaweed flour for 30 consecutive days, and the other served as a control group. Clinical, radiological, and histopatological evaluations of bone healing were performed. Mineral supplementation with seaweed flour (Lithothamnium calcareum contributed to a better cicatricial performance, since both the degree of radiopacity and the number of osteoclasts were higher in treated animals.Foi avaliada, em cães, a influência da farinha de algas marinhas (Lithothamnium calcareum como suplemento mineral na cicatrização de falha óssea cortical reconstituída com autoenxerto cortical. Foram utilizados dez cães adultos, machos, sem raça definida, com peso entre 10 e 15kg. O enxerto, constituído de um bloco cilíndrico de osso cortical foi obtido da diáfise proximal da ulna, mediante ostectomia com trefina de oito milímetros de diâmetro. Igualmente criada, a falha óssea, localizada na região crânio-medial da diáfise proximal da tíbia ipsolateral, serviu como leito receptor. Efetuou-se separação aleatória em dois grupos experimentais, com cinco animais cada. Um grupo recebeu suplementação mineral diária à base de farinha de algas marinhas por 30 dias consecutivos, e o outro serviu como controle. Foram feitas avaliações clínicas, radiográficas e histopatológicas da

  2. Radiogrammetric analysis of upper limb long bones

    Directory of Open Access Journals (Sweden)

    Stojanović Zlatan

    2011-01-01

    Full Text Available Radiogrammetry is radiological method of bone mineral density quantification. Besides giving an insight in diagnostics and evolution of metabolic bone disorders (osteoporosis, osteomalacia, osteitis deformans- Paget's disease, it can also explain some specific biomechanical characteristics of bone structures. The aim of this study is to evaluate the significance and perspectives of radiogrammetry as a scientific model for further inquiry of skeletal system. The work demonstrates mathematical parameters (Ca-Cortical area, CI- Cortical index, GI- Garn's index, ESI- Exton Smith's index of upper limb long bones (humerus, radius, ulna. Two standard radiological projections of bones were taken: antero-posterior (AP and latero-lateral (LL. Correlation with metacarpal and lower limb bones was also performed. The value of the cortical area of humerus is significantly higher comparing with the two other examined bones (Xmean 2,2443 cm2, p < 0.01. Radial bone has the highest values of the relational mathematical parameters, which implicates its higher strength by volumetric unit concerning humerus and ulna. Despite the development of contemporary osteometric procedures (ultrasound densitometry, dual X-ray absorptiometry, digital X-ray radiogrammetry, the classical radiogrammetry sustains its important role in diagnostics of metabolic bone disorders and it can be successfully used for biomechanical inquiry of skeletal system.

  3. Calcifying tendinitis of the rotator cuff with cortical bone erosion

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Roxanne; Kim, David H.; Millett, Peter J. [Harvard Medical School, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Weissman, Barbara N. [Harvard Medical School, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Brigham and Women' s Hospital, Department of Radiology, Musculoskeletal Division, Boston (United States)

    2004-10-01

    Calcifying tendinitis occurs most commonly in the rotator cuff tendons, particularly involving the supraspinatus tendon insertion, and is often asymptomatic. Cortical erosion secondary to calcifying tendinitis has been reported in multiple locations, including in the rotator cuff tendons. We present a pathologically proven case of symptomatic calcifying tendinitis involving the infraspinatus tendon with cortical erosion with correlative radiographic, CT, and MR findings. The importance of considering this diagnosis when evaluating lytic lesions of the humerus and the imaging differential diagnosis of calcifying tendinitis and cortical erosion are discussed. (orig.)

  4. Calcifying tendinitis of the rotator cuff with cortical bone erosion

    International Nuclear Information System (INIS)

    Chan, Roxanne; Kim, David H.; Millett, Peter J.; Weissman, Barbara N.

    2004-01-01

    Calcifying tendinitis occurs most commonly in the rotator cuff tendons, particularly involving the supraspinatus tendon insertion, and is often asymptomatic. Cortical erosion secondary to calcifying tendinitis has been reported in multiple locations, including in the rotator cuff tendons. We present a pathologically proven case of symptomatic calcifying tendinitis involving the infraspinatus tendon with cortical erosion with correlative radiographic, CT, and MR findings. The importance of considering this diagnosis when evaluating lytic lesions of the humerus and the imaging differential diagnosis of calcifying tendinitis and cortical erosion are discussed. (orig.)

  5. Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone.

    Directory of Open Access Journals (Sweden)

    Henry Todd

    Full Text Available Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an

  6. Spatial Differences in the Distribution of Bone Between Femoral Neck and Trochanteric Fractures.

    Science.gov (United States)

    Yu, Aihong; Carballido-Gamio, Julio; Wang, Ling; Lang, Thomas F; Su, Yongbin; Wu, Xinbao; Wang, Manyi; Wei, Jie; Yi, Chen; Cheng, Xiaoguang

    2017-08-01

    There is little knowledge about the spatial distribution differences in volumetric bone mineral density and cortical bone structure at the proximal femur between femoral neck fractures and trochanteric fractures. In this case-control study, a total of 93 women with fragility hip fractures, 72 with femoral neck fractures (mean ± SD age: 70.6 ± 12.7 years) and 21 with trochanteric fractures (75.6 ± 9.3 years), and 50 control subjects (63.7 ± 7.0 years) were included for the comparisons. Differences in the spatial distributions of volumetric bone mineral density, cortical bone thickness, cortical volumetric bone mineral density, and volumetric bone mineral density in a layer adjacent to the endosteal surface were investigated using voxel-based morphometry (VBM) and surface-based statistical parametric mapping (SPM). We compared these spatial distributions between controls and both types of fracture, and between the two types of fracture. Using VBM, we found spatially heterogeneous volumetric bone mineral density differences between control subjects and subjects with hip fracture that varied by fracture type. Interestingly, femoral neck fracture subjects, but not subjects with trochanteric fracture, showed significantly lower volumetric bone mineral density in the superior aspect of the femoral neck compared with controls. Using surface-based SPM, we found that compared with controls, both fracture types showed thinner cortices in regions in agreement with the type of fracture. Most outcomes of cortical and endocortical volumetric bone mineral density comparisons were consistent with VBM results. Our results suggest: 1) that the spatial distribution of trabecular volumetric bone mineral density might play a significant role in hip fracture; 2) that focal cortical bone thinning might be more relevant in femoral neck fractures; and 3) that areas of reduced cortical and endocortical volumetric bone mineral density might be more relevant for

  7. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  8. Understanding age-induced cortical porosity in women

    DEFF Research Database (Denmark)

    Andreasen, Christina Møller; Delaisse, Jean-Marie; van der Eerden, Bram C J

    2018-01-01

    of a histomorphometric analysis of sections of iliac bone specimens from 35 women (age 16-78 years). Firstly, the study shows that the aging-induced cortical porosity reflects an increased pore size rather than an increased pore density. Secondly, it establishes a novel histomorphometric classification of the pores...... initiation of the subsequent bone formation. This article is protected by copyright. All rights reserved....

  9. Abnormal bone collagen morphology and decreased bone strength in growth hormone-deficient rats

    DEFF Research Database (Denmark)

    Lange, Martin; Qvortrup, Klaus; Svendsen, Ole Lander

    2004-01-01

    collagen morphology and bone mineralisation in cortical bone as well as bone strength in GHD rats to try to clarify the explanation for the increased fracture rate. The Dw-4 rat was used as a model for GHD. This strain of rats has an autosomal recessive disorder, reducing GH synthesis to approximately 10...

  10. X-ray imaging characterization of femoral bones in aging mice with osteopetrotic disorder.

    Science.gov (United States)

    Tu, Shu-Ju; Huang, Hong-Wen; Chang, Wei-Jeng

    2015-04-01

    Aging mice with a rare osteopetrotic disorder in which the entire space of femoral bones are filled with trabecular bones are used as our research platform. A complete study is conducted with a micro computed tomography (CT) system to characterize the bone abnormality. Technical assessment of femoral bones includes geometric structure, biomechanical strength, bone mineral density (BMD), and bone mineral content (BMC). Normal aging mice of similar ages are included for comparisons. In our imaging work, we model the trabecular bone as a cylindrical rod and new quantitative which are not previously discussed are developed for advanced analysis, including trabecular segment length, trabecular segment radius, connecting node number, and distribution of trabecular segment radius. We then identified a geometric characteristic in which there are local maximums (0.0049, 0.0119, and 0.0147 mm) in the structure of trabecular segment radius. Our calculations show 343% higher in percent trabecular bone volume at distal-metaphysis; 38% higher in cortical thickness at mid-diaphysis; 11% higher in cortical cross-sectional moment of inertia at mid-diaphysis; 42% higher in cortical thickness at femur neck; 26% higher in cortical cross-sectional moment of inertia at femur neck; 31% and 395% higher in trabecular BMD and BMC at distal-metaphysis; 17% and 27% higher in cortical BMD and BMC at distal-metaphysis; 9% and 53% higher in cortical BMD and BMC at mid-diaphysis; 25% and 64% higher in cortical BMD and BMC at femur neck. Our new quantitative parameters and findings may be extended to evaluate the treatment response for other similar bone disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effect of vitamin K2 and growth hormone on the long bones in hypophysectomized young rats: a bone histomorphometry study.

    Science.gov (United States)

    Iwamoto, Jun; Takeda, Tsuyoshi; Sato, Yoshihiro; Yeh, James K

    2007-01-01

    The purpose of the present study was to determine whether vitamin K(2) and growth hormone (GH) had an additive effect on the long bones in hypophysectomized young rats. Forty-eight female Sprague-Dawley rats (6 weeks old) were assigned to the following five groups by the stratified weight randomization method: intact controls, hypophysectomy (HX) alone, HX + vitamin K(2) (30 mg/kg, p.o., daily), HX + GH (0.625 mg/kg, s.c., 5 days a week), and HX + vitamin K(2) + GH. The duration of the experiment was 4 weeks. HX resulted in a reduction of the cancellous bone volume/total tissue volume (BV/TV) at the proximal tibial metaphysis, as well as decreasing the total tissue area and cortical area of the tibial diaphysis. These changes resulted from a decrease of the longitudinal growth rate and the bone formation rate (BFR)/TV of cancellous bone, as well as a decrease of the periosteal BFR/bone surface (BS) and an increase of endocortical bone turnover (indicated by the BFR/BS) in cortical bone. Administration of vitamin K(2) to HX rats did not affect the cancellous BV/TV or the cortical area. On the other hand, GH completely prevented the decrease of total tissue area and cortical area in cortical bone, as well as the decrease of marrow area and endocortical circumference, by increasing the periosteal BFR/BS compared with that in intact controls and reversing the increase of endocortical bone turnover (BFR/BS). However, GH only partly improved the reduction of the cancellous BV/TV, despite an increase of the longitudinal growth rate and BFR/TV compared with those of intact controls. When administered with GH, vitamin K(2) counteracted the reduction of endocortical bone turnover (BFR/BS) and circumference caused by GH treatment, resulting in no significant difference of marrow area from that in untreated HX rats. These results suggest that, despite the lack of an obvious effect on bone parameters, vitamin K(2) normalizes the size of the marrow cavity during development of

  12. Influence of Screw Length and Bone Thickness on the Stability of Temporary Implants

    Directory of Open Access Journals (Sweden)

    Daniel Jogaib Fernandes

    2015-09-01

    Full Text Available The purpose of this work was to study the influence of screw length and bone thickness on the stability of temporary implants. A total of 96 self-drilling temporary screws with two different lengths were inserted into polyurethane blocks (n = 66, bovine femurs (n = 18 and rabbit tibia (n = 12 with different cortical thicknesses (1 to 8 mm. Screws insertion in polyurethane blocks was assisted by a universal testing machine, torque peaks were collected by a digital torquemeter and bone thickness was monitored by micro-CT. The results showed that the insertion torque was significantly increased with the thickness of cortical bone from polyurethane (p < 0.0001, bovine (p = 0.0035 and rabbit (p < 0.05 sources. Cancellous bone improved significantly the mechanical implant stability. Insertion torque and insertion strength was successfully moduled by equations, based on the cortical/cancellous bone behavior. Based on the results, insertion torque and bone strength can be estimate in order to prevent failure of the cortical layer during temporary screw placement. The stability provided by a cortical thickness of 2 or 1 mm coupled to cancellous bone was deemed sufficient for temporary implants stability.

  13. 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer

    Science.gov (United States)

    Ma, Hongshi; Li, Tao; Huan, Zhiguang; Zhang, Meng; Yang, Zezheng; Wang, Jinwu; Chang, Jiang; Wu, Chengtie

    2018-04-01

    The challenges in bone tumor therapy are how to repair the large bone defects induced by surgery and kill all possible residual tumor cells. Compared to cancellous bone defect regeneration, cortical bone defect regeneration has a higher demand for bone substitute materials. To the best of our knowledge, there are currently few bifunctional biomaterials with an ultra-high strength for both tumor therapy and cortical bone regeneration. Here, we designed Fe-CaSiO3 composite scaffolds (30CS) via 3D printing technique. First, the 30CS composite scaffolds possessed a high compressive strength that provided sufficient mechanical support in bone cortical defects; second, synergistic photothermal and ROS therapies achieved an enhanced tumor therapeutic effect in vitro and in vivo. Finally, the presence of CaSiO3 in the composite scaffolds improved the degradation performance, stimulated the proliferation and differentiation of rBMSCs, and further promoted bone formation in vivo. Such 30CS scaffolds with a high compressive strength can function as versatile and efficient biomaterials for the future regeneration of cortical bone defects and the treatment of bone cancer.

  14. The effect of excitation and preparation pulses on nonslice selective 2D UTE bicomponent analysis of bound and free water in cortical bone at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shihong [Department of Radiology, University of California, San Diego, California 92103-8226 (United States); Department of Radiology, Hua Dong Hospital, Fudan University, Shanghai 200040 (China); Yancheng Medical College, Jiangsu (China); The First People' s Hospital of Yancheng City, Jiangsu 224005 (China); Chang, Eric Y.; Chung, Christine B. [VA San Diego Healthcare System, San Diego, California 92161 and Department of Radiology, University of California, San Diego, California 92103-8226 (United States); Bae, Won C.; Du, Jiang, E-mail: jiangdu@ucsd.edu [Department of Radiology, University of California, San Diego, California 92103-8226 (United States); Hua, Yanqing [Department of Radiology, Hua Dong Hospital, Fudan University, Shanghai 200040 (China); Zhou, Yi [The First People' s Hospital of Yancheng City, Jiangsu 224005 (China)

    2014-02-15

    Purpose: The purpose of this study was to investigate the effect of excitation, fat saturation, long T2 saturation, and adiabatic inversion pulses on ultrashort echo time (UTE) imaging with bicomponent analysis of bound and free water in cortical bone for potential applications in osteoporosis. Methods: Six bovine cortical bones and six human tibial midshaft samples were harvested for this study. Each bone sample was imaged with eight sequences using 2D UTE imaging at 3T with half and hard excitation pulses, without and with fat saturation, long T2 saturation, and adiabatic inversion recovery (IR) preparation pulses. Single- and bicomponent signal models were utilized to calculate the T2{sup *}s and/or relative fractions of short and long T2{sup *}s. Results: For all bone samples UTE T2{sup *} signal decay showed bicomponent behavior. A higher short T2{sup *} fraction was observed on UTE images with hard pulse excitation compared with half pulse excitation (75.6% vs 68.8% in bovine bone, 79.9% vs 73.2% in human bone). Fat saturation pulses slightly reduced the short T2{sup *} fraction relative to regular UTE sequences (5.0% and 2.0% reduction, respectively, with half and hard excitation pulses for bovine bone, 6.3% and 8.2% reduction, respectively, with half and hard excitation pulses for human bone). Long T2 saturation pulses significantly reduced the long T2{sup *} fraction relative to regular UTE sequence (18.9% and 17.2% reduction, respectively, with half and hard excitation pulses for bovine bone, 26.4% and 27.7% reduction, respectively, with half and hard excitation pulses for human bone). With IR-UTE preparation the long T2{sup *} components were significantly reduced relative to regular UTE sequence (75.3% and 66.4% reduction, respectively, with half and hard excitation pulses for bovine bone, 87.7% and 90.3% reduction, respectively, with half and hard excitation pulses for human bone). Conclusions: Bound and free water T2{sup *}s and relative fractions can

  15. The effect of excitation and preparation pulses on nonslice selective 2D UTE bicomponent analysis of bound and free water in cortical bone at 3T

    International Nuclear Information System (INIS)

    Li, Shihong; Chang, Eric Y.; Chung, Christine B.; Bae, Won C.; Du, Jiang; Hua, Yanqing; Zhou, Yi

    2014-01-01

    Purpose: The purpose of this study was to investigate the effect of excitation, fat saturation, long T2 saturation, and adiabatic inversion pulses on ultrashort echo time (UTE) imaging with bicomponent analysis of bound and free water in cortical bone for potential applications in osteoporosis. Methods: Six bovine cortical bones and six human tibial midshaft samples were harvested for this study. Each bone sample was imaged with eight sequences using 2D UTE imaging at 3T with half and hard excitation pulses, without and with fat saturation, long T2 saturation, and adiabatic inversion recovery (IR) preparation pulses. Single- and bicomponent signal models were utilized to calculate the T2 * s and/or relative fractions of short and long T2 * s. Results: For all bone samples UTE T2 * signal decay showed bicomponent behavior. A higher short T2 * fraction was observed on UTE images with hard pulse excitation compared with half pulse excitation (75.6% vs 68.8% in bovine bone, 79.9% vs 73.2% in human bone). Fat saturation pulses slightly reduced the short T2 * fraction relative to regular UTE sequences (5.0% and 2.0% reduction, respectively, with half and hard excitation pulses for bovine bone, 6.3% and 8.2% reduction, respectively, with half and hard excitation pulses for human bone). Long T2 saturation pulses significantly reduced the long T2 * fraction relative to regular UTE sequence (18.9% and 17.2% reduction, respectively, with half and hard excitation pulses for bovine bone, 26.4% and 27.7% reduction, respectively, with half and hard excitation pulses for human bone). With IR-UTE preparation the long T2 * components were significantly reduced relative to regular UTE sequence (75.3% and 66.4% reduction, respectively, with half and hard excitation pulses for bovine bone, 87.7% and 90.3% reduction, respectively, with half and hard excitation pulses for human bone). Conclusions: Bound and free water T2 * s and relative fractions can be assessed using UTE bicomponent

  16. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction.

    Science.gov (United States)

    Li, Zuoping; Kindig, Matthew W; Subit, Damien; Kent, Richard W

    2010-11-01

    The purpose of this paper was to investigate the sensitivity of the structural responses and bone fractures of the ribs to mesh density, cortical thickness, and material properties so as to provide guidelines for the development of finite element (FE) thorax models used in impact biomechanics. Subject-specific FE models of the second, fourth, sixth and tenth ribs were developed to reproduce dynamic failure experiments. Sensitivity studies were then conducted to quantify the effects of variations in mesh density, cortical thickness, and material parameters on the model-predicted reaction force-displacement relationship, cortical strains, and bone fracture locations for all four ribs. Overall, it was demonstrated that rib FE models consisting of 2000-3000 trabecular hexahedral elements (weighted element length 2-3mm) and associated quadrilateral cortical shell elements with variable thickness more closely predicted the rib structural responses and bone fracture force-failure displacement relationships observed in the experiments (except the fracture locations), compared to models with constant cortical thickness. Further increases in mesh density increased computational cost but did not markedly improve model predictions. A ±30% change in the major material parameters of cortical bone lead to a -16.7 to 33.3% change in fracture displacement and -22.5 to +19.1% change in the fracture force. The results in this study suggest that human rib structural responses can be modeled in an accurate and computationally efficient way using (a) a coarse mesh of 2000-3000 solid elements, (b) cortical shells elements with variable thickness distribution and (c) a rate-dependent elastic-plastic material model. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Intra- and inter-observer variation in histological criteria used in age at death determination based on femoral cortical bone

    DEFF Research Database (Denmark)

    Lynnerup, N; Thomsen, J L; Frohlich, B

    1998-01-01

    been carried out dealing with the intra- and inter-observer error. Furthermore, when such studies have been completed, the statistical tools for assessing variability have not been adequate. This study presents the results of applying simple quantitative statistics on several counts of microscopic...... elements as observed on photographic images of cortical bone, in order to assess intra- and inter-observer error. Overall, substantial error was present at the level of identifying and counting secondary osteons, osteon fragments and Haversian canals. Only secondary osteons can be reliably identified...

  18. Six months of disuse during hibernation does not increase intracortical porosity or decrease cortical bone geometry, strength, or mineralization in black bear (Ursus americanus) femurs

    OpenAIRE

    McGee-Lawrence, Meghan E.; Wojda, Samantha J.; Barlow, Lindsay N.; Drummer, Thomas D.; Bunnell, Kevin; Auger, Janene; Black, Hal L.; Donahue, Seth W.

    2009-01-01

    Disuse typically uncouples bone formation from resorption, leading to bone loss which compromises bone mechanical properties and increases the risk of bone fracture. Previous studies suggest that bears can prevent bone loss during long periods of disuse (hibernation), but small sample sizes have limited the conclusions that can be drawn regarding the effects of hibernation on bone structure and strength in bears. Here we quantified the effects of hibernation on structural, mineral, and mechan...

  19. The double cortical line: a sign of osteopenia

    International Nuclear Information System (INIS)

    Lamb, C.R.

    1990-01-01

    The double cortical line is a radiographic sign of osteopenia which results from intracortical resorption of bone. This sign is frequently seen in humans with osteopenia but has received minimal attention in the veterinary literature. This report describes the double cortical line in cases of senile osteopenia, nutritional secondary hyperparathyroidism, suspected renal secondary hyperparathyroidism and in the acetabulum following triple pelvic osteotomy for hip dysplasia

  20. Rib Geometry Explains Variation in Dynamic Structural Response: Potential Implications for Frontal Impact Fracture Risk.

    Science.gov (United States)

    Murach, Michelle M; Kang, Yun-Seok; Goldman, Samuel D; Schafman, Michelle A; Schlecht, Stephen H; Moorhouse, Kevin; Bolte, John H; Agnew, Amanda M

    2017-09-01

    The human thorax is commonly injured in motor vehicle crashes, and despite advancements in occupant safety rib fractures are highly prevalent. The objective of this study was to quantify the ability of gross and cross-sectional geometry, separately and in combination, to explain variation of human rib structural properties. One hundred and twenty-two whole mid-level ribs from 76 fresh post-mortem human subjects were tested in a dynamic frontal impact scenario. Structural properties (peak force and stiffness) were successfully predicted (p rib cross-sectional geometry obtained via direct histological imaging (total area, cortical area, and section modulus) and were improved further when utilizing a combination of cross-sectional and gross geometry (robusticity, whole bone strength index). Additionally, preliminary application of a novel, adaptive thresholding technique, allowed for total area and robusticity to be measured on a subsample of standard clinical CT scans with varied success. These results can be used to understand variation in individual rib response to frontal loading as well as identify important geometric parameters, which could ultimately improve injury criteria as well as the biofidelity of anthropomorphic test devices (ATDs) and finite element (FE) models of the human thorax.

  1. Quantitative 3D analysis of bone in hip osteoarthritis using clinical computed tomography

    International Nuclear Information System (INIS)

    Turmezei, Tom D.; Treece, Graham M.; Gee, Andrew H.; Fotiadou, Anastasia F.; Poole, Kenneth E.S.

    2016-01-01

    To assess the relationship between proximal femoral cortical bone thickness and radiological hip osteoarthritis using quantitative 3D analysis of clinical computed tomography (CT) data. Image analysis was performed on clinical CT imaging data from 203 female volunteers with a technique called cortical bone mapping (CBM). Colour thickness maps were created for each proximal femur. Statistical parametric mapping was performed to identify statistically significant differences in cortical bone thickness that corresponded with the severity of radiological hip osteoarthritis. Kellgren and Lawrence (K and L) grade, minimum joint space width (JSW) and a novel CT-based osteophyte score were also blindly assessed from the CT data. For each increase in K and L grade, cortical thickness increased by up to 25 % in distinct areas of the superolateral femoral head-neck junction and superior subchondral bone plate. For increasing severity of CT osteophytes, the increase in cortical thickness was more circumferential, involving a wider portion of the head-neck junction, with up to a 7 % increase in cortical thickness per increment in score. Results were not significant for minimum JSW. These findings indicate that quantitative 3D analysis of the proximal femur can identify changes in cortical bone thickness relevant to structural hip osteoarthritis. (orig.)

  2. Lacunar-canalicular network in femoral cortical bone is reduced in aged women and is predominantly due to a loss of canalicular porosity

    Directory of Open Access Journals (Sweden)

    A.M. Ashique

    2017-12-01

    Full Text Available The lacunar-canalicular network (LCN of bone contains osteocytes and their dendritic extensions, which allow for intercellular communication, and are believed to serve as the mechanosensors that coordinate the processes of bone modeling and remodeling. Imbalances in remodeling, for example, are linked to bone disease, including fragility associated with aging. We have reported that there is a reduction in scale for one component of the LCN, osteocyte lacunar volume, across the human lifespan in females. In the present study, we explore the hypothesis that canalicular porosity also declines with age. To visualize the LCN and to determine how its components are altered with aging, we examined samples from young (age: 20–23 y; n = 5 and aged (age: 70–86 y; n = 6 healthy women donors utilizing a fluorescent labelling technique in combination with confocal laser scanning microscopy. A large cross-sectional area of cortical bone spanning the endosteal to periosteal surfaces from the anterior proximal femoral shaft was examined in order to account for potential trans-cortical variation in the LCN. Overall, we found that LCN areal fraction was reduced by 40.6% in the samples from aged women. This reduction was due, in part, to a reduction in lacunar density (21.4% decline in lacunae number per given area of bone, but much more so due to a 44.6% decline in canalicular areal fraction. While the areal fraction of larger vascular canals was higher in endosteal vs. periosteal regions for both age groups, no regional differences were observed in the areal fractions of the LCN and its components for either age group. Our data indicate that the LCN is diminished in aged women, and is largely due to a decline in the canalicular areal fraction, and that, unlike vascular canal porosity, this diminished LCN is uniform across the cortex.

  3. Scintigraphic findings of bone and bone-marrow and determination of bone mineral density using photon absorptiometry in osteopetrosis

    International Nuclear Information System (INIS)

    Otsuka, Nobuaki; Fukunaga, Masao; Morita, Koichi

    1988-01-01

    On a 15-year-old girl with osteopetrosis, bone and bonemarrow scintigraphy were performed. Also, bone mineral density (BMD) with quantitative CT (QCT), single photon absorptiometry (SPA) and dual photon absorptiometry (DPA) were measured. On bone scintigraphy the diffusely increased skeletal uptake and relatively diminished renal uptake were noted. On the other hand, on bone marrow scintigraphy poor accumulation in central marrow and peripheral expansion were shown. BMD value by QCT and DPA (mainly trabecular bone) was markedly high, while BMD by SPA (mainly cortical bone) was within normal range. Thus, it was shown that bone and bone-marrow scintigraphy combined with BMD measurement by photon absorptiometry were useful and essential in evaluating the pathophysiology of osteosclerosis. (author)

  4. EPR dosimetry of cortical bone and tooth enamel irradiated with X and gamma rays: Study of energy dependence

    International Nuclear Information System (INIS)

    Schauer, D.A.; Links, J.M.; Desrosiers, M.F.; Le, F.G.; Seltzer, S.M.

    1994-01-01

    Previous investigators have reported that the radiation-induced EPR signal intensity in compact or cortical bone increases up to a factor of two with decreasing photon energy for a given absorbed dose. If the EPR signal intensity was dependent on energy, it could limit the application of EPR spectrometry and the additive reirradiation method to obtain dose estimates. We have recently shown that errors in the assumptions governing conversion of measured exposure to absorbed dose can lead to similar open-quotes apparentclose quotes energy-dependence results. We hypothesized that these previous results were due to errors in the estimated dose in bone, rather than the effects of energy dependence per se. To test this hypothesis we studied human adult cortical bone from male and female donors ranging in age from 23 to 95 years, and bovine tooth enamel, using 34 and 138 keV average energy X-ray beams and 137 Cs (662 keV) and 60 Co (1250 keV) γ rays. In a femur from a 47-year-old male (subject 1), there was a difference of borderline significance at the α = 0.05 level in the mean radiation-induced hydroxyapatite signal intensities as a function of photon energy. No other statistically significant differences in EPR signal intensity as a function of photon energy were observed in this subject, or in the tibia from a 23-year-old male (subject 2) and the femur from a 75-year-old female (subject 3). However, there was a trend toward a decrease (12-15%) in signal intensity at the lowest energy compared with the highest energy in subjects 1 and 3. Further analysis of the data from subject 1 revealed that this trend, which is in the opposite direction of previous reports but is consistent with theory, is statistically significant. There were no efforts of energy dependence in the tooth samples. 16 refs., 7 figs., 5 tabs

  5. Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation.

    Science.gov (United States)

    McGee-Lawrence, Meghan; Buckendahl, Patricia; Carpenter, Caren; Henriksen, Kim; Vaughan, Michael; Donahue, Seth

    2015-07-01

    Decreased physical activity in mammals increases bone turnover and uncouples bone formation from bone resorption, leading to hypercalcemia, hypercalcuria, bone loss and increased fracture risk. Black bears, however, are physically inactive for up to 6 months annually during hibernation without losing cortical or trabecular bone mass. Bears have been shown to preserve trabecular bone volume and architectural parameters and cortical bone strength, porosity and geometrical properties during hibernation. The mechanisms that prevent disuse osteoporosis in bears are unclear as previous studies using histological and serum markers of bone remodeling show conflicting results. However, previous studies used serum markers of bone remodeling that are known to accumulate with decreased renal function, which bears have during hibernation. Therefore, we measured serum bone remodeling markers (BSALP and TRACP) that do not accumulate with decreased renal function, in addition to the concentrations of serum calcium and hormones involved in regulating bone remodeling in hibernating and active bears. Bone resorption and formation markers were decreased during hibernation compared with when bears were physically active, and these findings were supported by histomorphometric analyses of bone biopsies. The serum concentration of cocaine and amphetamine regulated transcript (CART), a hormone known to reduce bone resorption, was 15-fold higher during hibernation. Serum calcium concentration was unchanged between hibernation and non-hibernation seasons. Suppressed and balanced bone resorption and formation in hibernating bears contributes to energy conservation, eucalcemia and the preservation of bone mass and strength, allowing bears to survive prolonged periods of extreme environmental conditions, nutritional deprivation and anuria. © 2015. Published by The Company of Biologists Ltd.

  6. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Holly; Zimmermann, Elizabeth; Schaible, Eric; Tang, Simon; Alliston, Tamara; Ritchie, Robert

    2011-08-19

    Bone comprises a complex structure of primarily collagen, hydroxyapatite and water, where each hierarchical structural level contributes to its strength, ductility and toughness. These properties, however, are degraded by irradiation, arising from medical therapy or bone-allograft sterilization. We provide here a mechanistic framework for how irradiation affects the nature and properties of human cortical bone over a range of characteristic (nano to macro) length-scales, following x-­ray exposures up to 630 kGy. Macroscopically, bone strength, ductility and fracture resistance are seen to be progressively degraded with increasing irradiation levels. At the micron-­scale, fracture properties, evaluated using in-situ scanning electron microscopy and synchrotron x-ray computed micro-tomography, provide mechanistic information on how cracks interact with the bone-matrix structure. At sub-micron scales, strength properties are evaluated with in-situ tensile tests in the synchrotron using small-/wide-angle x-ray scattering/diffraction, where strains are simultaneously measured in the macroscopic tissue, collagen fibrils and mineral. Compared to healthy bone, results show that the fibrillar strain is decreased by ~40% following 70 kGy exposures, consistent with significant stiffening and degradation of the collagen. We attribute the irradiation-­induced deterioration in mechanical properties to mechanisms at multiple length-scales, including changes in crack paths at micron-­scales, loss of plasticity from suppressed fibrillar sliding at sub-­micron scales, and the loss and damage of collagen at the nano-­scales, the latter being assessed using Raman and Fourier-Transform-Infrared spectroscopy and a fluorometric assay.

  7. Role of endocortical contouring methods on precision of HR-pQCT-derived cortical micro-architecture in postmenopausal women and young adults.

    Science.gov (United States)

    Kawalilak, C E; Johnston, J D; Cooper, D M L; Olszynski, W P; Kontulainen, S A

    2016-02-01

    Precision errors of cortical bone micro-architecture from high-resolution peripheral quantitative computed tomography (pQCT) ranged from 1 to 16 % and did not differ between automatic or manually modified endocortical contour methods in postmenopausal women or young adults. In postmenopausal women, manually modified contours led to generally higher cortical bone properties when compared to the automated method. First, the objective of the study was to define in vivo precision errors (coefficient of variation root mean square (CV%RMS)) and least significant change (LSC) for cortical bone micro-architecture using two endocortical contouring methods: automatic (AUTO) and manually modified (MOD) in two groups (postmenopausal women and young adults) from high-resolution pQCT (HR-pQCT) scans. Second, it was to compare precision errors and bone outcomes obtained with both methods within and between groups. Using HR-pQCT, we scanned twice the distal radius and tibia of 34 postmenopausal women (mean age ± SD 74 ± 7 years) and 30 young adults (27 ± 9 years). Cortical micro-architecture was determined using AUTO and MOD contour methods. CV%RMS and LSC were calculated. Repeated measures and multivariate ANOVA were used to compare mean CV% and bone outcomes between the methods within and between the groups. Significance was accepted at P young adults, postmenopausal women had better precision for radial cortical porosity (precision difference 9.3 %) and pore volume (7.5 %) with MOD. Young adults had better precision for cortical thickness (0.8 %, MOD) and tibial cortical density (0.2 %, AUTO). In postmenopausal women, MOD resulted in 0.2-54 % higher values for most cortical outcomes, as well as 6-8 % lower radial and tibial cortical BMD and 2 % lower tibial cortical thickness. Results suggest that AUTO and MOD endocortical contour methods provide comparable repeatability. In postmenopausal women, manual modification of endocortical contours led to

  8. Increases in bone density during treatment of men with idiopathic hypogonadotropic hypogonadism

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, J.S.; Klibanski, A.; Neer, R.M.; Doppelt, S.H.; Rosenthal, D.I.; Segre, G.V.; Crowley, W.F. Jr. (Massachusetts General Hospital, Boston (USA))

    1989-10-01

    To assess the effects of gonadal steroid replacement on bone density in men with osteoporosis due to severe hypogonadism, we measured cortical bone density in the distal radius by 125I photon absorptiometry and trabecular bone density in the lumbar spine by quantitative computed tomography in 21 men with isolated GnRH deficiency while serum testosterone levels were maintained in the normal adult male range for 12-31 months (mean +/- SE, 23.7 +/- 1.1). In men who initially had fused epiphyses (n = 15), cortical bone density increased from 0.71 +/- 0.02 to 0.74 +/- 0.01 g/cm2 (P less than 0.01), while trabecular bone density did not change (116 +/- 9 compared with 119 +/- 7 mg/cm3). In men who initially had open epiphyses (n = 6), cortical bone density increased from 0.62 +/- 0.01 to 0.70 +/- 0.03 g/cm2 (P less than 0.01), while trabecular bone density increased from 96 +/- 13 to 109 +/- 12 mg/cm3 (P less than 0.01). Cortical bone density increased 0.03 +/- 0.01 g/cm2 in men with fused epiphyses and 0.08 +/- 0.02 g/cm2 in men with open epiphyses (P less than 0.05). Despite these increases, neither cortical nor trabecular bone density returned to normal levels. Histomorphometric analyses of iliac crest bone biopsies demonstrated that most of the men had low turnover osteoporosis, although some men had normal to high turnover osteoporosis. We conclude that bone density increases during gonadal steroid replacement of GnRH-deficient men, particularly in men who are skeletally immature.

  9. Increases in bone density during treatment of men with idiopathic hypogonadotropic hypogonadism

    International Nuclear Information System (INIS)

    Finkelstein, J.S.; Klibanski, A.; Neer, R.M.; Doppelt, S.H.; Rosenthal, D.I.; Segre, G.V.; Crowley, W.F. Jr.

    1989-01-01

    To assess the effects of gonadal steroid replacement on bone density in men with osteoporosis due to severe hypogonadism, we measured cortical bone density in the distal radius by 125I photon absorptiometry and trabecular bone density in the lumbar spine by quantitative computed tomography in 21 men with isolated GnRH deficiency while serum testosterone levels were maintained in the normal adult male range for 12-31 months (mean +/- SE, 23.7 +/- 1.1). In men who initially had fused epiphyses (n = 15), cortical bone density increased from 0.71 +/- 0.02 to 0.74 +/- 0.01 g/cm2 (P less than 0.01), while trabecular bone density did not change (116 +/- 9 compared with 119 +/- 7 mg/cm3). In men who initially had open epiphyses (n = 6), cortical bone density increased from 0.62 +/- 0.01 to 0.70 +/- 0.03 g/cm2 (P less than 0.01), while trabecular bone density increased from 96 +/- 13 to 109 +/- 12 mg/cm3 (P less than 0.01). Cortical bone density increased 0.03 +/- 0.01 g/cm2 in men with fused epiphyses and 0.08 +/- 0.02 g/cm2 in men with open epiphyses (P less than 0.05). Despite these increases, neither cortical nor trabecular bone density returned to normal levels. Histomorphometric analyses of iliac crest bone biopsies demonstrated that most of the men had low turnover osteoporosis, although some men had normal to high turnover osteoporosis. We conclude that bone density increases during gonadal steroid replacement of GnRH-deficient men, particularly in men who are skeletally immature

  10. Bone mass and geometry of the tibia and the radius of master sprinters, middle and long distance runners, race-walkers and sedentary control participants: a pQCT

    NARCIS (Netherlands)

    Wilks, D.C.; Winwood, K.; Gilliver, S.F.; Kwiet, A.; Chatfield, M; Michaelis, I.; Sun, L.W.; Ferretti, J.L.; Sargeant, A.J.; Felsenberg, D.; Rittweger, J.

    2009-01-01

    Mechanical loading is thought to be a determinant of bone mass and geometry. Both ground reaction forces and tibial strains increase with running speed. This study investigates the hypothesis that surrogates of bone strength in male and female master sprinters, middle and long distance runners and

  11. Adolescence physical activity is associated with higher tibial pQCT bone values in adulthood after 28-years of follow-up--the Cardiovascular Risk in Young Finns Study.

    Science.gov (United States)

    Tolonen, S; Sievänen, H; Mikkilä, V; Telama, R; Oikonen, M; Laaksonen, M; Viikari, J; Kähönen, M; Raitakari, O T

    2015-06-01

    High peak bone mass and strong bone phenotype are known to be partly explained by physical activity during growth but there are few prospective studies on this topic. In this 28-year follow-up of Cardiovascular Risk in Young Finns Study cohort, we assessed whether habitual childhood and adolescence physical activity or inactivity at the age of 3-18 years were associated with adult phenotype of weight-bearing tibia and the risk of low-energy fractures. Baseline physical activity and data on clinical, nutritional and lifestyle factors were assessed separately for females and males aged 3-6-years (N=395-421) and 9-18-years (N=923-965). At the age of 31-46-years, the prevalence of low-energy fractures was assessed with a questionnaire and several tibial traits were measured with pQCT (bone mineral content (BMC; mg), total and cortical cross-sectional areas (mm(2)), trabecular (for the distal site only) and cortical (for the shaft only) bone densities (mg/cm(3)), stress-strain index (SSI; mm(3), for the shaft only), bone strength index (BSI; mg(2)/cm(4), for the distal site only) and the cortical strength index (CSI, for the shaft only)). For the statistical analysis, each bone trait was categorized as below the cohort median or the median and above and the adjusted odds ratios (OR) were determined. In females, frequent physical activity at the age of 9-18-years was associated with higher adulthood values of BSI, total and cortical areas, BMC, CSI and SSI at the tibia independently of many health and lifestyle factors (ORs 0.33-0.53, P≤0.05; P-values for trend 0.002-0.05). Cortical density at the tibial shaft showed the opposite trend (P-value for trend 0.03). Similarly in males, frequent physical activity was associated with higher values of adult total and cortical areas and CSI at the tibia (ORs 0.48-0.53, P≤0.05; P-values for trend 0.01-0.02). However, there was no evidence that childhood or adolescence physical activity was associated with lower risk of low

  12. Fabrication and characterization of electrospun osteon mimicking scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Andric, T. [Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Sampson, A.C. [Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Freeman, J.W., E-mail: jwfreeman@vt.edu [Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)

    2011-01-01

    Skeletal loss and bone deficiencies are a major worldwide problem with over 600,000 procedures performed in the US alone annually, making bone one of the most transplanted tissues, second to blood only. Bone is a composite tissue composed of organic matrix, inorganic bone mineral, and water. Structurally bone is organized into two distinct types: trabecular (or cancellous) and cortical (or compact) bones. Trabecular bone is characterized by an extensive interconnected network of pores. Cortical bone is composed of tightly packed units, called osteons, oriented parallel along to the axis of the bone. While the majority of scaffolds attempt to replicate the structure of the trabecular bone, fewer attempts have been made to create scaffolds to mimic the structure of cortical bone. The aim of this study was to develop a technique to fabricate scaffolds that mimic the organization of an osteon, the structural unit of cortical bone. We successfully built a rotating stage for PGA fibers and utilized it for collecting electrospun nanofibers and creating scaffolds. Resulting scaffolds consisted of concentric layers of electrospun PLLA or gelatin/PLLA nanofibers wrapped around PGA microfiber core with diameters that ranged from 200 to 600 {mu}m. Scaffolds were mineralized by incubation in 10x simulated body fluid, and scaffolds composed of 10%gelatin/PLLA had significantly higher amounts of calcium phosphate. The electrospun scaffolds also supported cellular attachment and proliferation of MC3T3 cells over the period of 28 days.

  13. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage.

    Science.gov (United States)

    Flanagan, Christopher D; Unal, Mustafa; Akkus, Ozan; Rimnac, Clare M

    2017-11-01

    Thermal denaturation and monotonic mechanical damage alter the organic and water-related compartments of cortical bone. These changes can be detected using Raman spectroscopy. However, less is known regarding Raman sensitivity to detect the effects of cyclic fatigue damage and allograft sterilization doses of gamma radiation. To determine if Raman spectroscopic biomarkers of collagen denaturation and hydration are sensitive to the effects of (a) high cycle fatigue damage and (b) 25kGy irradiation. Unirradiated and gamma-radiation sterilized human cortical bone specimens previously tested in vitro under high-cycle (> 100,000 cycles) fatigue conditions at 15MPa, 25MPa, 35MPa, 45MPa, and 55MPa cyclic stress levels were studied. Cortical bone Raman spectral profiles from wavenumber ranges of 800-1750cm -1 and 2700-3800cm -1 were obtained and compared from: a) non-fatigue vs fatigue fracture sites and b) radiated vs. unirradiated states. Raman biomarker ratios 1670/1640 and 3220/2949, which reflect collagen denaturation and organic matrix (mainly collagen)-bound water, respectively, were assessed. One- and two-way ANOVA analyses were utilized to identify differences between groups along with interaction effects between cyclic fatigue and radiation-induced damage. Cyclic fatigue damage resulted in increases in collagen denaturation (1670/1640: 1.517 ± 0.043 vs 1.579 ± 0.021, p Raman spectroscopy can detect the effects of cyclic fatigue damage and 25kGy irradiation via increases in organic matrix (mainly collagen)-bound water. A Raman measure of collagen denaturation was sensitive to cyclic fatigue damage but not 25kGy irradiation. Collagen denaturation was correlated with organic matrix-bound water, suggesting that denaturation of collagen to gelatinous form may expose more binding sites to water by unwinding the triple alpha chains. This research may eventually be useful to help identify allograft quality and more appropriately match donors to recipients. Copyright

  14. Medullary bone and humeral breaking strength in laying hens

    International Nuclear Information System (INIS)

    Fleming, R.H.; McCormack, H.A.; McTeir, L.; Whitehead, C.C.

    1998-01-01

    To test the hypothesis that large amounts of medullary bone in the humeral diaphysis may increase breaking strength, various parameters of bone quality and quantity were examined in two large flocks of hens near end of lay. We conclude that the amount of medullary bone in the humerus of hens during the laying period influences bone strength. This medullary bone may not have any intrinsic strength, but may act by contributing to the fracture resistance of the surrounding cortical bone. Using a quantitative, low dose, radiographic technique, we can predict, from early in the laying period, those birds which will develop large amounts of medullary bone in their humeri by the end of the laying period. The formation of medullary bone in the humeral diaphysis is not at the expense of the surrounding radiographed cortical bone

  15. Influence of estrogen deficiency and tibolone therapy on trabecular and cortical bone evaluated by computed radiography system in rats Influência da deficiência estrogênica e do tratamento com tibolona no osso trabecular e cortical avaliada pelo sistema de radiografia computadorizada em ratas

    Directory of Open Access Journals (Sweden)

    Ana Carolina Bergmann de Carvalho

    2012-03-01

    Full Text Available PURPOSE: To verify the effects of tibolone administration on trabecular and cortical bone of ovariectomized female rats by computed radiography system (CRS. METHODS: The experiment was performed on two groups of rats previously ovariectomized, one received tibolone (OVX+T while the other did not (OVX, those groups were compared to a control group (C not ovariectomized. Tibolone administration (1mg/day began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs and tibias collected. Computed radiographies of the bones were obtained and the digital images were used to determine the bone optical density and cortical thickness on every group. All results were statistically evaluated with significance set at POBJETIVO: Verificar o efeito da administração de tibolona no tecido ósseo cortical e trabecular de ratas castradas através de radiografia computadorizada. MÉTODOS: O experimento foi realizado em dois grupos de ratas previamente ooforectomizadas, onde um grupo recebeu tibolona (OVX+T e o outro não (OVX. Esses grupos foram comparados a um grupo controle (C não ooforectomizado. A administração de tibolona (1mg/dia começou trinta dias após a ooforectomia e o tratamento teve duração de cinco meses. No final, os animais foram mortos e fêmures e tibias coletados. As radiografias computadorizadas dos ossos foram obtidas e as imagens digitais usadas para determinar a densidade óssea e a espessura cortical em todos os grupos. Todos os resultados foram avaliados estatisticamente com significância estabelecida a 5%. RESULTADOS: A administração de tibolona mostrou ser benéfica apenas para análise densitométrica da cabeça do fêmur, apresentando maiores valores de densidade comparada ao grupo OVX. Nenhuma diferença significativa foi encontrada para espessura óssea cortical. CONCLUSÃO: A ooforectomia ocasionou perda óssea nas regiões analisadas e a tibolona

  16. Assessment of the Quality of Newly Formed Bone around Titanium Alloy Implants by Using X-Ray Photoelectron Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hiroshi Nakada

    2012-01-01

    Full Text Available The aim of this study was to evaluate differences in bones quality between newly formed bone and cortical bone formed around titanium alloy implants by using X-ray photoelectron spectroscopy. As a result of narrow scan measurement at 4 weeks, the newly formed bone of C1s, P2p, O1s, and Ca2p were observed at a different peak range and strength compared with a cortical bone. At 8 weeks, the peak range and strength of newly formed bone were similar to those of cortical bone at C1s, P2p, and Ca2p, but not O1s. The results from this analysis indicate that the peaks and quantities of each element of newly formed bone were similar to those of cortical bone at 8 weeks, suggestive of a strong physicochemical resemblance.

  17. Similar effects of long-term exogenous growth hormone (GH) on bone and muscle parameters: a pQCT study of GH-deficient and small-for-gestational-age (SGA) children.

    Science.gov (United States)

    Schweizer, Roland; Martin, David D; Haase, Martin; Roth, Johannes; Trebar, Branko; Binder, Gerhard; Schwarze, C Philipp; Ranke, Michael B

    2007-11-01

    Treatment with GH in short children has focused on height development. Little is known about the concomitant changes in muscle mass, bone structure and bone strength. Muscle area as well as parameters of bone architecture (bone mineral content, BMC; volumetric cortical density, total bone area, TBA; cortical area, cortical thickness, CT; and marrow area) were measured by means of pQCT (Stratec) at 65% of the proximal length of the forearm. The strength-strain index (SSI) was calculated as an indicator of bone strength. Prepubertal children with GHD (mean values: age; 7.2 years; height SDS=-2.9 SDS; GH dose: 30 microg/kg/d) were followed at 0, 6, 12 (n=74) and 24 (n=55) months. Prepubertal children with SGA (mean values: age: 7.1 years; height SDS=-3.4 SDS; GH dose: 55 mug/kg/d) were followed at 0, 6, 12 (n=47) and 24 (n=35) months. Both groups showed a similar increase in height. At GH start, muscle mass and bone characteristics were lower than normal but similar in SGA vs. GHD. Muscle area (mean values, SDS) increased from -3.0 to -1.5 in SGA and from -2.4 to -1.0 in GHD. Bone geometry changed in a biphasic mode, with an increase in total bone area and lowering of bone mineral content (BMC) during the first 12 months, followed by an increase of BMC and CT thereafter. SSI (mean values, mm(3)) improved from 78 to 114 in GHD and from 62 to 101 in SGA after 24 months on GH. The increment in terms of SDS did not reach significance in SGA. SSI correlated positively with muscle area before and during GH treatment. Bone strength and muscle mass are impaired in prepubertal children with GHD and SGA. Exogenous GH can indirectly improve bone structure and strength by inducing an increase in muscle mass. Our findings support the assumption that, in SGA, there is impaired tissue responsiveness to GH.

  18. Radiographic evaluation of bone adaptation adjacent to percutaneous osseointegrated prostheses in a sheep model.

    Science.gov (United States)

    Jeyapalina, Sujee; Beck, James Peter; Bachus, Kent N; Chalayon, Ornusa; Bloebaum, Roy D

    2014-10-01

    Percutaneous osseointegrated prostheses (POPs) are being investigated as an alternative to conventional socket suspension and require a radiographic followup in translational studies to confirm that design objectives are being met. In this 12-month animal study, we determined (1) radiographic signs of osseointegration and (2) radiographic signs of periprosthetic bone hypertrophy and resorption (adaptation) and (3) confirmed them with the histologic evidence of host bone osseointegration and adaptation around a novel, distally porous-coated titanium POP with a collar. A POP device was designed to fit the right metacarpal bone of sheep. Amputation and implantation surgeries (n = 14) were performed, and plane-film radiographs were collected quarterly for 12 months. Radiographs were assessed for osseointegration (fixation) and bone adaptation (resorption and hypertrophy). The cortical wall and medullary canal widths were used to compute the cortical index and expressed as a percentage. Based on the cortical index changes and histologic evaluations, bone adaptation was quantified. Radiographic data showed signs of osseointegration including those with incomplete seating against the collar attachment. Cortical index data indicated distal cortical wall thinning if the collar was not seated distally. When implants were bound proximally, bone resorbed distally and the diaphyseal cortex hypertrophied. Histopathologic evidence and cortical index measurements confirmed the radiographic indications of adaptation and osseointegration. Distal bone loading, through collar attachment and porous coating, limited the distal bone resorption. Serial radiographic studies, in either animal models or preclinical trials for new POP devices, will help to determine which designs are likely to be safe over time and avoid implant failures.

  19. Bone mineral density and computer tomographic measurements in correlation with failure strength of equine metacarpal bones

    Directory of Open Access Journals (Sweden)

    Péter Tóth

    2014-01-01

    Full Text Available Information regarding bone mineral density and fracture characteristics of the equine metacarpus are lacking. The aim of this study was to characterize the relationship between mechanical properties of the equine metacarpal bone and its biomechanical and morphometric properties. Third metacarpal bones were extracted from horses euthanized unrelated to musculoskeletal conditions. In total, bone specimens from 26 front limbs of 13 horses (7.8 ± 5.8 years old including Lipizzaner (n = 5, Hungarian Warmblood (n = 2, Holsteiner (n = 2, Thoroughbred (n = 1, Hungarian Sporthorse (n = 1, Friesian (n = 1, and Shagya Arabian (n = 1 were collected. The horses included 7 mares, 4 stallions and 2 geldings. Assessment of the bone mineral density of the whole bone across four specific regions of interest was performed using dual-energy X-ray absorptiometry. The bones were scanned using a computer tomographic scanner to measure cross-sectional morphometric properties such as bone mineral density and cross-sectional dimensions including cortical area and cortical width. Mechanical properties (breaking force, bending strength, elastic modulus were determined by a 3-point bending test. Significant positive linear correlations were found between the breaking force and bone mineral density of the entire third metacarpal bones (P P P in vivo investigations.

  20. Three-dimensional visualization and characterization of bone structure using reconstructed in-vitro μCT images: A pilot study for bone microarchitecture analysis

    Energy Technology Data Exchange (ETDEWEB)

    Latief, Fourier Dzar Eljabbar, E-mail: fourier@fi.itb.ac.id [Physics of Earth and Complex Systems, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Dewi, Dyah Ekashanti Octorina [2Biomedical Engineering Research Division, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Shari, Mohd Aliff Bin Mohd [Faculty of Electrical Engineering, Universiti Teknologi MARA Malaysia, 40000 Shah Alam, Selangor (Malaysia)

    2014-03-24

    Micro Computed Tomography (μCT) has been largely used to perform micrometer scale imaging of specimens, bone biopsies and small animals for the study of porous or cavity-containing objects. One of its favored applications is for assessing structural properties of bone. In this research, we perform a pilot study to visualize and characterize bone structure of a chicken bone thigh, as well as to delineate its cortical and trabecular bone regions. We utilize an In-Vitro μCT scanner Skyscan 1173 to acquire a three dimensional image data of a chicken bone thigh. The thigh was scanned using X-ray voltage of 45 kV and current of 150 μA. The reconstructed images have spatial resolution of 142.50 μm/pixel. Using image processing and analysis e.i segmentation by thresholding the gray values (which represent the pseudo density) and binarizing the images, we were able to visualize each part of the bone, i.e., the cortical and trabecular regions. Total volume of the bone is 4663.63 mm{sup 3}, and the surface area of the bone is 7913.42 mm{sup 2}. The volume of the cortical is approximately 1988.62 mm{sup 3} which is nearly 42.64% of the total bone volume. This pilot study has confirmed that the μCT is capable of quantifying 3D bone structural properties and defining its regions separately. For further development, these results can be improved for understanding the pathophysiology of bone abnormality, testing the efficacy of pharmaceutical intervention, or estimating bone biomechanical properties.

  1. Insufficient irrigation induces peri-implant bone resorption: an in vivo histologic analysis in sheep.

    Science.gov (United States)

    Trisi, Paolo; Berardini, Marco; Falco, Antonello; Podaliri Vulpiani, Michele; Perfetti, Giorgio

    2014-06-01

    To measure in vivo impact of dense bone overheating on implant osseointegration and peri-implant bone resorption comparing different bur irrigation methods vs. no irrigation. Twenty TI-bone implants were inserted in the inferior edge of mandibles of sheep. Different cooling procedures were used in each group: no irrigation (group A), only internal bur irrigation (group B), both internal and external irrigation (group C), and external irrigation (group D). The histomorphometric parameters calculated for each implant were as follows: %cortical bone-implant contact (%CBIC) and %cortical bone volume (%CBV). Friedman's test was applied to test the statistical differences. In group A, we found a huge resorption of cortical bone with %CBIC and %CBV values extremely low. Groups B and C showed mean %CBIC and %BV values higher than other groups The mean %CBV value was significantly different when comparing group B and group C vs. group A (P bone caused massive resorption of the cortical bone and implant failure. Drilling procedures on hard bone need an adequate cooling supply because the bone matrix overheating may induce complete resorption of dense bone around implants. Internal-external irrigation and only internal irrigation showed to be more efficient than other types of cooling methods in preventing bone resorption around implants. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  2. Computerized bone density analysis of the proximal phalanx of the horse

    International Nuclear Information System (INIS)

    Thompson, K.N.; Cheung, T.K.; Putnam, M.

    1996-01-01

    This study utilized computed tomography to determine the density patterns and the subchondral bone thickness of the first phalanx of the horse. An image processing system and commercially available software were used to process the computed tomographic slices obtained from the first phalanges of a 2-year-old Thoroughbred horse. The thickness and density of the medial and lateral cortices in the mid-shaft of the bone were similar; however, the cortex on the dorsal aspect was more dense and extended farther toward the proximal and distal aspects of the bone than the cortex on the palmar aspect. Density of the cortical bone was highest at the region of the bone with the smallest diameter. The cortical bone density at mid-shaft was approximately 3.5 times the cancellous bone density at the proximal aspect and 2.5 times that at the distal aspect of the bone. A moderate correlation (r = 0.53, p < 0.01)was found between the subchondral bone density and thickness. Despite limited numbers of specimens used, this study demonstrated the potential applications of computed tomography for investigating equine joint mechanics and diseases

  3. Low-intensity pulsed ultrasound enhances bone formation around miniscrew implants.

    Science.gov (United States)

    Ganzorig, Khaliunaa; Kuroda, Shingo; Maeda, Yuichi; Mansjur, Karima; Sato, Minami; Nagata, Kumiko; Tanaka, Eiji

    2015-06-01

    Miniscrew implants (MSIs) are currently used to provide absolute anchorage in orthodontics; however, their initial stability is an issue of concern. Application of low-intensity pulsed ultrasound (LIPUS) can promote bone healing. Therefore, LIPUS application may stimulate bone formation around MSIs and enhance their initial stability. To investigate the effect of LIPUS exposure on bone formation after implantation of titanium (Ti) and stainless steel (SS) MSIs. MSIs made of Ti-6Al-4V and 316L SS were placed on rat tibiae and treated with LIPUS. The bone morphology around MSIs was evaluated by scanning electron microscopy and three-dimensional micro-computed tomography. MC3T3-E1 cells cultured on Ti and SS discs were treated with LIPUS, and the temporary expression of alkaline phosphatase (ALP) was examined. Bone-implant contact increased gradually from day 3 to day 14 after MSI insertion. LIPUS application increased the cortical bone density, cortical bone thickness, and cortical bone rate after implantation of Ti and SS MSIs (P<0.05). LIPUS exposure induced ALP upregulation in MC3T3-E1 cells at day 3 (P<0.05). LIPUS enhanced bone formation around Ti and SS MSIs, enhancing the initial stability of MSIs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. MRI of fibrous cortical defect and non-ossifying fibroma

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, Yoshiko; Aoki, Takatoshi; Watanabe, Hideyuki; Nakata, Hajime; Hashimoto, Hiroshi; Nakamura, Toshitaka [Univ. of Occupational and Environmental Health, Kitakyushu, Fukuoka (Japan). School of Medicine

    1999-02-01

    Fibrous cortical defect and non-ossifying fibroma are the benign fibrous lesions of bone commonly involving children. Their diagnosis is usually done with radiography, and MR examinations are rarely performed. We evaluated MRI findings of 11 lesions in 10 cases of fibrous cortical defect and non-ossifying fibroma. Signal intensity of the lesions was varied and large lesions (2 cm<) tended to show heterogeneous signal intensity on both T1-weighted and T2-weighted images corresponding to a mixture of components including fibrous tissue, hemosiderin and foam cells. MRI helps to delineate the extent of the involved bone and to assess the various histological components of the lesions. However, their diagnosis is basically made on the radiographic findings and the role of MRI is limited. (author)

  5. Association Between Insulin Resistance and Bone Structure in Nondiabetic Postmenopausal Women

    Science.gov (United States)

    Finkelstein, Joel S.; Bouxsein, Mary L.; Yu, Elaine W.

    2016-01-01

    Context: The clinical consequences of insulin resistance and hyperinsulinemia on bone remain largely unknown. Objective: The objective of the study was to evaluate the effect of insulin resistance on peripheral bone geometry, volumetric bone mineral density (vBMD), bone microarchitecture, and estimated bone strength. Design, Setting, and Participants: This cross-sectional study included 146 postmenopausal, nondiabetic Caucasian women (mean age 60.3 ± 2.7 y) who were participating in the Study of Women's Health Across the Nation. Interventions: There were no interventions. Main Outcome Measures: High-resolution peripheral quantitative computed tomography was used to assess bone density and microstructure at the distal radius and tibia. Fasting insulin and glucose were measured and insulin resistance was estimated using homeostasis model assessment of insulin resistance (HOMA-IR), with higher values indicating greater insulin resistance. Results: There was a negative association between HOMA-IR and bone size and a positive association between HOMA-IR and total vBMD, trabecular vBMD, trabecular thickness, and cortical thickness at the radius and tibia. These relationships remained, even after adjusting for body weight and other potential covariates (eg, time since menopause, cigarette smoking, physical activity, prior use of osteoporosis medications or glucocorticoids). Conclusions: In nondiabetic, postmenopausal women, insulin resistance was associated with smaller bone size, greater volumetric bone mineral density, and generally favorable bone microarchitecture at weight-bearing and nonweight-bearing skeletal sites. These associations were independent of body weight and other potential covariates, suggesting that hyperinsulinemia directly affects bone structure independent of obesity and may explain, in part, the higher trabecular bone density and favorable trabecular microarchitecture seen in individuals with type 2 diabetes mellitus. PMID:27243136

  6. Imaging the 3D structure of secondary osteons in human cortical bone using phase-retrieval tomography

    Energy Technology Data Exchange (ETDEWEB)

    Arhatari, B D; Peele, A G [Department of Physics, La Trobe University, Victoria 3086 (Australia); Cooper, D M L [Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon (Canada); Thomas, C D L; Clement, J G [Melbourne Dental School, University of Melbourne, Victoria 3010 (Australia)

    2011-08-21

    By applying a phase-retrieval step before carrying out standard filtered back-projection reconstructions in tomographic imaging, we were able to resolve structures with small differences in density within a densely absorbing sample. This phase-retrieval tomography is particularly suited for the three-dimensional segmentation of secondary osteons (roughly cylindrical structures) which are superimposed upon an existing cortical bone structure through the process of turnover known as remodelling. The resulting images make possible the analysis of the secondary osteon structure and the relationship between an osteon and the surrounding tissue. Our observations have revealed many different and complex 3D structures of osteons that could not be studied using previous methods. This work was carried out using a laboratory-based x-ray source, which makes obtaining these sorts of images readily accessible.

  7. Linear intra-bone geometry dependencies of the radius: Radius length determination by maximum distal width

    International Nuclear Information System (INIS)

    Baumbach, S.F.; Krusche-Mandl, I.; Huf, W.; Mall, G.; Fialka, C.

    2012-01-01

    Purpose: The aim of the study was to investigate possible linear intra-bone geometry dependencies by determining the relation between the maximum radius length and maximum distal width in two independent populations and test for possible gender or age effects. A strong correlation can help develop more representative fracture models and osteosynthetic devices as well as aid gender and height estimation in anthropologic/forensic cases. Methods: First, maximum radius length and distal width of 100 consecutive patients, aged 20–70 years, were digitally measured on standard lower arm radiographs by two independent investigators. Second, the same measurements were performed ex vivo on a second cohort, 135 isolated, formalin fixed radii. Standard descriptive statistics as well as correlations were calculated and possible gender age influences tested for both populations separately. Results: The radiographic dataset resulted in a correlation of radius length and width of r = 0.753 (adj. R 2 = 0.563, p 2 = 0.592) and side no influence on the correlation. Radius length–width correlation for the isolated radii was r = 0.621 (adj. R 2 = 0.381, p 2 = 0.598). Conclusion: A relatively strong radius length–distal width correlation was found in two different populations, indicating that linear body proportions might not only apply to body height and axial length measurements of long bones but also to proportional dependency of bone shapes in general.

  8. Evaluation of a pulsed phase-locked loop system for noninvasive tracking of bone deformation under loading with finite element and strain analysis

    International Nuclear Information System (INIS)

    Serra-Hsu, Frederick; Cheng, Jiqi; Qin, Yi-Xian; Lynch, Ted

    2011-01-01

    Ultrasound has been widely used to nondestructively evaluate various materials, including biological tissues. Quantitative ultrasound has been used to assess bone quality and fracture risk. A pulsed phase-locked loop (PPLL) method has been proven for very sensitive tracking of ultrasound time-of-flight (TOF) changes. The objective of this work was to determine if the PPLL TOF tracking is sensitive to bone deformation changes during loading. The ability to noninvasively detect bone deformations has many implications, including assessment of bone strength and more accurate osteoporosis diagnostics and fracture risk prediction using a measure of bone mechanical quality. Fresh sheep femur cortical bone shell samples were instrumented with three 3-element rosette strain gauges and then tested under mechanical compression with eight loading levels using an MTS machine. Samples were divided into two groups based on internal marrow cavity content: with original marrow, or replaced with water. During compressive loading ultrasound waves were measured through acoustic transmission across the mid-diaphysis of bone. Finite element analysis (FEA) was used to describe ultrasound propagation path length changes under loading based on µCT-determined bone geometry. The results indicated that PPLL output correlates well to measured axial strain, with R 2 values of 0.70 ± 0.27 and 0.62 ± 0.29 for the marrow and water groups, respectively. The PPLL output correlates better with the ultrasound path length changes extracted from FEA. For the two validated FEA tests, correlation was improved to R 2 = 0.993 and R 2 = 0.879 through cortical path, from 0.815 and 0.794 via marrow path, respectively. This study shows that PPLL readings are sensitive to displacement changes during external bone loading, which may have potential to noninvasively assess bone strain and tissue mechanical properties

  9. Effect of Integration Patterns Around Implant Neck on Stress Distribution in Peri-Implant Bone: A Finite Element Analysis.

    Science.gov (United States)

    Han, Jingyun; Sun, Yuchun; Wang, Chao

    2017-08-01

    To investigate the biomechanical performance of different osseointegration patterns between cortical bone and implants using finite element analysis. Fifteen finite element models were constructed of the mandibular fixed prosthesis supported by implants. Masticatory loads (200 N axial, 100 N oblique, 40 N horizontal) were applied. The cortical bone/implant interface was divided equally into four layers: upper, upper-middle, lower-middle, and lower. The bone stress and implant displacement were calculated for 5 degrees of uniform integration (0, 20%, 40%, 60%, and 100%) and 10 integration patterns. The stress was concentrated in the bone margin and gradually decreased as osseointegration progressed, when the integrated and nonintegrated areas were alternated on the bone-implant surface. Compared with full integration, the integration of only the lower-middle layer or lower half layers significantly decreased von Mises, tensile, and compressive stresses in cortical bone under oblique and horizontal loads, and these patterns did not induce higher stress in the cancellous bone. For the integration of only the upper or upper-middle layer, stress in the cortical and cancellous bones significantly increased and was considerably higher than in the case of nonintegration. In addition, the maximum stress in the cortical bone was sensitive to the quantity of integrated nodes at the bone margin; lower quantity was associated with higher stress. There was no significant difference in the displacement of implants among 15 models. Integration patterns of cortical bone significantly affect stress distribution in peri-implant bone. The integration of only the lower-middle or lower half layers helps to increase the load-bearing capacity of peri-implant bone and decrease the risk of overloading, while upper integration may further increase the risk of bone resorption. © 2016 by the American College of Prosthodontists.

  10. Skeletal development of mice lacking bone sialoprotein (BSP--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    Directory of Open Access Journals (Sweden)

    Wafa Bouleftour

    Full Text Available Adult Ibsp-knockout mice (BSP-/- display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice

  11. Bone mass determination from microradiographs by computer-assisted videodensitometry. Pt. 2

    International Nuclear Information System (INIS)

    Kaelebo, P.; Strid, K.G.

    1988-01-01

    Aluminium was evaluated as a reference substance in the assessment of rabbit cortical bone by microradiography followed by videodensitometry. Ten dense, cortical-bone specimens from the same tibia diaphysis were microradiographed using prefiltered 27 kV roentgen radiation together with aluminium step wedges and bone simulating phantoms for calibration. Optimally exposed and processed plates were analysed by previously described computer-assisted videodensitometry. For comparison, the specimens were analysed by physico-chemical methods. A strict proportionality was found between the 'aluminium equivalent mass' and the ash weight of the specimens. The total random error was low with a coefficient of variation within 1.5 per cent. It was concluded that aluminium is an appropriate reference material in the determination of cortical bone, which it resembles in effective atomic number and thus X-ray attenuation characteristics. The 'aluminium equivalent mass' is suitably established as the standard of expressing the results of bone assessment by microradiography. (orig.)

  12. Comparison of bioengineered human bone construct from four sources of osteogenic cells.

    Science.gov (United States)

    Ng, Angela Min-Hwei; Saim, Aminuddin Bin; Tan, Kok-Keong; Tan, G H; Mokhtar, Sabarul Afian; Rose, Isa Mohamed; Othman, Fauziah; Idrus, Ruszymah Binti Haji

    2005-01-01

    Osteoprogenitor cells have been reported to be present in periosteum, cancellous and cortical bone, and bone marrow; but no attempt to identify the best cell source for bone tissue engineering has yet been reported. In this study, we aimed to investigate the growth and differentiation pattern of cells derived from these four sources in terms of cell doubling time and expression of osteoblast-specific markers in both monolayer cells and three-dimensional cell constructs in vitro. In parallel, human plasma derived-fibrin was evaluated for use as biomaterial when forming three-dimensional bone constructs. Our findings showed osteoprogenitor cells derived from periosteum to be most proliferative followed by cortical bone, cancellous bone, and then bone marrow aspirate. Bone-forming activity was observed in constructs formed with cells derived from periosteum, whereas calcium deposition was seen throughout the constructs formed with cells derived from cancellous and cortical bones. Although no mineralization activity was seen in constructs formed with osteoprogenitor cells derived from bone marrow, well-organized lacunae as would appear in the early phase of bone reconstruction were noted. Scanning electron microscopy evaluation showed cell proliferation throughout the fibrin matrix, suggesting the possible application of human fibrin as the bioengineered tissue scaffold at non-load-bearing sites.

  13. BA321, a novel carborane analog that binds to androgen and estrogen receptors, acts as a new selective androgen receptor modulator of bone in male mice

    International Nuclear Information System (INIS)

    Watanabe, Kenta; Hirata, Michiko; Tominari, Tsukasa; Matsumoto, Chiho; Endo, Yasuyuki; Murphy, Gillian; Nagase, Hideaki

    2016-01-01

    Carboranes are a class of carbon-containing polyhedral boron cluster compounds with globular geometry and hydrophobic surface that interact with hormone receptors such as estrogen receptor (ER) and androgen receptor (AR). We have synthesized BA321, a novel carborane compound, which binds to AR. We found here that it also binds to ERs, ERα and ERβ. In orchidectomized (ORX) mice, femoral bone mass was markedly reduced due to androgen deficiency and BA321 restored bone loss in the male, whilst the decreased weight of seminal vesicle in ORX mice was not recovered by administration of BA321. In female mice, BA321 acts as a pure estrogen agonist, and restored both the loss of bone mass and uterine atrophy due to estrogen deficiency in ovariectomized (OVX) mice. In bone tissues, the trabecular bone loss occurred in both ORX and OVX mice, and BA321 completely restored the trabecular bone loss in both sexes. Cortical bone loss occurred in ORX mice but not in OVX mice, and BA321 clearly restored cortical bone loss due to androgen deficiency in ORX mice. Therefore, BA321 is a novel selective androgen receptor modulator (SARM) that may offer a new therapy option for osteoporosis in the male. - Highlights: • A novel carborane compound BA321 binds to both AR and ERs, ERα and ERβ. • BA321 restores bone loss in orchidectomized mice without effects on sex organ. • BA321 acts as an estrogen agonist in bone and uterus in ovariectomized mice. • BA321 may be a new SARM to prevent the loss of musculoskeletal mass in elder men.

  14. BA321, a novel carborane analog that binds to androgen and estrogen receptors, acts as a new selective androgen receptor modulator of bone in male mice

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kenta [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Hirata, Michiko [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Tominari, Tsukasa [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Matsumoto, Chiho [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Endo, Yasuyuki [Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, 981-8558 (Japan); Murphy, Gillian [Department of Oncology, University of Cambridge, Cancer Research UK, Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE (United Kingdom); Nagase, Hideaki [Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY (United Kingdom); and others

    2016-09-09

    Carboranes are a class of carbon-containing polyhedral boron cluster compounds with globular geometry and hydrophobic surface that interact with hormone receptors such as estrogen receptor (ER) and androgen receptor (AR). We have synthesized BA321, a novel carborane compound, which binds to AR. We found here that it also binds to ERs, ERα and ERβ. In orchidectomized (ORX) mice, femoral bone mass was markedly reduced due to androgen deficiency and BA321 restored bone loss in the male, whilst the decreased weight of seminal vesicle in ORX mice was not recovered by administration of BA321. In female mice, BA321 acts as a pure estrogen agonist, and restored both the loss of bone mass and uterine atrophy due to estrogen deficiency in ovariectomized (OVX) mice. In bone tissues, the trabecular bone loss occurred in both ORX and OVX mice, and BA321 completely restored the trabecular bone loss in both sexes. Cortical bone loss occurred in ORX mice but not in OVX mice, and BA321 clearly restored cortical bone loss due to androgen deficiency in ORX mice. Therefore, BA321 is a novel selective androgen receptor modulator (SARM) that may offer a new therapy option for osteoporosis in the male. - Highlights: • A novel carborane compound BA321 binds to both AR and ERs, ERα and ERβ. • BA321 restores bone loss in orchidectomized mice without effects on sex organ. • BA321 acts as an estrogen agonist in bone and uterus in ovariectomized mice. • BA321 may be a new SARM to prevent the loss of musculoskeletal mass in elder men.

  15. Age-related differences in the bone mineralization pattern of rats following exercise

    International Nuclear Information System (INIS)

    McDonald, R.; Hegenauer, J.; Saltman, P.

    1986-01-01

    The effect of 12 weeks of treadmill exercise on the mineralization of trabecular and cortical bone was studied in rats 7, 14, and 19 months of age. Bone mineralization was evaluated by measuring concentrations of Ca, Mg, and hydroxyproline as well as uptake of 45Ca concentration in the femur, humerus, rib and calvaria. The 7- and 14-month-old rats increased mineralization in those cortical bones directly involved in exercise. The 19-month animal responded to exercise by increasing mineralization in all bones examined, including the nonweight bearing trabecular calvaria and cortical rib. From these data, it is apparent that the older animals undergo a total skeletal mineralization in response to exercise compared with local adaptation in the younger animal. Further, we provide evidence to support the use of the rat as a model in which to study mammalian bone physiology during the aging process

  16. The effects of once-weekly teriparatide on hip structure and biomechanical properties assessed by CT

    OpenAIRE

    Ito, M.; Oishi, R.; Fukunaga, M.; Sone, T.; Sugimoto, T.; Shiraki, M.; Nishizawa, Y.; Nakamura, T.

    2013-01-01

    Summary Once-weekly administration of 56.5 μg teriparatide improved cortical bone parameters and biomechanical parameters at the proximal femur by CT geometry analysis. Introduction The aim of this study was to evaluate the effects of weekly administration of teriparatide [human PTH (1–34)] on bone geometry, volumetric bone mineral density (vBMD), and parameters of bone strength at the proximal femur which were longitudinally investigated using computed tomography (CT). Methods The subjects w...

  17. Cell lineage in vascularized bone transplantation.

    Science.gov (United States)

    Willems, Wouter F; Larsen, Mikko; Friedrich, Patricia F; Bishop, Allen T

    2014-01-01

    The biology behind vascularized bone allotransplantation remains largely unknown. We aim to study cell traffic between donor and recipient following bone auto-, and allografting. Vascularized femoral transplantation was performed with arteriovenous bundle implantation and short-term immunosuppression. Twenty male Piebald Virol Glaxo (PVG; RT1(c) ) rats received isotransplants from female PVG (RT1(c) ) rats and 22 male PVG rats received allografts from female Dark Agouti rats (DA, RT1(a) ), representing a major histocompatibility mismatch. Both groups were randomly analyzed at 4 or 18 weeks. Bone remodeling areas (inner and outer cortical samples) were labeled and laser capture microdissected. Analysis of sex-mismatch genes by real-time reverse transcription-polymerase chain reaction provided the relative Expression Ratio (rER) of donor (female) to recipient (male) cells. The rER was 0.456 ± 0.266 at 4 weeks and 0.749 ± 0.387 at 18 weeks (p = 0.09) in allotransplants. In isotransplants, the rER was 0.412 ± 0.239 and 0.467 ± 0.252 at 4 and 18 weeks, respectively (p = 0.21). At 4 weeks, the rER at the outer cortical area of isotransplants was significantly lower in isotransplants as compared with allotransplants (0.247 ± 0.181 vs. 0.549 ± 0.184, p = 0.007). Cells in the inner and outer cortical bone remodeling areas in isotransplants were mainly donor derived (rER 0.5) at 18 weeks. Applying novel methodology, we describe detailed cell traffic in vascularized bone transplants, elaborating our comprehension on bone transplantation. Copyright © 2013 Wiley Periodicals, Inc.

  18. Relationship among panoramic radiography findings, biochemical markers of bone turnover and hip bone mineral density in the diagnosis of postmenopausal osteoporosis

    International Nuclear Information System (INIS)

    Johari Khatoonabad, M.; Aghamohammadzade, N.; Taghilu, H.; Esmaeili, F.; Jabbari Khamnei, H.

    2011-01-01

    Recent investigations have shown that panoramic radiography might be a useful tool in the early diagnosis of osteoporosis. In addition, bone turnover biochemical marker might be valuable in predicting osteoporosis and fracture risks in the elderly, especially in post-menopausal women. The aim of the present study was to evaluate the relationship among the radio morphometric indices of the mandible, biochemical markers of the bone turnover and hip bone mineral density in a group of post-menopausal women. Patients and Methods: Evaluations of mandibular cortical width, mandibular cortical index, panoramic index and alveolar crest resorption ration (M/M ration) were carried out on panoramic radiographs of 140 post-menopausal women with an age range of 44-82 years. Hip bone mineral density was measured by dual-energy X-ray absorptiometry method. Bone mineral density values were divided into three groups of normal (T score>-1.0), Osteopenic (T score, -2.5 to -1.0) and Osteoporotic (T score<-2.5). Serum alkaline phosphatase and 25(OH) D3 were measured. Results: A decrease in mandibular cortical width by 1 mm increases the likelihood of osteopenia or osteoporosis up to 40%, having taken into consideration the effect of menopause duration. A 1 mm decrease in mandibular cortical width increased the likelihood of moderate or severe erosion of the lower cortex of the mandible up to 28% by taking age into consideration. The results did not demonstrate a statistically significant relationship between bone turnover markers and mandibular radio morphometric indices. Conclusion: Panoramic radiography gives sufficient information to make an early diagnosis regarding osteoporosis in post-menopausal women. Panoramic radiographs may be valuable in the prevention of osteoporotic fractures in elderly women.

  19. Multidisciplinary characterization of the long-bone cortex growth patterns through sheep's ontogeny.

    Science.gov (United States)

    Cambra-Moo, Oscar; Nacarino-Meneses, Carmen; Díaz-Güemes, Idoia; Enciso, Silvia; García Gil, Orosia; Llorente Rodríguez, Laura; Rodríguez Barbero, Miguel Ángel; de Aza, Antonio H; González Martín, Armando

    2015-07-01

    Bone researches have studied extant and extinct taxa extensively trying to disclose a complete view of the complex structural and chemical transformations that model and remodel the macro and microstructure of bone during growth. However, to approach bone growth variations is not an easy task, and many aspects related with histological transformations during ontogeny remain unresolved. In the present study, we conduct a holistic approach using different techniques (polarized microscopy, Raman spectroscopy and X-ray diffraction) to examine the histomorphological and histochemical variations in the cortical bone of sheep specimens from intrauterine to adult stages, using environmentally controlled specimens from the same species. Our results suggest that during sheep bone development, the most important morphological (shape and size) and chemical transformations in the cortical bone occur during the first weeks of life; synchronized but dissimilar variations are established in the forelimb and hind limb cortical bone; and the patterns of bone tissue maturation in both extremities are differentiated in the adult stage. All of these results indicate that standardized histological models are useful not only for evaluating many aspects of normal bone growth but also to understand other important influences on the bones, such as pathologies that remain unknown. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Bone formation induced in an infant by systemic prostaglandin-E2 administration

    DEFF Research Database (Denmark)

    Jørgensen, H R; Svanholm, H; Høst, A

    1988-01-01

    We report a case of long-term systemic administration of prostaglandin E2 (PGE2) to a newborn infant with ductus-dependent congenital heart disease. After 46 days of treatment, radiography showed cortical hyperostosis of the long bones. The child died 62 days after discontinuation of prostaglandin...... treatment. Histologic examination of tubular bones showed hyperostosis presumably due to prostaglandin-induced rapid formation of primitive bone. The additional finding of extensive resorption of the outer cortical surface and bone formation at the inner surface suggested a reversible phase after...

  1. Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice.

    Directory of Open Access Journals (Sweden)

    Sara H Windahl

    Full Text Available Androgens are important regulators of bone mass but the relative importance of testosterone (T versus dihydrotestosterone (DHT for the activation of the androgen receptor (AR in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2, encoded by separate genes (Srd5a1 and Srd5a2. 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1⁻/⁻ mice. Four-month-old male Srd5a1⁻/⁻ mice had reduced trabecular bone mineral density (-36%, p<0.05 and cortical bone mineral content (-15%, p<0.05 but unchanged serum androgen levels compared with wild type (WT mice. The cortical bone dimensions were reduced in the male Srd5a1⁻/⁻ mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05 in orchidectomized WT mice but not in orchidectomized Srd5a1⁻/⁻ mice. Male Srd5a1⁻/⁻ mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05. Female Srd5a1⁻/⁻ mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1⁻/⁻ mice, is an indirect effect mediated by elevated circulating androgen levels.

  2. Influence of age and housing systems on properties of tibia and humerus of Lohmann White hens1: Bone properties of laying hens in commercial housing systems.

    Science.gov (United States)

    Regmi, P; Nelson, N; Haut, R C; Orth, M W; Karcher, D M

    2017-10-01

    This study was aimed at analyzing bone properties of Lohmann White hens in different commercial housing systems at various points throughout production. Pullets reared in conventional cages (CC) were either continued in CC or moved to enriched colony cages (EN) at 19 weeks. Pullets reared in cage-free aviaries (AV) were moved to AV hen houses. Bone samples were collected from 60 hens at each of 18 and 72 wk and 30 hens at 26 and 56 wk from each housing system. Left tibiae and humeri were broken under uniform bending to analyze mechanical properties. Cortical geometry was analyzed using digital calipers at the fracture site. Contralateral tibiae and humeri were used for measurement of ash percentage. AV pullets' humeri had 41% greater cortical areas, and tibiae had 19% greater cortical areas than the CC pullets (P < 0.05). Average humeri diameter was greater in AV pullets than in CC pullets (P < 0.05), whereas the tibiae outer dimensions were similar. Aviary pullet bones had greater stiffness (31 and 7% greater for tibiae and humeri, respectively) and second moment of inertia (43 and 13% greater for tibiae and humeri, respectively) than CC pullets (P < 0.05). The differences between bones of AV and CC hens persisted throughout the laying cycle. Moving CC pullets to EN resulted in decreased endosteal resorption in humeri, evident by a 7.5% greater cortical area in the EN hens (P < 0.05). Whole-bone breaking strength did not change with age. Stiffness increased with age, while energy to failure decreased in both the tibiae and humeri. These results indicated that tibiae and humeri of laying hens become stiffer but lose toughness and become brittle with age. Furthermore, AV and EN systems can bring positive changes in mechanical and structural properties that are more pronounced in the humerus than the tibia. © 2017 Poultry Science Association Inc.

  3. Visceral Adipose Tissue Is Associated With Bone Microarchitecture in the Framingham Osteoporosis Study.

    Science.gov (United States)

    Liu, Ching-Ti; Broe, Kerry E; Zhou, Yanhua; Boyd, Steven K; Cupples, L Adrienne; Hannan, Marian T; Lim, Elise; McLean, Robert R; Samelson, Elizabeth J; Bouxsein, Mary L; Kiel, Douglas P

    2017-01-01

    Obesity has been traditionally considered to protect the skeleton against osteoporosis and fracture. Recently, body fat, specifically visceral adipose tissue (VAT), has been associated with lower bone mineral density (BMD) and increased risk for some types of fractures. We studied VAT and bone microarchitecture in 710 participants (58% women, age 61.3 ± 7.7 years) from the Framingham Offspring cohort to determine whether cortical and trabecular BMD and microarchitecture differ according to the amount of VAT. VAT was measured from CT imaging of the abdomen. Cortical and trabecular BMD and microarchitecture were measured at the distal tibia and radius using high-resolution peripheral quantitative computed tomography (HR-pQCT). We focused on 10 bone parameters: cortical BMD (Ct.BMD), cortical tissue mineral density (Ct.TMD), cortical porosity (Ct.Po), cortical thickness (Ct.Th), cortical bone area fraction (Ct.A/Tt.A), trabecular density (Tb.BMD), trabecular number (Tb.N), trabecular thickness (Tb.Th), total area (Tt.Ar), and failure load (FL) from micro-finite element analysis. We assessed the association between sex-specific quartiles of VAT and BMD, microarchitecture, and strength in all participants and stratified by sex. All analyses were adjusted for age, sex, and in women, menopausal status, then repeated adjusting for body mass index (BMI) or weight. At the radius and tibia, Ct.Th, Ct.A/Tt.A, Tb.BMD, Tb.N, and FL were positively associated with VAT (all p-trend <0.05), but no other associations were statistically significant except for higher levels of cortical porosity with higher VAT in the radius. Most of these associations were only observed in women, and were no longer significant when adjusting for BMI or weight. Higher amounts of VAT are associated with greater BMD and better microstructure of the peripheral skeleton despite some suggestions of significant deleterious changes in cortical measures in the non-weight bearing radius. Associations were

  4. Response of induced bone defects in horses to collagen matrix containing the human parathyroid hormone gene.

    Science.gov (United States)

    Backstrom, Kristin C; Bertone, Alicia L; Wisner, Erik R; Weisbrode, Stephen E

    2004-09-01

    To determine whether human parathyroid hormone (hPTH) gene in collagen matrix could safely promote bone formation in diaphyseal or subchondral bones of horses. 8 clinically normal adult horses. Amount, rate, and quality of bone healing for 13 weeks were determined by use of radiography, quantitative computed tomography, and histomorphometric analysis. Diaphyseal cortex and subchondral bone defects of metacarpi were filled with hPTH(1-34) gene-activated matrix (GAM) or remained untreated. Joints were assessed on the basis of circumference, synovial fluid analysis, pain on flexion, lameness, and gross and histologic examination. Bone volume index was greater for cortical defects treated with hPTH(1-34) GAM, compared with untreated defects. Bone production in cortical defects treated with hPTH(1-34) GAM positively correlated with native bone formation in untreated defects. In contrast, less bone was detected in hPTH(1-34) GAM-treated subchondral bone defects, compared with untreated defects, and histology confirmed poorer healing and residual collagen sponge. Use of hPTH(1-34) GAM induced greater total bone, specifically periosteal bone, after 13 weeks of healing in cortical defects of horses. The hPTH(1-34) GAM impeded healing of subchondral bone but was biocompatible with joint tissues. Promotion of periosteal bone formation may be beneficial for healing of cortical fractures in horses, but the delay in onset of bone formation may negate benefits. The hPTH(1-34) GAM used in this study should not be placed in articular subchondral bone defects, but contact with articular surfaces is unlikely to cause short-term adverse effects.

  5. Osteostatin-coated porous titanium can improve early bone regeneration of cortical bone defects in rats

    NARCIS (Netherlands)

    Van Der Stok, Johan; Lozano, Daniel; Chai, Yoke Chin; Amin Yavari, Saber; Bastidas Coral, Angela P.; Verhaar, Jan A N; Gómez-Barrena, Enrique; Schrooten, Jan; Jahr, Holger; Zadpoor, Amir A.; Esbrit, Pedro; Weinans, Harrie

    2015-01-01

    A promising bone graft substitute is porous titanium. Porous titanium, produced by selective laser melting (SLM), can be made as a completely open porous and load-bearing scaffold that facilitates bone regeneration through osteoconduction. In this study, the bone regenerative capacity of porous

  6. Effect of long-term growth hormone treatment on bone mass and bone metabolism in growth hormone-deficient men

    NARCIS (Netherlands)

    Bravenboer, N; Holzmann, PJ; ter Maaten, JC; Stuurman, LM; Roos, JC; Lips, P

    2005-01-01

    Long-term GH treatment in GH-deficient men resulted in a continuous increase in bone turnover as shown by histomorphometry. BMD continuously increased in all regions of interest, but more in the regions with predominantly cortical bone. Introduction: Adults with growth hormone (GH) deficiency have

  7. Kit W-sh Mutation Prevents Cancellous Bone Loss during Calcium Deprivation.

    Science.gov (United States)

    Lotinun, Sutada; Suwanwela, Jaijam; Poolthong, Suchit; Baron, Roland

    2018-01-01

    Calcium is essential for normal bone growth and development. Inadequate calcium intake increases the risk of osteoporosis and fractures. Kit ligand/c-Kit signaling plays an important role in regulating bone homeostasis. Mice with c-Kit mutations are osteopenic. The present study aimed to investigate whether impairment of or reduction in c-Kit signaling affects bone turnover during calcium deprivation. Three-week-old male WBB6F1/J-Kit W /Kit W-v /J (W/W v ) mice with c-Kit point mutation, Kit W-sh /HNihrJaeBsmJ (W sh /W sh ) mice with an inversion mutation in the regulatory elements upstream of the c-Kit promoter region, and their wild-type controls (WT) were fed either a normal (0.6% calcium) or a low calcium diet (0.02% calcium) for 3 weeks. μCT analysis indicated that both mutants fed normal calcium diet had significantly decreased cortical thickness and cancellous bone volume compared to WT. The low calcium diet resulted in a comparable reduction in cortical bone volume and cortical thickness in the W/W v and W sh /W sh mice, and their corresponding controls. As expected, the low calcium diet induced cancellous bone loss in the W/W v mice. In contrast, W sh /W sh cancellous bone did not respond to this diet. This c-Kit mutation prevented cancellous bone loss by antagonizing the low calcium diet-induced increase in osteoblast and osteoclast numbers in the W sh /W sh mice. Gene expression profiling showed that calcium deficiency increased Osx, Ocn, Alp, type I collagen, c-Fms, M-CSF, and RANKL/OPG mRNA expression in controls; however, the W sh mutation suppressed these effects. Our findings indicate that although calcium restriction increased bone turnover, leading to osteopenia, the decreased c-Kit expression levels in the W sh /W sh mice prevented the low calcium diet-induced increase in cancellous bone turnover and bone loss but not the cortical bone loss.

  8. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation).

    Science.gov (United States)

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Castillo, Alesha B; Kennedy, Oran; Condon, Keith W; Auger, Janene; Black, Hal L; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2009-12-01

    Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse-induced bone loss in bears into novel treatments for osteoporosis.

  9. The penetration of cefazolin, erythromycin and methicillin into human bone tissue

    DEFF Research Database (Denmark)

    Sørensen, T S; Colding, H; Schroeder, E

    1978-01-01

    The penetration of cefazolin, erythromycin and methicillin into normal bone was studied in 20 patients undergoing surgery for fracture in the trochanteric region of the femur. The antibiotic concentrations were determined in serum, bone marrow, and cancellous and cortical bone. For all three...... antibiotics the bone marrow concentrations were of the same order of magnitude as the serum concentrations. In the eight patients receiving erythromycin, detectable concentrations were found in all the cancellous bone specimens (ranging from 1/7 to 1/2 of the serum concentration) and in three cortical bone...... specimens (ranging from 1/50 to 1/5 of the serum concentration). In the six patients receiving cefazolin, a detectable concentration was found in only one cancellous bone sample. In the six patients receiving methicillin, detectable concentrations were found only in the blood contaminated specimens of one...

  10. Relationships between in vivo microdamage and the remarkable regional material and strain heterogeneity of cortical bone of adult deer, elk, sheep and horse calcanei

    Science.gov (United States)

    Skedros, John G; Sybrowsky, Christian L; Anderson, Wm Erick; Chow, Frank

    2011-01-01

    Natural loading of the calcanei of deer, elk, sheep and horses produces marked regional differences in prevalent/predominant strain modes: compression in the dorsal cortex, shear in medial–lateral cortices, and tension/shear in the plantar cortex. This consistent non-uniform strain distribution is useful for investigating mechanisms that mediate the development of the remarkable regional material variations of these bones (e.g. collagen orientation, mineralization, remodeling rates and secondary osteon morphotypes, size and population density). Regional differences in strain-mode-specific microdamage prevalence and/or morphology might evoke and sustain the remodeling that produces this material heterogeneity in accordance with local strain characteristics. Adult calcanei from 11 animals of each species (deer, elk, sheep and horses) were transversely sectioned and examined using light and confocal microscopy. With light microscopy, 20 linear microcracks were identified (deer: 10; elk: six; horse: four; sheep: none), and with confocal microscopy substantially more microdamage with typically non-linear morphology was identified (deer: 45; elk: 24; horse: 15; sheep: none). No clear regional patterns of strain-mode-specific microdamage were found in the three species with microdamage. In these species, the highest overall concentrations occurred in the plantar cortex. This might reflect increased susceptibility of microdamage in habitual tension/shear. Absence of detectable microdamage in sheep calcanei may represent the (presumably) relatively greater physical activity of deer, elk and horses. Absence of differences in microdamage prevalence/morphology between dorsal, medial and lateral cortices of these bones, and the general absence of spatial patterns of strain-mode-specific microdamage, might reflect the prior emergence of non-uniform osteon-mediated adaptations that reduce deleterious concentrations of microdamage by the adult stage of bone development. PMID

  11. Using Micro-CT Derived Bone Microarchitecture to Analyze Bone Stiffness - A Case Study on Osteoporosis Rat Bone

    Directory of Open Access Journals (Sweden)

    Yuchin eWu

    2015-05-01

    Full Text Available Micro-computed tomography images can be used to quantitatively represent bone geometry through a range of computed attenuation-based parameters. Nonetheless, those parameters remain indirect indices of bone micro-architectural strength and require further computational tools to interpret bone structural stiffness and potential for mechanical failure. Finite element analysis (FEA can be applied to measure trabecular bone stiffness and potentially predict the location of structural failure in preclinical animal models of osteoporosis, although that procedure from image segmentation of micro-CT derived bone geometry to FEA is often challenging and computationally expensive, resulting in failure of the model to build. Notably, the selection of resolution and threshold for bone segmentation are key steps that greatly affect computational complexity and validity. In the following study, we evaluated an approach whereby Micro-CT derived greyscale attenuation and segmentation data guided the selection of trabecular bone for analysis by FEA. We further correlated those FEA results to both two and three dimensional bone microarchitecture from sham and ovariectomized (OVX rats (n=10/group. A virtual cylinder of vertebral trabecular bone 40% in length from the caudal side was selected for FEA because micro-CT based image analysis indicated the largest differences in microarchitecture between the two groups resided there. Bone stiffness was calculated using FEA and statistically correlated with the three dimensional values of bone volume/tissue volume, bone mineral density, fractal dimension, trabecular separation and trabecular bone pattern factor. Our method simplified the process for the assessment of trabecular bone stiffness by FEA from Micro-CT images and highlighted the importance of bone microarchitecture in conferring significantly increased bone quality capable of resisting failure due to increased mechanical loading.

  12. A new implementation of digital X-ray radiogrammetry and reference curves of four indices of cortical bone for healthy European adults

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik; Böttcher, Joachim; Lomholt, Jens

    2016-01-01

    UNLABELLED: Digital X-ray radiogrammetry performs measurements on a hand radiograph in digital form. We present an improved implementation of the method and provide reference curves for four indices for the amount of bone. We collected 1662 hand radiographs of healthy subjects of age 9-100 years....... PURPOSE: The digital X-ray radiogrammetry (DXR) method has been shown to be efficient for diagnosis of osteoporosis and for assessment of progression of rheumatoid arthritis. The aim of this work is to present a new DXR implementation and reference curves of four indices of cortical bone and to compare...... their relative SDs in healthy subjects at fixed age and gender. MATERIALS AND METHODS: A total of 1662 hand radiographs of healthy subjects of age 9-100 years were collected in Jena in 2001-2005. We also used a longitudinal study of 116 Danish children born in 1952 with on average 11 images taken over the age...

  13. Proximal Femur Volumetric Bone Mineral Density and Mortality: 13 Years of Follow-Up of the AGES-Reykjavik Study.

    Science.gov (United States)

    Marques, Elisa A; Elbejjani, Martine; Gudnason, Vilmundur; Sigurdsson, Gunnar; Lang, Thomas; Sigurdsson, Sigurdur; Aspelund, Thor; Meirelles, Osorio; Siggeirsdottir, Kristin; Launer, Lenore; Eiriksdottir, Gudny; Harris, Tamara B

    2017-06-01

    Bone mineral density (BMD) has been linked to mortality, but little is known about the independent contribution of each endosteal bone compartment and also the rate of bone loss to risk of mortality. We examined the relationships between (1) baseline trabecular and cortical volumetric BMD (vBMD) at the proximal femur, and (2) the rate of trabecular and cortical bone loss and all-cause mortality in older adults from the AGES-Reykjavik study. The analysis of trabecular and cortical vBMD and mortality was based on the baseline cohort of 4654 participants (aged ≥66 years) with a median follow-up of 9.4 years; the association between rate of bone loss and mortality was based on 2653 participants with bone loss data (median follow-up of 5.6 years). Analyses employed multivariable Cox-proportional models to estimate hazard ratios (HRs) with time-varying fracture status; trabecular and cortical variables were included together in all models. Adjusted for important confounders, Cox models showed that participants in the lowest quartile of trabecular vBMD had an increased risk of mortality compared to participants in other quartiles (HR = 1.12; 95% confidence interval (CI), 1.01 to 1.25); baseline cortical vBMD was not related to mortality (HR = 1.08; 95% CI, 0.97 to 1.20). After adjustment for time-dependent fracture status, results were attenuated and not statistically significant. A faster loss (quartile 1 versus quartiles 2-4) in both trabecular and cortical bone was associated with higher mortality risk (HR = 1.37 and 1.33, respectively); these associations were independent of major potential confounders including time-dependent incident fractures (HR = 1.32 and 1.34, respectively). Overall, data suggest that faster bone losses over time in both the trabecular and cortical bone compartments are associated with mortality risk and that measurements of change in bone health may be more informative than single-point measurements in explaining mortality

  14. Three-Dimensional Finite Element Analysis of Maxillary Sinus Floor Augmentation with Optimal Positioning of a Bone Graft Block

    Directory of Open Access Journals (Sweden)

    Peter Schuller-Götzburg

    2018-01-01

    Full Text Available Purpose: the aim of the computational 3D-finite element study is to evaluate the influence of an augmented sinus lift with additional inserted bone grafting. The bone graft block stabilizes the implant in conjunction with conventional bone augmentation. Two finite element models were applied: the real geometry based bone models and the simplified geometry models. The bone graft block was placed in three different positions. The implants were loaded first with an axial force and then with forces simulating laterotrusion and protrusion. This study examines whether the calculated stress behavior is symmetrical for both models. Having established a symmetry between the primary axis, the laterotrusion and protrusion behavior reduces calculation efforts, by simplifying the model. Material and Methods: a simplified U-shaped 3D finite element model of the molar region of the upper jaw and a more complex anatomical model of the left maxilla with less cortical bone were created. The bone graft block was placed in the maxillary sinus. Then the von Mises stress distribution was calculated and analyzed at three block positions: at contact with the sinus floor, in the middle of the implant helix and in the upper third of the implant. The two finite element models were then compared to simplify the modelling. Results: the position of the bone graft block significantly influences the magnitude of stress distribution. A bone graft block positioned in the upper third or middle of the implant reduces the quantity of stress compared to the reference model without a bone graft block. The low bone graft block position is clearly associated with lower stress distribution in compact bone. We registered no significant differences in stress in compact bone with regard to laterotrusion or protrusion. Conclusions: maximum values of von Mises stresses in compact bone can be reduced significantly by using a bone graft block. The reduction of stress is nearly the same for

  15. Release of lead from bone in pregnancy and lactation

    International Nuclear Information System (INIS)

    Manton, W.I.; Angle, C.R.; Stanek, K.L.; Kuntzelman, D.; Reese, Y.R.; Kuehnemann, T.J.

    2003-01-01

    Concentrations and isotope ratios of lead in blood, urine, 24-h duplicate diets, and hand wipes were measured for 12 women from the second trimester of pregnancy until at least 8 months after delivery. Six bottle fed and six breast fed their infants. One bottle feeder fell pregnant for a second time, as did a breast feeder, and each was followed semicontinuously for totals of 44 and 54 months, respectively. Bone resorption rather than dietary absorption controls changes in blood lead, but in pregnancy the resorption of trabecular and cortical bone are decoupled. In early pregnancy, only trabecular bone (presumably of low lead content) is resorbed, causing blood leads to fall more than expected from hemodilution alone. In late pregnancy, the sites of resorption move to cortical bone of higher lead content and blood leads rise. In bottle feeders, the cortical bone contribution ceases immediately after delivery, but any tendency for blood leads to fall may be compensated by the effect of hemoconcentration produced by the postpartum loss of plasma volume. In lactation, the whole skeleton undergoes resorption and the blood leads of nursing mothers continue to rise, reaching a maximum 6-8 months after delivery. Blood leads fall from pregnancy to pregnancy, implying that the greatest risk of lead toxicity lies with first pregnancies

  16. Biomechanics of the Proximal Radius Following Drilling of the Bicipital Tuberosity to Mimic Cortical Button Distal Biceps Repair Technique.

    Science.gov (United States)

    Oak, Nikhil R; Lien, John R; Brunfeldt, Alexander; Lawton, Jeffrey N

    2018-05-01

    A fracture through the proximal radius is a theoretical concern after cortical button distal biceps fixation in an active patient. The permanent, nonossified cortical defect and medullary tunnel is at risk during a fall eliciting rotational and compressive forces. We hypothesized that during simulated torsion and compression, in comparison with unaltered specimens, the cortical button distal biceps repair model would have decreased torsional and compressive strength and would fracture in the vicinity of the bicipital tuberosity bone tunnel. Sixteen fourth-generation composite radius Sawbones models were used in this controlled laboratory study. A bone tunnel was created through the bicipital tuberosity to mimic the exact bone tunnel, 8 mm near cortex and 3.2 mm far cortex, made for the BicepsButton distal biceps tendon repair. The radius was then prepared and mounted on either a torsional or compression testing device and compared with undrilled control specimens. Compression tests resulted in average failure loads of 9015.2 N in controls versus 8253.25 N in drilled specimens ( P = .074). Torsional testing resulted in an average failure torque of 27.3 Nm in controls and 19.3 Nm in drilled specimens ( P = .024). Average fracture angle was 35.1° in controls versus 21.1° in drilled. Gross fracture patterns were similar in compression testing; however, in torsional testing all fractures occurred through the bone tunnel in the drilled group. There are weaknesses in the vicinity of the bone tunnel in the proximal radius during biomechanical stress testing which may not be clinically relevant in nature. In cortical button fixation, distal biceps repairs creates a permanent, nonossified cortical defect with tendon interposed in the bone tunnel, which can alter the biomechanical properties of the proximal radius during compressive and torsional loading.

  17. Alveolar bone changes after asymmetric rapid maxillary expansion.

    Science.gov (United States)

    Akin, Mehmet; Baka, Zeliha Muge; Ileri, Zehra; Basciftci, Faruk Ayhan

    2015-09-01

    To quantitatively evaluate the effects of asymmetric rapid maxillary expansion (ARME) on cortical bone thickness and buccal alveolar bone height (BABH), and to determine the formation of dehiscence and fenestration in the alveolar bone surrounding the posterior teeth, using cone-beam computed tomography (CBCT). The CBCT records of 23 patients with true unilateral posterior skeletal crossbite (10 boys, 14.06 ± 1.08 years old, and 13 girls, 13.64 ± 1.32 years old) who had undergone ARME were selected from our clinic archives. The bonded acrylic ARME appliance, including an occlusal stopper, was used on all patients. CBCT records had been taken before ARME (T1) and after the 3-month retention period (T2). Axial slices of the CBCT images at 3 vertical levels were used to evaluate the buccal and palatal aspects of the canines, first and second premolars, and first molars. Paired samples and independent sample t-tests were used for statistical comparison. The results suggest that buccal cortical bone thickness of the affected side was significantly more affected by the expansion than was the unaffected side (P ARME significantly reduced the BABH of the canines (P ARME also increased the incidence of dehiscence and fenestration on the affected side. ARME may quantitatively decrease buccal cortical bone thickness and height on the affected side.

  18. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects.

    Science.gov (United States)

    Van der Stok, Johan; Van der Jagt, Olav P; Amin Yavari, Saber; De Haas, Mirthe F P; Waarsing, Jan H; Jahr, Holger; Van Lieshout, Esther M M; Patka, Peter; Verhaar, Jan A N; Zadpoor, Amir A; Weinans, Harrie

    2013-05-01

    Porous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut size reduces the stiffness of the structure and may have a positive effect on bone formation. Two scaffolds with struts of 120-µm (titanium-120) or 230-µm (titanium-230) were studied in a load-bearing critical femoral bone defect in rats. The defect was stabilized with an internal plate and treated with titanium-120, titanium-230, or left empty. In vivo micro-CT scans at 4, 8, and 12 weeks showed more bone in the defects treated with scaffolds. Finally, 18.4 ± 7.1 mm(3) (titanium-120, p = 0.015) and 18.7 ± 8.0 mm(3) (titanium-230, p = 0.012) of bone was formed in those defects, significantly more than in the empty defects (5.8 ± 5.1 mm(3) ). Bending tests on the excised femurs after 12 weeks showed that the fusion strength reached 62% (titanium-120) and 45% (titanium-230) of the intact contralateral femurs, but there was no significant difference between the two scaffolds. This study showed that in addition to adequate mechanical support, porous titanium scaffolds facilitate bone formation, which results in high mechanical integrity of the treated large bone defects. Copyright © 2012 Orthopaedic Research Society.

  19. 3D osteocyte lacunar morphometric properties and distributions in human femoral cortical bone using synchrotron radiation micro-CT images.

    Science.gov (United States)

    Dong, Pei; Haupert, Sylvain; Hesse, Bernhard; Langer, Max; Gouttenoire, Pierre-Jean; Bousson, Valérie; Peyrin, Françoise

    2014-03-01

    Osteocytes, the most numerous bone cells, are thought to be actively involved in the bone modeling and remodeling processes. The morphology of osteocyte is hypothesized to adapt according to the physiological mechanical loading. Three-dimensional micro-CT has recently been used to study osteocyte lacunae. In this work, we proposed a computationally efficient and validated automated image analysis method to quantify the 3D shape descriptors of osteocyte lacunae and their distribution in human femurs. Thirteen samples were imaged using Synchrotron Radiation (SR) micro-CT at ID19 of the ESRF with 1.4μm isotropic voxel resolution. With a field of view of about 2.9×2.9×1.4mm(3), the 3D images include several tens of thousands of osteocyte lacunae. We designed an automated quantification method to segment and extract 3D cell descriptors from osteocyte lacunae. An image moment-based approach was used to calculate the volume, length, width, height and anisotropy of each osteocyte lacuna. We employed a fast algorithm to further efficiently calculate the surface area, the Euler number and the structure model index (SMI) of each lacuna. We also introduced the 3D lacunar density map to directly visualize the lacunar density variation over a large field of view. We reported the lacunar morphometric properties and distributions as well as cortical bone histomorphometric indices on the 13 bone samples. The mean volume and surface were found to be 409.5±149.7μm(3) and 336.2±94.5μm(2). The average dimensions were of 18.9±4.9μm in length, 9.2±2.1μm in width and 4.8±1.1μm in depth. We found lacunar number density and six osteocyte lacunar descriptors, three axis lengths, two anisotropy ratios and SMI, that are significantly correlated to bone porosity at a same local region. The proposed method allowed an automatic and efficient direct 3D analysis of a large population of bone cells and is expected to provide reliable biological information for better understanding the

  20. Midline lumbar fusion using cortical bone trajectory screws. Preliminary report

    Directory of Open Access Journals (Sweden)

    Mateusz Bielecki

    2016-09-01

    Full Text Available Introduction : Midline lumbar fusion (MIDLF using cortical bone trajectory is an alternative method of transpedicular spinal fusion for degenerative disease. The new entry points’ location and screwdriving direction allow the approach-related morbidity to be reduced. Aim: To present our preliminary experience with the MIDLF technique on the first 5 patients with lumbar degenerative disease and with follow-up of at least 6 months. Material and methods: Retrospective analysis was performed on the first 5 patients with foraminal (4 or central (1 stenosis operated on between December 2014 and February 2015. Three patients were fused at L4–L5 and two at the L5–S1 level. Results: No intra- or post-operative complications occurred with this approach. An improvement regarding the leading symptom in the early postoperative period (sciatica 4/4, claudication 1/1 was achieved in all patients. The mean improvements in the visual analogue scale for low back and leg pain were 2.2 and 4.8 respectively. The mean Oswestry Disability Index scores were 52% (range: 16–82% before surgery and 33% (range: 12–56% at 3-month follow-up (mean improvement 19%. At the most recent follow-up, 4 patients reported the maintenance of the satisfactory result. The early standing and follow-up X-rays showed satisfactory screw placement in all patients. Conclusions : In our initial experience, the MIDLF technique seems to be an encouraging alternative to traditional transpedicular trajectory screws when short level lumbar fusion is needed. Nevertheless, longer observations on larger groups of patients are needed to reliably evaluate the safety of the method and the sustainability of the results.

  1. Evaluating differential nuclear DNA yield rates and osteocyte numbers among human bone tissue types: A synchrotron radiation micro-CT approach.

    Science.gov (United States)

    Andronowski, Janna M; Mundorff, Amy Z; Pratt, Isaac V; Davoren, Jon M; Cooper, David M L

    2017-05-01

    Molecular human identification has conventionally focused on DNA sampling from dense, weight-bearing cortical bone tissue, typically from femora or tibiae. A comparison of skeletal elements from three contemporary individuals demonstrated that elements with high quantities of cancellous bone yielded nuclear DNA at the highest rates, suggesting that preferentially sampling cortical bone may be suboptimal (Mundorff & Davoren, 2014). Despite these findings, the reason for the differential DNA yields between cortical and cancellous bone tissues remains unknown. The primary goal of this work is to ascertain whether differences in bone microstructure can be used to explain differential nuclear DNA yield among bone tissue types observed by Mundorff and Davoren (2014), with a focus on osteocytes and the three-dimensional (3D) quantification of their associated lacunae. Osteocytes and other bone cells are recognized to house DNA in bone tissue, thus examining the density of their lacunae may explain why nuclear DNA yield rates differ among bone tissue types. Lacunae were visualized and quantified using synchrotron radiation-based micro-Computed Tomographic imaging (SR micro-CT). Volumes of interest (VOIs) from cortical and cancellous bone tissues (n=129) were comparatively analyzed from the three skeletons sampled for Mundorff and Davoren's (2014) study. Analyses tested the primary hypothesis that the abundance and density of osteocytes (inferred from their lacunar spaces) vary between cortical and cancellous bone tissue types. Results demonstrated that osteocyte lacunar abundance and density vary between cortical and cancellous bone tissue types, with cortical bone VOIs containing a higher lacunar abundance and density. We found that the osteocyte lacunar density values are independent of nuclear DNA yield, suggesting an alternative explanation for the higher nuclear DNA yields from bones with greater quantities of cancellous bone tissue. The use of SR micro-CT allowed for

  2. Osteoclast inhibition impairs chondrosarcoma growth and bone destruction.

    Science.gov (United States)

    Otero, Jesse E; Stevens, Jeff W; Malandra, Allison E; Fredericks, Douglas C; Odgren, Paul R; Buckwalter, Joseph A; Morcuende, Jose

    2014-12-01

    Because Chondrosarcoma is resistant to available chemotherapy and radiation regimens, wide resection is the mainstay in treatment, which frequently results in high morbidity and which may not prevent local recurrence. There is a clear need for improved adjuvant treatment of this malignancy. We have observed the presence of osteoclasts in the microenvironment of chondrosarcoma in human pathological specimens. We utilized the Swarm rat chondrosarcoma (SRC) model to test the hypothesis that osteoclasts affect chondrosarcoma pathogenesis. We implanted SRC tumors in tibia of Sprague-Dawley rats and analyzed bone histologically and radiographically for bone destruction and tumor growth. At three weeks, tumors invaded local bone causing cortical disruption and trabecular resorption. Bone destruction was accompanied by increased osteoclast number and resorbed bone surface. Treatment of rats with the zoledronic acid prevented cortical destruction, inhibited trabecular resorption, and resulted in decreased tumor volume in bone. To confirm that inhibition of osteoclasts per se, and not off-target effects of drug, was responsible for the prevention of tumor growth and bone destruction, we implanted SRC into osteopetrotic rat tibia. SRC-induced bone destruction and tumor growth were impaired in osteopetrotic bone compared with control bone. The results from our animal model demonstrate that osteoclasts contribute to chondrosarcoma-mediated bone destruction and tumor growth and may represent a therapeutic target in particular chondrosarcoma patients. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Distribution of plutonium amongst and within selected bones from an injection case

    International Nuclear Information System (INIS)

    Larsen, R.P.; Oldham, R.D.; Martin, S.M.

    1979-01-01

    The burden and macrodistribution of plutonium in the skeleton of a man who received 0.38 μCi of 239 Pu by injection were determined. The relative concentrations in the bones analyzed are comparable to those obtained in a study of another subject. The concentrations in the trabecular and cortical portions of these bones were determined; the concentration ratio ranged from 1.9 to 4.7. The data show that (1) within a bone the plutonium concentration in the trabecular portion is always higher than it is in the cortical portion, but (2) within a group of bones plutonium concentration is not correlated with degree of trabecularity

  4. Bone growth and turnover in progesterone receptor knockout mice.

    Energy Technology Data Exchange (ETDEWEB)

    Rickard, David J.; Iwaniec, Urszula T.; Evans, Glenda; Hefferan, Theresa E.; Hunter, Jaime C.; Waters, Katrina M.; Lydon, John P.; O' Malley, Bert W.; Khosla, Sundeep; Spelsberg, Thomas C.; Turner, Russell T.

    2008-05-01

    The role of progesterone receptor (PR) signaling in skeletal metabolism is controversial. To address whether signaling through the PR is necessary for normal bone growth and turnover, we performed histomorphometric and mCT analyses of bone from homozygous female PR knockout (PRKO) mice at 6, 12, and 26 weeks of age. These mice possess a null mutation of the PR locus, which blocks the gene expression of A and B isoforms of PR. Body weight gain, uterine weight gain and tibia longitudinal bone growth was normal in PRKO mice. In contrast, total and cortical bone mass were increased in long bones of post-pubertal (12 and 26-week-old) PRKO mice, whereas cancellous bone mass was normal in the tibia but increased in the humerus. The striking 57% decrease in cancellous bone from the proximal tibia metaphysis which occurred between 6 and 26 weeks in WT mice was abolished in PRKO mice. The improved bone balance in aging PRKO mice was associated with elevated bone formation and a tendency toward reduced osteoclast perimeter. Taken together, these findings suggest that PR signaling in mice attenuates the accumulation of cortical bone mass during adolescence and is required for early age-related loss of cancellous bone.

  5. The Effect of Rosiglitazone on Bone Quality in a Rat Model of Insulin Resistance and Osteoporosis

    Science.gov (United States)

    Sardone, Laura Donata

    Rosiglitazone (RSG) is an insulin-sensitizing drug used to treat Type 2 Diabetes Mellitus (T2DM). Clinical trials show that women taking RSG experience more limb fractures than patients taking other T2DM drugs. The purpose of this study is to understand how RSG (3mg/kg/day and 10mg/kg/day) and the bisphosphonate alendronate (0.7mg/kg/week) alter bone quality in the male, female and female ovariectomized (OVX) Zucker fatty rat model over a 12 week period. Bone quality was evaluated by mechanical testing of cortical and trabecular bone. Microarchitecture, bone mineral density (BMD), cortical bone porosity, bone formation/resorption and mineralization were also measured. Female OVX RSG10mg/kg rats had significantly lower vertebral BMD and compromised trabecular architecture versus OVX controls. Increased cortical porosity and decreased mechanical properties occurred in these rats. ALN treatment prevented these negative effects in the OVX RSG model. Evidence of reduced bone formation and excess bone resorption was detected in female RSG-treated rats.

  6. The behavior of adaptive bone-remodeling simulation models

    NARCIS (Netherlands)

    H.H. Weinans (Harrie); R. Huiskes (Rik); H.J. Grootenboer

    1992-01-01

    textabstractThe process of adaptive bone remodeling can be described mathematically and simulated in a computer model, integrated with the finite element method. In the model discussed here, cortical and trabecular bone are described as continuous materials with variable density. The remodeling rule

  7. The correlation between metacarpal bone mineral content and bone mineral density of the jawbone in implant patients

    International Nuclear Information System (INIS)

    Kuroda, Toshinobu; Takamori, Hitoshi; Yosue, Takashi

    2006-01-01

    This study estimated the relationship between metacarpal bone mineral content and jawbone density. The subjects were 141 patients who desired implant treatment and had undergone a thorough pre-operative CT examination. In the maxilla, bone mineral density (BMD) was measured at the cancellous bone between the nasal cavity and the maxillary sinus. In the mandible, BMD was measured at the cancellous bone beneath the mental foramen. The CT numbers were corrected by the quantitative computer tomography (QCT) method. Furthermore, the cortical indices of the mandible, i.e. C-PMI (Central-Panoramic Mandibular Index), and MCW (Mandibular Cortical Width) were measured and calculated from panoramic radiographs. The bone mineral content of the total body was obtained by ΣGS/D and MCI through Microdensitometry. The following results were obtained. Between the maxillary BMD and ΣGS/D and between the mandibular BMD and ΣGS/D, there was a correlation in females but no correlation in males. Between the maxillary BMD and MCI, there was a correlation in females but no correlation in males. However, in the mandibular BMD and MCI there was no correlation in females and males. Between C-PMI and ΣGS/D there was a correlation in both females and males. Between C-PMI and MCI there was a correlation in both females and males. Between MCW and ΣGS/D there was a correlation in both females and males. Between MCW and MCI there was a correlation in females, but no correlation in males. From the above results, it was concluded that the maxillary BMD and the cortical index of the mandible reflected changes in the metacarpal bone mineral content, while mandibular BMD did not. (author)

  8. Effect of Denosumab on Peripheral Compartmental Bone Density, Microarchitecture and Estimated Bone Strength in De Novo Kidney Transplant Recipients.

    Science.gov (United States)

    Bonani, Marco; Meyer, Ursina; Frey, Diana; Graf, Nicole; Bischoff-Ferrari, Heike A; Wüthrich, Rudolf P

    2016-01-01

    In a randomized controlled clinical trial in kidney transplant recipients (NCT01377467) we have recently shown that RANKL inhibition with denosumab significantly improved areal bone mineral density (aBMD) when given during the first year after transplantation. The effect of denosumab on skeletal microstructure and bone strength in kidney transplant recipients is not known. The purpose of the present bone microarchitecture ancillary study was to investigate high-resolution peripheral quantitative computed tomography (HRpQCT) data from the distal tibia and distal radius in 24 study patients that had been randomized to receive either two injections of denosumab 60 mg at baseline and after 6 months (n=10) or no treatment (n=14). Consistent with the full trial findings, denosumab reduced biomarkers of bone turnover, and significantly increased aBMD at the lumbar spine (median difference of 4.7%; 95% confidence interval [CI] 2.6 - 7.8; pBone quality as assessed by total and cortical volumetric bone mineral density (Tot. vBMD, Ct.vBMD) and cortical thickness (Ct.Th) increased significantly at the tibia, while changes at the radius were less pronounced. The trabecular volumetric BMD (Tb.vBMD), thickness (Tb. Th), separation (Tb.Sp) and number (Tb.N) and the cortical porosity (Ct.Po) at the tibia and the radius did not significantly change in both treatment groups. Micro-finite element analysis (µFEA) showed that bone stiffness increased significantly at the tibia (median difference 5.6%; 95% CI 1.8% - 9.2%; p=0.002) but not at the radius (median difference 2.9%, 95% CI -3.7% - 9.1%; p=0.369). Likewise, failure load increased significantly at the tibia (median difference 5.1%; 95% CI 2.1% - 8.1%; p=0.002) but not at the radius (median difference 2.4%, 95% CI -3.2% - 8.5%; p=0.336). These findings demonstrate that denosumab improves bone density and bone quality in first-year kidney transplant recipients at risk to develop osteoporosis. © 2016 The Author(s) Published by S

  9. Technical note: cortical thickness and density estimation from clinical CT using a prior thickness-density relationship

    NARCIS (Netherlands)

    Humbert, L.; Hazrati Marangalou, J.; Del Río Barquero, L.M.; van Lenthe, G.H.; van Rietbergen, B.

    2016-01-01

    Purpose: Cortical thickness and density are critical components in determining the strength of bony structures. Computed tomography (CT) is one possible modality for analyzing the cortex in 3D. In this paper, a model-based approach for measuring the cortical bone thickness and density from clinical

  10. Uranium's effects on bone integrity

    International Nuclear Information System (INIS)

    Souidi, Maamar; Wade-Gueye, Ndeye Marieme; Manens, Line; Blanchardon, Eric; Aigueperse, Jocelyne

    2018-01-01

    Uranium is a radioactive heavy metal naturally present in the environment. Its recent use in various civilian and military applications sometimes result in its release into the environment. After chronic ingestion, uranium accumulates in various organs, preferentially in bones. Several studies have shown that exposure to high concentrations of uranium affects bone growth. Little is known, however, about the effects of chronic exposure to low doses of uranium on bone, especially when ingested via drinking water, the main route by which the public is exposed to this radionuclide. This study examined the effects of chronic exposure to natural uranium through drinking water on bone integrity and bone turnover. Rats were contaminated with different concentrations of natural uranium (15, 10, and 40 mg / l) for 9 months. A high-resolution three-dimensional microtomography scanner was used for the first time to study uranium's impact on bone metabolism and thus on bone tissue integrity. After nine months of uranium exposure, micro-architecture analysis revealed that the cortical bone diameter of the femoral diaphysis of rats contaminated at a concentration of 40 mg/L of uranium had decreased significantly. In conclusion, our findings that chronic ingestion of uranium at low concentrations affects growth of cortical bone width suggests that it may affect bone strength. These results thus suggest the need to pay special attention to children during chronic low-dose exposure to this radionuclide. (authors)

  11. Distraction-like phenomena in maxillary bone due to application of orthodontic forces in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Apostolos I Tsolakis

    2012-01-01

    Full Text Available Background: Orthodontic forces may not only influence the dentoalveolar system, but also the adjacent and surrounding cortical bone. Aim: Since there is very limited information on this issue, we aimed to study the possible changes in maxillary cortical bone following the application of heavy orthodontic forces in mature normal and osteoporotic rats. Materials and Methods: Twenty-four 6-month-old female rats were selected and divided into an ovariectomized group and a normal group. In both groups, the rats were subjected to a 60 grFNx01 orthodontic force on the upper right first molar for 14 days. Results: In both groups, histological sections showed that the application of this force caused hypertrophy and fatigue failure of the cortical maxillary bone. The osteogenic reaction to distraction is expressed by the formation of subperiosteal callus on the outer bony side, resembling that seen in distracted bones. Conclusion: From this study we concluded that heavy experimental orthodontic forces in rats affect the maxillary cortical bone. The osteogenic reaction to these forces, expressed histologically by subperiosteal callus formation, is similar to that seen in distraction osteogenesis models.

  12. Bone Densitometry of the Femoral Midshaft the Protein-Deprived Rat*

    African Journals Online (AJOL)

    rats, has shown a significant loss of total bone density in the protein-deprived group. This reduction is no greater than can be accounted for by the loss of cortical bone surface area, suggesting that while bone mass is reduced as a result of protein deprivation, the mineral composition of the residual bone is likely to be ...

  13. Influence of Piezosurgery on Bone Healing around Titanium Implants: A Histological Study in Rats.

    Science.gov (United States)

    Sirolli, Marcelo; Mafra, Carlos Eduardo Secco; Santos, Rodrigo Albuquerque Basílio Dos; Saraiva, Luciana; Holzhausen, Marinella; César, João Batista

    2016-01-01

    The aim of this study was to evaluate histomorphometrically the influence of two techniques of dental implant site preparation on bone healing around titanium implants. Fifteen male Wistar rats (±300 g) were used in the study. Each tibia was randomly assigned to receive the implant site preparation either with a conventional drilling technique (control - DRILL group) or with a piezoelectric device (PIEZO group). The animals were sacrificed after 30 days and then the following histomorphometric parameters were evaluated (percentage) separately for cortical and cancellous regions: proportion of mineralized tissue (PMT) adjacent to implant threads (500 μm adjacent); bone area within the threads (BA) and bone-implant contact (BIC). The results demonstrated that there were no statistically significant differences between both groups for cancellous BIC (p>0.05) and cortical PMT (p>0.05). On the other hand, a higher percentage of BA was observed in the PIEZO group in the cortical (71.50±6.91 and 78.28±4.38 for DRILL and PIEZO groups, respectively; ppiezosurgery also showed higher PMT values in the cancellous zone (9.35±5.54 and 18.72±13.21 for DRILL and PIEZO groups, respectively; ppiezosurgery was beneficial to bone healing rates in the cancellous bone region, while the drill technique produced better results in the cortical bone.

  14. Unusual cortical bone features in a patient with gorlin-goltz syndrome: a case report.

    Science.gov (United States)

    Tarnoki, Adam Domonkos; Tarnoki, David Laszlo; Klara Kiss, Katalin; Bata, Pal; Karlinger, Kinga; Banvolgyi, Andras; Wikonkal, Norbert; Berczi, Viktor

    2014-12-01

    Gorlin-Goltz syndrome (GGS) consists of ectodermal and mesodermal abnormalities. In this case report we will investigate lower extremity lesions of GGS. A 52-year-old man with GGS underwent skull and lower extremity computer tomography. Radiographic findings included cervical spondylosis, transparent areas with slurred margins, and cerebral falx calcification. Tibial and fibular specific cortical lesions (thin cortical and subcortical cystic lesions) were seen on the radiography, which was confirmed by computer tomography. To our knowledge, this is the first report of such a long lesion of the tibia and fibula. Specific lower extremity cortical lesions (thin cortical and subcortical cystic lesions) may occur and these abnormalities can be found on radiography or CT, which are most probably attributed to retinoid treatment.

  15. Unusual Cortical Bone Features in a Patient with Gorlin-Goltz Syndrome: A Case Report

    International Nuclear Information System (INIS)

    Tarnoki, Adam Domonkos; Tarnoki, David Laszlo; Klara Kiss, Katalin; Bata, Pal; Karlinger, Kinga; Banvolgyi, Andras; Wikonkal, Norbert; Berczi, Viktor

    2014-01-01

    Gorlin-Goltz syndrome (GGS) consists of ectodermal and mesodermal abnormalities. In this case report we will investigate lower extremity lesions of GGS. A 52-year-old man with GGS underwent skull and lower extremity computer tomography. Radiographic findings included cervical spondylosis, transparent areas with slurred margins, and cerebral falx calcification. Tibial and fibular specific cortical lesions (thin cortical and subcortical cystic lesions) were seen on the radiography, which was confirmed by computer tomography. To our knowledge, this is the first report of such a long lesion of the tibia and fibula. Specific lower extremity cortical lesions (thin cortical and subcortical cystic lesions) may occur and these abnormalities can be found on radiography or CT, which are most probably attributed to retinoid treatment

  16. Sex Steroid Actions in Male Bone

    Science.gov (United States)

    Laurent, Michaël R.; Claessens, Frank; Gielen, Evelien; Lagerquist, Marie K.; Vandenput, Liesbeth; Börjesson, Anna E.; Ohlsson, Claes

    2014-01-01

    Sex steroids are chief regulators of gender differences in the skeleton, and male gender is one of the strongest protective factors against osteoporotic fractures. This advantage in bone strength relies mainly on greater cortical bone expansion during pubertal peak bone mass acquisition and superior skeletal maintenance during aging. During both these phases, estrogens acting via estrogen receptor-α in osteoblast lineage cells are crucial for male cortical and trabecular bone, as evident from conditional genetic mouse models, epidemiological studies, rare genetic conditions, genome-wide meta-analyses, and recent interventional trials. Genetic mouse models have also demonstrated a direct role for androgens independent of aromatization on trabecular bone via the androgen receptor in osteoblasts and osteocytes, although the target cell for their key effects on periosteal bone formation remains elusive. Low serum estradiol predicts incident fractures, but the highest risk occurs in men with additionally low T and high SHBG. Still, the possible clinical utility of serum sex steroids for fracture prediction is unknown. It is likely that sex steroid actions on male bone metabolism rely also on extraskeletal mechanisms and cross talk with other signaling pathways. We propose that estrogens influence fracture risk in aging men via direct effects on bone, whereas androgens exert an additional antifracture effect mainly via extraskeletal parameters such as muscle mass and propensity to fall. Given the demographic trends of increased longevity and consequent rise of osteoporosis, an increased understanding of how sex steroids influence male bone health remains a high research priority. PMID:25202834

  17. Prenatal nutritional manipulation by in ovo enrichment influences bone structure, composition, and mechanical properties.

    Science.gov (United States)

    Yair, R; Shahar, R; Uni, Z

    2013-06-01

    The objective of this study was to examine the effect of embryonic nutritional enrichment on the development and properties of broiler leg bones (tibia and femur) from the prenatal period until maturity. To accomplish the objective, 300 eggs were divided into 2 groups: a noninjected group (control) and a group injected in ovo with a solution containing minerals, vitamins, and carbohydrates (enriched). Tibia and femur from both legs were harvested from chicks on embryonic days 19 (E19) and 21 (E21) and d 3, 7, 14, 28, and 54 posthatch (n = 8). The bones were mechanically tested (stiffness, maximal load, and work to fracture) and scanned in a micro-computed tomography (μCT) scanner to examine the structural properties of the cortical [cortical area, medullary area, cortical thickness, and maximal moment of inertia (Imax)] and trabecular (bone volume percent, trabecular thickness, and trabecular number) areas. To examine bone mineralization, bone mineral density (BMD) of the cortical area was obtained from the μCT scans, and bones were analyzed for the ash and mineral content. The results showed improved mechanical properties of the enriched group between E19 and d 3 and on d 14 (P bones), greater femoral cortical area on d 3, and greater Imax of both bones on d 14 (P bone trabecular architecture were that the enriched group had greater bone volume percent and trabecular thickness in the tibia on d 7 and the femur on d 28 (P mineralization between E19 and d 54 showed improved mineralization in the enriched group on E19 whereas on d 3 and 7, the control group showed a mineralization advantage, and on d 28 and 54, the enriched group showed again greater mineralization (P bone properties pre- and postnatally and showed that avian embryos are a good model for studying the effect of embryonic nutrition on natal and postnatal development. Most importantly, the enrichment led to improved mechanical properties until d 14 (roughly third of the lifespan of the bird), a big

  18. Investigation of a pre-clinical mandibular bone notch defect model in miniature pigs: clinical computed tomography, micro-computed tomography, and histological evaluation.

    Science.gov (United States)

    Carlisle, Patricia L; Guda, Teja; Silliman, David T; Lien, Wen; Hale, Robert G; Brown Baer, Pamela R

    2016-02-01

    To validate a critical-size mandibular bone defect model in miniature pigs. Bilateral notch defects were produced in the mandible of dentally mature miniature pigs. The right mandibular defect remained untreated while the left defect received an autograft. Bone healing was evaluated by computed tomography (CT) at 4 and 16 weeks, and by micro-CT and non-decalcified histology at 16 weeks. In both the untreated and autograft treated groups, mineralized tissue volume was reduced significantly at 4 weeks post-surgery, but was comparable to the pre-surgery levels after 16 weeks. After 16 weeks, CT analysis indicated that significantly greater bone was regenerated in the autograft treated defect than in the untreated defect (P=0.013). Regardless of the treatment, the cortical bone was superior to the defect remodeled over 16 weeks to compensate for the notch defect. The presence of considerable bone healing in both treated and untreated groups suggests that this model is inadequate as a critical-size defect. Despite healing and adaptation, the original bone geometry and quality of the pre-injured mandible was not obtained. On the other hand, this model is justified for evaluating accelerated healing and mitigating the bone remodeling response, which are both important considerations for dental implant restorations.

  19. Bone mineral content in the senescent rat femur: an assessment using single photon absorptiometry

    International Nuclear Information System (INIS)

    Kiebzak, G.M.; Smith, R.; Howe, J.C.; Sacktor, B.

    1988-01-01

    The single photon absorptiometry technique was evaluated for measuring bone mineral content (BMC) of the excised femurs of the rat, and the system was used to examine the changes in cortical and trabecular bone from young adult (6 mo), mature adult (12 mo), and senescent (24 mo) male and female animals. BMC of the femur midshaft, representing cortical bone, apparently increased progressively with advancing age. The width of the femur at the scan site also increased with age. Normalizing the midshaft BMC by width partially compensated for the age-associated increase. However, when bone mineral values were normalized by the cortical area at the scan site, to take into account the geometric differences in the femurs of different aged animals, maximum bone densities were found in the mature adult and these values decreased slightly in the femurs from senescent rats. In contrast, the BMC of the femur distal metaphysis, representing trabecular bone, decreased markedly in the aged rat. The loss of trabecular bone was also evident from morphological examination of the distal metaphysis. These findings indicated that bone mineral loss with age was site specific in the rat femur. These studies provided additional evidence that the rat might serve as a useful animal model for specific experiments related to the pathogenesis of age-associated osteopenia

  20. Shell bone histology indicates terrestrial palaeoecology of basal turtles.

    Science.gov (United States)

    Scheyer, Torsten M; Sander, P Martin

    2007-08-07

    The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well-known turtles, i.e. the Upper Triassic Proterochersis robusta and Proganochelys quenstedti. Comparison of their shell bone histology with that of extant turtles preferring either aquatic habitats or terrestrial habitats clearly reveals congruence with terrestrial turtle taxa. Similarities in the shell bones of these turtles are a diploe structure with well-developed external and internal cortices, weak vascularization of the compact bone layers and a dense nature of the interior cancellous bone with overall short trabeculae. On the other hand, 'aquatic' turtles tend to reduce cortical bone layers, while increasing overall vascularization of the bone tissue. In contrast to the study of limb bone proportions, the present study is independent from the uncommon preservation of appendicular skeletal elements in fossil turtles, enabling the palaeoecological study of a much broader range of incompletely known turtle taxa in the fossil record.

  1. Limited Associations between Keel Bone Damage and Bone Properties Measured with Computer Tomography, Three-Point Bending Test, and Analysis of Minerals in Swiss Laying Hens

    Directory of Open Access Journals (Sweden)

    Sabine G. Gebhardt-Henrich

    2017-08-01

    Full Text Available Keel bone damage is a wide-spread welfare problem in laying hens. It is unclear so far whether bone quality relates to keel bone damage. The goal of the present study was to detect possible associations between keel bone damage and bone properties of intact and damaged keel bones and of tibias in end-of-lay hens raised in loose housing systems. Bones were palpated and examined by peripheral quantitative computer tomography (PQCT, a three-point bending test, and analyses of bone ash. Contrary to our expectations, PQCT revealed higher cortical and trabecular contents in fractured than in intact keel bones. This might be due to structural bone repair after fractures. Density measurements of cortical and trabecular tissues of keel bones did not differ between individuals with and without fractures. In the three-point bending test of the tibias, ultimate shear strength was significantly higher in birds with intact vs. fractured keel bones. Likewise, birds with intact or slightly deviated keel bones had higher mineral and calcium contents of the keel bone than birds with fractured keel bones. Calcium content in keel bones was correlated with calcium content in tibias. Although there were some associations between bone traits related to bone strength and keel bone damage, other factors such as stochastic events related to housing such as falls and collisions seem to be at least as important for the prevalence of keel bone damage.

  2. Heat accumulation during sequential cortical bone drilling.

    Science.gov (United States)

    Palmisano, Andrew C; Tai, Bruce L; Belmont, Barry; Irwin, Todd A; Shih, Albert; Holmes, James R

    2016-03-01

    Significant research exists regarding heat production during single-hole bone drilling. No published data exist regarding repetitive sequential drilling. This study elucidates the phenomenon of heat accumulation for sequential drilling with both Kirschner wires (K wires) and standard two-flute twist drills. It was hypothesized that cumulative heat would result in a higher temperature with each subsequent drill pass. Nine holes in a 3 × 3 array were drilled sequentially on moistened cadaveric tibia bone kept at body temperature (about 37 °C). Four thermocouples were placed at the center of four adjacent holes and 2 mm below the surface. A battery-driven hand drill guided by a servo-controlled motion system was used. Six samples were drilled with each tool (2.0 mm K wire and 2.0 and 2.5 mm standard drills). K wire drilling increased temperature from 5 °C at the first hole to 20 °C at holes 6 through 9. A similar trend was found in standard drills with less significant increments. The maximum temperatures of both tools increased from drill sizes was found to be insignificant (P > 0.05). In conclusion, heat accumulated during sequential drilling, with size difference being insignificant. K wire produced more heat than its twist-drill counterparts. This study has demonstrated the heat accumulation phenomenon and its significant effect on temperature. Maximizing the drilling field and reducing the number of drill passes may decrease bone injury. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Bone mineral content of the forearm in healthy Dutch women

    NARCIS (Netherlands)

    Barentsen, R.; Raymakers, J.A.; Landman, J.O.; Duursma, S.A.

    1988-01-01

    Single energy photon absorptiometry is a reliable technique for assessing the bone mineral content (BMC) of cortical bone in the forearm. It can also be used for BMC measurement in the ultradistal part of the forearm, where there is a considerable proportion of trabecular bone. The results of a BMC

  4. Response of cortical bone to antiresorptive treatment

    DEFF Research Database (Denmark)

    Hyldstrup, Lars; Jørgensen, J T; Sørensen, T K

    2001-01-01

    A total of 113 postmenopausal women (69 controls, 33 using hormone replacement therapy (HRT), and 11 using bisphosphonate) were evaluated twice over 2 years with a new noninvasive, radiogrammetry-based technique called digital X-ray radiogrammetry (DXR) and conventional bone densitometry of the s...

  5. Cytokines in Gaucher disease: Role in the pathogenesis of bone ...

    African Journals Online (AJOL)

    Azza A.G. Tantawy

    2015-03-03

    Mar 3, 2015 ... The impact of therapy on bone manifestations of Gaucher disease . ... types: classical or alternative, depending on the predominant cytokine in the .... avascular necrosis, bone infarcts and localised cortical thin- ning may be ...

  6. Bone Geometry as a Predictor of Tissue Fragility and Stress Fracture Risk

    National Research Council Canada - National Science Library

    Jepsen, Karl

    2003-01-01

    ... and bone quality, such that slender bones are associated with more damageable bone tissue. We postulate that a similar reciprocal relationship between bone mass and bone material properties exists in the human skeleton...

  7. Bone Geometry as a Predictor of Tissue Fragility and Stress Fracture Risk

    National Research Council Canada - National Science Library

    Jepsen, Karl J

    2004-01-01

    ... and bone quality, such that slender bones are associated with more damageable bone tissue. We postulate that a similar reciprocal relationship between bone mass and bone material properties exists in the human skeleton...

  8. Bone Geometry as a Predictor of Tissue Fragility and Stress Fracture Risk

    National Research Council Canada - National Science Library

    Jepsen, Karl J

    2006-01-01

    ... and bone quality, such that slender bones are associated with more damageable bone tissue. We postulate that a similar reciprocal relationship between bone mass and bone material properties exists in the human skeleton...

  9. Bone Geometry as a Predictor of Tissue Fragility and Stress Fracture Risk

    National Research Council Canada - National Science Library

    Jepsen, Karl

    2002-01-01

    ... and bone quality, such that slender bones are associated with more damageable bone tissue. We postulate that a similar reciprocal relationship between bone mass and bone material properties exists in the human skeleton...

  10. Computer modelling of RF ablation in cortical osteoid osteoma: Assessment of the insulating effect of the reactive zone.

    Science.gov (United States)

    Irastorza, Ramiro M; Trujillo, Macarena; Martel Villagrán, Jose; Berjano, Enrique

    2016-05-01

    The aim was to study by computer simulations the insulating role of the reactive zone surrounding a cortical osteoid osteoma (OO) in terms of electrical and thermal performance during radiofrequency ablation (RFA). We modelled a cortical OO consisting of a nidus (10 mm diameter) enclosed by a reactive zone. The OO was near a layer of cortical bone 1.5 mm thick. Trabecular bone partially surrounds the OO and there was muscle around the cortical bone layer. We modelled RF ablations with a non-cooled-tip 17-gauge needle electrode (300 s duration and 90 °C target temperature). Sensitivity analyses were conducted assuming a reactive zone electrical conductivity value (σrz) within the limits of the cortical and trabecular bone, i.e. 0.02 S/m and 0.087 S/m, respectively. In this way we were really modelling the different degrees of osteosclerosis associated with the reactive zone. The presence of the reactive zone drastically reduced the maximum temperature reached outside it. The temperature drop was proportional to the thickness of the reactive zone: from 68 °C when it was absent to 44 °C when it is 7.5 mm thick. Higher nidus conductivity values (σn) implied higher temperatures, while lower temperatures meant higher σrz values. Changing σrz from 0.02 S/m to 0.087 S/m reduced lesion diameters from 2.4 cm to 1.8 cm. The computer results suggest that the reactive zone plays the role of insulator in terms of reducing the temperature in the surrounding area.

  11. Role of paraoxonase-1 in bone anabolic effects of parathyroid hormone in hyperlipidemic mice

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinxiu [Department of Physiology, University of California, Los Angeles (United States); Cheng, Henry [Department of Medicine, University of California, Los Angeles (United States); Atti, Elisa [Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles (United States); Shih, Diana M. [Department of Medicine, University of California, Los Angeles (United States); Demer, Linda L. [Department of Physiology, University of California, Los Angeles (United States); Department of Medicine, University of California, Los Angeles (United States); Department of Bioengineering, University of California, Los Angeles (United States); Tintut, Yin, E-mail: ytintut@mednet.ucla.edu [Department of Medicine, University of California, Los Angeles (United States)

    2013-02-01

    Highlights: ► Anabolic effects of PTH were tested in hyperlipidemic mice overexpressing PON1. ► Expression of antioxidant regulatory genes was induced in PON1 overexpression. ► Bone resorptive activity was reduced in PON1 overexpressing hyperlipidemic mice. ► PON1 restored responsiveness to intermittent PTH in bones of hyperlipidemic mice. -- Abstract: Hyperlipidemia blunts anabolic effects of intermittent parathyroid hormone (PTH) on cortical bone, and the responsiveness to PTH are restored in part by oral administration of the antioxidant ApoA-I mimetic peptide, D-4F. To evaluate the mechanism of this rescue, hyperlipidemic mice overexpressing the high-density lipoprotein-associated antioxidant enzyme, paraoxonase 1 (Ldlr{sup −/−}PON1{sup tg}) were generated, and daily PTH injections were administered to Ldlr{sup −/−}PON1{sup tg} and to littermate Ldlr{sup −/−} mice. Expression of bone regulatory genes was determined by realtime RT-qPCR, and cortical bone parameters of the femoral bones by micro-computed tomographic analyses. PTH-treated Ldlr{sup −/−}PON1{sup tg} mice had significantly greater expression of PTH receptor (PTH1R), activating transcription factor-4 (ATF4), and osteoprotegerin (OPG) in femoral cortical bone, as well as significantly greater cortical bone mineral content, thickness, and area in femoral diaphyses compared with untreated Ldlr{sup −/−}PON1{sup tg} mice. In contrast, in control mice (Ldlr{sup −/−}) without PON1 overexpression, PTH treatment did not induce these markers. Calvarial bone of PTH-treated Ldlr{sup −/−}PON1{sup tg} mice also had significantly greater expression of osteoblastic differentiation marker genes as well as BMP-2-target and Wnt-target genes. Untreated Ldlr{sup −/−}PON1{sup tg} mice had significantly greater expression of PTHR1 than untreated Ldlr{sup −/−} mice, whereas sclerostin expression was reduced. In femoral cortical bones, expression levels of transcription factors, Fox

  12. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects

    NARCIS (Netherlands)

    J. van der Stok (Johan); O.P. van der Jagt (Olav); S. Amin Yavari (Saber); M.F.P. de Haas (Mirthe); J.H. Waarsing (Jan); H. Jahr (Holger); E.M.M. van Lieshout (Esther); P. Patka (Peter); J.A.N. Verhaar (Jan); A.A. Zadpoor (Amir Abbas); H.H. Weinans (Harrie)

    2013-01-01

    textabstractPorous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut

  13. Effects of fatigue on microstructure and mechanical properties of bone organic matrix under compression

    International Nuclear Information System (INIS)

    Trębacz, Hanna; Zdunek, Artur; Cybulska, Justyna; Pieczywek, Piotr

    2013-01-01

    The aim of the study was to investigate whether a fatigue induced weakening of cortical bone was revealed in microstructure and mechanical competence of demineralized bone matrix. Two types of cortical bone samples (plexiform and Haversian) were use. Bone slabs from the midshaft of bovine femora were subjected to cyclical bending. Fatigued and adjacent control samples were cut into cubes and demineralized in ethylenediaminetetraacetic acid. Demineralized samples were either subjected to microscopic quantitative image analysis, or compressed to failure (in longitudinal or transverse direction) with a simultaneous analysis of acoustic emission (AE). In fatigued samples porosity of organic matrix and average area of pores have risen, along with a change in the pores shape. The effect of fatigue depended on the type of the bone, being more pronounced in the plexiform than in Haversian tissue. Demineralized bone matrix was anisotropic under compressive loads in both types of cortical structure. The main result of fatigue pretreatment on mechanical parameters was a significant decrease of ultimate strain in the transverse direction in plexiform samples. The decrease of strain in this group was accompanied by a considerable increase of the fraction of large pores and a significant change in AE energy.

  14. PTH treatment activates intracortical bone remodeling in patients with hypoparathyroidism

    DEFF Research Database (Denmark)

    Sikjær, Tanja Tvistholm; Rejnmark, Lars; Thomsen, Jesper Skovhus

    2017-01-01

    Hypoparathyroidism (hypoPT) is characterized by a state of low bone turnover and high BMD. We have previously shown that hypoPT patients treated with PTH(1-84) for six months have highly increased bone turnover markers and a decrease in aBMD at the hip and spine(1). The present study aims...... to investigate the effect of PTH(1-84) on cortical bone and intracortical bone remodeling in hypoPT. The study was conducted on 20 transiliac bone biopsies from hypoPT patients after six months of treatment with either PTH(1-84) 100 µg s.c./day N=10 or placebo N=10. The groups were age- (±6 years) and gender...... and diameter were measured. Cortical porosity and pore density did not differ between groups, but PTH treatment had a marked effect on the remodeling status of the pores. The percentage of pores undergoing remodeling was higher in the PTH-group than in placebo-group reported as median values (IQR[25-75%]) (52...

  15. Three-dimensional quantitative CT of the proximal femur: Relationship to vertebral trabecular bone density

    International Nuclear Information System (INIS)

    Bhasin, S.; Zlatkin, M.B.; Sartoris, D.J.; Andre, M.; Resnick, D.

    1987-01-01

    Integrated cancellous, cortical, and total bone density in the femoral neck and inter-trochanteric region was measured bilaterally in 25 women aged 35-90 years (mean age, 65). Contiguous-section (1-cm-thick) data were analyzed using three-dimensional histogram software on a Cemax 1000 image processor. Single-section quantitative CT was used to determine mean mineral equivalent values for vertebral cancellous bone from T-11 to L-3 in each woman. Significant correlation was found between cancellous bone density at the two sites. Cortical and total bone densities in the proximal femur were predicted less well with vertebral cancellous data, suggesting a greater dependence on weight-bearing and activity factors

  16. Radiodiagnosis of hemophiliac bone pseudotumors

    International Nuclear Information System (INIS)

    Fedorov, V.V.; Chantseva, E.A.

    1992-01-01

    Of 259 hemophiliacs bone pseudotumors were diagnosed in 11 (4.3 %); they were localised in the femur (6 cases), calcaneus (4) and in the iliac bone (3). Two cases of combined fermoral and calcaneal lesions and 4 cases of bone fracture were observed. As a rule, pseudotumors developed in hemophiliacs with severe disease. An x-ray picture of a pseudotumor depended on its site and was characterized by a large soft tissue tumor shadow, often with calcinosis, and serious destructive changes in bones in the form or round foci of 7 cm in diameter with clear-cut contours. An adge defect of the cortical layer was defined in the diaphysis of the femoral bone (15 cm long). Destructive changes were often accompanied by osteosclerosis and periostitis

  17. Use of a biomimetic strategy to engineer bone.

    Science.gov (United States)

    Holy, C E; Fialkov, J A; Davies, J E; Shoichet, M S

    2003-06-15

    Engineering trabecular-like, three-dimensional bone tissue throughout biodegradable polymer scaffolds is a significant challenge. Using a novel processing technique, we have created a biodegradable scaffold with geometry similar to that of trabecular bone. When seeded with bone-marrow cells, new bone tissue, the geometry of which reflected that of the scaffold, was evident throughout the scaffold volume and to a depth of 10 mm. Preseeded scaffolds implanted in non-healing rabbit segmental bone defects allowed new functional bone formation and bony union to be achieved throughout the defects within 8 weeks. This marks the first report of successful three-dimensional bone-tissue engineering repair using autologous marrow cells without the use of supplementary growth factors. We attribute our success to the novel scaffold morphology. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 65A: 447-453, 2003

  18. A multiscale theoretical investigation of electric measurements in living bone : piezoelectricity and electrokinetics.

    Science.gov (United States)

    Lemaire, T; Capiez-Lernout, E; Kaiser, J; Naili, S; Rohan, E; Sansalone, V

    2011-11-01

    This paper presents a theoretical investigation of the multiphysical phenomena that govern cortical bone behaviour. Taking into account the piezoelectricity of the collagen-apatite matrix and the electrokinetics governing the interstitial fluid movement, we adopt a multiscale approach to derive a coupled poroelastic model of cortical tissue. Following how the phenomena propagate from the microscale to the tissue scale, we are able to determine the nature of macroscopically observed electric phenomena in bone.

  19. Methods and application of bone densitometry in clinical diagnosis

    International Nuclear Information System (INIS)

    Wahner, H.W.; Riggs, B.L.

    1986-01-01

    With the awareness of osteoporosis as a major health problem for an aging population, there is great interest in early recognition and treatment of abnormal bone loss. Effective prevention of bone loss has to occur prior to the occurrence of irreparable damage. Standard radiographic procedures are not sensitive enough for the task. Therefore, a number of alternative procedures to estimate bone loss have been developed over the years, ranging from efforts to quantitate information obtained from radiographic images to sophisticated procedures such as neutron activation analysis or procedures based on the Compton scatter phenomenon. Only two procedures, photon absorptiometry and computed tomography (CT), have emerged as applicable for routine clinical use. In photon absorptiometry the entire bone mineral (cortical and trabecular bone) of a specific skeletal site is measured. CT allows measuring of bone mineral of trabecular or cortical bone alone. Normally, bone mass reaches a maximum in the third decade and then continuously declines. This age-related bone loss is greater in women in whom an accelerated rate of loss occurs at the menopause. When bone density reaches a critical fracture threshold, skeletal fractures occur (spine, hip, and distal long bones). The age at which this critical fracture threshold is reached depends on the maximal bone mass achieved in early adulthood and the rate of loss with increasing age. With the exception of NaF, present-day therapeutic efforts only retard or prevent bone loss but do not significantly add bone mineral to the skeleton. Recognition of high-risk groups and early treatment are therefore required. 79 references

  20. Dietary phosphorus depletion in sheep: Longterm effects on bone structure

    International Nuclear Information System (INIS)

    Breves, G.; Prokop, M.

    1990-01-01

    Experiments were performed on 6 sheep from 8 months old to study effects of dietary phosphorus depletion on bone structure. Sheep were given a semisynthetic diet of chopped straw and pellets for 38 weeks. Mean daily P in the diet was 0.97 g and 3 sheep were given additional NaH2PO4.H2O, increasing daily P supply to 4.5 g (controls). Bone density was estimated photometrically within the laterodistal metaphysis of the foreleg and standardized by a copper step wedge. Metacarpal cortical thickness was also measured. Cortical thickness and bone density started to decrease about 4 weeks after start of P depletion. The trabecular structure of the distal radius was coarser and less dense with reduced cross-linking between trabeculae

  1. Effects of microstructure and water on the electrical potentials in bone induced by ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tsuneda, H.; Matsukawa, S.; Takayanagi, S.; Matsukawa, M., E-mail: mmatsuka@mail.doshisha.ac.jp [Wave Electronics Research Center, Laboratory of Ultrasonic Electronics, Doshisha University, 1-3, Tatara Miyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Mizuno, K. [Underwater Technology Collaborative Research Center, Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Yanagitani, T. [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso cho, Showa-ku, Nagoya 466-8555 (Japan)

    2015-02-16

    The healing mechanism of bone fractures by low intensity pulse ultrasound is yet to be fully understood. There have been many discussions regarding how the high frequency dynamic stress can stimulate numerous cell types through various pathways. As one possible initial process of this mechanism, we focus on the piezoelectricity of bone and demonstrate that bone can generate electrical potentials by ultrasound irradiation in the MHz range. We have fabricated ultrasonic bone transducers using bovine cortical bone as the piezoelectric device. The ultrasonically induced electrical potentials in the transducers change as a function of time during immersed ultrasonic pulse measurements and become stable when the bone is fully wet. In addition, the magnitude of the induced electrical potentials changes owing to the microstructure in the cortical bone. The potentials of transducers with haversian structure bone are higher than those of plexiform structure bone, which informs about the effects of bone microstructure on the piezoelectricity.

  2. Assessment of bone quality in the isolated femoral head for intracapsular fractures of the femoral head. Analysis of bone architecture using micro-CT and pQCT, and comparison with extracapsular fractures

    International Nuclear Information System (INIS)

    Sando, Masaru

    2003-01-01

    Block sections were prepared from the five locations, central portion, superior portion, inferior portion, anterior portion, and posterior portion, of the region around the fracture of the femoral head isolated from 21 patients (16 patients with intracapsular fracture, 5 patients with extracapsular fracture). Cancellous bone microstructure, cortical bone thickness, and bone density were evaluated and analyzed for differences in the mechanism from which intracapsular versus extracapsular fracture and fragility developed. The method of evaluating the bone architecture differed from conventional bone histomorphometry of hard tissues and involved non-invasive micro-CT measurements, while the bone density was measured by peripheral quantitative computed topography (pQCT). The results indicate that in comparison to patients with extracapsular fractures, patients with intracapsular fractures showed significant decreases in the trabecular thickness of superior and posterior portions in the cancellous bone. The cortical bone thickness was significantly decreased in the superior portion. Bone density was significantly decreased in the superior portion, while in the extracapsular fracture group density tended to be lower in the inferior, anterior, and posterior portions, although this was not statistically significant. Although there have been previous studies on the bone quality of the femoral head isolated from intracapsular fracture of the femoral head, most reports are of two-dimensional analysis of coronal sections. As far as we are aware, there have been no previous reports comparing individual locations to extracapsular fractures. In view of the various reports that bone density is lower in the extracapsular fracture compared to the intracapsular fracture, we speculate that extracapsular fracture results from the effects of external forces on decreased bone density, while in the intracapsular fracture type, thinning of the superior portion of the cortical bone creates

  3. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons.

    Science.gov (United States)

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew Cn; Swindale, Nicholas V; Murphy, Timothy H

    2017-02-04

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps.

  4. Contrast Agents for Micro-Computed Tomography of Microdamage in Bone

    National Research Council Canada - National Science Library

    Roeder, Ryan K

    2008-01-01

    ...) and contrast agents with higher x-ray attenuation than bone. The ability to detect the presence and to a limited extent the morphology of microdamage in cortical and trabecular bone using micro-CT was demonstrated using a barium sulfate (BaSO4) stain...

  5. Quantification of bone mineral density at 3rd lumbar vertebra by dual photon absorptiometry

    International Nuclear Information System (INIS)

    Fukunaga, Masao; Otsuka, Nobuaki; Ono, Shimato; Nagai, Kiyohisa; Muranaka, Akira; Furukawa, Takako; Yanagimoto, Shinichi; Tomomitsu, Tatsushi; Morita, Rikushi

    1987-01-01

    To know bone mineral content of both cortical and spongy bones with aging and pathologic changes, bone mineral density (BMD) in the 3rd lumbar vertebra (L3) and distal radius (DR) was measured using dual photon absorptiometry and single photon absorptiometry, respectively, in 151 normal subjects (N) and four patients with primary hyperparathyroidism (PHP). In the N group, BMD in both L3 and DR decreased with aging. This was more noted, and occurred earlier in L3, irrespective of sex, than DR. In three PHP patients manifested as bone type, BMD was high in L3, and low in DR. Such a tendency was not seen in the remaining one patient with stone type PHP. The findings suggest the need to measure BMD in both cortical (L3) and spongy (DR) bones for elucidating bone pathophysiology in metabolic bone disease. (Namekawa, K.)

  6. Smoking is associated with impaired bone mass development in young adult men: a 5-year longitudinal study.

    Science.gov (United States)

    Rudäng, Robert; Darelid, Anna; Nilsson, Martin; Nilsson, Staffan; Mellström, Dan; Ohlsson, Claes; Lorentzon, Mattias

    2012-10-01

    It has previously been shown that smoking is associated with reduced bone mass and increased fracture risk, but no longitudinal studies have been published investigating altered smoking behavior at the time of bone mass acquisition. The aim of this study was to investigate the development of bone density and geometry according to alterations in smoking behavior in a 5-year, longitudinal, population-based study of 833 young men, age 18 to 20 years (baseline). Furthermore, we aimed to examine the cross-sectional, associations between current smoking and parameters of trabecular microarchitecture of the radius and tibia, using high-resolution peripheral quantitative computed tomography (HR-pQCT), in young men aged 23 to 25 years (5-year follow-up). Men who had started to smoke since baseline had considerably smaller increases in areal bone mineral density (aBMD) at the total body (mean ± SD, 0.020 ± 0.047 mg/cm(2) versus 0.043 ± 0.040 mg/cm(2) , p young adulthood have poorer development of their aBMD at clinically important sites such as the spine and hip than nonsmokers, possibly due to augmented loss of trabecular density and impaired growth of cortical cross-sectional area. Copyright © 2012 American Society for Bone and Mineral Research.

  7. Comparison of bone densitometry methods in healthy and osteoporotic women

    International Nuclear Information System (INIS)

    Reinbold, W.D.; Dinkel, E.; Genant, H.K.

    1988-01-01

    To compare methods of noninvasive measurement of bone mineral content, 40 healthy early postmenopausal women and 68 postmenopausal women with osteoporosis were studied. The methods included mono- and dual-energy quantitative computed tomography (QCT) and dual-photon absorptiometry (DPA) of the lumbar spine, single-photon absorptiometry (SPA) of the distal third of the radius, and combined cortical thickness (CCT) of the second metacarpal shaft. Lateral thoracolumbar radiographic studies were performed and the spinal fracture index calculated. There was good correlation between QCT and DPA methods in early postmenopausal women and moderate correlation in postmenopausal osteoporotic women. Correlations between spinal measurements (QCT or DPA) and appendicular cortical measurements (SPA or CCT) were moderate in healthy women and poor in osteoporotic women. Measurements resulting from one method were not predictive of measurements obtained by another method for individual patients. The strongest correlation with severity of vertebral fracture was provided by QCT and the weakest by SPA. There was good correlation between single- and dual-energy QCT results. Osteoporotic women and younger healthy women can be distinguished by the measurement of spinal trabecular bone density using QCT, and this method is more sensitive than the measurement of spinal integral bone by DPA or of appendicular cortical bone by SPA or CCT. (orig.) [de

  8. The effect of intramedullary bone endoscopy on the endosteal blood supply in long bones. An experimental study in sheep.

    Science.gov (United States)

    Herget, Georg W; Haberstroh, Jörg; Südkamp, Norbert; Riede, Ursus; Oberst, Michael

    2011-02-01

    This study investigated whether the Intramedullary Bone Endoscopy (IBE) procedure within the cavity of an intact long bone will interfere with the local endosteal blood supply. In a sheep model, 10 animals underwent the IBE procedure with complete perioperative anaesthesiology monitoring. After the femora were harvested, histological analysis was performed to examine destruction of the endosteum and consecutive reduction in perfusion. Only one animal showed evidence of detachment of the endosteum with destruction of several microns of the endosteum, although this did not interfere with the cortical perfusion. None of the vessels were occluded by fat or other causes of occlusion, e.g. blood coagulation. Our findings indicate that with the IBE procedure under visual control there is a potential risk to damage the endosteum. However, the interference was limited to a small part of the endosteum and did not lead to a reduction in the cortical perfusion. Clinical use could be in localized intramedullary lesions such as osteomyelitis or benign bone tumours.

  9. Bone mineral content (BMC) of the lumbar vertebrae (L2-L4) measured by quantitative computed tomography (QCT) and dual energy X-ray absorptiometry (DXA) in 21 hemodialysis (HD) patients

    International Nuclear Information System (INIS)

    Takahashi, Nobuyoshi; Suzuki, Tadashi; Sato, Motoaki; Oh, Songchol; Sato, Atsushi; Saito, Hisao; Funyu, Tomihisa.

    1996-01-01

    BMC of lumbar vertebrae (L2-L4) was measured by QCT and DXA in 21 HD patients. The effect of sex, aging, HD duration, postmenopausal years and various blood parameters of bone metabolism on BMC was assessed statistically. BMC showed a good positive correlation not only with DXA and QCT (trabecular and cortical bone), but with QCT (trabecular bone) and QCT (cortical bone). A significant age-related decrease in BMC, particularly by QCT (trabecular bone), was found in both sexes. BMC measured by QCT (trabecular bone) increased with the duration of HD in male patients. A negative relationship between postmenopausal years and BMC measured by QCT (trabecular and cortical bone) was prominent. BMC was not found to be correlated with various blood parameters of bone metabolism. Thus, measurement of BMC (L2-L4) by QCT has the advantage of allowing more precise examination of changes in cortical and trabecular bone. (author)

  10. State of the mineral component of rat bone tissue during hypokinesia and the recovery period

    Science.gov (United States)

    Volozhin, A. I.; Stupakov, G. P.; Pavlova, M. N.; Muradov, I. S.

    1980-01-01

    Experiments were conducted on young growing rats. Hypokinesia lasting from 20 to 200 days caused retarded gain in weight and volume of the femur and delayed development of the cortical layer of the diaphysis. In contrast, the density of the cortical layer of the femoral diaphysis increased due to elevation of the mineral saturation of the bone tissue microstructures. Incorporation of Ca into the bone tissue in hypokinesia had a tendency to reduce. Partial normalization of the bone tissue mineral component occurred during a 20 day recovery period following hypokinesia.

  11. Honey preserved cortical allografts in the repair of diaphyseal femoral defect in dogs: clinical and radiographic

    International Nuclear Information System (INIS)

    Alievi, Marcelo Meller; Wallau Schossler, João Eduardo; Christo de Oliveira, Ana Néri; Almeida Ferreira, Carolina Kist TraeslelIV Patrícia; Dambrósio Guimarães, Luciana

    2007-01-01

    Fourteen adult mongrel dogs were used to evaluate the honey preserved cortical allografts in the repair of diaphyseal femoral defect. The allografts were inserted into a 5cm segmental defect created in the mid-diaphysis of the right femur in each dog. The bones were stabilized with a dynamic compression plate and eight bone screws. Healing was followed clinically and femora were evaluated radiographically, periodically. Nineteen (79.2%) of the twenty-four host-graft interfaces were radiographically incorporated. Average time to allograft incorporation was 67.1 days (range 45 days to 90 days). There was no statistical difference in the allograft incorporation time between proximal and distal host-graft interfaces. Complications observed were nonunion, allograft fracture, and allograft resorption. The conclusion is that despite the complications, honey preserved cortical allografts are a viable option to bone reconstruction [pt

  12. Deciphering seasonal variations in the diet and drinking water of modern White-Tailed deer by in situ analysis of osteons in cortical bone

    Science.gov (United States)

    Larson, T. E.; Longstaffe, F. J.

    2007-12-01

    In situ carbon and oxygen isotope values for bioapatite were obtained from longitudinal slices of cortical bone from modern domesticated sheep and free-range White-Tailed deer. The analyses were obtained using an IR-laser coupled to a GC-IRMS interface. Ablation pits averaged 200 × 50 μm, making it possible to sample individual or small bundles of osteons. Cortical bone is remodeled along osteons throughout a mammal's life. Therefore, data at this scale can record seasonal variations in diet and drinking water during the adult stages of a mammal, whereas teeth provide may provide information about the juvenile years of a mammal. Average δ18O and δ13C values for the sheep from southwestern Ontario, Canada, were 14.0 and -16.1‰, respectively. No trend was observed in the isotopic composition of the sheep's osteons, consistent with its constant diet and water supply. The δ18O (14.2 to 16.6‰) and δ13C (-19.2 to -15.6‰) values of osteons from White-Tailed deer from nearby Pinery Provincial Park, however, varied systematically and were negatively correlated. Oxygen isotope values of the osteons correlated well with changes in the δ18O values of the main water source for these deer: winter average, -10.7‰; summer average, -8.6‰. The variation in δ13C values of the osteons reflects changes in diet; summer diet consisted mainly of leafy C3 vegetation (-28.4‰), whereas winter diet comprised bark (-25.6‰), C4 grasses (δ13C, -12.7‰), and corn stalks and husks (-11.3‰).

  13. Microdamage of the cortical bone during mini-implant insertion with self-drilling and self-tapping techniques: a randomized controlled trial.

    Science.gov (United States)

    Yadav, Sumit; Upadhyay, Madhur; Liu, Sean; Roberts, Eugene; Neace, William P; Nanda, Ravindra

    2012-05-01

    The purpose of this research was to evaluate microdamage accumulation after mini-implant placement by self-drilling (without a pilot hole) and self-tapping (screwed into a pilot hole) insertion techniques. The null hypothesis was that the mini-implant insertion technique would have no influence on microcrack accumulation and propagation in the cortical bones of the maxillae and mandibles of adult hounds. Mini-implants (n = 162; diameter, 1.6 mm; length, 6 mm) were placed in the maxillae and mandibles of 9 hounds (12-14 months old) with self-drilling and self-tapping insertion techniques. The techniques were randomly assigned to the left or the right side of each jaw. Each hound received 18 mini-implants (10 in the mandible, 8 in the maxilla). Histomorphometric parameters including total crack length and crack surface density were measured. The null hypothesis was rejected in favor of an alternate hypothesis: that the self-drilling technique results in more microdamage (microcracks) accumulation in the adjacent cortical bone in both the maxilla and the mandible immediately after mini-implant placement. A cluster level analysis was used to analyze the data on the outcome measured. Since the measurements were clustered within dogs, a paired-samples t test was used to analyze the average differences between insertion methods at both jaw locations. A significance level of 0.05 was used for both analyses. The self-drilling technique resulted in greater total crack lengths in both the maxilla and the mandible (maxilla: mean difference, 18.70 ± 7.04 μm/mm(2); CI, 13.29-24.11; mandible: mean difference, 22.98 ± 6.43 μm/mm(2); CI, 18.04-27.93; P hounds in both the maxilla and the mandible by the self-drilling insertion technique compared with the self-tapping technique. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  14. Altitude, pasture type, and sheep breed affect bone metabolism and serum 25-hydroxyvitamin D in grazing lambs.

    Science.gov (United States)

    Willems, Helen; Leiber, Florian; Kohler, Martina; Kreuzer, Michael; Liesegang, Annette

    2013-05-15

    This study aimed to investigate the bone development of two mountain sheep breeds during natural summer grazing either in the lowlands or on different characteristic alpine pastures. Pasture types differed in topographic slope, plant species composition, general nutritional feeding value, Ca and P content, and Ca:P ratio of herbage. Twenty-seven Engadine sheep (ES) lambs and 27 Valaisian Black Nose sheep (VS) lambs were divided into four groups of 6 to 7 animals per breed and allocated to three contrasting alpine pasture types and one lowland pasture type. The lambs were slaughtered after 9 wk of experimental grazing. The steep alpine pastures in combination with a high (4.8) to very high (13.6) Ca:P ratio in the forage decreased total bone mineral content as measured in the middle of the left metatarsus of the lambs from both breeds, and cortical bone mineral content and cortical bone mineral density of ES lambs. Breed × pasture type interactions occurred in the development of total and cortical bone mineral content, and in cortical thickness, indicating that bone metabolism of different genotypes obviously profited differently from the varying conditions. An altitude effect occurred for 25-hydroxyvitamin D with notably higher serum concentrations on the three alpine sites, and a breed effect led to higher concentrations for ES than VS. Despite a high variance, there were pasture-type effects on serum markers of bone formation and resorption.

  15. Maternal Dietary Supplementation with Oligofructose-Enriched Inulin in Gestating/Lactating Rats Preserves Maternal Bone and Improves Bone Microarchitecture in Their Offspring

    Science.gov (United States)

    Diaz-Castro, Javier; López-Aliaga, Inmaculada; Rueda, Ricardo

    2016-01-01

    Nutrition during pregnancy and lactation could exert a key role not only on maternal bone, but also could influence the skeletal development of the offspring. This study was performed in rats to assess the relationship between maternal dietary intake of prebiotic oligofructose-enriched inulin and its role in bone turnover during gestation and lactation, as well as its effect on offspring peak bone mass/architecture during early adulthood. Rat dams were fed either with standard rodent diet (CC group), calcium-fortified diet (Ca group), or prebiotic oligofructose-enriched inulin supplemented diet (Pre group), during the second half of gestation and lactation. Bone mineral density (BMD) and content (BMC), as well as micro-structure of dams and offspring at different stages were analysed. Dams in the Pre group had significantly higher trabecular thickness (Tb.Th), trabecular bone volume fraction (BV/TV) and smaller specific bone surface (BS/BV) of the tibia in comparison with CC dams. The Pre group offspring during early adulthood had an increase of the lumbar vertebra BMD when compared with offspring of CC and Ca groups. The Pre group offspring also showed significant increase versus CC in cancellous and cortical structural parameters of the lumbar vertebra 4 such as Tb.Th, cortical BMD and decreased BS/BV. The results indicate that oligofructose-enriched inulin supplementation can be considered as a plausible nutritional option for protecting against maternal bone loss during gestation and lactation preventing bone fragility and for optimizing peak bone mass and architecture of the offspring in order to increase bone strength. PMID:27115490

  16. Mechanical response tissue analyzer for estimating bone strength

    Science.gov (United States)

    Arnaud, Sara B.; Steele, Charles; Mauriello, Anthony

    1991-01-01

    One of the major concerns for extended space flight is weakness of the long bones of the legs, composed primarily of cortical bone, that functions to provide mechanical support. The strength of cortical bone is due to its complex structure, described simplistically as cylinders of parallel osteons composed of layers of mineralized collagen. The reduced mechanical stresses during space flight or immobilization of bone on Earth reduces the mineral content, and changes the components of its matrix and structure so that its strength is reduced. Currently, the established clinical measures of bone strength are indirect. The measures are based on determinations of mineral density by means of radiography, photon absorptiometry, and quantitative computer tomography. While the mineral content of bone is essential to its strength, there is growing awareness of the limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially osteoporosis. Other experimental methods in clinical trials that more directly evaluate the physical properties of bone, and do not require exposure to radiation, include ultrasound, acoustic emission, and low-frequency mechanical vibration. The last method can be considered a direct measure of the functional capacity of a long bone since it quantifies the mechanical response to a stimulus delivered directly to the bone. A low frequency vibration induces a response (impedance) curve with a minimum at the resonant frequency, that a few investigators use for the evaluation of the bone. An alternative approach, the method under consideration, is to use the response curve as the basis for determination of the bone bending stiffness EI (E is the intrinsic material property and I is the cross-sectional moment of inertia) and mass, fundamental mechanical properties of bone.

  17. Cement stress predictions after anatomic total shoulder arthroplasty are correlated with preoperative glenoid bone quality.

    Science.gov (United States)

    Terrier, Alexandre; Obrist, Raphaël; Becce, Fabio; Farron, Alain

    2017-09-01

    We hypothesized that biomechanical parameters typically associated with glenoid implant failure after anatomic total shoulder arthroplasty (aTSA) would be correlated with preoperative glenoid bone quality. We developed an objective automated method to quantify preoperative glenoid bone quality in different volumes of interest (VOIs): cortical bone, subchondral cortical plate, subchondral bone after reaming, subchondral trabecular bone, and successive layers of trabecular bone. Average computed tomography (CT) numbers (in Hounsfield units [HU]) were measured in each VOI from preoperative CT scans. In parallel, we built patient-specific finite element models of simulated aTSAs to predict cement stress, bone-cement interfacial stress, and bone strain around the glenoid implant. CT measurements and finite element predictions were obtained for 20 patients undergoing aTSA for primary glenohumeral osteoarthritis. We tested all linear correlations between preoperative patient characteristics (age, sex, height, weight, glenoid bone quality) and biomechanical predictions (cement stress, bone-cement interfacial stress, bone strain). Average CT numbers gradually decreased from cortical (717 HU) to subchondral and trabecular (362 HU) bone. Peak cement stress (4-10 MPa) was located within the keel hole, above the keel, or behind the glenoid implant backside. Cement stress, bone-cement interfacial stress, and bone strain were strongly negatively correlated with preoperative glenoid bone quality, particularly in VOIs behind the implant backside (subchondral trabecular bone) but also in deeper trabecular VOIs. Our numerical study suggests that preoperative glenoid bone quality is an important parameter to consider in aTSA, which may be associated with aseptic loosening of the glenoid implant. These initial results should now be confronted with clinical and radiologic outcomes. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc

  18. A radiographic study of solitary bone cysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Rak; Hwang, Eui Hwan; Lee, Sang Rae [Dept. of Oral and Maxillofacial Radiology, Division of Dentistry, Kyung Hee University, Seoul (Korea, Republic of)

    1994-02-15

    The aim of this study was to evaluate the clinical, radiographic and histopathologic features of 23 cases of solitary bone cyst by means of the analysis of radiographs and biopsy specimens in 23 persons visited the Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyung Hee University and Chunbuk National University. The obtained results were as follows; 1. The incidence of solitary bone cyst was almost equal in males (52.2%) and in females(42.8%) and the prevalent age of the solitary bone cyst were the second decade (47.8%) and the third decade (21.7%). 2. In the signs and symptoms of solitary bone cyst, pain or tenderness revealed in 17.4%, swelling revealed in 13.0%, pain and swelling revealed in 21.7%, paresthesia revealed in 4.4% and 43.5% were a symptom and the tooth vitality involved in the solitary bone cyst, 76.5% were posterior and 23.5% were either positive or negative. 3. In the location of the solitary bone cyst, 47.8% present posterior region, 21.7% present anterior region, 21.6% present anterior and posterior region, 4.4% present condylar process area. 4. In the hyperostotic border of the solitary bone cyst, 47.8% were seen entirely, 21.8% were seen partially, and 30.4% were not seen. 5. In the change of tooth, 59.1% were loss of the alveolar lamina dura, 13.6% were root resorption 4.55% were tooth displacement, 4.55% were root resorption and tooth displacement. 6. In the change of cortical bone of the solitary bone cyst, 39.1% were intact and 60.9% were thinning and expansion of cortical bone. 7. In the histopathologic findings of 9 cases, 33.3% were thin connective tissue wall, 11.1% were thickened myxo-fibromatous wall, 55.6% were thickened myxofibromatous wall with dysplastic bone formation.

  19. A radiographic study of solitary bone cysts

    International Nuclear Information System (INIS)

    Kim, Kyung Rak; Hwang, Eui Hwan; Lee, Sang Rae

    1994-01-01

    The aim of this study was to evaluate the clinical, radiographic and histopathologic features of 23 cases of solitary bone cyst by means of the analysis of radiographs and biopsy specimens in 23 persons visited the Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyung Hee University and Chunbuk National University. The obtained results were as follows; 1. The incidence of solitary bone cyst was almost equal in males (52.2%) and in females(42.8%) and the prevalent age of the solitary bone cyst were the second decade (47.8%) and the third decade (21.7%). 2. In the signs and symptoms of solitary bone cyst, pain or tenderness revealed in 17.4%, swelling revealed in 13.0%, pain and swelling revealed in 21.7%, paresthesia revealed in 4.4% and 43.5% were a symptom and the tooth vitality involved in the solitary bone cyst, 76.5% were posterior and 23.5% were either positive or negative. 3. In the location of the solitary bone cyst, 47.8% present posterior region, 21.7% present anterior region, 21.6% present anterior and posterior region, 4.4% present condylar process area. 4. In the hyperostotic border of the solitary bone cyst, 47.8% were seen entirely, 21.8% were seen partially, and 30.4% were not seen. 5. In the change of tooth, 59.1% were loss of the alveolar lamina dura, 13.6% were root resorption 4.55% were tooth displacement, 4.55% were root resorption and tooth displacement. 6. In the change of cortical bone of the solitary bone cyst, 39.1% were intact and 60.9% were thinning and expansion of cortical bone. 7. In the histopathologic findings of 9 cases, 33.3% were thin connective tissue wall, 11.1% were thickened myxo-fibromatous wall, 55.6% were thickened myxofibromatous wall with dysplastic bone formation.

  20. Scapular Free Vascularised Bone Flaps for Mandibular Reconstruction: Are Dental Implants Possible?

    Directory of Open Access Journals (Sweden)

    Martin Lanzer

    2015-09-01

    Full Text Available Objectives: Free fibula flap remains the flap of choice for reconstruction of mandibular defects. If free fibula flap is not possible, the subscapular system of flaps is a valid option. In this study, we evaluated the possibility of dental implant placement in patients receiving a scapular free flap for oromandibular reconstruction. Material and Methods: We retrospectively reviewed 10 patients undergoing mandible reconstruction with a subscapular system free-tissue (lateral border of the scapula transfer at the University Hospital Zürich between January 1, 2010 and January 1, 2013. Bone density in cortical and cancellous bone was measured in Hounsfield units (HU. Changes of bone density, height and width were analysed using IBM SPSS Statistics 22. Comparisons of bone dimensions as well as bone density were performed using a chi-square test. Results: Ten patients were included. Implantation was conducted in 50%. However, all patients could have received dental implants considering bone stock. Loss of bone height and width were significant (P < 0.001. There was a statistical significant increase in bone density in cortical (P < 0.001 and cancellous (P = 0.004 bone. Conclusions: Dental implants are possible after scapular free flap reconstruction of oromandibular defects. Bone height and width were reduced, while bone density increased with time.

  1. Reversibility of cortical hyperostosis following long-term prostaglandin E1 therapy in infants with ductus-dependent congenital heart disease

    DEFF Research Database (Denmark)

    Høst, A; Halken, S; Andersen, P E

    1988-01-01

    Two neonates with complex cyanotic congenital heart disease, receiving long-term prostaglandin E1 infusion, for 59 and 78 days respectively, demonstrated significant radiographic changes of symmetric cortical hyperostosis of the long bones. Bone biopsies from one of the patients elucidated...

  2. Elevated Levels of Peripheral Kynurenine Decrease Bone Strength in Rats with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Bartlomiej Kalaska

    2017-10-01

    Full Text Available The diagnosis and treatment of bone disorders in patients with chronic kidney disease (CKD represent a clinical challenge. CKD leads to mineral and bone complications starting early in the course of renal failure. Recently, we have observed the positive relationship between intensified central kynurenine turnover and bone strength in rats with subtotal 5/6 nephrectomy (5/6 Nx-induced CKD. The aim of the present study was to determine the association between peripheral kynurenine pathway metabolites and bone strength in rats with 5/6 Nx-induced CKD. The animals were sacrificed 1 and 3 months after 5/6 Nx or sham operation. Nephrectomized rats presented higher concentrations of serum creatinine, urea nitrogen, and parathyroid hormone both 1 and 3 months after nephrectomy. These animals revealed higher concentrations of kynurenine and 3-hydroxykynurenine in the serum and higher gene expression of aryl hydrocarbon receptor (AhR as a physiological receptor for kynurenine and AhR-dependent cytochrome in the bone tissue. Furthermore, nephrectomy significantly increased the number of osteoclasts in the bone without affecting their resorptive activity measured in serum. These changes were particularly evident in rats 1 month after 5/6 Nx. The main bone biomechanical parameters of the tibia were unchanged between nephrectomized and sham-operated rats but were significantly increased in older compared to younger animals. A similar trend was observed for geometrical parameters measured with calipers, bone mineral density based on Archimedes' method and image of bone microarchitecture obtained from micro-computed tomography analyses of tibial cortical bone. In nephrectomized animals, peripheral kynurenine levels correlated negatively with the main parameters of bone biomechanics, bone geometry, and bone mineral density values. In conclusion, our data suggest that CKD-induced elevated levels of peripheral kynurenine cause pathological changes in bone

  3. The study on changes of bone mineral content of mandible by quantitative computed tomography

    International Nuclear Information System (INIS)

    Tamai, Manabu; Ishii, Yasuo

    1996-01-01

    A method to measure bone mineral of mandible has not been established. The bone mineral content (BMC) of the mandible with single energy quantitative computed tomography (SEQCT), which was compared with that of the spine, was discussed. The subjects were 104 healthy persons (54 males and 50 females, age range: 21-69) and 33 patients of mandibular atrophy (10 males and 23 females, age range: 46-87). The BMC changes of the mandible differed according to sex. In males BMC of trabecular bone and cortical bone decreased slightly after 40 and 30 years of age respectively. In females, BMC decreased consistently during menopause. BMC of the spine tended to decrease with aging, especially in females. In males having mandibular atrophy, the BMC of trabecular bone of the mandible decreased, and that of cortical bone of the mandible increased with aging. In females having atrophy, the BMC of trabecular bone and cortical bone of the mandible decreased with aging. The BMC of the mandible was correlated with the length of the denture-wearing time in males. In females, it appears that the BMC of the mandible participates in estrogen deficiency like the BMC of the spine. From the above, measurement of the BMC of the mandible by SEQCT was considered to be very useful for grasping the severity and progressive rate, and other conditions of alveolar ridge atrophy and determining the remedial course. (author)

  4. The study on changes of bone mineral content of mandible by quantitative computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tamai, Manabu; Ishii, Yasuo [Fukui Medical School, Matsuoka (Japan)

    1996-04-01

    A method to measure bone mineral of mandible has not been established. The bone mineral content (BMC) of the mandible with single energy quantitative computed tomography (SEQCT), which was compared with that of the spine, was discussed. The subjects were 104 healthy persons (54 males and 50 females, age range: 21-69) and 33 patients of mandibular atrophy (10 males and 23 females, age range: 46-87). The BMC changes of the mandible differed according to sex. In males BMC of trabecular bone and cortical bone decreased slightly after 40 and 30 years of age respectively. In females, BMC decreased consistently during menopause. BMC of the spine tended to decrease with aging, especially in females. In males having mandibular atrophy, the BMC of trabecular bone of the mandible decreased, and that of cortical bone of the mandible increased with aging. In females having atrophy, the BMC of trabecular bone and cortical bone of the mandible decreased with aging. The BMC of the mandible was correlated with the length of the denture-wearing time in males. In females, it appears that the BMC of the mandible participates in estrogen deficiency like the BMC of the spine. From the above, measurement of the BMC of the mandible by SEQCT was considered to be very useful for grasping the severity and progressive rate, and other conditions of alveolar ridge atrophy and determining the remedial course. (author).

  5. Theory of corticothalamic brain activity in a spherical geometry: Spectra, coherence, and correlation

    Science.gov (United States)

    Mukta, K. N.; MacLaurin, J. N.; Robinson, P. A.

    2017-11-01

    Corticothalamic neural field theory is applied to a spherical geometry to better model neural activity in the human brain and is also compared with planar approximations. The frequency power spectrum, correlation, and coherence functions are computed analytically and numerically. The effects of cortical boundary conditions and resulting modal aspects of spherical corticothalamic dynamics are explored, showing that the results of spherical and finite planar geometries converge to those for the infinite planar geometry in the limit of large brain size. Estimates are made of the point at which modal series can be truncated and it is found that for physiologically plausible parameters only the lowest few spatial eigenmodes are needed for an accurate representation of macroscopic brain activity. A difference between the geometries is that there is a low-frequency 1 /f spectrum in the infinite planar geometry, whereas in the spherical geometry it is 1 /f2 . Another difference is that the alpha peak in the spherical geometry is sharper and stronger than in the planar geometry. Cortical modal effects can lead to a double alpha peak structure in the power spectrum, although the main determinant of the alpha peak is corticothalamic feedback. In the spherical geometry, the cross spectrum between two points is found to only depend on their relative distance apart. At small spatial separations the low-frequency cross spectrum is stronger than for an infinite planar geometry and the alpha peak is sharper and stronger due to the partitioning of the energy into discrete modes. In the spherical geometry, the coherence function between points decays monotonically as their separation increases at a fixed frequency, but persists further at resonant frequencies. The correlation between two points is found to be positive, regardless of the time lag and spatial separation, but decays monotonically as the separation increases at fixed time lag. At fixed distance the correlation has peaks

  6. Instrumental neutron activation analysis of rib bone samples and of bone reference materials

    International Nuclear Information System (INIS)

    Saiki, M.; Takata, M.K.; Kramarski, S.; Borelli, A.

    2000-01-01

    The instrumental neutron activation analysis method was used for the determination of trace elements in rib bone samples taken from autopsies of accident victims. The elements Br, Ca, Cl, Cr, Fe, Mg, Mn, Na, P, Sr, Rb and Zn were determined in cortical tissues by using short and long irradiations with thermal neutron flux of the IEA-R1m nuclear reactor. The reference materials NIST SRM 1400 Bone Ash and NIST SRM 1486 Bone Meal were also analyzed in order to evaluate the precision and the accuracy of the results. It was verified that lyophilization is the most convenient process for drying bone samples since it does not cause any element losses. Comparisons were made between the results obtained for rib samples and the literature values as well as between the results obtained for different ribs from a single individual and for bones from different individuals. (author)

  7. Does aspiration of bones and joints affect results of later bone scanning

    International Nuclear Information System (INIS)

    Canale, S.T.; Harkness, R.M.; Thomas, P.A.; Massie, J.D.

    1985-01-01

    To determine the effect, if any, of needle aspiration on /sup 99m/Tc bone scanning, three different areas of 15 dogs were first aspirated and then imaged with technetium bone scintigraphy. The hip joint was aspirated, the distal femoral metaphysis was drilled and aspirated, and the tibial periosteum was scraped with an 18- or 20-gauge needle. Varying amounts of trauma were inflicted to simulate varying difficulties at aspiration. /sup 99m/Tc bone scans were obtained from 5 h to 10 days later. There was no evidence of focal technetium uptake after any hip joint aspiration. This was consistent regardless of the amount of trauma inflicted or the time from aspiration to bone scanning. Metaphyseal cortical drilling and tibial periosteal scraping occasionally caused some focal uptake when scanning was delayed greater than 2 days. When osteomyelitis or pyarthrosis is clinically suspected, joint aspiration can be performed without fear of producing a false- positive bone scan

  8. Bone stress in runners with tibial stress fracture.

    Science.gov (United States)

    Meardon, Stacey A; Willson, John D; Gries, Samantha R; Kernozek, Thomas W; Derrick, Timothy R

    2015-11-01

    Combinations of smaller bone geometry and greater applied loads may contribute to tibial stress fracture. We examined tibial bone stress, accounting for geometry and applied loads, in runners with stress fracture. 23 runners with a history of tibial stress fracture & 23 matched controls ran over a force platform while 3-D kinematic and kinetic data were collected. An elliptical model of the distal 1/3 tibia cross section was used to estimate stress at 4 locations (anterior, posterior, medial and lateral). Inner and outer radii for the model were obtained from 2 planar x-ray images. Bone stress differences were assessed using two-factor ANOVA (α=0.05). Key contributors to observed stress differences between groups were examined using stepwise regression. Runners with tibial stress fracture experienced greater anterior tension and posterior compression at the distal tibia. Location, but not group, differences in shear stress were observed. Stepwise regression revealed that anterior-posterior outer diameter of the tibia and the sagittal plane bending moment explained >80% of the variance in anterior and posterior bone stress. Runners with tibial stress fracture displayed greater stress anteriorly and posteriorly at the distal tibia. Elevated tibial stress was associated with smaller bone geometry and greater bending moments about the medial-lateral axis of the tibia. Future research needs to identify key running mechanics associated with the sagittal plane bending moment at the distal tibia as well as to identify ways to improve bone geometry in runners in order to better guide preventative and rehabilitative efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effect of Age and Caponization on Blood Parameters and Bone Development of Male Native Chickens in Taiwan

    Directory of Open Access Journals (Sweden)

    Cheng-Yung Lin

    2012-07-01

    Full Text Available An experiment was carried out to determine the effect of age and caponization on the development blood and bone characteristics development in male country chickens in Taiwan. A total of two hundred 8-wk-old LRI native chicken cockerels, Taishi meat No.13 from LRI-COA, were used as experimental animals. Cockerels were surgically caponized at 8 wks of age. Twelve birds in each group were bled and dressed from 8 wks to 35 wks of age at 1 to 5 wk intervals. The results indicated that the plasma testosterone concentration was significantly (p<0.05 lower in capons after 12 wks of age (caponized treatment after 4 wks than that of the intact males. The relative tibia weight, bone breaking strength, cortical thickness, bone ash, bone calcium, bone phosphorus and bone magnesium contents were significantly (p<0.05 higher in intact males, while capons had higher (p<0.05 plasma ionized calcium, inorganic phosphorus and alkaline phosphatase concentration. The plasma testosterone concentration, relative tibia weight, tibia length, breaking strength, cortical thickness, bone ash, calcium, and phosphorus contents of intact males chickens increased significantly (p<0.05 with the advance of age. In addition, the relative tibia weight of capons peaked at 18 wks of age, and declined at 35 wks of age. The bone ash, calcium and phosphorus content increased most after 14 wks of age in male native chickens in Taiwan. Also, tibia length and cortical thickness peaked at 22 wks of age. However, the peak of bone strength was found at 26 wks of age. These findings support the assertion that androgens can directly influence bone composition fluxes in male chickens. Caponization caused a significant increase in bone loss at 4 wks post treatment, which reflected bone cell damage, and demonstrated reductions in the relative tibia weight, breaking strength, cortical thickness, bone ash, calcium, phosphorus and magnesium contents, and increases in plasma ionized calcium

  10. An insight in to Paget′s disease of bone

    Directory of Open Access Journals (Sweden)

    Robin Sabharwal

    2014-01-01

    Full Text Available Paget′s disease of bone (PDB is a common disorder which may affect one or many bones. Although many patients are asymptomatic, a variety of symptoms and complications may occur. PDB is a focal disorder of bone turnover characterized by excessive bone resorption coupled with bone formation. PDB begins with a period of increased osteoclastic activity and bone resorption, followed by increased osteoblast production of woven bone that is poorly mineralized. In the final phase of the disease process, dense cortical and trabecular bone deposition predominates, but the bone is sclerotic and poorly organized and lacks the structural integrity and strength of normal bone. This article briefly reviews the etiopathogenesis, clinical radiographic and histological features of Paget′s disease.

  11. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    Science.gov (United States)

    Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2014-01-01

    Exposure to musculoskeletal disuse and radiation result in bone loss; we hypothesized that these catabolic treatments cause excess reactive oxygen species (ROS), and thereby alter the tight balance between bone resorption by osteoclasts and bone formation by osteoblasts, culminating in bone loss. To test this, we used transgenic mice which over-express the human gene for catalase, targeted to mitochondria (MCAT). Catalase is an anti-oxidant that converts the ROS hydrogen peroxide into water and oxygen. MCAT mice were shown previously to display reduced mitochondrial oxidative stress and radiosensitivity of the CNS compared to wild type controls (WT). As expected, MCAT mice expressed the transgene in skeletal tissue, and in marrow-derived osteoblasts and osteoclast precursors cultured ex vivo, and also showed greater catalase activity compared to wildtype (WT) mice (3-6 fold). Colony expansion in marrow cells cultured under osteoblastogenic conditions was 2-fold greater in the MCAT mice compared to WT mice, while the extent of mineralization was unaffected. MCAT mice had slightly longer tibiae than WT mice (2%, P less than 0.01), although cortical bone area was slightly lower in MCAT mice than WT mice (10%, p=0.09). To challenge the skeletal system, mice were treated by exposure to combined disuse (2 wk Hindlimb Unloading) and total body irradiation Cs(137) (2 Gy, 0.8 Gy/min), then bone parameters were analyzed by 2-factor ANOVA to detect possible interaction effects. Treatment caused a 2-fold increase (p=0.015) in malondialdehyde levels of bone tissue (ELISA) in WT mice, but had no effect in MCAT mice. These findings indicate that the transgene conferred protection from oxidative damage caused by treatment. Unexpected differences between WT and MCAT mice emerged in skeletal responses to treatment.. In WT mice, treatment did not alter osteoblastogenesis, cortical bone area, moment of inertia, or bone perimeter, whereas in MCAT mice, treatment increased these

  12. Determinants of prevalent vertebral fractures and progressive bone loss in long-term hemodialysis patients.

    Science.gov (United States)

    Mares, Jan; Ohlidalova, Kristina; Opatrna, Sylvie; Ferda, Jiri

    2009-01-01

    Skeletal fractures are common in hemodialysis (HD) patients. However, consensus regarding technique and site of bone examination has not been reached in HD patients. Seventy-two patients (44% females) aged 65 (1.4) years, treated with HD for 43 (4.6) months were examined with quantitative computed tomography and 53 of them re-examined after 1 year. Bone mineral density (BMD) of lumbar spine was established separately for cortical and trabecular bone, prevalent vertebral fractures were determined. Data are given as mean (standard error). At least one vertebral fracture was discovered in 15 (21%) patients. In a logistic regression model, fractures were best predicted by cortical BMD: OR 0.96 (CI 0.94, 0.99), p multiple regression analysis, time on dialysis was found to be independently correlated to cortical BMD (R = 0.35, p decrement may impose an increased risk of fractures on long-term dialysis patients.

  13. Thermal Conductivity of Human Bone in Cryoprobe Freezing as Related to Density.

    Science.gov (United States)

    Walker, Kyle E; Baldini, Todd; Lindeque, Bennie G

    2017-03-01

    Cryoprobes create localized cell destruction through freezing. Bone is resistant to temperature flow but is susceptible to freezing necrosis at warmer temperatures than tumor cells. Few studies have determined the thermal conductivity of human bone. No studies have examined conductivity as related to density. The study goal was to examine thermal conductivity in human bone while comparing differences between cancellous and cortical bone. An additional goal was to establish a relationship between bone density and thermal conductivity. Six knee joints from 5 cadavers were obtained. The epiphyseal region was sliced in half coronally prior to inserting an argon-circulating cryoprobe directed away from the joint line. Thermistor thermometers were placed perpendicularly at measured increments, and the freezing cycle was recorded until steady-state conditions were achieved. For 2 cortical samples, the probe was placed intramedullary in metaphyseal samples and measurements were performed radially from the central axis of each sample. Conductivity was calculated using Fournier's Law and then plotted against measured density of each sample. Across samples, density of cancellous bone ranged from 0.86 to 1.38 g/mL and average thermal conductivity ranged between 0.404 and 0.55 W/mK. Comparatively, cortical bone had a density of 1.70 to 1.86 g/mL and thermal conductivity of 0.0742 to 0.109 W/mK. A strong 2-degree polynomial correlation was seen (R 2 =0.8226, P<.001). Bone is highly resistant to temperature flow. This resistance varies and inversely correlates strongly with density. This information is clinically relevant to maximize tumor ablation while minimizing morbidity through unnecessary bone loss and damage to surrounding structures. [Orthopedics. 2017; 40(2):90-94.]. Copyright 2016, SLACK Incorporated.

  14. Does PEEK/HA Enhance Bone Formation Compared With PEEK in a Sheep Cervical Fusion Model?

    Science.gov (United States)

    Walsh, William R; Pelletier, Matthew H; Bertollo, Nicky; Christou, Chris; Tan, Chris

    2016-11-01

    Polyetheretherketone (PEEK) has a wide range of clinical applications but does not directly bond to bone. Bulk incorporation of osteoconductive materials including hydroxyapatite (HA) into the PEEK matrix is a potential solution to address the formation of a fibrous tissue layer between PEEK and bone and has not been tested. Using in vivo ovine animal models, we asked: (1) Does PEEK-HA improve cortical and cancellous bone ongrowth compared with PEEK? (2) Does PEEK-HA improve bone ongrowth and fusion outcome in a more challenging functional ovine cervical fusion model? The in vivo responses of PEEK-HA Enhanced and PEEK-OPTIMA ® Natural were evaluated for bone ongrowth in the form of dowels implanted in the cancellous and cortical bone of adult sheep and examined at 4 and 12 weeks as well as interbody cervical fusion at 6, 12, and 26 weeks. The bone-implant interface was evaluated with radiographic and histologic endpoints for a qualitative assessment of direct bone contact of an intervening fibrous tissue later. Gamma-irradiated cortical allograft cages were evaluated as well. Incorporating HA into the PEEK matrix resulted in more direct bone apposition as opposed to the fibrous tissue interface with PEEK alone in the bone ongrowth as well as interbody cervical fusions. No adverse reactions were found at the implant-bone interface for either material. Radiography and histology revealed resorption and fracture of the allograft devices in vivo. Incorporating HA into PEEK provides a more favorable environment than PEEK alone for bone ongrowth. Cervical fusion was improved with PEEK-HA compared with PEEK alone as well as allograft bone interbody devices. Improving the bone-implant interface with a PEEK device by incorporating HA may improve interbody fusion results and requires further clinical studies.

  15. Effects of growth hormone and low dose estrogen on bone growth and turnover in long bones of hypophysectomized rats

    Science.gov (United States)

    Kidder, L. S.; Schmidt, I. U.; Evans, G. L.; Turner, R. T.

    1997-01-01

    Pituitary hormones are recognized as critical to longitudinal growth, but their role in the radial growth of bone and in maintaining cancellous bone balance are less clear. This investigation examines the histomorphometric effects of hypophysectomy (Hx) and ovariectomy (OVX) and the subsequent replacement of growth hormone (GH) and estrogen (E), in order to determine the effects and possible interactions between these two hormones on cortical and cancellous bone growth and turnover. The replacement of estrogen is of interest since Hx results in both pituitary and gonadal hormone insufficiencies, with the latter being caused by the Hx-associated reduction in follicle stimulating hormone (FSH). All hypophysectomized animals received daily supplements of hydrocortisone (500 microg/kg) and L-thyroxine (10 microg/kg), whereas intact animals received daily saline injections. One week following surgery, hypophysectomized animals received either daily injections of low-dose 17 beta-estradiol (4.8 microg/kg s.c.), 3 X/d recombinant human GH (2 U/kg s.c.), both, or saline for a period of two weeks. Flurochromes were administered at weekly intervals to label bone matrix undergoing mineralization. Whereas Hx resulted in reductions in body weight, uterine weight, and tibial length, OVX significantly increased body weight and tibial length, while reducing uterine weight. The combination of OVX and Hx resulted in values similar to Hx alone. Treatment with GH normalized body weight and bone length, while not affecting uterine weight in hypophysectomized animals. Estrogen increased uterine weight, while not impacting longitudinal bone growth and reduced body weight. Hypophysectomy diminished tibial cortical bone area through reductions in both mineral appositional rate (MAR) and bone formation rate (BFR). While E had no effect, GH increased both MAR and BFR, though not to sham-operated (control) levels. Hypophysectomy reduced proximal tibial trabecular number and cancellous bone

  16. Eosinophilic granuloma of bone in children

    International Nuclear Information System (INIS)

    Leblan, I.; Gaucher, H.; Hoeffel, J.C.; Arnould, V.; Galloy, M.A.; Mainard, L.

    1995-01-01

    Eosinophilic granuloma of bone or Langerhans cell histiocytosis is mostly unifocal. It appears on plain X Ray as a solitary destructive lesion of long bones or flat bones. Computerized tomography (CT) is useful to define the extension to the cortical bone and also to precisely localize the lesion when the anatomy is complex (hip, spine, base of the skull). Magnetic resonance (MR) is very useful in case of more aggressive lesions when there is extension to soft tissues. Differential diagnosis includes circumscribed osteitis and tumors in the case of extensive destruction. The natural course of solitary lesions is favorable, spontaneously or with therapy. The prognosis is more serious in the case of multiple lesions. (authors)

  17. Functional adaptation of long bone extremities involves the localized "tuning" of the cortical bone composition; evidence from Raman spectroscopy.

    Science.gov (United States)

    Buckley, Kevin; Kerns, Jemma G; Birch, Helen L; Gikas, Panagiotis D; Parker, Anthony W; Matousek, Pavel; Goodship, Allen E

    2014-01-01

    In long bones, the functional adaptation of shape and structure occurs along the whole length of the organ. This study explores the hypothesis that adaptation of bone composition is also site-specific and that the mineral-to-collagen ratio of bone (and, thus, its mechanical properties) varies along the organ's length. Raman spectroscopy was used to map the chemical composition of long bones along their entire length in fine spatial resolution (1 mm), and then biochemical analysis was used to measure the mineral, collagen, water, and sulfated glycosaminoglycan content where site-specific differences were seen. The results show that the mineral-to-collagen ratio of the bone material in human tibiae varies by 10% toward the flared extremities of the bone. Comparisons with long bones from other large animals (horses, sheep, and deer) gave similar results with bone material composition changing across tens of centimeters. The composition of the bone apatite also varied with the phosphate-to-carbonate ratio decreasing toward the ends of the tibia. The data highlight the complexity of adaptive changes and raise interesting questions about the biochemical control mechanisms involved. In addition to their biological interest, the data provide timely information to researchers developing Raman spectroscopy as a noninvasive tool for measuring bone composition in vivo (particularly with regard to sampling and measurement protocol).

  18. Functional adaptation of long bone extremities involves the localized ``tuning'' of the cortical bone composition; evidence from Raman spectroscopy

    Science.gov (United States)

    Buckley, Kevin; Kerns, Jemma G.; Birch, Helen L.; Gikas, Panagiotis D.; Parker, Anthony W.; Matousek, Pavel; Goodship, Allen E.

    2014-11-01

    In long bones, the functional adaptation of shape and structure occurs along the whole length of the organ. This study explores the hypothesis that adaptation of bone composition is also site-specific and that the mineral-to-collagen ratio of bone (and, thus, its mechanical properties) varies along the organ's length. Raman spectroscopy was used to map the chemical composition of long bones along their entire length in fine spatial resolution (1 mm), and then biochemical analysis was used to measure the mineral, collagen, water, and sulfated glycosaminoglycan content where site-specific differences were seen. The results show that the mineral-to-collagen ratio of the bone material in human tibiae varies by 10% toward the flared extremities of the bone. Comparisons with long bones from other large animals (horses, sheep, and deer) gave similar results with bone material composition changing across tens of centimeters. The composition of the bone apatite also varied with the phosphate-to-carbonate ratio decreasing toward the ends of the tibia. The data highlight the complexity of adaptive changes and raise interesting questions about the biochemical control mechanisms involved. In addition to their biological interest, the data provide timely information to researchers developing Raman spectroscopy as a noninvasive tool for measuring bone composition in vivo (particularly with regard to sampling and measurement protocol).

  19. Developing a new dental implant design and comparing its biomechanical features with four designs

    Directory of Open Access Journals (Sweden)

    Mansour Rismanchian

    2010-01-01

    Full Text Available Background: As various implant geometries present different biomechanical behaviors, the purpose of this work was to study stress distribution around tapered and cylindrical threaded implant geometries using three-dimensional finite element stress analysis. Methods : Seven implant models were constructed using Computer Assisted Designing system. After digitized models of mandibular section, the crowns were created. They were combined with implant models, which were previously imported into CATIA software. The combined solid model was transferred to ABAQOUS to create a finite element meshed model which was later analyzed regarding the highest maximum and minimum principal stresses of bone. Results: For all models, the highest stresses of cortical bone were located at the crestal cortical bone around the implant. Threaded implants, triangular thread form and taper body form showed a higher peak of tensile and compressive stress than non-threaded implants, square thread form and straight body form, respectively. A taper implant with triangular threads, which is doubled in the cervical portion of the body, had a significantly lower peak of tensile and compressive stress in the cortical bone than straight/taper triangular or square threaded implant forms. Conclusion: For the investigation of bone implant interfacial stress, the non-bonded state should be studied too. Confirmative clinical and biological studies are required in order to benefit from the results of this study.

  20. Minimal invasive surgery for unicameral bone cyst using demineralized bone matrix: a case series

    Directory of Open Access Journals (Sweden)

    Cho Hwan

    2012-07-01

    Full Text Available Abstract Background Various treatments for unicameral bone cyst have been proposed. Recent concern focuses on the effectiveness of closed methods. This study evaluated the effectiveness of demineralized bone matrix as a graft material after intramedullary decompression for the treatment of unicameral bone cysts. Methods Between October 2008 and June 2010, twenty-five patients with a unicameral bone cyst were treated with intramedullary decompression followed by grafting of demineralized bone matrix. There were 21 males and 4 female patients with mean age of 11.1 years (range, 3–19 years. The proximal metaphysis of the humerus was affected in 12 patients, the proximal femur in five, the calcaneum in three, the distal femur in two, the tibia in two, and the radius in one. There were 17 active cysts and 8 latent cysts. Radiologic change was evaluated according to a modified Neer classification. Time to healing was defined as the period required achieving cortical thickening on the anteroposterior and lateral plain radiographs, as well as consolidation of the cyst. The patients were followed up for mean period of 23.9 months (range, 15–36 months. Results Nineteen of 25 cysts had completely consolidated after a single procedure. The mean time to healing was 6.6 months (range, 3–12 months. Four had incomplete healing radiographically but had no clinical symptom with enough cortical thickness to prevent fracture. None of these four cysts needed a second intervention until the last follow-up. Two of 25 patients required a second intervention because of cyst recurrence. All of the two had a radiographical healing of cyst after mean of 10 additional months of follow-up. Conclusions A minimal invasive technique including the injection of DBM could serve as an excellent treatment method for unicameral bone cysts.

  1. Minimal invasive surgery for unicameral bone cyst using demineralized bone matrix: a case series.

    Science.gov (United States)

    Cho, Hwan Seong; Seo, Sung Hwa; Park, So Hyun; Park, Jong Hoon; Shin, Duk Seop; Park, Il Hyung

    2012-07-29

    Various treatments for unicameral bone cyst have been proposed. Recent concern focuses on the effectiveness of closed methods. This study evaluated the effectiveness of demineralized bone matrix as a graft material after intramedullary decompression for the treatment of unicameral bone cysts. Between October 2008 and June 2010, twenty-five patients with a unicameral bone cyst were treated with intramedullary decompression followed by grafting of demineralized bone matrix. There were 21 males and 4 female patients with mean age of 11.1  years (range, 3-19 years). The proximal metaphysis of the humerus was affected in 12 patients, the proximal femur in five, the calcaneum in three, the distal femur in two, the tibia in two, and the radius in one. There were 17 active cysts and 8 latent cysts. Radiologic change was evaluated according to a modified Neer classification. Time to healing was defined as the period required achieving cortical thickening on the anteroposterior and lateral plain radiographs, as well as consolidation of the cyst. The patients were followed up for mean period of 23.9 months (range, 15-36 months). Nineteen of 25 cysts had completely consolidated after a single procedure. The mean time to healing was 6.6 months (range, 3-12 months). Four had incomplete healing radiographically but had no clinical symptom with enough cortical thickness to prevent fracture. None of these four cysts needed a second intervention until the last follow-up. Two of 25 patients required a second intervention because of cyst recurrence. All of the two had a radiographical healing of cyst after mean of 10 additional months of follow-up. A minimal invasive technique including the injection of DBM could serve as an excellent treatment method for unicameral bone cysts.

  2. The Unique Brain Anatomy of Meditation Practitioners: Alterations in Cortical Gyrification

    Directory of Open Access Journals (Sweden)

    Eileen eLuders

    2012-02-01

    Full Text Available Several cortical regions are reported to vary in meditation practitioners. However, since prior analyses were focused on examining gray matter or cortical thickness, additional effects with respect to other cortical features might have remained undetected. Gyrification (the pattern and degree of cortical folding is an important cerebral characteristic related to the geometry of the brain’s surface. Cortical folding occurs early in development and might be linked to behavioral traits. Thus, exploring cortical gyrification in long-term meditators may provide additional clues with respect to the underlying anatomical correlates of meditation. This study examined cortical gyrification in a large sample (n=100 of meditators and controls, carefully matched for sex and age. Cortical gyrification was established via calculating mean curvature across thousands of vertices on individual cortical surface models. Pronounced group differences indicating larger gyrification in meditators were evident within the left precentral gyrus, right fusiform gyrus, right cuneus, as well as left and right anterior dorsal insula (the latter representing the global significance maximum. Although the exact functional implications of larger cortical gyrification remain to be established, these findings suggest the insula to be a key structure involved in aspects of meditation. For example, variations in insular complexity could affect the regulation of well-known distractions in the process of meditation, such as daydreaming, mind-wandering, and projections into past or future. Moreover, given that meditators are masters in introspection, awareness, and emotional control, increased insular gyrification may reflect an ideal integration of autonomic, affective, and cognitive processes. Due to the cross-sectional nature of this study, further research is necessary determine the relative contribution of nature and nurture to links between cortical gyrification and meditation.

  3. Treatment of active unicameral bone cysts with percutaneous injection of demineralized bone matrix and autogenous bone marrow.

    Science.gov (United States)

    Rougraff, Bruce T; Kling, Thomas J

    2002-06-01

    The treatment of unicameral bone cysts varies from open bone-grafting procedures to percutaneous injection of corticosteroids or bone marrow. The purpose of this study was to evaluate the feasibility and effectiveness of percutaneous injection of a mixture of demineralized bone matrix and autogenous bone marrow for the treatment of simple bone cysts. Twenty-three patients with an active unicameral bone cyst were treated with trephination and injection of allogeneic demineralized bone matrix and autogenous bone marrow. The patients were followed for an average of fifty months (range, thirty to eighty-one months), at which time pain, function, and radiographic signs of resolution of the cyst were assessed. The average time until the patients had pain relief was five weeks, and the average time until the patients returned to full, unrestricted activities was six weeks. Bone-healing at the site of the injection was first seen radiographically at three to six months. No patient had a pathologic fracture during this early bone-healing stage. Cortical remodeling was seen radiographically by six to nine months, and after one year the response was usually complete, changing very little from then on. Five patients required a second injection because of recurrence of the cyst, and all five had a clinically and radiographically quiescent cyst after an average of thirty-six additional months of follow-up. Seven of the twenty-three patients had incomplete healing manifested by small, persistent radiolucent areas within the original cyst. None of these cysts increased in size or resulted in pain or fracture. Percutaneous injection of allogeneic demineralized bone matrix and autogenous bone marrow is an effective treatment for unicameral bone cysts.

  4. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs.

    Science.gov (United States)

    Garcia, J A D; Souza, A L T; Cruz, L H C; Marques, P P; Camilli, J A; Nakagaki, W R; Esteves, A; Rossi-Junior, W C; Fernandes, G J M; Guerra, F D; Soares, E A

    2015-11-01

    The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179 ± 2.5 g. The rats were divided into three groups (n=06): CT (control), AC (chronic alcoholic), DT (detoxification). After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT) allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC) presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC - UNIFENAS.

  5. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs

    Directory of Open Access Journals (Sweden)

    J. A. D. Garcia

    Full Text Available Abstract The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179±2.5 g. The rats were divided into three groups (n=06: CT (control, AC (chronic alcoholic, DT (detoxification. After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC – UNIFENAS.

  6. Assessment of Bone Quality in Osteoporosis Treatment with Bone Anabolic Agents: Really Something New?

    Science.gov (United States)

    Ulivieri, Fabio M; Caudarella, Renata; Camisasca, Marzia; Cabrini, Daniela M; Merli, Ilaria; Messina, Carmelo; Piodi, Luca P

    2018-04-20

    Osteoporosis is a chronic pathologic condition, particularly of the elderly, in which a reduction of bone mineral density (BMD) weakens bone, leading to the so-called fragility fractures, most often of spine and femur. The gold standard exam for the quantitative measurement of BMD is the dual X-ray photon absorptiometry (DXA), a radiological method. However, a relevant number of fragility fractures occurs in the range of normal BMD values, meaning that also qualitative aspects of bone play a role, namely bone architecture and bone geometry. Bone structure is investigated by microCT and histomorphometry, which necessitate an invasive approach with a biopsy, usually taken at the iliac crest, not the typical site of fragility fractures. New tools, trabecular bone score (TBS) and hip structural analysis (HSA), obtained during DXA, can supply informations about bone structure of spine and femur, respectively, in a not invasive way. Therapy of osteoporosis is based on two types of drugs leading to an increase of BMD: antiresorptive and anabolic treatments. The antiresorptive drugs inhibit the osteoclasts, whereas teriparatide and, in part, strontium ranelate ameliorate bone structure. The present review deals with the relation between the anabolic drugs for osteoporosis and the cited new tools which investigate bone architecture and geometry, in order to clarify if they represent a real advantage in monitoring efficacy of osteoporosis' treatment. Data from the studies show that increases of TBS and HSA values after anabolic therapy are small and very close to their least significant change at the end of the usual period of treatment. Therefore, it is questionable if TBS and HSA are really helpful in monitoring bone quality and in defining reduction of individual fragility fracture risk during osteoporosis treatment with bone anabolic agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. A biomechanical comparison of headless tapered variable pitch compression and ao cortical bone screws for fixation of a simulated midbody transverse fracture of the proximal sesamoid bone in horses.

    Science.gov (United States)

    Eddy, Alison L; Galuppo, Larry D; Stover, Susan M; Taylor, Kenneth T; Jensen, David G

    2004-01-01

    To compare mechanical properties and failure characteristics of 2 methods of fixation for repair of a transverse, midbody fracture of the proximal sesamoid bone (PSB): 4.5-mm AO cortical bone screw (AO) placed in lag fashion and 4/5-mm Acutrak (AT) self-compressing screw. An in vitro biomechanical evaluation of intact forelimb preparations and forelimb preparations with a simulated midbody PSB fracture stabilized by a bone screw. Sixteen paired and 8 unilateral cadaveric equine forelimbs. A midbody transverse osteotomy was created in the medial PSB of bilateral forelimbs of 8 equine cadavers. The osteotomized PSB in 1 forelimb from each cadaver was repaired with an AO screw. The osteotomized PSB in each contralateral limb was repaired with an AT screw. Eight unilateral intact control limbs were also studied. Mechanical properties were determined from axial compression, single cycle to failure, load-deformation curves. Failure characteristics were determined by evaluation of video images and radiographs. No statistically significant differences were found between repair groups. Both AO and AT groups had significantly lower mechanical properties than intact limbs except for stiffness. AO and AT constructs were mechanically comparable when used to stabilize a simulated midbody fracture of the medial PSB. Both constructs were mechanically inferior to intact limbs. Clinical Relevance- The AT screw should be considered for clinical use because of the potential for less soft tissue impingement and superior biocompatibility compared with the stainless-steel AO screw. However, postoperative external coaptation is necessary to augment initial fracture stability for either fixation method, and to maintain a standing metacarpophalangeal joint dorsiflexion angle between 150 degrees and 155 degrees.

  8. Effects of mineral content on the fracture properties of equine cortical bone in double-notched beams.

    Science.gov (United States)

    McCormack, Jordan; Stover, Susan M; Gibeling, Jeffery C; Fyhrie, David P

    2012-06-01

    We recently developed a method to measure cortical bone fracture initiation toughness using a double-notched beam in four-point bending. This method was used to test the hypothesis that mineralization around the two notch roots is correlated with fracture toughness and crack extension (physical damage). Total energy absorbed to failure negatively correlated with average mineralization of the beam (r(2)=0.62), but not with notch root mineralization. Fracture initiation toughness was positively correlated to mineralization at the broken notch root (r(2)=0.34). Crack length extension at the unbroken notch was strongly negatively correlated with the average mineralization of the notch roots (r(2)=0.81) whereas crack length extension at the broken notch did not correlate with any of the mineralization measurements. Mineralization at the notch roots and the average mineralization contributed independently to the mechanical and damage properties. The data are consistent with a hypothesis that a) high notch root mineralization results in less stable crack length extension but high force to initiate unstable crack propagation while b) higher average mineralization leads to low post-yield (and total) energy absorption to failure. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Technical Note: Cortical thickness and density estimation from clinical CT using a prior thickness-density relationship

    Energy Technology Data Exchange (ETDEWEB)

    Humbert, Ludovic, E-mail: ludohumberto@gmail.com [Galgo Medical, Barcelona 08036 (Spain); Hazrati Marangalou, Javad; Rietbergen, Bert van [Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Río Barquero, Luis Miguel del [CETIR Centre Medic, Barcelona 08029 (Spain); Lenthe, G. Harry van [Biomechanics Section, KU Leuven–University of Leuven, Leuven 3001 (Belgium)

    2016-04-15

    Purpose: Cortical thickness and density are critical components in determining the strength of bony structures. Computed tomography (CT) is one possible modality for analyzing the cortex in 3D. In this paper, a model-based approach for measuring the cortical bone thickness and density from clinical CT images is proposed. Methods: Density variations across the cortex were modeled as a function of the cortical thickness and density, location of the cortex, density of surrounding tissues, and imaging blur. High resolution micro-CT data of cadaver proximal femurs were analyzed to determine a relationship between cortical thickness and density. This thickness-density relationship was used as prior information to be incorporated in the model to obtain accurate measurements of cortical thickness and density from clinical CT volumes. The method was validated using micro-CT scans of 23 cadaver proximal femurs. Simulated clinical CT images with different voxel sizes were generated from the micro-CT data. Cortical thickness and density were estimated from the simulated images using the proposed method and compared with measurements obtained using the micro-CT images to evaluate the effect of voxel size on the accuracy of the method. Then, 19 of the 23 specimens were imaged using a clinical CT scanner. Cortical thickness and density were estimated from the clinical CT images using the proposed method and compared with the micro-CT measurements. Finally, a case-control study including 20 patients with osteoporosis and 20 age-matched controls with normal bone density was performed to evaluate the proposed method in a clinical context. Results: Cortical thickness (density) estimation errors were 0.07 ± 0.19 mm (−18 ± 92 mg/cm{sup 3}) using the simulated clinical CT volumes with the smallest voxel size (0.33 × 0.33 × 0.5 mm{sup 3}), and 0.10 ± 0.24 mm (−10 ± 115 mg/cm{sup 3}) using the volumes with the largest voxel size (1.0 × 1.0 × 3.0 mm{sup 3}). A trend for the

  10. Technical Note: Cortical thickness and density estimation from clinical CT using a prior thickness-density relationship

    International Nuclear Information System (INIS)

    Humbert, Ludovic; Hazrati Marangalou, Javad; Rietbergen, Bert van; Río Barquero, Luis Miguel del; Lenthe, G. Harry van

    2016-01-01

    Purpose: Cortical thickness and density are critical components in determining the strength of bony structures. Computed tomography (CT) is one possible modality for analyzing the cortex in 3D. In this paper, a model-based approach for measuring the cortical bone thickness and density from clinical CT images is proposed. Methods: Density variations across the cortex were modeled as a function of the cortical thickness and density, location of the cortex, density of surrounding tissues, and imaging blur. High resolution micro-CT data of cadaver proximal femurs were analyzed to determine a relationship between cortical thickness and density. This thickness-density relationship was used as prior information to be incorporated in the model to obtain accurate measurements of cortical thickness and density from clinical CT volumes. The method was validated using micro-CT scans of 23 cadaver proximal femurs. Simulated clinical CT images with different voxel sizes were generated from the micro-CT data. Cortical thickness and density were estimated from the simulated images using the proposed method and compared with measurements obtained using the micro-CT images to evaluate the effect of voxel size on the accuracy of the method. Then, 19 of the 23 specimens were imaged using a clinical CT scanner. Cortical thickness and density were estimated from the clinical CT images using the proposed method and compared with the micro-CT measurements. Finally, a case-control study including 20 patients with osteoporosis and 20 age-matched controls with normal bone density was performed to evaluate the proposed method in a clinical context. Results: Cortical thickness (density) estimation errors were 0.07 ± 0.19 mm (−18 ± 92 mg/cm"3) using the simulated clinical CT volumes with the smallest voxel size (0.33 × 0.33 × 0.5 mm"3), and 0.10 ± 0.24 mm (−10 ± 115 mg/cm"3) using the volumes with the largest voxel size (1.0 × 1.0 × 3.0 mm"3). A trend for the cortical thickness and

  11. Geometry reconstruction method for patient-specific finite element models for the assessment of tibia fracture risk in osteogenesis imperfecta.

    Science.gov (United States)

    Caouette, Christiane; Ikin, Nicole; Villemure, Isabelle; Arnoux, Pierre-Jean; Rauch, Frank; Aubin, Carl-Éric

    2017-04-01

    Lower limb deformation in children with osteogenesis imperfecta (OI) impairs ambulation and may lead to fracture. Corrective surgery is based on empirical assessment criteria. The objective was to develop a reconstruction method of the tibia for OI patients that could be used as input of a comprehensive finite element model to assess fracture risks. Data were obtained from three children with OI and tibia deformities. Four pQCT scans were registered to biplanar radiographs, and a template mesh was deformed to fit the bone outline. Cortical bone thickness was computed. Sensitivity of the model to missing slices of pQCT was assessed by calculating maximal von Mises stress for a vertical hopping load case. Sensitivity of the model to ±5 % of cortical thickness measurements was assessed by calculating loads at fracture. Difference between the mesh contour and bone outline on the radiographs was below 1 mm. Removal of one pQCT slice increased maximal von Mises stress by up to 10 %. Simulated ±5 % variation of cortical bone thickness leads to variations of up to 4.1 % on predicted fracture loads. Using clinically available tibia imaging from children with OI, the developed reconstruction method allowed the building of patient-specific finite element models.

  12. Urinary and Anthropometrical Indices of Bone Density in Healthy ...

    African Journals Online (AJOL)

    Measurements on the x-ray of the 2nd metacarpal of the right hand and 2h fasting urine sample were used in a cross sectional study to assess urinary indices of bone density (bone mass, percentage cortical area, PCA) in 94 healthy Nigerian adults aged between 19-72 years. Body mass index (BMI) was also estimated.

  13. Histone deacetylase 3 is required for maintenance of bone mass during aging

    Science.gov (United States)

    McGee-Lawrence, Meghan E.; Bradley, Elizabeth W.; Dudakovic, Amel; Carlson, Samuel W.; Ryan, Zachary C.; Kumar, Rajiv; Dadsetan, Mahrokh; Yaszemski, Michael J.; Chen, Qingshan; An, Kai-Nan; Westendorf, Jennifer J.

    2012-01-01

    Histone deacetylase 3 (Hdac3) is a nuclear enzyme that removes acetyl groups from lysine residues in histones and other proteins to epigenetically regulate gene expression. Hdac3 interacts with bone-related transcription factors and co-factors such as Runx2 and Zfp521, and thus is poised to play a key role in the skeletal system. To understand the role of Hdac3 in osteoblasts and osteocytes, Hdac3 conditional knockout (CKO) mice were created with the Osteocalcin (OCN) promoter driving Cre expression. Hdac3 CKOOCN mice were of normal size and weight, but progressively lost trabecular and cortical bone mass with age. The Hdac3 CKOOCN mice exhibited reduced cortical bone mineralization and material properties and suffered frequent fractures. Bone resorption was lower, not higher, in the Hdac3 CKOOCN mice, suggesting that primary defects in osteoblasts caused the reduced bone mass. Indeed, reductions in bone formation were observed. Osteoblasts and osteocytes from Hdac3 CKOOCN mice showed increased DNA damage and reduced functional activity in vivo and in vitro. Thus, Hdac3 expression in osteoblasts and osteocytes is essential for bone maintenance during aging. PMID:23085085

  14. USE OF CORTICAL BONE FENESTRATION, AUTOGENOUS FREE SKIN GRAFT, AND THERMOGRAPHY FOR WOUND TREATMENT AND MONITORING IN A RED WOLF (CANIS RUFUS GREGORYI).

    Science.gov (United States)

    Hurley-Sanders, Jennifer L; Sladky, Kurt K; Nolan, Elizabeth C; Loomis, Michael R

    2015-09-01

    A 2-yr-old female red wolf (Canis rufus gregoryi) sustained a degloving injury to the left thoracic limb while in a display habitat. Initial attempts to resolve the extensive wound by using conservative measures were unsuccessful. Subsequent treatment using a free skin graft consisted first of establishment of an adequate granulation bed via cortical bone fenestration. After establishment of a healthy granulation bed was achieved, free skin graft was harvested and transposed over the bed. To monitor viability and incorporation of the graft, serial thermographic imaging was performed. Thermography noninvasively detects radiant heat patterns and can be used to assess vascularization of tissue, potentially allowing early detection of graft failure. In this case, thermography documented successful graft attachment.

  15. Dual-photon absorptiometry: A new method of determining bone mineral content. Pt. 1

    International Nuclear Information System (INIS)

    Buttermann, G.; Eiber, J.; Hennig, J.; Pabst, H.W.

    1988-01-01

    Cortical (neck of femur) and trabecular (L 2-4) bone mass has been determined repeatedly with DPA using 153 Gd (NOVO Lab 22 a) in 545 females and 112 males with no evidence of bone diseases. Measured 'normal' (age- and sex-related average) values for bone mineral content (BMC) differed significantly (p [de

  16. [Bone graft reconstruction for posterior mandibular segment using the formwork technique].

    Science.gov (United States)

    Pascual, D; Roig, R; Chossegros, C

    2014-04-01

    Pre-implant bone graft in posterior mandibular segments is difficult because of masticatory and lingual mechanical constraints, because of the limited bone vascularization, and because of the difficulty to cover it with the mucosa. The formwork technique is especially well adapted to this topography. The recipient site is abraded with a drill. Grooves are created to receive and stabilize the grafts. The bone grafts were harvested from the ramus. The thinned cortices are assembled in a formwork and synthesized by mini-plates. The gaps are filled by bone powder collected during bone harvesting. The bone volume reconstructed with the formwork technique allows anchoring implants more than 8mm long. The proximity of the inferior alveolar nerve does not contra indicate this technique. The formwork size and its positioning on the alveolar crest can be adapted to prosthetic requirements by using osteosynthesis plates. The lateral implant walls are supported by the formwork cortices; the implant apex is anchored on the native alveolar crest. The primary stability of implants is high, and the torque is important. The ramus harvesting decreases operative risks. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Intrinsic material property differences in bone tissue from patients suffering low-trauma osteoporotic fractures, compared to matched non-fracturing women.

    Science.gov (United States)

    Vennin, S; Desyatova, A; Turner, J A; Watson, P A; Lappe, J M; Recker, R R; Akhter, M P

    2017-04-01

    Osteoporotic (low-trauma) fractures are a significant public health problem. Over 50% of women over 50yrs. of age will suffer an osteoporotic fracture in their remaining lifetimes. While current therapies reduce skeletal fracture risk by maintaining or increasing bone density, additional information is needed that includes the intrinsic material strength properties of bone tissue to help develop better treatments, since measurements of bone density account for no more than ~50% of fracture risk. The hypothesis tested here is that postmenopausal women who have sustained osteoporotic fractures have reduced bone quality, as indicated with measures of intrinsic material properties compared to those who have not fractured. Transiliac biopsies (N=120) were collected from fracturing (N=60, Cases) and non-fracturing postmenopausal women (N=60, age- and BMD-matched Controls) to measure intrinsic material properties using the nano-indentation technique. Each biopsy specimen was embedded in epoxy resin and then ground, polished and used for the nano-indentation testing. After calibration, multiple indentations were made using quasi-static (hardness, modulus) and dynamic (storage and loss moduli) testing protocols. Multiple indentations allowed the median and variance to be computed for each type of measurement for each specimen. Cases were found to have significantly lower median values for cortical hardness and indentation modulus. In addition, cases showed significantly less within-specimen variability in cortical modulus, cortical hardness, cortical storage modulus and trabecular hardness, and more within-specimen variability in trabecular loss modulus. Multivariate modeling indicated the presence of significant independent mechanical effects of cortical loss modulus, along with variability of cortical storage modulus, cortical loss modulus, and trabecular hardness. These results suggest mechanical heterogeneity of bone tissue may contribute to fracture resistance

  18. The Role of Body Weight on Bone in Anorexia Nervosa

    DEFF Research Database (Denmark)

    Frølich, Jacob; Hansen, Stinus; Winkler, Laura Al-Dakhiel

    2017-01-01

    Anorexia nervosa (AN) is associated with decreased bone mineral density and increased risk of fracture. The aim of this study was to assess bone geometry, volumetric bone mineral density (vBMD), trabecular microarchitecture and estimated failure load in weight-bearing vs. non-weight-bearing bones...

  19. Excessive growth hormone expression in male GH transgenic mice adversely alters bone architecture and mechanical strength.

    Science.gov (United States)

    Lim, S V; Marenzana, M; Hopkinson, M; List, E O; Kopchick, J J; Pereira, M; Javaheri, B; Roux, J P; Chavassieux, P; Korbonits, M; Chenu, C

    2015-04-01

    Patients with acromegaly have a higher prevalence of vertebral fractures despite normal bone mineral density (BMD), suggesting that GH overexpression has adverse effects on skeletal architecture and strength. We used giant bovine GH (bGH) transgenic mice to analyze the effects of high serum GH levels on BMD, architecture, and mechanical strength. Five-month-old hemizygous male bGH mice were compared with age- and sex-matched nontransgenic littermates controls (NT; n=16/group). Bone architecture and BMD were analyzed in tibia and lumbar vertebrae using microcomputed tomography. Femora were tested to failure using three-point bending and bone cellular activity determined by bone histomorphometry. bGH transgenic mice displayed significant increases in body weight and bone lengths. bGH tibia showed decreases in trabecular bone volume fraction, thickness, and number compared with NT ones, whereas trabecular pattern factor and structure model index were significantly increased, indicating deterioration in bone structure. Although cortical tissue perimeter was increased in transgenic mice, cortical thickness was reduced. bGH mice showed similar trabecular BMD but reduced trabecular thickness in lumbar vertebra relative to controls. Cortical BMD and thickness were significantly reduced in bGH lumbar vertebra. Mechanical testing of femora confirmed that bGH femora have decreased intrinsic mechanical properties compared with NT ones. Bone turnover is increased in favor of bone resorption in bGH tibia and vertebra compared with controls, and serum PTH levels is also enhanced in bGH mice. These data collectively suggest that high serum GH levels negatively affect bone architecture and quality at multiple skeletal sites.

  20. Biomechanical comparison of two different collar structured implants supporting 3-unit fixed partial denture: a 3-D FEM study.

    Science.gov (United States)

    Meriç, Gökçe; Erkmen, Erkan; Kurt, Ahmet; Eser, Atilim; Ozden, Ahmet Utku

    2012-01-01

    The purpose of the study was to compare the effects of two distinct collar geometries of implants on stress distribution in the bone as well as in the fixture-abutment complex, in the framework and in the veneering material of 3-unit fixed partial denture (FPD). The 3-dimensional finite element analysis method was selected to evaluate the stress distribution in the system composed of 3-unit FPD supported by two different dental implant systems with two distinct collar geometries; microthread collar structure (MCS) and non-microthread collar structure (NMCS). In separate load cases, 300 N vertical, 150 N oblique and 60 N horizontal, forces were utilized to simulate the multidirectional chewing forces. Tensile and compressive stress values in the cortical and cancellous bone and von Mises stresses in the fixture-abutment complex, in the framework and veneering material, were simulated as a body and investigated separately. In the cortical bone lower stress values were found in the MCS model, when compared with NMCS. In the cancellous bone, lower stress values were observed in the NMCS model when compared with MCS. In the implant-abutment complex, highest von Mises stress values were noted in the NMCS model; however, in the framework and veneering material, highest stress values were calculated in MCS model. MCS implants when compared with NMCS implants supporting 3-unit FPDs decrease the stress values in the cortical bone and implant-abutment complex. The results of the present study will be evaluated as a base for our ongoing FEA studies focused on stress distribution around the microthread and non-microthread collar geometries with various prosthesis design.

  1. Preservation of bone structure and function by Lithothamnion sp. derived minerals.

    Science.gov (United States)

    Aslam, Muhammad Nadeem; Bergin, Ingrid; Jepsen, Karl; Kreider, Jaclynn M; Graf, Kristin H; Naik, Madhav; Goldstein, Steven A; Varani, James

    2013-12-01

    Progressive bone mineral loss and increasing bone fragility are hallmarks of osteoporosis. A combination of minerals isolated from the red marine algae, Lithothamnion sp. was examined for ability to inhibit bone mineral loss in female mice maintained on either a standard rodent chow (control) diet or a high-fat western diet (HFWD) for 5, 12, and 18 months. At each time point, femora were subjected to μ-CT analysis and biomechanical testing. A subset of caudal vertebrae was also analyzed. Following this, individual elements were assessed in bones. Serum levels of the 5b isoform of tartrate-resistant acid phosphatase (TRAP) and procollagen type I propeptide (P1NP) were also measured. Trabecular bone loss occurred in both diets (evident as early as 5 months). Cortical bone increased through month 5 and then declined. Cortical bone loss was primarily in mice on the HFWD. Inclusion of the minerals in the diet reduced bone mineral loss in both diets and improved bone strength. Bone mineral density was also enhanced by these minerals. Of several cationic minerals known to be important to bone health, only strontium was significantly increased in bone tissue from animals fed the mineral diets, but the increase was large (5-10 fold). Serum levels of TRAP were consistently higher in mice receiving the minerals, but levels of P1NP were not. These data suggest that trace minerals derived from marine red algae may be used to prevent progressive bone mineral loss in conjunction with calcium. Mineral supplementation could find use as part of an osteoporosis-prevention strategy.

  2. The Unique Brain Anatomy of Meditation Practitioners: Alterations in Cortical Gyrification

    Science.gov (United States)

    Luders, Eileen; Kurth, Florian; Mayer, Emeran A.; Toga, Arthur W.; Narr, Katherine L.; Gaser, Christian

    2012-01-01

    Several cortical regions are reported to vary in meditation practitioners. However, prior analyses have focused primarily on examining gray matter or cortical thickness. Thus, additional effects with respect to other cortical features might have remained undetected. Gyrification (the pattern and degree of cortical folding) is an important cerebral characteristic related to the geometry of the brain’s surface. Thus, exploring cortical gyrification in long-term meditators may provide additional clues with respect to the underlying anatomical correlates of meditation. This study examined cortical gyrification in a large sample (n = 100) of meditators and controls, carefully matched for sex and age. Cortical gyrification was established by calculating mean curvature across thousands of vertices on individual cortical surface models. Pronounced group differences indicating larger gyrification in meditators were evident within the left precentral gyrus, right fusiform gyrus, right cuneus, as well as left and right anterior dorsal insula (the latter representing the global significance maximum). Positive correlations between gyrification and the number of meditation years were similarly pronounced in the right anterior dorsal insula. Although the exact functional implications of larger cortical gyrification remain to be established, these findings suggest the insula to be a key structure involved in aspects of meditation. For example, variations in insular complexity could affect the regulation of well-known distractions in the process of meditation, such as daydreaming, mind-wandering, and projections into past or future. Moreover, given that meditators are masters in introspection, awareness, and emotional control, increased insular gyrification may reflect an integration of autonomic, affective, and cognitive processes. Due to the cross-sectional nature of this study, further research is necessary to determine the relative contribution of nature and nurture to

  3. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    Science.gov (United States)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  4. Auger electron spectroscopy for the determination of sex and age related Ca/P ratio at different bone sites

    International Nuclear Information System (INIS)

    Balatsoukas, Ioannis; Kourkoumelis, Nikolaos; Tzaphlidou, Margaret

    2010-01-01

    The Ca/P ratio of normal cortical and trabecular rat bone was measured by Auger electron spectroscopy (AES). Semiquantitative analysis was carried out using ratio techniques to draw conclusions on how age, sex and bone site affect the relative composition of calcium and phosphorus. Results show that Ca/P ratio is not sex dependent; quite the opposite, bone sites exhibit variations in elemental stoichiometry where femoral sections demonstrate higher Ca/P ratio than rear and front tibias. Age-related changes are more distinct for cortical bone in comparison with the trabecular bone. The latter's Ca/P ratio remains unaffected from all the parameters under study. This study confirms that AES is able to successfully quantify bone mineral main elements when certain critical points, related to the experimental conditions, are addressed effectively.

  5. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis)

    OpenAIRE

    McGee, Meghan E.; Maki, Aaron J.; Johnson, Steven E.; Lynne Nelson, O.; Robbins, Charles T.; Donahue, Seth W.

    2007-01-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. ...

  6. Dipeptidyl Peptidase-4 Inhibitor, Vildagliptin, Improves Trabecular Bone Mineral Density and Microstructure in Obese, Insulin-Resistant, Pre-diabetic Rats.

    Science.gov (United States)

    Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Teerapornpuntakit, Jarinthorn; Aeimlapa, Ratchaneevan; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2018-02-02

    Obese insulin resistance and type 2 diabetes mellitus profoundly impair bone mechanical properties and bone quality. However, because several antidiabetes drugs, especially thiazolidinediones, further aggravate bone loss in individuals with diabetes, diabetic osteopathy should not be treated by using simply any glucose-lowering agents. Recently, incretins have been reported to affect osteoblast function positively. The present study aimed to investigate the effects of vildagliptin, an inhibitor of dipeptidyl peptidase-4, on bone of rats with high-fat-diet-induced prediabetes. Male rats were fed a high-fat diet for 12 weeks to induce obese insulin resistance and then treated with vildagliptin for 4 weeks. The effects of the drug on bone were determined by microcomputed tomography and bone histomorphometry. Vildagliptin markedly improved insulin resistance in these obese insulin-resistant rats. It also significantly increased volumetric bone mineral density. Specifically, vildagliptin-treated obese insulin-resistant rats exhibited higher trabecular volumetric bone mineral density than vehicle-treated obese insulin-resistant rats, whereas cortical volumetric bone mineral density, cortical thickness and area were not changed. Bone histomorphometric analysis in a trabecular-rich area (i.e. tibial metaphysis) revealed greater trabecular bone volume and number and less trabecular separation without change in trabecular thickness, osteocyte lacunar area or cortical thickness in the vildagliptin-treated group. Vildagliptin had a beneficial effect on the bone of obese insulin-resistant rats with prediabetes, particularly at the trabecular site. Such benefit probably results from enhanced bone formation rather than from suppressed bone resorption. Copyright © 2018 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  7. Benign bone tumors

    International Nuclear Information System (INIS)

    Gilday, D.L.; Ash, J.M.

    1976-01-01

    There is little information in the literature concerning the role of bone scanning in benign bone neoplasms except for sporadic reports. Since the advent of /sup 99m/Tc-polyphosphate, bone imaging has proven feasible and useful in locating the cause of bone pain, such as in osteoid osteomas, which are not always radiologically apparent, and in evaluating whether or not a radiologic lesion is indeed benign and solitary. Blood-pool images are particularly important in neoplastic disease, since the absence of hyperemia in the immediate postinjection period favors the diagnosis of a benign neoplasm, as does low-grade uptake on the delayed study. The scan, including pinhole magnification images, is especially valuable in diagnosing lesions in the spine and pelvis, which are poorly seen radiologically. We have studied various types of benign bone tumors, including simple and aneurysmal bone cysts, fibrous cortical defects, and nonossifying fibromas, all of which had minimal or no increased uptake of the radiopharmaceutical, unless traumatized. Although osteochondromas and enchondromas showed varied accumulation of activity, the scan was useful in differentiating these from sarcomatous lesions. All osteoid osteomas demonstrated marked activity, and could be accurately located preoperatively, as could the extent of fibrous dysplasia. The bone scan in the reticuloses also showed abnormal accumulation of activity, and aided in arriving at the prognosis and treatment of histiocytic bone lesions

  8. Bone Mechanical Properties and Mineral Density in Response to Cessation of Jumping Exercise and Honey Supplementation in Young Female Rats

    Directory of Open Access Journals (Sweden)

    Somayeh Sadat Tavafzadeh

    2015-01-01

    Full Text Available This study investigated effects of cessation of exercise and honey supplementation on bone properties in young female rats. Eighty-four 12-week-old Sprague-Dawley female rats were divided into 7 groups: 16S, 16J, 16H, 16JH, 8J8S, 8H8S, and 8JH8S (8 = 8 weeks, 16 = 16 weeks, S = sedentary without honey supplementation, H = honey supplementation, and J = jumping exercise. Jumping exercise consisted of 40 jumps/day for 5 days/week. Honey was given to the rats at a dosage of 1 g/kg body weight/rat/day via force feeding for 7 days/week. Jumping exercise and honey supplementation were terminated for 8 weeks in 8J8S, 8H8S, and 8JH8S groups. After 8 weeks of cessation of exercise and honey supplementation, tibial energy, proximal total bone density, midshaft cortical moment of inertia, and cortical area were significantly higher in 8JH8S as compared to 16S. Continuous sixteen weeks of combined jumping and honey resulted in significant greater tibial maximum force, energy, proximal total bone density, proximal trabecular bone density, midshaft cortical bone density, cortical area, and midshaft cortical moment of inertia in 16JH as compared to 16S. These findings showed that the beneficial effects of 8 weeks of combined exercise and honey supplementation still can be observed after 8 weeks of the cessation and exercise and supplementation.

  9. Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation

    DEFF Research Database (Denmark)

    Justesen, Jeannette; Mosekilde, Lis; Holmes, Megan

    2004-01-01

    Glucocorticoids (GCs) exert potent, but poorly characterized, effects on the skeleton. The cellular activity of GCs is regulated at a prereceptor level by 11beta-hydroxysteroid dehydrogenases (11betaHSDs). The type 1 isoform, which predominates in bone, functions as a reductase in intact cells...... and regenerates active cortisol (corticosterone) from circulating inert 11-keto forms. The aim of the present study was to investigate the role of this intracrine activation of GCs on normal bone physiology in vivo using mice deficient in 11betaHSD1 (HSD1(-/-)). The HSD1(-/-) mice exhibited no significant changes...... in cortical or trabecular bone mass compared with wild-type (Wt) mice. Aged HSD1(-/-) mice showed age-related bone loss similar to that observed in Wt mice. Histomorphometric analysis showed similar bone formation and bone resorption parameters in HSD1(-/-) and Wt mice. However, examination of bone marrow...

  10. Degeneration of the osteocyte network in the C57BL/6 mouse model of aging.

    Science.gov (United States)

    Tiede-Lewis, LeAnn M; Xie, Yixia; Hulbert, Molly A; Campos, Richard; Dallas, Mark R; Dusevich, Vladimir; Bonewald, Lynda F; Dallas, Sarah L

    2017-10-26

    Age-related bone loss and associated fracture risk are major problems in musculoskeletal health. Osteocytes have emerged as key regulators of bone mass and as a therapeutic target for preventing bone loss. As aging is associated with changes in the osteocyte lacunocanalicular system, we focused on the responsible cellular mechanisms in osteocytes. Bone phenotypic analysis was performed in young-(5mo) and aged-(22mo) C57BL/6 mice and changes in bone structure/geometry correlated with alterations in osteocyte parameters determined using novel multiplexed-3D-confocal imaging techniques. Age-related bone changes analogous to those in humans were observed, including increased cortical diameter, decreased cortical thickness, reduced trabecular BV/TV and cortical porosities. This was associated with a dramatic reduction in osteocyte dendrite number and cell density, particularly in females, where osteocyte dendricity decreased linearly from 5, 12, 18 to 22mo and correlated significantly with cortical bone parameters. Reduced dendricity preceded decreased osteocyte number, suggesting dendrite loss may trigger loss of viability. Age-related degeneration of osteocyte networks may impair bone anabolic responses to loading and gender differences in osteocyte cell body and lacunar fluid volumes we observed in aged mice may lead to gender-related differences in mechanosensitivity. Therapies to preserve osteocyte dendricity and viability may be beneficial for bone health in aging.

  11. Role of bone photonic densitometry in uremic osteodystrophy

    International Nuclear Information System (INIS)

    Specchi Bighi, E.; Baldelli, S.; Argalia, G.

    1987-01-01

    The aim of this investigation is to evaluate the role of bone photonic densitometry in uremic osteodystrophy. Bone mineral contenent (BMC) and bone density (BD) have been measured in 80 hemodialyzed patients by double photonic emission densitometry. Photonic densitometry shows an higher sensibility to quantitative changes in bone mineral contenent than metacarpal index (IM). Photonic densitometry is unable to differentiate osteoporosis from osteomalacia; this differential diagnosis can be obtained by radiological analysis: low BD and low IM means osteoporosis, low BD and resorptive changes in cortical bone means osteomalacia and/or hyperparathyroidism. Photonic densitometry is particulary suitable for uremic osteodystrophy follow-up because of its easy ripetibility and innocuousness and for its close correlation with iPTH variations

  12. Assessment of bone mineral content in the internal bone volume

    International Nuclear Information System (INIS)

    Hoeiseth, A.; Alho, A.; Husby, T.; Ullevaal Sykehus, Oslo

    1991-01-01

    A method for assessing values related to bone density and mass is described. Mean attenuation and pixel area are measured in pixels selected on the basis of CT units. The method is to a large extent computerized and not dependent on manual positioning or outlining of a region of interest. Because it is not dependent on a comparatively large volume of homogeneous bone it can be used to make assessments even in very heterogeneous bones including cortical bone. The method is adaptable for measurement in all parts of the skeleton and values related to both bone density (DRV) and bone mass (MRV) are derived. The measurements in the femoral condyles were shown to have a precision of approximately 0.25 to 0.30 Z-score units (standard deviation of the measurements expressed in Z-score units). The agreement between chemically analyzed calcium density (weight of calcium per volume) and DRV was little less than 0.50 Z-scores and 0.30 Z-scores for the chemically determined calcium mass and the MRV. The agreement with mechanical bone strength was 0.78 Z-scores for DRV and 0.64 for the MRV. Altering scan parameters or measuring approaches gave systematic differences in the measurements. There were, however, good linear correlations between the measurements which show that these different measuring approaches essentially gave identical measurements. (orig.)

  13. The effects of cutting parameters on cutting forces and heat generation when drilling animal bone and biomechanical test materials.

    Science.gov (United States)

    Cseke, Akos; Heinemann, Robert

    2018-01-01

    The research presented in this paper investigated the effects of spindle speed and feed rate on the resultant cutting forces (thrust force and torque) and temperatures while drilling SawBones ® biomechanical test materials and cadaveric cortical bone (bovine and porcine femur) specimens. It also investigated cortical bone anisotropy on the cutting forces, when drilling in axial and radial directions. The cutting forces are only affected by the feed rate, whereas the cutting temperature in contrast is affected by both spindle speed and feed rate. The temperature distribution indicates friction as the primary heat source, which is caused by the rubbing of the tool margins and the already cut chips over the borehole wall. Cutting forces were considerably higher when drilling animal cortical bone, in comparison to cortical test material. Drilling direction, and therewith anisotropy, appears to have a negligible effect on the cutting forces. The results suggest that this can be attributed to the osteons being cut at an angle rather than in purely axial or radial direction, as a result of a twist drill's point angle. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Bone structure in two adult subjects with impaired minor spliceosome function resulting from RNU4ATAC mutations causing microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1).

    Science.gov (United States)

    Krøigård, Anne Bruun; Frost, Morten; Larsen, Martin Jakob; Ousager, Lilian Bomme; Frederiksen, Anja Lisbeth

    2016-11-01

    Microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1), or Taybi-Linder syndrome is characterized by distinctive skeletal dysplasia, severe intrauterine and postnatal growth retardation, microcephaly, dysmorphic features, and neurological malformations. It is an autosomal recessive disorder caused by homozygous or compound heterozygous mutations in the RNU4ATAC gene resulting in impaired function of the minor spliceosome. Here, we present the first report on bone morphology, bone density and bone microstructure in two adult MOPD1 patients and applied radiographs, dual energy X-ray absorptiometry, high-resolution peripheral quantitative computed tomography and biochemical evaluation. The MOPD1 patients presented with short stature, low BMI but normal macroscopic bone configuration. Bone mineral density was low. Compared to Danish reference data, total bone area, cortical bone area, cortical thickness, total bone density, cortical bone density, trabecular bone density and trabecular bone volume per tissue volume (BV/TV) were all low. These findings may correlate to the short stature and low body weight of the MOPD1 patients. Our findings suggest that minor spliceosome malfunction may be associated with altered bone modelling. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Biomechanical competence of six different bone screws for reconstructive surgery in three different transplants: Fibular, iliac crest, scapular and artificial bone.

    Science.gov (United States)

    Pietsch, Arnold P; Raith, Stefan; Ode, Jan-Eric; Teichmann, Jan; Lethaus, Bernd; Möhlhenrich, Stephan C; Hölzle, Frank; Duda, Georg N; Steiner, Timm

    2016-06-01

    The goal of this study was to determine a combination of screw and transplantation type that offers optimal primary stability for reconstructive surgery. Fibular, iliac crest, and scapular transplants were tested along with artificial bone substrate. Six different kinds of bone screws (Medartis(©)) were compared, each type utilized with one of six specimens from human transplants (n = 6). Controlled screw-in-tests were performed and the required torque was protocolled. Subsequently, pull-out-tests were executed to determine the retention forces. The artificial bone substitute material showed significantly higher retention forces than real bone samples. The self-drilling screws achieved the significantly highest retention values in the synthetic bone substitute material. Cancellous screws achieved the highest retention in the fibular transplants, while self-drilling and cancellous screws demonstrated better retention than cortical screws in the iliac crest. In the scapular graft, no significant differences were found between the screw types. In comparison to the human transplant types, the cortical screws showed the significantly highest values in the fibula and the lowest values in the iliac crest. The best retention was found in the combination of cancellous screws with fibular graft (514.8 N + -252.3 N). For the flat bones (i.e., scapular and illiac crest) we recommend the cancellous screws. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  16. L-line x-ray fluorescence of cortical bone lead compared with the CaNa2EDTA test in lead-toxic children: public health implications

    International Nuclear Information System (INIS)

    Rosen, J.F.; Markowitz, M.E.; Bijur, P.E.; Jenks, S.T.; Wielopolski, L.; Kalef-Ezra, J.A.; Slatkin, D.N.

    1989-01-01

    Mild to moderate lead toxicity (blood lead, 25-55 micrograms/dl) is a preventable pediatric illness affecting several million preschool children (lead-toxic children) in the United States. In-hospital lead-chelation treatment is predicated upon a positive CaNa 2 EDTA test, which is difficult to perform and impractical in large populations. After the development of an L-line x-ray fluorescence technique (LXRF) that measures cortical bone lead content safely, rapidly, and noninvasively, this study was initiated in lead-toxic children to compare LXRF with the CaNa 2 EDTA test. Moreover, LXRF provided the opportunity to quantify bone lead content. From blood lead and LXRF alone, 90% of lead-toxic children were correctly classified as being CaNa 2 EDTA-positive or -negative. In 76% of 59 lead-toxic children, bone lead values measured by LXRF were equal to or greater than those measured in normal and industrially exposed adults. These results indicate that LXRF may be capable of replacing the CaNa 2 EDTA test. When considered with the known neurotoxic effects on children of low levels of exposure to lead, these results also suggest that either an excessively narrow margin of safety or insufficient safety is provided by present U.S. guidelines, which classify an elevated blood lead concentration as 25 micrograms/dl or greater

  17. The Anabolic Effect of PTH on Bone is Attenuated by Simultaneous Glucocorticoid Treatment

    DEFF Research Database (Denmark)

    Oxlund, Hans; Ørtoft, Gitte; Thomsen, Jesper Skovhus

    2006-01-01

    . The pronounced anabolic effect of PTH injections on the endocortical and trabecular bone surfaces and less pronounced anabolic effect on periosteal surfaces were partially inhibited, but not prevented, by simultaneous GC treatment in old rats. Both cortical and cancellous bone possessed full mechanical...

  18. Thermal processing of bone: in vitro response of mesenchymal cells to bone-conditioned medium.

    Science.gov (United States)

    Sawada, K; Caballé-Serrano, J; Schuldt Filho, G; Bosshardt, D D; Schaller, B; Buser, D; Gruber, R

    2015-08-01

    The autoclaving, pasteurization, and freezing of bone grafts to remove bacteria and viruses, and for preservation, respectively, is considered to alter biological properties during graft consolidation. Fresh bone grafts release paracrine-like signals that are considered to support tissue regeneration. However, the impact of the autoclaving, pasteurization, and freezing of bone grafts on paracrine signals remains unknown. Therefore, conditioned medium was prepared from porcine cortical bone chips that had undergone thermal processing. The biological properties of the bone-conditioned medium were assessed by examining the changes in expression of target genes in oral fibroblasts. The data showed that conditioned medium obtained from bone chips that had undergone pasteurization and freezing changed the expression of adrenomedullin, pentraxin 3, BTB/POZ domain-containing protein 11, interleukin 11, NADPH oxidase 4, and proteoglycan 4 by at least five-fold in oral fibroblasts. Bone-conditioned medium obtained from autoclaved bone chips, however, failed to change the expression of the respective genes. Also, when bone-conditioned medium was prepared from fresh bone chips, autoclaving blocked the capacity of bone-conditioned medium to modulate gene expression. These in vitro results suggest that pasteurization and freezing of bone grafts preserve the release of biologically active paracrine signals, but autoclaving does not. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Microstructural and Photoacoustic Infrared Spectroscopic Studies of Human Cortical Bone with Osteogenesis Imperfecta

    Science.gov (United States)

    Gu, Chunju; Katti, Dinesh R.; Katti, Kalpana S.

    2016-04-01

    The molecular basis of bone disease osteogenesis imperfecta (OI) and the mineralization of hydroxyapatite in OI bone have been of significant research interest. To further investigate the mechanism of OI disease and bone mineralization, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, and x-ray diffraction (XRD) are used in the present study to describe the structural and compositional differences between OI and healthy bone. OI bone exhibits more porous, fibrous features, abnormal collagen fibrils, and abnormal mineral deposits. Likewise, photoacoustic-FTIR experiments indicate an aberrant collagen structure and an altered mineral structure in OI. In contrast, there is neither significant difference in the non-collagenous proteins (NCPs) composition observed nor apparent change in the crystal structure between OI and healthy bone minerals as shown in XRD and energy-dispersive x-ray spectroscopy (EDS) results. This observation indicates that the biomineralization process is more controlled by the bone cells and non-collagenous phosphorylated proteins. The present study also confirms that there is an orientational influence on the stoichiometry of the mineral in OI bone. Also, a larger volume of the hydrated layer in the transverse plane than the longitudinal plane of the mineral crystal structure is proposed. The appearance of a new C-S band in the FTIR spectra in OI bone suggests the substitution of glycine by cysteine in collagen molecules or/and an increased amount of cysteine-rich osteonectin that relates to mineral nucleation and mineral crystal formation.

  20. Spine Trabecular Bone Score as an Indicator of Bone Microarchitecture at the Peripheral Skeleton in Kidney Transplant Recipients.

    Science.gov (United States)

    Luckman, Matthew; Hans, Didier; Cortez, Natalia; Nishiyama, Kyle K; Agarawal, Sanchita; Zhang, Chengchen; Nikkel, Lucas; Iyer, Sapna; Fusaro, Maria; Guo, Edward X; McMahon, Donald J; Shane, Elizabeth; Nickolas, Thomas L

    2017-04-03

    Studies using high-resolution peripheral quantitative computed tomography showed progressive abnormalities in cortical and trabecular microarchitecture and biomechanical competence over the first year after kidney transplantation. However, high-resolution peripheral computed tomography is a research tool lacking wide availability. In contrast, the trabecular bone score is a novel and widely available tool that uses gray-scale variograms of the spine image from dual-energy x-ray absorptiometry to assess trabecular quality. There are no studies assessing whether trabecular bone score characterizes bone quality in kidney transplant recipients. Between 2009 and 2010, we conducted a study to assess changes in peripheral skeletal microarchitecture, measured by high-resolution peripheral computed tomography, during the first year after transplantation in 47 patients managed with early corticosteroid-withdrawal immunosuppression. All adult first-time transplant candidates were eligible. Patients underwent imaging with high-resolution peripheral computed tomography and dual-energy x-ray absorptiometry pretransplantation and 3, 6, and 12 months post-transplantation. We now test if, during the first year after transplantation, trabecular bone score assesses the evolution of bone microarchitecture and biomechanical competence as determined by high-resolution peripheral computed tomography. At baseline and follow-up, among the 72% and 78%, respectively, of patients having normal bone mineral density by dual-energy x-ray absorptiometry, 53% and 50%, respectively, were classified by trabecular bone score as having high fracture risk. At baseline, trabecular bone score correlated with spine, hip, and ultradistal radius bone mineral density by dual-energy x-ray absorptiometry and cortical area, density, thickness, and porosity; trabecular density, thickness, separation, and heterogeneity; and stiffness and failure load by high-resolution peripheral computed tomography

  1. Bone marrow ablation with Ho-166 pharmaceuticals as preparation for bone marrow transplants

    International Nuclear Information System (INIS)

    Parks, N.J.; Kawakami, T.; Avila, M.; White, R.; Cain, G.; Moore, P.F.

    1991-01-01

    Bone marrow ablation is required preparation for leukemia patients where bone marrow transplantation is to be the therapeutic modality. Presently, the total body irradiation that is used produces appreciable morbidity in terms of radiation sickness, but an evenly distributed dose to marrow. The authors have shown in Beagles that bone-seeking radiolanthanide (Ho-166, t 1/2 = 25 h, 1.8 MeB beta, carrier added) phosphonic acid chelates can be used to completely ablate bone marrow with little morbidity. The research plan, incorporating bone marrow ablation with bone-seeking radionuclides and in vitro purging of aspirated leukemic marrow for use in autologous marrow transplants, is presented. Phosphonic acid complexes of Sm-153 also localize in the skeleton and have found use in the palliation of bone pain. However, the dose distribution is uneven because these radiopharmaceuticals distribute according to available surface; 2-4 times the skeletal average in trabecular vs cortical bone. Thus, the marrow dose can vary. The authors' research group and the Radiation Interactions Division of NIST have announced the discovery that beta radiation-induced excited electrons are trapped in the hydroxyapatite mineral of bone and provide a potential direct dosimetric method for marrow dose when combined with routine bone marrow (and included bone) biopsies. The overall research plan sets the hypothesis that reduced morbidity marrow ablation can be successfully followed by bone marrow transplantation (BMT) with autologous marrow purged in vitro by antibody-targeted alpha emitters

  2. Bone mineral properties in growing Col1a2(+/G610C) mice, an animal model of osteogenesis imperfecta.

    Science.gov (United States)

    Masci, Marco; Wang, Min; Imbert, Laurianne; Barnes, Aileen M; Spevak, Lyudmila; Lukashova, Lyudmila; Huang, Yihe; Ma, Yan; Marini, Joan C; Jacobsen, Christina M; Warman, Matthew L; Boskey, Adele L

    2016-06-01

    The Col1a2(+/G610C) knock-in mouse, models osteogenesis imperfecta in a large old order Amish family (OOA) with type IV OI, caused by a G-to-T transversion at nucleotide 2098, which alters the gly-610 codon in the triple-helical domain of the α2(I) chain of type I collagen. Mineral and matrix properties of the long bones and vertebrae of male Col1a2(+/G610C) and their wild-type controls (Col1a2(+/+)), were characterized to gain insight into the role of α2-chain collagen mutations in mineralization. Additionally, we examined the rescuability of the composition by sclerostin inhibition initiated by crossing Col1a2(+/G610C) with an LRP(+/A214V) high bone mass allele. At age 10-days, vertebrae and tibia showed few alterations by micro-CT or Fourier transform infrared imaging (FTIRI). At 2-months-of-age, Col1a2(+/G610C) tibias had 13% fewer secondary trabeculae than Col1a2(+/+), these were thinner (11%) and more widely spaced (20%) than those of Col1a2(+/+) mice. Vertebrae of Col1a2(+/G610C) mice at 2-months also had lower bone volume fraction (38%), trabecular number (13%), thickness (13%) and connectivity density (32%) compared to Col1(a2+/+). The cortical bone of Col1a2(+/G610C) tibias at 2-months had 3% higher tissue mineral density compared to Col1a2(+/+); Col1a2(+/G610C) vertebrae had lower cortical thickness (29%), bone area (37%) and polar moment of inertia (38%) relative to Col1a2(+/+). FTIRI analysis, which provides information on bone chemical composition at ~7μm-spatial resolution, showed tibias at 10-days did not differ between genotypes. Comparing identical bone types in Col1a2(+/G610C) to Col1a2(+/+) at 2-months-of-age, tibias showed higher mineral-to-matrix ratio in trabeculae (17%) and cortices (31%). and in vertebral cortices (28%). Collagen maturity was 42% higher at 10-days-of-age in Col1a2(+/G610C) vertebral trabeculae and in 2-month tibial cortices (12%), vertebral trabeculae (42%) and vertebral cortices (12%). Higher acid-phosphate substitution

  3. Assessment of Cortical and Trabecular Bone Changes in Two Models of Post-Traumatic Osteoarthritis

    Science.gov (United States)

    Pauly, Hannah M; Larson, Blair E; Coatney, Garrett A; Button, Keith D.; DeCamp, Charlie E; Fajardo, Ryan S; Haut, Roger C; Donahue, Tammy L Haut

    2015-01-01

    Subchondral bone is thought to play a significant role in the initiation and progression of the post-traumatic osteoarthritis. The goal of this study was to document changes in tibial and femoral subchondral bone that occur as a result of two lapine models of anterior cruciate ligament injury, a modified ACL transection model and a closed-joint traumatic compressive impact model. Twelve weeks post-injury bones were scanned via micro-computed tomography. The subchondral bone of injured limbs from both models showed decreases in bone volume and bone mineral density. Surgical transection animals showed significant bone changes primarily in the medial hemijoint of femurs and tibias, while significant changes were noted in both the medial and lateral hemijoints of both bones for traumatic impact animals. It is believed that subchondral bone changes in the medial hemijoint were likely caused by compromised soft tissue structures seen in both models. Subchondral bone changes in the lateral hemijoint of traumatic impact animals are thought to be due to transmission of the compressive impact force through the joint. The joint-wide bone changes shown in the traumatic impact model were similar to clinical findings from studies investigating the progression of osteoarthritis in humans. PMID:26147652

  4. Rheumatoid arthritis is associated with less optimal hip structural geometry.

    Science.gov (United States)

    Wright, Nicole C; Lisse, Jeffrey R; Beck, Thomas J; Sherrill, Duane L; Mohler, M Jane; Bassford, Tamsen; Cauley, Jane A; Lacroix, Andrea Z; Lewis, Cora E; Chen, Zhao

    2012-01-01

    The overall goal of this study was to assess the longitudinal changes in bone strength in women reporting rheumatoid arthritis (RA; n=78) compared with nonarthritic control participants (n=4779) of the Women's Health Initiative bone mineral density (WHI-BMD) subcohort. Hip structural analysis program was applied to archived dual-energy X-ray absorptiometry scans (baseline, years 3, 6, and 9) to estimate bone mineral density (BMD) and hip structural geometry parameters in 3 femoral regions: narrow neck (NN), intertrochanteric (IT), and shaft (S). The association between RA and hip structural geometry was tested using linear regression and random coefficient models. Compared with the nonarthritic control, the RA group had a lower BMD (p=0.061) and significantly lower outer diameter (p=0.017), cross-sectional area (p=0.004), and section modulus (p=0.035) at the NN region in the longitudinal models. No significant associations were seen at the IT regions or S regions, and the association was not modified by age, ethnicity, glucocorticoid use, or time. Within the WHI-BMD, women with RA group had reduced BMD and structural geometry at baseline, and this reduction was seen at a fixed rate throughout the 9 yr of study. Copyright © 2012 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  5. Cortical surface area and cortical thickness in the precuneus of adult humans.

    Science.gov (United States)

    Bruner, E; Román, F J; de la Cuétara, J M; Martin-Loeches, M; Colom, R

    2015-02-12

    The precuneus has received considerable attention in the last decade, because of its cognitive functions, its role as a central node of the brain networks, and its involvement in neurodegenerative processes. Paleoneurological studies suggested that form changes in the deep parietal areas represent a major character associated with the origin of the modern human brain morphology. A recent neuroanatomical survey based on shape analysis suggests that the proportions of the precuneus are also a determinant source of overall brain geometrical differences among adult individuals, influencing the brain spatial organization. Here, we evaluate the variation of cortical thickness and cortical surface area of the precuneus in a sample of adult humans, and their relation with geometry and cognition. Precuneal thickness and surface area are not correlated. There is a marked individual variation. The right precuneus is thinner and larger than the left one, but there are relevant fluctuating asymmetries, with only a modest correlation between the hemispheres. Males have a thicker cortex but differences in cortical area are not significant between sexes. The surface area of the precuneus shows a positive allometry with the brain surface area, although the correlation is modest. The dilation/contraction of the precuneus, described as a major factor of variability within adult humans, is associated with absolute increase/decrease of its surface, but not with variation in thickness. Precuneal thickness, precuneal surface area and precuneal morphology are not correlated with psychological factors such as intelligence, working memory, attention control, and processing speed, stressing further possible roles of this area in supporting default mode functions. Beyond gross morphology, the processes underlying the large phenotypic variation of the precuneus must be further investigated through specific cellular analyses, aimed at considering differences in cellular size, density

  6. Computer stress study of bone with computed tomography

    International Nuclear Information System (INIS)

    Linden, M.J.; Marom, S.A.; Linden, C.N.

    1986-01-01

    A computer processing tool has been developed which, together with a finite element program, determines the stress-deformation pattern in a long bone, utilizing Computed Tomography (CT) data files for the geometry and radiographic density information. The geometry, together with mechanical properties and boundary conditions: loads and displacements, comprise the input of the Finite element (FE) computer program. The output of the program is the stresses and deformations in the bone. The processor is capable of developing an accurate three-dimensional finite element model from a scanned human long bone due to the CT high pixel resolution and the local mechanical properties determined from the radiographic densities of the scanned bone. The processor, together with the finite element program, serves first as an analysis tool towards improved understanding of bone function and remodelling. In this first stage, actual long bones may be scanned and analyzed under applied loads and displacements, determined from existing gait analyses. The stress-deformation patterns thus obtained may be used for studying the biomechanical behavior of particular long bones such as bones with implants and with osteoporosis. As a second stage, this processor may serve as a diagnostic tool for analyzing the biomechanical response of a specific patient's long long bone under applied loading by utilizing a CT data file of the specific bone as an input to the processor with the FE program

  7. Drilling electrode for real-time measurement of electrical impedance in bone tissues.

    Science.gov (United States)

    Dai, Yu; Xue, Yuan; Zhang, Jianxun

    2014-03-01

    In order to prevent possible damages to soft tissues, reliable monitoring methods are required to provide valuable information on the condition of the bone being cut. This paper describes the design of an electrical impedance sensing drill developed to estimate the relative position between the drill and the bone being drilled. The two-electrode method is applied to continuously measure the electrical impedance during a drill feeding movement: two copper wire brushes are used to conduct electricity in the rotating drill and then the drill is one electrode; a needle is inserted into the soft tissues adjacent to the bone being drilled and acts as another electrode. Considering that the recorded electrical impedance is correlated with the insertion depth of the drill, we theoretically calculate the electrode-tissue contact impedance and prove that the rate of impedance change varies considerably when the drill bit crosses the boundary between two different bone tissues. Therefore, the rate of impedance change is used to determine whether the tip of the drill is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue. In vitro experiments in porcine thoracic spines were performed to demonstrate the feasibility of the impedance sensing drill. The experimental results indicate that the drill, used with the proposed data-processing method, can provide accurate and reliable breakthrough detection in the bone-drilling process.

  8. Clopidogrel (Plavix®), a P2Y(12) receptor antagonist, inhibits bone cell function in vitro and decreases trabecular bone in vivo

    DEFF Research Database (Denmark)

    Syberg, Susanne; Brandao-Burch, Andrea; Patel, Jessal J

    2012-01-01

    Clopidogrel (Plavix®), a selective P2Y(12) receptor antagonist, is widely prescribed to reduce the risk of heart attack and stroke and acts via the inhibition of platelet aggregation. Accumulating evidence now suggests that extracellular nucleotides, signalling through P2 receptors, play...... a significant role in bone, modulating both osteoblast and osteoclast function. In this study, we investigated the effects of clopidogrel treatment on (1) bone cell formation, differentiation and activity in vitro; and, (2) trabecular and cortical bone parameters in vivo. P2Y(12) receptor expression...

  9. The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography

    Science.gov (United States)

    2016-01-01

    Purpose The objective of this study was to investigate the relationships between primary implant stability as measured by impact response frequency and the structural parameters of trabecular bone using cone-beam computed tomography(CBCT), excluding the effect of cortical bone thickness. Methods We measured the impact response of a dental implant placed into swine bone specimens composed of only trabecular bone without the cortical bone layer using an inductive sensor. The peak frequency of the impact response spectrum was determined as an implant stability criterion (SPF). The 3D microstructural parameters were calculated from CT images of the bone specimens obtained using both micro-CT and CBCT. Results SPF had significant positive correlations with trabecular bone structural parameters (BV/TV, BV, BS, BSD, Tb.Th, Tb.N, FD, and BS/BV) (Pmicro-CT and CBCT (Pimplant stability prediction by combining BV/TV and SMI in the stepwise forward regression analysis. Bone with high volume density and low surface density shows high implant stability. Well-connected thick bone with small marrow spaces also shows high implant stability. The combination of bone density and architectural parameters measured using CBCT can predict the implant stability more accurately than the density alone in clinical diagnoses. PMID:27127692

  10. Functionalized Surface Geometries Induce: “Bone: Formation by Autoinduction”

    Directory of Open Access Journals (Sweden)

    Ugo Ripamonti

    2018-02-01

    Full Text Available The induction of tissue formation, and the allied disciplines of tissue engineering and regenerative medicine, have flooded the twenty-first century tissue biology scenario and morphed into high expectations of a fulfilling regenerative dream of molecularly generated tissues and organs in assembling human tissue factories. The grand conceptualization of deploying soluble molecular signals, first defined by Turing as forms generating substances, or morphogens, stemmed from classic last century studies that hypothesized the presence of morphogens in several mineralized and non-mineralized mammalian matrices. The realization of morphogens within mammalian matrices devised dissociative extractions and chromatographic procedures to isolate, purify, and finally reconstitute the cloned morphogens, found to be members of the transforming growth factor-β (TGF-β supergene family, with insoluble signals or substrata to induce de novo tissue induction and morphogenesis. Can we however construct macroporous bioreactors per se capable of inducing bone formation even without the exogenous applications of the osteogenic soluble molecular signals of the TGF-β supergene family? This review describes original research on coral-derived calcium phosphate-based macroporous constructs showing that the formation of bone is independent of the exogenous application of the osteogenic soluble signals of the TGF-β supergene family. Such signals are the molecular bases of the induction of bone formation. The aim of this review is to primarily describe today's hottest topic of biomaterials' science, i.e., to construct and define osteogenetic biomaterials' surfaces that per se, in its own right, do initiate the induction of bone formation. Biomaterials are often used to reconstruct osseous defects particularly in the craniofacial skeleton. Edentulism did spring titanium implants as tooth replacement strategies. No were else that titanium surfaces require functionalized

  11. Sintered porous hydroxyapatites with intrinsic osteoinductive activity: geometric induction of bone formation

    CSIR Research Space (South Africa)

    Ripamonti, U

    1999-08-01

    Full Text Available Sintered hydroxyapatites induce bone formation in adult baboons via intrinsic osteoinductivity regulated by the geometry of the substratum. Bone is thereby formed without exogenous bone morphogenetic proteins (BMPs), well-characterized inducers...

  12. Statistical descriptions of scaphoid and lunate bone shapes

    NARCIS (Netherlands)

    van de Giessen, Martijn; Foumani, Mahyar; Streekstra, Geert J.; Strackee, Simon D.; Maas, Mario; van Vliet, Lucas J.; Grimbergen, Kees A.; Vos, Frans M.

    2010-01-01

    Diagnosing of injuries of the wrist bones is problematic due to a highly complex and variable geometry. knowledge of variations of healthy bone shapes is essential to detect wrist pathologies, developing prosthetics and investigating biomechanical properties of the wrist joint. In previous

  13. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes.

    Science.gov (United States)

    Alam, Imranul; Reilly, Austin M; Alkhouli, Mohammed; Gerard-O'Riley, Rita L; Kasipathi, Charishma; Oakes, Dana K; Wright, Weston B; Acton, Dena; McQueen, Amie K; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G; Econs, Michael J

    2017-04-01

    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.

  14. Current and past menstrual status is an important determinant of femoral neck geometry in exercising women.

    Science.gov (United States)

    Mallinson, Rebecca J; Williams, Nancy I; Gibbs, Jenna C; Koehler, Karsten; Allaway, Heather C M; Southmayd, Emily; De Souza, Mary Jane

    2016-07-01

    Menstrual status, both past and current, has been established as an important determinant of bone mineral density (BMD) in young exercising women. However, little is known regarding the association between the cumulative effect of menstrual status and indices of bone health beyond BMD, such as bone geometry and estimated bone strength. This study explores the association between cumulative menstrual status and indices of bone health assessed using dual-energy x-ray absorptiometry (DXA), including femoral neck geometry and strength and areal BMD (aBMD), in exercising women. 101 exercising women (22.0±0.4years, BMI 21.0±0.2kg/m(2), 520±40min/week of self-reported exercise) participated in this cross-sectional study. Women were divided into three groups as follows based on their self-reported current and past menstrual status: 1) current and past regular menstrual cycles (C+P-R) (n=23), 2) current and past irregular menstrual cycles (C+P-IR) (n=56), 3) and current or past irregular cycles (C/P-RIR) (n=22). Current menstrual status was confirmed using daily urinary metabolites of reproductive hormones. DXA was used to assess estimates of femoral neck geometry and strength from hip strength analysis (HSA), aBMD, and body composition. Cross-sectional moment of inertia (CSMI), cross-sectional area (CSA), strength index (SI), diameter, and section modulus (Z) were calculated at the femoral neck. Low CSMI, CSA, SI, diameter, and Z were operationally defined as values below the median. Areal BMD (g/cm(2)) and Z-scores were determined at the lumbar spine, femoral neck, and total hip. Low BMD was defined as a Z-score0.05). However, after controlling for confounding variables, cumulative menstrual status was not a significant predictor of low aBMD. In exercising women, the cumulative effect of current and past menstrual irregularity appears to be an important predictor of lower estimates of femoral neck geometry, as observed by smaller CSMI and CSA, which may serve as an

  15. Radiographic study of bone changes on TMJ arthrosis

    International Nuclear Information System (INIS)

    You, Dong Soo

    1982-01-01

    The author analyzed the morphologic changes of bone structures from 1256 radiographs of 314 patients with temporomandibular joint arthrosis, which were obtained by the oblique-lateral projection and orthopantomography. The interrelations of the bone changes and clinical symptoms were examined. Also, the positional relationships of condylar head, articular fossa and articular eminence in the mouth open and closed state were observed in the patients with bone changes. The results were as follows; 1. The most frequent bone change in the TMJ arthrosis was eburnation of cortical bone (35.64%) of total cases. Then came bone surface erosion and localized radiolucency (26.18%), marginal proliferation (9.7%) and flattening of articular surface (9.58%) in that order. 2. The most frequent site of bone change was articular eminence (41.70%). The came condylar head (21.09%) and articular fossa (20.73%) in that order. 3. In the patients with bone changes, their clinical symptoms were pain (51.55%), clicking sound during mandibular movement (37.71%) and limited mandibular movement (10.73%). In the patients complaining pain, their radiographs showed eburnation of cortical bone (30.68%), bone surface erosion and localized radiolucency (27.45%) and flattening in the (30.68%), bone surface erosion and localized radiolucency (27.45%) and flattening of articular surface (10.68%). 4. The condylar positional changes in the TMJ arthrosis patients with bone changes were as follows: in the mouth closed state, there were the widening of joint space in 624 cases (50.00%), the narrowing of joint space in 543 cases (43.47%) and bone on bone relationships in 82 cases (6.57%). In the mouth open state, there were forward positioning of the condyle in 332 cases (28.55%), limitation of movement in 332 cases (28.55%), bone on bone relationships in 248 cases (21.31%) and downward positioning of condyle in 217 cases (18.66%). Bone on bone relationships in 248 cases (21.32%) and downward positioning of

  16. Radiographic study of bone changes on TMJ arthrosis

    Energy Technology Data Exchange (ETDEWEB)

    You, Dong Soo [Dept. of Radiology, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1982-11-15

    The author analyzed the morphologic changes of bone structures from 1256 radiographs of 314 patients with temporomandibular joint arthrosis, which were obtained by the oblique-lateral projection and orthopantomography. The interrelations of the bone changes and clinical symptoms were examined. Also, the positional relationships of condylar head, articular fossa and articular eminence in the mouth open and closed state were observed in the patients with bone changes. The results were as follows; 1. The most frequent bone change in the TMJ arthrosis was eburnation of cortical bone (35.64%) of total cases. Then came bone surface erosion and localized radiolucency (26.18%), marginal proliferation (9.7%) and flattening of articular surface (9.58%) in that order. 2. The most frequent site of bone change was articular eminence (41.70%). The came condylar head (21.09%) and articular fossa (20.73%) in that order. 3. In the patients with bone changes, their clinical symptoms were pain (51.55%), clicking sound during mandibular movement (37.71%) and limited mandibular movement (10.73%). In the patients complaining pain, their radiographs showed eburnation of cortical bone (30.68%), bone surface erosion and localized radiolucency (27.45%) and flattening in the (30.68%), bone surface erosion and localized radiolucency (27.45%) and flattening of articular surface (10.68%). 4. The condylar positional changes in the TMJ arthrosis patients with bone changes were as follows: in the mouth closed state, there were the widening of joint space in 624 cases (50.00%), the narrowing of joint space in 543 cases (43.47%) and bone on bone relationships in 82 cases (6.57%). In the mouth open state, there were forward positioning of the condyle in 332 cases (28.55%), limitation of movement in 332 cases (28.55%), bone on bone relationships in 248 cases (21.31%) and downward positioning of condyle in 217 cases (18.66%). Bone on bone relationships in 248 cases (21.32%) and downward positioning of

  17. Simple bone cyst of mandible mimicking periapical cyst.

    Science.gov (United States)

    Hs, Charan Babu; Rai, Bhagawan Das; Nair, Manju A; Astekar, Madhusudan S

    2012-05-29

    Simple bone cysts (SBC) are pseudocysts occurring less commonly in the maxillofacial region. The uncertain and unclear etiopathogenesis led to numerous synonyms to refer this particular cyst. These cysts are devoid of an epithelial lining and are usually empty or contain blood or straw-colored fluid. In jaws initially it mimics a periapical cyst and later can lead to cortical bone expansion warranting for radical approach, which is seldom required. SBC is predominantly diagnosed in first two decades of life. Here we report a case of solitary bone cyst mimicking a periapical cyst of a mandibular molar in a 37-year-old patient.

  18. Does nutrition affect bone porosity and mineral tissue distribution in deer antlers? The relationship between histology, mechanical properties and mineral composition.

    Science.gov (United States)

    Landete-Castillejos, T; Currey, J D; Ceacero, F; García, A J; Gallego, L; Gomez, S

    2012-01-01

    It is well known that porosity has an inverse relationship with the mechanical properties of bones. We examined cortical and trabecular porosity of antlers, and mineral composition, thickness and mechanical properties in the cortical wall. Samples belonged to two deer populations: a captive population of an experimental farm having a high quality diet, and a free-ranging population feeding on plants of lower nutritive quality. As shown for minerals and mechanical properties in previous studies by our group, cortical and trabecular porosity increased from the base distally. Cortical porosity was always caused by the presence of incomplete primary osteons. Porosity increased along the length of the antler much more in deer with lower quality diet. Despite cortical porosity being inversely related to mechanical properties and positively with K, Zn and other minerals indicating physiological effort, it was these minerals and not porosity that statistically better explained variability in mechanical properties. Histochemistry showed that the reason for this is that Zn is located around incomplete osteons and also in complete osteons that were still mineralizing, whereas K is located in non-osteonal bone, which constitutes a greater proportion of bone where osteons are incompletely mineralized. This suggests that, K, Zn and other minerals indicate reduction in mechanical performance even with little porosity. If a similar process occurred in internal bones, K, Zn and other minerals in the bone may be an early indicator of decrease in mechanical properties and future osteoporosis. In conclusion, porosity is related to diet and physiological effort in deer. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Performance of laser sintered Ti-6Al-4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur.

    Science.gov (United States)

    Cohen, David J; Cheng, Alice; Sahingur, Kaan; Clohessy, Ryan M; Hopkins, Louis B; Boyan, Barbara D; Schwartz, Zvi

    2017-04-28

    Long term success of bone-interfacing implants remains a challenge in compromised patients and in areas of low bone quality. While surface roughness at the micro/nanoscale can promote osteogenesis, macro-scale porosity is important for promoting mechanical stability of the implant over time. Currently, machining techniques permit pores to be placed throughout the implant, but the pores are generally uniform in dimension. The advent of laser sintering provides a way to design and manufacture implants with specific porosity and variable dimensions at high resolution. This approach enables production of metal implants that mimic complex geometries found in biology. In this study, we used a rabbit femur model to compare osseointegration of laser sintered solid and porous implants. Ti-6Al-4V implants were laser sintered in a clinically relevant size and shape. One set of implants had a novel porosity based on human trabecular bone; both sets had grit-blasted/acid-etched surfaces. After characterization, implants were inserted transaxially into rabbit femora; mechanical testing, micro-computed tomography (microCT) and histomorphometry were conducted 10 weeks post-operatively. There were no differences in pull-out strength or bone-to-implant contact. However, both microCT and histomorphometry showed significantly higher new bone volume for porous compared to solid implants. Bone growth was observed into porous implant pores, especially near apical portions of the implant interfacing with cortical bone. These results show that laser sintered Ti-6Al-4V implants with micro/nanoscale surface roughness and trabecular bone-inspired porosity promote bone growth and may be used as a superior alternative to solid implants for bone-interfacing implants.

  20. Preservation of bone structure and function by Lithothamnion sp. – derived minerals

    Science.gov (United States)

    Aslam, Muhammad Nadeem; Bergin, Ingrid; Jepsen, Karl; Kreider, Jaclynn M.; Graf, Kristin H.; Naik, Madhav; Goldstein, Steven A.; Varani, James

    2013-01-01

    Progressive bone mineral loss and increasing bone fragility are hallmarks of osteoporosis. A combination of minerals isolated from the red marine algae, Lithothamnion sp. was examined for ability to inhibit bone mineral loss in female mice maintained on either a standard rodent chow (control) diet or a high-fat western diet (HFWD) for 5-, 12- and 18-months. At each time-point, femora were subjected to μ-CT analysis and biomechanical testing. A subset of caudal vertebrae was also analyzed. Following this, individual elements were assessed in bones. Serum levels of the 5b isoform of tartrate-resistant acid phosphatase (TRAP) and procollagen type I propeptide (P1NP) were also measured. Trabecular bone loss occurred in both diets (evident as early as 5-months). Cortical bone increased through month-5 and then declined. Cortical bone loss was primarily in mice on the HFWD. Inclusion of the minerals in the diet reduced bone mineral loss in both diets and improved bone strength. Bone mineral density (BMD) was also enhanced by these minerals. Of several cationic minerals known to be important to bone health, only strontium was significantly increased in bone tissue from animals fed the mineral diets, but the increase was large (5–10 fold). Serum levels of TRAP were consistently higher in mice receiving the minerals but levels of P1NP were not. These data suggest that trace minerals derived from marine red algae may be used to prevent progressive bone mineral loss in conjunction with calcium. Mineral supplementation could find use as part of an osteoporosis - prevention strategy. PMID:24096551