WorldWideScience

Sample records for cortex vii effects

  1. Synergistic effect of factor VII gene polymorphisms causing mild factor VII deficiency in a case of severe factor X deficiency.

    Science.gov (United States)

    Deshpande, Rutuja; Ghosh, Kanjaksha; Shetty, Shrimati

    2017-01-01

    Congenital combined deficiency of coagulation factors VII and X are mainly attributed to large deletions involving both the genes in chromosome 13 or occasionally due to the coincidental occurrence of independently occurring mutations. We report the molecular basis of congenital combined deficiency of factors VII and X in a 6-year-old female child. Direct DNA sequencing of both factor VII (F7) and factor X (F10) genes showed a novel homozygous missense mutation p.Cys90Tyr (c.307G>A) in exon 4 of F10. No mutations were detected in F7; however, the patient was homozygous for three polymorphic alleles known to be associated with reduced factor VII levels. The present case illustrates the synergistic effect of multiple polymorphisms resulting in phenotypic factor VII deficiency in the absence of a pathogenic mutation.

  2. Increased volume of distribution for recombinant activated factor VII and longer plasma-derived factor VII half-life may explain their long lasting prophylactic effect.

    Science.gov (United States)

    Mathijssen, Natascha C J; Masereeuw, Rosalinde; Holme, Pal Andre; van Kraaij, Marian G J; Laros-van Gorkom, Britta A P; Peyvandi, Flora; van Heerde, Waander L

    2013-08-01

    Prophylaxis with plasma-derived or recombinant activated factor VII is beneficial in severe factor VII deficiency. To understand why prophylactic treatment with both products is efficacious, we conducted a pharmacokinetic study. Ten factor VII deficient patients were treated with either recombinant activated (20 μg/kg) or plasma-derived (25 IU/kg) factor VII in a cross-over design. Pharmacokinetic parameters were analyzed through activated factor VII activity, factor VII clotting activity, and factor VII antigen levels on depicted time points. Factor VII activity half-lifes, determined by non-compartmental and one-compartmental analysis (results in brackets), were shorter for recombinant activated (1.4h; 0.7h) than for plasma-derived factor VII (6.8h; 3.2h); both recombinant activated (5.1h; 2.1h and plasma-derived factor VII (5.8h; 3.2h) resulted in longer half-lives of factor VII antigen. Activated factor VII half-lives (based on activated factor VII activity levels) were significantly higher compared to factor VII clotting activity (1.6h; 0.9h). Volumes of distribution were significantly higher for activated factor VII (236 ml/kg; 175 ml/kg, measured by activated factor VII) as compared to plasma-derived factor VII (206 ml/kg; 64 ml/kg, measured by factor FVII activity), suggesting a plasma- and extracellular fluid distribution for recombinant activated factor VII. Recombinant activated factor VII showed significantly shorter half-lifes than plasma-derived factor VII. Volumes of distribution were significantly higher for treatment with recombinant activated factor VII. The longer half-life for plasma-derived factor VII, compared to recombinant activated factor VII, and the increased volume of distribution for recombinant activated factor VII, compared to plasma-derived factor VII may further elucidate the beneficial effect of prophylactic treatment of both products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. 40 CFR Appendix Vii to Part 268 - LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes VII Appendix VII to Part 268 Protection of Environment ENVIRONMENTAL... VII to Part 268—LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes Table 1—Effective...

  4. Effect of ionizing radiation on enzymes. VII

    International Nuclear Information System (INIS)

    Libicky, A.; Fidlerova, J.; Pipota, J.

    1992-01-01

    The effect was examined of gamma radiation on the efficacy of cellulase irradiated with doses graded from 10 to 120 kGy. The results were statistically evaluated. The dose dependence of inactivation corresponds to the course of the decrease in efficacy of pancreatic proteolytic enzymes and pepsin investigated in previous communications. In the semilogarithmical arrangement of the graph this dependence is linear. It can be seen from the graph that a dose of 10 kGy, usually sufficient to achieve microbiological indefectibility, produces an approximately 7% loss in efficacy. With a dose of 25 kGy necessary to achieve sterility, cellulase already loses approximately 17% of its efficacy. With 120 kGy, the largest dose used, the efficacy was reduced to only 47.9%. (author) 3 figs., 1 tab., 13 refs

  5. The Effect of Neonatal Gene Therapy on Skeletal Manifestations in Mucopolysaccharidosis VII Dogs after a Decade

    Science.gov (United States)

    Xing, Elizabeth M.; Knox, Van W.; O'Donnell, Patricia A.; Sikura, Tracey; Liu, Yuli; Wu, Susan; Casal, Margret L.; Haskins, Mark E.; Ponder, Katherine P.

    2013-01-01

    Mucopolysaccharidosis (MPS) VII is a lysosomal storage disease due to deficient activity of β-glucuronidase (GUSB), and results in glycosaminoglycan accumulation. Skeletal manifestations include bone dysplasia, degenerative joint disease, and growth retardation. One gene therapy approach for MPS VII involves neonatal intravenous injection of a gamma retroviral vector expressing GUSB, which results in stable expression in liver and secretion of enzyme into blood at levels predicted to be similar or higher to enzyme replacement therapy. The goal of this study was to evaluate the long-term effect of neonatal gene therapy on skeletal manifestations in MPS VII dogs. Treated MPS VII dogs could walk throughout their lives, while untreated MPS VII dogs could not stand beyond 6 months and were dead by 2 years. Luxation of the coxofemoral joint and the patella, dysplasia of the acetabulum and supracondylar ridge, deep erosions of the distal femur, and synovial hyperplasia were reduced, and the quality of articular bone was improved in treated dogs at 6 to 11 years of age compared with untreated MPS VII dogs at 2 years or less. However, treated dogs continued to have osteophyte formation, cartilage abnormalities, and an abnormal gait. Enzyme activity was found near synovial blood vessels, and there was 2% as much GUSB activity in synovial fluid as in serum. We conclude that neonatal gene therapy reduces skeletal abnormalities in MPS VII dogs, but clinically-relevant abnormalities remain. Enzyme replacement therapy will probably have similar limitations long-term. PMID:23628461

  6. VII International scientific conference Radiation-thermal effects and processes in inorganic materials. Proceedings

    International Nuclear Information System (INIS)

    2010-01-01

    In the collection there are the reports of the VII International scientific conference and the VII All-Russian school-conference Radiation-thermal effects and processes in inorganic materials which were conducted on October 2-10, 2010, in Tomsk. The reports deal with new developments of charged particles high-intensity beam sources, high-temperature metrology of high-current beams and work materials, radiation-thermal stimulated effects and processes in inorganic materials, physical basics of technological processes, radiation-thermal technologies and equipment for their realization, allied branches of science and technology, specifically, nanotechnologies [ru

  7. The effects of three factor VII polymorphisms on factor VII coagulant levels in healthy Singaporean Chinese, Malay and Indian newborns.

    Science.gov (United States)

    Quek, S C; Low, P S; Saha, N; Heng, C K

    2006-11-01

    Factor VII (FVII) is an independent risk factor for coronary artery disease. Three polymorphisms of the factor VII gene (F7) were studied in a group of healthy newborns comprising 561 Chinese, 398 Malays and 226 Asian Indians from Singapore. The allele frequencies of 3 polymorphisms (R353Q, Promoter 0/10bp Del/Ins and Intron 7) in the FVII gene were ascertained through genotyping by polymerase chain reaction and restriction digestion of amplified fragments. In Chinese the minor allele frequencies are Q: 0.04, Ins: 0.03, R7: 0.44; Malays, Q: 0.06, Ins: 0.10, R7: 0.41; and Indians, Q: 0.25, Ins: 0.23, R7: 0.43. Strong linkage disequilibrium (Delta > 0.7) is observed between the 0/10 bp and the R353Q sites in all ethnic groups. We conclude that: (i) the prevalence of the minor Q and Ins alleles of the R353Q and 0/10 bp polymorphisms are significantly higher in the Indian newborns than the Chinese and Malays; (ii) the Q allele is significantly associated (p = 0.01) with a lower plasma FVII coagulant level in the Indian and Malay neonates; and this polymorphism explains up to 3.8% of the variance in FVII coagulant levels; (iii) there is no significant difference in allele frequencies of the three polymorphisms between neonates with and without family histories of CAD.

  8. Increased volume of distribution for recombinant activated factor VII and longer plasma-derived factor VII half-life may explain their long lasting prophylactic effect

    NARCIS (Netherlands)

    Mathijssen, N.C.J.; Masereeuw, R.; Holme, P.A.; Kraaij, M.G.J. van; Laros, B.A.P.; Peyvandi, F.; Heerde, W.L. van

    2013-01-01

    INTRODUCTION: Prophylaxis with plasma-derived or recombinant activated factor VII is beneficial in severe factor VII deficiency. To understand why prophylactic treatment with both products is efficacious, we conducted a pharmacokinetic study. MATERIALS AND METHODS: Ten factor VII deficient patients

  9. Effective treatment of chemoresistant breast cancer in vitro and in vivo by a factor VII-targeted photodynamic therapy.

    Science.gov (United States)

    Duanmu, J; Cheng, J; Xu, J; Booth, C J; Hu, Z

    2011-04-26

    The purpose of this study was to test a novel, dual tumour vascular endothelial cell (VEC)- and tumour cell-targeting factor VII-targeted Sn(IV) chlorin e6 photodynamic therapy (fVII-tPDT) by targeting a receptor tissue factor (TF) as an alternative treatment for chemoresistant breast cancer using a multidrug resistant (MDR) breast cancer line MCF-7/MDR. The TF expression by the MCF-7/MDR breast cancer cells and tumour VECs in MCF-7/MDR tumours from mice was determined separately by flow cytometry and immunohistochemistry using anti-human or anti-murine TF antibodies. The efficacy of fVII-tPDT was tested in vitro and in vivo and was compared with non-targeted PDT for treatment of chemoresistant breast cancer. The in vitro efficacy was determined by a non-clonogenic assay using crystal violet staining for monolayers, and apoptosis and necrosis were assayed to elucidate the underlying mechanisms. The in vivo efficacy of fVII-tPDT was determined in a nude mouse model of subcutaneous MCF-7/MDR tumour xenograft by measuring tumour volume. To our knowledge, this is the first presentation showing that TF was expressed on tumour VECs in chemoresistant breast tumours from mice. The in vitro efficacy of fVII-tPDT was 12-fold stronger than that of ntPDT for MCF-7/MDR cancer cells, and the mechanism of action involved induction of apoptosis and necrosis. Moreover, fVII-tPDT was effective and safe for the treatment of chemoresistant breast tumours in the nude mouse model. We conclude that fVII-tPDT is effective and safe for the treatment of chemoresistant breast cancer, presumably by simultaneously targeting both the tumour neovasculature and chemoresistant cancer cells. Thus, this dual-targeting fVII-tPDT could also have therapeutic potential for the treatment of other chemoresistant cancers.

  10. Effects of Arousal on Mouse Sensory Cortex Depend on Modality

    Directory of Open Access Journals (Sweden)

    Daisuke Shimaoka

    2018-03-01

    Full Text Available Summary: Changes in arousal modulate the activity of mouse sensory cortex, but studies in different mice and different sensory areas disagree on whether this modulation enhances or suppresses activity. We measured this modulation simultaneously in multiple cortical areas by imaging mice expressing voltage-sensitive fluorescent proteins (VSFP. VSFP imaging estimates local membrane potential across large portions of cortex. We used temporal filters to predict local potential from running speed or from pupil dilation, two measures of arousal. The filters provided good fits and revealed that the effects of arousal depend on modality. In the primary visual cortex (V1 and auditory cortex (Au, arousal caused depolarization followed by hyperpolarization. In the barrel cortex (S1b and a secondary visual area (LM, it caused only hyperpolarization. In all areas, nonetheless, arousal reduced the phasic responses to trains of sensory stimuli. These results demonstrate diverse effects of arousal across sensory cortex but similar effects on sensory responses. : Shimaoka et al. use voltage-sensitive imaging to show that the effects of arousal on the mouse cortex are markedly different across areas and over time. In all the sensory areas studied, nonetheless, arousal reduced the phasic voltage responses to trains of sensory stimuli. Keywords: cerebral cortex, cortical state, locomotion, sensory processing, widefield imaging

  11. Effects of dietary fat quality and quantity on postprandial activation of blood coagulation factor VII

    DEFF Research Database (Denmark)

    Larsen, L. F.; Bladbjerg, E.-M.; Jespersen, J.

    1997-01-01

    , monounsaturated, or polyunsaturated fats differed regarding postprandial activation of FVII. Eighteen healthy young men participated in the study. On 6 separate days each participant consumed two meals (times, 0 and 1 3/4 hours) enriched with 70 g (15 and 55 g) of either rapeseed oil, olive oil, sunflower oil......, palm oil, or butter (42% of energy from fat) or isoenergetic low-fat meals (6% of energy from fat). Fasting and series of nonfasting blood samples (the last at time 8 1/2 hours) were collected. Plasma triglycerides, FVIIc, FVIIa, and free fatty acids were analyzed. There were marked effects of the fat......Acute elevation of the coagulant activity of blood coagulation factor VII (FVIIc) is observed after consumption of high-fat meals. This elevation is caused by an increase in the concentration of activated FVII (FVIIa). In a randomized crossover study, we investigated whether saturated...

  12. Effects of entorhinal cortex lesions on memory in different tasks

    Directory of Open Access Journals (Sweden)

    G.P. Gutierrez-Figueroa

    1997-06-01

    Full Text Available Lesions of the entorhinal cortex produce retrograde memory impairment in both animals and humans. Here we report the effects of bilateral entorhinal cortex lesions caused by the stereotaxic infusion of N-methyl-D-aspartate (NMDA in rats at two different moments, before or after the training session, on memory of different tasks: two-way shuttle avoidance, inhibitory avoidance and habituation to an open field. Pre- or post-training entorhinal cortex lesions caused an impairment of performance in the shuttle avoidance task, which agrees with the previously described role of this area in the processing of memories acquired in successive sessions. In the inhibitory avoidance task, only the post-training lesions had an effect (amnesia. No effect was observed on the open field task. The findings suggest that the role of the entorhinal cortex in memory processing is task-dependent, perhaps related to the complexity of each task

  13. Effects of the Bee Venom Herbal Acupuncture on the Neurotransmitters of the Rat Brain Cortex

    Directory of Open Access Journals (Sweden)

    Hyoung-Seok Yun

    2001-02-01

    Full Text Available In order to study the effects of bee venom Herbal Acupuncture on neurotransmitters in the rat brain cortex, herbal acupuncture with bee venom group and normal saline group was performed at LI4 bilaterally of the rat. the average optical density of neurotransmitters from the cerebral cortex was analysed 30 minutes after the herbal aqupuncture, by the immunohistochemistry. The results were as follows: 1. The density of NADPH-diaphorase in bee venom group was increased significantly at the motor cortex, visual cortex, auditory cortex, cingulate cortex, retrosplenial cortex and perirhinal cortex compared to the normal saline group. 2. The average optical density of vasoactive intestinal peptide in bee venom group had significant changes at the insular cortex, retrosplenial cortex and perirhinal cortex, compared to the normal saline group. 3. The average optical density of neuropeptide-Y in bee venom group increased significantly at the visual cortex and cingulate cortex, compared to the normal saline group.

  14. Factor VII deficiency

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000548.htm Factor VII deficiency To use the sharing features on this page, please enable JavaScript. Factor VII (seven) deficiency is a disorder caused by a ...

  15. In vitro effects of recombinant activated factor VII on thrombin generation and coagulation following inhibition of platelet procoagulant activity by prasugrel.

    Science.gov (United States)

    Mazzeffi, Michael; Szlam, Fania; Jakubowski, Joseph A; Tanaka, Kenichi A; Sugidachi, Atsuhiro; Levy, Jerrold H

    2013-07-01

    Prasugrel is a thienopyridyl P2Y12 antagonist with potent antiplatelet effects. At present, little is known about its effects on thrombin generation or what strategies may emergently reverse its anticoagulant effects. In the current study we evaluated whether recombinant activated factor VII may reverse prasugrel induced effects and increase thrombin generation in an in vitro model. The effect of prasugrel active metabolite, PAM (R-138727), was evaluated on platelet aggregation, thrombin generation, and rotational thromboelastometry parameters using blood from 20 healthy volunteers. Additionally, we evaluated the effects of adenosine diphosphate (ADP) and recombinant activated factor VII on restoring these parameters towards baseline values. PAM reduced maximum platelet aggregation and led to platelet disaggregation. It also decreased peak thrombin, increased lag time, and increased time to peak thrombin. Treatment with recombinant activated factor VII restored all three parameters of thrombin generation towards baseline. ADP decreased lag time and time to peak thrombin, but had no effect on peak thrombin. When recombinant activated factor VII and ADP were combined they had a greater effect on thrombin parameters than either drug alone. PAM also increased thromboelastometric clotting time and clot formation time, but had no effect on maximum clot firmness. Treatment with either recombinant activated factor VII or ADP restored these values towards baseline. Recombinant activated factor VII restores thrombin generation in the presence of PAM. In patients taking prasugrel with life-threatening refractory bleeding it has the potential to be a useful therapeutic approach. Additional clinical studies are needed to validate our findings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effects of different progestin regimens in hormone replacement therapy on blood coagulation factor VII and tissue factor pathway inhibitor

    DEFF Research Database (Denmark)

    Bladbjerg, E-M; Skouby, S O.; Andersen, L F

    2002-01-01

    BACKGROUND: Long-term hormone replacement therapy (HRT) reduces cardiovascular risk, but an early increased risk was reported in women with coronary heart disease. In such women the arterial intima can express tissue factor, and changes in coagulation factor VII (factor VII) and tissue factor...... pathway inhibitor (TFPI) may be deleterious. METHODS: We measured factor VII clotting activity, activated factor VII, and concentrations of factor VII and TFPI during 12 months in healthy post-menopausal women randomized to: (i). cyclic oral estrogen/progestin (n = 25); (ii). long-cycle oral estrogen......: No variations were observed in the reference group. There was a substantial decrease in TFPI concentrations in the HRT groups irrespective of the type of progestin. In women receiving long-cycle treatment, all factor VII measures increased during the unopposed estrogen periods, and the increase was reversed...

  17. Effect of thuringiensin on adenylate cyclase in rat cerebral cortex

    International Nuclear Information System (INIS)

    Tsai, S.-F.; Yang Chi; Wang, S.-C.; Wang, J.-S.; Hwang, J.-S.; Ho, S.-P.

    2004-01-01

    The purpose of this work is to evaluate the effect of thuringiensin on the adenylate cyclase activity in rat cerebral cortex. The cyclic adenosine 3'5'-monophosphate (cAMP) levels were shown to be dose-dependently elevated 17-450% or 54-377% by thuringiensin at concentrations of 10 μM-100 mM or 0.5-4 mM, due to the activation of basal adenylate cyclase activity of rat cerebral cortical membrane preparation. Thuringiensin also activated basal activity of a commercial adenylate cyclase from Escherichia coli. However, the forskolin-stimulated adenylate cyclase activity in rat cerebral cortex was inhibited by thuringiensin at concentrations of 1-100 μM, thus cAMP production decreased. Furthermore, thuringiensin or adenylate cyclase inhibitor (MDL-12330A) reduced the forskolin (10 μM)-stimulated adenylate cyclase activity at concentrations of 10 μM, 49% or 43% inhibition, respectively. In conclusion, this study demonstrated that thuringiensin could activate basal adenylate cyclase activity and increase cAMP concentrations in rat cerebral cortex or in a commercial adenylate cyclase. Comparing the dose-dependent effects of thuringiensin on the basal and forskolin-stimulated adenylate cyclase activity, thuringiensin can be regarded as a weak activator of adenylate cyclase or an inhibitor of forskolin-stimulated adenylate cyclase

  18. Effect of individual dietary fatty acids on postprandial activation of blood coagulation factor VII and fibrinolysis in healthy young men

    DEFF Research Database (Denmark)

    Tholstrup, T.; Miller, G.J.; Bysted, Anette

    2003-01-01

    Background: Hypertriglyceridemia may represent a procoagulant state involving disturbances to the hemostatic system. Plasminogen activator inhibitor type 1 (PAI-1) is increased in the presence of hypertriglyceridemia. Free fatty acids (FFAs) in plasma may promote factor VII (FVII) activation...

  19. Effects of musical training on the auditory cortex in children.

    Science.gov (United States)

    Trainor, Laurel J; Shahin, Antoine; Roberts, Larry E

    2003-11-01

    Several studies of the effects of musical experience on sound representations in the auditory cortex are reviewed. Auditory evoked potentials are compared in response to pure tones, violin tones, and piano tones in adult musicians versus nonmusicians as well as in 4- to 5-year-old children who have either had or not had extensive musical experience. In addition, the effects of auditory frequency discrimination training in adult nonmusicians on auditory evoked potentials are examined. It was found that the P2-evoked response is larger in both adult and child musicians than in nonmusicians and that auditory training enhances this component in nonmusician adults. The results suggest that the P2 is particularly neuroplastic and that the effects of musical experience can be seen early in development. They also suggest that although the effects of musical training on cortical representations may be greater if training begins in childhood, the adult brain is also open to change. These results are discussed with respect to potential benefits of early musical training as well as potential benefits of musical experience in aging.

  20. Factor VII assay

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003676.htm Factor VII assay To use the sharing features on ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  1. Effect of octanols structure on their extraction ability as regards to rhenium(VII) in sulfuric acid solutions

    International Nuclear Information System (INIS)

    Kasikov, A.G.; Petrova, A.M.

    2007-01-01

    It is established that extraction ability of octanols as regards to rhenium(VII) and sulfuric acid depends on the structure of alcohol, but if in passage from octanol-1 to octanol-3 as regard to rhenium(VII) it rises, then for H 2 SO 4 it falls. Dependence of the distribution function of rhenium from the concentration of the acid has maximums at 4-7 mol l 1- that the most distinctly it becomes apparent for secondary alcohols. Decreasing the extraction ability of octyl alcohols with the growth of H 2 SO 4 concentration more than 7 mol l 1- is connected with the change of extractant composition and forms of rhenium(VII) being in the solution [ru

  2. Extraction of Tc(VII) and Re(VII) on TRU resin

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, Nicolas; Riopel, Remi; Kramer-Tremblay, Sheila [Canadian Nuclear Laboratories (CNL), Chalk River, ON (Canada). Radiobiology and Health Branch; De Silva, Nimal; Cornett, Jack [Ottawa Univ., ON (Canada). Dept. of Earth and Environmental Sciences; Dai, Xiongxin [China Institute for Radiation Protection, Beijing (China)

    2017-06-01

    TRU resin can be used to rapidly and selectively extract Tc(VII) and Re(VII). The retention capacity curves of Tc(VII) and Re(VII) for HNO{sub 3}, HCl, H{sub 2}SO{sub 4} and H{sub 3}PO{sub 4} solutions were studied and prepared. Tc(VII) and Re(VII) were simultaneously extracted in 2 M H{sub 2}SO{sub 4} and 1.5 M H{sub 3}PO{sub 4} and were effectively separated from Mo(VI) and Ru(III). Tc(VII) and Re(VII) remained strongly bonded to the resin even after washing using a large volume of 2 M H{sub 2}SO{sub 4} at a relatively high flow rate. Also, they were both completely eluted from the resin using 15 mL of near boiling water, an eluent directly compatible for ICP-MS instrument measurements.

  3. Monoclonal antibodies to human factor VII: a one step immunoradiometric assay for VII:Ag.

    OpenAIRE

    Takase, T; Tuddenham, E G; Chand, S; Goodall, A H

    1988-01-01

    Three mouse monoclonal antibodies (RFF-VII/1, RFF-VII/2, and RFF-VII/3) which bind specifically to different epitopes on human factor VII antigen were raised. Two of the antibodies, RFF-VII/1 and RFF-VII/2, bound strongly to factor VII antigen (VII:Ag), but only RFF-VII/1 and RFF-VII/3 were potent inhibitors of factor VII coagulation activity (VII:C). RFF-VII/1 and RFF-VII/2 were used in a one step, double monoclonal immunoradiometric assay for VII:Ag. This was highly reproducible and detecte...

  4. THE EFFECT OF INQUIRY BASED LEARNING ON THE REASONING ABILITY OF GRADE VII STUDENTS ABOUT HEAT CONCEPT

    Directory of Open Access Journals (Sweden)

    N. A. C. Damawati

    2016-01-01

    Full Text Available This study aimed to analyze the effect of Inquiry Based Learningon the reasoning ability of grade 7 students about heat concept. This study is a quasi-experimental research design with non-equivalent post-test only controls group design. Two groups of seventh grade students were included as samples, which receive the experimental class of Inquiry Based Learning treatment while the other group acted as a control group who received the learning process in accordance with the applicable provisions of the curriculum. The data collected in this study is the students reasoning ability which obtained from the test of reasoning ability. Data were analyzed using descriptive statistics and statistical parametric t-test. Results of independet research shows that there are significant differences in reasoning abilities between the experimental class and control class. In this research, the experiment class perform more better reasoning skills than the control class.Penelitian ini bertujuan untuk menganalisis pengaruh Inquiry Based Learning terhadap kemampuan penalaran siswa kelas VII pada materi Kalor. Penelitian ini merupakan penelitian eksperimen semu dengan rancangan non-equivalent post-test only control group design.  Dua kelompok siswa kelas VII  dilibatkan sebagai sampel penelitian, dimana kelas eksperimen menerima perlakuan Inquiry Based Learning sementara kelompok lainnya bertindak sebagai kelas kontrol yang menerima proses pembelajaran sesuai dengan ketentuan kurikulum yang berlaku di sekolah tempat penelitian dilaksanakan. Data yang dikumpulkan dalam penelitian ini adalah kemampuan penalaran siswa yang diperoleh dari hasil tes kemampuan penalaran. Data dianalisis dengan menggunakan statistik deskriptif dan statistik parametrik Independent t-test. Hasil penelitian menunjukkan bahwa terdapat perbedaan kemampuan penalaran yang signifikan antara kelas eksperimen dan kelas kontrol Kelas eksperimen menunjukkan kemampuan penalaran yang lebih baik

  5. Source-Sink Relations in Fruits VII. Effects of Pruning in Sour Cherry and Plum

    DEFF Research Database (Denmark)

    Toldam-Andersen, Torben Bo; Hansen, P.

    1993-01-01

    Sour cherries cv. 'Stevnsbær' and plums cv. 'Victoria' were heavily pruned in 1987. Fruit samples were collected during the growing season and concentrations of different quality components were determined. Pruning resulted in a small increase in fruit size, the effect being greater on the older...... trees (sour cherries) or at the lower crop load (plum). Additionally, pruning decreased the con­centrations of total and soluble dry matter and of anthocya­nins ('Stevnsbær'), while titratable acids showed an increas­ing tendency. The effects of pruning are discussed based on influences on root...

  6. Vinyl ether hydrolysis. VII. Isotope effects on catalysis by aqueous hydrofluoric acid

    International Nuclear Information System (INIS)

    Kresge, A.J.; Chen, H.J.; Chiang, Y.

    1977-01-01

    Comparison of rates of hydrolysis of three vinyl ethers catalyzed by HF in H 2 O and DF in D 2 O at 25 0 C gives primary isotope effects in the range k/sub H//k/sub D/ = 3.3 to 3.5. The unexpectedly small size of these effects may be attributed to strong, ω = 1325 to 1450 cm -1 , hydrogenic bending vibrations in the proton transfer transition states of these reactions along with the lack of compensatory bending vibrations in the diatomic proton donor

  7. Meridional circulation in rotating stars. VII. The effects of chemical inhomogeneities

    International Nuclear Information System (INIS)

    Tassoul, M.; Tassoul, J.

    1984-01-01

    In this paper we discuss the effects of a gradient of mean molecular weight μ on the rotationally driven currents that pervade the radiative zone of a single, nonmagnetic, main-sequence star. Detailed numerical calculations are made for the hydrogen-burning core of a solar-type star, assuming that departures from spherical symmetry are not too large. It is found that meridional streaming virtually dies out from the center outward as the μ-gradient grows in a leisurely fashion. This prevents a substantial mixing of matter between the inner (inhomogeneous) and outer (homogeneous) regions in the radiative zone, although the inner region may be penetrated to some degree. To first order in the ratio of the centrifugal force to gravity at the equator, this pattern of circulation is independent of the mean angular velocity. To this order, then, there is no critical rotation rate above which unimpeded mixing may take place. These quantitative results are compared with diverse statements that can be found in the phenomenological literature on rotational mixing

  8. BIOELECTRIC POTENTIALS IN HALICYSTIS : VII. THE EFFECTS OF LOW OXYGEN TENSION.

    Science.gov (United States)

    Blinks, L R; Darsie, M L; Skow, R K

    1938-11-20

    The potential difference across the protoplasm of impaled cells of Halicystis is not affected by increase of oxygen tension in equilibrium with the sea water, nor with decrease down to about 1/10 its tension in the air (2 per cent O(2) in N(2)). When bubbling of 2 per cent O(2) is stopped, the P.D. drifts downward, to be restored on stirring the sea water, or rebubbling the gas. Bubbling 0.2 per cent O(2) causes the P.D. to drop to 20 mv. or less; 1.1 per cent O(2) to about 50 mv. Restoration of 2 per cent or higher O(2) causes recovery to 70 or 80 mv. often with a preliminary cusp which decreases the P.D. before it rises. Perfusion of aerated sea water through the vacuole is just as effective in restoring the P.D. as external aeration, indicating that the direction of the oxygen gradient is not significant. Low O(2) tension also inhibits the reversed, negative P.D. produced by adding NH(4)Cl to sea water, 0.2 per cent O(2) bringing this P.D. back to the same low positive values found without ammonia. Restoration of 2 per cent O(2) or air, restores this latent negativity. At slightly below the threshold for ammonia reversal, low O(2) may induce a temporary negativity when first bubbled, and a negative cusp may occur on aeration before positive P.D. is regained. This may be due to a decreased consumption of ammonia, or to intermediate pH changes. The locus of the P.D. alteration was tested by applying increased KCl concentrations to the cell exterior; the large cusps produced in aerated solutions become greatly decreased when the P.D. has fallen in 0.2 per cent O(2). This indicates that the originally high relative mobility or concentration of K(+) ion has approached that of Na(+) in the external protoplasmic surface under reduced O(2) tension. Results obtained with sulfate sea water indicate that Na(+) mobility approaches that of SO(4) (-) in 0.2 per cent O(2). P.D. measurements alone cannot tell whether this is due to an increase of the slower ion or a decrease of

  9. The Effect of Recombinant Activated Factor VII on Mortality in Combat-Related Casualties With Severe Trauma and Massive Transfusion

    Science.gov (United States)

    2008-02-01

    acidosis and hypocalcemia are corrected. In addition, these guidelines recommend rFVIIa for patients with adequate concentrations of platelets, fibrinogen...1.00 Data on physiologic cause of death available for 51 of 53 deaths recorded. rFVIIa, recombinant activated factor VII; CNS, central nervous ... system ; MOF, multi-organ failure. Table 10 Comparison of Adverse Events Between Study Groups Variable rFVIIa N 75 rFVIIa N 49 p Value Bacteremia 12

  10. Role of hepsin in factor VII activation in zebrafish.

    Science.gov (United States)

    Khandekar, Gauri; Jagadeeswaran, Pudur

    2014-01-01

    Factor VII, the initiator of the extrinsic coagulation cascade, circulates in human plasma mainly in its zymogen form, factor VII and in small amounts in its activated form, factor VIIa. However, the mechanism of initial generation of factor VIIa is not known despite intensive research using currently available model systems. Earlier findings suggested serine proteases factor VII activating protease and hepsin play a role in activating factor VII, however, it has remained controversial. In this paper we estimated the levels of factor VIIa and factor VII for the first time in zebrafish adult population and also reevaluated the role of the above two serine proteases in activating factor VII in vivo using zebrafish as a model system. Knockdown of factor VII activating protease and hepsin was performed followed by assaying for their effect on factor VIIa concentration and extrinsic coagulation as measured by the kinetic prothrombin time. Factor VII activating protease knockdown showed no change in kinetic prothrombin time and no effect on factor VIIa levels while hepsin knockdown increased the kinetic prothrombin time and significantly reduced the factor VIIa plasma levels. Our results thus indicate that hepsin plays a physiologically important role in factor VII activation and hemostasis in zebrafish. © 2013.

  11. Antibacterial Effect of Granati fructus Cortex Extract on Streptococcus mutans In Vitro

    Directory of Open Access Journals (Sweden)

    Cut R. Alfath

    2013-07-01

    Full Text Available 72 1024x768 The rind of pomegranate fruit (Granati fructus cortex composed of antibacterial compounds such as alkaloid, flavonoid and tannin. Objective: To evaluate the bacterial effect of Granati fructus cortex extract against Streptococcus mutans. Methods: The study was laboratory experimental. The inhibition test was performed by agar diffusion method on MHA medium. Results: It showed the bacterial property of Granati fructus cortex on various concentration. The highest extract concentration of 30% extract has the largest of inhibition zones (15.4mm. The results showed a difference in the size of inhibition zones related to different extract concentrations. Conclusion: This study confirmed the antibacterial effect of Granati fructus cortex on the growth of Streptococcus mutans.DOI: 10.14693/jdi.v20i1.126

  12. Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making.

    Science.gov (United States)

    Clark, L; Bechara, A; Damasio, H; Aitken, M R F; Sahakian, B J; Robbins, T W

    2008-05-01

    The ventromedial prefrontal cortex (vmPFC) and insular cortex are implicated in distributed neural circuitry that supports emotional decision-making. Previous studies of patients with vmPFC lesions have focused primarily on decision-making under uncertainty, when outcome probabilities are ambiguous (e.g. the Iowa Gambling Task). It remains unclear whether vmPFC is also necessary for decision-making under risk, when outcome probabilities are explicit. It is not known whether the effect of insular damage is analogous to the effect of vmPFC damage, or whether these regions contribute differentially to choice behaviour. Four groups of participants were compared on the Cambridge Gamble Task, a well-characterized measure of risky decision-making where outcome probabilities are presented explicitly, thus minimizing additional learning and working memory demands. Patients with focal, stable lesions to the vmPFC (n = 20) and the insular cortex (n = 13) were compared against healthy subjects (n = 41) and a group of lesion controls (n = 12) with damage predominantly affecting the dorsal and lateral frontal cortex. The vmPFC and insular cortex patients showed selective and distinctive disruptions of betting behaviour. VmPFC damage was associated with increased betting regardless of the odds of winning, consistent with a role of vmPFC in biasing healthy individuals towards conservative options under risk. In contrast, patients with insular cortex lesions failed to adjust their bets by the odds of winning, consistent with a role of the insular cortex in signalling the probability of aversive outcomes. The insular group attained a lower point score on the task and experienced more 'bankruptcies'. There were no group differences in probability judgement. These data confirm the necessary role of the vmPFC and insular regions in decision-making under risk. Poor decision-making in clinical populations can arise via multiple routes, with functionally dissociable effects of vmPFC and

  13. Behavioral effects of congenital ventromedial prefrontal cortex malformation

    Directory of Open Access Journals (Sweden)

    Boes Aaron D

    2011-12-01

    Full Text Available Abstract Background A detailed behavioral profile associated with focal congenital malformation of the ventromedial prefrontal cortex (vmPFC has not been reported previously. Here we describe a 14 year-old boy, B.W., with neurological and psychiatric sequelae stemming from focal cortical malformation of the left vmPFC. Case Presentation B.W.'s behavior has been characterized through extensive review Patience of clinical and personal records along with behavioral and neuropsychological testing. A central feature of the behavioral profile is severe antisocial behavior. He is aggressive, manipulative, and callous; features consistent with psychopathy. Other problems include: egocentricity, impulsivity, hyperactivity, lack of empathy, lack of respect for authority, impaired moral judgment, an inability to plan ahead, and poor frustration tolerance. Conclusions The vmPFC has a profound contribution to the development of human prosocial behavior. B.W. demonstrates how a congenital lesion to this cortical region severely disrupts this process.

  14. Effect of N-acetylcysteine on the accuracy of the prothrombin time assay of plasma coagulation factor II+VII+X activity in subjects infused with the drug. Influence of time and temperature

    DEFF Research Database (Denmark)

    Thorsen, Sixtus; Teisner, Ane; Jensen, Søren Astrup

    2009-01-01

    OBJECTIVES: The prothrombin time (PT) assay of factor II+VII+X activity is an important predictor of liver damage in paracetamol poisoned patients. It complicates interpretation of results that the antidote, acetylcysteine (NAC) depresses this activity. The aim was to investigate if NAC influences...... to plasma in vitro decreased factor II+VII+X activity at 37 degrees C in a time-dependent manner. This effect was quenched at temperatures ... to a significant additional depression of factor II+VII+X activity in plasma from subjects infused with NAC during the first 3h of infusion indicating that it contained reactive NAC. The risk that this NAC interfered with the accuracy of the PT assay was considered minimal with samples stored below 24 degrees C...

  15. Effect of N-acetylcysteine on the accuracy of the prothrombin time assay of plasma coagulation factor II plus VII plus X activity in subjects infused with the drug. Influence of time and temperature

    DEFF Research Database (Denmark)

    Thorsen, S.; Teisner, A.; Jensen, S.A.

    2009-01-01

    Objectives: The prothrombin time (PT) assay of factor II+VII+X activity is an important predictor of liver damage in paracetamol poisoned patients. It complicates interpretation of results that the antidote, acetylcysteine (NAC) depresses this activity. The aim was to investigate if NAC influences...... added to plasma in vitro decreased factor II+VII+X activity at 37 degrees C in a time-dependent manner. This effect was quenched at temperatures 24 degrees C. Activity lost at 37 degrees C could partly be recovered by subsequent incubation at 5 or 20 degrees C. Incubation at 37 degrees C prior to assay...... led to a significant additional depression of factor II+VII+X activity in plasma from subjects infused with NAC during the first 3h of infusion indicating that it contained reactive NAC. The risk that this NAC interfered with the accuracy of the PT assay was considered minimal with samples stored...

  16. Genetics Home Reference: factor VII deficiency

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions Factor VII deficiency Factor VII deficiency Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Factor VII deficiency is a rare bleeding disorder that varies ...

  17. Effect of the cortex on ultrasonic backscatter measurements of cancellous bone

    International Nuclear Information System (INIS)

    Hoffmeister, Brent K; Holt, Andrew P; Kaste, Sue C

    2011-01-01

    Ultrasonic backscatter techniques offer a promising new approach for detecting changes in bone caused by osteoporosis. However, several challenges impede clinical implementation of backscatter techniques. This study examines how the dense outer surface of bone (the cortex) affects backscatter measurements of interior regions of porous (cancellous) bone tissue. Fifty-two specimens of bone were prepared from 13 human femoral heads so that the same region of cancellous bone could be ultrasonically interrogated through the cortex or along directions that avoided the cortex. Backscatter signals were analyzed over a frequency range of 0.8-3.0 MHz to determine two ultrasonic parameters: apparent integrated backscatter (AIB) and frequency slope of apparent backscatter (FSAB). The term 'apparent' means that the parameters are sensitive to the frequency-dependent effects of diffraction and attenuation. Significant (p < 0.001) changes in AIB and FSAB indicated that measurements through the cortex decreased the apparent backscattered power and increased the frequency dependence of the power. However, the cortex did not affect the correlation of AIB and FSAB with the x-ray bone mineral density of the specimens. This suggests that results from many previous in vitro backscatter studies of specimens of purely cancellous bone may be extrapolated with greater confidence to in vivo conditions.

  18. Effect of the cortex on ultrasonic backscatter measurements of cancellous bone

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, Brent K; Holt, Andrew P [Department of Physics, Rhodes College, Memphis, TN (United States); Kaste, Sue C, E-mail: hoffmeister@rhodes.edu [Department of Diagnostic Imaging, St Jude Children' s Research Hospital, Memphis, TN (United States)

    2011-10-07

    Ultrasonic backscatter techniques offer a promising new approach for detecting changes in bone caused by osteoporosis. However, several challenges impede clinical implementation of backscatter techniques. This study examines how the dense outer surface of bone (the cortex) affects backscatter measurements of interior regions of porous (cancellous) bone tissue. Fifty-two specimens of bone were prepared from 13 human femoral heads so that the same region of cancellous bone could be ultrasonically interrogated through the cortex or along directions that avoided the cortex. Backscatter signals were analyzed over a frequency range of 0.8-3.0 MHz to determine two ultrasonic parameters: apparent integrated backscatter (AIB) and frequency slope of apparent backscatter (FSAB). The term 'apparent' means that the parameters are sensitive to the frequency-dependent effects of diffraction and attenuation. Significant (p < 0.001) changes in AIB and FSAB indicated that measurements through the cortex decreased the apparent backscattered power and increased the frequency dependence of the power. However, the cortex did not affect the correlation of AIB and FSAB with the x-ray bone mineral density of the specimens. This suggests that results from many previous in vitro backscatter studies of specimens of purely cancellous bone may be extrapolated with greater confidence to in vivo conditions.

  19. Spared behavioral repetition effects in Alzheimer's disease linked to an altered neural mechanism at posterior cortex.

    Science.gov (United States)

    Broster, Lucas S; Li, Juan; Wagner, Benjamin; Smith, Charles D; Jicha, Gregory A; Schmitt, Frederick A; Munro, Nancy; Haney, Ryan H; Jiang, Yang

    2018-02-20

    Individuals with dementia of the Alzheimer type (AD) classically show disproportionate impairment in measures of working memory, but repetition learning effects are relatively preserved. As AD affects brain regions implicated in both working memory and repetition effects, the neural basis of this discrepancy is poorly understood. We hypothesized that the posterior repetition effect could account for this discrepancy due to the milder effects of AD at visual cortex. Participants with early AD, amnestic mild cognitive impairment (MCI), and healthy controls performed a working memory task with superimposed repetition effects while electroencephalography was collected to identify possible neural mechanisms of preserved repetition effects. Participants with AD showed preserved behavioral repetition effects and a change in the posterior repetition effect. Visual cortex may play a role in maintained repetition effects in persons with early AD.

  20. Effects of muscarinic blockade in perirhinal cortex during visual recognition

    Science.gov (United States)

    Tang, Yi; Mishkin, Mortimer; Aigner, Thomas G.

    1997-01-01

    Stimulus recognition in monkeys is severely impaired by destruction or dysfunction of the perirhinal cortex and also by systemic administration of the cholinergic-muscarinic receptor blocker, scopolamine. These two effects are shown here to be linked: Stimulus recognition was found to be significantly impaired after bilateral microinjection of scopolamine directly into the perirhinal cortex, but not after equivalent injections into the laterally adjacent visual area TE or into the dentate gyrus of the overlying hippocampal formation. The results suggest that the formation of stimulus memories depends critically on cholinergic-muscarinic activation of the perirhinal area, providing a new clue to how stimulus representations are stored. PMID:9356507

  1. Cortical chemoarchitecture shapes macroscale effective functional connectivity patterns in macaque cerebral cortex

    NARCIS (Netherlands)

    Turk, Elise; Scholtens, Lianne H.; van den Heuvel, Martijn P.

    The mammalian cortex is a complex system of-at the microscale level-interconnected neurons and-at the macroscale level-interconnected areas, forming the infrastructure for local and global neural processing and information integration. While the effects of regional chemoarchitecture on local

  2. Long lasting effects of daily theta burst rTMS sessions in the human amblyopic cortex.

    Science.gov (United States)

    Clavagnier, Simon; Thompson, Benjamin; Hess, Robert F

    2013-11-01

    It has been reported that a single session of 1 Hz or 10 Hz repetitive transcranial magnetic stimulation (rTMS) of the visual cortex can temporarily improve contrast sensitivity in adults with amblyopia. More recently, continuous theta burst stimulation (cTBS) of the visual cortex has been found to improve contrast sensitivity in observers with normal vision. The aims of this study were to assess whether cTBS of the visual cortex could improve contrast sensitivity in adults with amblyopia and whether repeated sessions of cTBS would lead to more pronounced and/or longer lasting effects. cTBS was delivered to the visual cortex while patients viewed a high contrast stimulus with their non-amblyopic eye. This manipulation was designed to bias the effects of cTBS toward inputs from the amblyopic eye. Contrast sensitivity was measured before and after stimulation. The effects of one cTBS session were measured in five patients and the effects of five consecutive daily sessions were measured in four patients. Three patients were available for follow-up at varying intervals after the final session. cTBS improved amblyopic eye contrast sensitivity to high spatial frequencies (P enduring visual function improvements in adults with amblyopia. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Assessing the Effect of Early Visual Cortex Transcranial Magnetic Stimulation on Working Memory Consolidation.

    Science.gov (United States)

    van Lamsweerde, Amanda E; Johnson, Jeffrey S

    2017-07-01

    Maintaining visual working memory (VWM) representations recruits a network of brain regions, including the frontal, posterior parietal, and occipital cortices; however, it is unclear to what extent the occipital cortex is engaged in VWM after sensory encoding is completed. Noninvasive brain stimulation data show that stimulation of this region can affect working memory (WM) during the early consolidation time period, but it remains unclear whether it does so by influencing the number of items that are stored or their precision. In this study, we investigated whether single-pulse transcranial magnetic stimulation (spTMS) to the occipital cortex during VWM consolidation affects the quantity or quality of VWM representations. In three experiments, we disrupted VWM consolidation with either a visual mask or spTMS to retinotopic early visual cortex. We found robust masking effects on the quantity of VWM representations up to 200 msec poststimulus offset and smaller, more variable effects on WM quality. Similarly, spTMS decreased the quantity of VWM representations, but only when it was applied immediately following stimulus offset. Like visual masks, spTMS also produced small and variable effects on WM precision. The disruptive effects of both masks and TMS were greatly reduced or entirely absent within 200 msec of stimulus offset. However, there was a reduction in swap rate across all time intervals, which may indicate a sustained role of the early visual cortex in maintaining spatial information.

  4. Effects of Mercury Chloride on the Cerebral Cortex of Adult Wistar Rats

    African Journals Online (AJOL)

    Mercury is among the heavy metals that have been reported to cause devastating health problem worldwide. The primary site of action of mercury chloride is the central nervous system. This study investigated the effect of mercury chloride on the cerebral cortex of adult wistar rats. Twenty-four (24) adult wistar rats were used ...

  5. Anxiolytic and antidepressive effects of electric stimulation of the paleocerebellar cortex in pentylenetetrazol kindled rats

    NARCIS (Netherlands)

    Godlevsky, L.S.; Muratova, T.N.; Kresyun, N.V.; Luijtelaar, E.L.J.M. van; Coenen, A.M.L.

    2014-01-01

    Anxiety and depression are component of interictal behavioral deteriorations that occur as a consequence of kindling, a procedure to induce chronic epilepsy. The aim of this study was to evaluate the possible effects of electrical stimulation (ES) of paleocerebellar cortex on anxiety and

  6. EKÜL VII Foorum = VII Forum SKTE / Sven Lillepalu

    Index Scriptorium Estoniae

    Lillepalu, Sven

    2004-01-01

    7. oktoobril toimus hotell Olümpia Alfa saalis EKÜL VII foorum. Ettekanded puudutasid järgmisi teemasid: korteriühistu remondi planeerimine, finantseerimine, nõuanded korteriühistuid puudutava seadusandluse kohta. Vt. samas: Eesti Korteriühistute VII Foorumi avalik pöördumine Eesti Vabariigi Valitsuse, Eesti Vabariigi Riigikogu, Eesti Vabariigi Presidendi poole lk. 9, 39

  7. Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex.

    Science.gov (United States)

    Bidet-Caulet, Aurélie; Fischer, Catherine; Besle, Julien; Aguera, Pierre-Emmanuel; Giard, Marie-Helene; Bertrand, Olivier

    2007-08-29

    In noisy environments, we use auditory selective attention to actively ignore distracting sounds and select relevant information, as during a cocktail party to follow one particular conversation. The present electrophysiological study aims at deciphering the spatiotemporal organization of the effect of selective attention on the representation of concurrent sounds in the human auditory cortex. Sound onset asynchrony was manipulated to induce the segregation of two concurrent auditory streams. Each stream consisted of amplitude modulated tones at different carrier and modulation frequencies. Electrophysiological recordings were performed in epileptic patients with pharmacologically resistant partial epilepsy, implanted with depth electrodes in the temporal cortex. Patients were presented with the stimuli while they either performed an auditory distracting task or actively selected one of the two concurrent streams. Selective attention was found to affect steady-state responses in the primary auditory cortex, and transient and sustained evoked responses in secondary auditory areas. The results provide new insights on the neural mechanisms of auditory selective attention: stream selection during sound rivalry would be facilitated not only by enhancing the neural representation of relevant sounds, but also by reducing the representation of irrelevant information in the auditory cortex. Finally, they suggest a specialization of the left hemisphere in the attentional selection of fine-grained acoustic information.

  8. Contextual effects in the primary visual cortex of anesthetized cats

    OpenAIRE

    Biederlack, Julia

    2007-01-01

    Responses of visual cortical neurons in early processing stages can be modulated by stimuli presented outside the classical receptive field. The function of these context effects is still not completly understood, but its relevance for global image processing such as figure-ground segregation has been suggested. In the present study we investigate aspects of centre-surround interactions and the role of neural synchronisation in this context. Neuronal synchronization has been proposed to under...

  9. ENDF/B-VII.1 versus ENDF/B-VII.0: What's Different?

    International Nuclear Information System (INIS)

    Cullen, D.E.

    2012-01-01

    Recently the new ENDF/B-VII.1 library was released; this completely replaces the earlier ENDF/B-VII.0 library. One of the first questions we ask about a new library is: What's Different? Here I attempt to at least partially answer this question. I present results in both tabulated form (so you can quickly determine if any evaluations of interest to you have changed), and graphic form (so that you can see how much evaluations have changed and in what energy ranges). For the table I have compared what I refer to as the ENDF neutron data, namely MF=1 through 6. Here I did a character-by-character comparison of the same sections (MF/MT) that appear I both ENDF/B-VII.0 and VII.1; here I found differences in 170 evaluations. For the plots I have only compared the total cross sections for all evaluations that are common to both libraries, and I found that of the 423 evaluations in ENDF/B-VII.1, 120 of these have total cross sections that differ by 1% or more from the evaluation of the same isotope in ENDF/B-VII.0. This should be considered only a preliminary comparison; obviously there can be more subtle important differences that do not effect of total cross sections. Here I present plots comparing the total cross section of these 120 isotopes. The plots are only broad overviews of the total cross sections over their entire energy range. If you have interest in more detailed plots for specific evaluations, you can download the evaluations (1,2) and the PREPRO (3) codes I used to prepare and view the data. This is all I needed to do my comparisons, and is all you should need to do any more detailed comparisons to meet your individual needs.

  10. Disgust and Suppression of the Visual Cortex: Lateralization Effects?

    Directory of Open Access Journals (Sweden)

    Moon Wilton

    2012-05-01

    Full Text Available Research has shown that unlike other threat emotions, disgust does not evoke a typical sympathetic fight or flight response. Rather, disgust induces a parasympathetic response. A recent EEG study has demonstrated that this inhibitory reaction is also present in neuronal systems. Disgust stimuli elicited diminished Visual Event Related Potential (VERP amplitude in comparison to neutral and fear stimuli at P1 in the posterior Oz electrode (Kruesmark and Li, 2011 J Neurosci 31 (9, 3429–3434. In order to investigate whether VERPs were sensitive to different domains of disgust, we presented participants with random sequence of neutral, sociomoral, mutilation, and contamination images derived from the IAPS database. EEG results indicated no significant effect at Oz contrary to prior research. The results did, however, demonstrate lateralization effects. Whilst no differences were found between the disgust conditions themselves, the left P1 potential for all the disgust conditions was significantly attenuated compared to neutral. Conversely, this effect did not occur in the right posterior electrodes. In a second study, we presented the different disgust images in blocks in order to investigate the role of anticipation. Again, the left sided P1 was attenuated compared to neutral; however, on the right, mutilation elicited significantly greater P1 amplitude than did all other conditions. The results suggest suppressed visual processing for disgust elicitors in the left posterior regions and heightened activity for mutilation stimuli in the right, when mutilation was expected. These results may reflect a lateralized approach-avoidance mechanism, which begins as early as 125 ms after stimulus onset.

  11. Effect of prenatal exposure to ethanol on the development of cerebral cortex: I. Neuronal generation

    International Nuclear Information System (INIS)

    Miller, M.W.

    1988-01-01

    Prenatal exposure to ethanol causes profound disruptions in the development of the cerebral cortex. Therefore, the effect of in utero ethanol exposure on the generation of neurons was determined. Pregnant rats were fed a liquid diet in which ethanol constituted 37.5% of the total caloric content (Et) or pair-fed an isocaloric control diet (Ct) from gestational day (GD) 6 to the day of birth. The time of origin of cortical neurons was determined in the mature pups of females injected with [3H]thymidine on one day during the period from GD 10 to the day of birth. The brains were processed by standard autoradiographic techniques. Ethanol exposure produced multiple defects in neuronal ontogeny. The period of generation was 1-2 days later for Et-treated rats than for rats exposed prenatally to either control diet. Moreover, the generation period was 1-2 days longer in Et-treated rats. The numbers of neurons generated on a specific day was altered; from GD 12-19 significantly fewer neurons were generated in Et-treated rats than in Ct-treated rats, whereas after GD 19 more neurons were born. The distribution of neurons generated on a specific day was disrupted; most notable was the distribution of late-generated neurons in deep cortex of Et-treated rats rather than in superficial cortex as they are in controls. Cortical neurons in Et-treated rats tended to be smaller than in Ct-treated rats, particularly early generated neurons in deep cortex. The late-generated neurons in Et-treated rats were of similar size to those in Ct-treated rats despite their abnormal position in deep cortex. Neurons in Ct-treated rats tended to be rounder than those in Et-treated rats which were more polarized in the radial orientation

  12. Modulation of fusiform cortex activity by cholinesterase inhibition predicts effects on subsequent memory.

    Science.gov (United States)

    Bentley, P; Driver, J; Dolan, R J

    2009-09-01

    Cholinergic influences on memory are likely to be expressed at several processing stages, including via well-recognized effects of acetylcholine on stimulus processing during encoding. Since previous studies have shown that cholinesterase inhibition enhances visual extrastriate cortex activity during stimulus encoding, especially under attention-demanding tasks, we tested whether this effect correlates with improved subsequent memory. In a within-subject physostigmine versus placebo design, we measured brain activity with functional magnetic resonance imaging while healthy and mild Alzheimer's disease subjects performed superficial and deep encoding tasks on face (and building) visual stimuli. We explored regions in which physostigmine modulation of face-selective neural responses correlated with physostigmine effects on subsequent recognition performance. In healthy subjects physostigmine led to enhanced later recognition for deep- versus superficially-encoded faces, which correlated across subjects with a physostigmine-induced enhancement of face-selective responses in right fusiform cortex during deep- versus superficial-encoding tasks. In contrast, the Alzheimer's disease group showed neither a depth of processing effect nor restoration of this with physostigmine. Instead, patients showed a task-independent improvement in confident memory with physostigmine, an effect that correlated with enhancements in face-selective (but task-independent) responses in bilateral fusiform cortices. Our results indicate that one mechanism by which cholinesterase inhibitors can improve memory is by enhancing extrastriate cortex stimulus selectivity at encoding, in a manner that for healthy people but not in Alzheimer's disease is dependent upon depth of processing.

  13. Effects of stimulation parameters and electrode location on thresholds for epidural stimulation of cat motor cortex

    Science.gov (United States)

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2011-12-01

    Epidural electrical stimulation (ECS) of the motor cortex is a developing therapy for neurological disorders. Both placement and programming of ECS systems may affect the therapeutic outcome, but the treatment parameters that will maximize therapeutic outcomes and minimize side effects are not known. We delivered ECS to the motor cortex of anesthetized cats and investigated the effects of electrode placement and stimulation parameters on thresholds for evoking motor responses in the contralateral forelimb. Thresholds were inversely related to stimulation frequency and the number of pulses per stimulus train. Thresholds were lower over the forelimb representation in motor cortex (primary site) than surrounding sites (secondary sites), and thresholds at sites 4 mm away. Electrode location and montage influenced the effects of polarity on thresholds: monopolar anodic and cathodic thresholds were not significantly different over the primary site, cathodic thresholds were significantly lower than anodic thresholds over secondary sites and bipolar thresholds were significantly lower with the anode over the primary site than with the cathode over the primary site. A majority of bipolar thresholds were either between or equal to the respective monopolar thresholds, but several bipolar thresholds were greater than or less than the monopolar thresholds of both the anode and cathode. During bipolar stimulation, thresholds were influenced by both electric field superposition and indirect, synaptically mediated interactions. These results demonstrate the influence of stimulation parameters and electrode location during cortical stimulation, and these effects should be considered during the programming of systems for therapeutic cortical stimulation.

  14. Interactive effects of music and prefrontal cortex stimulation in modulating response inhibition

    OpenAIRE

    Mansouri, Farshad Alizadeh; Acevedo, Nicola; Illipparampil, Rosin; Fehring, Daniel J.; Fitzgerald, Paul B.; Jaberzadeh, Shapour

    2017-01-01

    Influential hypotheses propose that alterations in emotional state influence decision processes and executive control of behavior. Both music and transcranial direct current stimulation (tDCS) of prefrontal cortex affect emotional state, however interactive effects of music and tDCS on executive functions remain unknown. Learning to inhibit inappropriate responses is an important aspect of executive control which is guided by assessing the decision outcomes such as errors. We found that high-...

  15. Effects of sleep deprivation on extracellular serotonin in hippocampus and frontal cortex of the rat

    OpenAIRE

    Bjorvatn, B; Grønli, J; Hamre, F; Sørensen, E; Fiske, E; Bjorkum, Alvhild Alette; Portas, CM; Ursin, R

    2002-01-01

    Sleep deprivation improves the mood of depressed patients, but the exact mechanism behind this effect is unclear. An enhancement of serotonergic neurotransmission has been suggested. In this study, we used in vivo microdialysis to monitor extracellular serotonin in the hippocampus and the frontal cortex of rats during an 8 h sleep deprivation period. These brain regions were selected since both have been implicated in depression. The behavioral state of the animal was continuously monitored b...

  16. Neuropsychiatric effects of neurodegeneration of the medial vs. lateral ventral prefrontal cortex in humans

    OpenAIRE

    Huey, Edward D.; Lee, Seonjoo; Brickman, Adam M.; Manoochehri, Masood; Griffith, Erica; Devanand, D.P.; Stern, Yaakov; Grafman, Jordan

    2015-01-01

    Animal evidence suggests that a brain network involving the medial and rostral ventral prefrontal cortex (PFC) is central for threat response and arousal and a network involving the lateral and caudal PFC plays an important role in reward learning and behavioral control. In this study, we contrasted the neuropsychiatric effects of degeneration of the medial versus lateral PFC in 43 patients with Frontotemporal dementia and 11 patients with Corticobasal Syndrome using MRI, the Neuropsychiatric...

  17. The effect of tumour type and distance on activation in the motor cortex

    International Nuclear Information System (INIS)

    Liu, Wen-Ching; Feldman, Susan C.; Zimmerman, Aphrodite; Sinensky, Rebecca; Rao, Satyaveni; Schulder, Michael; Kalnin, Andrew J.; Holodny, Andrei I.

    2005-01-01

    Functional MRI has been widely used to identify the eloquent cortex in neurosurgical/radiosurgical planning and treatment of CNS neoplasms and malformations. In this study we examined the effect of CNS tumours on the blood oxygenation level-dependent (BOLD) activation maps in the primary and supplementary motor cortex. A total of 33 tumour patients and five healthy right-handed adults were enrolled in the study. Patients were divided into four groups based on tumour type and distance from primary motor cortex: (1) intra-axial, near, (2) extra-axial, near, (3) intra-axial, far and (4) extra-axial, far. The intra-axial groups consisted of patients with astrocytomas, glioblastomas and metastatic tumours of mixed histology; all the extra-axial tumours were meningiomas. The motor task was a bilateral, self-paced, finger-tapping paradigm. Anatomical and functional data were acquired with a 1.5 T GE Echospeed scanner. Maps of the motor areas were derived from the BOLD images, using SPM99 software. For each subject we first determined the activation volume in the primary motor area and the supplementary motor area (SMA) and then calculated the percentage difference between the hemispheres. Two factors influenced the activation volumes: tumour type (P<0.04) and distance from the eloquent cortex (P<0.06). Patients in group 1 (intra-axial, near) had the smallest activation area in the primary motor cortex, the greatest percentage difference in the activation volume between the hemispheres, and the largest activation volume in the SMA. Patients in group 4 (extra-axial, far) had the largest activation volume in the primary motor cortex, the least percentage difference in volume between the hemispheres, and the smallest activation volume in the SMA. There was no significant change in the volume of the SMA in any group, compared with controls, suggesting that, although there is a gradual decrease in SMA volume with distance from the primary motor area, the effect on motor

  18. Lateralized effect of rapid-rate transcranial magnetic stimulation of the prefrontal cortex on mood.

    Science.gov (United States)

    Pascual-Leone, A; Catalá, M D; Pascual-Leone Pascual, A

    1996-02-01

    We studied the effects of rapid-rate transcranial magnetic stimulation (rTMS) of different scalp positions on mood. Ten normal volunteers rated themselves before and after rTMS on five analog scales labeled "Tristeza" (Sadness), "Ansiedad" (Anxiety), "Alegria" (Happiness), "Cansancio" (Tiredness), and "Dolor/Malestar" (Pain/Discomfort). rTMS was applied to the right lateral prefrontal, left prefrontal, or midline frontal cortex in trains of 5 seconds' duration at 10 Hz and 110% of the subject's motor threshold intensity. Each stimulation position received 10 trains separated by a 25-second pause. No clinically apparent mood changes were evoked by rTMS to any of the scalp positions in any subject. However, left prefrontal rTMS resulted in a significant increase in the Sadness ratings (Tristeza) and a significant decrease in the Happiness ratings ("Alegria") as compared with right prefrontal and midfrontal cortex stimulation. These results show differential effects of rTMS of left and right prefrontal cortex stimulation on mood and illustrate the lateralized control of mood in normal volunteers.

  19. Functional heterogeneity of conflict, error, task-switching, and unexpectedness effects within medial prefrontal cortex.

    Science.gov (United States)

    Nee, Derek Evan; Kastner, Sabine; Brown, Joshua W

    2011-01-01

    The last decade has seen considerable discussion regarding a theoretical account of medial prefrontal cortex (mPFC) function with particular focus on the anterior cingulate cortex. The proposed theories have included conflict detection, error likelihood prediction, volatility monitoring, and several distinct theories of error detection. Arguments for and against particular theories often treat mPFC as functionally homogeneous, or at least nearly so, despite some evidence for distinct functional subregions. Here we used functional magnetic resonance imaging (fMRI) to simultaneously contrast multiple effects of error, conflict, and task-switching that have been individually construed in support of various theories. We found overlapping yet functionally distinct subregions of mPFC, with activations related to dominant error, conflict, and task-switching effects successively found along a rostral-ventral to caudal-dorsal gradient within medial prefrontal cortex. Activations in the rostral cingulate zone (RCZ) were strongly correlated with the unexpectedness of outcomes suggesting a role in outcome prediction and preparing control systems to deal with anticipated outcomes. The results as a whole support a resolution of some ongoing debates in that distinct theories may each pertain to corresponding distinct yet overlapping subregions of mPFC. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Effects of continuous low-dose prenatal irradiation on neuronal migration in mouse cerebral cortex

    International Nuclear Information System (INIS)

    Hyodo-Taguchi, Yasuko; Ishikawa, Yuji; Hirobe, Tomohisa; Fushiki, Shinji; Kinoshita, Chikako.

    1997-01-01

    We investigated the effects of continuous exposure to γ-rays during corticogenesis on the migration of neuronal cells in developing cerebral cortex. Pregnant mice were injected with 0.5 mg of bromodeoxyuridine (BrdU) on day 14 of gestation to label cells in the S phase. The mice were then exposed to 137 Cs γ-rays (dose rates of 0.1, 0.3, and 0.94 Gy/day) continuously for 3 days. Brains from 17-day-old embryos and from offspring at 3 and 8 weeks after birth were processed immunohistochemically to track the movements of BrdU-labeled cells. Comparative analyses of the distribution pattern of BrdU-labeled cells in the cerebral cortex revealed that the migration of neurons was delayed during the embryonic period in mice irradiated at 0.94 Gy/day, in 3-week-old mice, there was a significant difference in the distribution pattern of BrdU-labeled cells in the cerebral cortex between the mice irradiated prenatally and control, and in 8-week-old mice, there were no differences in the distribution pattern of BrdU-labeled cells between control and animals irradiated with 0.1 and 0.3 Gy/day. In contrast, in the animals irradiated with 0.94 Gy/day, the significant difference in the distribution pattern of the labeled cells relative to control was maintained. These results suggest that the migration of neuronal cells in mouse cerebral cortex is disturbed by continuous prenatal irradiation at low-dose and some modificational process occurred during the postnatal period. (author)

  1. Effects of decreased inhibition on synaptic plasticity and dendritic morphology in the juvenile prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Xanthippi Konstantoudaki

    2014-03-01

    Full Text Available Excitation-inhibition balance is critical for maintaining proper functioning of the cerebral cortex, as evident from electrophysiological and modeling studies, and it is also important for animal behavior (Yizhar et al., 2011. In the cerebral cortex, excitation is provided by glutamate release from pyramidal neurons, while inhibition is provided by GABA release from several types of interneurons. Many neuropsychiatric disorders, such as epilepsy, anxiety, schizophrenia and autism exhibit an imbalance between the excitatory and inhibitory mechanisms of cortical circuits within key brain regions as prefrontal cortex or hippocampus, primarily through dysfunctions in the inhibitory system (Lewis, Volk, & Hashimoto, 2003; Marín, 2012 Given the significant role of GABAergic inhibition in shaping proper function of the cerebral cortex, we used a mouse model of developmentally decreased GABAergic inhibition in order to examine its effects in network properties, namely basal synaptic transmission, synaptic plasticity and dendritic morphology of pyramidal neurons. For our study, we used mice (postnatal day 20-30 in which the Rac1 protein was deleted from Nkx2.1-expressing neurons (Vidaki et al., 2012, (Rac1fl/flNkx2.1 +/cre referred as Rac1 KO mice, and heterozygous (Rac1+/flNkx2.1 +/cre or control (Rac1+/flNkx2.1 +/+ mice. The specific ablation of Rac1 protein from NKx2.1-expressing MGE-derived progenitors leads to a perturbation of their cell cycle exit resulting in decreased number of interneurons in the cortex(Vidaki et al, 2012. We prepared brain slices from the prefrontal cortex and recorded field excitatory postsynaptic potentials (fEPSPs from layer II neurons while stimulating axons in layer II. We find that the evoked fEPSPs are decreased in Rac1 KO mice compared to Rac1 heterozygous or control mice. This could suggest that the decreased GABAergic inhibition causes network alterations that result in reduced glutamatergic function. Furthermore

  2. Effect of. beta. -endorphin on catecholamine levels in rat hypothalamus and cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Slavnov, V.N.; Valueva, G.V.; Markov, V.V.; Luchitskii, E.V.

    1986-10-01

    The authors studied the effect of beta-endorphin on catecholamine concentrations in the hypothalmus and cerebral cortex in rats, as a contribution to the explanation of the mechanism of action of this peptide on certain pituitary trophic functions. Concentrations of dopamine, noradrenalin, and adrenalin were determined by a radioenzymatic method. A Mark 3 scintillation system was used for radiometric investigation of the samples. The results of these experiments indicate that beta-endorphin has a marked effect on brain catecholamine levels mainly in the hypothalamus.

  3. Listen, learn, like! Dorsolateral prefrontal cortex involved in the mere exposure effect in music

    DEFF Research Database (Denmark)

    Green, Anders Christian; Bærentsen, Klaus B.; Stødkilde-Jørgensen, Hans

    2012-01-01

    , participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were most liked, consistent with the mere exposure effect. We found neural activations as a function of previous...... exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory...

  4. Effect of β-endorphin on catecholamine levels in rat hypothalamus and cerebral cortex

    International Nuclear Information System (INIS)

    Slavnov, V.N.; Valueva, G.V.; Markov, V.V.; Luchitskii, E.V.

    1986-01-01

    The authors studied the effect of beta-endorphin on catecholamine concentrations in the hypothalmus and cerebral cortex in rats, as a contribution to the explanation of the mechanism of action of this peptide on certain pituitary trophic functions. Concentrations of dopamine, noradrenalin, and adrenalin were determined by a radioenzymatic method. A Mark 3 scintillation system was used for radiometric investigation of the samples. The results of these experiments indicate that beta-endorphin has a marked effect on brain catecholamine levels mainly in the hypothalamus

  5. Effect of superlarge dose of gamma radiation on the rat cerebral cortex (ultrastructural aspects)

    International Nuclear Information System (INIS)

    Abdrakhmanov, A.A.; AN Kazakhskoj SSR, Alma-Ata

    1988-01-01

    Puberal Wistar line mall rats (180-210 g) were subjected to single whole-body gamma irradiation with 150 Gy dose and 75 Gy/min dose rate. Electron-microscopic investigation into dynamics of sensory-motor cortex ultrastructural changes during 24 hours after irradiation is conducted. Along with destructive changes compensator-reduction processes are developed in brain tissue at this period. Already during the first hours after irradiation the neutron ultrastructure change dynamics has been determined, alongside with direct radiation effect, by indirect effects juries of neuroglia and microcirculatory channel

  6. Effect of superlarge dose of gamma radiation on the rat cerebral cortex (ultrastructural aspects)

    Energy Technology Data Exchange (ETDEWEB)

    Abdrakhmanov, A A

    1988-06-01

    Puberal Wistar line mall rats (180-210 g) were subjected to single whole-body gamma irradiation with 150 Gy dose and 75 Gy/min dose rate. Electron-microscopic investigation into dynamics of sensory-motor cortex ultrastructural changes during 24 hours after irradiation is conducted. Along with destructive changes compensator-reduction processes are developed in brain tissue at this period. Already during the first hours after irradiation the neutron ultrastructure change dynamics has been determined, alongside with direct radiation effect, by indirect effects juries of neuroglia and microcirculatory channel.

  7. Mitochondrial dysfunction in brain cortex mitochondria of STZ-diabetic rats: effect of l-Arginine.

    Science.gov (United States)

    Ortiz, M Del Carmen; Lores-Arnaiz, Silvia; Albertoni Borghese, M Florencia; Balonga, Sabrina; Lavagna, Agustina; Filipuzzi, Ana Laura; Cicerchia, Daniela; Majowicz, Monica; Bustamante, Juanita

    2013-12-01

    Mitochondrial dysfunction has been implicated in many diseases, including diabetes. It is well known that oxygen free radical species are produced endogenously by mitochondria, and also nitric oxide (NO) by nitric oxide synthases (NOS) associated to mitochondrial membranes, in consequence these organelles constitute main targets for oxidative damage. The aim of this study was to analyze mitochondrial physiology and NO production in brain cortex mitochondria of streptozotocin (STZ) diabetic rats in an early stage of diabetes and the potential effect of L-arginine administration. The diabetic condition was characterized by a clear hyperglycaemic state with loose of body weight after 4 days of STZ injection. This hyperglycaemic state was associated with mitochondrial dysfunction that was evident by an impairment of the respiratory activity, increased production of superoxide anion and a clear mitochondrial depolarization. In addition, the alteration in mitochondrial physiology was associated with a significant decrease in both NO production and nitric oxide synthase type I (NOS I) expression associated to the mitochondrial membranes. An increased level of thiobarbituric acid-reactive substances (TBARS) in brain cortex homogenates from STZ-diabetic rats indicated the presence of lipid peroxidation. L-arginine treatment to diabetic rats did not change blood glucose levels but significantly ameliorated the oxidative stress evidenced by lower TBARS and a lower level of superoxide anion. This effect was paralleled by improvement of mitochondrial respiratory function and a partial mitochondrial repolarization.In addition, the administration of L-arginine to diabetic rats prevented the decrease in NO production and NOSI expression. These results could indicate that exogenously administered L-arginine may have beneficial effects on mitochondrial function, oxidative stress and NO production in brain cortex mitochondria of STZ-diabetic rats.

  8. Preferential effect of isoflurane on top-down vs. bottom-up pathways in sensory cortex.

    Science.gov (United States)

    Raz, Aeyal; Grady, Sean M; Krause, Bryan M; Uhlrich, Daniel J; Manning, Karen A; Banks, Matthew I

    2014-01-01

    The mechanism of loss of consciousness (LOC) under anesthesia is unknown. Because consciousness depends on activity in the cortico-thalamic network, anesthetic actions on this network are likely critical for LOC. Competing theories stress the importance of anesthetic actions on bottom-up "core" thalamo-cortical (TC) vs. top-down cortico-cortical (CC) and matrix TC connections. We tested these models using laminar recordings in rat auditory cortex in vivo and murine brain slices. We selectively activated bottom-up vs. top-down afferent pathways using sensory stimuli in vivo and electrical stimulation in brain slices, and compared effects of isoflurane on responses evoked via the two pathways. Auditory stimuli in vivo and core TC afferent stimulation in brain slices evoked short latency current sinks in middle layers, consistent with activation of core TC afferents. By contrast, visual stimuli in vivo and stimulation of CC and matrix TC afferents in brain slices evoked responses mainly in superficial and deep layers, consistent with projection patterns of top-down afferents that carry visual information to auditory cortex. Responses to auditory stimuli in vivo and core TC afferents in brain slices were significantly less affected by isoflurane compared to responses triggered by visual stimuli in vivo and CC/matrix TC afferents in slices. At a just-hypnotic dose in vivo, auditory responses were enhanced by isoflurane, whereas visual responses were dramatically reduced. At a comparable concentration in slices, isoflurane suppressed both core TC and CC/matrix TC responses, but the effect on the latter responses was far greater than on core TC responses, indicating that at least part of the differential effects observed in vivo were due to local actions of isoflurane in auditory cortex. These data support a model in which disruption of top-down connectivity contributes to anesthesia-induced LOC, and have implications for understanding the neural basis of consciousness.

  9. Riluzole Effect on Occipital Cortex: A Structural and Spectroscopy Pilot Study

    Science.gov (United States)

    Abdallah, Chadi G.; Coplan, Jeremy D.; Jackowski, Andrea; Sato, João R.; Mao, Xiangling; Shungu, Dikoma C.; Mathew, Sanjay J.

    2012-01-01

    Background To investigate the mechanism underlying the anxiolytic properties of riluzole, a glutamate-modulating agent, we previously studied the effect of this drug on hippocampal N-Acetylaspartate (NAA) and volume in patients with Generalized Anxiety Disorder (GAD). In the same cohort, we now extend our investigation to the occipital cortex, a brain region that was recently implicated in the antidepressant effect of riluzole. Methods Fourteen medication-free adult patients with GAD received 8-week of open-label riluzole. Ten healthy subjects served as a comparison group. The healthy group did not receive riluzole treatment. Both groups underwent magnetic resonance imaging and spectroscopy at baseline and at the end of Week 8. Hamilton Anxiety Rating Scale (HAM-A) and Penn State Worry Questionnaire (PSWQ) were used as the primary and secondary outcome measures, respectively. Results At baseline, we found clusters of increased cortical thickness in the occipital region in GAD compared to healthy subjects. In the right hemisphere, eight weeks of treatment reduced occipital cortical thickness in the GAD group (t = 3.67, p = 0.004). In addition, the improvement in HAM-A scores was negatively correlated with post-treatment right occipital NAA (r = − 0.68, p = 0.008), and with changes in NAA levels (r = − 0.53, p = 0.051). In the left hemisphere, we found positive associations between changes in occipital cortical thickness and improvement in HAM-A (r = 0.60, p = 0.04) and PSWQ (r = 0.62, p = 0.03). Conclusion These pilot findings implicate the occipital cortex as a brain region associated with pathology and clinical improvement in GAD. In addition, the region specific effect of riluzole implies a distinct pathophysiology in the occipital cortex – compared to other, previously studied, frontolimbic brain structures. PMID:23043888

  10. Effect of camphor essential oil on rat cerebral cortex activity as manifested by fractal dimension changes

    Directory of Open Access Journals (Sweden)

    Grbić G.

    2008-01-01

    Full Text Available The aim of our study was to investigate the effect of camphor essential oil on rat cerebral cortex activity by fractal analysis. Fractal dimension (FD values of the parietal electrocortical activity were calculated before and after intra-peritoneal administration of camphor essential oil (450-675 μl/kg in anesthetized rats. Camphor oil induced seizure-like activity with single and multiple spiking of high amplitudes in the parietal electrocorticogram and occasional clonic limb convulsions. The FD values of cortical activity after camphor oil administration increased on the average. Only FD values of cortical ECoG sequences were lower than those before camphor oil administration.

  11. Effect of blood vessels on light distribution in optogenetic stimulation of cortex.

    Science.gov (United States)

    Azimipour, Mehdi; Atry, Farid; Pashaie, Ramin

    2015-05-15

    In this Letter, the impact of blood vessels on light distribution during photostimulation of cortical tissue in small rodents is investigated. Brain optical properties were extracted using a double-integrating sphere setup, and optical coherence tomography was used to image cortical vessels and capillaries to generate a three-dimensional angiogram of the cortex. By combining these two datasets, a complete volumetric structure of the cortical tissue was developed and linked to a Monte Carlo code which simulates light propagation in this inhomogeneous structure and illustrates the effect of blood vessels on the penetration depth and pattern preservation in optogenetic stimulation.

  12. Interactive effects of music and prefrontal cortex stimulation in modulating response inhibition.

    Science.gov (United States)

    Mansouri, Farshad Alizadeh; Acevedo, Nicola; Illipparampil, Rosin; Fehring, Daniel J; Fitzgerald, Paul B; Jaberzadeh, Shapour

    2017-12-22

    Influential hypotheses propose that alterations in emotional state influence decision processes and executive control of behavior. Both music and transcranial direct current stimulation (tDCS) of prefrontal cortex affect emotional state, however interactive effects of music and tDCS on executive functions remain unknown. Learning to inhibit inappropriate responses is an important aspect of executive control which is guided by assessing the decision outcomes such as errors. We found that high-tempo music, but not low-tempo music or low-level noise, significantly influenced learning and implementation of inhibitory control. In addition, a brief period of tDCS over prefrontal cortex specifically interacted with high-tempo music and altered its effects on executive functions. Measuring event-related autonomic and arousal response of participants indicated that exposure to task demands and practice led to a decline in arousal response to the decision outcome and high-tempo music enhanced such practice-related processes. However, tDCS specifically moderated the high-tempo music effect on the arousal response to errors and concomitantly restored learning and improvement in executive functions. Here, we show that tDCS and music interactively influence the learning and implementation of inhibitory control. Our findings indicate that alterations in the arousal-emotional response to the decision outcome might underlie these interactive effects.

  13. Effect of N-acetylcysteine on the accuracy of the prothrombin time assay of plasma coagulation factor II+VII+X activity in subjects infused with the drug. Influence of time and temperature.

    Science.gov (United States)

    Thorsen, Sixtus; Teisner, Ane; Jensen, Søren Astrup; Philips, Malou; Dalhoff, Kim; Bendtsen, Flemming

    2009-01-01

    The prothrombin time (PT) assay of factor II+VII+X activity is an important predictor of liver damage in paracetamol poisoned patients. It complicates interpretation of results that the antidote, acetylcysteine (NAC) depresses this activity. The aim was to investigate if NAC influences the accuracy of the plasma PT assay. The accuracy of Nycotest PT was studied using plasma added NAC in vitro and plasma from subjects infused with NAC. The latter results were compared with those obtained by analysis of PT by CoaguChek S. Therapeutic NAC concentrations added to plasma in vitro decreased factor II+VII+X activity at 37 degrees C in a time-dependent manner. This effect was quenched at temperatures depression of factor II+VII+X activity in plasma from subjects infused with NAC during the first 3h of infusion indicating that it contained reactive NAC. The risk that this NAC interfered with the accuracy of the PT assay was considered minimal with samples stored below 24 degrees C. This was supported by similarity of results obtained by analysis of appropriately stored plasma and simultaneously drawn blood by CoaguChek S. Residual reactive NAC does not interfere with the accuracy of the PT assay of plasma stored below 24 degrees C, but NAC-induced loss in activity at 37 degrees C may be partly recovered during subsequent storage below 24 degrees C.

  14. The Effect of Aerobic Exercise on Neuroplasticity within the Motor Cortex following Stroke.

    Directory of Open Access Journals (Sweden)

    Kate Murdoch

    Full Text Available Aerobic exercise is associated with enhanced plasticity in the motor cortex of healthy individuals, but the effect of aerobic exercise on neuroplasticity following a stroke is unknown.The aim of this study was to compare corticomotoneuronal excitability and neuroplasticity in the upper limb cortical representation following a single session of low intensity lower limb cycling, or a rest control condition.We recruited chronic stroke survivors to take part in three experimental conditions in a randomised, cross-over design. Corticomotoneuronal excitability was examined using transcranial magnetic stimulation to elicit motor evoked potentials in the affected first dorsal interosseus muscle. Following baseline measures, participants either cycled on a stationary bike at a low exercise intensity for 30 minutes, or remained resting in a seated position for 30 minutes. Neuroplasticity within the motor cortex was then examined using an intermittent theta burst stimulation (iTBS paradigm. During the third experimental condition, participants cycled for the 30 minutes but did not receive any iTBS.Twelve participants completed the study. We found no significant effect of aerobic exercise on corticomotoneuronal excitability when compared to the no exercise condition (P > 0.05 for all group and time comparisons. The use of iTBS did not induce a neuroplastic-like response in the motor cortex with or without the addition of aerobic exercise.Our results suggest that following a stroke, the brain may be less responsive to non-invasive brain stimulation paradigms that aim to induce short-term reorganisation, and aerobic exercise was unable to induce or improve this response.

  15. The Effect of Aerobic Exercise on Neuroplasticity within the Motor Cortex following Stroke

    Science.gov (United States)

    Murdoch, Kate; Buckley, Jonathan D.; McDonnell, Michelle N.

    2016-01-01

    Background Aerobic exercise is associated with enhanced plasticity in the motor cortex of healthy individuals, but the effect of aerobic exercise on neuroplasticity following a stroke is unknown. Objective The aim of this study was to compare corticomotoneuronal excitability and neuroplasticity in the upper limb cortical representation following a single session of low intensity lower limb cycling, or a rest control condition. Methods We recruited chronic stroke survivors to take part in three experimental conditions in a randomised, cross-over design. Corticomotoneuronal excitability was examined using transcranial magnetic stimulation to elicit motor evoked potentials in the affected first dorsal interosseus muscle. Following baseline measures, participants either cycled on a stationary bike at a low exercise intensity for 30 minutes, or remained resting in a seated position for 30 minutes. Neuroplasticity within the motor cortex was then examined using an intermittent theta burst stimulation (iTBS) paradigm. During the third experimental condition, participants cycled for the 30 minutes but did not receive any iTBS. Results Twelve participants completed the study. We found no significant effect of aerobic exercise on corticomotoneuronal excitability when compared to the no exercise condition (P > 0.05 for all group and time comparisons). The use of iTBS did not induce a neuroplastic-like response in the motor cortex with or without the addition of aerobic exercise. Conclusions Our results suggest that following a stroke, the brain may be less responsive to non-invasive brain stimulation paradigms that aim to induce short-term reorganisation, and aerobic exercise was unable to induce or improve this response. PMID:27018862

  16. Factor VII-activating protease

    DEFF Research Database (Denmark)

    Ramanathan, Ramshanker; Gram, Jørgen B; Sand, Niels Peter R

    2017-01-01

    : Factor VII-activating protease (FSAP) may regulate development of cardiovascular disease (CVD). We evaluated sex differences in FSAP measures and examined the association between FSAP and coronary artery calcification (CAC) in a middle-aged population. Participants were randomly selected citizens...

  17. Longitudinal Effects of Ketamine on Dendritic Architecture In Vivo in the Mouse Medial Frontal Cortex123

    Science.gov (United States)

    Phoumthipphavong, Victoria; Barthas, Florent; Hassett, Samantha

    2016-01-01

    Abstract A single subanesthetic dose of ketamine, an NMDA receptor antagonist, leads to fast-acting antidepressant effects. In rodent models, systemic ketamine is associated with higher dendritic spine density in the prefrontal cortex, reflecting structural remodeling that may underlie the behavioral changes. However, turnover of dendritic spines is a dynamic process in vivo, and the longitudinal effects of ketamine on structural plasticity remain unclear. The purpose of the current study is to use subcellular resolution optical imaging to determine the time course of dendritic alterations in vivo following systemic ketamine administration in mice. We used two-photon microscopy to visualize repeatedly the same set of dendritic branches in the mouse medial frontal cortex (MFC) before and after a single injection of ketamine or saline. Compared to controls, ketamine-injected mice had higher dendritic spine density in MFC for up to 2 weeks. This prolonged increase in spine density was driven by an elevated spine formation rate, and not by changes in the spine elimination rate. A fraction of the new spines following ketamine injection was persistent, which is indicative of functional synapses. In a few cases, we also observed retraction of distal apical tuft branches on the day immediately after ketamine administration. These results indicate that following systemic ketamine administration, certain dendritic inputs in MFC are removed immediately, while others are added gradually. These dynamic structural modifications are consistent with a model of ketamine action in which the net effect is a rebalancing of synaptic inputs received by frontal cortical neurons. PMID:27066532

  18. Effect of transcranial magnetic stimulation (TMS on parietal and premotor cortex during planning of reaching movements.

    Directory of Open Access Journals (Sweden)

    Pierpaolo Busan

    Full Text Available BACKGROUND: Cerebral activation during planning of reaching movements occurs both in the superior parietal lobule (SPL and premotor cortex (PM, and their activation seems to take place in parallel. METHODOLOGY: The activation of the SPL and PM has been investigated using transcranial magnetic stimulation (TMS during planning of reaching movements under visual guidance. PRINCIPAL FINDINGS: A facilitory effect was found when TMS was delivered on the parietal cortex at about half of the time from sight of the target to hand movement, independently of target location in space. Furthermore, at the same stimulation time, a similar facilitory effect was found in PM, which is probably related to movement preparation. CONCLUSIONS: This data contributes to the understanding of cortical dynamics in the parieto-frontal network, and suggests that it is possible to interfere with the planning of reaching movements at different cortical points within a particular time window. Since similar effects may be produced at similar times on both the SPL and PM, parallel processing of visuomotor information is likely to take place in these regions.

  19. Monoclonal antibodies to human factor VII: production of immunodepleted plasma for VII:C assays.

    OpenAIRE

    Takase, T; Tuddenham, E G; Chand, S; Goodall, A H

    1988-01-01

    A high affinity monoclonal antibody to factor VII (RFF-VII/1), coupled to sepharose, was used to immunodeplete factor VII from normal plasma. The plasma could be used as a substrate in a one stage coagulation assay and performed as well as, or better than, commercially available factor VII deficient plasma or plasma from congenitally deficient factor VII patients. Plasma from normal donors (n = 20), patients with liver disease (n = 20), and patients receiving warfarin (n = 20), or congenitall...

  20. Prefrontal cortex activation during obstacle negotiation: What's the effect size and timing?

    Science.gov (United States)

    Maidan, Inbal; Shustak, Shiran; Sharon, Topaz; Bernad-Elazari, Hagar; Geffen, Nimrod; Giladi, Nir; Hausdorff, Jeffrey M; Mirelman, Anat

    2018-04-01

    Obstacle negotiation is a daily activity that requires the integration of sensorimotor and cognitive information. Recent studies provide evidence for the important role of prefrontal cortex during obstacle negotiation. We aimed to explore the effects of obstacle height and available response time on prefrontal activation. Twenty healthy young adults (age: 30.1 ± 1.0 years; 50% women) walked in an obstacle course while negotiating anticipated and unanticipated obstacles at heights of 50 mm and 100 mm. Prefrontal activation was measured using a functional near-infrared spectroscopy system. Kinect cameras measured the obstacle negotiation strategy. Prefrontal activation was defined based on mean level of HbO 2 before, during and after obstacle negotiation and the HbO 2 slope from gait initiation and throughout the task. Changes between types of obstacles were assessed using linear-mix models and partial correlation analyses evaluated the relationship between prefrontal activation and the distance between the feet as the subjects traversed the obstacles. Different obstacle heights showed similar changes in prefrontal activation measures (p > 0.210). However, during unanticipated obstacles, the slope of the HbO 2 response was steeper (p = 0.048), as compared to anticipated obstacles. These changes in prefrontal activation during negotiation of unanticipated obstacles were correlated with greater distance of the leading foot after the obstacles (r = 0.831, p = 0.041). These findings are the first to show that the pattern of prefrontal activation depends on the nature of the obstacle. More specifically, during unanticipated obstacles the recruitment of the prefrontal cortex is faster and greater than during negotiating anticipated obstacles. These results provide evidence of the important role of the prefrontal cortex and the ability of healthy young adults to tailor the activation pattern to different types of obstacles. Copyright © 2018

  1. The prefrontal cortex shows context-specific changes in effective connectivity to motor or visual cortex during the selection of action or colour

    DEFF Research Database (Denmark)

    Rowe, James B.; Stephan, Klaas E.; Friston, Karl

    2005-01-01

    The role of the prefrontal cortex remains controversial. Neuroimaging studies support modality-specific and process-specific functions related to working memory and attention. Its role may also be defined by changes in its influence over other brain regions including sensory and motor cortex. We...... used functional magnetic imaging (fMRI) to study the free selection of actions and colours. Control conditions used externally specified actions and colours. The prefrontal cortex was activated during free selection, regardless of modality, in contrast to modality-specific activations outside...... included high-order interactions between modality, selection and regional activity. There was greater coupling between prefrontal cortex and motor cortex during free selection and action tasks, and between prefrontal cortex and visual cortex during free selection of colours. The results suggest...

  2. Age Effect on Automatic Inhibitory Function of the Somatosensory and Motor Cortex: An MEG Study

    Directory of Open Access Journals (Sweden)

    Chia-Hsiung Cheng

    2018-03-01

    Full Text Available Age-related deficiency in the top-down modulation of cognitive inhibition has been extensively documented, whereas the effects of age on a bottom-up or automatic operation of inhibitory function were less investigated. It is unknown that whether the older adults (OA’ reduced behavioral performance and neural responses are due to the insufficient bottom-up processes. Compared to behavioral assessments which have been widely used to examine the top-down control of response inhibition, electrophysiological recordings are more suitable to probe the early-stage processes of automatic inhibitory function. Sensory gating (SG, a phenomenon of attenuated neural response to the second identical stimulus in a paired-pulse paradigm, is an indicator to assess automatic inhibitory function of the sensory cortex. On the other hand, electricity-induced beta rebound oscillation in a single-pulse paradigm reflects cortical inhibition of the motor cortex. From the neurophysiological perspective, SG and beta rebound oscillation are replicable indicators to examine the automatic inhibitory function of human sensorimotor cortices. Thus, the present study aimed to use a whole-head magnetoencephalography (MEG to investigate the age-related alterations of SG function in the primary somatosensory cortex (SI and of beta rebound oscillation in the primary motor cortex (MI in 17 healthy younger and 15 older adults. The Stimulus 2/Stimulus 1 (S2/S1 amplitude ratio in response to the paired-pulse electrical stimulation to the left median nerve was used to evaluate the automatic inhibitory function of SI, and the beta rebound response in the single-pulse paradigm was used to evaluate the automatic inhibitory function of MI. Although there were no significant age-related differences found in the SI SG ratios, the MI beta rebound power was reduced and peak latency was prolonged in the OA. Furthermore, significant association between the SI SG ratio and the MI beta rebound

  3. Age Effect on Automatic Inhibitory Function of the Somatosensory and Motor Cortex: An MEG Study

    Science.gov (United States)

    Cheng, Chia-Hsiung; Lin, Mei-Yin; Yang, Shiou-Han

    2018-01-01

    Age-related deficiency in the top-down modulation of cognitive inhibition has been extensively documented, whereas the effects of age on a bottom-up or automatic operation of inhibitory function were less investigated. It is unknown that whether the older adults (OA)’ reduced behavioral performance and neural responses are due to the insufficient bottom-up processes. Compared to behavioral assessments which have been widely used to examine the top-down control of response inhibition, electrophysiological recordings are more suitable to probe the early-stage processes of automatic inhibitory function. Sensory gating (SG), a phenomenon of attenuated neural response to the second identical stimulus in a paired-pulse paradigm, is an indicator to assess automatic inhibitory function of the sensory cortex. On the other hand, electricity-induced beta rebound oscillation in a single-pulse paradigm reflects cortical inhibition of the motor cortex. From the neurophysiological perspective, SG and beta rebound oscillation are replicable indicators to examine the automatic inhibitory function of human sensorimotor cortices. Thus, the present study aimed to use a whole-head magnetoencephalography (MEG) to investigate the age-related alterations of SG function in the primary somatosensory cortex (SI) and of beta rebound oscillation in the primary motor cortex (MI) in 17 healthy younger and 15 older adults. The Stimulus 2/Stimulus 1 (S2/S1) amplitude ratio in response to the paired-pulse electrical stimulation to the left median nerve was used to evaluate the automatic inhibitory function of SI, and the beta rebound response in the single-pulse paradigm was used to evaluate the automatic inhibitory function of MI. Although there were no significant age-related differences found in the SI SG ratios, the MI beta rebound power was reduced and peak latency was prolonged in the OA. Furthermore, significant association between the SI SG ratio and the MI beta rebound power, which was

  4. Perturbation fields in W VII-AS and Helias configurations

    International Nuclear Information System (INIS)

    Harmeyer, E.; Kisslinger, J.; Montvai, A.; Rau, F.; Wobig, H.

    1988-01-01

    Effects of pertubed topologies of the W VII-AS vacuum fields on the configuration with rational and irrational rotational transform are illustrated. Even small perturbation fields are unacceptable at rational values of the rotational transform. For example at a rotational transform = 1/2 in W VII-AS, when exceeding an effective homogeneous Bx/B = 3 x 10 -4 , the size of the rotational transform = 1/2 = 5/10 islands is doubled. At irrational values a Bx/B = 1/2% shows tolerable effects, for both W VII-AS and HS4-12. At rational values of the rotational transform = 1 near the edge, Bx/B values = 1/4 to 1/8% show a rather large increase of the aspect ratio, so an edge value of rotational transform = 1 should be avoided

  5. Listen, Learn, Like! Dorsolateral Prefrontal Cortex Involved in the Mere Exposure Effect in Music

    Directory of Open Access Journals (Sweden)

    Anders C. Green

    2012-01-01

    Full Text Available We used functional magnetic resonance imaging to investigate the neural basis of the mere exposure effect in music listening, which links previous exposure to liking. Prior to scanning, participants underwent a learning phase, where exposure to melodies was systematically varied. During scanning, participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were most liked, consistent with the mere exposure effect. We found neural activations as a function of previous exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory processes. Subjective liking per se caused differential activation in the left hemisphere, of the anterior insula, the caudate nucleus, and the putamen.

  6. Listen, learn, like! Dorsolateral prefrontal cortex involved in the mere exposure effect in music.

    Science.gov (United States)

    Green, Anders C; Bærentsen, Klaus B; Stødkilde-Jørgensen, Hans; Roepstorff, Andreas; Vuust, Peter

    2012-01-01

    We used functional magnetic resonance imaging to investigate the neural basis of the mere exposure effect in music listening, which links previous exposure to liking. Prior to scanning, participants underwent a learning phase, where exposure to melodies was systematically varied. During scanning, participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were most liked, consistent with the mere exposure effect. We found neural activations as a function of previous exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory processes. Subjective liking per se caused differential activation in the left hemisphere, of the anterior insula, the caudate nucleus, and the putamen.

  7. Newly diagnosed congenital factor VII deficiency and utilization of recombinant activated factor VII (NovoSeven(®)).

    Science.gov (United States)

    Bartosh, Nicole S; Tomlin, Tara; Cable, Christian; Halka, Kathleen

    2013-01-01

    This case report presents a newly diagnosed congenital factor VII deficiency treated with recombinant activated factor VII (rFVIIa). Congenital factor VII deficiency is a rare autosomal-recessive bleeding disorder that occurs in fewer than 1/500,000 persons. Its presentation can vary from epistaxis to hemarthroses and severe central nervous system bleeding, and correlates poorly with factor VII levels. Our patient had not had a significant hemostatic challenge prior to his presentation and therefore never had any symptomatology suggestive of this disease. He was treated with rFVIIa, and was able to undergo repair of his fractures without bleeding. A 19-year-old African-American male presented to the emergency room after an altercation that resulted in significant trauma. He sustained bilateral mandibular angle fractures and orbital floor fractures, requiring urgent surgical correction. On initial evaluation, he was noted to have a prolonged prothrombin time of 40.1 seconds, with an International Normalized Ratio of 4.0, a normal activated partial thromboplastin time of 29.9 seconds, and a platelet count of 241. After receiving vitamin K and fresh frozen plasma, he was taken to the operating room for a temporary rigid maxillomandibular fixation. A 1:1 mixing study with normal plasma corrected the prothrombin time (decreasing from 40.7 to 14.7 seconds) and a factor VII assay revealed 5% of the normal factor VII level. The patient was diagnosed with congenital factor VII deficiency. Due to his coagulopathy and the extensive surgical correction needed, rFVIIa was administered and surgery was accomplished without hemorrhagic sequelae. This case report and review describes a rare congenital disease, the history of rFVIIa use, and its mechanism. rFVIIA use in our patient provided a treatment option that allowed the necessary surgical correction, but further prospective studies on dose optimization would ensure adequate dosing with minimal risk of severe side effects.

  8. Newly diagnosed congenital factor VII deficiency and utilization of recombinant activated factor VII (NovoSeven®)

    Science.gov (United States)

    Bartosh, Nicole S; Tomlin, Tara; Cable, Christian; Halka, Kathleen

    2013-01-01

    This case report presents a newly diagnosed congenital factor VII deficiency treated with recombinant activated factor VII (rFVIIa). Congenital factor VII deficiency is a rare autosomal-recessive bleeding disorder that occurs in fewer than 1/500,000 persons. Its presentation can vary from epistaxis to hemarthroses and severe central nervous system bleeding, and correlates poorly with factor VII levels. Our patient had not had a significant hemostatic challenge prior to his presentation and therefore never had any symptomatology suggestive of this disease. He was treated with rFVIIa, and was able to undergo repair of his fractures without bleeding. Case report A 19-year-old African-American male presented to the emergency room after an altercation that resulted in significant trauma. He sustained bilateral mandibular angle fractures and orbital floor fractures, requiring urgent surgical correction. On initial evaluation, he was noted to have a prolonged prothrombin time of 40.1 seconds, with an International Normalized Ratio of 4.0, a normal activated partial thromboplastin time of 29.9 seconds, and a platelet count of 241. After receiving vitamin K and fresh frozen plasma, he was taken to the operating room for a temporary rigid maxillomandibular fixation. A 1:1 mixing study with normal plasma corrected the prothrombin time (decreasing from 40.7 to 14.7 seconds) and a factor VII assay revealed 5% of the normal factor VII level. The patient was diagnosed with congenital factor VII deficiency. Due to his coagulopathy and the extensive surgical correction needed, rFVIIa was administered and surgery was accomplished without hemorrhagic sequelae. Conclusion This case report and review describes a rare congenital disease, the history of rFVIIa use, and its mechanism. rFVIIA use in our patient provided a treatment option that allowed the necessary surgical correction, but further prospective studies on dose optimization would ensure adequate dosing with minimal risk of

  9. Sand Floor for Farmed Blue Foxes: Effects on Claws, Adrenal Cortex Function, Growth and Fur Properties

    Directory of Open Access Journals (Sweden)

    Leena Ahola

    2009-01-01

    Full Text Available Farmed blue foxes (Vulpes lagopus are traditionally housed on mesh floors where they are unable to perform certain species-specific behaviours, such as digging, which may compromise the animals' welfare. This study describes how a possibility to use in-cage sand floor affects welfare-related variables like growth of the claws, adrenal cortex function, and fur properties in juvenile blue foxes. The foxes (N=32 were housed in male-female sibling pairs in an outdoor fur animal shed in cage systems consisting of two traditional fox cages. For the eight male-female sibling pairs of the Control group, there was a mesh floor in both cages of each cage system, whereas for the eight pairs of the Sand group there was a mesh floor in one cage and a 30–40 cm deep earth floor in the other cage. The results show that sand floor is beneficial for the wearing of the claws of foxes. Furthermore, an early experience of sand floor may have positive effects on the foxes' fur development. The results, however, also suggest that there might appear welfare problems observed as disturbed claw growth and increased adrenal cortex activation if foxes that are once provided with clean and unfrozen sand floor are not allowed to enjoy this floor all the time.

  10. Effect of tearing modes on temperature and density profiles and on the perpendicular transport in the W VII-A stellarator

    International Nuclear Information System (INIS)

    Jaenicke, R.

    1988-01-01

    In the ohmically heated W VII-A stellarator, the behaviour of which is similar to that of a medium sized tokamak, the additional shearless external rotational transform t 0 (Δt 0 /t 0 0 perpendicular,e in a one-dimensional heat transport code. In this way, the measured temperature profiles can be reproduced quite well and the energy confinement time of discharges with tearing mode activity can be predicted quantitatively. The transport model is used to investigate the explicit dependence of κ perpendicular,e on the plasma current and to study the importance of plasma current driven instabilities for the energy confinement in the W VII-A stellarator as well as in tokamaks. (author). 19 refs, 14 figs

  11. The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex.

    Science.gov (United States)

    Di Lazzaro, V; Pilato, F; Dileone, M; Profice, P; Oliviero, A; Mazzone, P; Insola, A; Ranieri, F; Meglio, M; Tonali, P A; Rothwell, J C

    2008-08-15

    Theta burst stimulation (TBS) is a form of repetitive transcranial magnetic stimulation (TMS). When applied to motor cortex it leads to after-effects on corticospinal and corticocortical excitability that may reflect LTP/LTD-like synaptic effects. An inhibitory form of TBS (continuous, cTBS) suppresses MEPs, and spinal epidural recordings show this is due to suppression of the I1 volley evoked by TMS. Here we investigate whether the excitatory form of TBS (intermittent, iTBS) affects the same I-wave circuitry. We recorded corticospinal volleys evoked by single pulse TMS of the motor cortex before and after iTBS in three conscious patients who had an electrode implanted in the cervical epidural space for the control of pain. As in healthy subjects, iTBS increased MEPs, and this was accompanied by a significant increase in the amplitude of later I-waves, but not the I1 wave. In two of the patients we tested the excitability of the contralateral cortex and found a significant suppression of the late I-waves. The extent of the changes varied between the three patients, as did their age. To investigate whether age might be a significant contributor to the variability we examined the effect of iTBS on MEPs in 18 healthy subjects. iTBS facilitated MEPs evoked by TMS of the conditioned hemisphere and suppressed MEPs evoked by stimulation of the contralateral hemisphere. There was a slight but non-significant decline in MEP facilitation with age, suggesting that interindividual variability was more important than age in explaining our data. In a subgroup of 10 subjects we found that iTBS had no effect on the duration of the ipsilateral silent period suggesting that the reduction in contralateral MEPs was not due to an increase in ongoing transcallosal inhibition. In conclusion, iTBS affects the excitability of excitatory synaptic inputs to pyramidal tract neurones that are recruited by a TMS pulse, both in the stimulated hemisphere and in the contralateral hemisphere

  12. Positivity VII (Zaanen Centennial Conference)

    CERN Document Server

    Pagter, Ben; Gaans, Onno; Veraar, Mark

    2016-01-01

    This book presents the proceedings of Positivity VII, held from 22-26 July 2013, in Leiden, the Netherlands. Positivity is the mathematical field concerned with ordered structures and their applications in the broadest sense of the word. A biyearly series of conferences is devoted to presenting the latest developments in this lively and growing discipline. The lectures at the conference covered a broad spectrum of topics, ranging from order-theoretic approaches to stochastic processes, positive solutions of evolution equations and positive operators on vector lattices, to order structures in the context of algebras of operators on Hilbert spaces. The contributions in the book reflect this variety and appeal to university researchers in functional analysis, operator theory, measure and integration theory and operator algebras. Positivity VII was also the Zaanen Centennial Conference to mark the 100th birth year of Adriaan Cornelis Zaanen, who held the chair of Analysis in Leiden for more than 25 years and was ...

  13. Metaplasticity in human primary somatosensory cortex: effects on physiology and tactile perception.

    Science.gov (United States)

    Jones, Christina B; Lulic, Tea; Bailey, Aaron Z; Mackenzie, Tanner N; Mi, Yi Qun; Tommerdahl, Mark; Nelson, Aimee J

    2016-05-01

    Theta-burst stimulation (TBS) over human primary motor cortex evokes plasticity and metaplasticity, the latter contributing to the homeostatic balance of excitation and inhibition. Our knowledge of TBS-induced effects on primary somatosensory cortex (SI) is limited, and it is unknown whether TBS induces metaplasticity within human SI. Sixteen right-handed participants (6 females, mean age 23 yr) received two TBS protocols [continuous TBS (cTBS) and intermittent TBS (iTBS)] delivered in six different combinations over SI in separate sessions. TBS protocols were delivered at 30 Hz and were as follows: a single cTBS protocol, a single iTBS protocol, cTBS followed by cTBS, iTBS followed by iTBS, cTBS followed by iTBS, and iTBS followed by cTBS. Measures included the amplitudes of the first and second somatosensory evoked potentials (SEPs) via median nerve stimulation, their paired-pulse ratio (PPR), and temporal order judgment (TOJ). Dependent measures were obtained before TBS and at 5, 25, 50, and 90 min following stimulation. Results indicate similar effects following cTBS and iTBS; increased amplitudes of the second SEP and PPR without amplitude changes to SEP 1, and impairments in TOJ. Metaplasticity was observed such that TOJ impairments following a single cTBS protocol were abolished following consecutive cTBS protocols. Additionally, consecutive iTBS protocols altered the time course of effects when compared with a single iTBS protocol. In conclusion, 30-Hz cTBS and iTBS protocols delivered in isolation induce effects consistent with a TBS-induced reduction in intracortical inhibition within SI. Furthermore, cTBS- and iTBS-induced metaplasticity appear to follow homeostatic and nonhomeostatic rules, respectively. Copyright © 2016 the American Physiological Society.

  14. The Effect of Lesion Size on the Organization of the Ipsilesional and Contralesional Motor Cortex.

    Science.gov (United States)

    Touvykine, Boris; Mansoori, Babak K; Jean-Charles, Loyda; Deffeyes, Joan; Quessy, Stephan; Dancause, Numa

    2016-03-01

    Recovery of hand function following lesions in the primary motor cortex (M1) is associated with a reorganization of premotor areas in the ipsilesional hemisphere, and this reorganization depends on the size of the lesion. It is not clear how lesion size affects motor representations in the contralesional hemisphere and how the effects in the 2 hemispheres compare. Our goal was to study how lesion size affects motor representations in the ipsilesional and contralesional hemispheres. In rats, we induced lesions of different sizes in the caudal forelimb area (CFA), the equivalent of M1. The effective lesion volume in each animal was quantified histologically. Behavioral recovery was evaluated with the Montoya Staircase task for 28 days after the lesion. Then, the organization of the CFA and the rostral forelimb area (RFA)--the putative premotor area in rats--in the 2 cerebral hemispheres was studied with intracortical microstimulation mapping techniques. The distal forelimb representation in the RFA of both the ipsilesional and contralesional hemispheres was positively correlated with the size of the lesion. In contrast, lesion size had no effect on the contralesional CFA, and there was no relationship between movement representations in the 2 hemispheres. Finally, only the contralesional RFA was negatively correlated with chronic motor deficits of the paretic forelimb. Our data show that lesion size has comparable effects on motor representations in premotor areas of both hemispheres and suggest that the contralesional premotor cortex may play a greater role in the recovery of the paretic forelimb following large lesions. © The Author(s) 2015.

  15. Effect of ionizing radiation on apoptosis in the cortex of mouse lymph node

    International Nuclear Information System (INIS)

    Chen Dong; Liu Jiamei; Liu Shuzheng

    1999-01-01

    Objective: To study the alteration of apoptosis in the cortex of mouse lymph node following whole body X-irradiation. Methods: The method of TdT-mediated dUTP nick end labelling (TUNEL) was used to detect apoptosis the cortex of mouse lymph node. Results: The sensitivity to high and low dose ionizing radiation was distinct in different area of the cortex. Conclusion: The decrease of apoptotic cells in the inter nodular and deep cortex indicate that low dose radiation may suppress the apoptosis of T lymphocytes and play a role in immune regulation

  16. The Effect of Cortex/Medulla Proportions on Molecular Diagnoses in Kidney Transplant Biopsies: Rejection and Injury Can Be Assessed in Medulla.

    Science.gov (United States)

    Madill-Thomsen, K S; Wiggins, R C; Eskandary, F; Böhmig, G A; Halloran, P F

    2017-08-01

    Histologic assessment of kidney transplant biopsies relies on cortex rather than medulla, but for microarray studies, the proportion cortex in a biopsy is typically unknown and could affect the molecular readings. The present study aimed to develop a molecular estimate of proportion cortex in biopsies and examine its effect on molecular diagnoses. Microarrays from 26 kidney transplant biopsies divided into cortex and medulla components and processed separately showed that many of the most significant differences were in glomerular genes (e.g. NPHS2, NPHS1, CLIC5, PTPRO, PLA2R1, PLCE1, PODXL, and REN). Using NPHS2 (podocin) to estimate proportion cortex, we examined whether proportion cortex influenced molecular assessment in the molecular microscope diagnostic system. In 1190 unselected kidney transplant indication biopsies (Clinicaltrials.govNCT01299168), only 11% had Molecular scores for antibody-mediated rejection, T cell-mediated rejection, and injury were independent of proportion cortex. Rejection was diagnosed in many biopsies that were mostly or all medulla. Agreement in molecular diagnoses in paired cortex/medulla samples (23/26) was similar to biological replicates (32/37). We conclude that NPHS2 expression can estimate proportion cortex; that proportion cortex has little influence on molecular diagnosis of rejection; and that, although histology cannot assess medulla, rejection does occur in medulla as well as cortex. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  17. Effect of donepezil hydrochloride (E2020) on extracellular acetylcholine concentration in the cerebral cortex of rats.

    Science.gov (United States)

    Kosasa, T; Kuriya, Y; Yamanishi, Y

    1999-10-01

    Donepezil hydrochloride (donepezil), a potent and selective acetylcholinesterase inhibitor, has been developed for the treatment of Alzheimer's disease. We studied the effect of oral administration of this drug on the extracellular acetylcholine (ACh) concentration in the cerebral cortex of rats using microdialysis. We also observed fasciculation, a peripheral cholinergic sign induced by activation of neuromuscular transmission, after oral administration of the drug as an index of peripheral cholinergic activation. Other cholinesterase inhibitors, tacrine, ENA-713 and TAK-147, were used as reference drugs. Donepezil significantly and dose-dependently increased the extracellular ACh concentration in the rat cerebral cortex within the dose range of 2.5-10 mg/kg. Tacrine, ENA-713 and TAK-147 also elevated the extracellular concentration of ACh. The minimum effective doses of donepezil, tacrine, ENA-713 and TAK-147 were (< or = 2.5, 10, 10 and < or = 10 mg/kg, respectively. Donepezil produced fasciculation at doses of 2.5 mg/kg and above, with a dose-dependent increase in incidence and intensity. The reference compounds also induced fasciculation in a dose-dependent manner. The threshold doses of tacrine, ENA-713 and TAK-147 for fasciculation were 5, 2.5 and 2.5 mg/kg, respectively. The values of the ratio of the minimum effective dose for the ACh-increasing action to that for the fasciculation-producing action were: donepezil, < or = 1; tacrine, 2; ENA-713, 4; TAK-147, < or = 4. These results indicate that orally administered donepezil has a potent and selective activity on the central cholinergic system.

  18. Acute effect of Ethanol and Taurine on frontal cortex absolute beta power before and after exercise

    Science.gov (United States)

    Cagy, Mauricio; Velasques, Bruna; Ribeiro, Pedro; Gongora, Mariana; Alvarenga, Renato; Alonso, Luciano; Pompeu, Fernando A. M. S.

    2018-01-01

    Ethanol (ET) is a substance that modulates the Central Nervous System (CNS). Frequently, ET intake occurs combined with energy drinks, which contain taurine (TA), an important amino acid found in the body (i.e brain and muscles). Although TA administration has been used in the improvement of physical performance, the impact of TA, ET and exercise remains unknown. This study aimed to analyze the acute effect of 6g of Taurine (TA), 0.6 mL∙kg-1 of Ethanol (ET), and Taurine combined with Ethanol (TA+ET) ingestion on the electrocortical activity before and after a moderate intensity exercise in 9 subjects, 5 women (counterbalanced experimental design). In each of the 4 treatments (Placebo—PL, TA, ET and TA+ET), electroencephalography (EEG) tests were conducted in order to analyze changes in absolute beta power (ABP) in the frontal lobe in 3 moments: baseline (before ingestion), peak (before exercise) and post-exercise. In the PL treatment, the frontal areas showed decrease in ABP after exercise. However, in the ET+TA treatment, ABP values were greater after exercise, except for Fp1. The ET treatment had no effect on the Superior Frontal Gyrus area (F3, Fz and F4) and ABP decreased after exercise in Fp1 and Fp2. In the TA treatment, ABP increased after exercise, while it decreased at the peak moment in most of the frontal regions, except for Fp1, F3 and Fz. We concluded that after a moderate intensity exercise, a decrease in cortical activity occurs in placebo treatment. Moreover, we found a inhibitory effect of TA on cortical activity before exercise and a increased in cortical activity after exercise. A small ET dose is not enough to alter ABP in all regions of the frontal cortex and, in combination with TA, it showed an increase in the frontal cortex activity at the post-exercise moment. PMID:29538445

  19. The Analgesic and Anxiolytic Effect of Souvenaid, a Novel Nutraceutical, Is Mediated by Alox15 Activity in the Prefrontal Cortex.

    Science.gov (United States)

    Shalini, Suku-Maran; Herr, Deron R; Ong, Wei-Yi

    2017-10-01

    Pain and anxiety have a complex relationship and pain is known to share neurobiological pathways and neurotransmitters with anxiety. Top-down modulatory pathways of pain have been shown to originate from cortical and subcortical regions, including the dorsolateral prefrontal cortex. In this study, a novel docosahexaenoic acid (DHA)-containing nutraceutical, Souvenaid, was administered to mice with infraorbital nerve ligation-induced neuropathic pain and behavioral responses recorded. Infraorbital nerve ligation resulted in increased face wash strokes of the face upon von Frey hair stimulation, indicating increased nociception. Part of this response involves general pain sensitization that is dependent on the CNS, since increased nociception was also found in the paws during the hot plate test. Mice receiving oral gavage of Souvenaid, a nutraceutical containing DHA; choline; and other cell membrane components, showed significantly reduced pain sensitization. The mechanism of Souvenaid's activity involves supraspinal antinociception, originating in the prefrontal cortex, since inhibition of the DHA-metabolizing enzyme 15-lipoxygenase (Alox15) in the prefrontal cortex attenuated the antinociceptive effect of Souvenaid. Alox15 inhibition also modulated anxiety behavior associated with pain after infraorbital nerve ligation. The effects of Souvenaid components and Alox15 on reducing central sensitization of pain may be due to strengthening of a known supraspinal antinociceptive pathway from the prefrontal cortex to the periaqueductal gray. Together, results indicate the importance of the prefrontal cortex and DHA/Alox15 in central antinociceptive pathways and suggest that Souvenaid may be a novel therapeutic for neuropathic pain.

  20. Motor Cortex Stimulation Regenerative Effects in Peripheral Nerve Injury: An Experimental Rat Model.

    Science.gov (United States)

    Nicolas, Nicolas; Kobaiter-Maarrawi, Sandra; Georges, Samuel; Abadjian, Gerard; Maarrawi, Joseph

    2018-06-01

    Immediate microsurgical nerve suture remains the gold standard after peripheral nerve injuries. However, functional recovery is delayed, and it is satisfactory in only 2/3 of cases. Peripheral electrical nerve stimulation proximal to the lesion enhances nerve regeneration and muscle reinnervation. This study aims to evaluate the effects of the motor cortex electrical stimulation on peripheral nerve regeneration after injury. Eighty rats underwent right sciatic nerve section, followed by immediate microsurgical epineural sutures. Rats were divided into 4 groups: Group 1 (control, n = 20): no electrical stimulation; group 2 (n = 20): immediate stimulation of the sciatic nerve just proximal to the lesion; Group 3 (n = 20): motor cortex stimulation (MCS) for 15 minutes after nerve section and suture (MCSa); group 4 (n = 20): MCS performed over the course of two weeks after nerve suture (MCSc). Assessment included electrophysiology and motor functional score at day 0 (baseline value before nerve section), and at weeks 4, 8, and 12. Rats were euthanized for histological study at week 12. Our results showed that MCS enhances functional recovery, nerve regeneration, and muscle reinnervation starting week 4 compared with the control group (P < 0.05). The MCS induces higher reinnervation rates even compared with peripheral stimulation, with better results in the MCSa group (P < 0.05), especially in terms of functional recovery. MCS seems to have a beneficial effect after peripheral nerve injury and repair in terms of nerve regeneration and muscle reinnervation, especially when acute mode is used. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Computer modeling of Motor Cortex Stimulation: Effects of Anodal, Cathodal and Bipolar Stimulation

    NARCIS (Netherlands)

    Manola, L.; Holsheimer, J.; Buitenweg, Jan R.; Veltink, Petrus H.

    2007-01-01

    Motor cortex stimulation (MCS) is a promising clinical technique for treatment of chronic pain. However, optimization of the therapeutic efficacy is hampered since it is not known how electrically activated neural structures in the motor cortex can induce pain relief. Furthermore, multiple neural

  2. Tramadol Pretreatment Enhances Ketamine-Induced Antidepressant Effects and Increases Mammalian Target of Rapamycin in Rat Hippocampus and Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Chun Yang

    2012-01-01

    Full Text Available Several lines of evidence have demonstrated that acute administration of ketamine elicits fast-acting antidepressant effects. Moreover, tramadol also has potential antidepressant effects. The aim of this study was to investigate the effects of pretreatment with tramadol on ketamine-induced antidepressant activity and was to determine the expression of mammalian target of rapamycin (mTOR in rat hippocampus and prefrontal cortex. Rats were intraperitoneally administrated with ketamine at the dose of 10 mg/kg or saline 1 h before the second episode of the forced swimming test (FST. Tramadol or saline was intraperitoneally pretreated 30 min before the former administration of ketamine or saline. The locomotor activity and the immobility time of FST were both measured. After that, rats were sacrificed to determine the expression of mTOR in hippocampus and prefrontal cortex. Tramadol at the dose of 5 mg/kg administrated alone did not elicit the antidepressant effects. More importantly, pretreatment with tramadol enhanced the ketamine-induced antidepressant effects and upregulated the expression of mTOR in rat hippocampus and prefrontal cortex. Pretreatment with tramadol enhances the ketamine-induced antidepressant effects, which is associated with the increased expression of mTOR in rat hippocampus and prefrontal cortex.

  3. Modulatory Effects of Attention on Lateral Inhibition in the Human Auditory Cortex.

    Directory of Open Access Journals (Sweden)

    Alva Engell

    Full Text Available Reduced neural processing of a tone is observed when it is presented after a sound whose spectral range closely frames the frequency of the tone. This observation might be explained by the mechanism of lateral inhibition (LI due to inhibitory interneurons in the auditory system. So far, several characteristics of bottom up influences on LI have been identified, while the influence of top-down processes such as directed attention on LI has not been investigated. Hence, the study at hand aims at investigating the modulatory effects of focused attention on LI in the human auditory cortex. In the magnetoencephalograph, we present two types of masking sounds (white noise vs. withe noise passing through a notch filter centered at a specific frequency, followed by a test tone with a frequency corresponding to the center-frequency of the notch filter. Simultaneously, subjects were presented with visual input on a screen. To modulate the focus of attention, subjects were instructed to concentrate either on the auditory input or the visual stimuli. More specific, on one half of the trials, subjects were instructed to detect small deviations in loudness in the masking sounds while on the other half of the trials subjects were asked to detect target stimuli on the screen. The results revealed a reduction in neural activation due to LI, which was larger during auditory compared to visual focused attention. Attentional modulations of LI were observed in two post-N1m time intervals. These findings underline the robustness of reduced neural activation due to LI in the auditory cortex and point towards the important role of attention on the modulation of this mechanism in more evaluative processing stages.

  4. Modulatory Effects of Attention on Lateral Inhibition in the Human Auditory Cortex.

    Science.gov (United States)

    Engell, Alva; Junghöfer, Markus; Stein, Alwina; Lau, Pia; Wunderlich, Robert; Wollbrink, Andreas; Pantev, Christo

    2016-01-01

    Reduced neural processing of a tone is observed when it is presented after a sound whose spectral range closely frames the frequency of the tone. This observation might be explained by the mechanism of lateral inhibition (LI) due to inhibitory interneurons in the auditory system. So far, several characteristics of bottom up influences on LI have been identified, while the influence of top-down processes such as directed attention on LI has not been investigated. Hence, the study at hand aims at investigating the modulatory effects of focused attention on LI in the human auditory cortex. In the magnetoencephalograph, we present two types of masking sounds (white noise vs. withe noise passing through a notch filter centered at a specific frequency), followed by a test tone with a frequency corresponding to the center-frequency of the notch filter. Simultaneously, subjects were presented with visual input on a screen. To modulate the focus of attention, subjects were instructed to concentrate either on the auditory input or the visual stimuli. More specific, on one half of the trials, subjects were instructed to detect small deviations in loudness in the masking sounds while on the other half of the trials subjects were asked to detect target stimuli on the screen. The results revealed a reduction in neural activation due to LI, which was larger during auditory compared to visual focused attention. Attentional modulations of LI were observed in two post-N1m time intervals. These findings underline the robustness of reduced neural activation due to LI in the auditory cortex and point towards the important role of attention on the modulation of this mechanism in more evaluative processing stages.

  5. Plasma factor VII-activating protease is increased by oral contraceptives and induces factor VII activation in-vivo

    DEFF Research Database (Denmark)

    Sidelmann, Johannes J; Skouby, Sven O; Kluft, Cornelis

    2011-01-01

    Oral contraceptive (OC) use influences the hemostatic system significantly and is a risk factor for development of cardiovascular disease. Factor VII-activating protease (FSAP) has potential effects on hemostasis. The 1601GA genotype of the 1601G/A polymorphism in the FSAP gene expresses a FSAP...... progestins. FSAP genotypes, FSAP and factor VII (FVII) plasma measures were assessed at baseline and after 6 cycles of OC. The 1601GA genotype was present in 49 (8.3%) of the women and was associated with significantly reduced levels of FSAP (P=0.001). OC use increased FSAP antigen by 25% and FSAP activity...

  6. In vitro effects of heparin and tissue factor pathway inhibitor on factor VII assays. possible implications for measurements in vivo after heparin therapy

    DEFF Research Database (Denmark)

    Bladbjerg, E-M; Larsen, L F; Ostergaard, P

    2000-01-01

    The coagulant activity of blood coagulation factor VII (FVII:C) can be lowered by changes in lifestyle and by therapeutic intervention, e.g. heparin infusion. The question is, however, whether FVII:C determined ex vivo is a valid measure of the FVII activity in vivo. We measured plasma FVII......:C, activated FVII (FVIIa), FVII protein (FVII:Ag), tissue factor pathway inhibitor (TFPI), triglycerides, and free fatty acids (FFA) before and 15 min after infusion of a bolus of unfractionated heparin (50 IU/kg body weight) in 12 healthy subjects. Additionally, we conducted in vitro experiments...

  7. Effects of noise pollution stress during pregnancy on anatomical and functional brain cortex development of the offsprings of NMRI mice

    Directory of Open Access Journals (Sweden)

    Sara Bijani

    2012-12-01

    Full Text Available Introduction: Effects of stress on changes in neural system activity is well defined, which might be because of the changes in brain cortex architecture. In the present study, the effects of maternal noise stress on the morphological and functional changes in brain cortex of off springs of NMRI mice were examined.Materials and Methods: Female pregnant mice divided into two groups. Control group was maintained in their home cages without any invasion but the experimental group was exposed to the noise stress (80 db for 5 min/day from day zero of pregnancy to day 14 (i.e. 15 days. After delivery, six pups from each group were killed and their brains were fixed, sectioned and stained in H&E. These sections were investigated by MOTIC software for both control and experimental groups. Other pups were nursed by their mothers until their adolescence (22 g-8 weeks old. Then they were examined for behavioral side-biased and locomotor activity tests.Results: Decrease in cortex diameter and diameter of each layer for the experimental group was observed. In addition, neuron counting in each layer indicated that the number of the neurons in the middle and outer layers of cortex for the experimental group was reduced than the control group. In contrast, the number of the neurons in the inner layer of the experimental group was increased. From the functional view, in experimental group increases in left-handness especially in female off springs were observed. Furthermore, spontaneous locomotor activity in the new environment was increased in the experimental group.Conclusion: These results indicated that neuronal immigration and network connections in the inner layer of cortex through the middle and outer layers in the experimental group were inhibited. In other word, noise stress was able to inhibit brain cortex development in next generation

  8. Effect of cortex mori on pharmacokinetic profiles of main isoflavonoids from pueraria lobata in rat plasma.

    Science.gov (United States)

    Xiao, Bingxin; Sun, Zengxian; Sun, Shu Yang; Dong, Jie; Li, Yanli; Gao, Shan; Pang, Jie; Chang, Qi

    2017-09-14

    Radix pueraria (the root of pueraria lobata (Wild.) Ohwi.), which contains a class of isoflavonoids as the main active components, as well as cortex mori (the root bark of Morus alba L), which contains abundant active alkaloids, have been employed for the treatment of diabetes in traditional Chinese medicine for centuries. In previous studies, pharmacodynamic synergistic reactions have been observed in compatible application of pueraria lobata isoflavonoids extracts (PLF) and cortex mori alkaloids extracts (CME) for inhibiting α-glycosidase activity. It has also been demonstrated that PLF can effectively slow down the absorption of active alkaloid from CME, so as to produce a higher effective concentration in small intestine for depressing the elevation of postprandial blood glucose through inhibiting α-glycosidase activity. In this study, the hypoglycemic effect of PLF, CME or CME-PLF mixture (the mixture of CME and PLF at a ratio of 1:6.3) was further evaluated through in vivo glucose tolerance studies. And the effect of CME on pharmacokinetic profiles of main isoflavonoids from PLF in rat plasma was investigated to further underlie compatibility mechanism of the two herbs. Four groups of rats received an oral dose of starch solution alone or simultaneously with drugs by gavage feeding. The blood samples were collected to determine glucose concentrations by glucose oxidase method. In addition, another two groups of rats were orally administered with PLF or CME-PLF. The plasma samples were collected and assayed using an LC/MS/MS method for comparatively pharmacokinetic studies of five main isoflavonoids. For starch loading, co-administration of CME-PLF resulted in more potent inhibition effects on glucose responses compared to those by CME or PLF in rat. The isoflavonoids from PLF were rapidly absorbed, presenting similarly low concentrations in plasma. When CME was added, the C max and AUC of all the five isoflavonoids were increased. A phenomenon of double

  9. Effects of theta burst stimulation on motor cortex excitability in Parkinson's disease.

    Science.gov (United States)

    Zamir, Orit; Gunraj, Carolyn; Ni, Zhen; Mazzella, Filomena; Chen, Robert

    2012-04-01

    Long-term potentiation (LTP)-like plasticity induced by paired associative stimulation (PAS) is impaired in Parkinson's disease (PD). Intermittent theta burst stimulation (iTBS) is another rTMS protocol that produces LTP-like effects and increases cortical excitability but its effects are independent of afferent input. The aim of the present study was to examine the effects of iTBS on cortical excitability in PD. iTBS was applied to the motor cortex in 10 healthy subjects and 12 PD patients ON and OFF dopaminergic medications. Motor evoked potential (MEP) before and for 60 min after iTBS were used to examine the changes in cortical excitability induced by iTBS. Paired-pulse TMS was used to test whether intracortical circuits, including short interval intracortical inhibition, intracortical facilitation, short and long latency afferent inhibition, were modulated by iTBS. After iTBS, the control, PD ON and OFF groups had similar increases in MEP amplitude compared to baseline over the course of 60 min. Changes in intracortical circuits induced by iTBS were also similar for the different groups. iTBS produced similar effects on cortical excitability for PD patients and controls. Spike-timing dependent heterosynaptic LTP-like plasticity induced by PAS may be more impaired in PD than frequency dependent homosynaptic LTP-like plasticity induced by iTBS. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Recombinant activated factor VII in cardiac surgery: single-center experience.

    Science.gov (United States)

    Singh, Sarvesh Pal; Chauhan, Sandeep; Choudhury, Minati; Malik, Vishwas; Choudhary, Shiv Kumar

    2014-02-01

    The widespread off-label use of recombinant activated factor VII for the control of refractory postoperative hemorrhage continues despite a warning from the Food and Drug Administration. Although effective in reducing the need for transfusion of blood and blood products, safety concerns still prevail. To compare the dosing and efficacy of recombinant activated factor VII between pediatric and adult patients, and in the operating room and intensive care unit. The records of 69 patients (33 children and 36 adults) who underwent cardiovascular surgery and received recombinant activated factor VII were reviewed retrospectively. The dose of recombinant activated factor VII, mediastinal drainage, use of blood and blood products, incidence of thrombosis, and 28-day mortality were studied. the efficacy of recombinant activated factor VII was comparable in adults and children, despite the lower dose in adults. Prophylactic use of recombinant activated factor VII decreased the incidence of mediastinal exploration and the duration of intensive care unit stay. A 4.3% incidence of thrombotic complications was observed in this study. The efficacious dose of recombinant activated factor VII is much less in adults compared to children. Prophylactic use of recombinant activated factor VII decreases the dose required, the incidence of mediastinal exploration, and intensive care unit stay, with no survival benefit.

  11. Activation of 125I-Factor IX and 125I-Factor X: Effect of tissue factor and Factor VII, Factor Xsub(a) and thrombin

    International Nuclear Information System (INIS)

    Oesterud, B.; Rapaport, S.I.

    Activation of Factor IX and Factor X was studied by adding 125 I-Factor IX or 125 I-Factor X to reaction mixtures and quantitating cleavage products by reduced sodium dodecylsulfate gel electrophoresis. Thrombin failed to activate Factors IX or X; Factor Xsub(a) produced insignificant amounts of cleavage products of both factors. In contrast, the reaction product of tissue factor and Factor VII cleaved large amounts of both Factor IX and Factor X in purified systems and in plasma. In incubation mixtures of plasma containing added 125 I-Factor IX or 125 I-Factor X, tissue factor and Ca 2+ ions, the percentage of total radioactivity in the heavy chain peak of 125 I-IXsub(a) and the heavy chain of 125 I-Xsub(a) increased at a similar rate. When the tissue factor was diluted, similar curves were obtained for percent cleavage of 125 I-Factor IX and percent cleavage of 125 I-Factor X plotted against tissue factor concentration. These findings support the hypothesis that activation of Factor IX by the tissue factor-Factor VII reaction product represents a physiologically significant step in normal haemostasis. (author)

  12. Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity.

    Science.gov (United States)

    Monte-Silva, Katia; Liebetanz, David; Grundey, Jessica; Paulus, Walter; Nitsche, Michael A

    2010-09-15

    The neuromodulator dopamine affects learning and memory formation and their likely physiological correlates, long-term depression and potentiation, in animals and humans. It is known from animal experiments that dopamine exerts a dosage-dependent, inverted U-shaped effect on these functions. However, this has not been explored in humans so far. In order to reveal a non-linear dose-dependent effect of dopamine on cortical plasticity in humans, we explored the impact of 25, 100 and 200 mg of L-dopa on transcranial direct current (tDCS)-induced plasticity in twelve healthy human subjects. The primary motor cortex served as a model system, and plasticity was monitored by motor evoked potential amplitudes elicited by transcranial magnetic stimulation. As compared to placebo medication, low and high dosages of L-dopa abolished facilitatory as well as inhibitory plasticity, whereas the medium dosage prolonged inhibitory plasticity, and turned facilitatory plasticity into inhibition. Thus the results show clear non-linear, dosage-dependent effects of dopamine on both facilitatory and inhibitory plasticity, and support the assumption of the importance of a specific dosage of dopamine optimally suited to improve plasticity. This might be important for the therapeutic application of dopaminergic agents, especially for rehabilitative purposes, and explain some opposing results in former studies.

  13. Genetics Home Reference: glycogen storage disease type VII

    Science.gov (United States)

    ... Home Health Conditions Glycogen storage disease type VII Glycogen storage disease type VII Printable PDF Open All ... Javascript to view the expand/collapse boxes. Description Glycogen storage disease type VII (GSDVII) is an inherited ...

  14. Effects of cholinergic deafferentation of the rhinal cortex on visual recognition memory in monkeys.

    Science.gov (United States)

    Turchi, Janita; Saunders, Richard C; Mishkin, Mortimer

    2005-02-08

    Excitotoxic lesion studies have confirmed that the rhinal cortex is essential for visual recognition ability in monkeys. To evaluate the mnemonic role of cholinergic inputs to this cortical region, we compared the visual recognition performance of monkeys given rhinal cortex infusions of a selective cholinergic immunotoxin, ME20.4-SAP, with the performance of monkeys given control infusions into this same tissue. The immunotoxin, which leads to selective cholinergic deafferentation of the infused cortex, yielded recognition deficits of the same magnitude as those produced by excitotoxic lesions of this region, providing the most direct demonstration to date that cholinergic activation of the rhinal cortex is essential for storing the representations of new visual stimuli and thereby enabling their later recognition.

  15. Functional coupling networks inferred from prefrontal cortex activity show experience-related effective plasticity

    Directory of Open Access Journals (Sweden)

    Gaia Tavoni

    2017-10-01

    Full Text Available Functional coupling networks are widely used to characterize collective patterns of activity in neural populations. Here, we ask whether functional couplings reflect the subtle changes, such as in physiological interactions, believed to take place during learning. We infer functional network models reproducing the spiking activity of simultaneously recorded neurons in prefrontal cortex (PFC of rats, during the performance of a cross-modal rule shift task (task epoch, and during preceding and following sleep epochs. A large-scale study of the 96 recorded sessions allows us to detect, in about 20% of sessions, effective plasticity between the sleep epochs. These coupling modifications are correlated with the coupling values in the task epoch, and are supported by a small subset of the recorded neurons, which we identify by means of an automatized procedure. These potentiated groups increase their coativation frequency in the spiking data between the two sleep epochs, and, hence, participate to putative experience-related cell assemblies. Study of the reactivation dynamics of the potentiated groups suggests a possible connection with behavioral learning. Reactivation is largely driven by hippocampal ripple events when the rule is not yet learned, and may be much more autonomous, and presumably sustained by the potentiated PFC network, when learning is consolidated. Cell assemblies coding for memories are widely believed to emerge through synaptic modification resulting from learning, yet their identification from activity is very arduous. We propose a functional-connectivity-based approach to identify experience-related cell assemblies from multielectrode recordings in vivo, and apply it to the prefrontal cortex activity of rats recorded during a task epoch and the preceding and following sleep epochs. We infer functional couplings between the recorded cells in each epoch. Comparisons of the functional coupling networks across the epochs allow us

  16. Effect of CGRP and sumatriptan on the BOLD response in visual cortex

    DEFF Research Database (Denmark)

    Asghar, Mohammed Sohail; Hansen, Adam E; Larsson, Henrik B W

    2012-01-01

    To test the hypothesis that calcitonin gene-related peptide (CGRP) modulates brain activity, we investigated the effect of intravenous CGRP on brain activity in response to a visual stimulus. In addition, we examined if possible alteration in brain activity was reversed by the anti-migraine drug......% of the participants reported headache after CGRP. We found no changes in brain activity after CGRP (P = 0.12) or after placebo (P = 0.41). Sumatriptan did not affect brain activity after CGRP (P = 0.71) or after placebo (P = 0.98). Systemic CGRP or sumatriptan has no direct effects on the BOLD activity in visual...... sumatriptan. Eighteen healthy volunteers were randomly allocated to receive CGRP infusion (1.5 µg/min for 20 min) or placebo. In vivo activity in the visual cortex was recorded before, during and after infusion and after 6 mg subcutaneous sumatriptan by functional magnetic resonance imaging (3 T). 77...

  17. Effects on executive function following damage to the prefrontal cortex in the rhesus monkey (Macaca mulatta).

    Science.gov (United States)

    Moore, Tara L; Schettler, Stephen P; Killiany, Ronald J; Rosene, Douglas L; Moss, Mark B

    2009-04-01

    Executive function is a term used to describe the cognitive processes subserved by the prefrontal cortex (PFC). An extensive body of work has characterized the effects of damage to the PFC in nonhuman primates, but it has focused primarily on the capacity of recognition and working memory. One limitation in studies of the functional parcellation of the PFC has been the absence of tests that assess executive function or its functional components. The current study used an adaptation of the Wisconsin Card Sorting Test, a classic test of frontal lobe and executive function in humans, to assess the effects of bilateral lesions in the dorsolateral PFC on executive function in the rhesus monkey (Macaca mulatta). The authors used the category set-shifting task, which requires the monkey to establish a pattern of responding to a specific category (color or shape) based on reward contingency, maintain that pattern of responding, and then shift to responding to a different category when the reward contingency changes. Rhesus monkeys with lesions of the dorsolateral PFC were impaired in abstraction, establishing a response pattern to a specific category and maintaining and shifting that response pattern on the category set-shifting task. (c) 2009 APA, all rights reserved.

  18. The effect of electroacupuncture on proteomic changes in the motor cortex of 6-OHDA Parkinsonian rats.

    Science.gov (United States)

    Li, Min; Li, Lijuan; Wang, Ke; Su, Wenting; Jia, Jun; Wang, Xiaomin

    2017-10-15

    Electroacupuncture (EA) has been reported to alleviate motor deficits in Parkinson's disease (PD) patients, and PD animal models. However, the mechanisms by which EA improves motor function have not been investigated. We have employed a 6-hydroxydopamine (6-OHDA) unilateral injection induced PD model to investigate whether EA alters protein expression in the motor cortex. We found that 4weeks of EA treatment significantly improved spontaneous floor plane locomotion and rotarod performance. High-throughput proteomic analysis in the motor cortex was employed. The expression of 54 proteins were altered in the unlesioned motor cortex, and 102 protein expressions were altered in the lesioned motor cortex of 6-OHDA rats compared to sham rats. Compared to non-treatment PD control, EA treatment reversed 6 proteins in unlesioned and 19 proteins in lesioned motor cortex. The present study demonstrated that PD induces proteomic changes in the motor cortex, some of which are rescued by EA treatment. These targeted proteins were mainly involved in increasing autophagy, mRNA processing and ATP binding and maintaining the balance of neurotransmitters. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Suppressive and enhancing effects in early visual cortex during illusory shape perception: A comment on.

    Science.gov (United States)

    Moors, Pieter

    2015-01-01

    In a recent functional magnetic resonance imaging study, Kok and de Lange (2014) observed that BOLD activity for a Kanizsa illusory shape stimulus, in which pacmen-like inducers elicit an illusory shape percept, was either enhanced or suppressed relative to a nonillusory control configuration depending on whether the spatial profile of BOLD activity in early visual cortex was related to the illusory shape or the inducers, respectively. The authors argued that these findings fit well with the predictive coding framework, because top-down predictions related to the illusory shape are not met with bottom-up sensory input and hence the feedforward error signal is enhanced. Conversely, for the inducing elements, there is a match between top-down predictions and input, leading to a decrease in error. Rather than invoking predictive coding as the explanatory framework, the suppressive effect related to the inducers might be caused by neural adaptation to perceptually stable input due to the trial sequence used in the experiment.

  20. Distinct Feedforward and Feedback Effects of Microstimulation in Visual Cortex Reveal Neural Mechanisms of Texture Segregation.

    Science.gov (United States)

    Klink, P Christiaan; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Roelfsema, Pieter R

    2017-07-05

    The visual cortex is hierarchically organized, with low-level areas coding for simple features and higher areas for complex ones. Feedforward and feedback connections propagate information between areas in opposite directions, but their functional roles are only partially understood. We used electrical microstimulation to perturb the propagation of neuronal activity between areas V1 and V4 in monkeys performing a texture-segregation task. In both areas, microstimulation locally caused a brief phase of excitation, followed by inhibition. Both these effects propagated faithfully in the feedforward direction from V1 to V4. Stimulation of V4, however, caused little V1 excitation, but it did yield a delayed suppression during the late phase of visually driven activity. This suppression was pronounced for the V1 figure representation and weaker for background representations. Our results reveal functional differences between feedforward and feedback processing in texture segregation and suggest a specific modulating role for feedback connections in perceptual organization. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The role of the frontal cortex in memory: an investigation of the Von Restorff effect

    Science.gov (United States)

    Elhalal, Anat; Davelaar, Eddy J.; Usher, Marius

    2014-01-01

    Evidence from neuropsychology and neuroimaging indicate that the pre-frontal cortex (PFC) plays an important role in human memory. Although frontal patients are able to form new memories, these memories appear qualitatively different from those of controls by lacking distinctiveness. Neuroimaging studies of memory indicate activation in the PFC under deep encoding conditions, and under conditions of semantic elaboration. Based on these results, we hypothesize that the PFC enhances memory by extracting differences and commonalities in the studied material. To test this hypothesis, we carried out an experimental investigation to test the relationship between the PFC-dependent factors and semantic factors associated with common and specific features of words. These experiments were performed using Free-Recall of word lists with healthy adults, exploiting the correlation between PFC function and fluid intelligence. As predicted, a correlation was found between fluid intelligence and the Von-Restorff effect (better memory for semantic isolates, e.g., isolate “cat” within category members of “fruit”). Moreover, memory for the semantic isolate was found to depend on the isolate's serial position. The isolate item tends to be recalled first, in comparison to non-isolates, suggesting that the process interacts with short term memory. These results are captured within a computational model of free recall, which includes a PFC mechanism that is sensitive to both commonality and distinctiveness, sustaining a trade-off between the two. PMID:25018721

  2. The effects of low dose ionizing radiation on the development of rat cerebral cortex, (1)

    International Nuclear Information System (INIS)

    Matsushita, Koji

    1993-01-01

    We obtained the following results with regards to the effects of low dose ionizing radiation (5, 10, 15 and 20 cGy) on neuronal migration of developing rat cerebral cortex. Neuronal migration delay was found by autoradiography after intraperitoneal labeling with 3 H-thymidine to pregnant Wistar rats embryonic 16, and low dose radiation an hour or 48 hours after labeling. In 15-20 cGy, N-CAM (neural cell adhesion molecules) staining patterns changed with immunohistochemical method, whereas those of L1 and cytoskeleton neurofilament (160 KD), tauprotein, MAP2 (microtubule associated protein 2) did not. After 24-48 hours of radiation, N-CAM were not detected on the matrix cell layer. After 72-96 hours of radiation, N-CAM staining recovered to a normal pattern. In conclusion, low dose radiation of 15-20 cGy gave rise to neuronal migration delay and it was suggested that N-CAM may be related to neuronal migration as one of the mechanisms involved. (author)

  3. The effects of transcranial magnetic stimulation over the dorsolateral prefrontal cortex on suppression of habitual counting during random number generation.

    Science.gov (United States)

    Jahanshahi, M; Profice, P; Brown, R G; Ridding, M C; Dirnberger, G; Rothwell, J C

    1998-08-01

    Random number generation is an attention-demanding task that engages working memory and executive processes. Random number generation requires holding information 'on line', suppression of habitual counting, internally driven response generation and monitoring of responses. Evidence from PET studies suggests that the dorsolateral prefrontal cortex (DLPFC) is involved in the generation of random responses. We examined the effects of short trains of transcranial magnetic stimulation (TMS) over the left or right DLPFC or medial frontal cortex on random number generation in healthy normal participants. As in previous evidence, in control trials without stimulation participants performed poorly on the random number generation task, showing repetition avoidance and a tendency to count. Brief disruption of processing with TMS over the left DLPFC changed the balance of the individuals' counting bias, increasing the most habitual counting in ones and reducing the lower probability response of counting in twos. This differential effect of TMS over the left DLPFC on the balance of the subject's counting bias was not obtained with TMS over the right DLPFC or the medial frontal cortex. The results suggest that, with disruption of the left DLPFC with TMS, habitual counting in ones that has previously been suppressed is released from inhibition. From these findings a network modulation model of random number generation is proposed, whereby suppression of habitual responses is achieved through the modulatory influence of the left DLPFC over a number-associative network in the superior temporal cortex. To allow emergence of appropriate random responses, the left DLPFC inhibits the superior temporal cortex to prevent spreading activation and habitual counting in ones.

  4. Lower layers in the motor cortex are more effective targets for penetrating microelectrodes in cortical prostheses

    Science.gov (United States)

    Parikh, Hirak; Marzullo, Timothy C.; Kipke, Daryl R.

    2009-04-01

    Improving cortical prostheses requires the development of recording neural interfaces that are efficient in terms of providing maximal control information with minimal interface complexity. While the typical approaches have targeted neurons in the motor cortex with multiple penetrating shanks, an alternative approach is to determine an efficient distribution of electrode sites within the layers of the cortex with fewer penetrating shanks. The objective of this study was to compare unit activity in the upper and lower layers of the cortex with respect to movement and direction in order to inform the design of penetrating microelectrodes. Four rats were implanted bilaterally with multi-site single-shank silicon microelectrode arrays in the neck/shoulder region of the motor cortex. We simultaneously recorded unit activity across all layers of the motor cortex while the animal was engaged in a movement direction task. Localization of the electrode array within the different layers of the cortex was determined by histology. We denoted units from layers 2 and 3 and units as upper layer units, and units from layers 5 and 6 as lower layer units. Analysis of unit spiking activity demonstrated that both the upper and lower layers encode movement and direction information. Unit responses in either cortical layer of the cortex were not preferentially associated with contralateral or ipsilateral movement. Aggregate analysis (633 neurons) and best session analysis (75 neurons) indicated that units in the lower layers (layers 5, 6) are more likely to encode direction information when compared to units in the upper layers (layers 2, 3) (p< 0.05). These results suggest that electrode sites clustered in the lower layers provide access to more salient control information for cortical neuroprostheses.

  5. Adaptive threshold hunting for the effects of transcranial direct current stimulation on primary motor cortex inhibition.

    Science.gov (United States)

    Mooney, Ronan A; Cirillo, John; Byblow, Winston D

    2018-06-01

    Primary motor cortex excitability can be modulated by anodal and cathodal transcranial direct current stimulation (tDCS). These neuromodulatory effects may, in part, be dependent on modulation within gamma-aminobutyric acid (GABA)-mediated inhibitory networks. GABAergic function can be quantified non-invasively using adaptive threshold hunting paired-pulse transcranial magnetic stimulation (TMS). The previous studies have used TMS with posterior-anterior (PA) induced current to assess tDCS effects on inhibition. However, TMS with anterior-posterior (AP) induced current in the brain provides a more robust measure of GABA-mediated inhibition. The aim of the present study was to assess the modulation of corticomotor excitability and inhibition after anodal and cathodal tDCS using TMS with PA- and AP-induced current. In 16 young adults (26 ± 1 years), we investigated the response to anodal, cathodal, and sham tDCS in a repeated-measures double-blinded crossover design. Adaptive threshold hunting paired-pulse TMS with PA- and AP-induced current was used to examine separate interneuronal populations within M1 and their influence on corticomotor excitability and short- and long-interval inhibition (SICI and LICI) for up to 60 min after tDCS. Unexpectedly, cathodal tDCS increased corticomotor excitability assessed with AP (P = 0.047) but not PA stimulation (P = 0.74). SICI AP was reduced after anodal tDCS compared with sham (P = 0.040). Pearson's correlations indicated that SICI AP and LICI AP modulation was associated with corticomotor excitability after anodal (P = 0.027) and cathodal tDCS (P = 0.042). The after-effects of tDCS on corticomotor excitability may depend on the direction of the TMS-induced current used to make assessments, and on modulation within GABA-mediated inhibitory circuits.

  6. Effect of chronic restraint stress on inhibitory gating in the auditory cortex of rats.

    Science.gov (United States)

    Ma, Lanlan; Li, Wai; Li, Sibin; Wang, Xuejiao; Qin, Ling

    2017-05-01

    A fundamental adaptive mechanism of auditory function is inhibitory gating (IG), which refers to the attenuation of neural responses to repeated sound stimuli. IG is drastically impaired in individuals with emotional and cognitive impairments (i.e. posttraumatic stress disorder). The objective of this study was to test whether chronic stress impairs the IG of the auditory cortex (AC). We used the standard two-tone stimulus paradigm and examined the parametric qualities of IG in the AC of rats by recording the electrophysiological signals of a single-unit and local field potential (LFP) simultaneously. The main results of this study were that most of the AC neurons showed a weaker response to the second tone than to the first tone, reflecting an IG of the repeated input. A fast negative wave of LFP showed consistent IG across the sampled AC sites, whereas a slow positive wave of LFP had less IG effect. IG was diminished following chronic restraint stress at both, the single-unit and LFP level, due to the increase in response to the second tone. This study provided new evidence that chronic stress disrupts the physiological function of the AC. Lay Summary The effects of chronic stress on IG were investigated by recording both, single-unit spike and LFP activities, in the AC of rats. In normal rats, most of the single-unit and N25 LFP activities in the AC showed an IG effect. IG was diminished following chronic restraint stress at both, the single-unit and LFP level.

  7. Effect of hindlimb unloading on stereological parameters of the motor cortex and hippocampus in male rats.

    Science.gov (United States)

    Salehi, Mohammad Saied; Mirzaii-Dizgah, Iraj; Vasaghi-Gharamaleki, Behnoosh; Zamiri, Mohammad Javad

    2016-11-09

    Hindlimb unloading (HU) can cause motion and cognition dysfunction, although its cellular and molecular mechanisms are not well understood. The aim of the present study was to determine the stereological parameters of the brain areas involved in motion (motor cortex) and spatial learning - memory (hippocampus) under an HU condition. Sixteen adult male rats, kept under a 12 : 12 h light-dark cycle, were divided into two groups of freely moving (n=8) and HU (n=8) rats. The volume of motor cortex and hippocampus, the numerical cell density of neurons in layers I, II-III, V, and VI of the motor cortex, the entire motor cortex as well as the primary motor cortex, and the numerical density of the CA1, CA3, and dentate gyrus subregions of the hippocampus were estimated. No significant differences were observed in the evaluated parameters. Our results thus indicated that motor cortical and hippocampal atrophy and cell loss may not necessarily be involved in the motion and spatial learning memory impairment in the rat.

  8. High Working Memory Load Increases Intracortical Inhibition in Primary Motor Cortex and Diminishes the Motor Affordance Effect.

    Science.gov (United States)

    Freeman, Scott M; Itthipuripat, Sirawaj; Aron, Adam R

    2016-05-18

    Motor affordances occur when the visual properties of an object elicit behaviorally relevant motor representations. Typically, motor affordances only produce subtle effects on response time or on motor activity indexed by neuroimaging/neuroelectrophysiology, but sometimes they can trigger action itself. This is apparent in "utilization behavior," where individuals with frontal cortex damage inappropriately grasp affording objects. This raises the possibility that, in healthy-functioning individuals, frontal cortex helps ensure that irrelevant affordance provocations remain below the threshold for actual movement. In Experiment 1, we tested this "frontal control" hypothesis by "loading" the frontal cortex with an effortful working memory (WM) task (which ostensibly consumes frontal resources) and examined whether this increased EEG measures of motor affordances to irrelevant affording objects. Under low WM load, there were typical motor affordance signatures: an event-related desynchronization in the mu frequency and an increased P300 amplitude for affording (vs nonaffording) objects over centroparietal electrodes. Contrary to our prediction, however, these affordance measures were diminished under high WM load. In Experiment 2, we tested competing mechanisms responsible for the diminished affordance in Experiment 1. We used paired-pulse transcranial magnetic stimulation over primary motor cortex to measure long-interval cortical inhibition. We found greater long-interval cortical inhibition for high versus low load both before and after the affording object, suggesting that a tonic inhibition state in primary motor cortex could prevent the affordance from provoking the motor system. Overall, our results suggest that a high WM load "sets" the motor system into a suppressed state that mitigates motor affordances. Is an irrelevant motor affordance more likely to be triggered when you are under low or high cognitive load? We examined this using physiological measures

  9. Effects of orbitofrontal cortex lesions on autoshaped lever pressing and reversal learning.

    Science.gov (United States)

    Chang, Stephen E

    2014-10-15

    A cue associated with a rewarding event can trigger behavior towards the cue itself due to the cue acquiring incentive value through its pairing with the rewarding outcome (i.e., sign-tracking). For example, rats will approach, press, and attempt to "consume" a retractable lever conditioned stimulus (CS) that signals delivery of a food unconditioned stimulus (US). Attending to food-predictive CSs is important when seeking out food, and it is just as important to be able to modify one's behavior when the relationships between CSs and USs are changed. Using a discriminative autoshaping procedure with lever CSs, the present study investigated the effects of orbitofrontal cortex (OFC) lesions on sign-tracking and reversal learning. Insertion of one lever was followed by sucrose delivery upon retraction, and insertion of another lever was followed by nothing. After the acquisition phase, the contingencies between the levers and outcomes were reversed. Bilateral OFC lesions had no effect on the acquisition of sign-tracking. However, OFC-lesioned rats showed substantial deficits in acquiring sign-tracking compared to sham-lesioned rats once the stimulus-outcome contingencies were reversed. Over the course of reversal learning, OFC-lesioned rats were able to reach comparable levels of sign-tracking as sham-lesioned rats. These findings suggest that OFC is not necessary for the ability of a CS to acquire incentive value and provide more evidence that OFC is critical for modifying behavior appropriately following a change in stimulus-outcome contingencies. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. (99)Tc(VII) Retardation, Reduction, and Redox Rate Scaling in Naturally Reduced Sediments.

    Science.gov (United States)

    Liu, Yuanyuan; Liu, Chongxuan; Kukkadapu, Ravi K; McKinley, James P; Zachara, John; Plymale, Andrew E; Miller, Micah D; Varga, Tamas; Resch, Charles T

    2015-11-17

    An experimental and modeling study was conducted to investigate pertechnetate (Tc(VII)O4(-)) retardation, reduction, and rate scaling in three sediments from Ringold formation at U.S. Department of Energy's Hanford site, where (99)Tc is a major contaminant in groundwater. Tc(VII) was reduced in all the sediments in both batch reactors and diffusion columns, with a faster rate in a sediment containing a higher concentration of HCl-extractable Fe(II). Tc(VII) migration in the diffusion columns was reductively retarded with retardation degrees correlated with Tc(VII) reduction rates. The reduction rates were faster in the diffusion columns than those in the batch reactors, apparently influenced by the spatial distribution of redox-reactive minerals along transport paths that supplied Tc(VII). X-ray computed tomography and autoradiography were performed to identify the spatial locations of Tc(VII) reduction and transport paths in the sediments, and results generally confirmed the newly found behavior of reaction rate changes from batch to column. The results from this study implied that Tc(VII) migration can be reductively retarded at Hanford site with a retardation degree dependent on reactive Fe(II) content and its distribution in sediments. This study also demonstrated that an effective reaction rate may be faster in transport systems than that in well-mixed reactors.

  11. Factor VII deficiency: a novel missense variant and genotype-phenotype correlation in patients from Southern Italy.

    Science.gov (United States)

    Tiscia, Giovanni; Favuzzi, Giovanni; Chinni, Elena; Colaizzo, Donatella; Fischetti, Lucia; Intrieri, Mariano; Margaglione, Maurizio; Grandone, Elvira

    2017-01-01

    This study aimed at attempting to correlate genotype and phenotype in factor VII deficiency. Here, we present molecular and clinical findings of 10 patients with factor VII deficiency. From 2013 to 2016, 10 subjects were referred to our center because of a prolonged prothrombin time identified during routine or presurgery examinations or after a laboratory assessment of a bleeding episode. Mutation characterization was performed using the bioinformatics applications PROMO, SIFT, and Polyphen-2. Structural changes in the factor VII protein were analyzed using the SPDB viewer tool. Of the 10 variants we identified, 1 was responsible for a novel missense change (c.1199G>C, p.Cys400Ser); in 2 cases we identified the c.-54G>A and c.509G>A (p.Arg170His) polymorphic variants in the 5'-upstream region of the factor VII gene and exon 6, respectively. To our knowledge, neither of these polymorphic variants has been described previously in factor VII-deficient patients. In silico predictions showed differences in binding sites for transcription factors caused by the c.-54G>A variant and a probable damaging effect of the p.Cys400Ser missense change on factor VII active conformation, leading to breaking of the Cys400-Cys428 disulfide bridge. Our findings further suggest that, independently of factor VII levels and of variants potentially affecting factor VII levels, environmental factors, e.g., trauma, could heavily influence the clinical phenotype of factor VII-deficient patients.

  12. Prophylaxis in congenital factor VII deficiency: indications, efficacy and safety. Results from the Seven Treatment Evaluation Registry (STER).

    Science.gov (United States)

    Napolitano, Mariasanta; Giansily-Blaizot, Muriel; Dolce, Alberto; Schved, Jean F; Auerswald, Guenter; Ingerslev, Jørgen; Bjerre, Jens; Altisent, Carmen; Charoenkwan, Pimlak; Michaels, Lisa; Chuansumrit, Ampaiwan; Di Minno, Giovanni; Caliskan, Umran; Mariani, Guglielmo

    2013-04-01

    Because of the very short half-life of factor VII, prophylaxis in factor VII deficiency is considered a difficult endeavor. The clinical efficacy and safety of prophylactic regimens, and indications for their use, were evaluated in factor VII-deficient patients in the Seven Treatment Evaluation Registry. Prophylaxis data (38 courses) were analyzed from 34 patients with severe factor VII deficiency (factor VII (24 courses), four received plasma-derived factor VII, and ten received fresh frozen plasma. Prophylactic schedules clustered into "frequent" courses (three times weekly, n=23) and "infrequent" courses (≤ 2 times weekly, n=15). Excluding courses for menorrhagia, "frequent" and "infrequent" courses produced 18/23 (78%) and 5/12 (41%) "excellent" outcomes, respectively; relative risk, 1.88; 95% confidence interval, 0.93-3.79; P=0.079. Long term prophylaxis lasted from 1 to >10 years. No thrombosis or new inhibitors occurred. In conclusion, a subset of patients with factor VII deficiency needed prophylaxis because of severe bleeding. Recombinant activated factor VII schedules based on "frequent" administrations (three times weekly) and a 90 μg/kg total weekly dose were effective. These data provide a rationale for long-term, safe prophylaxis in factor VII deficiency.

  13. Poststimulation time interval-dependent effects of motor cortex anodal tDCS on reaction-time task performance.

    Science.gov (United States)

    Molero-Chamizo, Andrés; Alameda Bailén, José R; Garrido Béjar, Tamara; García López, Macarena; Jaén Rodríguez, Inmaculada; Gutiérrez Lérida, Carolina; Pérez Panal, Silvia; González Ángel, Gloria; Lemus Corchero, Laura; Ruiz Vega, María J; Nitsche, Michael A; Rivera-Urbina, Guadalupe N

    2018-02-01

    Anodal transcranial direct current stimulation (tDCS) induces long-term potentiation-like plasticity, which is associated with long-lasting effects on different cognitive, emotional, and motor performances. Specifically, tDCS applied over the motor cortex is considered to improve reaction time in simple and complex tasks. The timing of tDCS relative to task performance could determine the efficacy of tDCS to modulate performance. The aim of this study was to compare the effects of a single session of anodal tDCS (1.5 mA, for 15 min) applied over the left primary motor cortex (M1) versus sham stimulation on performance of a go/no-go simple reaction-time task carried out at three different time points after tDCS-namely, 0, 30, or 60 min after stimulation. Performance zero min after anodal tDCS was improved during the whole course of the task. Performance 30 min after anodal tDCS was improved only in the last block of the reaction-time task. Performance 60 min after anodal tDCS was not significantly different throughout the entire task. These findings suggest that the motor cortex excitability changes induced by tDCS can improve motor responses, and these effects critically depend on the time interval between stimulation and task performance.

  14. Protective Effects Induced by Microwave-Assisted Aqueous Harpagophytum Extract on Rat Cortex Synaptosomes Challenged with Amyloid β-Peptide.

    Science.gov (United States)

    Ferrante, Claudio; Recinella, Lucia; Locatelli, Marcello; Guglielmi, Paolo; Secci, Daniela; Leporini, Lidia; Chiavaroli, Annalisa; Leone, Sheila; Martinotti, Sara; Brunetti, Luigi; Vacca, Michele; Menghini, Luigi; Orlando, Giustino

    2017-08-01

    Harpagophytum procumbens is a plant species that displays anti-inflammatory properties in multiple tissues. The iridoid glycosides arpagoside, harpagide, and procumbide appear to be the most therapeutically important constituents. In addition, harpagoside treatment exerted neuroprotective effects both in vitro and in vivo. Considering these findings, the aim of the present work is to explore the possible protective role of the previously described microwave-assisted aqueous extract of H. procumbens on rat hypothalamic (Hypo-E22) cells, and in rat cortex challenged with amyloid β-peptide (1-40). In this context, we assayed the protective effects induced by H. procumbens by measuring the levels of malondialdehyde, 3-hydroxykynurenine (3-HK), brain-derived neurotrophic factor, and tumor necrosis factor-α, 3-HK. Finally, we evaluated the effects of H. procumbens treatment on cortex levels of dopamine, norepinephrine, and serotonin. H. procumbens extract was well tolerated by Hypo-E22 cells and upregulated brain-derived neurotrophic factor gene expression but down-regulated tumor necrosis factor-α gene expression. In addition, the extract reduced amyloid β-peptide stimulation of malondialdehyde and 3-HK and blunted the decrease of dopamine, norepinephrine, and serotonin, in the cortex. In this context, our work supports further studies for the evaluation and confirmation of Harpagophytum in the management of the clinical symptoms related to Alzheimer's disease. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Differential effects of aging on fore- and hindpaw maps of rat somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Marianne David-Jürgens

    Full Text Available Getting older is associated with a decline of cognitive and sensorimotor abilities, but it remains elusive whether age-related changes are due to accumulating degenerational processes, rendering them largely irreversible, or whether they reflect plastic, adaptational and presumably compensatory changes. Using aged rats as a model we studied how aging affects neural processing in somatosensory cortex. By multi-unit recordings in the fore- and hindpaw cortical maps we compared the effects of aging on receptive field size and response latencies. While in aged animals response latencies of neurons of both cortical representations were lengthened by approximately the same amount, only RFs of hindpaw neurons showed severe expansion with only little changes of forepaw RFs. To obtain insight into parallel changes of walking behavior, we recorded footprints in young and old animals which revealed a general age-related impairment of walking. In addition we found evidence for a limb-specific deterioration of the hindlimbs that was not observed in the forelimbs. Our results show that age-related changes of somatosensory cortical neurons display a complex pattern of regional specificity and parameter-dependence indicating that aging acts rather selectively on cortical processing of sensory information. The fact that RFs of the fore- and hindpaws do not co-vary in aged animals argues against degenerational processes on a global scale. We therefore conclude that age-related alterations are composed of plastic-adaptive alterations in response to modified use and degenerational changes developing with age. As a consequence, age-related changes need not be irreversible but can be subject to amelioration through training and stimulation.

  16. Anterior paracingulate and cingulate cortex mediates the effects of cognitive load on speech sound discrimination.

    Science.gov (United States)

    Gennari, Silvia P; Millman, Rebecca E; Hymers, Mark; Mattys, Sven L

    2018-06-11

    Perceiving speech while performing another task is a common challenge in everyday life. How the brain controls resource allocation during speech perception remains poorly understood. Using functional magnetic resonance imaging (fMRI), we investigated the effect of cognitive load on speech perception by examining brain responses of participants performing a phoneme discrimination task and a visual working memory task simultaneously. The visual task involved holding either a single meaningless image in working memory (low cognitive load) or four different images (high cognitive load). Performing the speech task under high load, compared to low load, resulted in decreased activity in pSTG/pMTG and increased activity in visual occipital cortex and two regions known to contribute to visual attention regulation-the superior parietal lobule (SPL) and the paracingulate and anterior cingulate gyrus (PaCG, ACG). Critically, activity in PaCG/ACG was correlated with performance in the visual task and with activity in pSTG/pMTG: Increased activity in PaCG/ACG was observed for individuals with poorer visual performance and with decreased activity in pSTG/pMTG. Moreover, activity in a pSTG/pMTG seed region showed psychophysiological interactions with areas of the PaCG/ACG, with stronger interaction in the high-load than the low-load condition. These findings show that the acoustic analysis of speech is affected by the demands of a concurrent visual task and that the PaCG/ACG plays a role in allocating cognitive resources to concurrent auditory and visual information. Copyright © 2018. Published by Elsevier Inc.

  17. Contrasting effects of strabismic amblyopia on metabolic activity in superficial and deep layers of striate cortex.

    Science.gov (United States)

    Adams, Daniel L; Economides, John R; Horton, Jonathan C

    2015-05-01

    To probe the mechanism of visual suppression, we have raised macaques with strabismus by disinserting the medial rectus muscle in each eye at 1 mo of age. Typically, this operation produces a comitant, alternating exotropia with normal acuity in each eye. Here we describe an unusual occurrence: the development of severe amblyopia in one eye of a monkey after induction of exotropia. Shortly after surgery, the animal demonstrated a strong fixation preference for the left eye, with apparent suppression of the right eye. Later, behavioral testing showed inability to track or to saccade to targets with the right eye. With the left eye occluded, the animal demonstrated no visually guided behavior. Optokinetic nystagmus was absent in the right eye. Metabolic activity in striate cortex was assessed by processing the tissue for cytochrome oxidase (CO). Amblyopia caused loss of CO in one eye's rows of patches, presumably those serving the blind eye. Layers 4A and 4B showed columns of reduced CO, in register with pale rows of patches in layer 2/3. Layers 4C, 5, and 6 also showed columns of CO activity, but remarkably, comparison with more superficial layers showed a reversal in contrast. In other words, pale CO staining in layers 2/3, 4A, and 4B was aligned with dark CO staining in layers 4C, 5, and 6. No experimental intervention or deprivation paradigm has been reported previously to produce opposite effects on metabolic activity in layers 2/3, 4A, and 4B vs. layers 4C, 5, and 6 within a given eye's columns. Copyright © 2015 the American Physiological Society.

  18. Effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices

    Directory of Open Access Journals (Sweden)

    Torres I.L.S.

    2001-01-01

    Full Text Available It has been suggested that glucocorticoids released during stress might impair neuronal function by decreasing glucose uptake by hippocampal neurons. Previous work has demonstrated that glucose uptake is reduced in hippocampal and cerebral cortex slices 24 h after exposure to acute stress, while no effect was observed after repeated stress. Here, we report the effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices and on plasma glucose and corticosterone levels. Male adult Wistar rats were exposed to restraint 1 h/day for 50 days in the chronic model. In the acute model there was a single exposure. Immediately or 24 h after stress, the animals were sacrificed and the hippocampus and cerebral cortex were dissected, sliced, and incubated with Krebs buffer, pH 7.4, containing 5 mM glucose and 0.2 µCi D-[U-14C] glucose. CO2 production from glucose was estimated. Trunk blood was also collected, and both corticosterone and glucose were measured. The results showed that corticosterone levels after exposure to acute restraint were increased, but the increase was smaller when the animals were submitted to repeated stress. Blood glucose levels increased after both acute and repeated stress. However, glucose utilization, measured as CO2 production in hippocampal and cerebral cortex slices, was the same in stressed and control groups under conditions of both acute and chronic stress. We conclude that, although stress may induce a decrease in glucose uptake, this effect is not sufficient to affect the energy metabolism of these cells.

  19. Involvement of the insular cortex in regulating glucocorticoid effects on memory consolidation of inhibitory avoidance training

    NARCIS (Netherlands)

    Fornari, Raquel V.; Wichmann, Romy; Atucha, Erika; Desprez, Tifany; Eggens-Meijer, Ellie; Roozendaal, Benno

    2012-01-01

    Glucocorticoids are known to enhance the consolidation of memory of emotionally arousing experiences by acting upon a network of interconnected brain regions. Although animal studies typically do not consider the insular cortex (IC) to be part of this network, the present findings indicate that the

  20. Effect of skull type on the relative size of cerebral cortex and lateral ventricles in dogs

    DEFF Research Database (Denmark)

    Pilegaard, Anders M.; Berendt, Mette; Holst, Pernille

    2017-01-01

    Volume measurements of the brain are of interest in the diagnosis of brain pathology. This is particularly so in the investigation hydrocephalus and canine cognitive dysfunction (CCD), both of which result in thinning of the cerebral cortex and enlarged ventricles. Volume assessment can be made...

  1. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex

    NARCIS (Netherlands)

    Self, Matthew W.; Peters, Judith C.; Possel, Jessy K.; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C.; Roelfsema, Pieter R.

    2016-01-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive

  2. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex.

    Science.gov (United States)

    Self, Matthew W; Peters, Judith C; Possel, Jessy K; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C; Roelfsema, Pieter R

    2016-03-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.

  3. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex.

    Directory of Open Access Journals (Sweden)

    Matthew W Self

    2016-03-01

    Full Text Available Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.

  4. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex

    NARCIS (Netherlands)

    Self, Matthew W; Peters, Judith C; Possel, Jessy K; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C; Roelfsema, Pieter R

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive

  5. Effects of damage to auditory cortex on the discrimination of speech sounds by rats

    Czech Academy of Sciences Publication Activity Database

    Floody, O. R.; Ouda, Ladislav; Porter, B. A.; Kilgard, M. P.

    2010-01-01

    Roč. 101, č. 2 (2010), s. 260-268 ISSN 0031-9384 R&D Projects: GA ČR GA309/07/1336 Institutional research plan: CEZ:AV0Z50390703 Keywords : auditory cortex * brain lesions * prepulse inhibition Subject RIV: FH - Neurology Impact factor: 2.891, year: 2010

  6. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields.

    Science.gov (United States)

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-09-06

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas.

  7. Inactivation of the dorsal hippocampus or the medial prefrontal cortex impairs retrieval but has differential effect on spatial memory reconsolidation.

    Science.gov (United States)

    Rossato, Janine I; Köhler, Cristiano A; Radiske, Andressa; Bevilaqua, Lia R M; Cammarota, Martín

    2015-11-01

    Active memories can incorporate new information through reconsolidation. However, the notion that memory retrieval is necessary for reconsolidation has been recently challenged. Non-reinforced retrieval induces hippocampus and medial prefrontal cortex (mPFC)-dependent reconsolidation of spatial memory in the Morris water maze (MWM). We found that the effect of protein synthesis inhibition on this process is abolished when retrieval of the learned spatial preference is hindered through mPFC inactivation but not when it is blocked by deactivation of dorsal CA1. Our results do not fully agree with the hypothesis that retrieval is unneeded for reconsolidation. Instead, they support the idea that a hierarchic interaction between the hippocampus and the mPFC controls spatial memory in the MWM, and indicate that this cortex is sufficient to retrieve the information essential to reconsolidate the spatial memory trace, even when the hippocampus is inactivated. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Data on the effect of conductive hearing loss on auditory and visual cortex activity revealed by intrinsic signal imaging.

    Science.gov (United States)

    Teichert, Manuel; Bolz, Jürgen

    2017-10-01

    This data article provides additional data related to the research article entitled "Simultaneous intrinsic signal imaging of auditory and visual cortex reveals profound effects of acute hearing loss on visual processing" (Teichert and Bolz, 2017) [1]. The primary auditory and visual cortex (A1 and V1) of adult male C57BL/6J mice (P120-P240) were mapped simultaneously using intrinsic signal imaging (Kalatsky and Stryker, 2003) [2]. A1 and V1 activity evoked by combined auditory and visual stimulation were measured before and after conductive hearing loss (CHL) induced by bilateral malleus removal. We provide data showing that A1 responsiveness evoked by sounds of different sound pressure levels (SPL) decreased after CHL whereas visually evoked V1 activity increased after this intervention. In addition, we also provide imaging data on percentage of V1 activity increases after CHL compared to pre-CHL.

  9. Selective visual attention to emotional words: Early parallel frontal and visual activations followed by interactive effects in visual cortex.

    Science.gov (United States)

    Schindler, Sebastian; Kissler, Johanna

    2016-10-01

    Human brains spontaneously differentiate between various emotional and neutral stimuli, including written words whose emotional quality is symbolic. In the electroencephalogram (EEG), emotional-neutral processing differences are typically reflected in the early posterior negativity (EPN, 200-300 ms) and the late positive potential (LPP, 400-700 ms). These components are also enlarged by task-driven visual attention, supporting the assumption that emotional content naturally drives attention. Still, the spatio-temporal dynamics of interactions between emotional stimulus content and task-driven attention remain to be specified. Here, we examine this issue in visual word processing. Participants attended to negative, neutral, or positive nouns while high-density EEG was recorded. Emotional content and top-down attention both amplified the EPN component in parallel. On the LPP, by contrast, emotion and attention interacted: Explicit attention to emotional words led to a substantially larger amplitude increase than did explicit attention to neutral words. Source analysis revealed early parallel effects of emotion and attention in bilateral visual cortex and a later interaction of both in right visual cortex. Distinct effects of attention were found in inferior, middle and superior frontal, paracentral, and parietal areas, as well as in the anterior cingulate cortex (ACC). Results specify separate and shared mechanisms of emotion and attention at distinct processing stages. Hum Brain Mapp 37:3575-3587, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Effect of luminance contrast on BOLD-fMRI response in deaf and normal occipital visual cortex

    International Nuclear Information System (INIS)

    Xue Yanping; Zhai Renyou; Jiang Tao; Cui Yong; Zhou Tiangang; Rao Hengyi; Zhuo Yan

    2002-01-01

    Objective: To examine the effect of luminance contrast stimulus by using blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI) within deaf occipital visual cortex, and to compare the distribution, extent, and intensity of activated areas between deaf subjects and normal hearing subjects. Methods: Twelve deaf subjects (average age 16.5) and 15 normal hearing subjects (average age 23.7) were stimulated by 4 kinds of luminance contrast (0.7, 2.2, 50.0, 180.0 lm). The fMRI data were collected on GE 1.5 T Signa Horizon LX MRI system and analyzed by AFNI to generate the activation map. Results: Responding to all 4 kinds of stimulus luminance contrast, all deaf and normal subjects showed significant activations in occipital visual cortex. For both deaf and normal subjects, the number of activated pixels increased significantly with increasing luminance contrast (F normal = 4.27, P deaf = 6.41, P 0.05). The local mean activation level for all activated pixels remained constant with increasing luminance contrast. However, there was an increase in the mean activation level for those activated pixels common to all trials as the stimulus luminance contrast was increased, but no significant difference was found within them (F normal = 0.79, P > 0.05; F deaf = 1.6, P > 0.05). Conclusion: The effect of luminance contrast on occipital visual cortex of deaf is similar to but somewhat higher than that of normal hearing subjects. In addition, it also proved that fMRI is a feasible method in the study of the deaf visual cortex

  11. Effects of chronic stress in adolescence on learned fear, anxiety, and synaptic transmission in the rat prelimbic cortex.

    Science.gov (United States)

    Negrón-Oyarzo, Ignacio; Pérez, Miguel Ángel; Terreros, Gonzalo; Muñoz, Pablo; Dagnino-Subiabre, Alexies

    2014-02-01

    The prelimbic cortex and amygdala regulate the extinction of conditioned fear and anxiety, respectively. In adult rats, chronic stress affects the dendritic morphology of these brain areas, slowing extinction of learned fear and enhancing anxiety. The aim of this study was to determine whether rats subjected to chronic stress in adolescence show changes in learned fear, anxiety, and synaptic transmission in the prelimbic cortex during adulthood. Male Sprague Dawley rats were subjected to seven days of restraint stress on postnatal day forty-two (PND 42, adolescence). Afterward, the fear-conditioning paradigm was used to study conditioned fear extinction. Anxiety-like behavior was measured one day (PND 50) and twenty-one days (PND 70, adulthood) after stress using the elevated-plus maze and dark-light box tests, respectively. With another set of rats, excitatory synaptic transmission was analyzed with slices of the prelimbic cortex. Rats that had been stressed during adolescence and adulthood had higher anxiety-like behavior levels than did controls, while stress-induced slowing of learned fear extinction in adolescence was reversed during adulthood. As well, the field excitatory postsynaptic potentials of stressed adolescent rats had significantly lower amplitudes than those of controls, although the amplitudes were higher in adulthood. Our results demonstrate that short-term stress in adolescence induces strong effects on excitatory synaptic transmission in the prelimbic cortex and extinction of learned fear, where the effect of stress on anxiety is more persistent than on the extinction of learned fear. These data contribute to the understanding of stress neurobiology. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Wendelstein VII-A in torsatron mode

    International Nuclear Information System (INIS)

    Harmeyer, E.; Kisslinger, J.; Rau, F.; Wobig, H.

    1985-03-01

    Variable shear - positive or negative, up to about 20 percent - can be introduced into the Wendelstein VII-A Stellarator vacuum field configuration by different currents in the two helix systems, and balancing the resulting vertical field. (orig.)

  13. Controlling the Anchoring Effect through Transcranial Direct Current Stimulation (tDCS to the Right Dorsolateral Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Jianbiao Li

    2017-06-01

    Full Text Available Selective accessibility mechanisms indicate that anchoring effects are results of selective retrieval of working memory. Neuroimaging studies have revealed that the right dorsolateral prefrontal cortex (DLPFC is closely related to memory retrieval and performance. However, no research has investigated the effect of changing the cortical excitability in right DLPFC on anchoring effects. Transcranial direct current stimulation (tDCS can modulate the excitability of the human cerebral cortex, while anodal and cathodal tDCS are postulated to increase or decrease cortical activity, respectively. In this study, we used tDCS to investigate whether effects of increased or decreased right DLPFC excitability influence anchoring effects in willingness to pay (WTP experiments. Ninety participants were first randomly assigned to receive either anodal, cathodal, or sham stimulation of 15 min, then they performed a valuation task regarding WTP. The results showed that anchoring effects were negatively related to activities of right DLPFC: the anodal stimulation diminished anchoring effects while the cathodal stimulation increased anchoring effects. These outcomes provide one of the first instances of neural evidence for the role of the right DLPFC in anchoring effects and support psychological explanations of the selective accessibility mechanisms and cognitive sets.

  14. The effect of regulatory mode on procrastination: Bi-stable parahippocampus connectivity with dorsal anterior cingulate and anterior prefrontal cortex.

    Science.gov (United States)

    Zhang, Chenyan; Ni, Yan; Feng, Tingyong

    2017-06-30

    Previous research has elucidated that procrastination can be influenced by regulatory mode orientations. However, the neural mechanism of regulatory modes affecting procrastination is not well understood. To address this question, we employed resting-state functional magnetic resonance imaging (RS-fMRI) to test the influence of two regulatory modes (assessment and locomotion) on procrastination. The behavioral results showed that procrastination was positively correlated with assessment orientation but negatively correlated with locomotion orientation. Neuroimaging results indicated that the functional connectivity between parahippocampal cortex (PHC) and dorsal anterior cingulate (dACC) was negatively correlated with assessment scores, while the functional connectivity between anterior prefrontal cortex (aPFC) and parahippocampal cortex (PHC) was negatively correlated with locomotion scores. Critically, mediation analysis showed that the different effects of two distinct regulatory modes on procrastination were mediated by PHC-dACC and aPFC-PHC functional connectivity respectively. These results suggested that people's procrastination could be predicted by regulatory mode orientations, which is mediated by PHC connectivity with dACC and aPFC respectively. The present study extends our knowledge on procrastination and provides neural mechanism for understanding the link between regulatory mode orientations and procrastination. Copyright © 2017. Published by Elsevier B.V.

  15. Neuroprotective Effect of Melatonin Against PCBs Induced Behavioural, Molecular and Histological Changes in Cerebral Cortex of Adult Male Wistar Rats.

    Science.gov (United States)

    Bavithra, S; Selvakumar, K; Sundareswaran, L; Arunakaran, J

    2017-02-01

    There is ample evidence stating Polychlorinated biphenyls (PCBs) as neurotoxins. In the current study, we have analyzed the behavioural impact of PCBs exposure in adult rats and assessed the simultaneous effect of antioxidant melatonin against the PCBs action. The rats were grouped into four and treated intraperitoneally with vehicle, PCBs, PCBs + melatonin and melatonin alone for 30 days, respectively. After the treatment period the rats were tested for locomotor activity and anxiety behaviour analysis. We confirmed the neuronal damage in the cerebral cortex by molecular and histological analysis. Our data indicates that there is impairment in locomotor activity and behaviour of PCBs treated rats compared to control. The simultaneous melatonin treated rat shows increased motor coordination and less anxiety like behaviour compared to PCBs treated rats. Molecular and histological analysis supports that, the impaired motor coordination in PCBs treated rats is due to neurodegeneration in motor cortex region. The results proved that melatonin treatment improved the motor co-ordination and reduced anxiety behaviour, prevented neurodegeneration in the cerebral cortex of PCBs-exposed adult male rats.

  16. Impaired consciousness is linked to changes in effective connectivity of the posterior cingulate cortex within the default mode network.

    Science.gov (United States)

    Crone, Julia Sophia; Schurz, Matthias; Höller, Yvonne; Bergmann, Jürgen; Monti, Martin; Schmid, Elisabeth; Trinka, Eugen; Kronbichler, Martin

    2015-04-15

    The intrinsic connectivity of the default mode network has been associated with the level of consciousness in patients with severe brain injury. Especially medial parietal regions are considered to be highly involved in impaired consciousness. To better understand what aspect of this intrinsic architecture is linked to consciousness, we applied spectral dynamic causal modeling to assess effective connectivity within the default mode network in patients with disorders of consciousness. We included 12 controls, 12 patients in minimally conscious state and 13 in vegetative state in this study. For each subject, we first defined the four key regions of the default mode network employing a subject-specific independent component analysis approach. The resulting regions were then included as nodes in a spectral dynamic causal modeling analysis in order to assess how the causal interactions across these regions as well as the characteristics of neuronal fluctuations change with the level of consciousness. The resulting pattern of interaction in controls identified the posterior cingulate cortex as the main driven hub with positive afferent but negative efferent connections. In patients, this pattern appears to be disrupted. Moreover, the vegetative state patients exhibit significantly reduced self-inhibition and increased oscillations in the posterior cingulate cortex compared to minimally conscious state and controls. Finally, the degree of self-inhibition and strength of oscillation in this region is correlated with the level of consciousness. These findings indicate that the equilibrium between excitatory connectivity towards posterior cingulate cortex and its feedback projections is a key aspect of the relationship between alterations in consciousness after severe brain injury and the intrinsic functional architecture of the default mode network. This impairment might be principally due to the disruption of the mechanisms underlying self-inhibition and neuronal

  17. Pengaruh Penerapan Pembelajaran Arias Dipadu Mind Map terhadap Hasil Belajar Kognitif Siswa Kelas VII

    OpenAIRE

    Leliavia, Leliavia; Al Muhdhar, Mimien Henie Irawati; Suwono, Hadi

    2017-01-01

    This research was to determine the effect of differences ARIAS combined mind map learning and ARIAS learning to cognitive learning outcomes grade VII SMPN 1 Tempunak. This research with quasy research experiment design approach with the design of pretest-posttest. Data were analyzed using descriptive statistics and inferensial to test the hypothesis that analysis of covariance (ANCOVA) using SPSS 23 for windows with a significance level of 0,05. The study was conducted at the grade VII SMPN 1...

  18. The effects of low dose ionizing radiation on the development of rat cerebral cortex, (2)

    International Nuclear Information System (INIS)

    Matsushita, Koji

    1993-01-01

    In order to study the molecular mechanisms of neuronal migration on developing rat cerebral cortex, we need a tissue culture system in which neuronal migration can be observed. We prepared a tissue culture system of embryonic rat cerebral cortex starting on embryonic day 16 and cultivating it for 48 hours. The autoradiographic study in this system revealed not only the migration of 3 H-thymidine labeled neurons but also neuronal migration delays from low doses of ionizing radiation of more than 10 cGy. In addition, on immunohistochemical study, cell-cell adhesion molecule N-CAM staining was remarkably decreased in the matrix cell layer. In the tissue culture system where monoclonal anti-N-CAM antibodies were added, neuronal migration delay comparable to that of 20 cGy radiation was found. In conclusion, it was speculated that neuronal migration delay might be caused by disturbed N-CAM synthesis in matrix cells after low dose ionizing radiation. (author)

  19. Effects of transcranial direct current stimulation of the motor cortex on prefrontal cortex activation during a neuromuscular fatigue task: an fNIRS study.

    Science.gov (United States)

    Muthalib, Makii; Kan, Benjamin; Nosaka, Kazunori; Perrey, Stephane

    2013-01-01

    This study investigated whether manipulation of motor cortex excitability by transcranial direct current stimulation (tDCS) modulates neuromuscular fatigue and functional near-infrared spectroscopy (fNIRS)-derived prefrontal cortex (PFC) activation. Fifteen healthy men (27.7 ± 8.4 years) underwent anodal (2 mA, 10 min) and sham (2 mA, first 30 s only) tDCS delivered to the scalp over the right motor cortex. Subjects initially performed a baseline sustained submaximal (30 % maximal voluntary isometric contraction, MVC) isometric contraction task (SSIT) of the left elbow flexors until task failure, which was followed 50 min later by either an anodal or sham treatment condition, then a subsequent posttreatment SSIT. Endurance time (ET), torque integral (TI), and fNIRS-derived contralateral PFC oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentration changes were determined at task failure. Results indicated that during the baseline and posttreatment SSIT, there were no significant differences in TI and ET, and increases in fNIRS-derived PFC activation at task failure were observed similarly regardless of the tDCS conditions. This suggests that the PFC neuronal activation to maintain muscle force production was not modulated by anodal tDCS.

  20. Treatment of lysosomal storage disease in MPS VII mice using a recombinant adeno-associated virus.

    Science.gov (United States)

    Watson, G L; Sayles, J N; Chen, C; Elliger, S S; Elliger, C A; Raju, N R; Kurtzman, G J; Podsakoff, G M

    1998-12-01

    Mucopolysaccharidosis type VII (MPS VII) is a lysosomal storage disease caused by a genetic deficiency of beta-glucuronidase (GUS). We used a recombinant adeno-associated virus vector (AAV-GUS) to deliver GUS cDNA to MPS VII mice. The route of vector administration had a dramatic effect on the extent and distribution of GUS activity. Intramuscular injection of AAV-GUS resulted in high, localized production of GUS, while intravenous administration produced low GUS activity in several tissues. This latter treatment of MPS VII mice reduced glycosaminoglycan levels in the liver to normal and reduced storage granules dramatically. We show that a single administration of AAV-GUS can provide sustained expression of GUS in a variety of cell types and is sufficient to reverse the disease phenotype at least in the liver.

  1. Effects of diazepam and levodopa single doses on motor cortex plasticity modulation in healthy human subjects: A TMS study

    Directory of Open Access Journals (Sweden)

    Ilić Nela V.

    2012-01-01

    Full Text Available Introduction. Administration of pharmacological agents with specific actions on neurotransmitter systems is a powerful driver of functional cortical reorganization. Plastic reorganization of the motor cortex in humans studies by the use of non-invasive stimulation protocols, which mimic the Hebbian model of associative plasticity. Objective. Aiming to explore pharmacological modulation on human motor cortex plasticity, we tested healthy subjects after each dosage of diazepam, levodopa i placebo administration, using paired associative stimulation protocol (PAS that induce fenomena similar to a long-term potentiation and depression, as defined on the synaptic level. Methods. We analyzed effects of benzodiazepines (10 mg, levodopa (200 mg and placebo on PAS protocol in 14 healthy volunteers, using a double-blind placebo-controlled study design. PAS consisted of electrical stimuli pairs at n.medianus and magnetic pulses over the scalp (transcranial magnetic stimulation in precisely defined intervals (ISI was 10 and 25 ms for a total of about 15 minutes (200 pairs. MEP amplitudes before and after (0, 10, 20 and 30 minutes later interventional protocols were compared. Results. When protocols were applied with placebo depending on ISI (10 ms - inhibitory, 25 ms - facilitatory effects, MEP amplitudes decreased or increased, while values in the postinterventional period (0, 10, 20 and 30 min were compared with initial values before the use of SAS. The use of benzodiazepines caused the occlusion of LTP-like effect, in contrast to amplification effects recorded after the administration of levodopa. With respect to the LTD-like protocol, the reverse was true (ANOVA for repeat measurements p<0.001. Conclusion. Administration of GABA-ergic agonist diazepam interferes with the induction of associative plasticity in the motor cortex of healthy individuals, as opposed to the use of levodopa, which stimulates these processes. The observed effects point at a

  2. Effects of some salts on H2O as probed by a thermodynamic signature of glycerol: towards understanding the Hofmeister effects (VII)

    DEFF Research Database (Denmark)

    Koga, Yoshikata; Westh, Peter

    2014-01-01

    . Namely, we devised a methodology whereby the effect of an ion on H2O is characterized by two orthogonal indices, hydrophobicity and hydrophilicity, by using a third order thermodynamic signature of hydrophobic 1-propanol (1P) as a probe, the 1P-probing methodology. The results indicated that the common...

  3. Repetitive Transcranial Direct Current Stimulation Induced Excitability Changes of Primary Visual Cortex and Visual Learning Effects-A Pilot Study.

    Science.gov (United States)

    Sczesny-Kaiser, Matthias; Beckhaus, Katharina; Dinse, Hubert R; Schwenkreis, Peter; Tegenthoff, Martin; Höffken, Oliver

    2016-01-01

    Studies on noninvasive motor cortex stimulation and motor learning demonstrated cortical excitability as a marker for a learning effect. Transcranial direct current stimulation (tDCS) is a non-invasive tool to modulate cortical excitability. It is as yet unknown how tDCS-induced excitability changes and perceptual learning in visual cortex correlate. Our study aimed to examine the influence of tDCS on visual perceptual learning in healthy humans. Additionally, we measured excitability in primary visual cortex (V1). We hypothesized that anodal tDCS would improve and cathodal tDCS would have minor or no effects on visual learning. Anodal, cathodal or sham tDCS were applied over V1 in a randomized, double-blinded design over four consecutive days (n = 30). During 20 min of tDCS, subjects had to learn a visual orientation-discrimination task (ODT). Excitability parameters were measured by analyzing paired-stimulation behavior of visual-evoked potentials (ps-VEP) and by measuring phosphene thresholds (PTs) before and after the stimulation period of 4 days. Compared with sham-tDCS, anodal tDCS led to an improvement of visual discrimination learning (p learning effect. For cathodal tDCS, no significant effects on learning or on excitability could be seen. Our results showed that anodal tDCS over V1 resulted in improved visual perceptual learning and increased cortical excitability. tDCS is a promising tool to alter V1 excitability and, hence, perceptual visual learning.

  4. Plasma factor VII-activating protease is increased by oral contraceptives and induces factor VII activation in-vivo

    DEFF Research Database (Denmark)

    Sidelmann, Johannes Jakobsen; Skouby, Sven O.; Kluft, Cornelis

    2011-01-01

    progestins. FSAP genotypes, FSAP and factor VII (FVII) plasma measures were assessed at baseline and after 6 cycles of OC. The 1601GA genotype was present in 49 (8.3%) of the women and was associated with significantly reduced levels of FSAP (P≤0.001). OC use increased FSAP antigen by 25% and FSAP activity......Oral contraceptive (OC) use influences the hemostatic system significantly and is a risk factor for development of cardiovascular disease. Factor VII-activating protease (FSAP) has potential effects on hemostasis. The 1601GA genotype of the 1601G/A polymorphism in the FSAP gene expresses a FSAP...... by 59% (P0.05). The relative increase in FSAP activity was significantly higher in women carrying the 1601GG genotype (63%) than in women carrying 1601GA genotype (50%) (P=0.01) and was associated with an increased activation of FVII. In conclusion: OC use increases the plasma measures of FSAP...

  5. Effects of Cortical Spreading Depression on Synaptic Activity, Blood Flow and Oxygen Consumption in Rat Cerebral Cortex

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard

    2010-01-01

    As the title of this thesis indicates I have during my PhD studied the effects of cortical spreading depression (CSD) on synaptic activity, blood flow and oxygen consumption in rat cerebral cortex. This was performed in vivo using an open cranial window approach in anesthetized rats. I applied...... parameters of the whisker/infraorbital nerve etwork (IO) targeting the same cortical area. We tested the hypothesis that the relation between increases in CBF and CMRO2 evoked by stimulation and synaptic activity differed for the two activated networks and that activation of two distinct networks activate...

  6. No Effects of Stimulating the Left Ventrolateral Prefrontal Cortex with tDCS on Verbal Working Memory Updating

    Directory of Open Access Journals (Sweden)

    Karolina M. Lukasik

    2018-01-01

    Full Text Available The effects of transcranial direct current stimulation (tDCS on dorsolateral prefrontal cortex functions, such as working memory (WM, have been examined in a number of studies. However, much less is known about the behavioral effects of tDCS over other important WM-related brain regions, such as the ventrolateral prefrontal cortex (VLPFC. In a counterbalanced within-subjects design with 33 young healthy participants, we examined whether online and offline single-session tDCS over VLPFC affects WM updating performance as measured by a digit 3-back task. We compared three conditions: anodal, cathodal and sham. We observed no significant tDCS effects on participants' accuracy or reaction times during or after the stimulation. Neither did we find any differences between anodal and cathodal stimulation. Largely similar results were obtained when comparing subgroups of high- and low-performing participants. Possible reasons for the lack of effects, including individual differences in responsiveness to tDCS, features of montage, task and sample characteristics, and the role of VLPFC in WM, are discussed.

  7. Separation of Rhenium (VII) from Tungsten (VI)

    International Nuclear Information System (INIS)

    Vucina, J.; Lukic, D.; Stoiljkovic, M.; Milosevic, M.; Orlic, M.

    2004-01-01

    Examined were the conditions for an effective separation of tungsten (VI) and rhenium (VII) on alumina if the solution of 0.20 mol dm -3 NaCl, ph=2.6 is used as the aqueous phase. Under the given experimental conditions alumina was found to be much better adsorbent for tungsten than for rhenium. The breakthrough and saturation capacities of alumina at pH=2 are 24 and 78 mg W/g Al 2 O 3 , respectively. With the increase of pH these values decrease. So, at pH=6 they are only 4 and 13 mg W/g Al 2 O 3 respectively. The elution volume for rhenium for the given column dimensions and quantity of the adsorbent is about 16 ml. These results were confirmed by the experiments of the radiological separations. Tungsten-187 remains firmly bound to the alumina. The radionuclide purity of the eluted 186'188 Re at pH=2 is very high. (authors)

  8. Effects of electroacupuncture on metabolic changes in motor cortex and striatum of 6-hydroxydopamine-induced Parkinsonian rats.

    Science.gov (United States)

    Li, Min; Wang, Ke; Su, Wen-Ting; Jia, Jun; Wang, Xiao-Min

    2017-10-06

    To explore the possible underlying mechanism by investigating the effect of electroacupuncture (EA) treatment on the primary motor cortex and striatum in a unilateral 6-hydroxydopamine (6-OHDA) induced rat Parkinson's disease (PD) model. Male Sprague-Dawley rats were randomly divided into sham group (n=16), model group (n=14), and EA group (n=14). EA stimulation at Dazhui (GV 14) and Baihui (GV20) was applied to PD rats in the EA group for 4 weeks. Behavioral tests were conducted to evaluate the effectiveness of EA treatment. Metabolites were detected by 7.0 T proton nuclear magnetic resonance. Following 4 weeks of EA treatment in PD model rats, the abnormal behavioral impairment induced by 6-OHDA was alleviated. In monitoring changes in metabolic activity, ratios of myoinositol/creatine (Cr) and N-acetyl aspartate (NAA)/Cr in the primary motor cortex were significantly lower at the injected side than the non-injected side in PD rats (P=0.024 and 0.020). The ratios of glutamate + glutamine (Glx)/Cr and NAA/Cr in the striatum were higher and lower, respectively, at the injected side than the non-injected side (P=0.046 and 0.008). EA treatment restored the balance of metabolic activity in the primary motor cortex and striatum. In addition, the taurine/Cr ratio and Glx/Cr ratio were elevated in the striatum of PD model rats compared to sham-lesioned rats (P=0.026 and 0.000). EA treatment alleviated the excessive glutamatergic transmission by down-regulating the striatal Glx/Cr ratio (P=0.001). The Glx/Cr ratio was negatively correlated with floor plane spontaneous locomotion in PD rats (P=0.027 and P=0.0007). EA treatment is able to normalize the metabolic balance in the primary motor cortex and striatum of PD rats, which may contribute to its therapeutic effect on motor deficits. The striatal Glx/Cr ratio may serve as a potential indicator of PD and a therapeutic target of EA treatment.

  9. European Energy Law. Report VII

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, U.; Roggenkamp, M.M. (eds.)

    2010-04-15

    The European Energy Law Report VII presents in four parts an overview of the most important legal developments in the field of EU and national energy and climate change law as discussed at the 2009 European Energy Law Seminar. The first part examines recent developments in EU climate change regulation. It includes an overview of the revision of the EU Directive governing CO2 emissions trading and a more detailed analysis of the new allocation regime, including the auctioning of emission rights. This is followed by an analysis of the competitiveness of the new EU emissions trading Directive and recent developments in the US regarding emissions trading. The second part focuses on the energy liberalisation process and the Third Energy Package. Following an overview of recent developments in EU competition law and the impact of the Sector Inquiry on the energy sector, this part concentrates particularly on the new Internal Energy Market Directives and most particularly on the legality of the unbundling provisions. Subsequently, the focus is on the role of the TSOs. After an analysis of the need for an increased cooperation of the German TSOs, another chapter discusses the need for more consolidation in the European gas transmission market and the role of regulation therein. Is there a new role for nuclear energy? In order to secure long term energy supply, the focus turns again to nuclear energy. The third part of this report discusses two elements of nuclear liability. First, it analyses the issue of the possible privatisation of the nuclear sector and its impact on long term liability. Although the focus is on the UK nuclear sector, a comparison is made with some other regulatory regimes. Next, the role of nuclear energy is discussed as an instrument to reduce CO2 emissions and, more particularly as a means to reach the 20-20-20 targets. The question is raised whether the international rules on civil liability provide sufficient protection to victims of nuclear

  10. Perceptual decision-making difficulty modulates feedforward effective connectivity to the dorsolateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Bidhan eLamichhane

    2015-09-01

    Full Text Available Diverse cortical structures are known to coordinate activity as a network in relaying and processing of visual information to discriminate visual objects. However, how this discrimination is achieved is still largely unknown. To contribute to answering this question, we used face-house categorization tasks with three levels of noise in face and house images in functional magnetic resonance imaging (fMRI experiments involving thirty-three participants. The behavioral performance error and response time (RT were correlated with noise in face-house images. We then built dynamical causal models (DCM of fMRI blood-oxygenation level dependent (BOLD signals from the face and house category-specific regions in ventral temporal cortex, the fusiform face area (FFA and parahippocampal place area (PPA, and the dorsolateral prefrontal cortex (dlPFC. We found a strong feed-forward intrinsic connectivity pattern from FFA and PPA to dlPFC. Importantly, the feed-forward connectivity to dlPFC was significantly modulated by the perception of both faces and houses. The dlPFC-BOLD activity, the connectivity from FFA and PPA to the dlPFC all increased with noise level. These results suggest that the FFA-PPA-dlPFC network plays an important role for relaying and integrating competing sensory information to arrive at perceptual decisions.

  11. The Effects of Long Duration Bed Rest on Functional Mobility and Balance: Relationship to Resting State Motor Cortex Connectivity

    Science.gov (United States)

    Erdeniz, B.; Koppelmans, V.; Bloomberg, J. J.; Kofman, I. S.; DeDios, Y. E.; Riascos-Castaneda, R. F.; Wood, S. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    NASA offers researchers from a variety of backgrounds the opportunity to study bed rest as an experimental analog for space flight. Extended exposure to a head-down tilt position during long duration bed rest can resemble many of the effects of a low-gravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The aim of our study is to a) identify changes in brain function that occur with prolonged bed rest and characterize their recovery time course; b) assess whether and how these changes impact behavioral and neurocognitive performance. Thus far, we completed data collection from six participants that include task based and resting state fMRI. The data have been acquired through the bed rest facility located at the University of Texas Medical Branch (Galveston, TX). Subjects remained in bed with their heads tilted down 6 degrees below their feet for 70 consecutive days. Behavioral measures and neuroimaging assessments were obtained at seven time points: a) 7 and 12 days before bed rest; b) 7, 30, and 65 days during bed rest; and c) 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (FcMRI) analysis was performed to assess the connectivity of motor cortex in and out of bed rest. We found a decrease in motor cortex connectivity with vestibular cortex and the cerebellum from pre bed rest to in bed rest. We also used a battery of behavioral measures including the functional mobility test and computerized dynamic posturography collected before and after bed rest. We will report the preliminary results of analyses relating brain and behavior changes. Furthermore, we will also report the preliminary results of a spatial working memory task and vestibular stimulation during in and out of bed rest.

  12. The effects of abnormalities of glucose homeostasis on the expression and binding of muscarinic receptors in cerebral cortex of rats.

    Science.gov (United States)

    Sherin, Antony; Peeyush, Kumar T; Naijil, George; Nandhu, Mohan Sobhana; Jayanarayanan, Sadanandan; Jes, Paul; Paulose, Cheramadathikudiyil Skaria

    2011-01-25

    Glucose homeostasis in humans is an important factor for the functioning of nervous system. Both hypo and hyperglycemia contributes to neuronal functional deficit. In the present study, effect of insulin induced hypoglycemia and streptozotocin induced diabetes on muscarinic receptor binding, cholinergic enzymes; AChE, ChAT expression and GLUT3 in the cerebral cortex of experimental rats were analysed. Total muscarinic, muscarinic M(1) receptor showed a significant decrease and muscarinic M(3) receptor subtype showed a significant increased binding in the cerebral cortex of hypoglycemic rats compared to diabetic and control. Real-Time PCR analysis of muscarinic M(1), M(3) receptor subtypes confirmed the receptor binding studies. Immunohistochemistry of muscarinic M(1), M(3) receptors using specific antibodies were also carried out. AChE and GLUT3 expression up regulated and ChAT expression down regulated in hypoglycemic rats compared to diabetic and control rats. Our results showed that hypo/hyperglycemia caused impaired glucose transport in neuronal cells as shown by altered expression of GLUT3. Increased AChE and decreased ChAT expression is suggested to alter cortical acetylcholine metabolism in experimental rats along with altered muscarinic receptor binding in hypo/hyperglycemic rats, impair cholinergic transmission, which subsequently lead to cholinergic dysfunction thereby causing learning and memory deficits. We observed a prominent cholinergic functional disturbance in hypoglycemic condition than in hyperglycemia. Hypoglycemia exacerbated the neurochemical changes in cerebral cortex induced by hyperglycemia. These findings have implications for both therapy and identification of causes contributing to neuronal dysfunction in diabetes. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. The Role of the Medial Prefrontal Cortex-Amygdala Circuit in Stress Effects on the Extinction of Fear

    Directory of Open Access Journals (Sweden)

    Mouna Maroun

    2007-01-01

    Full Text Available Stress exposure, depending on its intensity and duration, affects cognition and learning in an adaptive or maladaptive manner. Studies addressing the effects of stress on cognitive processes have mainly focused on conditioned fear, since it is suggested that fear-motivated learning lies at the root of affective and anxiety disorders. Inhibition of fear-motivated response can be accomplished by experimental extinction of the fearful response to the fear-inducing stimulus. Converging evidence indicates that extinction of fear memory requires plasticity in both the medial prefrontal cortex and the amygdala. These brain areas are also deeply involved in mediating the effects of exposure to stress on memory. Moreover, extensive evidence indicates that gamma-aminobutyric acid (GABA transmission plays a primary role in the modulation of behavioral sequelae resulting from a stressful experience, and may also partially mediate inhibitory learning during extinction. In this review, we present evidence that exposure to a stressful experience may impair fear extinction and the possible involvement of the GABA system. Impairment of fear extinction learning is particularly important as it may predispose some individuals to the development of posttraumatic stress disorder. We further discuss a possible dysfunction in the medial prefrontal cortex-amygdala circuit following a stressful experience that may explain the impaired extinction caused by exposure to a stressor.

  14. Cannabis agonist injection effect on the coupling architecture in cortex of WAG/Rij rats during absence seizures

    Science.gov (United States)

    Sysoeva, Marina V.; Kuznetsova, Galina D.; van Rijn, Clementina M.; Sysoev, Ilya V.

    2016-04-01

    WAG/Rij rats are well known genetic model of absence epilepsy, which is traditionally considered as a nonconvulsive generalised epilepsy of unknown aetiology. In current study the effect of (R)-(+)-WIN 55,212-2 (cannabis agonist) injection on the coupling between different parts of cortex was studied on 27 male 8 month old rats using local field potentials. Recently developed non-linear adapted Granger causality approach was used as a primary method. It was shown that first 2 hours after the injection the coupling between most channel pairs rises in comparison with the spontaneous activity, whilst long after the injection (2-6 hours) it drops down. The coupling increase corresponds to the mentioned before treatment effect, when the number and the longitude of seizures significantly decreases. However the subsequent decrease of the coupling in the cortex is accompanied by the dramatic increase of the longitude and the number of seizures. This assumes the hypothesis that a relatively higher coupling in the cortical network can prevent the seizure propagation and generalisation.

  15. Effect of the small-world structure on encoding performance in the primary visual cortex: an electrophysiological and modeling analysis.

    Science.gov (United States)

    Shi, Li; Niu, Xiaoke; Wan, Hong

    2015-05-01

    The biological networks have been widely reported to present small-world properties. However, the effects of small-world network structure on population's encoding performance remain poorly understood. To address this issue, we applied a small world-based framework to quantify and analyze the response dynamics of cell assemblies recorded from rat primary visual cortex, and further established a population encoding model based on small world-based generalized linear model (SW-GLM). The electrophysiological experimental results show that the small world-based population responses to different topological shapes present significant variation (t test, p 0.8), while no significant variation was found for control networks without considering their spatial connectivity (t test, p > 0.05; effect size: Hedge's g < 0.5). Furthermore, the numerical experimental results show that the predicted response under SW-GLM is more accurate and reliable compared to the control model without small-world structure, and the decoding performance is also improved about 10 % by taking the small-world structure into account. The above results suggest the important role of the small-world neural structure in encoding visual information for the neural population by providing electrophysiological and theoretical evidence, respectively. The study helps greatly to well understand the population encoding mechanisms of visual cortex.

  16. Mapping the after-effects of theta burst stimulation on the human auditory cortex with functional imaging.

    Science.gov (United States)

    Andoh, Jamila; Zatorre, Robert J

    2012-09-12

    online combination has many technical problems, including the static artifacts resulting from the presence of the TMS coil in the scanner room, or the effects of TMS pulses on the process of MR image formation. But more importantly, the loud acoustic noise induced by TMS (increased compared with standard use because of the resonance of the scanner bore) and the increased TMS coil vibrations (caused by the strong mechanical forces due to the static magnetic field of the MR scanner) constitute a crucial problem when studying auditory processing. This is one reason why fMRI was carried out before and after TMS in the present study. Similar approaches have been used to target the motor cortex, premotor cortex, primary somatosensory cortex and language-related areas, but so far no combined TMS-fMRI study has investigated the auditory cortex. The purpose of this article is to provide details concerning the protocol and considerations necessary to successfully combine these two neuroscientific tools to investigate auditory processing. Previously we showed that repetitive TMS (rTMS) at high and low frequencies (resp. 10 Hz and 1 Hz) applied over the auditory cortex modulated response time (RT) in a melody discrimination task. We also showed that RT modulation was correlated with functional connectivity in the auditory network assessed using fMRI: the higher the functional connectivity between left and right auditory cortices during task performance, the higher the facilitatory effect (i.e. decreased RT) observed with rTMS. However those findings were mainly correlational, as fMRI was performed before rTMS. Here, fMRI was carried out before and immediately after TMS to provide direct measures of the functional organization of the auditory cortex, and more specifically of the plastic reorganization of the auditory neural network occurring after the neural intervention provided by TMS. Combined fMRI and TMS applied over the auditory cortex should enable a better understanding of

  17. Effects of microgravity on muscle and cerebral cortex: a suggested interaction

    Science.gov (United States)

    D'Amelio, F.; Fox, R. A.; Wu, L. C.; Daunton, N. G.; Corcoran, M. L.

    The ``slow'' antigravity muscle adductor longus was studied in rats after 14 days of spaceflight (SF). The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light and electron microscopy revealed myofiber atrophy, segmental necrosis and regenerative myofibers. Regenerative myofibers were N-CAM immunoreactive (N-CAM-IR). The neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles, degenerative changes, vacant axonal spaces and changes suggestive of axonal sprouting. No alterations of muscle spindles was seen either by light or electron microscopy. These observations suggest that muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight. In a separate study, GABA immunoreactivity (GABA-IR) was evaluated at the level of the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension (``simulated'' microgravity). A reduction in number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-IR terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system after spaceflight and hindlimb suspension it is suggested that after limb unloading there are alterations of afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the changes observed in GABA immunoreactivity of cells and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.

  18. Delayed enhancement of multitasking performance: Effects of anodal transcranial direct current stimulation on the prefrontal cortex.

    Science.gov (United States)

    Hsu, Wan-Yu; Zanto, Theodore P; Anguera, Joaquin A; Lin, Yung-Yang; Gazzaley, Adam

    2015-08-01

    The dorsolateral prefrontal cortex (DLPFC) has been proposed to play an important role in neural processes that underlie multitasking performance. However, this claim is underexplored in terms of direct causal evidence. The current study aimed to delineate the causal involvement of the DLPFC during multitasking by modulating neural activity with transcranial direct current stimulation (tDCS) prior to engagement in a demanding multitasking paradigm. The study is a single-blind, crossover, sham-controlled experiment. Anodal tDCS or sham tDCS was applied over left DLPFC in forty-one healthy young adults (aged 18-35 years) immediately before they engaged in a 3-D video game designed to assess multitasking performance. Participants were separated into three subgroups: real-sham (i.e., real tDCS in the first session, followed by sham tDCS in the second session 1 h later), sham-real (sham tDCS first session, real tDCS second session), and sham-sham (sham tDCS in both sessions). The real-sham group showed enhanced multitasking performance and decreased multitasking cost during the second session, compared to first session, suggesting delayed cognitive benefits of tDCS. Interestingly, performance benefits were observed only for multitasking and not on a single-task version of the game. No significant changes were found between the first and second sessions for either the sham-real or the sham-sham groups. These results suggest a causal role of left prefrontal cortex in facilitating the simultaneous performance of more than one task, or multitasking. Moreover, these findings reveal that anodal tDCS may have delayed benefits that reflect an enhanced rate of learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys.

    Science.gov (United States)

    Wu, Wei; Saunders, Richard C; Mishkin, Mortimer; Turchi, Janita

    2012-07-01

    Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells. Published by Elsevier Inc.

  20. Opposing Effects of Maternal Hypo- and Hyperthyroidism on the Stability of Thalamocortical Synapses in the Visual Cortex of Adult Offspring.

    Science.gov (United States)

    Strobl, Marie-Therese J; Freeman, Daniel; Patel, Jenica; Poulsen, Ryan; Wendler, Christopher C; Rivkees, Scott A; Coleman, Jason E

    2017-05-01

    Insufficient or excessive thyroid hormone (TH) levels during fetal development can cause long-term neurological and cognitive problems. Studies in animal models of perinatal hypo- and hyperthyroidism suggest that these problems may be a consequence of the formation of maladaptive circuitry in the cerebral cortex, which can persist into adulthood. Here we used mouse models of maternal hypo- and hyperthyroidism to investigate the long-term effects of altering thyroxine (T4) levels during pregnancy (corresponding to embryonic days 6.5-18.5) on thalamocortical (TC) axon dynamics in adult offspring. Because perinatal hypothyroidism has been linked to visual processing deficits in humans, we performed chronic two-photon imaging of TC axons and boutons in primary visual cortex (V1). We found that a decrease or increase in maternal serum T4 levels was associated with atypical steady-state dynamics of TC axons and boutons in V1 of adult offspring. Hypothyroid offspring exhibited axonal branch and bouton dynamics indicative of an abnormal increase in TC connectivity, whereas changes in hyperthyroid offspring were indicative of an abnormal decrease in TC connectivity. Collectively, our data suggest that alterations to prenatal T4 levels can cause long-term synaptic instability in TC circuits, which could impair early stages of visual processing. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Single unit activity in the medial prefrontal cortex during Pavlovian heart rate conditioning: Effects of peripheral autonomic blockade.

    Science.gov (United States)

    Powell, D A; Ginsberg, Jay P

    2005-11-01

    Electrical activity was recorded from single neurons in the medial prefrontal cortex of rabbits during differential Pavlovian heart rate (HR) conditioning. A heterogeneous population of cells were found, some of which showed CS-evoked increases and others CS-evoked decreases in discharge, while some cells were biphasic. A subset of cells also showed trial-related changes in discharge that were related to acquisition of the HR discrimination between the reinforced CS+ and non-reinforced CS-. Administration of the peripheral cholinergic antagonist, methylscopolamine, and the andrenergic antagonist, atenolol, either increased or decreased maintained baseline activity of many cells, but had little or no effect on the CS-evoked activity of these cells. Waveform changes also did not result from administration of these drugs. This finding suggests that CS-evoked mPFC activity is not being driven by cardiac afferent input to CNS cardiac control centers. Previous studies have shown that ibotenic acid lesions of this area greatly decreases the magnitude of decelerative heart rate conditioned responses; the latter finding, plus the results of the present study, suggest that processing of CS/US contingencies by the prefrontal cortex contributes to the acquisition of autonomic changes during Pavlovian conditioning.

  2. 77 FR 64400 - Order of Succession for HUD Region VII

    Science.gov (United States)

    2012-10-19

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [FR-5550-D-10] Order of Succession for HUD Region VII... Offices (Region VII). This Order of Succession supersedes all previous Orders of Succession for HUD Region...). This publication supersedes all previous Orders of Succession for Region VII. Accordingly, the...

  3. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability.

    Science.gov (United States)

    Liebetanz, David; Nitsche, Michael A; Tergau, Frithjof; Paulus, Walter

    2002-10-01

    Weak transcranial direct current stimulation (tDCS) induces persisting excitability changes in the human motor cortex. These plastic excitability changes are selectively controlled by the polarity, duration and current strength of stimulation. To reveal the underlying mechanisms of direct current (DC)-induced neuroplasticity, we combined tDCS of the motor cortex with the application of Na(+)-channel-blocking carbamazepine (CBZ) and the N-methyl-D-aspartate (NMDA)-receptor antagonist dextromethorphan (DMO). Monitored by transcranial magnetic stimulation (TMS), motor cortical excitability changes of up to 40% were achieved in the drug-free condition. Increase of cortical excitability could be selected by anodal stimulation, and decrease by cathodal stimulation. Both types of excitability change lasted several minutes after cessation of current stimulation. DMO suppressed the post-stimulation effects of both anodal and cathodal DC stimulation, strongly suggesting the involvement of NMDA receptors in both types of DC-induced neuroplasticity. In contrast, CBZ selectively eliminated anodal effects. Since CBZ stabilizes the membrane potential voltage-dependently, the results reveal that after-effects of anodal tDCS require a depolarization of membrane potentials. Similar to the induction of established types of short- or long-term neuroplasticity, a combination of glutamatergic and membrane mechanisms is necessary to induce the after-effects of tDCS. On the basis of these results, we suggest that polarity-driven alterations of resting membrane potentials represent the crucial mechanisms of the DC-induced after-effects, leading to both an alteration of spontaneous discharge rates and to a change in NMDA-receptor activation.

  4. Factors Influencing Title VII Bilingual Program Institutionalization.

    Science.gov (United States)

    Lewis, Gerald R.; And Others

    1985-01-01

    This study of the primary restraining and driving forces that influence Title VII bilingual education programs found the external environment, the local community, to be the main factor influencing institutionalization and self-renewal. The internal environment--the local school, and the local school's organization or central office, school board,…

  5. Pseudane-VII Isolated from Pseudoalteromonas sp. M2 Ameliorates LPS-Induced Inflammatory Response In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Mi Eun Kim

    2017-11-01

    Full Text Available The ocean is a rich resource of flora, fauna, food, and biological products. We found a wild-type bacterial strain, Pseudoalteromonas sp. M2, from marine water and isolated various secondary metabolites. Pseudane-VII is a compound isolated from the Pseudoalteromonas sp. M2 metabolite that possesses anti-melanogenic activity. Inflammation is a response of the innate immune system to microbial infections. Macrophages have a critical role in fighting microbial infections and inflammation. Recent studies reported that various compounds derived from natural products can regulate immune responses including inflammation. However, the anti-inflammatory effects and mechanism of pseudane-VII in macrophages are still unknown. In this study, we investigated the anti-inflammatory effects of pseudane-VII. In present study, lipopolysaccharide (LPS-induced nitric oxide (NO production was significantly decreased by pseudane-VII treatment at 6 μM. Moreover, pseudane-VII treatment dose-dependently reduced mRNA levels of pro-inflammatory cytokines including inos, cox-2, il-1β, tnf-α, and il-6 in LPS-stimulated macrophages. Pseudane-VII also diminished iNOS protein levels and IL-1β secretion. In addition, Pseudane-VII elicited anti-inflammatory effects by inhibiting ERK, JNK, p38, and nuclear factor (NF-κB-p65 phosphorylation. Consistently, pseudane-VII was also shown to inhibit the LPS-stimulated release of IL-1β and expression of iNOS in mice. These results suggest that pseudane-VII exerted anti-inflammatory effects on LPS-stimulated macrophage activation via inhibition of ERK, JNK, p38 MAPK phosphorylation, and pro-inflammatory gene expression. These findings may provide new approaches in the effort to develop anti-inflammatory therapeutics.

  6. Pseudane-VII Isolated from Pseudoalteromonas sp. M2 Ameliorates LPS-Induced Inflammatory Response In Vitro and In Vivo.

    Science.gov (United States)

    Kim, Mi Eun; Jung, Inae; Lee, Jong Suk; Na, Ju Yong; Kim, Woo Jung; Kim, Young-Ok; Park, Yong-Duk; Lee, Jun Sik

    2017-11-01

    The ocean is a rich resource of flora, fauna, food, and biological products. We found a wild-type bacterial strain, Pseudoalteromonas sp. M2, from marine water and isolated various secondary metabolites. Pseudane-VII is a compound isolated from the Pseudoalteromonas sp. M2 metabolite that possesses anti-melanogenic activity. Inflammation is a response of the innate immune system to microbial infections. Macrophages have a critical role in fighting microbial infections and inflammation. Recent studies reported that various compounds derived from natural products can regulate immune responses including inflammation. However, the anti-inflammatory effects and mechanism of pseudane-VII in macrophages are still unknown. In this study, we investigated the anti-inflammatory effects of pseudane-VII. In present study, lipopolysaccharide (LPS)-induced nitric oxide (NO) production was significantly decreased by pseudane-VII treatment at 6 μM. Moreover, pseudane-VII treatment dose-dependently reduced mRNA levels of pro-inflammatory cytokines including inos , cox-2 , il-1β , tnf-α , and il-6 in LPS-stimulated macrophages. Pseudane-VII also diminished iNOS protein levels and IL-1β secretion. In addition, Pseudane-VII elicited anti-inflammatory effects by inhibiting ERK, JNK, p38, and nuclear factor (NF)-κB-p65 phosphorylation. Consistently, pseudane-VII was also shown to inhibit the LPS-stimulated release of IL-1β and expression of iNOS in mice. These results suggest that pseudane-VII exerted anti-inflammatory effects on LPS-stimulated macrophage activation via inhibition of ERK, JNK, p38 MAPK phosphorylation, and pro-inflammatory gene expression. These findings may provide new approaches in the effort to develop anti-inflammatory therapeutics.

  7. Topical application of recombinant activated factor VII during cesarean delivery for placenta previa.

    Science.gov (United States)

    Schjoldager, Birgit T B G; Mikkelsen, Emmeli; Lykke, Malene R; Præst, Jørgen; Hvas, Anne-Mette; Heslet, Lars; Secher, Niels J; Salvig, Jannie D; Uldbjerg, Niels

    2017-06-01

    During cesarean delivery in patients with placenta previa, hemorrhaging after removal of the placenta is often challenging. In this condition, the extraordinarily high concentration of tissue factor at the placenta site may constitute a principle of treatment as it activates coagulation very effectively. The presumption, however, is that tissue factor is bound to activated factor VII. We hypothesized that topical application of recombinant activated factor VII at the placenta site reduces bleeding without affecting intravascular coagulation. We included 5 cases with planned cesarean delivery for placenta previa. After removal of the placenta, the surgeon applied a swab soaked in recombinant activated factor VII containing saline (1 mg in 246 mL) to the placenta site for 2 minutes; this treatment was repeated once if the bleeding did not decrease sufficiently. We documented the treatment on video recordings and measured blood loss. Furthermore, we determined hemoglobin concentration, platelet count, international normalized ratio, activated partial thrombin time, fibrinogen (functional), factor VII:clot, and thrombin generation in peripheral blood prior to and 15 minutes after removal of the placenta. We also tested these blood coagulation variables in 5 women with cesarean delivery planned for other reasons. Mann-Whitney test was used for unpaired data. In all 5 cases, the uterotomy was closed under practically dry conditions and the median blood loss was 490 (range 300-800) mL. There were no adverse effects of recombinant activated factor VII and we did not measure factor VII to enter the circulation. Neither did we observe changes in thrombin generation, fibrinogen, activated partial thrombin time, international normalized ratio, and platelet count in the peripheral circulation (all P values >.20). This study indicates that in patients with placenta previa, topical recombinant activated factor VII may diminish bleeding from the placenta site without initiation

  8. rTMS of the prefrontal cortex has analgesic effects on neuropathic pain in subjects with spinal cord injury.

    Science.gov (United States)

    Nardone, R; Höller, Y; Langthaler, P B; Lochner, P; Golaszewski, S; Schwenker, K; Brigo, F; Trinka, E

    2017-01-01

    Repetitive transcranial magnetic stimulation study. The analgesic effects of repetitive transcranial magnetic stimulation (rTMS) in chronic pain have been the focus of several studies. In particular, rTMS of the premotor cortex/dorsolateral prefrontal cortex (PMC/DLPFC) changes pain perception in healthy subjects and has analgesic effects in acute postoperative pain, as well as in fibromyalgia patients. However, its effect on neuropathic pain in patients with traumatic spinal cord injury (SCI) has not been assessed. Merano (Italy) and Salzburg (Austria). In this study, we performed PMC/DLPFC rTMS in subjects with SCI and neuropathic pain. Twelve subjects with chronic cervical or thoracic SCI were randomized to receive 1250 pulses at 10 Hz rTMS (n=6) or sham rTMS (n=6) treatment for 10 sessions over 2 weeks. The visual analog scale, the sensory and affective pain rating indices of the McGill Pain Questionnaire (MPQ), the Hamilton Depression Rating Scale and the Hamilton Anxiety Rating Scale were used to assed pain and mood at baseline (T0), 1 day after the first week of treatment (T1), 1 day (T2), 1 week (T3) and 1 month (T4) after the last intervention. Subjects who received active rTMS had a statistically significant reduction in pain symptoms in comparison with their baseline pain, whereas sham rTMS participants had a non-significant change in daily pain from their baseline pain. The findings of this preliminary study in a small patient sample suggest that rTMS of the PMC/DLPFC may be effective in relieving neuropathic pain in SCI patients.

  9. Oxidation of triclosan by permanganate (Mn(VII)): importance of ligands and in situ formed manganese oxides.

    Science.gov (United States)

    Jiang, Jin; Pang, Su-Yan; Ma, Jun

    2009-11-01

    Experiments were conducted to examine permanganate (Mn(VII); KMnO(4)) oxidation of the widely used biocide triclosan (one phenolic derivative) in aqueous solution at pH values of 5-9. Under slightly acidic conditions, the reactions displayed autocatalysis, suggesting the catalytic role of in situ formed MnO(2). This was further supported by the promoting effects of the addition of preformed MnO(2) colloids on Mn(VII) oxidations of triclosan and two other selected phenolics (i.e., phenol and 2,4-dichlorophenol), as well as p-nitrophenol which otherwise showed negligible reactivity toward Mn(VII) and MnO(2) colloids, respectively. Surprisingly, phosphate buffer significantly enhanced Mn(VII) oxidation of triclosan, as well as phenol and 2,4-dichlorophenol over a wide pH range. Further, several other selected ligands (i.e., pyrophosphate, EDTA, and humic acid) also exerted oxidation enhancement, supporting a scenario where highly active aqueous manganese intermediates (Mn(INT)(aq)) formed in situ upon Mn(VII) reduction might be stabilized to a certain extent in the presence of ligands and subsequently involved in further oxidation of target phenolics, whereas without stabilizing agents Mn(INT)(aq) autodecomposes or disproportionates spontaneously. The effectiveness of Mn(VII) for the oxidative removal of triclosan in natural water and wastewater was confirmed. Their background matrices were also found to accelerate Mn(VII) oxidation of phenolics.

  10. Effective Connectivity from Early Visual Cortex to Posterior Occipitotemporal Face Areas Supports Face Selectivity and Predicts Developmental Prosopagnosia.

    Science.gov (United States)

    Lohse, Michael; Garrido, Lucia; Driver, Jon; Dolan, Raymond J; Duchaine, Bradley C; Furl, Nicholas

    2016-03-30

    Face processing is mediated by interactions between functional areas in the occipital and temporal lobe, and the fusiform face area (FFA) and anterior temporal lobe play key roles in the recognition of facial identity. Individuals with developmental prosopagnosia (DP), a lifelong face recognition impairment, have been shown to have structural and functional neuronal alterations in these areas. The present study investigated how face selectivity is generated in participants with normal face processing, and how functional abnormalities associated with DP, arise as a function of network connectivity. Using functional magnetic resonance imaging and dynamic causal modeling, we examined effective connectivity in normal participants by assessing network models that include early visual cortex (EVC) and face-selective areas and then investigated the integrity of this connectivity in participants with DP. Results showed that a feedforward architecture from EVC to the occipital face area, EVC to FFA, and EVC to posterior superior temporal sulcus (pSTS) best explained how face selectivity arises in both controls and participants with DP. In this architecture, the DP group showed reduced connection strengths on feedforward connections carrying face information from EVC to FFA and EVC to pSTS. These altered network dynamics in DP contribute to the diminished face selectivity in the posterior occipitotemporal areas affected in DP. These findings suggest a novel view on the relevance of feedforward projection from EVC to posterior occipitotemporal face areas in generating cortical face selectivity and differences in face recognition ability. Areas of the human brain showing enhanced activation to faces compared to other objects or places have been extensively studied. However, the factors leading to this face selectively have remained mostly unknown. We show that effective connectivity from early visual cortex to posterior occipitotemporal face areas gives rise to face

  11. Benchmarking ENDF/B-VII.0

    International Nuclear Information System (INIS)

    Marck, Steven C. van der

    2006-01-01

    The new major release VII.0 of the ENDF/B nuclear data library has been tested extensively using benchmark calculations. These were based upon MCNP-4C3 continuous-energy Monte Carlo neutronics simulations, together with nuclear data processed using the code NJOY. Three types of benchmarks were used, viz., criticality safety benchmarks (fusion) shielding benchmarks, and reference systems for which the effective delayed neutron fraction is reported. For criticality safety, more than 700 benchmarks from the International Handbook of Criticality Safety Benchmark Experiments were used. Benchmarks from all categories were used, ranging from low-enriched uranium, compound fuel, thermal spectrum ones (LEU-COMP-THERM), to mixed uranium-plutonium, metallic fuel, fast spectrum ones (MIX-MET-FAST). For fusion shielding many benchmarks were based on IAEA specifications for the Oktavian experiments (for Al, Co, Cr, Cu, LiF, Mn, Mo, Si, Ti, W, Zr), Fusion Neutronics Source in Japan (for Be, C, N, O, Fe, Pb), and Pulsed Sphere experiments at Lawrence Livermore National Laboratory (for 6 Li, 7 Li, Be, C, N, O, Mg, Al, Ti, Fe, Pb, D 2 O, H 2 O, concrete, polyethylene and teflon). For testing delayed neutron data more than thirty measurements in widely varying systems were used. Among these were measurements in the Tank Critical Assembly (TCA in Japan) and IPEN/MB-01 (Brazil), both with a thermal spectrum, and two cores in Masurca (France) and three cores in the Fast Critical Assembly (FCA, Japan), all with fast spectra. In criticality safety, many benchmarks were chosen from the category with a thermal spectrum, low-enriched uranium, compound fuel (LEU-COMP-THERM), because this is typical of most current-day reactors, and because these benchmarks were previously underpredicted by as much as 0.5% by most nuclear data libraries (such as ENDF/B-VI.8, JEFF-3.0). The calculated results presented here show that this underprediction is no longer there for ENDF/B-VII.0. The average over 257

  12. Opposite effects depending on learning and memory demands in dorsomedial prefrontal cortex lesioned rats performing an olfactory task.

    Science.gov (United States)

    Chaillan, F A; Marchetti, E; Delfosse, F; Roman, F S; Soumireu-Mourat, B

    1997-01-01

    In this study, the functional properties of the dorsomedial prefrontal cortex (dmPFC) of the rat were examined in two olfactory tasks. In a successive cue olfactory discrimination task, dmPFC lesioned animals improved performance across sessions more rapidly than operated control animals. In an olfactory task using fixed interval training, animals with similar lesions were impaired. Both effects, although opposite, can be explained by a temporal processing deficit. The present results seem to indicate that the dmPFC is required for timing, classified as part of non-declarative memory. As reference memory improved in the lesioned animals, the finding is that the dmPFC supports non-declarative memory and thus interacts with declarative memory in the long-term formation of the associations between a particular stimulus (olfactory cue) and particular responses.

  13. The effect of age and disease on the MR imaging T2 low signal intensity area in the cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Imon, Yukari; Yamaguchi, Shinya; Katayama, Sadao; Harada, Akira; Yamamura, Yasuhiro; Nakamura, Shigenobu [Hiroshima Univ. (Japan). School of Medicine

    1994-09-01

    We retrospectively studied magnetic resonance (MR) images of the brain in 139 patients (16 cases of Alzheimer's disease, 8 cases of Parkinson's disease, 53 cases of multiple cerebral infarct, 33 cases of other central nervous diseases, and 29 cases of peripheral neuropathy) between the age of 6 and 85 years old with a mean age of 60.6[+-]18.5 to examine the appearance of T2 low signal intensity areas (T[sub 2]-CLIA) in the cerebral cortex. Motor, occipital, sensory or other cortices were evaluated with long repetition time/echo time (TR/TE) spin-echo sequences and staged into three grades in the motor cortex: none, partial, and whole; and two grades in the other: none or present. In general, T[sub 2]-CLIA was not seen in any cortex in patients less than 50 years old, then after 50 years old T[sub 2]-CLIA increased with age. Over 70 years of age T[sub 2]-CLIA appeared in 50.9% of patients in the whole motor cortex, 88.7% in either whole or partial motor cortex, 47.2% in the occipital cortex, and 20.8% in the sensory cortex. T[sub 2]-CLIA was not observed in other cortices. The incidence of T[sub 2]-CLIA appearance in the motor cortex was significantly higher in all central nervous diseases than in cases of peripheral neuropathy over 70. T[sub 2]-CLIA showed a correlation with temporal lobe atrophy and white matter lesions in the motor cortex. In the sensory cortex, T[sub 2]-CLIA correlated with white matter lesions. These results suggest that T[sub 2]-CLIA may correlate with age or accumulation of nonheme iron in the cortex associated with central nervous diseases. (author).

  14. The effect of age and disease on the MR imaging T2 low signal intensity area in the cerebral cortex

    International Nuclear Information System (INIS)

    Imon, Yukari; Yamaguchi, Shinya; Katayama, Sadao; Harada, Akira; Yamamura, Yasuhiro; Nakamura, Shigenobu

    1994-01-01

    We retrospectively studied magnetic resonance (MR) images of the brain in 139 patients (16 cases of Alzheimer's disease, 8 cases of Parkinson's disease, 53 cases of multiple cerebral infarct, 33 cases of other central nervous diseases, and 29 cases of peripheral neuropathy) between the age of 6 and 85 years old with a mean age of 60.6±18.5 to examine the appearance of T2 low signal intensity areas (T 2 -CLIA) in the cerebral cortex. Motor, occipital, sensory or other cortices were evaluated with long repetition time/echo time (TR/TE) spin-echo sequences and staged into three grades in the motor cortex: none, partial, and whole; and two grades in the other: none or present. In general, T 2 -CLIA was not seen in any cortex in patients less than 50 years old, then after 50 years old T 2 -CLIA increased with age. Over 70 years of age T 2 -CLIA appeared in 50.9% of patients in the whole motor cortex, 88.7% in either whole or partial motor cortex, 47.2% in the occipital cortex, and 20.8% in the sensory cortex. T 2 -CLIA was not observed in other cortices. The incidence of T 2 -CLIA appearance in the motor cortex was significantly higher in all central nervous diseases than in cases of peripheral neuropathy over 70. T 2 -CLIA showed a correlation with temporal lobe atrophy and white matter lesions in the motor cortex. In the sensory cortex, T 2 -CLIA correlated with white matter lesions. These results suggest that T 2 -CLIA may correlate with age or accumulation of nonheme iron in the cortex associated with central nervous diseases. (author)

  15. The effect of age and disease on the MR imaging T2 low signal intensity area in the cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Imon, Yukari; Yamaguchi, Shinya; Katayama, Sadao; Harada, Akira; Yamamura, Yasuhiro; Nakamura, Shigenobu (Hiroshima Univ. (Japan). School of Medicine)

    1994-09-01

    We retrospectively studied magnetic resonance (MR) images of the brain in 139 patients (16 cases of Alzheimer's disease, 8 cases of Parkinson's disease, 53 cases of multiple cerebral infarct, 33 cases of other central nervous diseases, and 29 cases of peripheral neuropathy) between the age of 6 and 85 years old with a mean age of 60.6[+-]18.5 to examine the appearance of T2 low signal intensity areas (T[sub 2]-CLIA) in the cerebral cortex. Motor, occipital, sensory or other cortices were evaluated with long repetition time/echo time (TR/TE) spin-echo sequences and staged into three grades in the motor cortex: none, partial, and whole; and two grades in the other: none or present. In general, T[sub 2]-CLIA was not seen in any cortex in patients less than 50 years old, then after 50 years old T[sub 2]-CLIA increased with age. Over 70 years of age T[sub 2]-CLIA appeared in 50.9% of patients in the whole motor cortex, 88.7% in either whole or partial motor cortex, 47.2% in the occipital cortex, and 20.8% in the sensory cortex. T[sub 2]-CLIA was not observed in other cortices. The incidence of T[sub 2]-CLIA appearance in the motor cortex was significantly higher in all central nervous diseases than in cases of peripheral neuropathy over 70. T[sub 2]-CLIA showed a correlation with temporal lobe atrophy and white matter lesions in the motor cortex. In the sensory cortex, T[sub 2]-CLIA correlated with white matter lesions. These results suggest that T[sub 2]-CLIA may correlate with age or accumulation of nonheme iron in the cortex associated with central nervous diseases. (author).

  16. Dietary changes in fasting levels of factor VII coagulant activity (FVII:C) are accompanied by changes in factor VII protein and other vitamin K-dependent proteins

    DEFF Research Database (Denmark)

    Bladbjerg, Else-Marie; Tholstrup, T; Marckmann, P

    1995-01-01

    The mechanisms behind dietary effects on fasting coagulant activity of factor VII (FVII:C) are not clarified. In the present study of 15 young volunteers, two experimental diets differing in composition of saturated fatty acids (C18:0 [diet S] or C12:0 + C14:0 [diet ML]) were served for 3 weeks...

  17. Proceedings of the 2. Workshop on Wendelstein VII-X

    International Nuclear Information System (INIS)

    Rau, F.; Leotta, G.G.

    1988-01-01

    The specification and final concept of W VII-X were discussed. Plasma equilibrium; plasma stability; transport; bootstrap current; plasma parameter prediction methods; boundary regions; heating; the coil system; and mechanical engineering aspects were considered. A Helias configuration with five field periods (rather than the four previously suggested) is advocated. The major radius is increased to 6.5m to alleviate plasma-wall interaction effects due to the increased number of field periods. The magnetic field is reduced from 4 to 3T, to keep the amount of superconducting material needed for coils fixed

  18. Effects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats

    Directory of Open Access Journals (Sweden)

    Chengdong Yuan

    2016-07-01

    Full Text Available Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex by using the whole-cell patch-clamp method. Methods: Sprague-Dawley rats (11–19 postnatal days, n=36 were used to obtain brain slices (300 μM. Spontaneous excitatory postsynaptic currents (data from 40 neurons were recorded at a command potential of -70 mV in the presence of bicuculline (a competitive antagonist of GABAA receptors, 30 μM and strychnine (glycine receptor antagonist, 30 μM. Miniature excitatory postsynaptic currents (data from 40 neurons were also recorded when 1 μM of tetrodotoxin was added into the artificial cerebrospinal fluid. We used GraphPad Prism5for statistical analysis. Significant differences in the mean amplitude and frequency were tested using the Student paired 2-tailed t test. Values of P<0.05 were considered significant. Results: Different concentrations of ketamine inhibited the frequency and amplitude of the spontaneous excitatory postsynaptic currents as well as the amplitude of the miniature excitatory postsynaptic currents in a concentration-dependent manner, but they exerted no significant effect on the frequency of the miniature excitatory postsynaptic currents. Conclusion: Ketamine inhibited the excitatory synaptic transmission of the neurons in the primary somatosensory cortex. The inhibition may have been mediated by a reduction in the sensitivity of the postsynaptic glutamatergic receptors.

  19. Effect of silhouetting and inversion on view invariance in the monkey inferotemporal cortex.

    Science.gov (United States)

    Ratan Murty, N Apurva; Arun, S P

    2017-07-01

    We effortlessly recognize objects across changes in viewpoint, but we know relatively little about the features that underlie viewpoint invariance in the brain. Here, we set out to characterize how viewpoint invariance in monkey inferior temporal (IT) neurons is influenced by two image manipulations-silhouetting and inversion. Reducing an object into its silhouette removes internal detail, so this would reveal how much viewpoint invariance depends on the external contours. Inverting an object retains but rearranges features, so this would reveal how much viewpoint invariance depends on the arrangement and orientation of features. Our main findings are 1 ) view invariance is weakened by silhouetting but not by inversion; 2 ) view invariance was stronger in neurons that generalized across silhouetting and inversion; 3 ) neuronal responses to natural objects matched early with that of silhouettes and only later to that of inverted objects, indicative of coarse-to-fine processing; and 4 ) the impact of silhouetting and inversion depended on object structure. Taken together, our results elucidate the underlying features and dynamics of view-invariant object representations in the brain. NEW & NOTEWORTHY We easily recognize objects across changes in viewpoint, but the underlying features are unknown. Here, we show that view invariance in the monkey inferotemporal cortex is driven mainly by external object contours and is not specialized for object orientation. We also find that the responses to natural objects match with that of their silhouettes early in the response, and with inverted versions later in the response-indicative of a coarse-to-fine processing sequence in the brain. Copyright © 2017 the American Physiological Society.

  20. Protective effect and its mechanism of curcumin on ischemia-reperfusion injury of cerebral cortex in rats

    Directory of Open Access Journals (Sweden)

    Li LIU

    2013-03-01

    Full Text Available Objective  To investigate the effect of curcumin pretreatment on the expression of uncoupling protein 2 (UCP2 and mitochondrial transcription factor A (MTFA in rats' cerebral cortex against focal ischemia reperfusion injury. Methods  Eighty male SD rats weighed 220g–300g were randomly divided into 4 groups: sham-operated group, ischemia/reperfusion (I/R group, curcumine 50mg/kg+I/R (low dose group, and curcumine 100mg/kg+I/R (high dose group. The common carotid artery, external carotid artery and internal carotid artery on the right side were exposed in the sham-operated group. Animals of the other groups were subjected to a 2-hour period of right middle cerebral artery occlusion, followed by 24 hours of reperfusion, and then they were sacrificed. Curcumin was administered (ip in a dose of 50mg/kg (low dose group or 100mg/kg (high dose group for 5 days, respectively, prior to arterial occlusion. The pathological changes in neurons and their mitochondria in the cerebral cortex supplied by middle cerebral artery were observed with Nissl staining and electron microscope, respectively. The expressions of UCP2 and MTFA in corresponding cotex were assessed by immunohistochemistry and RT-PCR. Results  Compared with sham-operated group, animals in I/R group presented edema of neurons in the corresponding cortex, reduction in the number of Nissl bodies, and swelling of mitochondria with broken, even lysis of cristae. Low dose and high dose of curcumin pretreatment before brain ischemia significantly alleviated the loss of neurons and the damage of mitochondria, accompanied with an increase in the expression of UCP2 and TFAM (P<0.05, and the changes appeared a dose-dependent manner (P<0.05. Conclusions  Curcumin may prevent neurons from focal cerebral ischemia reperfusion injury by up-regulating UCP2 and MTFA. Regulation of mitochondrial biogenesis may probably be a potential target of curcumin as a neuroprotective drug.

  1. Layer-specificity in the effects of attention and working memory on activity in primary visual cortex

    NARCIS (Netherlands)

    van Kerkoerle, Timo; Self, Matthew W.; Roelfsema, Pieter R.

    2017-01-01

    Neuronal activity in early visual cortex depends on attention shifts but the contribution to working memory has remained unclear. Here, we examine neuronal activity in the different layers of the primary visual cortex (V1) in an attention-demanding and a working memory task. A current-source density

  2. Layer-specificity in the effects of attention and working memory on activity in primary visual cortex.

    NARCIS (Netherlands)

    Van Kerkoerle, Timo; Self, M.W.; Roelfsema, P.R.

    2017-01-01

    Neuronal activity in early visual cortex depends on attention shifts but the contribution to working memory has remained unclear. Here, we examine neuronal activity in the different layers of the primary visual cortex (V1) in an attention-demanding and a working memory task. A current-source density

  3. Neonatal Stress Has a Long-Lasting Sex-Dependent Effect on Anxiety-Like Behavior and Neuronal Morphology in the Prefrontal Cortex and Hippocampus.

    Science.gov (United States)

    de Melo, Silvana Regina; de David Antoniazzi, Caren Tatiane; Hossain, Shakhawat; Kolb, Bryan

    2018-01-01

    The long-lasting effects of early stress on brain development have been well studied. Recent evidence indicates that males and females respond differently to the same stressor. We examined the chronic effects of daily maternal separation (MS) on behavior and cerebral morphology in both male and female rats. Cognitive and anxiety-like behaviors were evaluated, and neuroplastic changes in 2 subregions of the prefrontal cortex (dorsal agranular insular cortex [AID] and cingulate cortex [Cg3]) and hippocampus (CA1 and dentate gyrus) were measured in adult male and female rats. The animals were subjected to MS on postnatal day (P) 3-14 for 3 h per day. Cognitive and emotional behaviors were assessed in the object/context mismatch task, elevated plus maze, and locomotor activity test in early adulthood (P87-P95). Anatomical assessments were performed in the prefrontal cortex (i.e., cortical thickness and spine density) and hippocampus (i.e., spine density). Sex-dependent effects were observed. MS increased anxiety-related behavior only in males, whereas locomotor activity was higher in females, with no effects on cognition. MS decreased spine density in the AID and increased spine density in the CA1 area in males. Females exhibited an increase in spine density in the Cg3. Our findings confirm previous work that found that MS causes long-term behavioral and anatomical effects, and these effects were dependent on sex and the duration of MS stress. © 2018 S. Karger AG, Basel.

  4. [Effect of Electroacupuncture on Cerebro-cortex Caspase-3 Expression and Blood Lipid Levels in Hyperlipemia Rats with Cerebral Ischemia].

    Science.gov (United States)

    Wang, Zhuo-Yu; Ma, Jia-Jia; Guan, Han-Yu; Tian, Yao; Ren, Xiu-Jun; Ma, Hui-Fang

    2017-04-25

    To observe the effect of electroacupuncture (EA) stimulation of "Fenglong" (ST 40), "Sanyinjiao" (SP 6) plus manual acupuncture (MA) stimulation of "Shuigou" (GV 26) and "Baihui" (GV 20) on Caspase-3 protein expression in the cerebral cortex of rats with hyperlipemia and cerebral ischemia(HL-CI),so as to reveal its mechanisms underlying improvement of HL-CI. Forty-five rats were randomly divided into normal control,sham operation,model,EA group I(EA+MA was given for 14 days, i.e., 7 days before CI, and 7 days more after HL-CI)and EA group Ⅱ (EA+MA was given for only 7 days after HL-CI),with 9 rats being in each group. The HL-CI model was established by feeding the animals with high fat forage for 6 weeks and then making an occlusion of the unilateral middle cerebral artery by regional application of quantitative paper adsorbing 50% FeCl 3 solution (10 μL). Rats of the sham operation group were treated with the same procedures only without application of FeCl 3 solution. For rats of the EA group I,EA (1-3 mA, 2 Hz/100 Hz) was applied to bilateral acupoints SP 6 and ST 40 (for 20 min),and MA stimulation applied to GV 26 and GV 20. EA was conducted once daily for 7 days after 6 weeks' high fat fo-rage feeding, and EA+MA intervention was conducted once daily for 7 days after CI modeling. For rats in the EA group Ⅱ, EA+MA was applied to the same 4 acupoints once a day for 7 days only after CI modeling. The neurological impairment was assessed by Zea Longa's scoring. The blood sample was taken from the abdominal aorta for measuring the contents of serum cholesterol (CHO),triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C). Pathological changes of the cerebral cortex were observed after H.E. staining, and the expression of cerebro-cortex Caspase-3 was analyzed by immunohistochemistry. Following modeling,the neurological score,CHO, TG and LDL-C contents, and the number of Caspase-3 positive cells as well

  5. Differential effects of beta-adrenergic receptor blockade in the medial prefrontal cortex during aversive and incidental taste memory formation.

    Science.gov (United States)

    Reyes-López, J; Nuñez-Jaramillo, L; Morán-Guel, E; Miranda, M I

    2010-08-11

    The medial prefrontal cortex (mPFC) is a brain area crucial for memory, attention, and decision making. Specifically, the noradrenergic system in this cortex is involved in aversive learning, as well as in the retrieval of these memories. Some evidence suggests that this area has an important role during taste memory, particularly during conditioned taste aversion (CTA), a model of aversive memory. Despite some previous evidence, there is scarce information about the role of adrenergic receptors in the mPFC during formation of aversive taste memory and appetitive/incidental taste memory. The goal of this research was to evaluate the role of mPFC beta-adrenergic receptors during CTA acquisition/consolidation or CTA retrieval, as well as during incidental taste memory formation using the model of latent inhibition of CTA. The results showed that infusions in the mPFC of the beta-adrenergic antagonist propranolol before CTA acquisition impaired both short- and long-term aversive taste memory formation, and also that propranolol infusions before the memory test impaired CTA retrieval. However, propranolol infusions before pre-exposure to the taste during the latent inhibition procedure had no effect on incidental taste memory acquisition or consolidation. These data indicate that beta-adrenergic receptors in the mPFC have different functions during taste memory formation: they have an important role during aversive taste association as well as during aversive retrieval but not during incidental taste memory formation. Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Strength and fine dexterity recovery profiles after a primary motor cortex insult and effect of a neuronal cell graft.

    Science.gov (United States)

    Vaysse, Laurence; Conchou, Fabrice; Demain, Boris; Davoust, Carole; Plas, Benjamin; Ruggieri, Cyrielle; Benkaddour, Mehdi; Simonetta-Moreau, Marion; Loubinoux, Isabelle

    2015-08-01

    The aim of this study was to set up (a) a large primary motor cortex (M1) lesion in rodent and (b) the conditions for evaluating a long-lasting motor deficit in order to propose a valid model to test neuronal replacement therapies aimed at improving motor deficit recovery. A mitochondrial toxin, malonate, was injected to induce extensive destruction of the forelimb M1 cortex. Three key motor functions that are usually evaluated following cerebral lesion in the clinic-strength, target reaching, and fine dexterity-were assessed in rats by 2 tests, a forelimb grip strength test and a skilled reaching task (staircase) for reaching and dexterity. The potential enhancement of postlesion recovery induced by a neuronal cell transplantation was then explored and confirmed by histological analyses. Both tests showed a severe functional impairment 2 days post lesion, however, reaching remained intact. Deficits in forelimb strength were long lasting (up to 3 months) but spontaneously recovered despite the extensive lesion size. This natural grip strength recovery could be enhanced by cell therapy. Histological analyses confirmed the presence of grafted cells 3 months postgraft and showed partial tissue reconstruction with some living neuronal cells in the graft. In contrast, fine dexterity never recovered in the staircase test even after grafting. These results suggest that cell replacement was only partially effective and that the forelimb M1 area may be a node of the sensorimotor network, where compensation from secondary pathways could account for strength recovery but recovery of forelimb fine dexterity requires extensive tissue reconstruction. (c) 2015 APA, all rights reserved).

  7. Striatal dopamine release induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex: effect of aging

    International Nuclear Information System (INIS)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Kim, Ji Sun; Lee, Byung Chul; Kim, Yu Kyeong; Kim, Sang Eun

    2007-01-01

    We previously demonstrated dopamine (DA) release in the bilateral striatal regions following prefrontal repetitive transcranial magnetic stimulation (rTMS) in young subjects. Several lines of evidence support substantial age-related changes in human dopaminergic neurotransmission. One possible explanation is alteration of cortico striatal neural connection with aging. Therefore, we investigated how frontal activation by rTMS influences striatal DA release in the elderly with SPECT measurements of striatal binding of [123I]iodobenzamide (lBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy elderly male subjects (age, 64 3 y) were studied with brain [123I]IBZM SPECT under three conditions (resting, sham stimulation, and active rTMS over left dorsolateral prefrontal cortex (DLPFC)), while receiving a bolus plus constant infusion of [123I]IBZM. rTMS session consisted of three blocks. In each block, 15 trains of 2 sec duration were delivered with 10 Hz stimulation frequency and 100% motor threshold. Striatal V3', calculated as (striatal - occipital)/occipital radioactivity, was measured under equilibrium condition at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over left DLPFC induced no significant change in V3' in the right striatum compared with baseline condition (0.91 0.25 vs. 0.96 0.25, P = NS). Interestingly, left striatal V3' showed a significant increase after rTMS over left DLPFC compared with sham condition (1.09 0.33 vs. 0.93 0.27, P < 0.05; 17.0 11.1% increase). These results are discrepant from previous ones from young subjects, who showed frontal rTMS-induced reduction of striatal V3', indicating rTMS-induced striatal DA release. We found no significant striatal DA release induced by rTMS over DLPFC in healthy elderly subjects using in vivo binding competition techniques. These results may support an altered cortico striatal circuit in normal aging

  8. Striatal dopamine release induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex: effect of aging

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Kim, Ji Sun; Lee, Byung Chul; Kim, Yu Kyeong; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    We previously demonstrated dopamine (DA) release in the bilateral striatal regions following prefrontal repetitive transcranial magnetic stimulation (rTMS) in young subjects. Several lines of evidence support substantial age-related changes in human dopaminergic neurotransmission. One possible explanation is alteration of cortico striatal neural connection with aging. Therefore, we investigated how frontal activation by rTMS influences striatal DA release in the elderly with SPECT measurements of striatal binding of [123I]iodobenzamide (lBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy elderly male subjects (age, 64 3 y) were studied with brain [123I]IBZM SPECT under three conditions (resting, sham stimulation, and active rTMS over left dorsolateral prefrontal cortex (DLPFC)), while receiving a bolus plus constant infusion of [123I]IBZM. rTMS session consisted of three blocks. In each block, 15 trains of 2 sec duration were delivered with 10 Hz stimulation frequency and 100% motor threshold. Striatal V3', calculated as (striatal - occipital)/occipital radioactivity, was measured under equilibrium condition at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over left DLPFC induced no significant change in V3' in the right striatum compared with baseline condition (0.91 0.25 vs. 0.96 0.25, P = NS). Interestingly, left striatal V3' showed a significant increase after rTMS over left DLPFC compared with sham condition (1.09 0.33 vs. 0.93 0.27, P < 0.05; 17.0 11.1% increase). These results are discrepant from previous ones from young subjects, who showed frontal rTMS-induced reduction of striatal V3', indicating rTMS-induced striatal DA release. We found no significant striatal DA release induced by rTMS over DLPFC in healthy elderly subjects using in vivo binding competition techniques. These results may support an altered cortico striatal circuit in normal aging.

  9. Competitive (AP7) and non-competitive (MK-801) NMDA receptor antagonists differentially alter glucose utilization in rat cortex

    International Nuclear Information System (INIS)

    Clow, D.W.; Lee, S.J.; Hammer, R.P. Jr.

    1991-01-01

    The effects of D,L-2-amino-7-phosphonoheptanoic acid (AP7), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, and MK-801, a non-competitive NMDA receptor antagonist, on regional brain metabolism were studied in unanesthetized, freely moving rats by using the quantitative 14 C2-deoxyglucose autoradiographic procedure. AP7 (338 or 901 mg/kg) produced a dose-dependent decrease of metabolic activity throughout most of the regions studied including sensory, motor, and limbic cortices. In contrast, MK-801 (0.1 or 1.0 mg/kg) resulted in a dose-dependent decrease of metabolic activity in sensory cortices, and an increase in limbic regions such as the hippocampal stratum lacunosum moleculare and entorhinal cortex. MK-801 also produced a biphasic response in agranular motor cortex, whereby the low dose increased while the high dose decreased labeling. In addition, MK-801 produced heterogeneous effects on regional cerebral metabolism in sensory cortices. Metabolic activity decreased in layer IV relative to layer Va following MK-801 treatment in primary somatosensory (SI) and visual (VI) cortices, suggesting a shift in activity from afferent fibers innervating layer IV to those innervating layer Va. MK-801 administration also decreased metabolic activity in granular SI relative to dysgranular SI, and in VI relative to secondary visual cortex (VII), thus providing a relative sparing of activity in dysgranular SI and VII. Thus, the non-competitive NMDA receptor antagonist suppressed activity from extrinsic neocortical sources, enhancing relative intracortical activity and stimulating limbic regions, while the competitive NMDA antagonist depressed metabolic activity in all cortical regions

  10. After-effects of anodal transcranial direct current stimulation on the excitability of the motor cortex in rats.

    Science.gov (United States)

    Koo, Ho; Kim, Min Sun; Han, Sang Who; Paulus, Walter; Nitche, Michael A; Kim, Yun-Hee; Kim, Hyoung-Ihl; Ko, Sung-Hwa; Shin, Yong-Il

    2016-09-21

    Transcranial direct current stimulation (tDCS) is increasingly seen as a useful tool for noninvasive cortical neuromodulation. A number of studies in humans have shown that when tDCS is applied to the motor cortex it can modulate cortical excitability. It is especially interesting to note that when applied with sufficient duration and intensity, tDCS can enable long-lasting neuroplastic effects. However, the mechanism by which tDCS exerts its effects on the cortex is not fully understood. We investigated the effects of anodal tDCS under urethane anesthesia on field potentials in in vivo rats. These were measured on the skull over the right motor cortex of rats immediately after stimulating the left corpus callosum. Evoked field potentials in the motor cortex were gradually increased for more than one hour after anodal tDCS. To induce these long-lasting effects, a sufficient duration of stimulation (20 minutes or more) was found to may be required rather than high stimulation intensity. We propose that anodal tDCS with a sufficient duration of stimulation may modulate transcallosal plasticity.

  11. Paraho environmental data. Part IV. Land reclamation and revegetation. Part V. Biological effects. Part VI. Occupational health and safety. Part VII. End use

    Energy Technology Data Exchange (ETDEWEB)

    Limbach, L.K.

    1982-06-01

    Characteristics of the environment and ecosystems at Anvil Points, reclamation of retorted shale, revegetation of retorted shale, and ecological effects of retorted shale are reported in the first section of this report. Methods used in screening shale oil and retort water for mutagens and carcinogens as well as toxicity studies are reported in the second section of this report. The third section contains information concerning the industrial hygiene and medical studies made at Anvil Points during Paraho research operations. The last section discusses the end uses of shale crude oil and possible health effects associated with end use. (DMC)

  12. Effects of the antipsychotic paliperidone on stress-induced changes in the endocannabinoid system in rat prefrontal cortex.

    Science.gov (United States)

    MacDowell, Karina S; Sayd, Aline; García-Bueno, Borja; Caso, Javier R; Madrigal, José L M; Leza, Juan Carlos

    2017-09-01

    Objectives There is a need to explore novel mechanisms of action of existing/new antipsychotics. One potential candidate is the endocannabinoid system (ECS). The present study tried to elucidate the effects of the antipsychotic paliperidone on stress-induced ECS alterations. Methods Wister rats were submitted to acute/chronic restraint stress. Paliperidone (1 mg/kg) was given prior each stress session. Cannabinoid receptors and endocannabinoids (eCBs) synthesis and degradation enzymes were measured in prefrontal cortex (PFC) samples by RT-PCR and Western Blot. Results In the PFC of rats exposed to acute stress, paliperidone increased CB1 receptor (CB1R) expression. Furthermore, paliperidone increased the expression of the eCB synthesis enzymes N-acylphosphatidylethanolamine- hydrolysing phospholipase D and DAGLα, and blocked the stress-induced increased expression of the degrading enzyme fatty acid amide hydrolase. In chronic conditions, paliperidone prevented the chronic stress-induced down-regulation of CB1R, normalised DAGLα expression and reverted stress-induced down-regulation of the 2-AG degrading enzyme monoacylglycerol lipase. ECS was analysed also in periphery. Acute stress decreased DAGLα expression, an effect prevented by paliperidone. Contrarily, chronic stress increased DAGLα and this effect was potentiated by paliperidone. Conclusions The results obtained described a preventive effect of paliperidone on stress-induced alterations in ECS. Considering the diverse alterations on ECS described in psychotic disease, targeting ECS emerges as a new therapeutic possibility.

  13. The effect of the anodal transcranial direct current stimulation over the cerebellum on the motor cortex excitability.

    Science.gov (United States)

    Ates, Mehlika Panpalli; Alaydin, Halil Can; Cengiz, Bulent

    2018-04-25

    This study was designed to investigate whether the cerebellum has an inhibitory effect on motor cortical excitability. Sixteen healthy adults (age range, 25-50 years, five female) participated in the study. Anodal cerebellar transcranial direct current stimulation (a-cTDCS) was used to modulate cerebellar excitability. A-cTDCS was given for 20 min at 1 mA intensity. The automatic threshold tracking method was used to investigate cortical excitability. Resting motor threshold (RMT), short interval intracortical inhibition (SICI), short interval intracortical facilitation (SICF), intracortical facilitation (ICF), and the input output curve (I-O curve) were motor cortical excitability parameters. a-cTDCS caused a reduction in overall SICI and the reduced SICF for interstimulus intervals (ISIs) to 2.4-4.4 ms. a-cTDCS has no effect on ICF, RMT, and the I-O curve. There were no significant changes in any of these cortical excitability parameters after sham cTDCS. Results of the study indicate that a-cTDCS has a dual (both inhibitory and excitatory) effect on motor cortical excitability, rather than a simple inhibitory effect. The cerebellum modulates both the inhibitory and facilitatory activities of motor cortex (M1) and suggest that cerebello-cerebral motor connectivity is more complex than solely inhibitory or facilitatory connections. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. The Effects of a Single Night of Sleep Deprivation on Fluency and Prefrontal Cortex Function during Divergent Thinking

    Directory of Open Access Journals (Sweden)

    Oshin eVartanian

    2014-04-01

    Full Text Available The dorsal and ventral aspects of the prefrontal cortex (PFC are the two regions most consistently recruited in divergent thinking tasks. Given that frontal tasks have been shown to be vulnerable to sleep loss, we explored the impact of a single night of sleep deprivation on fluency (i.e., number of generated responses and PFC function during divergent thinking. Participants underwent functional magnetic resonance imaging (fMRI scanning twice while engaged in the Alternate Uses Task (AUT—once following a single night of sleep deprivation and once following a night of normal sleep. They also wore wrist activity monitors, which enabled us to quantify daily sleep and model cognitive effectiveness. The intervention was effective, producing greater levels of fatigue and sleepiness. Modelled cognitive effectiveness and fluency were impaired following sleep deprivation, and sleep deprivation was associated with greater activation in the left inferior frontal gyrus during AUT. The results suggest that an intervention known to temporarily compromise frontal function can impair fluency, and that this effect is instantiated in the form of an increased haemodynamic response in the left inferior frontal gyrus.

  15. The regulation of the factor VII-dependent coagulation pathway: rationale for the effectiveness of recombinant factor VIIa in refractory bleeding disorders

    NARCIS (Netherlands)

    van't Veer, C.; Mann, K. G.

    2000-01-01

    We have explored the molecular basis of the clinical therapeutic effect of factor VIIa in hemophilia A using empirical reconstituted in vitro thrombin generation models. Tissue factor acts as a receptor and activator of preexistent but virtually inactive two-chain plasma factor VIIa. However, most

  16. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans.

    Science.gov (United States)

    Batsikadze, G; Moliadze, V; Paulus, W; Kuo, M-F; Nitsche, M A

    2013-04-01

    Transcranial direct current stimulation (tDCS) of the human motor cortex at an intensity of 1 mA with an electrode size of 35 cm(2) has been shown to induce shifts of cortical excitability during and after stimulation. These shifts are polarity-specific with cathodal tDCS resulting in a decrease and anodal stimulation in an increase of cortical excitability. In clinical and cognitive studies, stronger stimulation intensities are used frequently, but their physiological effects on cortical excitability have not yet been explored. Therefore, here we aimed to explore the effects of 2 mA tDCS on cortical excitability. We applied 2 mA anodal or cathodal tDCS for 20 min on the left primary motor cortex of 14 healthy subjects. Cathodal tDCS at 1 mA and sham tDCS for 20 min was administered as control session in nine and eight healthy subjects, respectively. Motor cortical excitability was monitored by transcranial magnetic stimulation (TMS)-elicited motor-evoked potentials (MEPs) from the right first dorsal interosseous muscle. Global corticospinal excitability was explored via single TMS pulse-elicited MEP amplitudes, and motor thresholds. Intracortical effects of stimulation were obtained by cortical silent period (CSP), short latency intracortical inhibition (SICI) and facilitation (ICF), and I wave facilitation. The above-mentioned protocols were recorded both before and immediately after tDCS in randomized order. Additionally, single-pulse MEPs, motor thresholds, SICI and ICF were recorded every 30 min up to 2 h after stimulation end, evening of the same day, next morning, next noon and next evening. Anodal as well as cathodal tDCS at 2 mA resulted in a significant increase of MEP amplitudes, whereas 1 mA cathodal tDCS decreased corticospinal excitability. A significant shift of SICI and ICF towards excitability enhancement after both 2 mA cathodal and anodal tDCS was observed. At 1 mA, cathodal tDCS reduced single-pulse TMS-elicited MEP amplitudes and shifted SICI

  17. Opposing effects of 5,7-DHT infusions into the orbitofrontal cortex and amygdala on flexible responding.

    Science.gov (United States)

    Man, M S; Dalley, J W; Roberts, A C

    2010-07-01

    Central serotonin is implicated in a variety of emotional and behavioral control processes. Serotonin depletion can lead to exaggerated aversive processing and deficient response inhibition, effects that have been linked to serotonin's actions in the amygdala and orbitofrontal cortex (OFC), respectively. However, a direct comparison of serotonin manipulations within the OFC and amygdala in the same experimental context has not been undertaken. This study compared the effects of infusing the serotonin neurotoxin, 5,7-dihydroxytryptamine into the OFC and amygdala of marmosets performing an appetitive test of response inhibition. Marmosets had to learn to inhibit a prepotent response tendency to choose a box containing high-incentive food and instead choose a box containing low-incentive food, to obtain reward. OFC infusions caused long-lasting reductions in serotonin tissue levels, as revealed at postmortem, and exaggerated prepotent responses. In contrast, the significantly reduced prepotent responses following amygdala infusions occurred at a time when serotonin tissue levels had undergone considerable recovery, but there remained residual reductions in extracellular serotonin, in vivo. These opposing behavioral effects of serotonin manipulations in the same experimental context may be understood in terms of the top-down regulatory control of the amygdala by the OFC.

  18. Confinement of Stellarator plasmas with neutral beam and RF heating in W VII-A

    International Nuclear Information System (INIS)

    Grieger, G.; Cattanei, G.; Dorst, D.

    1986-01-01

    WENDELSTEIN VII-A has been operated for ten years. It is a low-shear, high-aspect-ratio device. The confinement properties have been thoroughly studied for both ohmically heated and net-current free plasmas. For the latter case, NBI- and ECF-maintained plasmas were of particular importance. It was found that under optimized conditions the core of high-pressure, net-current free plasmas is mainly governed by collisional effects. The experiment will now be shut down for upgrading it into the Advanced Stellarator WEDNDELSTEIN VII-AS. (author)

  19. Mechanisms of the adjuvant effect of hemoglobin in experimental peritonitis. VII. Hemoglobin does not inhibit clearance of Escherichia coli from the peritoneal cavity

    International Nuclear Information System (INIS)

    Dunn, D.L.; Barke, R.A.; Lee, J.T. Jr.; Condie, R.M.; Humphrey, E.W.; Simmons, R.L.

    1983-01-01

    Hemoglobin has been shown to be a potent adjuvant in experimental Escherichia coli peritonitis, although a satisfactory mechanistic rationale is still obscure. Hemoglobin has been thought to impair intraperitoneal neutrophil function, delay clearance of bacteria from the peritoneal cavity by the normal absorptive mechanisms, or directly enhance bacterial growth. Using highly purified stroma-free hemoglobin (SFHgb), we have largely discounted any direct effect of hemoglobin on peritoneal white blood cell function. In the present study, we confirmed that uncontrolled proliferation of bacteria takes place in the presence of hemoglobin in the peritoneal cavity. Nonviable 5-iododeoxyuridine 125 I-labelled bacteria were then used to directly study peritoneal clearance kinetics, eliminating the problem of bacterial growth. SFHgb had no influence on the removal of intraperitoneal bacteria. The rate of bloodstream appearance of radiolabel was similar with or without intraperitoneal SFHgb. Thus, SFHgb does not prevent clearance of bacteria from the peritoneal cavity by interfering with normal host clearance mechanisms. SFHgb may act as a bacterial growth adjuvant, either by serving as a bacterial nutrient or by suitably modifying the environment so that extensive bacterial proliferation can occur. The latter hypothesis appears to be an area in which investigation concerning the adjuvant effect of hemoglobin may prove most fruitful

  20. [Effects of intermittent hypoxia on the responses of genioglossus motor cortex to transcranial magnetic stimulation in rats].

    Science.gov (United States)

    Li, Ting; Wang, Wei; Kong, De-lei; Su, Jiao; Kang, Jian

    2012-04-01

    To explore the influence of intermittent hypoxia on the responses of genioglossus motor cortex to transcranial magnetic stimulation. Male Sprague-Dawley rats were randomly divided into a control group and a chronic intermittent hypoxia group. Transcranial magnetic stimulation was applied in genioglossus motor cortex of the 2 groups. The responses of transcranial magnetic stimulation were recorded and analyzed by single factor analysis of variance. The anterolateral area provided an optimal motor evoked potential response to transcranial magnetic stimulation in the genioglossus motor cortex of the rats. Genioglossus motor evoked potential latency and amplitude were significantly modified by intermittent hypoxic exposure, with a significant decrease in latency (F = 3.294, P motor cortex in rats.

  1. Regulating prefrontal cortex activation

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders Bue

    2013-01-01

    The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala...... of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings...... of a regulatory effect of the PFC on the emotional control of our actions....

  2. Quantitative analysis of the synthesis and secretion of type VII collagen in cultured human dermal fibroblasts with a sensitive sandwich enzyme-linked immunoassay.

    Science.gov (United States)

    Amano, Satoshi; Ogura, Yuki; Akutsu, Nobuko; Nishiyama, Toshio

    2007-02-01

    Type VII collagen is the major component of anchoring fibrils in the epidermal basement membrane. Its expression has been analyzed by immunostaining or Northern blotting, but rarely at the protein level. In this study, we have quantitatively examined the effects of ascorbic acid and various cytokines/growth factors on the protein synthesis and secretion of type VII collagen by human dermal fibroblasts in culture, using a developed, highly sensitive sandwich enzyme-linked immunoassay with two kinds of specific monoclonal antibodies against the non-collagenous domain-1. Ascorbic acid and its derivative induced a twofold increase in type VII collagen synthesis, and markedly increased the secretion of type VII collagen into the medium when compared with the control culture. This effect was not influenced by the presence of transforming growth factor-beta1 (TGF-beta1). The synthesis of type VII collagen was elevated by TGF-beta1, platelet-derived growth factor, tumor necrosis factor-alpha, and interleukin-1beta, but not by TGF-alpha. Thus, our data indicate that the synthesis and secretion of type VII collagen in human dermal fibroblasts are regulated by ascorbate and the enhancement of type VII collagen gene expression by cytokines/growth factors is accompanied with elevated production of type VII collagen at the protein level.

  3. Recognition memory for social and non-social odors: differential effects of neurotoxic lesions to the hippocampus and perirhinal cortex.

    Science.gov (United States)

    Feinberg, Leila M; Allen, Timothy A; Ly, Denise; Fortin, Norbert J

    2012-01-01

    The contributions of the hippocampus (HC) and perirhinal cortex (PER) to recognition memory are currently topics of debate in neuroscience. Here we used a rapidly-learned (seconds) spontaneous novel odor recognition paradigm to assess the effects of pre-training N-methyl-D-aspartate lesions to the HC or PER on odor recognition memory. We tested memory for both social and non-social odor stimuli. Social odors were acquired from conspecifics, while non-social odors were household spices. Conspecific odor stimuli are ethologically-relevant and have a high degree of overlapping features compared to non-social household spices. Various retention intervals (5 min, 20 min, 1h, 24h, or 48 h) were used between study and test phases, each with a unique odor pair, to assess changes in novelty preference over time. Consistent with findings in other paradigms, modalities, and species, we found that HC lesions yielded no significant recognition memory deficits. In contrast, PER lesions caused significant deficits for social odor recognition memory at long retention intervals, demonstrating a critical role for PER in long-term memory for social odors. PER lesions had no effect on memory for non-social odors. The results are consistent with a general role for PER in long-term recognition memory for stimuli that have a high degree of overlapping features, which must be distinguished by conjunctive representations. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Effects of the mode of re-socialization after juvenile social isolation on medial prefrontal cortex myelination and function.

    Science.gov (United States)

    Makinodan, Manabu; Ikawa, Daisuke; Yamamuro, Kazuhiko; Yamashita, Yasunori; Toritsuka, Michihiro; Kimoto, Sohei; Yamauchi, Takahira; Okumura, Kazuki; Komori, Takashi; Fukami, Shin-Ichi; Yoshino, Hiroki; Kanba, Shigenobu; Wanaka, Akio; Kishimoto, Toshifumi

    2017-07-14

    Social isolation is an important factor in the development of psychiatric disorders. It is necessary to develop an effective psychological treatment, such as cognitive rehabilitation, for children who have already suffered from social isolation, such as neglect and social rejection. We used socially isolated mice to validate whether elaborate re-socialization after juvenile social isolation can restore hypomyelination in the medial prefrontal cortex (mPFC) and the attendant functions manifested in socially isolated mice. While mice who underwent re-socialization with socially isolated mice after juvenile social isolation (Re-IS mice) demonstrated less mPFC activity during exposure to a strange mouse, as well as thinner myelin in the mPFC than controls, mice who underwent re-socialization with socially housed mice after juvenile social isolation (Re-SH mice) caught up with the controls in terms of most mPFC functions, as well as myelination. Moreover, social interaction of Re-IS mice was reduced as compared to controls, but Re-SH mice showed an amount of social interaction comparable to that of controls. These results suggest that the mode of re-socialization after juvenile social isolation has significant effects on myelination in the mPFC and the attendant functions in mice, indicating the importance of appropriate psychosocial intervention after social isolation.

  5. BEIR VII: What's old, What's new, and What challenges remain?

    International Nuclear Information System (INIS)

    Douple, E.; Jostes, R.

    2007-01-01

    The Biological Effects of Ionizing Radiation (BEIR VII) Committee reviewed evidence since the 1990 BEIR V report and developed BEIR VII risk estimates, including a linear, no-threshold dose-response relationship between exposure to ionizing radiation and the development of cancer in humans for exposures up to 0.1 Sv, quantifying the lifetime risks for both cancer mortality and incidence as a function of age at exposure and sex, primarily based on the Japanese atomic-bomb survivor data. If 100 people with an age distribution typical of the U.S. population receive an acute exposure of 0.1 Sv, one person would be expected to eventually develop cancer from this exposure, while 42 of the 100 people would be expected to develop cancer from other causes. The committee estimated the risk following radiation exposure for both incidence and mortality for 11 specific cancer sites. The total risk of heritable genetic diseases from parents exposed prior to conception was 3,000 to 4,700 cases per million progeny per Sv, 0.4-0.6% compared to an estimated baseline risk of 738,000 cases per million. Noncancer diseases such as cardiovascular disease can result from exposures to high doses of radiation, but the data available at this time are not sufficient to develop reliable estimates of risk for these noncancer outcomes at low doses of radiation. Twelve specific recommendations were presented as needs for future research. (author)

  6. Endf/B-VII.0 Based Library for Paragon - 313

    International Nuclear Information System (INIS)

    Huria, H.C.; Kucukboyaci, V.N.; Ouisloumen, M.

    2010-01-01

    A new 70-group library has been generated for the Westinghouse lattice physics code PARAGON using the ENDF/B-VII.0 nuclear data files. The new library retains the major features of the current library, including the number of energy groups and the reduction in the U-238 resonance integral. The upper bound for the up-scattering effects in the new library, however, has been moved to 4.0 eV from 2.1 eV for better MOX fuel predictions. The new library has been used to analyze standard benchmarks and also to compare the measured and predicted parameters for different types of Westinghouse and Combustion Engineering (CE) type operating reactor cores. Results indicate that the new library will not impact the reactivity, power distribution and the temperature coefficient predictions over a wide range of physics design parameters; however, will improve the MOX core predictions. In other words, the ENDF/B-VI.3 and ENDF/B-VII.0 produce similar results for reactor core calculations. (authors)

  7. Chemosensory Learning in the Cortex

    Directory of Open Access Journals (Sweden)

    Edmund eRolls

    2011-09-01

    Full Text Available Taste is a primary reinforcer. Olfactory-taste and visual-taste association learning takes place in the primate including human orbitofrontal cortex to build representations of flavour. Rapid reversal of this learning can occur using a rule-based learning system that can be reset when an expected taste or flavour reward is not obtained, that is by negative reward prediction error, to which a population of neurons in the orbitofrontal cortex responds. The representation in the orbitofrontal cortex but not the primary taste or olfactory cortex is of the reward value of the visual / olfactory / taste / input as shown by devaluation experiments in which food is fed to satiety, and by correlations with the activations with subjective pleasantness ratings in humans. Sensory-specific satiety for taste, olfactory, visual, and oral somatosensory inputs produced by feeding a particular food to satiety are implemented it is proposed by medium-term synaptic adaptation in the orbitofrontal cortex. Cognitive factors, including word-level descriptions, modulate the representation of the reward value of food in the orbitofrontal cortex, and this effect is learned it is proposed by associative modification of top-down synapses onto neurons activated by bottom-up taste and olfactory inputs when both are active in the orbitofrontal cortex. A similar associative synaptic learning process is proposed to be part of the mechanism for the top-down attentional control to the reward value vs the sensory properties such as intensity of taste and olfactory inputs in the orbitofrontal cortex, as part of a biased activation theory of selective attention.

  8. Lithium monotherapy associated clinical improvement effects on amygdala-ventromedial prefrontal cortex resting state connectivity in bipolar disorder.

    Science.gov (United States)

    Altinay, Murat; Karne, Harish; Anand, Amit

    2018-01-01

    This study, for the first time, investigated lithium monotherapy associated effects on amygdala- ventromedial prefrontal cortex (vMPFC) resting-state functional connectivity and correlation with clinical improvement in bipolar disorder (BP) METHODS: Thirty-six medication-free subjects - 24 BP (12 hypomanic BPM) and 12 depressed (BPD)) and 12 closely matched healthy controls (HC), were included. BP subjects were treated with lithium and scanned at baseline, after 2 weeks and 8 weeks. HC were scanned at same time points but were not treated. The effect of lithium was studied for the BP group as a whole using two way (group, time) ANOVA while regressing out effects of state. Next, correlation between changes in amygdala-vMPFC resting-state connectivity and clinical global impression (CGI) of severity and improvement scale scores for overall BP illness was calculated. An exploratory analysis was also conducted for the BPD and BPM subgroups separately. Group by time interaction revealed that lithium monotherapy in patients was associated with increase in amygdala-medial OFC connectivity after 8 weeks of treatment (p = 0.05 (cluster-wise corrected)) compared to repeat testing in healthy controls. Increased amygdala-vMPFC connectivity correlated with clinical improvement at week 2 and week 8 as measured with the CGI-I scale. The results pertain to open-label treatment and do not account for non-treatment related improvement effects. Only functional connectivity was measured which does not give information regarding one regions effect on the other. Lithium monotherapy in BP is associated with modulation of amygdala-vMPFC connectivity which correlates with state-independent global clinical improvement. Copyright © 2017. Published by Elsevier B.V.

  9. Synaptic Remodeling in the Dentate Gyrus, CA3, CA1, Subiculum, and Entorhinal Cortex of Mice: Effects of Deprived Rearing and Voluntary Running

    Directory of Open Access Journals (Sweden)

    Andrea T. U. Schaefers

    2010-01-01

    Full Text Available Hippocampal cell proliferation is strongly increased and synaptic turnover decreased after rearing under social and physical deprivation in gerbils (Meriones unguiculatus. We examined if a similar epigenetic effect of rearing environment on adult neuroplastic responses can be found in mice (Mus musculus. We examined synaptic turnover rates in the dentate gyrus, CA3, CA1, subiculum, and entorhinal cortex. No direct effects of deprived rearing on rates of synaptic turnover were found in any of the studied regions. However, adult wheel running had the effect of leveling layer-specific differences in synaptic remodeling in the dentate gyrus, CA3, and CA1, but not in the entorhinal cortex and subiculum of animals of both rearing treatments. Epigenetic effects during juvenile development affected adult neural plasticity in mice, but seemed to be less pronounced than in gerbils.

  10. [Effect of Electroacupuncture on Expression of Catechol-O-methyltransferase in the Inferior Colliculus and Auditory Cortex in Age-related Hearing Loss Guinea Pigs].

    Science.gov (United States)

    Liu, Shu-Yun; Deng, Li-Qiang; Yang, Ye; Yin, Ze-Deng

    2017-04-25

    To observe the expression of catechol-O-methyltransferase (COMT) in inferior colliculus and auditory cortex of guinea pigs with age-related hearing loss(AHL) induced by D-galactose, so as to explore the possible mechanism of electroacupuncture(EA) underlying preventing AHL. Thirty 3-month-old guinea pigs were randomly divided into control group, model group and EA group( n =10 in each group), and ten 18-month-old guinea pigs were allocated as elderly group. The AHL model was established by subcutaneous injection of D-galactose. EA was applied to bilateral "Yifeng"(SJ 17) and "Tinggong"(SI 19) for 15 min in the EA group while modeling, once daily for 6 weeks. After treatment, the latency of auditory brainstem response(ABR) Ⅲ wave was measured by a brain-stem evoked potentiometer. The expressions of COMT in the inferior colliculus and auditory cortex were detected by Western blot. Compared with the control group, the latencies of ABR Ⅲ wave were significantly prolonged and the expressions of COMT in the inferior colliculus and auditory cortex were significantly decreased in the model group and the elderly group( P guinea pigs, which may contribute to its effect in up-regulating the expression of COMT in the inferior colliculus and auditory cortex.

  11. Plasma fibrinogen and factor VII concentrations in adults after prenatal exposure to famine

    NARCIS (Netherlands)

    Roseboom, T. J.; van der Meulen, J. H.; Ravelli, A. C.; Osmond, C.; Barker, D. J.; Bleker, O. P.

    2000-01-01

    To assess the effect of maternal malnutrition during different stages of gestation on plasma concentrations of fibrinogen and factor VII, we investigated 725 people, aged 50 years, born around the time of the Dutch famine 1944-5. After adjustment for sex, plasma fibrinogen concentrations differed by

  12. Safety and Equality at Odds: OSHA and Title VII Clash over Health Hazards in the Workplace.

    Science.gov (United States)

    Crowell, Donald R.; Copus, David A.

    1978-01-01

    Discusses the legal problems presented by job health hazards which have a different effect on men and women. Where methods of eliminating or minimizing exposure, as required by the Occupational Safety and Health Act, affect only one sex, the provisions of Title VII of the Civil Rights Act may be violated. (MF)

  13. Empathy moderates the effect of repetitive transcranial magnetic stimulation of the right dorsolateral prefrontal cortex on costly punishment.

    Directory of Open Access Journals (Sweden)

    Martin Brüne

    Full Text Available Humans incur considerable costs to punish unfairness directed towards themselves or others. Recent studies using repetitive transcranial magnetic stimulation (rTMS suggest that the right dorsolateral prefrontal cortex (DLPFC is causally involved in such strategic decisions. Presently, two partly divergent hypotheses are discussed, suggesting either that the right DLPFC is necessary to control selfish motives by implementing culturally transmitted social norms, or is involved in suppressing emotion-driven prepotent responses to perceived unfairness. Accordingly, we studied the role of the DLPFC in costly (i.e. third party punishment by applying rTMS to the left and right DLPFC before playing a Dictator Game with the option to punish observed unfair behavior (DG-P. In addition, sham stimulation took place. Individual differences in empathy were assessed with the German version of the Interpersonal Reactivity Index. Costly punishment increased (non-significantly upon disruption of the right--but not the left--DLPFC as compared to sham stimulation. However, empathy emerged as a highly significant moderator variable of the effect of rTMS over the right, but not left, DLPFC, suggesting that the right DLPFC is involved in controlling prepotent emotional responses to observed unfairness, depending on individual differences in empathy.

  14. Effects of chronic REM sleep restriction on D1 receptor and related signal pathways in rat prefrontal cortex.

    Science.gov (United States)

    Han, Yan; Wen, Xiaosa; Rong, Fei; Chen, Xinmin; Ouyang, Ruying; Wu, Shuai; Nian, Hua; Ma, Wenling

    2015-01-01

    The prefrontal cortex (PFC) mediates cognitive function that is sensitive to disruption by sleep loss, and molecular mechanisms regulating neural dysfunction induced by chronic sleep restriction (CSR), particularly in the PFC, have yet to be completely understood. The aim of the present study was to investigate the effect of chronic REM sleep restriction (REM-CSR) on the D1 receptor (D1R) and key molecules in D1R' signal pathways in PFC. We employed the modified multiple platform method to create the REM-CSR rat model. The ultrastructure of PFC was observed by electron microscopy. HPLC was performed to measure the DA level in PFC. The expressions of genes and proteins of related molecules were assayed by real-time PCR and Western blot, respectively. The general state and morphology of PFC in rats were changed by CSR, and DA level and the expression of D1R in PFC were markedly decreased (P CSR rats (P CSR induced cognitive dysfunction, and the PKA pathway of D1R may play an important role in the impairment of advanced neural function.

  15. Suppressive and Enhancing Effects in Early Visual Cortex during Illusory Shape Perception: A Comment on Kok and de Lange (2014

    Directory of Open Access Journals (Sweden)

    Pieter Moors

    2015-02-01

    Full Text Available In a recent functional magnetic resonance imaging study, Kok and de Lange (2014 observed that BOLD activity for a Kanizsa illusory shape stimulus, in which pacmen-like inducers elicit an illusory shape percept, was either enhanced or suppressed relative to a nonillusory control configuration depending on whether the spatial profile of BOLD activity in early visual cortex was related to the illusory shape or the inducers, respectively. The authors argued that these findings fit well with the predictive coding framework, because top-down predictions related to the illusory shape are not met with bottom-up sensory input and hence the feedforward error signal is enhanced. Conversely, for the inducing elements, there is a match between top-down predictions and input, leading to a decrease in error. Rather than invoking predictive coding as the explanatory framework, the suppressive effect related to the inducers might be caused by neural adaptation to perceptually stable input due to the trial sequence used in the experiment.

  16. The effect of future time perspective on procrastination: the role of parahippocampal gyrus and ventromedial prefrontal cortex.

    Science.gov (United States)

    Liu, Peiwei; Feng, Tingyong

    2018-05-09

    Procrastination is an almost universal affliction, which occurs across culture and brings serious consequences across multiple fields, such as finance, health and education. Previous research has showed procrastination can be influenced by future time perspective (FTP). However, little is known about the neural basis underlying the impact of FTP on procrastination. To address this question, we used voxel-based morphometry (VBM) based on brain structure. In line with previous findings, the behavioral result indicated that FTP inventory scores were significantly negatively correlated with procrastination inventory scores (r = -0.63, n = 160). The whole-brain VBM results showed that FTP scores were significantly negatively correlated with the grey matter (GM) volumes of the parahippocampal gyrus (paraPHC) and ventromedial prefrontal cortex (vmPFC) after the multiple comparisons correction. Furthermore, mediation analyses revealed that the effect of GM volumes of the paraPHC and vmPFC on procrastination was mediated by FTP. These results suggested that paraPHC and vmPFC, the critical brain regions about episodic future thinking, could be the neural basis responsible for the impact of FTP on procrastination. The present study extends our knowledge on procrastination, and provides a novel perspective to understand the relationship between FTP and procrastination.

  17. Interference effects of transcranial direct current stimulation over the right frontal cortex and adrenergic system on conditioned fear.

    Science.gov (United States)

    Nasehi, Mohammad; Soltanpour, Reyhaneh; Ebrahimi-Ghiri, Mohaddeseh; Zarrabian, Shahram; Zarrindast, Mohammad-Reza

    2017-11-01

    The effects of pharmacological interventions on fear memory have widely been studied, but there are very few studies about the effects of brain electrical stimulation on fear memory function. Therefore, our aim was to determine whether anodal/cathodal transcranial direct current stimulation (tDCS) over the right frontal cortex would modify propranolol-induced contextual and auditory fear memory deficits, before or after training. The adult NMRI male mice were randomly assigned into three groups: the sham group, the anodal tDCS group, and the cathodal tDCS group. Fear memories were evaluated using a classical fear conditioning apparatus. While the anodal stimulation did not affect fear retrieval, post-training cathodal stimulation improved fear memory retrieval. Regardless of when propranolol (0.1 mg/kg) was administered, it impaired fear memory retrieval. However, when anodal stimulation and propranolol were applied prior to the training, contextual fear memory retrieval was increased and auditory fear memory was reversed. An enhanced contextual retrieval was also observed when propranolol was administered prior to the training and stimulation occurred after the training. Only when the stimulation occurred prior to the training and propranolol was administered after the training was there a selective improvement in contextual fear memory retrieval, leaving the auditory fear memory retrieval impaired. Interestingly, cathodal stimulation improved the effects of propranolol on auditory fear memory only when it occurred prior to the training. The results highlight possible improving effects for anodal/cathodal tDCS on propranolol-induced deficits on fear memories. The timing of the interventions related to the specific phases of memory formation is important in modulating fear behaviors.

  18. Effects of Chronic Sleep Restriction during Early Adolescence on the Adult Pattern of Connectivity of Mouse Secondary Motor Cortex123

    Science.gov (United States)

    Billeh, Yazan N.; Bernard, Amy; de Vivo, Luisa; Honjoh, Sakiko; Mihalas, Stefan; Ng, Lydia; Koch, Christof

    2016-01-01

    Abstract Cortical circuits mature in stages, from early synaptogenesis and synaptic pruning to late synaptic refinement, resulting in the adult anatomical connection matrix. Because the mature matrix is largely fixed, genetic or environmental factors interfering with its establishment can have irreversible effects. Sleep disruption is rarely considered among those factors, and previous studies have focused on very young animals and the acute effects of sleep deprivation on neuronal morphology and cortical plasticity. Adolescence is a sensitive time for brain remodeling, yet whether chronic sleep restriction (CSR) during adolescence has long-term effects on brain connectivity remains unclear. We used viral-mediated axonal labeling and serial two-photon tomography to measure brain-wide projections from secondary motor cortex (MOs), a high-order area with diffuse projections. For each MOs target, we calculated the projection fraction, a combined measure of passing fibers and axonal terminals normalized for the size of each target. We found no homogeneous differences in MOs projection fraction between mice subjected to 5 days of CSR during early adolescence (P25–P30, ≥50% decrease in daily sleep, n=14) and siblings that slept undisturbed (n=14). Machine learning algorithms, however, classified animals at significantly above chance levels, indicating that differences between the two groups exist, but are subtle and heterogeneous. Thus, sleep disruption in early adolescence may affect adult brain connectivity. However, because our method relies on a global measure of projection density and was not previously used to measure connectivity changes due to behavioral manipulations, definitive conclusions on the long-term structural effects of early CSR require additional experiments. PMID:27351022

  19. Late effects of X-irradiation on the ultrastructure of the cerebral cortex

    International Nuclear Information System (INIS)

    Reyners, H.; Gianfelici de Reyners, E.; Maisin, J.R.

    1979-01-01

    The glial population balance is significantly distributed by low dose X-rays even after a very short time following irradiation. The effects are able to persist for a large period of time and may possibly be involved in the onset of late radionecrosis phenomena, often noted as consequences of therapeutic irradiation in brain [fr

  20. The Prefrontal Cortex Activity and Psychological Effects of Viewing Forest Landscapes in Autumn Season.

    Science.gov (United States)

    Joung, Dawou; Kim, Geonwoo; Choi, Yoonho; Lim, HyoJin; Park, Soonjoo; Woo, Jong-Min; Park, Bum-Jin

    2015-06-26

    Recently reported research indicate that forest environments have physiological and psychological relaxing effects compared to urban environments. However, some researchers claim that the stress of the subjects from being watched by others during measurements can affect the measurement result in urban experiments conducted in the center of a street. The present study was conducted to determine whether forest environments have physiological and psychological relaxing effects, using comparison of viewing a forest area with viewing an urban area from the roof of an urban building without being watched by others. Near-infrared spectroscopy (NIRS) measurement was performed on subjects while they viewed scenery for 15 min at each experimental site (urban and forest areas). Subjective assessments were performed after the NIRS measurement was complete. Total hemoglobin and oxyhemoglobin concentrations were significantly lower in the forest area than in the urban area. For semantic differential in subjective assessments, feelings of "comfortable", "natural", and "soothed" were significantly higher in the forest area than in the urban area, and for profile of mood states, negative emotions were significantly lower in the forest area than in the urban area. The results of physiological and psychological measurements show that viewing the forest enabled effective relaxation.

  1. Differential Effects of Inactivation of Discrete Regions of Medial Prefrontal Cortex on Memory Consolidation of Moderate and Intense Inhibitory Avoidance Training

    Directory of Open Access Journals (Sweden)

    María E. Torres-García

    2017-11-01

    Full Text Available It has been found that the medial prefrontal cortex (mPFC is involved in memory encoding of aversive events, such as inhibitory avoidance (IA training. Dissociable roles have been described for different mPFC subregions regarding various memory processes, wherein the anterior cingulate cortex (ACC, prelimbic cortex (PL, and infralimbic cortex (IL are involved in acquisition, retrieval, and extinction of aversive events, respectively. On the other hand, it has been demonstrated that intense training impedes the effects on memory of treatments that typically interfere with memory consolidation. The aim of this work was to determine if there are differential effects on memory induced by reversible inactivation of neural activity of ACC, PL, or IL produced by tetrodotoxin (TTX in rats trained in IA using moderate (1.0 mA and intense (3.0 mA foot-shocks. We found that inactivation of ACC has no effects on memory consolidation, regardless of intensity of training. PL inactivation impairs memory consolidation in the 1.0 mA group, while no effect on consolidation was produced in the 3.0 mA group. In the case of IL, a remarkable amnestic effect in LTM was observed in both training conditions. However, state-dependency can explain the amnestic effect of TTX found in the 3.0 mA IL group. In order to circumvent this effect, TTX was injected into IL immediately after training (thus avoiding state-dependency. The behavioral results are equivalent to those found after PL inactivation. Therefore, these findings provide evidence that PL and IL, but not ACC, mediate LTM of IA only in moderate training.

  2. No effect of transcranial direct current stimulation of the dorsolateral prefrontal cortex on short-term memory.

    Science.gov (United States)

    Wang, Jing; Wen, Jian-Bing; Li, Xiao-Li

    2018-01-01

    Short-term memory refers to the capacity for holding information in mind for a short period of time with conscious memorization. It is an important ability for daily life and is impaired in several neurological and psychiatric disorders. Anodal transcranial direct current stimulation (tDCS) applied to the dorsolateral prefrontal cortex (DLPFC) was reported to enhance the capability of short-term memory in healthy subjects. However, results were not consistent and what is the possible impact factor is not known. One important factor that may significantly influence the effect of tDCS is the timing of tDCS administration. In order to explore whether tDCS impact short-term memory and the optimal timing of tDCS administration, we applied anodal tDCS to the left DLPFC to explore the modulatory effect of online and off-line tDCS on digit span as well as visual short-term memory performance in healthy subjects. Results showed tDCS of the left DLPFC did not influence intentional digit span memory performance, whether before the task or during the task. In addition, tDCS of the DLPFC administered before the task showed no effect on visual short-term memory, while there was a trend of increase in false alarm when tDCS of the DLPFC administered during the task. These results did not provide evidence for the enhancement of short-term memory by tDCS of the left DLPFC in healthy subjects, but it suggested an importance of administration time for visual short-term memory. Further studies are required to taking into account the baseline performance of subjects and time-dependence feature of tDCS. © 2017 John Wiley & Sons Ltd.

  3. Fluvoxamine maleate effects on dopamine signaling in the prefrontal cortex of stressed Parkinsonian rats: Implications for learning and memory.

    Science.gov (United States)

    Dallé, Ernest; Daniels, Willie M U; Mabandla, Musa V

    2017-06-01

    Parkinson's disease (PD) is also associated with cognitive impairment and reduced extrinsic supply of dopamine (DA) to the prefrontal cortex (PFC). In the present study, we looked at whether exposure to early life stress reduces DA and serotonin (5-HT) concentration in the PFC thus leading to enhanced cognitive impairment in a Parkinsonian rat model. Maternal separation was the stressor used to develop an animal model for early life stress that has chronic effects on brain and behavior. Sprague-Dawley rats were treated with the antidepressant Fluvoxamine maleate (FM) prior to a unilateral 6-hydroxydopamine (6-OHDA) lesion to model motor deficits in rats. The Morris water maze (MWM) and the forelimb use asymmetry (cylinder) tests were used to assess learning and memory impairment and motor deficits respectively. Blood plasma was used to measure corticosterone concentration and prefrontal tissue was collected for lipid peroxidation, DA, and 5-HT analysis. Our results show that animals exposed to early life stress displayed learning and memory impairment as well as elevated basal plasma corticosterone concentration which were attenuated by treatment with FM. A 6-OHDA lesion effect was evidenced by impairment in the cylinder test as well as decreased DA and 5-HT concentration in the PFC. These effects were attenuated by FM treatment resulting in higher DA concentration in the PFC of treated animals than in non-treated animals. This study suggests that DA and 5-HT signaling in the PFC are responsive to FM and may reduce stress-induced cognitive impairment in PD. Copyright © 2017. Published by Elsevier Inc.

  4. Corticosterone and decision-making in male Wistar rats: the effect of corticosterone application in the infralimbic and orbitofrontal cortex.

    Science.gov (United States)

    Koot, Susanne; Koukou, Magdalini; Baars, Annemarie; Hesseling, Peter; van 't Klooster, José; Joëls, Marian; van den Bos, Ruud

    2014-01-01

    Corticosteroid hormones, released after stress, are known to influence neuronal activity and produce a wide range of effects upon the brain. They affect cognitive tasks including decision-making. Recently it was shown that systemic injections of corticosterone (CORT) disrupt reward-based decision-making in rats when tested in a rat model of the Iowa Gambling Task (rIGT), i.e., rats do not learn across trial blocks to avoid the long-term disadvantageous option. This effect was associated with a change in neuronal activity in prefrontal brain areas, i.e., the infralimbic (IL), lateral orbitofrontal (lOFC) and insular cortex, as assessed by changes in c-Fos expression. Here, we studied whether injections of CORT directly into the IL and lOFC lead to similar changes in decision-making. As in our earlier study, CORT was injected during the final 3 days of the behavioral paradigm, 25 min prior to behavioral testing. Infusions of vehicle into the IL led to a decreased number of visits to the disadvantageous arm across trial blocks, while infusion with CORT did not. Infusions into the lOFC did not lead to differences in the number of visits to the disadvantageous arm between vehicle treated and CORT treated rats. However, compared to vehicle treated rats of the IL group, performance of vehicle treated rats of the lOFC group was impaired, possibly due to cannulation/infusion-related damage of the lOFC affecting decision-making. Overall, these results show that infusions with CORT into the IL are sufficient to disrupt decision-making performance, pointing to a critical role of the IL in corticosteroid effects on reward-based decision-making. The data do not directly support that the same holds true for infusions into the lOFC.

  5. Effects of DARPP-32 Genetic Variation on Prefrontal Cortex Volume and Episodic Memory Performance

    Directory of Open Access Journals (Sweden)

    Ninni Persson

    2017-05-01

    Full Text Available Despite evidence of a fundamental role of DARPP-32 in integrating dopamine and glutamate signaling, studies examining gene coding for DARPP-32 in relation to neural and behavioral correlates in humans are scarce. Post mortem findings suggest genotype specific expressions of DARPP-32 in the dorsal frontal lobes. Therefore, we investigated the effects of genomic variation in DARPP-32 coding on frontal lobe volumes and episodic memory. Volumetric data from the dorsolateral (DLPFC, and visual cortices (VC were obtained from 61 younger and older adults (♀54%. The major homozygote G, T, or A genotypes in single nucleotide polymorphisms (SNPs: rs879606; rs907094; rs3764352, the two latter in complete linkage disequilibrium, at the DARPP-32 regulating PPP1R1B gene, influenced frontal gray matter volume and episodic memory (EM. Homozygous carriers of allelic variants with lower DARPP-32 expression had an overall larger prefrontal volume in addition to greater EM recall accuracy after accounting for the influence of age. The SNPs did not influence VC volume. The genetic effects on DLPFC were greater in young adults and selective to this group for EM. Our findings suggest that genomic variation maps onto individual differences in frontal brain volumes and cognitive functions. Larger DLPFC volumes were also related to better EM performance, suggesting that gene-related differences in frontal gray matter may contribute to individual differences in EM. These results need further replication from experimental and longitudinal reports to determine directions of causality.

  6. Opposite effective connectivity in the posterior cingulate and medial prefrontal cortex between first-episode schizophrenic patients with suicide risk and healthy controls.

    Directory of Open Access Journals (Sweden)

    Huiran Zhang

    Full Text Available OBJECTIVE: The schizophrenic patients with high suicide risk are characterized by depression, better cognitive function, and prominent positive symptoms. However, the neurobiological basis of suicide attempts in schizophrenia is not clear. The suicide in schizophrenia is implicated in the defects in emotional process and decision-making, which are associated with prefrontal-cingulate circuit. In order to explore the possible neurobiological basis of suicide in schizophrenia, we investigated the correlation of prefrontal-cingulate circuit with suicide risk in schizophrenia via dynamic casual modelling. METHOD: Participants were 33 first-episode schizophrenic patients comprising of a high suicide risk group (N = 14 and a low suicide risk group (N = 19. A comparison group of healthy controls (N = 15 were matched for age, gender and education. N-back tasking functional magnetic resonance imaging data was collected. RESULTS: Compared with healthy controls group, the two patients groups showed decreased task-related suppression during 2-back task state versus baseline state in the left posterior cingulate and medial prefrontal cortex; the hyper-connectivity from the left posterior cingulate cortex to the left medial prefrontal cortex existed in both schizophrenic patients groups, but hypo-connectivity in the opposite direction only existed in the schizophrenic patients group with high suicide risk. CONCLUSIONS: The hyper-connectivity from the left posterior cingulate cortex to the left medial prefrontal cortex may suggest that the abnormal effective connectivity was associated with risk for schizophrenia. The hypo-connectivity in the opposite direction may represent a possible correlate of increased vulnerability to suicide attempt.

  7. The effect of first visual stimulation incorporation of labelled leucine into cerebral cortex of binocularly deprived kittens

    International Nuclear Information System (INIS)

    Mitros, K.; Kossut, M.; Skangiel-Kramska, J.; Mueller, L.; Niemierko, S.; Zernicki, B.

    1978-01-01

    One-month old kittens, binocularly deprived with hoods from birth, were used. Before the experiments in which visual stimulation was applied the brainstem of kittens was transected at the pretrigeminal level. Cortical EEG activity and ocular behavior indicated that the isolated cerebrum of preparations was usually awake during experiment. Patterned visual stimulation was directed to one hemisphere, while the other was used as a control. Visual stimulation evoked in some cases (in 8 out of 17) an increase of incorporation of labelled leucine into the proteins of the striate cortex. Electrophoresis on polyacrylamide gel did not reveal any differences in the pattern of insoluble proteins between the stimulated and control visual cortex. It is suggested that first visual stimulation may enhance the protein metabolism of striate cortex in young kittens. Some unknown up to now physiological factors (motivation, attention) may be critical for these phenomena. (author)

  8. Effect of a low-dose x-ray irradiation on the development and differentiation of the cerebral cortex, (15)

    International Nuclear Information System (INIS)

    Hayashi, Yasushi; Hoshino, Kiyoshi; Hayasaka, Shizuka; Kameyama, Yoshiro

    1981-01-01

    Mice of 17 day's gestation received x-rays of 10 R, 25 R, or 100 R, and those of 13 or 15 day's gestation received 10 R in a single exposure. These irradiated fetuses were examined for the weight of the brain, thickness of the cerebral cortex, density of the cortical cells and branching of the pyramidal cells in the fifth layer of the cortex 12 weeks after birth. Decrease in the thickness of the cortex was observed in the mice which received 100 R at 17 day's gestation. A decrease in the branching index of the pyramidal cells was found in the mice which received 100 R. Although a decreasing tendency of the branching index was also recognized in those which received 10 R at 13 days of gestation, showing no statistically significant difference. (Ueda, J.)

  9. Role of Nitric Oxide in Radioinduced Effects in Developing Brain Cortex

    International Nuclear Information System (INIS)

    Robello, E

    2001-01-01

    Nowadays, prenatal exposure is a very important topic in radiopathology.Unfortunately, pregnant women have been sometimes exposed or have to expose to ionising radiation, for example, during a medical treatment.There are lots of studies made by the International Commission of Radiation Protection (ICRP) about the effects of ionising radiation and the consequences that are suffered by the exposed foetus.Hence, it has been argued that developing mammalian brain is substantially more susceptible to teratogenic insult than most other embryonic and foetal structures.Presumably, this reflects its architectural complexity, its long developmental period, the vulnerability of the undifferentiated neural cell and the inability of the brain to replace lost neurones.Furthermore, there is abundant information on the biological effects caused by prenatal exposure of mammals to ionising radiation.Only two conspicuous effects on brain growth and development have emerged thus far in the study of atomic bomb survivors exposed prenatally in Hiroshima and Nagasaki.These are some cases of severe mental retardation and some of small head size without apparent metal retardation. Additionally, groups within the survivors have shown significantly reduced IQ scores.This increase would be dose-related and, if the shift of IQ had no clear dose threshold, might, in turn, show no threshold.Besides, it has been studied that ionising radiation implies molecular ionisation and excitation in the biological systems.When radiation has a high linear transfer energy (LET) damage may be produce trough energy absorbed directly by the target molecule (direct mechanism).However, when radiation has a low LET (like γ and X radiation), and without forgetting that biological systems are basically aqueous, damage may be produce trough generation of species highly reactive (like free radicals and reactive oxygen species - ROS) by molecules of water which has adsorbed energy radiation (indirect mechanism

  10. Effects of MRI on the electrophysiology of the motor cortex: a TMS study

    International Nuclear Information System (INIS)

    Schlamann, Marc; Pietrzyk, T.; Yoon, M.S.; Gerwig, M.; Kastrup, O.; Maderwald, S.; Forsting, M.; Ladd, S.C.; Duisburg-Essen Univ.; Bitz, A.; Ladd, M.E.

    2009-01-01

    The increasing spread of high-field and ultra-high-field MRI scanners encouraged a new discussion on safety aspects of MRI examinations. Earlier studies report altered acoustically evoked potentials. This finding was not able to be confirmed in later studies. In the present study transcranial magnetic stimulation (TMS) was used to evaluate whether motor cortical excitability may be altered following MRI examination even at field strength of 1.5 T. In 12 right-handed male volunteers individual thresholds for motor responses and then the length of the post-excitatory inhibition (silent period) were determined. Subsequently the volunteers were examined in the MRI scanner (Siemens Avanto, 1.5 T) for 63 minutes using gradient and spin echo sequences. MRI examination was immediately followed by another TMS session and a third 10 minutes later. As a control condition, the 12 subjects spent one hour in the scanner without examination and one hour on a couch without the presence of a scanner. After MRI examination, the silent period was significantly lengthened in all 12 subjects and then tended to the initial value after 10 min. Motor thresholds were significantly elevated and then normalized after 10 minutes. No significant effects were found in the control conditions. (orig.)

  11. The combined effects of neurostimulation and priming on creative thinking. A preliminary tDCS study on dorsolateral prefrontal cortex

    Science.gov (United States)

    Colombo, Barbara; Bartesaghi, Noemi; Simonelli, Luisa; Antonietti, Alessandro

    2015-01-01

    The role of prefrontal cortex (PFC) in influencing creative thinking has been investigated by many researchers who, while succeeding in proving an effective involvement of PFC, reported suggestive but sometimes conflicting results. In order to better understand the relationships between creative thinking and brain activation in a more specific area of the PFC, we explored the role of dorsolateral PFC (DLPFC). We devised an experimental protocol using transcranial direct-current stimulation (tDCS). The study was based on a 3 (kind of stimulation: anodal vs. cathodal vs. sham) × 2 (priming: divergent vs. convergent) design. Forty-five healthy adults were randomly assigned to one stimulation condition. Participants’ creativity skills were assessed using the Product Improvement subtest from the Torrance Tests of Creative Thinking (TTCT). After 20 min of tDCS stimulation, participants were presented with visual images of common objects. Half of the participants were instructed to visualize themselves using the object in an unusual way (divergent priming), whereas the other half were asked to visualize themselves while using the object in a common way (convergent priming). Priming was aimed at inducing participants to adopt different attitudes toward the creative task. Afterwards, participants were asked to describe all of the possible uses of the objects that were presented. Participants’ physiological activation was recorded using a biofeedback equipment. Results showed a significant effect of anodal stimulation that enhanced creative performance, but only after divergent priming. Participants showed lower skin temperature values after cathodal stimulation, a finding which is coherent with studies reporting that, when a task is not creative or creative thinking is not prompted, people show lower levels of arousal. Differences in individual levels of creativity as assessed by the Product Improvement test were not influential. The involvement of DLPFC in creativity

  12. Inhibitory Mechanisms in Primary Somatosensory Cortex Mediate the Effects of Peripheral Electrical Stimulation on Tactile Spatial Discrimination.

    Science.gov (United States)

    Saito, Kei; Otsuru, Naofumi; Inukai, Yasuto; Kojima, Sho; Miyaguchi, Shota; Tsuiki, Shota; Sasaki, Ryoki; Onishi, Hideaki

    2018-06-01

    Selective afferent activation can be used to improve somatosensory function, possibly by altering cortical inhibitory circuit activity. Peripheral electrical stimulation (PES) is widely used to induce selective afferent activation, and its effect may depend on PES intensity. Therefore, we investigated the effects of high- and low-intensity PES applied to the right index finger on tactile discrimination performance and cortical sensory-evoked potential paired-pulse depression (SEP-PPD) in 25 neurologically healthy subjects. In Experiment 1, a grating orientation task (GOT) was performed before and immediately after local high- and low-intensity PES (both delivered as 1-s, 20-Hz trains of 0.2-ms electrical pulses at 5-s intervals). In Experiment 2, PPD of SEP components N20/P25_SEP-PPD and N20_SEP-PPD, respectively, were assessed before and immediately after high- and low-intensity PES. Improved GOT discrimination performance after high-intensity PES (reduced discrimination threshold) was associated with lower baseline performance (higher baseline discrimination threshold). Subjects were classified into low and high (baseline) GOT performance groups. Improved GOT discrimination performance in the low GOT performance group was significantly associated with a greater N20_SEP-PPD decrease (weaker PPD). Subjects were also classified into GOT improvement and GOT decrement groups. High-intensity PES decreased N20_SEP-PPD in the GOT improvement group but increased N20_SEP-PPD in the GOT decrement group. Furthermore, a greater decrease in GOT discrimination threshold was significantly associated with a greater N20_SEP-PPD decrease in the GOT improvement group. These results suggest that high-intensity PES can improve sensory perception in subjects with low baseline function by modulating cortical inhibitory circuits in primary somatosensory cortex. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Valproic acid effects in the hippocampus and prefrontal cortex in an animal model of post-traumatic stress disorder.

    Science.gov (United States)

    Wilson, C Brad; McLaughlin, Leslie D; Ebenezer, Philip J; Nair, Anand R; Francis, Joseph

    2014-07-15

    Reactive oxygen species (ROS) and pro-inflammatory cytokines (PIC) are upregulated in post-traumatic stress disorder (PTSD). Histone deacetylase inhibitors (HDACi) modify genetic transcription and can diminish ROS and PIC escalation. They can also modulate levels of neurotransmitters such as catecholamines and serotonin (5-HT). Thus, this study sought to analyze the effects of the HDACi valproic acid (VA) on oxidative stress, inflammation, and neurotransmitter modulation via a predator exposure/psychosocial stress animal model of PTSD. PTSD-like effects were induced in male Sprague-Dawley rats (n=6/group×4 groups). The rats were secured in Plexiglas cylinders and placed in a cage with a cat for 1h on days 1, 11, and 40 of a 40-day stress regimen. PTSD rats were also subjected to psychosocial stress via daily cage cohort changes. At the conclusion of the stress regimen, the treatment group (PTSD+VA) and control group (Control+VA) rats were given VA in their drinking water for 30 days. The rats were then euthanized and their brains were dissected to remove the hippocampus and prefrontal cortex (PFC). Whole blood was collected to assess systemic oxidative stress. ROS and PIC mRNA and protein elevation in the PTSD group were normalized with VA. Anxiety decreased in this group via improved performance on the elevated plus-maze (EPM). No changes were attributed to VA in the control group, and no improvements were noted in the vehicle groups. Results indicate VA can attenuate oxidative stress and inflammation, enhance fear extinction, and correct neurotransmitter aberrancies in a rat model of PTSD. Copyright © 2014. Published by Elsevier B.V.

  14. The combined effects of neurostimulation and priming on creative thinking. A preliminary tDCS study on dorsolateral prefrontal cortex.

    Science.gov (United States)

    Colombo, Barbara; Bartesaghi, Noemi; Simonelli, Luisa; Antonietti, Alessandro

    2015-01-01

    The role of prefrontal cortex (PFC) in influencing creative thinking has been investigated by many researchers who, while succeeding in proving an effective involvement of PFC, reported suggestive but sometimes conflicting results. In order to better understand the relationships between creative thinking and brain activation in a more specific area of the PFC, we explored the role of dorsolateral PFC (DLPFC). We devised an experimental protocol using transcranial direct-current stimulation (tDCS). The study was based on a 3 (kind of stimulation: anodal vs. cathodal vs. sham) × 2 (priming: divergent vs. convergent) design. Forty-five healthy adults were randomly assigned to one stimulation condition. Participants' creativity skills were assessed using the Product Improvement subtest from the Torrance Tests of Creative Thinking (TTCT). After 20 min of tDCS stimulation, participants were presented with visual images of common objects. Half of the participants were instructed to visualize themselves using the object in an unusual way (divergent priming), whereas the other half were asked to visualize themselves while using the object in a common way (convergent priming). Priming was aimed at inducing participants to adopt different attitudes toward the creative task. Afterwards, participants were asked to describe all of the possible uses of the objects that were presented. Participants' physiological activation was recorded using a biofeedback equipment. Results showed a significant effect of anodal stimulation that enhanced creative performance, but only after divergent priming. Participants showed lower skin temperature values after cathodal stimulation, a finding which is coherent with studies reporting that, when a task is not creative or creative thinking is not prompted, people show lower levels of arousal. Differences in individual levels of creativity as assessed by the Product Improvement test were not influential. The involvement of DLPFC in creativity has

  15. Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra provides reduced effect of scanner for cortex volumetry with atlas-based method in healthy subjects.

    Science.gov (United States)

    Goto, Masami; Abe, Osamu; Aoki, Shigeki; Hayashi, Naoto; Miyati, Tosiaki; Takao, Hidemasa; Iwatsubo, Takeshi; Yamashita, Fumio; Matsuda, Hiroshi; Mori, Harushi; Kunimatsu, Akira; Ino, Kenji; Yano, Keiichi; Ohtomo, Kuni

    2013-07-01

    This study aimed to investigate whether the effect of scanner for cortex volumetry with atlas-based method is reduced using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) normalization compared with standard normalization. Three-dimensional T1-weighted magnetic resonance images (3D-T1WIs) of 21 healthy subjects were obtained and evaluated for effect of scanner in cortex volumetry. 3D-T1WIs of the 21 subjects were obtained with five MRI systems. Imaging of each subject was performed on each of five different MRI scanners. We used the Voxel-Based Morphometry 8 tool implemented in Statistical Parametric Mapping 8 and WFU PickAtlas software (Talairach brain atlas theory). The following software default settings were used as bilateral region-of-interest labels: "Frontal Lobe," "Hippocampus," "Occipital Lobe," "Orbital Gyrus," "Parietal Lobe," "Putamen," and "Temporal Lobe." Effect of scanner for cortex volumetry using the atlas-based method was reduced with DARTEL normalization compared with standard normalization in Frontal Lobe, Occipital Lobe, Orbital Gyrus, Putamen, and Temporal Lobe; was the same in Hippocampus and Parietal Lobe; and showed no increase with DARTEL normalization for any region of interest (ROI). DARTEL normalization reduces the effect of scanner, which is a major problem in multicenter studies.

  16. Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra provides reduced effect of scanner for cortex volumetry with atlas-based method in healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Masami; Ino, Kenji; Yano, Keiichi [University of Tokyo Hospital, Department of Radiological Technology, Bunkyo-ku, Tokyo (Japan); Abe, Osamu [Nihon University School of Medicine, Department of Radiology, Itabashi-ku, Tokyo (Japan); Aoki, Shigeki [Juntendo University, Department of Radiology, Bunkyo-ku, Tokyo (Japan); Hayashi, Naoto [University of Tokyo Hospital, Department of Computational Diagnostic Radiology and Preventive Medicine, Bunkyo-ku, Tokyo (Japan); Miyati, Tosiaki [Kanazawa University, Graduate School of Medical Science, Kanazawa (Japan); Takao, Hidemasa; Mori, Harushi; Kunimatsu, Akira; Ohtomo, Kuni [University of Tokyo Hospital, Department of Radiology and Department of Computational Diagnostic Radiology and Preventive Medicine, Bunkyo-ku, Tokyo (Japan); Iwatsubo, Takeshi [University of Tokyo, Department of Neuropathology, Bunkyo-ku, Tokyo (Japan); Yamashita, Fumio [Iwate Medical University, Department of Radiology, Yahaba, Iwate (Japan); Matsuda, Hiroshi [Integrative Brain Imaging Center National Center of Neurology and Psychiatry, Department of Nuclear Medicine, Kodaira, Tokyo (Japan); Collaboration: Japanese Alzheimer' s Disease Neuroimaging Initiative

    2013-07-15

    This study aimed to investigate whether the effect of scanner for cortex volumetry with atlas-based method is reduced using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) normalization compared with standard normalization. Three-dimensional T1-weighted magnetic resonance images (3D-T1WIs) of 21 healthy subjects were obtained and evaluated for effect of scanner in cortex volumetry. 3D-T1WIs of the 21 subjects were obtained with five MRI systems. Imaging of each subject was performed on each of five different MRI scanners. We used the Voxel-Based Morphometry 8 tool implemented in Statistical Parametric Mapping 8 and WFU PickAtlas software (Talairach brain atlas theory). The following software default settings were used as bilateral region-of-interest labels: ''Frontal Lobe,'' ''Hippocampus,'' ''Occipital Lobe,'' ''Orbital Gyrus,'' ''Parietal Lobe,'' ''Putamen,'' and ''Temporal Lobe.'' Effect of scanner for cortex volumetry using the atlas-based method was reduced with DARTEL normalization compared with standard normalization in Frontal Lobe, Occipital Lobe, Orbital Gyrus, Putamen, and Temporal Lobe; was the same in Hippocampus and Parietal Lobe; and showed no increase with DARTEL normalization for any region of interest (ROI). DARTEL normalization reduces the effect of scanner, which is a major problem in multicenter studies. (orig.)

  17. Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra provides reduced effect of scanner for cortex volumetry with atlas-based method in healthy subjects

    International Nuclear Information System (INIS)

    Goto, Masami; Ino, Kenji; Yano, Keiichi; Abe, Osamu; Aoki, Shigeki; Hayashi, Naoto; Miyati, Tosiaki; Takao, Hidemasa; Mori, Harushi; Kunimatsu, Akira; Ohtomo, Kuni; Iwatsubo, Takeshi; Yamashita, Fumio; Matsuda, Hiroshi

    2013-01-01

    This study aimed to investigate whether the effect of scanner for cortex volumetry with atlas-based method is reduced using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) normalization compared with standard normalization. Three-dimensional T1-weighted magnetic resonance images (3D-T1WIs) of 21 healthy subjects were obtained and evaluated for effect of scanner in cortex volumetry. 3D-T1WIs of the 21 subjects were obtained with five MRI systems. Imaging of each subject was performed on each of five different MRI scanners. We used the Voxel-Based Morphometry 8 tool implemented in Statistical Parametric Mapping 8 and WFU PickAtlas software (Talairach brain atlas theory). The following software default settings were used as bilateral region-of-interest labels: ''Frontal Lobe,'' ''Hippocampus,'' ''Occipital Lobe,'' ''Orbital Gyrus,'' ''Parietal Lobe,'' ''Putamen,'' and ''Temporal Lobe.'' Effect of scanner for cortex volumetry using the atlas-based method was reduced with DARTEL normalization compared with standard normalization in Frontal Lobe, Occipital Lobe, Orbital Gyrus, Putamen, and Temporal Lobe; was the same in Hippocampus and Parietal Lobe; and showed no increase with DARTEL normalization for any region of interest (ROI). DARTEL normalization reduces the effect of scanner, which is a major problem in multicenter studies. (orig.)

  18. Frederik VII og folkets kærlighed

    DEFF Research Database (Denmark)

    Perlt, Michael; Vinding, Niels Valdemar

    2013-01-01

    I den turbulente tid mellem de to slesvigske krige drog kong Frederik VII under en rejse til Jylland i 1857 i procession op på højene i Jelling for at modtage folkets hyldest. På det historiske sted lod Frederik VII sig fejre som danskernes konge under en stor folkefest med bønder og deres familier...

  19. Monoclonal anti-human factor VII antibodies. Detection in plasma of a second protein antigenically and genetically related to factor VII.

    OpenAIRE

    Broze, G J; Hickman, S; Miletich, J P

    1985-01-01

    Several murine monoclonal anti-human Factor VII antibodies were produced using hybridoma technology. Two noncompetitive monoclonal antibodies were used to examine by Western blotting the Factor VII cross-reactive material (CRM) in normal human plasma and three commercially available congenitally Factor VII-deficient plasmas, and to construct a facile "sandwich" immunoassay for plasma Factor VII. A second, previously undescribed, form of Factor VII CRM was detected in human plasma, which on We...

  20. Pharmacodynamics of recombinant activated factor VII and plasma-derived factor VII in a cohort of severe FVII deficient patients.

    Science.gov (United States)

    van Geffen, Mark; Mathijssen, Natascha C J; Holme, Pål A; Laros-van Gorkom, Britta A P; van Kraaij, Marian G J; Masereeuw, Roselinde; Peyvandi, Flora; van Heerde, Waander L

    2013-07-01

    Recombinant activated factor VII (rFVIIa) and plasma-derived factor VII (pdFVII) are used to prevent bleedings in severe FVII deficient patients, despite their short half-lifes. It is suggested that FVII levels of 15-20 IU/dL are sufficient to maintain hemostasis. We analyzed the pharmacodynamic effects of FVII substitution therapy in the Nijmegen Hemostasis Assay (NHA) that simultaneously measures thrombin and plasmin generation. Ten severe FVII deficient patients were treated with 20 μg/kg rFVIIa or 25 IU/kg pdFVII in a cross-over design. Thrombin generation lag-time (TG-LT) was identified as an effect-response parameter. Pharmacodynamic analysis using a maximum effect model showed 50% reduction of the TG-LT effect at ~2 IU/dL FVII activity for both rFVIIa and pdFVII. The FVII activity to obtain TG-LT comparable to the upper limit of normal range in healthy controls (4 min) was given by the effective concentration (ECnormal), showing sufficient hemostasis at 3-4 IU/dL FVII activity. No association was seen between FVII activity and other thrombin or plasmin generation parameters as measured by NHA. In conclusion, 3-4 IU/dL FVII activity seems sufficient to maintain hemostasis in patients with severe FVII deficiency during prophylaxis. These data may suggest a potential value for measurement of TG-LT in the monitoring of FVII(a) therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The beneficial effect of a speaker's gestures on the listener's memory for action phrases: The pivotal role of the listener's premotor cortex.

    Science.gov (United States)

    Ianì, Francesco; Burin, Dalila; Salatino, Adriana; Pia, Lorenzo; Ricci, Raffaella; Bucciarelli, Monica

    2018-04-10

    Memory for action phrases improves in the listeners when the speaker accompanies them with gestures compared to when the speaker stays still. Since behavioral studies revealed a pivotal role of the listeners' motor system, we aimed to disentangle the role of primary motor and premotor cortices. Participants had to recall phrases uttered by a speaker in two conditions: in the gesture condition, the speaker performed gestures congruent with the action; in the no-gesture condition, the speaker stayed still. In Experiment 1, half of the participants underwent inhibitory rTMS over the hand/arm region of the left premotor cortex (PMC) and the other half over the hand/arm region of the left primary motor cortex (M1). The enactment effect disappeared only following rTMS over PMC. In Experiment 2, we detected the usual enactment effect after rTMS over vertex, thereby excluding possible nonspecific rTMS effects. These findings suggest that the information encoded in the premotor cortex is a crucial part of the memory trace. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Evidence for a neural correlate of a framing effect: bias-specific activity in the ventromedial prefrontal cortex during credibility judgments.

    Science.gov (United States)

    Deppe, M; Schwindt, W; Krämer, J; Kugel, H; Plassmann, H; Kenning, P; Ringelstein, E B

    2005-11-15

    Neural processes within the medial prefrontal cortex play a crucial role in assessing and integrating emotional and other implicit information during decision-making. Phylogenetically, it was important for the individual to assess the relevance of all kinds of environmental stimuli in order to adapt behavior in a flexible manner. Consequently, we can in principle not exclude that environmental information covertly influences the evaluation of actually decision relevant facts ("framing effect"). To test the hypothesis that the medial prefrontal cortex is involved into a framing effect we employed functional magnetic resonance imaging (fMRI) during a binary credibility judgment task. Twenty-one subjects were asked to judge 30 normalized news magazine headlines by forced answers as "true" or "false". To confound the judgments by formally irrelevant framing information we presented each of the headlines in four different news magazines characterized by varying credibility. For each subject the susceptibility to the judgment confounder (framing information) was assessed by magazine-specific modifications of the answers given. We could show that individual activity changes of the ventromedial prefrontal cortex during the judgments correlate with the degree of an individual's susceptibility to the framing information. We found (i) a neural correlate of a framing effect as postulated by behavioral decision theorists that (ii) reflects interindividual differences in the degree of the susceptibility to framing information.

  3. Layer- and cell-type-specific subthreshold and suprathreshold effects of long-term monocular deprivation in rat visual cortex.

    Science.gov (United States)

    Medini, Paolo

    2011-11-23

    Connectivity and dendritic properties are determinants of plasticity that are layer and cell-type specific in the neocortex. However, the impact of experience-dependent plasticity at the level of synaptic inputs and spike outputs remains unclear along vertical cortical microcircuits. Here I compared subthreshold and suprathreshold sensitivity to prolonged monocular deprivation (MD) in rat binocular visual cortex in layer 4 and layer 2/3 pyramids (4Ps and 2/3Ps) and in thick-tufted and nontufted layer 5 pyramids (5TPs and 5NPs), which innervate different extracortical targets. In normal rats, 5TPs and 2/3Ps are the most binocular in terms of synaptic inputs, and 5NPs are the least. Spike responses of all 5TPs were highly binocular, whereas those of 2/3Ps were dominated by either the contralateral or ipsilateral eye. MD dramatically shifted the ocular preference of 2/3Ps and 4Ps, mostly by depressing deprived-eye inputs. Plasticity was profoundly different in layer 5. The subthreshold ocular preference shift was sevenfold smaller in 5TPs because of smaller depression of deprived inputs combined with a generalized loss of responsiveness, and was undetectable in 5NPs. Despite their modest ocular dominance change, spike responses of 5TPs consistently lost their typically high binocularity during MD. The comparison of MD effects on 2/3Ps and 5TPs, the main affected output cells of vertical microcircuits, indicated that subthreshold plasticity is not uniquely determined by the initial degree of input binocularity. The data raise the question of whether 5TPs are driven solely by 2/3Ps during MD. The different suprathreshold plasticity of the two cell populations could underlie distinct functional deficits in amblyopia.

  4. Sex-specific effects of early life stress on social interaction and prefrontal cortex dendritic morphology in young rats.

    Science.gov (United States)

    Farrell, M R; Holland, F H; Shansky, R M; Brenhouse, H C

    2016-09-01

    Early life stress has been linked to depression, anxiety, and behavior disorders in adolescence and adulthood. The medial prefrontal cortex (mPFC) is implicated in stress-related psychopathology, is a target for stress hormones, and mediates social behavior. The present study investigated sex differences in early-life stress effects on juvenile social interaction and adolescent mPFC dendritic morphology in rats using a maternal separation (MS) paradigm. Half of the rat pups of each sex were separated from their mother for 4h a day between postnatal days 2 and 21, while the other half remained with their mother in the animal facilities and were exposed to minimal handling. At postnatal day 25 (P25; juvenility), rats underwent a social interaction test with an age and sex matched conspecific. Distance from conspecific, approach and avoidance behaviors, nose-to-nose contacts, and general locomotion were measured. Rats were euthanized at postnatal day 40 (P40; adolescence), and randomly selected infralimbic pyramidal neurons were filled with Lucifer yellow using iontophoretic microinjections, imaged in 3D, and then analyzed for dendritic arborization, spine density, and spine morphology. Early-life stress increased the latency to make nose-to-nose contact at P25 in females but not males. At P40, early-life stress increased infralimbic apical dendritic branch number and length and decreased thin spine density in stressed female rats. These results indicate that MS during the postnatal period influenced juvenile social behavior and mPFC dendritic arborization in a sex-specific manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Upregulation of orexin/hypocretin expression in aged rats: Effects on feeding latency and neurotransmission in the insular cortex.

    Science.gov (United States)

    Hagar, Janel M; Macht, Victoria A; Wilson, Steven P; Fadel, James R

    2017-05-14

    Aging is associated with changes in numerous homeostatic functions, such as food intake, that are thought to be mediated by the hypothalamus. Orexin/hypocretin neurons of the hypothalamus regulate several physiological functions, including feeding, sleep and wakefulness. Evidence from both clinical and animal studies supports the notion that aging is associated with loss or dysregulation of the orexin system. Here, we used virus-mediated gene transfer to manipulate expression of orexin peptides in young and aged rats and examined behavioral and neurochemical correlates of food intake in these animals. Aged rats showed slower feeding latencies when presented with palatable food compared to young control rats, and these deficits were ameliorated by upregulation of orexin expression. Similarly, young animals treated with a virus designed to decrease preproorexin expression showed longer feeding latencies reminiscent of aged control rats. Feeding was also associated with increased acetylcholine, glutamate and GABA efflux in insular cortex of young control animals. Orexin upregulation did not restore deficits in feeding-elicited release of these neurotransmitters in aged rats, but did enhance basal neurotransmitter levels which may have contributed to the behavioral correlates of these genetic manipulations. These studies demonstrate that age-related deficits in behavioral and neurochemical measures of feeding are likely to be mediated, in part, by the orexin system. Because these same neurotransmitter systems have been shown to underlie orexin effects on cognition, treatments which increase orexin function may have potential for improving both physiological and cognitive manifestations of certain age-related disorders. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Effects of disrupting medial prefrontal cortex GABA transmission on decision-making in a rodent gambling task.

    Science.gov (United States)

    Paine, T A; O'Hara, A; Plaut, B; Lowes, D C

    2015-05-01

    Decision-making is a complex cognitive process that is mediated, in part, by subregions of the medial prefrontal cortex (PFC). Decision-making is impaired in a number of psychiatric conditions including schizophrenia. Notably, people with schizophrenia exhibit reductions in GABA function in the same PFC areas that are implicated in decision-making. For example, expression of the GABA-synthesizing enzyme GAD67 is reduced in the dorsolateral PFC of people with schizophrenia. The goal of this experiment was to determine whether disrupting cortical GABA transmission impairs decision-making using a rodent gambling task (rGT). Rats were trained on the rGT until they reached stable performance and then were implanted with guide cannulae aimed at the medial PFC. Following recovery, the effects of intra-PFC infusions of the GABAA receptor antagonist bicuculline methiodide (BMI) or the GABA synthesis inhibitor L-allylglycine (LAG) on performance on the rGT were assessed. Intracortical infusions of BMI (25 ng/μl/side), but not LAG (10 μg/μl/side), altered decision-making. Following BMI infusions, rats made fewer advantageous choices. Follow-up experiments suggested that the change in decision-making was due to a change in the sensitivity to the punishments, rather than a change in the sensitivity to reward magnitudes, associated with each outcome. LAG infusions increased premature responding, a measure of response inhibition, but did not affect decision-making. Blocking GABAA receptors, but not inhibiting cortical GABA synthesis, within the medial PFC affects decision-making in the rGT. These data provide proof-of-concept evidence that disruptions in GABA transmission can contribute to the decision-making deficits in schizophrenia.

  7. Association of ACE and FACTOR VII gene variability with the risk of coronary heart disease in north Indian population.

    Science.gov (United States)

    Sobti, R C; Maithil, Nishi; Thakur, Hitender; Sharma, Yashpaul; Talwar, K K

    2010-08-01

    The angiotensin converting enzyme (ACE) is a key factor in the production of angiotensin II and in the degradation of bradykinin. Chronic exposure to high levels of circulating and tissue ACE predispose to vascular wall thickening and atherosclerosis. Factor VII (FACTOR VII) is the first enzyme in the extrinsic pathway of the blood coagulation system and plays a key role in hemostasis; it also contributes to the occurrence of thrombotic events. In this study, we have examined the association of ACE and FACTOR VII gene in coronary heart disease patients (n = 300) and their age-matched controls (n = 300). Genotyping was done by PCR-RFLP method. No significant difference was observed in the distribution of I/D genotypes of ACE between cases and controls. In case of FACTOR VII R353Q polymorphism, there was not much difference in the distribution of alleles. AA genotype had protective effect for CHD (OR 0.56, 95% CI 0.37-0.83, P = 0.001). In case of FACTOR VII VNTR, there was difference in the distribution of alleles, H6 (73.5) and H7 (25.5) in cases, and H6 (70.5) and H7 (30.5) in controls. H6H7 and H7H7 genotypes had a protective effect for CHD with OR 0.27, 95% CI 0.18-0.41, P FACTOR VII R353Q and H6H7 and H7H7 genotypes of FACTOR VII VNTR showed protective effect for CHD.

  8. Analysis of time series for postal shipments in Regional VII East Java Indonesia

    Science.gov (United States)

    Kusrini, DE; Ulama, B. S. S.; Aridinanti, L.

    2018-03-01

    The change of number delivery goods through PT. Pos Regional VII East Java Indonesia indicates that the trend of increasing and decreasing the delivery of documents and non-documents in PT. Pos Regional VII East Java Indonesia is strongly influenced by conditions outside of PT. Pos Regional VII East Java Indonesia so that the prediction the number of document and non-documents requires a model that can accommodate it. Based on the time series plot monthly data fluctuations occur from 2013-2016 then the model is done using ARIMA or seasonal ARIMA and selected the best model based on the smallest AIC value. The results of data analysis about the number of shipments on each product sent through the Sub-Regional Postal Office VII East Java indicates that there are 5 post offices of 26 post offices entering the territory. The largest number of shipments is available on the PPB (Paket Pos Biasa is regular package shipment/non-document ) and SKH (Surat Kilat Khusus is Special Express Mail/document) products. The time series model generated is largely a Random walk model meaning that the number of shipment in the future is influenced by random effects that are difficult to predict. Some are AR and MA models, except for Express shipment products with Malang post office destination which has seasonal ARIMA model on lag 6 and 12. This means that the number of items in the following month is affected by the number of items in the previous 6 months.

  9. Mechanism of action of recombinant activated factor VII: an update.

    Science.gov (United States)

    Hedner, Ulla

    2006-01-01

    Bleeding episodes in patients with hemophilia and inhibitors must be managed using agents that are hemostatically active in the absence of factor VIII or IX. Activated prothrombin complex concentrates have long been used in this context. However, the search for safer and more effective agents has led to the development of recombinant activated factor VII (rFVIIa; NovoSeven, Novo Nordisk, Bagsvaerd, Denmark). This paper presents an update on the mechanism of action of rFVIIa, and describes how pharmacologic doses of this agent enhance thrombin production and thus contribute to the development of a stable, lysis-resistant fibrin plug at the site of vessel damage. This mechanism explains the reported efficacy of rFVIIa in a range of clinical situations characterized by impaired thrombin generation.

  10. Convenient synthesis of bis(alkoxy)rhenium(VII) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.; Al-Ajlouni, A.M.; Espenson, J.H. [Iowa State Univ., Ames, IA (United States)

    1996-02-28

    The study of high-oxidation-state organorhenium compounds has been a field of continuing activity, thanks to the success of methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) in catalytic processes. This catalyst is effective in oxidations, olefin metathesis, the olefination of aldehydes, and the preparation of other compounds with three-membered rings. The syntheses of some rhenium compounds derived form MTO have been reported. Epoxide formation is a key reaction, and it bears directly on these findings reported here. Re(VII) complexes containing a chelated bis(diolate) ligand can be synthesized by refluxing MTO with 2,3-dimethyl-2,3-diol. Here, the authors report a more convenient method for this preparation. A different series of related compounds consists of chelated bis(diolates) of the Cp*Re-oxo series, Cp*ReO-(diolate).

  11. Effect of stimulation by foliage plant display images on prefrontal cortex activity: a comparison with stimulation using actual foliage plants.

    Science.gov (United States)

    Igarashi, Miho; Song, Chorong; Ikei, Harumi; Miyazaki, Yoshifumi

    2015-01-01

    Natural scenes like forests and flowers evoke neurophysiological responses that can suppress anxiety and relieve stress. We examined whether images of natural objects can elicit neural responses similar to those evoked by real objects by comparing the activation of the prefrontal cortex during presentation of real foliage plants with a projected image of the same foliage plants. Oxy-hemoglobin concentrations in the prefrontal cortex were measured using time-resolved near-infrared spectroscopy while the subjects viewed the real plants or a projected image of the same plants. Compared with a projected image of foliage plants, viewing the actual foliage plants significantly increased oxy-hemoglobin concentrations in the prefrontal cortex. However, using the modified semantic differential method, subjective emotional response ratings ("comfortable vs. uncomfortable" and "relaxed vs. awakening") were similar for both stimuli. The frontal cortex responded differently to presentation of actual plants compared with images of these plants even when the subjective emotional response was similar. These results may help explain the physical and mental health benefits of urban, domestic, and workplace foliage. © 2014 The Authors. Journal of Neuroimaging published by the American Society of Neuroimaging.

  12. Use of recombinant factor VII for tooth extractions in a patient with severe congenital factor VII deficiency: a case report.

    Science.gov (United States)

    Weinstock, Robert J; Onyejiuwa, Andrew; Shnayder, Garry; Clarkson, Earl I

    2015-04-01

    Patients with factor VII deficiency have an increased risk of prolonged perioperative hemorrhage. In this article, the authors present a case of severe factor VII deficiency in a patient who required tooth extraction. A 44-year-old woman with severe congenital factor VII deficiency sought care for a symptomatic, carious, and nonrestorable maxillary right second molar that required extraction. The authors obtained hematologic consultation, and the patient underwent the extraction under general anesthesia in the inpatient setting. Perioperative management included performing relevant laboratory studies, preoperative recombinant factor VII infusion, and postoperative intravenous aminocaproic acid administration. No hemorrhagic complications occurred throughout the perioperative course. The degree of factor VII deficiency correlates poorly with bleeding risk. Perioperative management is variable, requiring preoperative consultation with a hematologist. Copyright © 2015 American Dental Association. Published by Elsevier Inc. All rights reserved.

  13. Social isolation stress and chronic glutathione deficiency have a common effect on the glutamine-to-glutamate ratio and myo-inositol concentration in the mouse frontal cortex.

    Science.gov (United States)

    Corcoba, Alberto; Gruetter, Rolf; Do, Kim Q; Duarte, João M N

    2017-09-01

    Environmental stress can interact with genetic predisposition to increase the risk of developing psychopathology. In this work, we tested the hypothesis that social isolation stress interacts with impaired glutathione synthesis and have cumulative effects on the neurochemical profile of the frontal cortex. A mouse model with chronic glutathione deficit induced by knockout (-/-) of the glutamate-cysteine ligase modulatory subunit (Gclm) was exposed to social isolation stress from weaning to post-natal day 65. Using magnetic resonance methods at high-field (14.1 T), we analysed the neurochemical profile in the frontal cortex, brain size and ventricular volume of adult animals. Glutathione deficit was accompanied by elevated concentrations of N-acetylaspartate, alanine, and glutamine, as well as the ratio of glutamine-to-glutamate (Gln/Glu), and by a reduction in levels of myo-inositol and choline-containing compounds in the frontal cortex of -/- animals with respect to wild-type littermates. Although there was no significant interaction between social isolation stress and glutathione deficiency, mice reared in isolation displayed lower myo-inositol concentration (-8.4%, p social isolation had no effect on these parameters. We conclude that social isolation caused neurochemical alterations that may add to those associated to impaired glutathione synthesis. © 2017 International Society for Neurochemistry.

  14. Overview on W VII-X

    International Nuclear Information System (INIS)

    Wobig, H.

    1988-01-01

    Configurations for the W VII-X stellarator are reviewed. The MHD analysis of the Helias configuration with four field periods previously considered shows that the ballooning mode limit of the maximum plasma pressure increases with increasing number of field periods. Interest is focused on five-period Helias configurations with ballooning mode limits around a Beta factor of 5 %. Four configurations are discussed: HS4-12, an improved version of HS4-8; HS5-6, based on a quasi-helical equilibrium; plus two slightly different configurations designated as HS5-7 and HS5-8. It is proposed to increase the dimensions of the whole experiment to R=6.5m and to reduce the magnetic field to B=3T on the axis

  15. Japanese family with congenital factor VII deficiency.

    Science.gov (United States)

    Sakakibara, Kanae; Okayama, Yoshiki; Fukushima, Kenji; Kaji, Shunsaku; Muraoka, Michiko; Arao, Yujiro; Shimada, Akira

    2015-10-01

    Congenital factor VII (FVII) deficiency is a rare bleeding disorder with autosomal recessive inheritance. The present female patient was diagnosed with congenital FVII deficiency because of low hepaplastin test (HPT), although vitamin K was given. Heterozygous p.A191T mutation was detected in the peripheral blood, and the same mutation was also found in the mother and sister. To the best of our knowledge, this is the fourth reported case of p.A191T mutation of FVII in the literature and the first to be reported in Japan. FVII coagulation activity (FVII:C) in asymptomatic heterozygous carriers is mildly reduced. Therefore, some patients may not be accurately diagnosed with congenital FVII deficiency. In infants with low HPT without vitamin K deficiency, congenital FVII deficiency should be considered. © 2015 Japan Pediatric Society.

  16. Administration of recombinant activated factor VII in the intensive care unit after complex cardiovascular surgery: clinical and economic outcomes.

    Science.gov (United States)

    Uber, Walter E; Toole, John M; Stroud, Martha R; Haney, Jason S; Lazarchick, John; Crawford, Fred A; Ikonomidis, John S

    2011-06-01

    Refractory bleeding after complex cardiovascular surgery often leads to increased length of stay, cost, morbidity, and mortality. Recombinant activated factor VII administered in the intensive care unit can reduce bleeding, transfusion, and surgical re-exploration. We retrospectively compared factor VII administration in the intensive care unit with reoperation for refractory bleeding after complex cardiovascular surgery. From 1501 patients who underwent cardiovascular procedures between December 2003 and September 2007, 415 high-risk patients were identified. From this cohort, 24 patients were divided into 2 groups based on whether they either received factor VII in the intensive care unit (n = 12) or underwent reoperation (n = 12) for refractory bleeding. Preoperative and postoperative data were collected to compare efficacy, safety, and economic outcomes. In-hospital survival for both groups was 100%. Factor VII was comparable with reoperation in achieving hemostasis, with both groups demonstrating decreases in chest tube output and need for blood products. Freedom from reoperation was achieved in 75% of patients receiving factor VII, whereas reoperation was effective in achieving hemostasis alone in 83.3% of patients. Prothrombin time, international normalized ratio, and median operating room time were significantly less (P factor VII. Both groups had no statistically significant differences in other efficacy, safety, or economic outcomes. Factor VII administration in the intensive care unit appears comparable with reoperation for refractory bleeding after complex cardiovascular surgical procedures and might represent an alternative to reoperation in selected patients. Future prospective, randomized controlled trials might further define its role. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  17. Prenatal Co 60-irradiation effects on visual acuity, maturation of the fovea in the retina, and the striate cortex of squirrel monkey offspring

    International Nuclear Information System (INIS)

    Ordy, J.M.; Brizzee, K.R.; Young, R.

    1982-01-01

    In the present study, foveal striate cortex depth increased significantly from 1400 μm to 1650 μm by 90 days, whereas prenatal 100 rad exposure resulted in a significant reduction of foveal striate cortex thickness at 90 days of age. From birth to 90 days, cell packing density decreased, whereas overall neuropil density increased in both control and 100 rad exposed offspring. Regarding the effects of prenatal radiation on Meynert cells, there was a significant difference in the time course of early postnatal spine frequency reduction on apical dendrites of Meynert cells, particularly in laminae V and IV. It seems possible that the significant differences in the time course of perinatal increases and subsequent decreases of spines and synapses on such pyramidal neurons as Meynert cells in the deep layers of the striate cortex may play an important role in the development of binocular acuity. Future follow-up studies will be essential from 90 days to 1 and 2 years to determine the extent of recovery from, and persistence of visual acuity impairments in relation to structural alterations in the foveal projection of the retino-geniculo-striate system of diurnal primates. (orig./MG)

  18. Comparative study on the effects of type 1 and type 2 diabetes on structural changes and hormonal output of the adrenal cortex in male Wistar rats

    Directory of Open Access Journals (Sweden)

    Elahi-Moghaddam Zohreh

    2013-01-01

    Full Text Available Abstract Introduction Diabetes is one of the most common endocrine disorders characterized by hyperglycemia due to defects in insulin secretion, insulin function, or both. Causing dysfunction in the body general metabolism, diabetes-induced chronic hyperglycemia leads to alterations in those endocrine glands involved in regulating the body metabolism. In this line, the present study has been conducted to investigate the effects of type 1 and type 2 diabetes on the structural changes and hormonal output of the adrenal cortex in male Wistar rat. Methods Eighteen male Wistar rats were divided into three groups including control, experimental type 1 diabetes (subcutaneous injection of 135 mg/kg alloxan and experimental type 2 diabetes (8 weeks treatment with drinking water containing 10% fructose. Two months after the induction of both types of diabetes, the level of blood biochemical factors (glucose, insulin, cortisol, triglycerides, cholesterol, LDL, and HDL were measured. Structural changes of the adrenal cortex were then evaluated, using stereological techniques. Results Serum biochemical analysis showed significant difference in the levels of glucose, triglycerides, insulin and cortisol in experimental groups, compared to the control. The results of structural alterations were also indicative of increase in adrenal cortex volume in both types of diabetes. Conclusion Probably through increasing HPA axis activity, type1 diabetes-induced hyperglycemia leads to adrenal hypertrophy and increase the hormonal output of adrenal gland.

  19. [Effects of Betel shisanwei ingredients pill on AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depressive rats].

    Science.gov (United States)

    Tong, Hai-Ying; Wu, Jisiguleng; Bai, Liang-Feng; Bao, Wu-Ye; Hu, Rilebagen; Li, Jing; Zhang, Yue

    2014-05-01

    To observe the effects of Mongolian pharmaceutical Betel shisanwei ingredients pill on AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depressive rats. Sixty male Wistar rats were randomly divided into six groups according to the sugar consumption test (10 rats in each group), normal control group,model group,fluoxetine group (3.3 mg x kg(-1)) and low dose, medium dose and high dose group (0.25, 0.5, 1 g x kg(-1)) of Betel shisanwei ingredients pill. Except the normal control,the other groups were treated with the chronic unpredictable mild stress stimulation combined with lonely raising for 28 days. 10 mL x kg(-1) of drugs were given to each rat once daily,continuously for 28 days. The AC activity of the hippocampus and prefrontal cortex were determined by radiation immunity analysis (RIA), while cAMP and PKA quantity were determinated by Enzyme-linked immunosorbent (ELISA). The AC activity, cAMP and PKA quantity of hippocampus and prefrontal of mouse model of Chronic stress depression decreased significantly than those of control group (P Betel shisanwei ingredients pill group indecreased significantly than those of model group (P Betel shisanwei ingredients pill. The AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depression model of rats is down-regulated, whereas Mongolian pharmaceutical Betel shisanwei ingredients pill could up-regulated it to resist depression.

  20. Chronic motor cortex stimulation in patients with advanced Parkinson's disease and effects on striatal dopaminergic transmission as assessed by 123I-FP-CIT SPECT: a preliminary report.

    Science.gov (United States)

    Di Giuda, Daniela; Calcagni, Maria L; Totaro, Manuela; Cocciolillo, Fabrizio; Piano, Carla; Soleti, Francesco; Fasano, Alfonso; Cioni, Beatrice; Bentivoglio, Anna R; Giordano, Alessandro

    2012-09-01

    The objective of this study was to assess striatal dopamine transporter availability in patients with advanced Parkinson's disease (PD) before and after 13 months of unilateral extradural motor cortex stimulation (EMCS) with [123I]N-ω-fluoropropyl-2-β-carbo-methoxy-3-β-(4-iodophenyl)nortropane single photon emission computed tomography (123I-FP-CIT SPECT). Six PD patients (five women and one man, aged 63.2 ± 5.6 years) underwent 123I-FP-CIT SPECT and clinical evaluation [Unified Parkinson's Disease Rating Scale (UPDRS) and Parkinson's Disease Quality of Life Scale (PDQL)] preoperatively, 8 and 13 months after EMCS. Striatum-to-occipital cortex, caudate-to-occipital cortex and putamen-to-occipital cortex 123I-FP-CIT uptake ratios were calculated using the region of interest method. Total and part III UPDRS scores significantly decreased at 8 and 13 months after stimulation (P=0.02 and 0.04, respectively); UPDRS part II and PDQL scores improved after 13 months (P=0.02 and 0.04, respectively). No significant differences in 123I-FP-CIT uptake ratios between baseline and follow-up were found in the examined regions. However, a progressive reduction in 123I-FP-CIT uptake ratios in the striatum contralateral to the implant was found. In contrast, no further decrease in 123I-FP-CIT uptake ratios was detected in the striatum ipsilateral to the implant. There were no correlations between changes in 123I-FP-CIT uptake ratios with disease duration, changes in medication dosage and motor UPDRS scores. Despite a small but highly selected sample of advanced PD patients, our results showed that no further dopamine transporter reduction occurred in the striatum ipsilateral to the implant side. This finding could lead to the hypothesis that EMCS might elicit a 'neuroprotective' effect, as suggested by significant clinical benefits.

  1. Task-Relevant and Accessory Items in Working Memory Have Opposite Effects on Activity in Extrastriate Cortex

    OpenAIRE

    Peters, J.C.; Roelfsema, P.R.; Goebel, R.

    2012-01-01

    During visual search, the working memory (WM) representation of the search target guides attention to matching items in the visual scene. However, we can hold multiple items in WM. Do all these items guide attention at the same time? Using a new functional magnetic resonance imaging visual search paradigm, we found that items in WM can attain two different states that influence activity in extrastriate visual cortex in opposite directions: whereas the target item in WM enhanced processing of ...

  2. Effects of noise-induced hearing loss on parvalbumin and perineuronal net expression in the mouse primary auditory cortex.

    Science.gov (United States)

    Nguyen, Anna; Khaleel, Haroun M; Razak, Khaleel A

    2017-07-01

    Noise induced hearing loss is associated with increased excitability in the central auditory system but the cellular correlates of such changes remain to be characterized. Here we tested the hypothesis that noise-induced hearing loss causes deterioration of perineuronal nets (PNNs) in the auditory cortex of mice. PNNs are specialized extracellular matrix components that commonly enwrap cortical parvalbumin (PV) containing GABAergic interneurons. Compared to somatosensory and visual cortex, relatively less is known about PV/PNN expression patterns in the primary auditory cortex (A1). Whether changes to cortical PNNs follow acoustic trauma remains unclear. The first aim of this study was to characterize PV/PNN expression in A1 of adult mice. PNNs increase excitability of PV+ inhibitory neurons and confer protection to these neurons against oxidative stress. Decreased PV/PNN expression may therefore lead to a reduction in cortical inhibition. The second aim of this study was to examine PV/PNN expression in superficial (I-IV) and deep cortical layers (V-VI) following noise trauma. Exposing mice to loud noise caused an increase in hearing threshold that lasted at least 30 days. PV and PNN expression in A1 was analyzed at 1, 10 and 30 days following the exposure. No significant changes were observed in the density of PV+, PNN+, or PV/PNN co-localized cells following hearing loss. However, a significant layer- and cell type-specific decrease in PNN intensity was seen following hearing loss. Some changes were present even at 1 day following noise exposure. Attenuation of PNN may contribute to changes in excitability in cortex following noise trauma. The regulation of PNN may open up a temporal window for altered excitability in the adult brain that is then stabilized at a new and potentially pathological level such as in tinnitus. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Acquired factor VII deficiency associated with acute myeloid leukemia.

    Science.gov (United States)

    Anoun, Soumaya; Lamchahab, Mouna; Oukkache, Bouchra; Qachouh, Maryam; Benchekroun, Said; Quessar, Asmaa

    2015-04-01

    Isolated acquired factor VII deficiency is a rare coagulopathy. It has been reported in 31 patients with malignancy, sepsis, postoperatively, aplastic anemia, and during bone marrow transplantation. We discuss, through a new case of acquired factor VII deficiency, the characteristics of this disease when it is associated with acute myeloid leukemia. Acquired factor VII deficiency in hematological diseases can be caused by intensive chemotherapy, infections, or hepatic dysfunction. The best treatment in developing countries remains corticosteroids associated with plasma exchange, frozen plasma, and antibiotics.

  4. Effects of TMS on different stages of motor and non-motor verb processing in the primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Liuba Papeo

    Full Text Available The embodied cognition hypothesis suggests that motor and premotor areas are automatically and necessarily involved in understanding action language, as word conceptual representations are embodied. This transcranial magnetic stimulation (TMS study explores the role of the left primary motor cortex in action-verb processing. TMS-induced motor-evoked potentials from right-hand muscles were recorded as a measure of M1 activity, while participants were asked either to judge explicitly whether a verb was action-related (semantic task or to decide on the number of syllables in a verb (syllabic task. TMS was applied in three different experiments at 170, 350 and 500 ms post-stimulus during both tasks to identify when the enhancement of M1 activity occurred during word processing. The delays between stimulus onset and magnetic stimulation were consistent with electrophysiological studies, suggesting that word recognition can be differentiated into early (within 200 ms and late (within 400 ms lexical-semantic stages, and post-conceptual stages. Reaction times and accuracy were recorded to measure the extent to which the participants' linguistic performance was affected by the interference of TMS with M1 activity. No enhancement of M1 activity specific for action verbs was found at 170 and 350 ms post-stimulus, when lexical-semantic processes are presumed to occur (Experiments 1-2. When TMS was applied at 500 ms post-stimulus (Experiment 3, processing action verbs, compared with non-action verbs, increased the M1-activity in the semantic task and decreased it in the syllabic task. This effect was specific for hand-action verbs and was not observed for action-verbs related to other body parts. Neither accuracy nor RTs were affected by TMS. These findings suggest that the lexical-semantic processing of action verbs does not automatically activate the M1. This area seems to be rather involved in post-conceptual processing that follows the retrieval of motor

  5. Effects of medial prefrontal cortex lesions in rats on the what-where-when memory of a fear conditioning event.

    Science.gov (United States)

    Li, Jay-Shake; Hsiao, Kun-Yuan; Chen, Wei-Min

    2011-03-17

    Previous animal studies have defined the ability to remember the details of what, where, and when of an event as an episodic-like memory to be used to model episodic memory in humans. Numerous findings indicate that the hippocampal-frontal cortical circuitry plays a major part in its neural mechanism. Researchers have intensively studied roles of diverse hippocampus sub-regions using animal models. By contrast, the impact of prefrontal cortex lesions on episodic-like memory in animals is still unknown. Here we show that Wistar rats with bilateral medial prefrontal cortex lesions failed to use the temporal-contextual information to retrieve memory of a fear-conditioning event, indicating impairments in their episodic-like memory. Subsequent experiments excluded alternative interpretations that the manipulation impaired the fear-conditioning per se, or interfered with the sensory preconditioning process. We concluded that damages in this area might impair temporal information processing, or interfere with integrating temporal and contextual elements of fear-conditioning events to form a conjunctive entity. These findings can help understand how the medial prefrontal cortex contributes to episodic-like memory. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. A rare combination: congenital factor VII deficiency with Chiari malformation.

    Science.gov (United States)

    Bay, Ali; Aktekin, Elif; Erkutlu, Ibrahim

    2015-12-01

    Congenital factor (VII) deficiency is a rare bleeding disorder. We present a patient with congenital FVII deficiency and congenital hydrocephalus who underwent a ventriculoperitoneal shunt operation and needed no prophylaxis after the procedure.

  7. TEH võrgustik - viis aastat Eestis / Marika Kusnets

    Index Scriptorium Estoniae

    Kusnets, Marika

    2005-01-01

    Eestis on tervist edendavate haiglate (TEH) võrgustik tegutsenud juba viis aastat, sellega on liitunud 22 haiglat. Tänavust konverentsi peeti teemal "Tervise edendamine ja kvaliteedi tagamine haiglas: standardid ja praktika"

  8. Effects of Crocin on Learning and Memory in Rats Under Chronic Restraint Stress with Special Focus on the Hippocampal and Frontal Cortex Corticosterone Levels.

    Science.gov (United States)

    Dastgerdi, Azadehalsadat Hosseini; Radahmadi, Maryam; Pourshanazari, Ali Asghar; Dastgerdi, Hajaralsadat Hosseini

    2017-01-01

    Chronic stress adversely influences brain functions while crocin, as an effective component of saffron, exhibits positive effects on memory processes. This study investigated the effects of different doses of crocin on the improvement of learning and memory as well as corticosterone (CORT) levels in the hippocampus and frontal cortex of rats subjected to chronic stress. Forty male rats were randomly allocated to five different groups ( n = 8): Control, sham; stress (6 h/day for 21 days) groups, and two groups receiving daily intraperitoneal injections of one of two doses (30 and 60 mg/kg) of crocin accompanied by 21 days of restraint stress. Latency was evaluated as a brain function using the passive avoidance test before and one-day after a foot shock. CORT levels were measured in the homogenized hippocampus and frontal cortex. Results revealed that chronic stress had a significantly ( P effect on memory. Crocin (30 and 60 mg/kg), however, gave increase to significantly ( P effects than its higher (60 mg/kg) dose on learning and memory under chronic stress conditions. Moreover, it was speculated that different doses of crocin act on different neurotransmitters and biochemical factors in the brain.

  9. Faktor-faktor Yang Memengaruhi Produksi Gula PTPN VII (Persero)

    OpenAIRE

    Savitri, Rizky; Widyastutik, Widyastutik

    2013-01-01

    This study aimed to analyze the influence of the level of sugar cane yield, labor, production process period, and supporting materials on the production of PTPN VII (Persero) PG. Cinta Manis, as well as analyzing the elasticity of production and business scale of PTPN VII (Persero) PG. Cinta Manis. The method used to analyze the data were quantitative analysis of Cobb Douglas production function with ordinary least square method to observe variable influences of PG. Cinta Manis sugar product...

  10. Preparation of factor VII concentrate using CNBr-activated Sepharose 4B immunoaffinity chromatography

    OpenAIRE

    Mousavi Hosseini, Kamran; Nasiri, Saleh

    2015-01-01

    Background: Factor VII concentrates are used in patients with congenital or acquired factor VII deficiency or treatment of hemophilia patients with inhibitors. In this research, immunoaffinity chromatography was used to purify factor VII from prothrombin complex (Prothrombin- Proconvertin-Stuart Factor-Antihemophilic Factor B or PPSB) which contains coagulation factors II, VII, IX and X. The aim of this study was to improve purity, safety and tolerability as a highly purified factor VII conce...

  11. Preparation and Characterisation of tri-n-octylamine Microcapsule (TOA-MC) as Selective Separation of Re (VII)

    International Nuclear Information System (INIS)

    Tsai, T.L.; Mimura, H.; Syed, M.R.; Yin, X.B.; Lee, C.P.; Tsai, S.C.

    2015-01-01

    Much attention has been paid on the selective separation and effective utilisation of 99 Tc from high level radioactive liquid waste (HLLW). TOA-MC was developed as an absorbent for Re (VII), a substitute for Tc (VII) due to their similarities of chemical behaviour in this study. The uptake (%), normally above 95% of Re (VII) for TOA-MC in the presence of dilute HNO 3 (0.01∼0.1 M) was strongly retained and decreased with higher HNO 3 concentration by batch method. The surface morphology and thermal stability of microcapsules were characterised by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA), respectively. The diameters in the range of 700-800 μm and size distribution of the microcapsules were examined using digital microscope (DM). The chemical structures of the synthesised microcapsules and two starting materials of TOA and sodium alginate (NaALG) were performed using Fourier transform infrared spectroscopy (FTIR). (authors)

  12. Acute pharmacogenetic activation of medial prefrontal cortex ...

    Indian Academy of Sciences (India)

    Sthitapranjya Pati

    2018-01-24

    Jan 24, 2018 ... Exclusively Activated by Designer Drugs (DREADDs) have provided novel ... ad libitum access to food and water. ... testing. 2.3 Drug treatment and behavioural tests .... IL cortex (figure 3E, two-way ANOVA: interaction effect,.

  13. CEREBRAL CORTEX DAMAGE INDUCED BY ACUTE ORAL ...

    African Journals Online (AJOL)

    2018-02-28

    Feb 28, 2018 ... This study examines alcohol-induced cerebral cortex damage and the association with oxidative ... alcohol has profound effects on the function ... Chronic use of ..... Alcohol induced brain damage and liver damage in young.

  14. [Effect of Reading a Book on a Tablet Computer on Cerebral Blood Flow in the Prefrontal Cortex].

    Science.gov (United States)

    Sugiura, Akihiro; Eto, Takuya; Kinoshita, Fumiya; Takada, Hiroki

    2018-01-01

    By measuring cerebral blood flow in the prefrontal cortex, we aimed to determine how reading a book on a tablet computer affects sleep. Seven students (7 men age range, 21-32 years) participated in this study. In a controlled illuminance environment, the subjects read a novel in printed form or on a tablet computer from any distance. As the subjects were reading, the cerebral blood flow in their prefrontal cortex was measured by near-infrared spectroscopy. The study protocol was as follows. 1) Subjects mentally counted a sequence of numbers for 30 s as a pretest to standardized thinking and then 2) read the novel for 10 min, using the printed book or tablet computer. In step 2), the use of the book or tablet computer was in a random sequence. Subjects rested between the two tasks. Significantly increased brain activity (increase in regional cerebral blood flow) was observed following reading a novel on a tablet computer compared with that after reading a printed book. Furthermore, the region around Broca's area was more active when reading on a tablet computer than when reading a printed book. Considering the results of this study and previous studies on physiological characteristics during nonrapid eye movement sleep, we concluded that reading a book on a tablet computer before the onset of sleep leads to the potential inhibition of sound sleep through mechanisms other than the suppression of melatonin secretion.

  15. Effects of Unilateral Transcranial Direct Current Stimulation of Left Prefrontal Cortex on Processing and Memory of Emotional Visual Stimuli.

    Directory of Open Access Journals (Sweden)

    Stefania Balzarotti

    Full Text Available The dorsolateral prefrontal cortex (DLPFC is generally thought to be involved in affect and emotional processing; however, the specific contribution of each hemisphere continues to be debated. In the present study, we employed unilateral tDCS to test the unique contribution of left DLPFC in the encoding and retrieval of emotional stimuli in healthy subjects. Forty-two right handed undergraduate students received either anodal, cathodal or sham stimulation of left DLPFC while viewing neutral, pleasant, and unpleasant pictures. After completing a filler task, participants were asked to remember as many pictures as possible. Results showed that participants were able to remember a larger amount of emotional (both pleasant and unpleasant pictures than of neutral ones, regardless of the type of tDCS condition. Participants who received anodal stimulation recalled a significantly higher number of pleasant images than participants in the sham and cathodal conditions, while no differences emerged in the recall of neutral and unpleasant pictures. We conclude that our results provide some support to the role of left prefrontal cortex in the encoding and retrieval of pleasant stimuli.

  16. Effects of Unilateral Transcranial Direct Current Stimulation of Left Prefrontal Cortex on Processing and Memory of Emotional Visual Stimuli.

    Science.gov (United States)

    Balzarotti, Stefania; Colombo, Barbara

    2016-01-01

    The dorsolateral prefrontal cortex (DLPFC) is generally thought to be involved in affect and emotional processing; however, the specific contribution of each hemisphere continues to be debated. In the present study, we employed unilateral tDCS to test the unique contribution of left DLPFC in the encoding and retrieval of emotional stimuli in healthy subjects. Forty-two right handed undergraduate students received either anodal, cathodal or sham stimulation of left DLPFC while viewing neutral, pleasant, and unpleasant pictures. After completing a filler task, participants were asked to remember as many pictures as possible. Results showed that participants were able to remember a larger amount of emotional (both pleasant and unpleasant) pictures than of neutral ones, regardless of the type of tDCS condition. Participants who received anodal stimulation recalled a significantly higher number of pleasant images than participants in the sham and cathodal conditions, while no differences emerged in the recall of neutral and unpleasant pictures. We conclude that our results provide some support to the role of left prefrontal cortex in the encoding and retrieval of pleasant stimuli.

  17. Posterior Parietal Cortex and Episodic Encoding: Insights from fMRI Subsequent Memory Effects and Dual Attention Theory

    Science.gov (United States)

    Uncapher, Melina; Wagner, Anthony D.

    2010-01-01

    The formation of episodic memories –– memories for life events –– is affected by attention during event processing. A leading neurobiological model of attention posits two separate yet interacting systems that depend on distinct regions in lateral posterior parietal cortex (PPC). From this dual-attention perspective, dorsal PPC is thought to support the goal-directed allocation of attention, whereas ventral PPC is thought to support reflexive orienting to information that automatically captures attention. To advance understanding of how parietal mechanisms may impact event encoding, we review functional MRI studies that document the relationship between lateral PPC activation during encoding and subsequent memory performance (e.g., later remembering or forgetting). This review reveals that (a) encoding-related activity is frequently observed in human lateral PPC, (b) increased activation in dorsal PPC is associated with later memory success, and (c) increased activation in ventral PPC predominantly correlates with later memory failure. From a dual-attention perspective, these findings suggest that allocating goal-directed attention during event processing increases the probability that the event will be remembered later, whereas the capture of reflexive attention during event processing may have negative consequences for event encoding. The prevalence of encoding-related activation in parietal cortex suggests that neurobiological models of episodic memory should consider how parietal-mediated attentional mechanisms regulate encoding. PMID:19028591

  18. The effects of acute alcohol exposure on the response properties of neurons in visual cortex area 17 of cats

    International Nuclear Information System (INIS)

    Chen Bo; Xia Jing; Li Guangxing; Zhou Yifeng

    2010-01-01

    Physiological and behavioral studies have demonstrated that a number of visual functions such as visual acuity, contrast sensitivity, and motion perception can be impaired by acute alcohol exposure. The orientation- and direction-selective responses of cells in primary visual cortex are thought to participate in the perception of form and motion. To investigate how orientation selectivity and direction selectivity of neurons are influenced by acute alcohol exposure in vivo, we used the extracellular single-unit recording technique to examine the response properties of neurons in primary visual cortex (A17) of adult cats. We found that alcohol reduces spontaneous activity, visual evoked unit responses, the signal-to-noise ratio, and orientation selectivity of A17 cells. In addition, small but detectable changes in both the preferred orientation/direction and the bandwidth of the orientation tuning curve of strongly orientation-biased A17 cells were observed after acute alcohol administration. Our findings may provide physiological evidence for some alcohol-related deficits in visual function observed in behavioral studies.

  19. Posterior parietal cortex and episodic encoding: insights from fMRI subsequent memory effects and dual-attention theory.

    Science.gov (United States)

    Uncapher, Melina R; Wagner, Anthony D

    2009-02-01

    The formation of episodic memories--memories for life events--is affected by attention during event processing. A leading neurobiological model of attention posits two separate yet interacting systems that depend on distinct regions in lateral posterior parietal cortex (PPC). From this dual-attention perspective, dorsal PPC is thought to support the goal-directed allocation of attention, whereas ventral PPC is thought to support reflexive orienting to information that automatically captures attention. To advance understanding of how parietal mechanisms may impact event encoding, we review functional MRI studies that document the relationship between lateral PPC activation during encoding and subsequent memory performance (e.g., later remembering or forgetting). This review reveals that (a) encoding-related activity is frequently observed in human lateral PPC, (b) increased activation in dorsal PPC is associated with later memory success, and (c) increased activation in ventral PPC predominantly correlates with later memory failure. From a dual-attention perspective, these findings suggest that allocating goal-directed attention during event processing increases the probability that the event will be remembered later, whereas the capture of reflexive attention during event processing may have negative consequences for event encoding. The prevalence of encoding-related activation in parietal cortex suggests that neurobiological models of episodic memory should consider how parietal-mediated attentional mechanisms regulate encoding.

  20. Effect of streptozotocin-induced diabetes on motor representations in the motor cortex and corticospinal tract in rats.

    Science.gov (United States)

    Muramatsu, Ken; Ikutomo, Masako; Tamaki, Toru; Shimo, Satoshi; Niwa, Masatoshi

    2018-02-01

    Motor disorders in patients with diabetes are associated with diabetic peripheral neuropathy, which can lead to symptoms such as lower extremity weakness. However, it is unclear whether central motor system disorders can disrupt motor function in patients with diabetes. In a streptozotocin-induced rat model of type 1 diabetes, we used intracortical microstimulation to evaluate motor representations in the motor cortex, recorded antidromic motor cortex responses to spinal cord stimulation to evaluate the function of corticospinal tract (CST) axons, and used retrograde labeling to evaluate morphological alterations of CST neurons. The diabetic rats exhibited size reductions in the hindlimb area at 4 weeks and in trunk and forelimb areas after 13 weeks, with the hindlimb and trunk area reductions being the most severe. Other areas were unaffected. Additionally, we observed reduced antidromic responses in CST neurons with axons projecting to lumbar spinal segments (CST-L) but not in those with axons projecting to cervical segments (CST-C). This was consistent with the observation that retrograde-labeled CST-L neurons were decreased in number following tracer injection into the spinal cord in diabetic animals but that CST-C neurons were preserved. These results show that diabetes disrupts the CST system components controlling hindlimb and trunk movement. This disruption may contribute to lower extremity weakness in patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention.

    Science.gov (United States)

    Lobier, Muriel; Palva, J Matias; Palva, Satu

    2018-01-15

    Visuospatial attention prioritizes processing of attended visual stimuli. It is characterized by lateralized alpha-band (8-14 Hz) amplitude suppression in visual cortex and increased neuronal activity in a network of frontal and parietal areas. It has remained unknown what mechanisms coordinate neuronal processing among frontoparietal network and visual cortices and implement the attention-related modulations of alpha-band amplitudes and behavior. We investigated whether large-scale network synchronization could be such a mechanism. We recorded human cortical activity with magnetoencephalography (MEG) during a visuospatial attention task. We then identified the frequencies and anatomical networks of inter-areal phase synchronization from source localized MEG data. We found that visuospatial attention is associated with robust and sustained long-range synchronization of cortical oscillations exclusively in the high-alpha (10-14 Hz) frequency band. This synchronization connected frontal, parietal and visual regions and was observed concurrently with amplitude suppression of low-alpha (6-9 Hz) band oscillations in visual cortex. Furthermore, stronger high-alpha phase synchronization was associated with decreased reaction times to attended stimuli and larger suppression of alpha-band amplitudes. These results thus show that high-alpha band phase synchronization is functionally significant and could coordinate the neuronal communication underlying the implementation of visuospatial attention. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Neutral transport calculations for W VII-X. First applications to W VII-X

    International Nuclear Information System (INIS)

    Sardei, F.

    1988-01-01

    Results of neutral gas transport calculations obtained with the DEGAS code are presented for a W VII-AS model plasma and a source of neutrals due to limiter recycling. For typical profiles of the plasma parameters as predicted for an ECRH discharge, the simulation yields a radial drop of the average neutral population by a factor of 30. The neutrals are strongly localized near the limiter and have a poloidal minimum at its opposite side. For a W VII-X configuration (HS4-12), a neutral source given by a high recycling ion flux equally distributed over the wall is considered. For an ion density of 5 x 10 1 3 /cc and 30 eV edge temperature, the neutrals originating from the wall completely ionize within the ergodic region. The corresponding average energy of cx neutrals hitting the wall is less than 30 eV. Neutral penetration into the plasma locally depends on the distance between wall and separatrix

  3. Targeting tissue factor on tumour cells and angiogenic vascular endothelial cells by factor VII-targeted verteporfin photodynamic therapy for breast cancer in vitro and in vivo in mice

    International Nuclear Information System (INIS)

    Hu, Zhiwei; Rao, Benqiang; Chen, Shimin; Duanmu, Jinzhong

    2010-01-01

    The objective of this study was to develop a ligand-targeted photodynamic therapy (tPDT) by conjugating factor VII (fVII) protein with photosensitiser verteporfin in order to overcome the poor selectivity and enhance the effect of non-targeted PDT (ntPDT) for cancer. fVII is a natural ligand for receptor tissue factor (TF) with high affinity and specificity. The reason for targeting receptor TF for the development of tPDT is that TF is a common but specific target on angiogenic tumour vascular endothelial cells (VEC) and many types of tumour cells, including solid tumours and leukaemia. Murine factor VII protein (mfVII) containing a mutation (Lys341Ala) was covalently conjugated via a cross linker EDC with Veterporfin (VP) that was extracted from liposomal Visudyne, and then free VP was separated by Sephadex G50 spin columns. fVII-tPDT using mfVII-VP conjugate, compared to ntPDT, was tested in vitro for the killing of breast cancer cells and VEGF-stimulated VEC and in vivo for inhibiting the tumour growth of breast tumours in a mouse xenograft model. We showed that: (i) fVII protein could be conjugated with VP without affecting its binding activity; (ii) fVII-tPDT could selectively kill TF-expressing breast cancer cells and VEGF-stimulated angiogenic HUVECs but had no side effects on non-TF expressing unstimulated HUVEC, CHO-K1 and 293 cells; (iii) fVII targeting enhanced the effect of VP PDT by three to four fold; (iii) fVII-tPDT induced significantly stronger levels of apoptosis and necrosis than ntPDT; and (iv) fVII-tPDT had a significantly stronger effect on inhibiting breast tumour growth in mice than ntPDT. We conclude that the fVII-targeted VP PDT that we report here is a novel and effective therapeutic with improved selectivity for the treatment of breast cancer. Since TF is expressed on many types of cancer cells including leukaemic cells and selectively on angiogenic tumour VECs, fVII-tPDT could have broad therapeutic applications for other solid cancers

  4. Effect of hyperbaric oxygenation on mitochondrial function of neuronal cells in the cortex of neonatal rats after hypoxic-ischemic brain damage

    Directory of Open Access Journals (Sweden)

    L. Yang

    2016-01-01

    Full Text Available The timing and mechanisms of protection by hyperbaric oxygenation (HBO in hypoxic-ischemic brain damage (HIBD have only been partially elucidated. We monitored the effect of HBO on the mitochondrial function of neuronal cells in the cerebral cortex of neonatal rats after HIBD. Neonatal Sprague-Dawley rats (total of 360 of both genders were randomly divided into normal control, HIBD, and HIBD+HBO groups. The HBO treatment began immediately after hypoxia-ischemia (HI and continued once a day for 7 consecutive days. Animals were euthanized 0, 2, 4, 6, and 12 h post-HI to monitor the changes in mitochondrial membrane potential (ΔΨm occurring soon after a single dose of HBO treatment, as well as 2, 3, 4, 5, 6, and 7 days post-HI to study ΔΨm changes after a series of HBO treatments. Fluctuations in ΔΨm were observed in the ipsilateral cortex in both HIBD and HIBD+HBO groups. Within 2 to 12 h after HI insult, the ΔΨm of the HIBD and HIBD+HBO groups recovered to some extent. A secondary drop in ΔΨm was observed in both groups during the 1-4 days post-HI period, but was more severe in the HIBD+HBO group. There was a secondary recovery of ΔΨm observed in the HIBD+HBO group, but not in the HIBD group, during the 5-7 days period after HI insult. HBO therapy may not lead to improvement of neural cell mitochondrial function in the cerebral cortex in the early stage post-HI, but may improve it in the sub-acute stage post-HI.

  5. Effect of acute administration of Pistacia lentiscus L. essential oil on rat cerebral cortex following transient bilateral common carotid artery occlusion

    Directory of Open Access Journals (Sweden)

    Quartu Marina

    2012-01-01

    Full Text Available Abstract Background Ischemia/reperfusion leads to inflammation and oxidative stress which damages membrane highly polyunsaturated fatty acids (HPUFAs and eventually induces neuronal death. This study evaluates the effect of the administration of Pistacia lentiscus L. essential oil (E.O., a mixture of terpenes and sesquiterpenes, on modifications of fatty acid profile and endocannabinoid (eCB congener concentrations induced by transient bilateral common carotid artery occlusion (BCCAO in the rat frontal cortex and plasma. Methods Adult Wistar rats underwent BCCAO for 20 min followed by 30 min reperfusion (BCCAO/R. 6 hours before surgery, rats, randomly assigned to four groups, were gavaged either with E.O. (200 mg/0.45 ml of sunflower oil as vehicle or with the vehicle alone. Results BCCAO/R triggered in frontal cortex a decrease of docosahexaenoic acid (DHA, the membrane highly polyunsaturated fatty acid most susceptible to oxidation. Pre-treatment with E.O. prevented this change and led further to decreased levels of the enzyme cyclooxygenase-2 (COX-2, as assessed by Western Blot. In plasma, only after BCCAO/R, E.O. administration increased both the ratio of DHA-to-its precursor, eicosapentaenoic acid (EPA, and levels of palmytoylethanolamide (PEA and oleoylethanolamide (OEA. Conclusions Acute treatment with E.O. before BCCAO/R elicits changes both in the frontal cortex, where the BCCAO/R-induced decrease of DHA is apparently prevented and COX-2 expression decreases, and in plasma, where PEA and OEA levels and DHA biosynthesis increase. It is suggested that the increase of PEA and OEA plasma levels may induce DHA biosynthesis via peroxisome proliferator-activated receptor (PPAR alpha activation, protecting brain tissue from ischemia/reperfusion injury.

  6. Excessive endoplasmic reticulum stress and decreased neuroplasticity-associated proteins in prefrontal cortex of obese rats and the regulatory effects of aerobic exercise.

    Science.gov (United States)

    Li, Feng; Liu, Bei Bei; Cai, Ming; Li, Jing Jing; Lou, Shu-Jie

    2018-04-06

    Studies have shown high fat diet induced obesity may cause cognition impairment and down-regulation of neuroplasticity-associated proteins, while aerobic exercise could improve that damage. Endoplasmic reticulum stress (ERS) has been reported to play a key role in regulating neuroplasticity-associated proteins expression, folding and post-translational modification in hippocampus of obese rodent models, however, the effects of ERS on neuroplasticity-associated proteins and possible underlying mechanisms in prefrontal cortex are not fully clear. In order to clarify changes of neuroplasticity-associated proteins and ERS in the prefrontal cortex of obese rats, male SD rats were fed on high fat diet for 8 weeks to establish the obese model. Then, 8 weeks of aerobic exercise treadmill intervention was arranged for the obese rats. Results showed that high fat diet induced obesity caused hyperlipidemia, and significantly promoted FATP1 expression in the prefrontal cortex, meanwhile, we found up-regulation of GRP78, p-PERK, p-eIF2α, caspase-12, CHOP, and Bax/Bcl-2, reflecting the activation of ERS and ERS-mediated apoptosis. Moreover, reduced BDNF and SYN was found in obese rats. However, FATP1, GRP78, p-PERK, p-eIF2α, caspase-12, CHOP, and Bax/Bcl-2 expressions were obviously reversed by aerobic exercise intervention. These results suggested that dietary obesity could induce Prefrontal ERS in SD rats and excessive ERS may play a critical role in decreasing the levels of neuroplasticity-associated proteins. Moreover, aerobic exercise could relieve ERS, thus promoted the expression of neuroplasticity-associated proteins. Copyright © 2018. Published by Elsevier Inc.

  7. Effects of bilateral and unilateral locus coeruleus lesions on beam-walking recovery after subsequent unilateral sensorimotor cortex suction-ablation in the rat.

    Science.gov (United States)

    Goldstein, L B

    1997-01-01

    The recovery of beam-walking ability following a unilateral sensorimotor cortex lesion in the rat is hypothesized to be noradrenergically-mediated. We carried out two experiments to further test this hypothesis. In the first experiment, bilateral 6-hydroxydopamine locus coeruleus (LC) lesions or sham LC lesions were made 2 weeks prior to a right sensorimotor cortex suction-ablation lesion or sham cortex lesion. In the second experiment, unilateral left or right LC lesions or sham LC lesions were made 2 weeks prior to a right sensorimotor cortex lesion or sham cortex lesion. Beam-walking recovery was measured over the 12 days following cortex lesioning in each experiment. Bilateral, unilateral left, and unilateral right LC lesions resulted in impaired recovery. These data provide additional support for the hypothesis that beam-walking recovery after sensorimotor cortex injury is, at least in part, noradrenergically mediated.

  8. Effect of Electromagnetic Radiation Exposure on Histology and DNA Content of the Brain Cortex and Hypothalamus of Young and Adult Male Albino Rats

    International Nuclear Information System (INIS)

    Othman, A.I.; Othman, A.I.

    2012-01-01

    Concerns have been raised regarding the potential adverse effects of exposure to electromagnetic radiation (EMR) arising from mobile phone. The present study investigates the effect of the daily exposure of adult and young rats to EMR for 1 hour (at a frequency of 900 MHz, a power density of 0.02 mW/cm 2 and an average specific absorption rate of 1.165 W/kg) on the DNA content and tissue architecture of the cortex and hypothalamus of the rat brain. Both young and adult rats were sacrificed at two intervals, after 4 months of daily EMR exposure and after 1 month of stopping the exposure. The present results showed a significant increase in the DNA intensity of young and adult rats in both areas after 4 months of daily EMR exposure. However, decreased DNA content around the normal level was observed after one month of stopping the exposure. Light microscopic examination of irradiated rats revealed edema, vacuolation, necrosis and proliferated glial cells. Stopping EMR exposure showed mild amelioration in the structural damage of the cerebral cortex of young animals, however, most drastic changes still persisted in the other animals. In conclusion, these data may confirm the neurotoxic risks arising from the extensive use of mobile phones that may alter the brain histology and impair its function

  9. Effect of early and late rehabilitation onset in a chronic rat model of ischemic stroke- assessment of motor cortex signaling and gait functionality over time.

    Science.gov (United States)

    Nielsen, Rasmus K; Samson, Katrine L; Simonsen, Daniel; Jensen, Winnie

    2013-11-01

    The aim of the present study was to investigate the effects of ischemic stroke and onset of subsequent rehabilitation of gait function in rats. Nine male Sprague-Dawley rats were instrumented with a 16-channel intracortical (IC) electrode array. An ischemic stroke was induced within the hindlimb area of the left motor cortex. The rehabilitation consisted of a repetitive training paradigm over 28 days, initiated on day one ("Early-onset", 5 rats) and on day seven, ("Late-onset", 4 rats). Data were obtained from IC microstimulation tests, treadmill walking tests, and beam walking tests. Results revealed an expansion of the hindlimb representation within the motor cortex area and an increased amount of cortical firing rate modulation for the "Early-onset" group but not for the "Late-onset" group. Kinematic data revealed a significant change for both intervention groups. However, this difference was larger for the "Early-onset" group. Results from the beam walking test showed functional performance deficits following stroke which returned to pre-stroke level after the rehabilitative training. The results from the present study indicate the existence of a critical time period following stroke where onset of rehabilitative training may be more effective and related to a higher degree of true recovery.

  10. Age-related changes in factor VII proteolysis in vivo.

    Science.gov (United States)

    Ofosu, F A; Craven, S; Dewar, L; Anvari, N; Andrew, M; Blajchman, M A

    1996-08-01

    Previous studies have reported that pre-operative plasmas of patients over the age of 40 years who developed post-operative deep vein thrombosis (DVT) had approximately twice the amount of proteolysed factor VII found in plasmas of patients in whom prophylaxis with heparin or low M(r) heparin was successful. These and other studies also reported higher concentrations of thrombin-antithrombin III in pre- and post-operative plasmas of patients who developed post-operative thrombosis than in plasmas of patients in whom prophylaxis was successful. Whether the extent of factor VII proteolysis seen in the patients who developed post-operative DVT is related to the severity of their disease or age is not known. This report investigated age-related changes in the concentrations of total factor VII protein, factor VII zymogen, factor VIIa, tissue factor pathway inhibitor, thrombin-antithrombin III, and prothrombin fragment 1 + 2 in normal plasmas and the relationships between these parameters. With the exception of thrombin-antithrombin III, statistically significant increases in the concentrations of these parameters with age were found. Additionally, the differences between the concentrations of total factor VII protein and factor VII zymogen, an index factor VII proteolysis in vivo, were statistically significant only for individuals over age 40. Using linear regression analysis, a significant correlation was found to exist between the concentrations of plasma factor VIIa and prothrombin fragment 1 + 2. Since factor VIIa-tissue factor probably initiates coagulation in vivo, we hypothesize that the elevated plasma factor VIIa (reflecting a less tightly regulated tissue factor activity and therefore increased thrombin production in vivo) accounts for the high risk for post-operative thrombosis seen in individuals over the age of 40.

  11. The hippocampus, medial prefrontal cortex, and selective memory retrieval: evidence from a rodent model of the retrieval-induced forgetting effect.

    Science.gov (United States)

    Wu, Jade Q; Peters, Greg J; Rittner, Pedro; Cleland, Thomas A; Smith, David M

    2014-09-01

    Inhibition is an important component of many cognitive functions, including memory. For example, the retrieval-induced forgetting (RIF) effect occurs when extra practice with some items from a study list inhibits the retrieval of the nonpracticed items relative to a baseline condition that does not involve extra practice. Although counterintuitive, the RIF phenomenon may be important for resolving interference by inhibiting potentially competing retrieval targets. Neuroimaging studies suggest that the hippocampus and prefrontal cortex are involved in the RIF effect, but controlled lesion studies have not yet been performed. We developed a rodent model of the RIF training procedure and trained control rats and rats with temporary inactivation of the hippocampus or medial prefrontal cortex (mPFC). Rats were trained on a list of odor cues, presented in cups of digging medium with a buried reward, followed by additional practice trials with a subset of the cues. We then tested the rats' memories for the cues and their association with reward by presenting them with unbaited cups containing the test odorants and measuring how long they persisted in digging. Control rats exhibited a robust RIF effect in which memory for the nonpracticed odors was significantly inhibited. Thus, extra practice with some odor cues inhibited memory for the others, relative to a baseline condition that involved an identical amount of training. Inactivation of either the hippocampus or the mPFC blocked the RIF effect. We also constructed a computational model of a representational learning circuit to simulate the RIF effect. We show in this model that "sideband suppression" of similar memory representations can reproduce the RIF effect and that alteration of the suppression parameters and learning rate can reproduce the lesion effects seen in our rats. Our results suggest that the RIF effect is widespread and that inhibitory processes are an important feature of memory function. © 2014 Wiley

  12. KEEFEKTIFAN MODEL PEMBELAJARAN KOOPERATIF TIPE SQ3R TERHADAP KEMAMPUAN PEMECAHAN MASALAH SISWA SMP KELAS VII

    Directory of Open Access Journals (Sweden)

    Dian Teguh Firmansyah

    2012-10-01

    Full Text Available This study aims to determine the effectiveness of cooperative learning model types Survey Question Read Recite Review (SQ3R to mathematical problem solving abilities of students in the junior high school grade VII of material relationships between angles. The population in this study is students of grade VII SMP N 1 Pagerbarang school year 2011/2012. The samples taken by cluster random sampling technique so namely studentsinclassVIIB as control group and studentsinclass VIIC as experiment group. Design used in this research is true experimental design posttest only control type. Results showed that the averagetest scores mathematical problem solving abilities of students in class taught by cooperative learning model types SQ3Rof material relationships between angles achieve minimal completeness criteria(KKM applies in SMP N 1 Pagerbarang, with many students who achieve KKM is more than equal 75%, and average test scores mathematical problem solving abilities of students in classtaught by cooperative learning model typesSQ3Rof material relationships between anglesmore than the average test scoresmathematical problem solving abilities of students in class taught by expository model. Based on the research results can be concluded that the cooperative learning model types SQ3R is effective to improve students problem solving skills students grade VII to the material relationships between angles.

  13. Recombinant activated factor VII: 30 years of research and innovation.

    Science.gov (United States)

    Hedner, Ulla

    2015-06-01

    Recombinant activated factor VII (rFVIIa) was initially developed to treat bleeding episodes in patients with congenital haemophilia and inhibitors. The story of its development began in the 1970s, when FVIIa was identified as one of the activated coagulation factors that has minimal potential for inducing thromboembolic side-effects. Extensive research over the last 30 years has greatly increased our knowledge of the characteristics of FVII, its activation, and the mechanisms by which rFVIIa restores haemostasis. In haemophilia, the haemostatic effect of rFVIIa is mediated via binding to thrombin-activated platelets at the site of injury, thereby enhancing thrombin generation also in the absence of factor (F) VIII or FIX. The mechanism of action of rFVIIa has also allowed its successful use in other clinical scenarios characterised by impaired thrombin generation, and its licensed uses have now been extended to acquired haemophilia, congenital FVII deficiency and Glanzmann's thrombasthenia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effect of cadmium on genetic toxicity and protection of cortex acanthopanasia radicis against genetic damage induced by cadmium

    International Nuclear Information System (INIS)

    Liu Bing; Pang Huimin; Chen Minyi

    1999-01-01

    Objective and Methods: The test of sperm aberration and micronucleus of bone marrow cells in mice were used to detect the mutagenicity of cadmium and anti-mutagenicity of Cortex Acanthopanasia Radicis (CAR) on germ cell and somatic cell. Kunming mice were divided randomly into four groups: normal saline control group (NS): MMC control group (MMC 1.0 mg/kg); Cd-mutate group (1/5 LD 50 ), 17.6 mg/kg); CAR anti-mutate group (CAR 1,2,4 g/kg + Cd). Ridit test and x 2 were used to evaluate the statistical significance of the date. Results: The experiment demonstrated that Chinese medicine CAR can significantly decrease sperm aberration and micronuclei frequencies induced by Cd (P<0.01). Conclusion: As an anti-mutagen CAR has practical value in occupational protection against genetic damage induced by Cd

  15. Task-related modulation of effective connectivity during perceptual decision making: Dissociation between dorsal and ventral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Rei eAkaishi

    2013-07-01

    Full Text Available The dorsal and ventral parts of the lateral prefrontal cortex have been thought to play distinct roles in decision making. Although its dorsal part such as the frontal eye field (FEF is shown to play roles in accumulation of sensory information during perceptual decision making, the role of the ventral prefrontal cortex (PFv is not well-documented. Previous studies have suggested that the PFv is involved in selective attention to the task-relevant information and is associated with accuracy of the behavioral performance. It is unknown, however, whether the accumulation and selection processes are anatomically dissociated between the FEF and PFv. Here we show that, by using concurrent TMS and EEG recording, the short-latency (20 – 40 ms TMS-evoked potentials after stimulation of the FEF change as a function of the time to behavioral response, whereas those after stimulation of the PFv change depending on whether the response is correct or not. The potentials after stimulation of either region did not show significant interaction between time to response and performance accuracy, suggesting dissociation between the processes subserved by the FEF and PFv networks. The results are consistent with the idea that the network involving the FEF plays a role in information accumulation, whereas the network involving the PFv plays a role in selecting task relevant information. In addition, stimulation of the FEF and PFv induced activation in common regions in the dorsolateral and medial frontal cortices, suggesting convergence of information processed in the two regions. Taken together, the results suggest dissociation between the FEF and PFv networks for their computational roles in perceptual decision making. The study also highlights the advantage of TMS-EEG technique in investigating the computational processes subserved by the neural network in the human brain with a high temporal resolution.

  16. Task-related modulation of effective connectivity during perceptual decision making: dissociation between dorsal and ventral prefrontal cortex.

    Science.gov (United States)

    Akaishi, Rei; Ueda, Naoko; Sakai, Katsuyuki

    2013-01-01

    The dorsal and ventral parts of the lateral prefrontal cortex have been thought to play distinct roles in decision making. Although its dorsal part such as the frontal eye field (FEF) is shown to play roles in accumulation of sensory information during perceptual decision making, the role of the ventral prefrontal cortex (PFv) is not well-documented. Previous studies have suggested that the PFv is involved in selective attention to the task-relevant information and is associated with accuracy of the behavioral performance. It is unknown, however, whether the accumulation and selection processes are anatomically dissociated between the FEF and PFv. Here we show that, by using concurrent TMS and EEG recording, the short-latency (20-40 ms) TMS-evoked potentials after stimulation of the FEF change as a function of the time to behavioral response, whereas those after stimulation of the PFv change depending on whether the response is correct or not. The potentials after stimulation of either region did not show significant interaction between time to response and performance accuracy, suggesting dissociation between the processes subserved by the FEF and PFv networks. The results are consistent with the idea that the network involving the FEF plays a role in information accumulation, whereas the network involving the PFv plays a role in selecting task relevant information. In addition, stimulation of the FEF and PFv induced activation in common regions in the dorsolateral and medial frontal cortices, suggesting convergence of information processed in the two regions. Taken together, the results suggest dissociation between the FEF and PFv networks for their computational roles in perceptual decision making. The study also highlights the advantage of TMS-EEG technique in investigating the computational processes subserved by the neural network in the human brain with a high temporal resolution.

  17. Repetitive transcranial magnetic stimulation of the left premotor/dorsolateral prefrontal cortex does not have analgesic effect on central poststroke pain.

    Science.gov (United States)

    de Oliveira, Rogério Adas Ayres; de Andrade, Daniel Ciampi; Mendonça, Melina; Barros, Rafael; Luvisoto, Tatiana; Myczkowski, Martin Luiz; Marcolin, Marco Antonio; Teixeira, Manoel Jacobsen

    2014-12-01

    Central poststroke pain (CPSP) is caused by an encephalic vascular lesion of the somatosensory pathways and is commonly refractory to current pharmacologic treatments. Repetitive transcranial magnetic stimulation (rTMS) of the premotor cortex/dorsolateral prefrontal cortex (PMC/DLPFC) can change thermal pain threshold toward analgesia in healthy subjects and has analgesic effects in acute postoperative pain as well as in fibromyalgia patients. However, its effect on neuropathic pain and in CPSP, in particular, has not been assessed. The aim of this prospective, double-blind, placebo-controlled study was to evaluate the analgesic effect of PMC/DLPFC rTMS in CPSP patients. Patients were randomized into 2 groups, active (a-) rTMS and sham (s-) rTMS, and were treated with 10 daily sessions of rTMS over the left PMC/DLPFC (10 Hz, 1,250 pulses/d). Outcomes were assessed at baseline, during the stimulation phase, and at 1, 2, and 4 weeks after the last stimulation. The main outcome was pain intensity changes measured by the visual analog scale on the last stimulation day compared to baseline. Interim analysis was scheduled when the first half of the patients completed the study. The study was terminated because of a significant lack of efficacy of the active arm after 21 patients completed the whole treatment and follow-up phases. rTMS of the left PMC/DLPFC did not improve pain in CPSP. The aim of this double-blind, placebo-controlled study was to evaluate the analgesic effects of rTMS to the PMC/DLPFC in CPSP patients. An interim analysis showed a consistent lack of analgesic effect, and the study was terminated. rTMS of the PMC/DLPFC is not effective in relieving CPSP. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  18. Dissociation of the role of the prelimbic cortex in interval timing and resource allocation: beneficial effect of norepinephrine and dopamine reuptake inhibitor nomifensine on anxiety-inducing distraction

    Directory of Open Access Journals (Sweden)

    Alexander R Matthews

    2012-12-01

    Full Text Available Emotional distracters impair cognitive function. Emotional processing is dysregulated in affective disorders such as depression, phobias, schizophrenia, and PTSD. Among the processes impaired by emotional distracters, and whose dysregulation is documented in affective disorders, is the ability to time in the seconds-to-minutes range, i.e. interval timing. Presentation of task-irrelevant distracters during a timing task results in a delay in responding suggesting a failure to maintain subjective time in working memory, possibly due to attentional and working memory resources being diverted away from timing, as proposed by the Relative Time-Sharing model. We investigated the role of the prelimbic cortex in the detrimental effect of anxiety-inducing task-irrelevant distracters on the cognitive ability to keep track of time, using local infusions of norepinephrine and dopamine reuptake inhibitor nomifensine in a modified peak-interval procedure with neutral and anxiety-inducing distracters. Given that some antidepressants have beneficial effects on attention and working memory, e.g., decreasing emotional response to negative events, we hypothesized that nomifensine would improve maintenance of information in working memory in trials with distracters, resulting in a decrease of the disruptive effect of emotional events on the timekeeping abilities. Our results revealed a dissociation of the effects of nomifensine infusion in prelimbic cortex between interval timing and resource allocation, and between neutral and anxiety-inducing distraction. Nomifensine was effective only during trials with distracters, but not during trials without distracters. Nomifensine reduced the detrimental effect of the distracters only when the distracters were anxiety-inducing, but not when they were neutral. Results are discussed in relation to the brain circuits involved in Relative Time-Sharing of resources, and the pharmacological management of affective disorders.

  19. 78 FR 36711 - Food and Drug Administration Safety and Innovation Act Title VII-Drug Supply Chain; Standards for...

    Science.gov (United States)

    2013-06-19

    ... inspections, and drive safety and quality throughout the supply chain. Implementation of these authorities... authorities granted to FDA under Title VII and their importance in ensuring drug safety, effectiveness, and.... FDA-2013-N-0683, FDA-2013-N-0684, and FDA-2013-N-0685] Food and Drug Administration Safety and...

  20. Effect of Low Level Laser Irradiation at Wavelengths 488 and 515 nm on Glutamate Neurotransmitter in Mitochondria of Visual Brain Cortex in Albino Rat

    International Nuclear Information System (INIS)

    Omran, M.F.; El-Ahdal, M.A.; El-Kady, M.H.; Yousri, R.M.

    2004-01-01

    The presence of glutamate in the visual cortex and mitochondria could be used as a measure for the argon laser effect having wavelengths 488 and 515 nm, on the mitochondria. A comparative response for the bound and free glutamate was found. Irradiation with different energies 0.2, 0.5 and 1.0 J for both wavelengths were accomplished. This study makes us to recommend the advantage of using argon laser having wavelength 515 nm to enhance the blocking of glutamate and hence the reduction of brain toxicity. Most of the energy required for cellular functions comes from mitochondria (Shepherd, 1994). Glutamate, which is present in central nervous system at very high level is essential for brain intermediary metabolism (Frazer et al., 1994; Meldrum et al., 2000 and Blumcke et al., 2000). Glutamate is enriched in synaptic vesicles, the subcellular organelles, which are associated with the storage and release of neurotransmitters. Also, biochemical evidence for glutamate as neurotransmitter in fibers from the visual cortex to the subcortical visual relay nuclei has been indicated (Fose and Fonnum, 1987 and George, 1998)

  1. Removing the effect of response time on brain activity reveals developmental differences in conflict processing in the posterior medial prefrontal cortex.

    Science.gov (United States)

    Carp, Joshua; Fitzgerald, Kate Dimond; Taylor, Stephan F; Weissman, Daniel H

    2012-01-02

    In functional magnetic resonance imaging (fMRI) studies, researchers often attempt to ensure that group differences in brain activity are not confounded with group differences in mean reaction time (RT). However, even when groups are matched for performance, they may differ in terms of the RT-BOLD relationship: the degree to which brain activity varies with RT on a trial-by-trial basis. Group activation differences might therefore be influenced by group differences in the relationship between brain activity and time on task. Here, we investigated whether correcting for this potential confound alters group differences in brain activity. Specifically, we reanalyzed data from a functional MRI study of response conflict in children and adults, in which conventional analyses indicated that conflict-related activity did not differ between groups. We found that the RT-BOLD relationship was weaker in children than in adults. Consequently, after removing the effect of RT on brain activity, children exhibited greater conflict-related activity than adults in both the posterior medial prefrontal cortex and the right dorsolateral prefrontal cortex. These results identify the RT-BOLD relationship as an important potential confound in fMRI studies of group differences. They also suggest that the magnitude of the RT-BOLD relationship may be a useful biomarker of brain maturity. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. [Effect of electro-acupuncture on metabolites in the cerebral cortex of ulcerative colitis rats based on Pi/Wei-brain related theory].

    Science.gov (United States)

    Yang, Yang; Zhao, Ji-lan; Hou, Tian-shu; Han, Xiao-xia; Zhao, Zheng-yu; Peng, Xiao-hua; Wu, Qiao-Feng

    2014-10-01

    To study the effect of electro-acupuncture (EA) at points along Foot Yangming Channel on metabolite of ulcerative colitis (UC) rats' cerebral cortex and to identify key metabolites by referring to Pi/Wei-brain related theory in Chinese medicine (CM). The UC rat model was set up by dextran sulfate sodium (DSS) method. Male SD rats were randomly divided into the model group and the EA group, 13 in each group. Another 13 rats were recruited as the blank control group. Rats in the blank control group and the model group received no EA. EA was performed at Zusanli (ST36), Shangjuxu (ST37), and Tianshu (ST25) for 5 days by using disperse-dense wave. Then all rats were sacrificed. Their recto-colon and the ileocecal junction were pathomorphologically observed by light microscope and transmission electron microscope (TEM). Cerebral cortexes were extracted. Water-soluble and lipid-soluble brain tissue metabolites were respectively extracted for metabolic research using 1H nuclear magnetic resonance (1H-NMR). EA could obviously improve the general condition of UC model rats, decrease the value of DAI, reduce the infiltration of inflammatory cells in the intestinal tract, stabilize structures such as mitochondria, endoplasmic reticulum and so on (P theory.

  3. Development of rat female genital cortex and control of female puberty by sexual touch.

    Directory of Open Access Journals (Sweden)

    Constanze Lenschow

    2017-09-01

    Full Text Available Rat somatosensory cortex contains a large sexually monomorphic genital representation. Genital cortex undergoes an unusual 2-fold expansion during puberty. Here, we investigate genital cortex development and female rat sexual maturation. Ovariectomies and estradiol injections suggested sex hormones cause the pubertal genital cortex expansion but not its maintenance at adult size. Genital cortex expanded by thalamic afferents invading surrounding dysgranular cortex. Genital touch was a dominant factor driving female sexual maturation. Raising female rats in contact with adult males promoted genital cortex expansion, whereas contact to adult females or nontactile (audio-visual-olfactory male cues did not. Genital touch imposed by human experimenters powerfully advanced female genital cortex development and sexual maturation. Long-term blocking of genital cortex by tetrodotoxin in pubescent females housed with males prevented genital cortex expansion and decelerated vaginal opening. Sex hormones, sexual experience, and neural activity shape genital cortex, which contributes to the puberty promoting effects of sexual touch.

  4. Development of rat female genital cortex and control of female puberty by sexual touch.

    Science.gov (United States)

    Lenschow, Constanze; Sigl-Glöckner, Johanna; Brecht, Michael

    2017-09-01

    Rat somatosensory cortex contains a large sexually monomorphic genital representation. Genital cortex undergoes an unusual 2-fold expansion during puberty. Here, we investigate genital cortex development and female rat sexual maturation. Ovariectomies and estradiol injections suggested sex hormones cause the pubertal genital cortex expansion but not its maintenance at adult size. Genital cortex expanded by thalamic afferents invading surrounding dysgranular cortex. Genital touch was a dominant factor driving female sexual maturation. Raising female rats in contact with adult males promoted genital cortex expansion, whereas contact to adult females or nontactile (audio-visual-olfactory) male cues did not. Genital touch imposed by human experimenters powerfully advanced female genital cortex development and sexual maturation. Long-term blocking of genital cortex by tetrodotoxin in pubescent females housed with males prevented genital cortex expansion and decelerated vaginal opening. Sex hormones, sexual experience, and neural activity shape genital cortex, which contributes to the puberty promoting effects of sexual touch.

  5. VII International Congress of Engineering Physics

    Science.gov (United States)

    2015-01-01

    In the frame of the fortieth anniversary celebration of the Universidad Autónoma Metropolitana and the Physics Engineering career, the Division of Basic Science and Engineering and its Departments organized the "VII International Congress of Physics Engineering". The Congress was held from 24 to 28 November 2014 in Mexico City, Mexico. This congress is the first of its type in Latin America, and because of its international character, it gathers experts on physics engineering from Mexico and all over the globe. Since 1999, this event has shown research, articles, projects, technological developments and vanguard scientists. These activities aim to spread, promote, and share the knowledge of Physics Engineering. The topics of the Congress were: • Renewable energies engineering • Materials technology • Nanotechnology • Medical physics • Educational physics engineering • Nuclear engineering • High precision instrumentation • Atmospheric physics • Optical engineering • Physics history • Acoustics This event integrates lectures on top trending topics with pre-congress workshops, which are given by recognized scientists with an outstanding academic record. The lectures and workshops allow the exchange of experiences, and create and strengthen research networks. The Congress also encourages professional mobility among all universities and research centres from all countries. CIIF2014 Organizing and Editorial Committee Dr. Ernesto Rodrigo Vázquez Cerón Universidad Autónoma Metropolitana - Azcapotzalco ervc@correo.azc.uam.mx Dr. Luis Enrique Noreña Franco Universidad Autónoma Metropolitana - Azcapotzalco lnf@correo.azc.uam.mx Dr. Alberto Rubio Ponce Universidad Autónoma Metropolitana - Azcapotzalco arp@correo.azc.uam.mx Dr. Óscar Olvera Neria Universidad Autónoma Metropolitana - Azcapotzalco oon@correo.azc.uam.mx Professor Jaime Granados Samaniego Universidad Autónoma Metropolitana - Azcapotzalco jgs@correo.azc.uam.mx Dr. Roberto Tito Hern

  6. The effects of whole body vibration combined computerized postural control training on the lower extremity muscle activity and cerebral cortex activity in stroke patients.

    Science.gov (United States)

    Uhm, Yo-Han; Yang, Dae-Jung

    2018-02-01

    [Purpose] The purpose of this study was to examine the effect of computerized postural control training using whole body vibration on lower limb muscle activity and cerebral cortical activation in acute stroke patients. [Subjects and Methods] Thirty stroke patients participated and were divided into groups of 10, a group of the computerized postural control training using whole body vibration (Group I), the computerized postural control training combined with aero step (Group II) and computerized postural control training (Group III). MP100 was used to measure lower limb muscle activity, and QEEG-8 was used to measure cerebral cortical activation. [Results] Comparison of muscle activity and cerebral cortical activation before and after intervention between groups showed that Group I had significant differences in lower limb muscle activity and cerebral cortical activation compared to Groups II and III. [Conclusion] This study showed that whole body vibration combined computerized postural control training is effective for improving muscle activity and cerebral cortex activity in stroke patients.

  7. Serendipitous Discovery of Factor VII Deficiency and the Ensuing Dilemma.

    Science.gov (United States)

    Umakanthan, Jayadev M; Dhakal, Prajwal; Gundabolu, Krishna; Koepsell, Scott A; Baljevic, Muhamed

    2018-03-01

    Congenital factor VII deficiency is a challenging disorder to manage, as it is associated with varied genotypes that do not clinically correlate with a bleeding phenotype. Individuals with severe factor VII deficiency (FVII: c 5%) may experience severe hemorrhages. In modern medicine, due to extensive routine pre-operative laboratory testing, clinically asymptomatic patients without any bleeding history might be incidentally discovered, raising clinical dilemmas. Careful consideration of bleeding versus thrombosis risk has to be made in such cases, especially in the elderly. Clinical history of no prior bleeding complications may be a reassuring factor. Minimal required replacement dosing of recombinant activated factor VII can be given peri-operatively in such situations, with close monitoring.

  8. Factor VII Deficiency: Clinical Phenotype, Genotype and Therapy.

    Science.gov (United States)

    Napolitano, Mariasanta; Siragusa, Sergio; Mariani, Guglielmo

    2017-03-28

    Factor VII deficiency is the most common among rare inherited autosomal recessive bleeding disorders, and is a chameleon disease due to the lack of a direct correlation between plasma levels of coagulation Factor VII and bleeding manifestations. Clinical phenotypes range from asymptomatic condition-even in homozygous subjects-to severe life-threatening bleedings (central nervous system, gastrointestinal bleeding). Prediction of bleeding risk is thus based on multiple parameters that challenge disease management. Spontaneous or surgical bleedings require accurate treatment schedules, and patients at high risk of severe hemorrhages may need prophylaxis from childhood onwards. The aim of the current review is to depict an updated summary of clinical phenotype, laboratory diagnosis, and treatment of inherited Factor VII deficiency.

  9. Factor VII deficiency: a single-center experience.

    Science.gov (United States)

    Salcioglu, Zafer; Akcay, Arzu; Sen, Hulya Sayilan; Aydogan, Gonul; Akici, Ferhan; Tugcu, Deniz; Ayaz, Nuray Aktay; Baslar, Zafer

    2012-11-01

    Congenital factor VII deficiency is the most common form of rare coagulation factor deficiencies. This article presents a retrospective evaluation of 73 factor VII deficiency cases that had been followed at our center. The study consisted of 48 males and 25 females (2 months-19 years). Thirty-one (42.5%) of them were asymptomatic. Out of symptomatic patients, 17 had severe clinical symptoms, whereas 8 presented with moderate and 17 with mild symptoms. The symptoms listed in order of frequency were as follows: epistaxis, petechia or ecchymose, easy bruising, and oral cavity bleeding. The genotype was determined in 8 patients. Recombinant activated factor VII (rFVIIa) was used to treat 49 bleeding episodes in 8 patients after 2002. In 2 patients with repeated central nervous system bleeding prophylaxis with rFVIIa was administered. No allergic and thrombotic events were observed during both treatment and prophylaxis courses. Antibody occurrence was not detected in the patients during treatment.

  10. Effects of chronic iTBS-rTMS and enriched environment on visual cortex early critical period and visual pattern discrimination in dark-reared rats.

    Science.gov (United States)

    Castillo-Padilla, Diana V; Funke, Klaus

    2016-01-01

    Early cortical critical period resembles a state of enhanced neuronal plasticity enabling the establishment of specific neuronal connections during first sensory experience. Visual performance with regard to pattern discrimination is impaired if the cortex is deprived from visual input during the critical period. We wondered how unspecific activation of the visual cortex before closure of the critical period using repetitive transcranial magnetic stimulation (rTMS) could affect the critical period and the visual performance of the experimental animals. Would it cause premature closure of the plastic state and thus worsen experience-dependent visual performance, or would it be able to preserve plasticity? Effects of intermittent theta-burst stimulation (iTBS) were compared with those of an enriched environment (EE) during dark-rearing (DR) from birth. Rats dark-reared in a standard cage showed poor improvement in a visual pattern discrimination task, while rats housed in EE or treated with iTBS showed a performance indistinguishable from rats reared in normal light/dark cycle. The behavioral effects were accompanied by correlated changes in the expression of brain-derived neurotrophic factor (BDNF) and atypical PKC (PKCζ/PKMζ), two factors controlling stabilization of synaptic potentiation. It appears that not only nonvisual sensory activity and exercise but also cortical activation induced by rTMS has the potential to alleviate the effects of DR on cortical development, most likely due to stimulation of BDNF synthesis and release. As we showed previously, iTBS reduced the expression of parvalbumin in inhibitory cortical interneurons, indicating that modulation of the activity of fast-spiking interneurons contributes to the observed effects of iTBS. © 2015 Wiley Periodicals, Inc.

  11. Effects of Metabolic Programming on Juvenile Play Behavior and Gene Expression in the Prefrontal Cortex of Rats.

    Science.gov (United States)

    Hehar, Harleen; Ma, Irene; Mychasiuk, Richelle

    2016-01-01

    Early developmental processes, such as metabolic programming, can provide cues to an organism, which allow it to make modifications that are predicted to be beneficial for survival. Similarly, social play has a multifaceted role in promoting survival and fitness of animals. Play is a complex behavior that is greatly influenced by motivational and reward circuits, as well as the energy reserves and metabolism of an organism. This study examined the association between metabolic programming and juvenile play behavior in an effort to further elucidate insight into the consequences that early adaptions have on developmental trajectories. The study also examined changes in expression of four genes (Drd2, IGF1, Opa1, and OxyR) in the prefrontal cortex known to play significant roles in reward, bioenergetics, and social-emotional functioning. Using four distinct variations in developmental programming (high-fat diet, caloric restriction, exercise, or high-fat diet combined with exercise), we found that dietary programming (high-fat diet vs. caloric restriction) had the greatest impact on play behavior and gene expression. However, exercise also induced changes in both measures. This study demonstrates that metabolic programming can alter neural circuits and bioenergetics involved in play behavior, thus providing new insights into mechanisms that allow programming to influence the evolutionary success of an organism. © 2016 S. Karger AG, Basel.

  12. Effects of aging on working memory performance and prefrontal cortex activity:A time-resolved spectroscopy study

    Institute of Scientific and Technical Information of China (English)

    Jie Shi; Wenjing Zhou; Tongchao Geng; Huancong Zuo; Masahiro Tanida; Kaoru Sakatani

    2016-01-01

    Objective:This study aimed to employ time‐resolved spectroscopy (TRS) to explore age‐related differences in prefrontal cortex (PFC) activity while subjects performed a working memory task. Methods:We employed TRS to measure PFC activity in ten healthy younger and ten healthy older subjects while they performed a working memory (WM) task. All subjects performed the Sternberg test (ST) in which the memory‐set size varied between one and six digits. Using TRS, we recorded changes in cerebral blood oxygenation as a measure of changes in PFC activity during the task. In order to identify left/right asymmetry of PFC activity during the working memory task, we calculated the laterality score, i.e.,Δoxy‐Hb (rightΔoxy‐Hb—leftΔoxy‐Hb);positive values indicate greater activity in the right PFC, while negative values indicate greater activity in the left PFC. Results:During the ST, statistical analyses showed no significant differences between the younger and older groups in accuracy for low memory‐load and high memory‐load. In high memory‐load tasks, however, older subjects were slower than younger subjects (P Conclusions: The present results are consistent with the hemispheric asymmetry reduction in older adults (HAROLD) model;working memory tasks cause asymmetrical PFC activation in younger adults, while older adults tend to show reduced hemispheric lateralization.

  13. On framing effects in decision making: linking lateral versus medial orbitofrontal cortex activation to choice outcome processing.

    Science.gov (United States)

    Windmann, Sabine; Kirsch, Peter; Mier, Daniela; Stark, Rudolf; Walter, Bertram; Güntürkün, Onur; Vaitl, Dieter

    2006-07-01

    Two correlates of outcome processing in the orbitofrontal cortex (OFC) have been proposed in the literature: One hypothesis suggests that the lateral/medial division relates to representation of outcome valence (negative vs. positive), and the other suggests that the medial OFC maintains steady stimulus-outcome associations, whereas the lateral OFC represents changing (unsteady) outcomes to prepare for response shifts. These two hypotheses were contrasted by comparing the original with the inverted version of the Iowa Gambling Task in an event-related functional magnetic resonance imaging experiment. Results showed (1) that (caudo) lateral OFC was indeed sensitive to the steadiness of the outcomes and not merely to outcome valence and (2) that the original and the inverted tasks, although both designed to measure sensitivity for future outcomes, were not equivalent as they enacted different behaviors and brain activation patterns. Results are interpreted in terms of Kahneman and Tversky's prospect theory suggesting that cognitions and decisions are biased differentially when probabilistic future rewards are weighed against consistent punishments relative to the opposite scenario [Kahneman, D., & Tversky, A. Choices, values, and frames. American Psychologist, 39, 341-350, 1984]. Specialized processing of unsteady rewards (involving caudolateral OFC) may have developed during evolution in support of goal-related thinking, prospective planning, and problem solving.

  14. Plasmodium falciparum ookinete expression of plasmepsin VII and plasmepsin X.

    Science.gov (United States)

    Li, Fengwu; Bounkeua, Viengngeun; Pettersen, Kenneth; Vinetz, Joseph M

    2016-02-24

    Plasmodium invasion of the mosquito midgut is a population bottleneck in the parasite lifecycle. Interference with molecular mechanisms by which the ookinete invades the mosquito midgut is one potential approach to developing malaria transmission-blocking strategies. Plasmodium aspartic proteases are one such class of potential targets: plasmepsin IV (known to be present in the asexual stage food vacuole) was previously shown to be involved in Plasmodium gallinaceum infection of the mosquito midgut, and plasmepsins VII and plasmepsin X (not known to be present in the asexual stage food vacuole) are upregulated in Plasmodium falciparum mosquito stages. These (and other) parasite-derived enzymes that play essential roles during ookinete midgut invasion are prime candidates for transmission-blocking vaccines. Reverse transcriptase PCR (RT-PCR) was used to determine timing of P. falciparum plasmepsin VII (PfPM VII) and plasmepsin X (PfPM X) mRNA transcripts in parasite mosquito midgut stages. Protein expression was confirmed by western immunoblot and immunofluorescence assays (IFA) using anti-peptide monoclonal antibodies (mAbs) against immunogenic regions of PfPM VII and PfPM X. These antibodies were also used in standard membrane feeding assays (SMFA) to determine whether inhibition of these proteases would affect parasite transmission to mosquitoes. The Mann-Whitney U test was used to analyse mosquito transmission assay results. RT-PCR, western immunoblot and immunofluorescence assay confirmed expression of PfPM VII and PfPM X in mosquito stages. Whereas PfPM VII was expressed in zygotes and ookinetes, PfPM X was expressed in gametes, zygotes, and ookinetes. Antibodies against PfPM VII and PfPM X decreased P. falciparum invasion of the mosquito midgut when used at high concentrations, indicating that these proteases play a role in Plasmodium mosquito midgut invasion. Failure to generate genetic knockouts of these genes limited determination of the precise role of

  15. PERANCANGAN SISTEM INFORMASI DI PTAIS KOPERTAIS WILAYAH VII SUMATERA SELATAN

    Directory of Open Access Journals (Sweden)

    Fenny Purwani

    2015-12-01

    Full Text Available Relations and information technology today closely related. One technology that is widely used and very popular on the Internet is a website. The website is agood means to facilitate and share information as much to college. However, the college today togetthe informationisnot maximized. This study aimstobuildawebsite on Kopertais SUMBAGSEL region VII. This website was developed using Macromedia Dreamweaver CS3 software, PHP, and MySQL, and method development using RAD (Rapid Application Development, and the purpose of this website serves to facilitate the college to receiver elevant information about online Kopertais VII region and terupdates.

  16. Analysis of the ZPPR-15 Critical Experiments with ENDF/B-V.2 and ENDF/B-VII.0 Data

    International Nuclear Information System (INIS)

    Kim, Sang Ji; Yang, Won Sik; Lee, Changho

    2008-01-01

    This paper presents the analysis results for the ZPPR-15 critical experiments. Using the ENDF/B-V.2 and ENDF/B-VII.0 data, three loading configurations of the ZPPR-15 Phase A experiments were analyzed with the ANL code suite for a fast reactor neutronics analysis, including the recently updated MC 2 -2 code. For the VIM Monte Carlo analyses with 3-D as-built models, the ENDF/B-VII.0 data improved the core multiplication factors by 0.21 to 0.37 %Δk, relative to the ENDF/B-V.2 data. With the plate heterogeneity effects taken into account by the SDX 1-D unit cell calculations, the DIF3D nodal transport solutions with the ENDF/B-V.2 data showed a good agreement for the core multiplication factors with the VIM Monte Carlo results to within 0.12 %Δk, but those with the ENDF/B-VII.0 data showed relatively larger deviations. Sensitivity studies based on the RZ models with homogenized cells showed excellent agreement for the core multiplication factors between the deterministic and Monte Carlo calculations to within 0.1 %Δk for both ENDF/B data. These results indicate that the MC 2 -2 methods are adequate for generating the multigroup cross sections for a fast reactor analysis, but the SDX process to account for the heterogeneity effect needs to be improved for the ENDF/B-VII.0 data. (authors)

  17. P1-5: Effect of Luminance Contrast on the Color Selective Responses in the Inferior Temporal Cortex Neurons of the Macaque Monkey

    Directory of Open Access Journals (Sweden)

    Tomoyuki Namima

    2012-10-01

    Full Text Available Although the relationship between color signal and luminance signal is an important problem in visual perception, relatively little is known about how the luminance contrast affects the responses of color selective neurons in the visual cortex. In this study, we examined this problem in the inferior temporal (IT of the awake monkey performing a visual fixation task. Single neuron activities were recorded from the anterior and posterior color selective regions in IT cortex (AITC and PITC identified in previous studies where color selective neurons are accumulated. Color stimuli consisted of 28 stimuli that evenly distribute across the gamut of the CRT display defined on the CIE- xychromaticity diagram at two different luminance levels (5 cd/m 2or 20 cd/m 2 and 2 stimuli at white points. The background was maintained at 10 cd/m 2gray. We found that the effect of luminance contrast on the color selectivity was markedly different between AITC and PITC. When we examined the correlation between the responses to the bright stimuli and those to the dark stimuli with the same chromaticity coordinates, most AITC neurons exhibited high correlation whereas many PITC neurons showed no correlation or only weak correlation. In PITC, the effect was specifically large for neutral colors (white, gray, black and for colors with low saturation. These results indicate that the effect of luminance contrast on the color selective responses differs across different areas and suggest that the separation between color signal and luminance signal involves a higher stage of the cortical color processing.

  18. Transcranial alternating current stimulation at beta frequency: lack of immediate effects on excitation and interhemispheric inhibition of the human motor cortex

    Directory of Open Access Journals (Sweden)

    Viola Rjosk

    2016-11-01

    Full Text Available Transcranial alternating current stimulation (tACS is a form of noninvasive brain stimulation and is capable of influencing brain oscillations and cortical networks. In humans, the endogenous oscillation frequency in sensorimotor areas peaks at 20 Hz. This beta-band typically occurs during maintenance of tonic motor output and seems to play a role in interhemispheric coordination of movements. Previous studies showed that tACS applied in specific frequency bands over primary motor cortex (M1 or the visual cortex modulates cortical excitability within the stimulated hemisphere. However, the particular impact remains controversial because effects of tACS were shown to be frequency, duration and location specific. Furthermore, the potential of tACS to modulate cortical interhemispheric processing, like interhemispheric inhibition (IHI, remains elusive. Transcranial magnetic stimulation (TMS is a noninvasive and well-tolerated method of directly activating neurons in superficial areas of the human brain and thereby a useful tool for evaluating the functional state of motor pathways. The aim of the present study was to elucidate the immediate effect of 10 min tACS in the β-frequency band (20 Hz over left M1 on IHI between M1s in 19 young, healthy, right-handed participants. A series of TMS measurements (MEP size, RMT, IHI from left to right M1 and vice versa was performed before and immediately after tACS or sham using a double-blinded, cross-over design. We did not find any significant tACS-induced modulations of intracortical excitation (as assessed by MEP size and RMT and/or interhemispheric inhibition (IHI. These results indicate that 10 min of 20 Hz tACS over left M1 seems incapable of modulating immediate brain activity or inhibition. Further studies are needed to elucidate potential aftereffects of 20 Hz tACS as well as frequency-specific effects of tACS on intracortical excitation and interhemispheric inhibition.

  19. The effect of transcranial direct current stimulation of the prefrontal cortex on implicit self-esteem is mediated by rumination after criticism.

    Science.gov (United States)

    De Raedt, Rudi; Remue, Jonathan; Loeys, Tom; Hooley, Jill M; Baeken, Chris

    2017-12-01

    It has been proposed that a crucial link between cognitive (i.e., self-schemas) and biological vulnerability is prefrontal control. This is because decreased control leads to impaired ability to inhibit ruminative thinking after the activation of negative self-schemas. However, current evidence is mainly correlational. In the current experimental study we tested whether the effect of neurostimulation of the dorsolateral prefrontal cortex (DLPFC) on self-esteem is mediated by momentary ruminative self-referential thinking (MRST) after the induction of negative self-schemas by criticism. We used a single, sham-controlled crossover session of anodal transcranial Direct Current Stimulation (tDCS) applied to the left DLPFC (cathode over the right supraorbital region) in healthy female individuals. After receiving tDCS/sham stimulation, we measured MRST and exposed the participants to critical audio scripts, followed by another MRST measurement. Subsequently, all participants completed two Implicit Relational Assessment Procedures to implicitly measure actual and ideal self-esteem. Our behavioral data indicated a significant decrease in MRST after real but not sham tDCS. Moreover, although there was no immediate effect of tDCS on implicit self-esteem, an indirect effect was found through double mediation, with the difference in MRST from baseline to after stimulation and from baseline to after criticism as our two mediators. The larger the decrease of criticism induced MRST after real tDCS, the higher the level of actual self-esteem. Our results show that tDCS can influence cognitive processes such as rumination, and subsequently self-esteem, but only after the activation of negative self-schemas. Rumination and negative self-esteem characterize different forms of psychopathology, and these data expand our knowledge of the role of the prefrontal cortex in controlling these self-referential processes, and the mechanisms of action of tDCS. Copyright © 2017 Elsevier Ltd

  20. Moderate effects of noninvasive brain stimulation of the frontal cortex for improving negative symptoms in schizophrenia: Meta-analysis of controlled trials.

    Science.gov (United States)

    Aleman, André; Enriquez-Geppert, Stefanie; Knegtering, Henderikus; Dlabac-de Lange, Jozarni J

    2018-06-01

    Negative symptoms in schizophrenia concern a clinically relevant reduction of goal-directed behavior that strongly and negatively impacts daily functioning. Existing treatments are of marginal effect and novel approaches are needed. Noninvasive neurostimulation by means of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are novel approaches that may hold promise. To provide a quantitative integration of the published evidence regarding effects of rTMS and tDCS over the frontal cortex on negative symptoms, including an analysis of effects of sham stimulation. Meta-analysis was applied, using a random effects model, to calculate mean weighted effect sizes (Cohen's d). Heterogeneity was assessed by using Cochrans Q and I 2 tests. For rTMS treatment, the mean weighted effect size compared to sham stimulation was 0.64 (0.32-0.96; k = 22, total N = 827). Studies with younger participants showed stronger effects as compared to studies with older participants. For tDCS studies a mean weighted effect size of 0.50 (-0.07 to 1.07; k = 5, total N = 134) was found. For all frontal noninvasive neurostimulation studies together (i.e., TMS and tDCS studies combined) active stimulation was superior to sham, the mean weighted effect size was 0.61 (24 studies, 27 comparisons, 95% confidence interval 0.33-0.89; total N = 961). Sham rTMS (baseline - posttreatment comparison) showed a significant improvement of negative symptoms, d = 0.31 (0.09-0.52; k = 16, total N = 333). Whereas previous meta-analyses were underpowered, our meta-analysis had a power of 0.87 to detect a small effect. The available evidence indicates that noninvasive prefrontal neurostimulation can improve negative symptoms. This finding suggests a causal role for the lateral frontal cortex in self-initiated goal-directed behavior. The evidence is stronger for rTMS than for tDCS, although this may be due to the small number of

  1. Infusions of allopregnanolone into the hippocampus and amygdala, but not into the nucleus accumbens and medial prefrontal cortex, produce antidepressant effects on the learned helplessness rats.

    Science.gov (United States)

    Shirayama, Yukihiko; Muneoka, Katsumasa; Fukumoto, Makoto; Tadokoro, Shigenori; Fukami, Goro; Hashimoto, Kenji; Iyo, Masaomi

    2011-10-01

    Patients with depression showed a decrease in plasma and cerebrospinal fluid allopregnanolone (ALLO). But antidepressants increased the contents of ALLO in the rat brain. We examined the antidepressant-like effects of infusion of ALLO into the cerebral ventricle, hippocampus, amygdala, nucleus accumbens, or prefrontal cortex of learned helplessness (LH) rats (an animal model of depression). Of these regions, infusions of ALLO into the cerebral ventricle, the CA3 region of hippocampus, or the central region of amygdala exerted antidepressant-like effects. Infusion of ALLO into the hippocampal CA3 region or the central amygdala did not produce memory deficits or locomotor activation in the passive avoidance and open field tests. It is well documented that ALLO exerts its effects through GABA receptors. Therefore, we examined the antagonistic effects of flumazenil (a GABA receptor antagonist) on the antidepressant-like effects of ALLO. Coinfusion of flumazenil with ALLO into the hippocampal CA3 region, but not into the central amygdala, blocked the antidepressant-like effects of ALLO. However, coinfusion of (+)MK801 (an NMDA receptor antagonist), but not cycloheximide (a protein synthesis inhibitor), blocked the antidepressant-like effects of ALLO in the central amygdala. These results suggest that ALLO exerts antidepressant-like effects in the CA3 region of hippocampus through the GABA system and in the central region of amygdala, dependently on the activation of the glutamatergic mechanisms. Copyright © 2010 Wiley-Liss, Inc.

  2. Recombinant factor VIIa treatment for asymptomatic factor VII deficient patients going through major surgery.

    Science.gov (United States)

    Livnat, Tami; Shenkman, Boris; Spectre, Galia; Tamarin, Ilia; Dardik, Rima; Israeli, Amnon; Rivkind, Avraham; Shabtai, Moshe; Marinowitz, Uri; Salomon, Ophira

    2012-07-01

    Factor VII deficiency is the most common among the rare autosomal recessive coagulation disorders worldwide. In factor VII deficient patients, the severity and clinical manifestations cannot be reliably determined by factor VII levels. Severe bleeding tends to occur in individuals with factor VII activity levels of 2% or less of normal. Patients with 2-10% factor VII vary between asymptomatic to severe life threatening haemorrhages behaviour. Recombinant factor VIIa (rFVIIa) is the most common replacement therapy for congenital factor VII deficiency. However, unlike haemophilia patients for whom treatment protocols are straight forward, in asymptomatic factor VII deficiency patients it is still debatable. In this study, we demonstrate that a single and very low dose of recombinant factor VIIa enabled asymptomatic patients with factor VII deficiency to go through major surgery safely. This suggestion was also supported by thrombin generation, as well as by thromboelastometry.

  3. Laparoscopic adrenal cortex

    International Nuclear Information System (INIS)

    Peyrolou, A.; Salom, A.; Harguindeguy; Taroco, L.; Ardao, G.; Broli, F. . E mail: andresssss@adinet.com.uy

    2005-01-01

    The paper presents the case of a female patient who carried an aldosterone-secreting tumor of adrenal cortex.In the analysis of diagnosis and para clinical examinations there is particular reference to the laparoscopic surgery mode of treatment.Diagnosis should be established on the basis of clinical and laboratory tests (hypopotassemia and hyperaldosteronism).Tumor topography was confirmed through CT scan, MRI and Scintiscan in left adrenal cortex.Resection was consequently made through laparoscopic surgery.The patients evolution was excellent from the surgical viewpoint,with I levels of blood pressure, potassium and aldosterone returned to normal

  4. The importance of residues 195-206 of human blood clotting factor VII in the interaction of factor VII with tissue factor

    International Nuclear Information System (INIS)

    Wildgoose, P.; Kisiel, W.; Kazim, A.L.

    1990-01-01

    Previous studies indicated that human and bovine factor VII exhibit 71% amino acid sequence identity. In the present study, competition binding experiments revealed that the interaction of human factor VII with cell-surface human tissue factor was not inhibited by 100-fold molar excess of bovine factor VII. This finding indicated that bovine and human factor VII are not structurally homologous in the region(s) where human factor VII interacts with human tissue factor. On this premise, the authors synthesized three peptides corresponding to regions of human factor VII that exhibited marked structural dissimilarity to bovine factor VII; these regions of dissimilarity included residues 195-206, 263-274, and 314-326. Peptide 195-206 inhibited the interaction of factor VII with cell-surface tissue factor and the activation of factor X by a complex of factor VIIa and tissue factor half-maximally at concentrations of 1-2 mM. A structurally rearranged form of peptide 195-206 containing an aspartimide residue inhibited these reactions half-maximally at concentrations of 250-300 μM. In contrast, neither peptide 263-274 nor peptide 314-326, at 2 mM concentration, significantly affected either factor VIIa interaction with tissue factor or factor VIIa-mediated activation of factor X. The data provide presumptive evidence that residues 195-206 of human factor VII are involved in the interaction of human factor VII with the extracellular domain of human tissue factor apoprotein

  5. Keefektivan PMRI Berbantuan Alat Peraga Terhadap Kemampuan Pemecahan Masalah Serupa PISA Pada Kelas VII

    Directory of Open Access Journals (Sweden)

    Riyanto Riyanto

    2014-06-01

    Full Text Available AbstrakTujuan penelitian ini untuk mengetahui keefektivan pembelajaran dengan metode Pendidi-kan Matematika Realistik Indonesia (PMRI berbantuan alat peraga terhadap kemampuan pemecahan masalah serupa PISA siswa pada materi segiempat. Populasi dalam penelitian ini adalah siswa kelas VII SMP Negeri 3 Ungaran tahun pelajaran 2012/2013. Pemilihan sampel dengan cara random sampling, diperoleh siswa kelas VII-I dan siswa kelas VII-J se-bagai kelas eksperimen dan kelas kontrol. Kelas eksperimen diajar dengan metode PMRI berbantuan alat peraga, sedangkan kelas kontrol diajar dengan metode ekspositori. Data di-peroleh dengan metode observasi untuk mengamati aktivitas belajar guru dan metode tes untuk menentukan hasil belajar siswa yang kemudian dianalisis dengan uji ketuntasan dan uji perbedaan rata-rata: uji satu pihak (pihak kanan. Hasil penelitian adalah (1 hasil be-lajar siswa kelas eksperimen belum mencapai kriteria ketuntasan klasikal, (2 rata-rata ke-mampuan pemecahan masalah serupa PISA kelas eksperimen lebih baik dari kelas kontrol, dan (3 skor rata-rata aktivitas guru kelas ekperimen dan kelas kontrol memiliki kategori baik. Kata kunci:       Kualitas Pembelajaran; PISA; PMRI.  AbstractThe purpose of this research was to determine the effectiveness of learning by Teams Pendidikan Matematika Realistik Indonesia (PMRI assisted on figure tools to the problem solving skills PISA student on quadrilateral material. The population in this study is student of VIIth grade class of 3 Ungaran junior high school on period 2012/2013. The selection of the sample is done by random sampling which is gotten students class VII-I and students class VII-J as the experimental class and the controlling class. Experimental class was taught by PMRI assisted on figure tools, while the controlling class was taught with the expository method. Data obtained by the observation method to observe the activities of teacher learning and test methods for determining

  6. Neuroprotective Effect of Portulaca oleraceae Ethanolic Extract Ameliorates Methylmercury Induced Cognitive Dysfunction and Oxidative Stress in Cerebellum and Cortex of Rat Brain.

    Science.gov (United States)

    Sumathi, Thangarajan; Christinal, Johnson

    2016-07-01

    Methylmercury (MeHg) is highly toxic, and its principal target tissue in human is the nervous system, which has made MeHg intoxication a public health concern for many decades. Portulaca oleraceae (purslane), a member of the Portulacaceae family, is widespread as a weed and has been ranked the eighth most common plant in the world. In this study, we sought for potential beneficial effects of Portulaca oleracea ethanolic extract (POEE) against the neurotoxicity induced by MeHg in cerebellum and cortex of rats. Male Wistar rats were administered with MeHg orally at a dose of 5 mg/kg b.w. for 21 days. Experimental rats were given MeHg and also administered with POEE (4 mg/kg, orally) 1 h prior to the administration of MeHg for 21 days. After MeHg exposure, we determine the mercury concentration by atomic absorption spectroscopy (AAS); mercury content was observed high in MeHg-induced group. POEE reduced the mercury content. We also observed that the activities of catalase, superoxide dismutase, glutathione peroxidase, and the level of glutathione were reduced. The levels of glutathione reductase and thiobarbituric acid reactive substance were found to be increased. The above biochemical changes were found to be reversed with POEE. Behavioral changes like decrease tail flick response, longer immobility time, and decreased motor activity were noted down during MeHg exposure. POEE pretreatment offered protection from these behavioral changes. MeHg intoxication also caused histopathological changes in cerebellum and cortex, which was found to be normalized by treatment with POEE. The present results indicate that POEE has protective effect against MeHg-induced neurotoxicity.

  7. Effect of l-DOPA on local field potential relationship between the pedunculopontine nucleus and primary motor cortex in a rat model of Parkinson's disease.

    Science.gov (United States)

    Geng, Xiwen; Wang, Xuenan; Xie, Jinlu; Zhang, Xiao; Wang, Xiusong; Hou, Yabing; Lei, Chengdong; Li, Min; Han, Hongyu; Yao, Xiaomeng; Zhang, Qun; Wang, Min

    2016-12-15

    Levodopa (l-DOPA) has been proved to reverse the pathologic neuron activities in many brain regions related to Parkinson's disease (PD). But little is known about the effect of l-DOPA on the altered electrophysiological coherent activities between pedunculopontine nucleus (PPN) and motor cortex. To investigate this, local field potentials (LFPs) of PPN and primary motor cortex (M1) were recorded simultaneously in control, 6-hydroxydopamine lesioned and lesioned rats with l-DOPA chronic treatment. The results revealed that in resting state, chronic l-DOPA treatment could correct the suppressed power of LFPs in PPN and M1 in low-frequency band (1-7Hz) and the enhanced power in high-frequency band (7-70Hz in PPN and 12-70Hz in M1) of lesioned rats. In locomotor state, l-DOPA treatment could correct the alterations in most of frequency bands except the δ band in PPN and α band in M1. Moreover, l-DOPA could also reverse the altered coherent relationships caused by dopamine depletion in resting state between PPN and M1 in β band. And in locomotor state, l-DOPA had therapeutic effect on the alterations in δ and β bands but not in the α band. These findings provide evidence that l-DOPA can reverse the altered LFP activities in PPN and M1 and their relationships in a rat model of PD, which contributes to better understanding the electrophysiological mechanisms of the pathophysiology and therapy of PD. Copyright © 2016. Published by Elsevier B.V.

  8. Effects of Adaptation on Discrimination of Whisker Deflection Velocity and Angular Direction in a Model of the Barrel Cortex

    Directory of Open Access Journals (Sweden)

    Mainak J. Patel

    2018-06-01

    Full Text Available Two important stimulus features represented within the rodent barrel cortex are velocity and angular direction of whisker deflection. Each cortical barrel receives information from thalamocortical (TC cells that relay information from a single whisker, and TC input is decoded by barrel regular-spiking (RS cells through a feedforward inhibitory architecture (with inhibition delivered by cortical fast-spiking or FS cells. TC cells encode deflection velocity through population synchrony, while deflection direction is encoded through the distribution of spike counts across the TC population. Barrel RS cells encode both deflection direction and velocity with spike rate, and are divided into functional domains by direction preference. Following repetitive whisker stimulation, system adaptation causes a weakening of synaptic inputs to RS cells and diminishes RS cell spike responses, though evidence suggests that stimulus discrimination may improve following adaptation. In this work, I construct a model of the TC, FS, and RS cells comprising a single barrel system—the model incorporates realistic synaptic connectivity and dynamics and simulates both angular direction (through the spatial pattern of TC activation and velocity (through synchrony of the TC population spikes of a deflection of the primary whisker, and I use the model to examine direction and velocity selectivity of barrel RS cells before and after adaptation. I find that velocity and direction selectivity of individual RS cells (measured over multiple trials sharpens following adaptation, but stimulus discrimination using a simple linear classifier by the RS population response during a single trial (a more biologically meaningful measure than single cell discrimination over multiple trials exhibits strikingly different behavior—velocity discrimination is similar both before and after adaptation, while direction classification improves substantially following adaptation. This is the

  9. The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Amy F.T. Arnsten

    2015-01-01

    Full Text Available Research on the neurobiology of the stress response in animals has led to successful new treatments for Post-Traumatic Stress Disorder (PTSD in humans. Basic research has found that high levels of catecholamine release during stress rapidly impair the top-down cognitive functions of the prefrontal cortex (PFC, while strengthening the emotional and habitual responses of the amygdala and basal ganglia. Chronic stress exposure leads to dendritic atrophy in PFC, dendritic extension in the amygdala, and strengthening of the noradrenergic (NE system. High levels of NE release during stress engage low affinity alpha-1 adrenoceptors, (and likely beta-1 adrenoceptors, which rapidly reduce the firing of PFC neurons, but strengthen amygdala function. In contrast, moderate levels of NE release during nonstress conditions engage higher affinity alpha-2A receptors, which strengthen PFC, weaken amygdala, and regulate NE cell firing. Thus, either alpha-1 receptor blockade or alpha-2A receptor stimulation can protect PFC function during stress. Patients with PTSD have signs of PFC dysfunction. Clinical studies have found that blocking alpha-1 receptors with prazosin, or stimulating alpha-2A receptors with guanfacine or clonidine can be useful in reducing the symptoms of PTSD. Placebo-controlled trials have shown that prazosin is helpful in veterans, active duty soldiers and civilians with PTSD, including improvement of PFC symptoms such as impaired concentration and impulse control. Open label studies suggest that guanfacine may be especially helpful in treating children and adolescents who have experienced trauma. Thus, understanding the neurobiology of the stress response has begun to help patients with stress disorders.

  10. Effect of 30 Hz Theta Burst Transcranial Magnetic Stimulation on the Primary Motor Cortex in Children and Adolescents

    Directory of Open Access Journals (Sweden)

    Ernest ePedapati

    2015-02-01

    Full Text Available Fourteen healthy children (13.8±2.2 years, range 10 to 16; M:F=5:9 received 30 Hz intermittent theta burst transcranial magnetic stimulation (iTBS with a stimulation intensity of 70% of resting motor threshold (RMT with a total of 300 (iTBS300 pulses. All volunteers were free of neurologic, psychiatric and serious medical illnesses, not taking any neuropsychiatric medications, and did not have any contraindications to Transcranial Magnetic Stimulation. Changes in the mean amplitudes of motor-evoked potentials from baseline following iTBS were expressed as a ratio and assessed from 1 to 10 minutes (BLOCK1 and 1 to 30 minutes (BLOCK2 using repeated-measures analysis of variance. All 14 subjects completed iTBS300 over the dominant primary motor cortex (M1 without any clinically reported adverse events. ITBS300 produced significant M1 facilitation (F5,65=3.165, p=0.01 at BLOCK1 and trend level M1 facilitation at BLOCK2 (F10,129=1.69, p=0.089. Although iTBS300 (stimulation duration of 92 seconds at 70% RMT delivered over M1 in typically developed children was well-tolerated and produced on average significant facilitatory changes in cortical excitability, the post-iTBS300 neurophysiologic response was variable in our small sample. ITBS300-induced changes may represent a potential neuroplastic biomarker in healthy children and those with neuro-genetic or neuro-psychiatric disorders. However, a larger sample size is needed to address safety and concerns of response variability.

  11. Effect of 30 Hz theta burst transcranial magnetic stimulation on the primary motor cortex in children and adolescents

    Science.gov (United States)

    Pedapati, Ernest V.; Gilbert, Donald L.; Horn, Paul S.; Huddleston, David A.; Laue, Cameron S.; Shahana, Nasrin; Wu, Steve W.

    2015-01-01

    Fourteen healthy children (13.8 ± 2.2 years, range 10–16; M:F = 5:9) received 30 Hz intermittent theta burst transcranial magnetic stimulation (iTBS) with a stimulation intensity of 70% of resting motor threshold (RMT) with a total of 300 (iTBS300) pulses. All volunteers were free of neurologic, psychiatric and serious medical illnesses, not taking any neuropsychiatric medications, and did not have any contraindications to transcranial magnetic stimulation. Changes in the mean amplitudes of motor-evoked potentials from baseline following iTBS were expressed as a ratio and assessed from 1 to 10 min (BLOCK1) and 1–30 min (BLOCK2) using repeated-measures analysis of variance. All 14 subjects completed iTBS300 over the dominant primary motor cortex (M1) without any clinically reported adverse events. ITBS300 produced significant M1 facilitation [F(5, 65) = 3.165, p = 0.01] at BLOCK1 and trend level M1 facilitation at BLOCK2 [F(10, 129) = 1.69, p = 0.089]. Although iTBS300 (stimulation duration of 92 s at 70% RMT) delivered over M1 in typically developed children was well-tolerated and produced on average significant facilitatory changes in cortical excitability, the post-iTBS300 neurophysiologic response was variable in our small sample. ITBS300-induced changes may represent a potential neuroplastic biomarker in healthy children and those with neuro-genetic or neuro-psychiatric disorders. However, a larger sample size is needed to address safety and concerns of response variability. PMID:25762919

  12. A multi-scale computational model of the effects of TMS on motor cortex [version 3; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Hyeon Seo

    2017-05-01

    Full Text Available The detailed biophysical mechanisms through which transcranial magnetic stimulation (TMS activates cortical circuits are still not fully understood. Here we present a multi-scale computational model to describe and explain the activation of different pyramidal cell types in motor cortex due to TMS. Our model determines precise electric fields based on an individual head model derived from magnetic resonance imaging and calculates how these electric fields activate morphologically detailed models of different neuron types. We predict neural activation patterns for different coil orientations consistent with experimental findings. Beyond this, our model allows us to calculate activation thresholds for individual neurons and precise initiation sites of individual action potentials on the neurons’ complex morphologies. Specifically, our model predicts that cortical layer 3 pyramidal neurons are generally easier to stimulate than layer 5 pyramidal neurons, thereby explaining the lower stimulation thresholds observed for I-waves compared to D-waves. It also shows differences in the regions of activated cortical layer 5 and layer 3 pyramidal cells depending on coil orientation. Finally, it predicts that under standard stimulation conditions, action potentials are mostly generated at the axon initial segment of cortical pyramidal cells, with a much less important activation site being the part of a layer 5 pyramidal cell axon where it crosses the boundary between grey matter and white matter. In conclusion, our computational model offers a detailed account of the mechanisms through which TMS activates different cortical pyramidal cell types, paving the way for more targeted application of TMS based on individual brain morphology in clinical and basic research settings.

  13. Effects of aging on working memory performance and prefrontal cortex activity: A time-resolved spectroscopy study

    Institute of Scientific and Technical Information of China (English)

    Jie Shi; Wenjing Zhou; Tongchao Geng; Huancong Zuo; Masahiro Tanida; Kaoru Sakatani

    2016-01-01

    Objective:This study aimed to employ time‐resolved spectroscopy(TRS)to explore age‐related differences in prefrontal cortex(PFC)activity while subjects performed a working memory task.Methods:We employed TRS to measure PFC activity in ten healthy younger and ten healthy older subjects while they performed a working memory(WM)task.All subjects performed the Sternberg test(ST)in which the memory‐set size varied between one and six digits.Using TRS,we recorded changes in cerebral blood oxygenation as a measure of changes in PFC activity during the task.In order to identify left/right asymmetry of PFC activity during the working memory task,we calculated the laterality score,i.e.,Δoxy‐Hb(rightΔoxy‐Hb—leftΔoxy‐Hb);positive values indicate greater activity in the right PFC,while negative values indicate greater activity in the left PFC.Results:During the ST,statistical analyses showed no significant differences between the younger and older groups in accuracy for low memory‐load and high memory‐load.In high memory‐load tasks,however,older subjects were slower than younger subjects(P<0.05).We found that the younger group showed right lateral responses with a stronger right than left activation in the frontal pole,whereas the older group showed bilateral responses(P<0.05).Conclusions:The present results are consistent with the hemispheric asymmetry reduction in older adults(HAROLD)model;working memory tasks cause asymmetrical PFC activation in younger adults,while older adults tend to show reduced hemispheric lateralization.

  14. Comparing and Contrasting the Cognitive Effects of Hippocampal and Ventromedial Prefrontal Cortex Damage: A Review of Human Lesion Studies.

    Science.gov (United States)

    McCormick, Cornelia; Ciaramelli, Elisa; De Luca, Flavia; Maguire, Eleanor A

    2018-03-15

    The hippocampus and ventromedial prefrontal cortex (vmPFC) are closely connected brain regions whose functions are still debated. In order to offer a fresh perspective on understanding the contributions of these two brain regions to cognition, in this review we considered cognitive tasks that usually elicit deficits in hippocampal-damaged patients (e.g., autobiographical memory retrieval), and examined the performance of vmPFC-lesioned patients on these tasks. We then took cognitive tasks where performance is typically compromised following vmPFC damage (e.g., decision making), and looked at how these are affected by hippocampal lesions. Three salient motifs emerged. First, there are surprising gaps in our knowledge about how hippocampal and vmPFC patients perform on tasks typically associated with the other group. Second, while hippocampal or vmPFC damage seems to adversely affect performance on so-called hippocampal tasks, the performance of hippocampal and vmPFC patients clearly diverges on classic vmPFC tasks. Third, although performance appears analogous on hippocampal tasks, on closer inspection, there are significant disparities between hippocampal and vmPFC patients. Based on these findings, we suggest a tentative hierarchical model to explain the functions of the hippocampus and vmPFC. We propose that the vmPFC initiates the construction of mental scenes by coordinating the curation of relevant elements from neocortical areas, which are then funneled into the hippocampus to build a scene. The vmPFC then engages in iterative re-initiation via feedback loops with neocortex and hippocampus to facilitate the flow and integration of the multiple scenes that comprise the coherent unfolding of an extended mental event. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Downstream effects of hippocampal sharp wave ripple oscillations on medial entorhinal cortex layer V neurons in vitro.

    Science.gov (United States)

    Roth, Fabian C; Beyer, Katinka M; Both, Martin; Draguhn, Andreas; Egorov, Alexei V

    2016-12-01

    The entorhinal cortex (EC) is a critical component of the medial temporal lobe (MTL) memory system. Local networks within the MTL express a variety of state-dependent network oscillations that are believed to organize neuronal activity during memory formation. The peculiar pattern of sharp wave-ripple complexes (SPW-R) entrains neurons by a very fast oscillation at ∼200 Hz in the hippocampal areas CA3 and CA1 and then propagates through the "output loop" into the EC. The precise mechanisms of SPW-R propagation and the resulting cellular input patterns in the mEC are, however, largely unknown. We therefore investigated the activity of layer V (LV) principal neurons of the medial EC (mEC) during SPW-R oscillations in horizontal mouse brain slices. Intracellular recordings in the mEC were combined with extracellular monitoring of propagating network activity. SPW-R in CA1 were regularly followed by negative field potential deflections in the mEC. Propagation of SPW-R activity from CA1 to the mEC was mostly monosynaptic and excitatory, such that synaptic input to mEC LV neurons directly reflected unit activity in CA1. Comparison with propagating network activity from CA3 to CA1 revealed a similar role of excitatory long-range connections for both regions. However, SPW-R-induced activity in CA1 involved strong recruitment of rhythmic synaptic inhibition and corresponding fast field oscillations, in contrast to the mEC. These differences between features of propagating SPW-R emphasize the differential processing of network activity by each local network of the hippocampal output loop. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. 76 FR 31892 - Recordkeeping and Reporting Requirements Under Title VII, the ADA, and GINA

    Science.gov (United States)

    2011-06-02

    ... Requirements Under Title VII, the ADA, and GINA AGENCY: Equal Employment Opportunity Commission. ACTION: Notice... Civil Rights Act of 1964 (Title VII) and the Americans with Disabilities Act (ADA) to entities covered... the same record retention requirements under GINA that are imposed under Title VII and the ADA, i.e...

  17. 76 FR 79065 - Recordkeeping and Reporting Requirements Under Title VII, the ADA and GINA

    Science.gov (United States)

    2011-12-21

    ... Reporting Requirements Under Title VII, the ADA and GINA CFR Correction In Title 29 of the Code of Federal... title VII or section 107 of the ADA'' and add in their place the words ``section 709(c) of title VII, section 107 of the ADA, or section 207(a) of GINA'' wherever they appear in the following sections...

  18. [Effect of electric acupuncture on the expression of NgR in the cerebral cortex, the medulla oblongata, and the spinal cord of hypertensive rats after cerebral infarction].

    Science.gov (United States)

    Tan, Feng; Chen, Jie; Liang, Yan-Gui; Li, Yan-Ping; Wang, Xue-Wen; Meng, Di; Cheng, Nan-Fang

    2014-03-01

    To observe the effect of electric acupuncture (EA) on the Nogo receptors (NgR) protein expression in the cerebral cortex, the medulla oblongata, and the spinal cord of cerebral ischemia-reperfusion (I/R) stroke-prone renovascular hypertensive rats (RHRSP) with middle cerebral artery occlusion (MCAO) at different time points, and to investigate its possible mechanisms for remote-organ injury of acute cerebral infarction (ACI). The RHRSP model was duplicated in male SPF grade SD rats. Then the MCAO model was prepared by a thread stringing method. Rats were divided into the hypertension group,the sham-operation group, the MCAO group, the EA group, and the sham-acupoint group by random number table method, 60 in each group. Rats in the MCAO group only received MCAO reperfusion treatment. Those in the sham-operation group only received surgical trauma. Baihui (DU20) and Dazhui (DU14) were needled in the EA group, once daily for a total of 28 days.The needles were acupunctured at the skin one cun distant from Baihui (DU20) and Dazhui (DU14) and then the same EA treatment was performed in the sham-acupoint group. At day 1, 7, 14, 28 after treatment, six rats were executed from each group, and their right cortex and medulla oblongata, and the left spinal cord were isolated. The infarct volume was detected by Nissl's staining method. The NgR expression was detect by Western blot. (1) In the cortex area: compared with the hypertension group,the NgR expression increased in the MCAO group at day 1,7,14,and 28 after MCAO (P 0.05). At day 7, 14,and 28 after MCAO, the NgR expression decreased in the EA group (P 0.05). (2) In the medulla oblongata area: compared with the hypertension group, the NgR expression was equivalent in the sham-operation group. the MCAO group,the EA group, and the sham-acupoint group at 1 day after MCAO (P > 0.05). At day 7.14, and 28 after MCAO, the NgR expression increased in the MCAO group (P 0.05). (3) In the spinal cord area: compared with the

  19. In silico dissection of Type VII Secretion System components across ...

    Indian Academy of Sciences (India)

    2016-02-12

    Feb 12, 2016 ... Bio-Sciences R&D Division, TCS Innovation Labs, Tata Research Development & Design Centre, ... Type VII Secretion System (T7SS) is one of the factors involved in virulence of ... Such wide distribution of T7SS and.

  20. Prophylactic treatment of hereditary severe factor VII deficiency in pregnancy.

    Science.gov (United States)

    Pfrepper, Christian; Siegemund, Annelie; Hildebrandt, Sven; Kronberg, Juliane; Scholz, Ute; Niederwieser, Dietger

    2017-09-01

    : Severe hereditary factor VII deficiency is a rare bleeding disorder and may be associated with a severe bleeding phenotype. We describe a pregnancy in a 33-year-old woman with compound heterozygous factor VII deficiency and a history of severe menorrhagia and mucocutaneous bleedings. After discontinuation of contraceptives, menstruation was covered with recombinant activated factor VII (rFVIIa), and during pregnancy, rFVIIa had to be administered in first trimester in doses ranging from 15 to 90 μg/kg per day because of recurrent retroplacental hematomas and vaginal bleedings. Thrombin generation was measured in first trimester at different doses of rFVIIa and showed an increase in lag time when doses of less than 30 μg/kg/day were administered, whereas time to thrombin peak and peak thrombin were not influenced. A low-dose rFVIIa prophylactic treatment of 15 μg/kg every other day in the late second and in the third trimester was sufficient to allow a successful childbirth in this patient with severe factor VII deficiency.

  1. In silico dissection of Type VII Secretion System components across

    Indian Academy of Sciences (India)

    Type VII Secretion System (T7SS) is one of the factors involved in virulence of Mycobacteriun tuberculosis H37Rv. Numerous research efforts have been made in the last decade towards characterizing the components of this secretion system. An extensive genome-wide analysis through compilation of isolated information ...

  2. Photosynthetic pigments of oceanic Chlorophyta belonging to prasinophytes clade VII.

    Science.gov (United States)

    Lopes Dos Santos, Adriana; Gourvil, Priscillia; Rodríguez, Francisco; Garrido, José Luis; Vaulot, Daniel

    2016-02-01

    The ecological importance and diversity of pico/nanoplanktonic algae remains poorly studied in marine waters, in part because many are tiny and without distinctive morphological features. Amongst green algae, Mamiellophyceae such as Micromonas or Bathycoccus are dominant in coastal waters while prasinophytes clade VII, yet not formerly described, appear to be major players in open oceanic waters. The pigment composition of 14 strains representative of different subclades of clade VII was analyzed using a method that improves the separation of loroxanthin and neoxanthin. All the prasinophytes clade VII analyzed here showed a pigment composition similar to that previously reported for RCC287 corresponding to pigment group prasino-2A. However, we detected in addition astaxanthin for which it is the first report in prasinophytes. Among the strains analyzed, the pigment signature is qualitatively similar within subclades A and B. By contrast, RCC3402 from subclade C (Picocystis) lacks loroxanthin, astaxanthin, and antheraxanthin but contains alloxanthin, diatoxanthin, and monadoxanthin that are usually found in diatoms or cryptophytes. For subclades A and B, loroxanthin was lowest at highest light irradiance suggesting a light-harvesting role of this pigment in clade VII as in Tetraselmis. © 2015 Phycological Society of America.

  3. Statistics and Title VII Proof: Prima Facie Case and Rebuttal.

    Science.gov (United States)

    Whitten, David

    1978-01-01

    The method and means by which statistics can raise a prima facie case of Title VII violation are analyzed. A standard is identified that can be applied to determine whether a statistical disparity is sufficient to shift the burden to the employer to rebut a prima facie case of discrimination. (LBH)

  4. Extended analyses of Se VII and Se VIII

    International Nuclear Information System (INIS)

    Vankleef, Th.A.M.; Joshi, Y.N.

    1984-01-01

    Joshi et al. (1984) have conducted an analysis of the 3d8 4s-3d8 4p transitions in As VII. The present investigation is concerned with an analysis of similar transitions in Se VIII. The selenium spectrum was photographed in the 400-1200-A wavelength region on a variety of normal-incidence spectrographs. Attention is given to least-squares-fit (LSF) and Hartree-Fock (HF) parameter values for the 3d9 4d configuration of Se VII, LSF and HF parameter values for the 3d8 4s and 3d8 4p configurations of Se VIII, the energy and composition of the levels of the 3d9 4d configuration of Se VII, classified lines in Se VII, energy levels and composition of the 3d8 4s configuration and the revised and newly determined levels of the 3d8 4p configuration of Se VIII, and newly classified lines of Se VIII. 15 references

  5. Viis aastakümmet raamatukogunduse radadel / Anne Veinberg

    Index Scriptorium Estoniae

    Veinberg, Anne

    2008-01-01

    Arvustus: Kikas, Konrad. Verba volant, scripta manent : viis aastakümmet raamatukogunduse ja infoteaduse radadel = Verba volant, scripta manent : five decades on the field of librarianship and information science. - Tallinn : Tallinna Tehnikaülikooli Kirjastus, 2008. - 366 lk. : ill. portr. - (Tallinna Tehnikaülikooli Raamatukogu töid. A ; 5)

  6. Viis armastuslugu suurel ekraanil / Tristan Priimägi

    Index Scriptorium Estoniae

    Priimägi, Tristan, 1976-

    2008-01-01

    Viis näidet filmiajaloost, kus režissööri ja staari vahel on tunded : Roger Vadim ja Tema Naised, Werner Herzog ja Klaus Kinski, Federico Fellini ja Anita Ekberg, Quentin Tarantino ja Uma Thurman, Rainer Werner Fassbinder ja Mr/Mrs X

  7. Effect of chronic usage of tramadol on motor cerebral cortex and testicular tissues of adult male albino rats and the effect of its withdrawal: histological, immunohistochemical and biochemical study.

    Science.gov (United States)

    Ghoneim, Fatma M; Khalaf, Hanaa A; Elsamanoudy, Ayman Z; Helaly, Ahmed N

    2014-01-01

    This study was designed to demonstrate the histopathological and biochemical changes in rat cerebral cortex and testicles due to chronic usage of tramadol and the effect of withdrawal. Thirty adult male rats weighing 180-200 gm were classified into three groups; group I (control group) group II (10 rats received 50 mg/kg/day of tramadol intraperitoneally for 4 weeks) and group III (10 rats received the same dose as group II then kept 4 weeks later to study the effect of withdrawal). Histological and immunohistochemical examination of cerebral cortex and testicular specimens for Bax (apoptotic marker) were carried out. Testicular specimens were examined by electron microscopy. RT-PCR after RNA extraction from both specimens was done for the genes of some antioxidant enzymes .Also, malondialdehyde (MDA) was measured colourimetrically in tissues homogenizate. The results of this study demonstrated histological changes in testicular and brain tissues in group II compared to group I with increased apoptotic index proved by increased Bax expression. Moreover in this group increased MDA level with decreased gene expression of the antioxidant enzymes revealed oxidative stress. Group III showed signs of improvement but not returned completely normal. It could be concluded that administration of tramadol have histological abnormalities on both cerebral cortex and testicular tissues associated with oxidative stress in these organs. Also, there is increased apoptosis in both organs which regresses with withdrawal. These findings may provide a possible explanation for delayed fertility and psychological changes associated with tramadol abuse.

  8. Top-down and bottom-up influences on the left ventral occipito-temporal cortex during visual word recognition: an analysis of effective connectivity.

    Science.gov (United States)

    Schurz, Matthias; Kronbichler, Martin; Crone, Julia; Richlan, Fabio; Klackl, Johannes; Wimmer, Heinz

    2014-04-01

    The functional role of the left ventral occipito-temporal cortex (vOT) in visual word processing has been studied extensively. A prominent observation is higher activation for unfamiliar but pronounceable letter strings compared to regular words in this region. Some functional accounts have interpreted this finding as driven by top-down influences (e.g., Dehaene and Cohen [2011]: Trends Cogn Sci 15:254-262; Price and Devlin [2011]: Trends Cogn Sci 15:246-253), while others have suggested a difference in bottom-up processing (e.g., Glezer et al. [2009]: Neuron 62:199-204; Kronbichler et al. [2007]: J Cogn Neurosci 19:1584-1594). We used dynamic causal modeling for fMRI data to test bottom-up and top-down influences on the left vOT during visual processing of regular words and unfamiliar letter strings. Regular words (e.g., taxi) and unfamiliar letter strings of pseudohomophones (e.g., taksi) were presented in the context of a phonological lexical decision task (i.e., "Does the item sound like a word?"). We found no differences in top-down signaling, but a strong increase in bottom-up signaling from the occipital cortex to the left vOT for pseudohomophones compared to words. This finding can be linked to functional accounts which assume that the left vOT contains neurons tuned to complex orthographic features such as morphemes or words [e.g., Dehaene and Cohen [2011]: Trends Cogn Sci 15:254-262; Kronbichler et al. [2007]: J Cogn Neurosci 19:1584-1594]: For words, bottom-up signals converge onto a matching orthographic representation in the left vOT. For pseudohomophones, the propagated signals do not converge, but (partially) activate multiple orthographic word representations, reflected in increased effective connectivity. Copyright © 2013 Wiley Periodicals, Inc.

  9. FAKTOR-FAKTOR YANG MEMENGARUHI PRODUKSI GULA PTPN VII (PERSERO

    Directory of Open Access Journals (Sweden)

    Rizky Savitri

    2014-09-01

    Full Text Available ABSTRACTThis study aimed to analyze the influence of the level of sugar cane yield, labor, production process period, and supporting materials on the production of PTPN VII (Persero PG. Cinta Manis, as well as analyzing the elasticity of production and business scale  of PTPN VII (Persero PG. Cinta Manis. The method used to analyze the data were quantitative analysis of Cobb Douglas production function with ordinary least square method to observe variable influences of PG. Cinta Manis sugar production. Cobb Douglas estimation results indicate that the level of sugar cane yield, labor, production process period, and supporting materials affect sugar production in PTPN VII (Persero PG. Cinta Manis. Production elasticity of each production factor shows that the use of production factors is not yet optimal, while the production scale of the company is Increasing Return to Scale (IRTS in which the proportion of additional input will produce output with the larger proportion. Accordingly, company should utilize the factors of production optimally, improve the quality of human resources with various activities to improve skills, increase the productivity of land by having land intensification, and optimize milling period by improving the quality of machine.Keywords: PG. Cinta Manis, increasing return to scale, Cobb Douglas function, PTPN VIIABSTRAKPenelitian ini bertujuan menganalisis pengaruh tingkat rendemen, tenaga kerja, bahan pembantu dan lama lama giling terhadap produksi gula PTPN VII (Persero PG. Cinta Manis, sekaligus menganalisis elastisitas produksi dan skala usaha PTPN VII (Persero PG. Cinta Manis. Metode analisis data yang digunakan adalah  analisis kuantitatif. Analisis kuantitatif pada penelitian ini menggunakan fungsi produksi cobb douglas dengan metode ordinary least square untuk melihat pengaruh variabel-variabel yang telah ditentukan terhadap produksi gula PG. Cinta Manis. Hasil estimasi cobb douglas menunjukkan  bahwa tingkat

  10. Dissociable effects of cingulate and medial frontal cortex lesions on stimulus-reward learning using a novel Pavlovian autoshaping procedure for the rat: implications for the neurobiology of emotion.

    Science.gov (United States)

    Bussey, T J; Everitt, B J; Robbins, T W

    1997-10-01

    The effects of quinolinic acid-induced lesions of the anterior cingulate, posterior cingulate, and medial frontal cortices on stimulus-reward learning were investigated with a novel Pavlovian autoshaping procedure in an apparatus allowing the automated presentation of computer-graphic stimuli to rats (T. J. Bussey, J. L. Muir, & T. W. Robbins, 1994). White vertical rectangles were presented on the left or the right of a computer screen. One of these conditioned stimuli (the CS+) was always followed by the presentation of a sucrose pellet; the other, the CS-, was never followed by reward. With training, rats came to approach the CS+ more often than the CS-. Anterior cingulate cortex-lesioned rats failed to demonstrate normal discriminated approach, making significantly more approaches to the CS- than did sham-operated controls. Medial frontal cortex-lesioned rats acquired the task normally but had longer overall approach latencies. Posterior cingulate cortex lesions did not affect acquisition.

  11. Mechanism of the Inhibitory Effects of Eucommia ulmoides Oliv. Cortex Extracts (EUCE in the CCl4-Induced Acute Liver Lipid Accumulation in Rats

    Directory of Open Access Journals (Sweden)

    Chang-Feng Jin

    2013-01-01

    Full Text Available Eucommia ulmoides Oliv. (EU has been used for treatment of liver diseases. The protective effects of Eucommia Ulmoides Oliv. cortex extracts (EUCE on the carbon tetrachloride- (CCl4- induced hepatic lipid accumulation were examined in this study. Rats were orally treated with EUCE in different doses prior to an intraperitoneal injection of 1 mg/kg CCl4. Acute injection of CCl4 decreased plasma triglyceride but increased hepatic triglyceride and cholesterol as compared to control rats. On the other hand, the pretreatment with EUCE diminished these effects at a dose-dependent manner. CCl4 treatment decreased glutathione (GSH and increased malondialdehyde (MDA accompanied by activated P450 2E1. The pretreatment with EUCE significantly improved these deleterious effects of CCl4. CCl4 treatment increased P450 2E1 activation and ApoB accumulation. Pretreatment with EUCE reversed these effects. ER stress response was significantly increased by CCl4, which was inhibited by EUCE. One of the possible ER stress regulatory mechanisms, lysosomal activity, was examined. CCl4 reduced lysosomal enzymes that were reversed with the EUCE. The results indicate that oral pretreatment with EUCE may protect liver against CCl4-induced hepatic lipid accumulation. ER stress and its related ROS regulation are suggested as a possible mechanism in the antidyslipidemic effect of EUCE.

  12. Connectivity changes underlying neurofeedback training of visual cortex activity.

    Directory of Open Access Journals (Sweden)

    Frank Scharnowski

    Full Text Available Neurofeedback based on real-time functional magnetic resonance imaging (fMRI is a new approach that allows training of voluntary control over regionally specific brain activity. However, the neural basis of successful neurofeedback learning remains poorly understood. Here, we assessed changes in effective brain connectivity associated with neurofeedback training of visual cortex activity. Using dynamic causal modeling (DCM, we found that training participants to increase visual cortex activity was associated with increased effective connectivity between the visual cortex and the superior parietal lobe. Specifically, participants who learned to control activity in their visual cortex showed increased top-down control of the superior parietal lobe over the visual cortex, and at the same time reduced bottom-up processing. These results are consistent with efficient employment of top-down visual attention and imagery, which were the cognitive strategies used by participants to increase their visual cortex activity.

  13. Preparation of factor VII concentrate using CNBr-activated Sepharose 4B immunoaffinity chromatography.

    Science.gov (United States)

    Mousavi Hosseini, Kamran; Nasiri, Saleh

    2015-01-01

    Factor VII concentrates are used in patients with congenital or acquired factor VII deficiency or treatment of hemophilia patients with inhibitors. In this research, immunoaffinity chromatography was used to purify factor VII from prothrombin complex (Prothrombin- Proconvertin-Stuart Factor-Antihemophilic Factor B or PPSB) which contains coagulation factors II, VII, IX and X. The aim of this study was to improve purity, safety and tolerability as a highly purified factor VII concentrate. PPSB was prepared using DEAE-Sephadex and was used as the starting material for purification of coagulation factor VII. Prothrombin complex was treated by solvent/detergent at 24°C for 6 h with constant stirring. The mixture of PPSB in the PBS buffer was filtered and then chromatographed using CNBr-activated Sepharose 4B coupled with specific antibody. Factors II, IX, VII, X and VIIa were assayed on the fractions. Fractions of 48-50 were pooled and lyophilized as a factor VII concentrate. Agarose gel electrophoresis was performed and Tween 80 was measured in the factor VII concentrate. Specific activity of factor VII concentrate increased from 0.16 to 55.6 with a purificationfold of 347.5 and the amount of activated factor VII (FVIIa) was found higher than PPSB (4.4-fold). RESULTS of electrophoresis on agarose gel indicated higher purity of Factor VII compared to PPSB; these finding revealed that factor VII migrated as alpha-2 proteins. In order to improve viral safety, solvent-detergent treatment was applied prior to further purification and nearly complete elimination of tween 80 (2 μg/ml). It was concluded that immuonoaffinity chromatography using CNBr-activated Sepharose 4B can be a suitable choice for large-scale production of factor VII concentrate with higher purity, safety and activated factor VII.

  14. Impurity transport in the Wendelstein VII-A stellarator

    International Nuclear Information System (INIS)

    1985-01-01

    Impurity radiation losses in net-current-free neutral-beam-heated plasmas in the Wendelstein W VII-A stellarator are the combined effect of particularly strong impurity sources and improved particle confinement as compared with ohmically heated tokamak-like plasma discharges. Experiments are described and conclusions are drawn about the impurity species, their origin and their transport behaviour. The impurity transport is modelled by a 1-D impurity transport and radiation code. The evolution of the total radiation in time and space deduced from soft-X-ray and bolometer measurements can be fairly well simulated by the code. Experimentally, oxygen was found to make the main contribution to the radiation losses. In the calculations, an influx of cold oxygen desorbed from the walls of the order of 10 13 -10 14 cm -2 .s -1 and a rate of fast injected oxygen corresponding to a 1% impurity content of the neutral beams in combination with neoclassical impurity transport leads to quantitative agreement between the simulation and the observed radiation. The transport of A1 trace impurities injected by the laser blow-off technique was experimentally studied by soft-X-ray measurements using a differential method allowing extraction of the time evolution of A1 XII, XIII radial profiles. These are compared with code predictions, together with additional spectroscopic measurements. The main features of the impurity transport are consistent with neoclassical predictions, which explain particularly the central impurity accumulation. Some details, however, seem to require additional 'anomalous' transport. Such an enhancement is correlated with distortions of the magnetic configuration around resonant magnetic surfaces. (author)

  15. Effects of chronic treatment with escitalopram or citalopram on extracellular 5-HT in the prefrontal cortex of rats: role of 5-HT1A receptors

    Science.gov (United States)

    Ceglia, I; Acconcia, S; Fracasso, C; Colovic, M; Caccia, S; Invernizzi, R W

    2004-01-01

    Microdialysis was used to study the acute and chronic effects of escitalopram (S-citalopram; ESCIT) and chronic citalopram (CIT), together with the 5-HT1A receptor antagonist WAY100,635 (N-[2-[methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane carboxamide trihydrochloride) and the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), on extracellular 5-hydroxytryptamine (5-HT) levels in the rat prefrontal cortex. Extracellular 5-HT rose to 234 and 298% of basal values after subcutaneous (s.c.) acute doses of 0.15 and 0.63 mg kg−1 ESCIT. No further increase was observed at 2.5 mg kg−1 ESCIT (290%). The effect of 13-day s.c. infusion of 10 mg kg−1day−1 ESCIT on extracellular 5-HT (422% of baseline) was greater than after 2 days (257% of baseline), whereas exposure to ESCIT was similar. In contrast, the increase in extracellular 5-HT induced by the infusion of CIT for 2 (306%) and 13 days (302%) was similar. However, brain and plasma levels of S-citalopram in rats infused with CIT for 13 days were lower than after 2 days. Acute treatment with 2.5 mg kg−1 ESCIT or 5 mg kg−1 CIT raised extracellular 5-HT by 243 and 276%, respectively, in rats given chronic vehicle but had no effect in rats given ESCIT (10 mg kg−1 day−1) or CIT (20 mg kg−1 day−1) for 2 or 13 days, suggesting that the infused doses had maximally increased extracellular 5-HT. WAY100,635 (0.1 mg kg−1 s.c.) increased extracellular 5-HT levels by 168, 174 and 169% of prechallenge values in rats infused with vehicle or ESCIT for 2 or 13 days, respectively. WAY100,635 enhanced extracellular 5-HT levels to 226, 153 and 164% of prechallenge values in rats infused with vehicle or CIT for 2 and 13 days, respectively. 8-OH-DPAT (0.025 mg kg−1) reduced extracellular 5-HT by 54% in control rats, but had no effect in those given ESCIT and CIT for 13 days. This series of experiments led to the conclusion that chronic treatment with ESCIT desensitizes the 5-HT1A

  16. Adjunctive Treatment with Asenapine Augments the Escitalopram-Induced Effects on Monoaminergic Outflow and Glutamatergic Neurotransmission in the Medial Prefrontal Cortex of the Rat

    Science.gov (United States)

    Björkholm, Carl; Frånberg, Olivia; Malmerfelt, Anna; Marcus, Monica M.; Konradsson-Geuken, Åsa; Schilström, Björn; Jardemark, Kent

    2015-01-01

    Background: Substantial clinical data support the addition of low doses of atypical antipsychotic drugs to selective serotonin reuptake inhibitors (SSRIs) to rapidly enhance the antidepressant effect in treatment-resistant depression. Preclinical studies suggest that this effect is at least partly explained by an increased catecholamine outflow in the medial prefrontal cortex (mPFC). Methods: In the present study we used in vivo microdialysis in freely moving rats and in vitro intracellular recordings of pyramidal cells of the rat mPFC to investigate the effects of adding the novel atypical antipsychotic drug asenapine to the SSRI escitalopram with regards to monoamine outflow in the mPFC and dopamine outflow in nucleus accumbens as well as glutamatergic transmission in the mPFC. Results: The present study shows that addition of low doses (0.05 and 0.1 mg/kg) of asenapine to escitalopram (5 mg/kg) markedly enhances dopamine, noradrenaline, and serotonin release in the rat mPFC as well as dopamine release in the nucleus accumbens. Moreover, this drug combination facilitated both N-methyl-d-Aspartate (NMDA)– and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)–induced currents as well as electrically evoked excitatory postsynaptic potentials in pyramidal cells of the rat mPFC. Conclusions: Our results support the notion that the augmentation of SSRIs by atypical antipsychotic drugs in treatment-resistant depression may, at least in part, be related to enhanced catecholamine output in the prefrontal cortex and that asenapine may be clinically used to achieve this end. In particular, the subsequent activation of the D1 receptor may be of importance for the augmented antidepressant effect, as this mechanism facilitated both NMDA and AMPA receptor-mediated transmission in the mPFC. Our novel observation that the drug combination, like ketamine, facilitates glutamatergic transmission in the mPFC may contribute to explain the rapid and potent antidepressant

  17. 5-HT has contrasting effects in the frontal cortex, but not the hypothalamus, on changes in noradrenaline efflux induced by the monoamine releasing-agent, d-amphetamine, and the reuptake inhibitor, BTS 54 354.

    Science.gov (United States)

    Géranton, Sandrine M; Heal, David J; Stanford, S Clare

    2004-03-01

    There is extensive evidence for functional interactions between central noradrenergic and serotonergic neurones. Here, dual-probe microdialysis was used in freely-moving rats to compare the effects of 5-HT on noradrenergic transmission in the rat frontal cortex and hypothalamus. We studied the effects of the 5-HT synthesis inhibitor, para-chlorophenylalanine (pCPA; which depleted 5-HT stores in both the frontal cortex and the hypothalamus), on spontaneous efflux of noradrenaline and on the noradrenergic responses to d-amphetamine, and the monoamine reuptake inhibitor, BTS 54 354. pCPA pretreatment alone did not affect spontaneous noradrenaline efflux in either brain region, whether or not alpha2-autoreceptors were inactivated by administration of the alpha2-antagonist, atipamezole (1 mg/kg i.p). However, in the frontal cortex, pCPA pretreatment augmented the amplitude of, and prolonged, the noradrenergic response to local infusion of d-amphetamine (10 microM). In contrast, pCPA abolished the increase in cortical noradrenaline efflux induced by local infusion of BTS 54 354 (50 microM). In the hypothalamus, pCPA did not affect the amplitude of the response to either of these agents but did prolong the effects of d-amphetamine on noradrenaline efflux. These findings suggest that serotonergic transmission has complex effects on the noradrenergic response to drugs that increase noradrenergic transmission in the frontal cortex, but has less influence in the hypothalamus.

  18. No effect of anodal transcranial direct current stimulation over the motor cortex on response-related ERPs during a conflict task.

    Directory of Open Access Journals (Sweden)

    Alexander Christian Conley

    2016-08-01

    Full Text Available Anodal transcranial direct current stimulation (tDCS over the motor cortex is considered a potential treatment for motor rehabilitation following stroke and other neurological pathologies. However, both the context under which this stimulation is effective and the underlying mechanisms remain to be determined. In this study, we examined the mechanisms by which anodal tDCS may affect motor performance by recording event-related potentials (ERPs during a cued go/nogo task after anodal tDCS over dominant M1 in young adults (Experiment 1 and both dominant and non-dominant M1 in old adults (Experiment 2. In both experiments, anodal tDCS had no effect on either response time or response-related ERPs, including the cue-locked contingent negative variation (CNV and both target-locked and response-locked lateralised readiness potentials (LRP. Bayesian model selection analyses showed that, for all measures, the null effects model was stronger than a model including anodal tDCS vs. sham. We conclude that anodal tDCS has no effect on response time or response-related ERPs during a cued go/nogo task in either young or old adults.

  19. Decreasing ventromedial prefrontal cortex deactivation in risky decision making after simulated microgravity: Effects of -6 degree head-down tilt bed rest

    Directory of Open Access Journals (Sweden)

    Li-Lin eRao

    2014-05-01

    Full Text Available Space is characterized by risk and uncertainty. As humans play an important role in long-duration space missions, the ability to make risky decisions effectively is important for astronauts who spend extended time periods in space. The present study used the Balloon Analog Risk Task to conduct both behavioral and fMRI experiments to evaluate the effects of simulated microgravity on individuals’ risk-taking behavior and the neural basis of the effect. The results showed that participants’ risk-taking behavior was not affected by bed rest. However, we found that the ventromedial prefrontal cortex (VMPFC showed less deactivation after bed rest and that the VMPFC activation in the active choice condition showed no significant difference between the win outcome and the loss outcome after bed rest, although its activation was significantly greater in the win outcome than in the loss outcome before bed rest. These results suggested that the participants showed a decreased level of value calculation after the bed rest. Our findings can contribute to a better understanding of the effect of microgravity on individual higher-level cognitive functioning.

  20. Decreasing ventromedial prefrontal cortex deactivation in risky decision making after simulated microgravity: effects of −6° head-down tilt bed rest

    Science.gov (United States)

    Rao, Li-Lin; Zhou, Yuan; Liang, Zhu-Yuan; Rao, Henyi; Zheng, Rui; Sun, Yan; Tan, Cheng; Xiao, Yi; Tian, Zhi-Qiang; Chen, Xiao-Ping; Wang, Chun-Hui; Bai, Yan-Qiang; Chen, Shan-Guang; Li, Shu

    2014-01-01

    Space is characterized by risk and uncertainty. As humans play an important role in long-duration space missions, the ability to make risky decisions effectively is important for astronauts who spend extended time periods in space. The present study used the Balloon Analog Risk Task to conduct both behavioral and fMRI experiments to evaluate the effects of simulated microgravity on individuals' risk-taking behavior and the neural basis of the effect. The results showed that participants' risk-taking behavior was not affected by bed rest. However, we found that the ventromedial prefrontal cortex (VMPFC) showed less deactivation after bed rest and that the VMPFC activation in the active choice condition showed no significant difference between the win outcome and the loss outcome after bed rest, although its activation was significantly greater in the win outcome than in the loss outcome before bed rest. These results suggested that the participants showed a decreased level of value calculation after the bed rest. Our findings can contribute to a better understanding of the effect of microgravity on individual higher-level cognitive functioning. PMID:24904338

  1. [Neuroanatomy of Frontal Association Cortex].

    Science.gov (United States)

    Takada, Masahiko

    2016-11-01

    The frontal association cortex is composed of the prefrontal cortex and the motor-related areas except the primary motor cortex (i.e., the so-called higher motor areas), and is well-developed in primates, including humans. The prefrontal cortex receives and integrates large bits of diverse information from the parietal, temporal, and occipital association cortical areas (termed the posterior association cortex), and paralimbic association cortical areas. This information is then transmitted to the primary motor cortex via multiple motor-related areas. Given these facts, it is likely that the prefrontal cortex exerts executive functions for behavioral control. The functional input pathways from the posterior and paralimbic association cortical areas to the prefrontal cortex are classified primarily into six groups. Cognitive signals derived from the prefrontal cortex are conveyed to the rostral motor-related areas to transform them into motor signals, which finally enter the primary motor cortex via the caudal motor-related areas. Furthermore, it has been shown that, similar to the primary motor cortex, areas of the frontal association cortex form individual networks (known as "loop circuits") with the basal ganglia and cerebellum via the thalamus, and hence are extensively involved in the expression and control of behavioral actions.

  2. Long-Term Effects of Repeated Prefrontal Cortex Transcranial Direct Current Stimulation (tDCS) on Food Craving in Normal and Overweight Young Adults.

    Science.gov (United States)

    Ljubisavljevic, M; Maxood, K; Bjekic, J; Oommen, J; Nagelkerke, N

    The dorsolateral prefrontal cortex (DLPFC) plays an important role in the regulation of food intake. Several previous studies demonstrated that a single session of transcranial direct current stimulation (tDCS) of the DLPFC reduces food craving and caloric intake. We hypothesized that repeated tDCS of the right DLPFC cortex may exert long-term changes in food craving in young, healthy adults and that these changes may differ between normal and overweight subjects. Thirty healthy individuals who reported frequent food cravings without a prior history of eating disorders were initially recruited. Subjects were randomized into an ACTIVE group who received 5 days of real tDCS (20 minutes, anode right-cathode left montage, 2 mA with current density kept at 0.06 mA/cm2, 1 min ramp-up/ramp-down), and a SHAM group, who received one day of real tDCS, on the first day (same parameters), followed by 4 days of sham tDCS. Food craving intensity was examined by Food Craving Questionnaires State and Trait and Food Craving Inventory before, during, (5-days) and one month (30-days) after tDCS. Single session of tDCS significantly reduced the intensity of current food craving (FCQ-S). Five days of active tDCS significantly reduced habitual experiences of food craving (FCQ-T), when compared to baseline pre-stimulation levels. Furthermore, both current (FCQ-S) and habitual craving (FCQ-T) were significantly reduced 30 days after active tDCS, while sham tDCS, i.e. a single tDCS session did not have significant effects. Also, active tDCS significantly decreased craving for fast food and sweets, and to a lesser degree for fat, while it did not have significant effects on craving for carbohydrates (FCI). There were no significant differences between individual FCQ-T subscales (craving dimensions) after 5 or 30 days of either sham or active tDCS. Changes in craving were not significantly associated with the initial weight, or with weight changes 30 days after the stimulation in the

  3. Use of functional near-infrared spectroscopy to evaluate the effects of anodal transcranial direct current stimulation on brain connectivity in motor-related cortex

    Science.gov (United States)

    Yan, Jiaqing; Wei, Yun; Wang, Yinghua; Xu, Gang; Li, Zheng; Li, Xiaoli

    2015-04-01

    Transcranial direct current stimulation (tDCS) is a noninvasive, safe and convenient neuro-modulatory technique in neurological rehabilitation, treatment, and other aspects of brain disorders. However, evaluating the effects of tDCS is still difficult. We aimed to evaluate the effects of tDCS using hemodynamic changes using functional near-infrared spectroscopy (fNIRS). Five healthy participants were employed and anodal tDCS was applied to the left motor-related cortex, with cathodes positioned on the right dorsolateral supraorbital area. fNIRS data were collected from the right motor-related area at the same time. Functional connectivity (FC) between intracortical regions was calculated between fNIRS channels using a minimum variance distortion-less response magnitude squared coherence (MVDR-MSC) method. The levels of Oxy-HbO change and the FC between channels during the prestimulation, stimulation, and poststimulation stages were compared. Results showed no significant level difference, but the FC measured by MVDR-MSC significantly decreased during tDCS compared with pre-tDCS and post-tDCS, although the FC difference between pre-tDCS and post-tDCS was not significant. We conclude that coherence calculated from resting state fNIRS may be a useful tool for evaluating the effects of anodal tDCS and optimizing parameters for tDCS application.

  4. Multiconfiguration Dirac-Hartree-Fock calculations of energy levels and radiative rates of Fe VII

    Science.gov (United States)

    Li, Yang; Xu, Xiaokai; Li, Bowen; Jönsson, Per; Chen, Ximeng

    2018-06-01

    Detailed calculations are performed for 134 fine-structure levels of the 3p63d2, 3p63d4s, 3p53d3 and 3p63d4p configurations in Fe VII using the multiconfiguration Dirac-Hartree-Fock (MCDHF) and relativistic configuration interaction (RCI) methods. Important electron correlation effects are systematically accounted for through active space (AS) expansions. Our results compare well with experimental measurements, emphasizing the importance of a careful treatment of electron correlation, and provide some missing data in the NIST atomic database. The data obtained are expected to be useful in astrophysical applications, particularly for the research of the solar coronal plasma.

  5. A high fat meal activates blood coagulation factor vii in rats

    DEFF Research Database (Denmark)

    Olsen, A. K.; Bladbjerg, E. M.; Kornerup Hansen, A.

    2002-01-01

    In humans, high fat meals cause postprandial activation of blood coagulation factor VII (FVII), but human studies have not provided definite evidence for a prothrombotic effect of dietary FVII activation. An animal model would be an attractive way to pursue this question and therefore we tested...... the LEW/Mol rat. We gavaged 3 mL of a fat emulsion (n = 42) or 3 mL isotonic glucose (n = 42). Blood was sampled by heart puncture 2, 4 and 6 h (n = 14/group at each time) after the fat/glucose load. Furthermore, blood was sampled from 16 untreated rats to determine the baseline levels. Triglyceride...

  6. Excessive oral intake caffeine altered cerebral cortex ...

    African Journals Online (AJOL)

    Caffeine is commonly consumed in an effort to enhance speed in performance and wakefulness. However, little is known about the deleterious effects it can produce on the brain, this study aimed at determining the extents of effects and damage that can be caused by excessive consumption of caffeine on the cerebral cortex ...

  7. Coagulation factor VII, serum-triglycerides and the R/Q353 polymorphism: differences between older men and women

    NARCIS (Netherlands)

    Mennen, L. I.; de Maat, M. P.; Schouten, E. G.; Kluft, C.; de Jong, P. T.; Hofman, A.; Grobbee, D. E.

    1997-01-01

    Coagulation factor VII activity (FVII:C) is a risk indicator for cardiovascular disease. It is related to serum-triglycerides and the R/Q353 polymorphism (alleles R and Q) in the gene coding for factor VII is strongly associated with factor VII. The association of serum-triglycerides with factor VII

  8. 40 CFR Appendix Vii to Part 266 - Health-Based Limits for Exclusion of Waste-Derived Residues*

    Science.gov (United States)

    2010-07-01

    ... Waste-Derived Residues* VII Appendix VII to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Pt. 266, App. VII Appendix VII to Part 266—Health...

  9. Asymmetric activation of the anterior cerebral cortex in recipients of IRECA: Preliminary evidence for the energetic effects of an intention-based biofield treatment modality on human neurophysiology

    NARCIS (Netherlands)

    Pike, C.; Vernon, D.; Hald, L.A.

    2014-01-01

    Neurophysiologic studies of mindfulness link the health benefits of meditation to activation of the left-anterior cerebral cortex. The similarity and functional importance of intention and attentional stance in meditative and biofield therapeutic practices suggest that modulation of recipient

  10. PENGARUH PENGGUNAAN MODUL KONTEKSTUAL BERPENDEKATAN SETS TERHADAP HASIL BELAJAR DAN KEMANDIRIAN PESERTA DIDIK KELAS VII SMP

    Directory of Open Access Journals (Sweden)

    Desy Ria Pratama

    2017-02-01

    Full Text Available Abstrak _________________________________________________________________________________________________________________ Kebutuhan terhadap bahan ajar yang dapat meningkatkan kemandirian belajar dan hasil belajar peserta didik menuntut guru untuk dapat membuat bahan ajar yang ideal. Bahan ajar yang dapat mengaitkan materi dengan fenomena dalam kehidupan sehari-hari dapat memudahkan peserta didik dalam memahami materi. Kebermaknaan dalam pembelajaran juga dibutuhkan dalam mata pelajaran IPA agar peserta didik dapat mengetahui manfaat pembelajaran yang dilakukan. SETS merupakan pendekatan yang mengaitkan materi dengan aspek sains, lingkungan, teknologi, dan masyarakat dalam pembelajaran. Penerapan pendekatan SETS pada bahan ajar sangat ideal untuk memudahkan peserta didik dalam memahami materi serta belajar menyelesaikan permasalahan dalam pembelajaran secara mandiri. Penelitian ini bertujuan untuk mengetahui adanya pengaruh modul kontekstual berpendekatan SETS terhadap hasil belajar dan kemandirian peserta didik kelas VII SMP. Populasi pada penelitian ini adalah kelas VII A-VII H SMP Negeri 10 Semarang tahun pelajaran 2015/2016, sedangkan sampel diambil dengan menggunakan teknik purposive sampling sehingga diperoleh kelas VII C sebagai kelas eksperimen dan kelas VII D sebagai kelas kontrol. Desain penelitian yang digunakan adalah nonequivalent control group design. Hasil penelitian menunjukkan bahwa penggunaan modul berpengaruh terhadap hasil belajar dan kemandirian peserta didik. Hal tersebut dilihat dari hasil korelasi yang menunjukkan korelasi penggunaan modul dengan kemandirian, hasil belajar afektif, dan hasil belajar psikomotorik dalam kategori kuat, dan dalam kategori sangat kuat pada hasil belajar kognitif. Besar pengaruh penggunaan modul terhadap kemandirian sebesar 60,22% berdasarkan data observasi, dan 47,61% berdasarkan data angket. Sedangkan besar pengaruh penggunaan modul terhadap hasil belajar kognitif adalah sebesar 82

  11. The Neural Correlates of Mindful Awareness: A Possible Buffering Effect on Anxiety-Related Reduction in Subgenual Anterior Cingulate Cortex Activity

    Science.gov (United States)

    Hakamata, Yuko; Iwase, Mikio; Kato, Takashi; Senda, Kohei; Inada, Toshiya

    2013-01-01

    Background Human personality consists of two fundamental elements character and temperament. Character allays automatic and preconceptual emotional responses determined by temperament. However, the neurobiological basis of character and its interplay with temperament remain elusive. Here, we examined character-temperament interplay and explored the neural basis of character, with a particular focus on the subgenual anterior cingulate cortex extending to a ventromedial portion of the prefrontal cortex (sgACC/vmPFC). Methods Resting brain glucose metabolism (GM) was measured using [18F] fluorodeoxyglucose positron emission tomography in 140 healthy adults. Personality traits were assessed using the Temperament and Character Inventory. Regions of interest (ROI) analysis and whole-brain analysis were performed to examine a combination effect of temperament and character on the sgACC/vmPFC and to explore the neural correlates of character, respectively. Results Harm avoidance (HA), a temperament trait (i.e., depressive, anxious, vulnerable), showed a significant negative impact on the sgACC/vmPFC GM, whereas self-transcendence (ST), a character trait (i.e., intuitive, judicious, spiritual), exhibited a significant positive effect on GM in the same region (HA β = −0.248, p = 0.003; ST: β = 0.250, p = 0.003). In addition, when coupled with strong ST, individuals with strong HA maintained the sgACC/vmPFC GM level comparable to the level of those with low scores on both HA and ST. Furthermore, exploratory whole-brain analysis revealed a significant positive relationship between ST and sgACC/vmPFC GM (peak voxel at x = −8, y = 32, z = −8, k = 423, Z = 4.41, corrected p FDR = 0.030). Conclusion The current findings indicate that the sgACC/vmPFC might play a critical role in mindful awareness to something beyond as well as in emotional regulation. Developing a sense of mindfulness may temper exaggerated emotional responses in

  12. The neural correlates of mindful awareness: a possible buffering effect on anxiety-related reduction in subgenual anterior cingulate cortex activity.

    Science.gov (United States)

    Hakamata, Yuko; Iwase, Mikio; Kato, Takashi; Senda, Kohei; Inada, Toshiya

    2013-01-01

    Human personality consists of two fundamental elements character and temperament. Character allays automatic and preconceptual emotional responses determined by temperament. However, the neurobiological basis of character and its interplay with temperament remain elusive. Here, we examined character-temperament interplay and explored the neural basis of character, with a particular focus on the subgenual anterior cingulate cortex extending to a ventromedial portion of the prefrontal cortex (sgACC/vmPFC). Resting brain glucose metabolism (GM) was measured using [(18)F] fluorodeoxyglucose positron emission tomography in 140 healthy adults. Personality traits were assessed using the Temperament and Character Inventory. Regions of interest (ROI) analysis and whole-brain analysis were performed to examine a combination effect of temperament and character on the sgACC/vmPFC and to explore the neural correlates of character, respectively. Harm avoidance (HA), a temperament trait (i.e., depressive, anxious, vulnerable), showed a significant negative impact on the sgACC/vmPFC GM, whereas self-transcendence (ST), a character trait (i.e., intuitive, judicious, spiritual), exhibited a significant positive effect on GM in the same region (HA β = -0.248, p = 0.003; ST: β = 0.250, p = 0.003). In addition, when coupled with strong ST, individuals with strong HA maintained the sgACC/vmPFC GM level comparable to the level of those with low scores on both HA and ST. Furthermore, exploratory whole-brain analysis revealed a significant positive relationship between ST and sgACC/vmPFC GM (peak voxel at x = -8, y = 32, z = -8, k = 423, Z = 4.41, corrected p (FDR) = 0.030). The current findings indicate that the sgACC/vmPFC might play a critical role in mindful awareness to something beyond as well as in emotional regulation. Developing a sense of mindfulness may temper exaggerated emotional responses in individuals with a risk for or having

  13. The Effect of Salvia Rhytidea Extract on the Number of Cells of Different Layers of Cerebellar Cortex Following Ischemia Reperfusion in Rats

    Directory of Open Access Journals (Sweden)

    M Farahmand

    2016-09-01

    Full Text Available Background & aim: Salvia has anti-oxidant oxygen free radicals which are generated during the interruption and reestablishment of ischemia reperfusion.  The aim of study was to investigate the effect of Salvia Rhytidea extract on the number of cells of different layers of cerebellar cortex following ischemia reperfusion in rats. Methods: In the present experimental study, 35 adult male rats were randomly divided into 7 groups of 5: Group 1 (control-: Sampling without ischemia. Group 2 (control +: Cerebellar ischemia with administration of normal saline. Group 3(sham: Manipulation without ischemia with normal saline administration. Group 4   received (3.2 mg/kg aqueous and alcoholic Salvia extract 2 hours after ischemia. Group 5 received 50 mg/kg silymarin drug, 2 hours after ischemia. Group 6 received 3.2 mg/kg aqueous and alcoholic Salvia extract 72, 48, 24 and 0 h before ischemia and group 7 received silymarin drug (50 mg/kg, 0, 24, 48, and 72, hrs. before ischemia. 24 hrs. following reperfusion, the rats were euthanized and samples of the cerebellum were obtained. By using routine histological technique, the sections were stained by H&E. The measurement of cell count in cerebellar cortex were accomplished. Data were evaluated with One-Way ANOVA and Tukey diagnostic tests. Results: A significant decrease was observed in the number of neural cells in granular layer in the non-treated ischemia group and in the groups which received Salvia extract and silymarin, two hours after the ischemia (p< 0.05. No significant decrease was observed in the number of cells of this layer in the groups which received salvia extract before ischemia. But regarding the cell number of molecular and purkinje layers in above groups, no significant difference was observed compared to the control group (P˃0.05. However, no significant differences was seen in the number of cells layers compared to the control group (P˃0.05. Conclusion: Finally, administration of

  14. The effects of prefrontal cortex transcranial direct current stimulation (tDCS) on food craving and temporal discounting in women with frequent food cravings.

    Science.gov (United States)

    Kekic, Maria; McClelland, Jessica; Campbell, Iain; Nestler, Steffen; Rubia, Katya; David, Anthony S; Schmidt, Ulrike

    2014-07-01

    Bulimia nervosa, binge-eating disorder, and some forms of obesity are characterised by compulsive overeating that is often precipitated by food craving. Transcranial direct current stimulation (tDCS) has been used to suppress food cravings, but there is insufficient evidence to support its application in clinical practice. Furthermore, the potential moderating role of impulsivity has not been considered. This study used a randomised within-subjects crossover design to examine whether a 20-minute session of sham-controlled bilateral tDCS to the dorsolateral prefrontal cortex (anode right/cathode left) would transiently modify food cravings and temporal discounting (TD; a measure of choice impulsivity) in 17 healthy women with frequent food cravings. Whether the effects of tDCS on food craving were moderated by individual differences in TD behaviour was also explored. Participants were exposed to food and a film of people eating, and food cravings and TD were assessed before and after active and sham stimulation. Craving for sweet but not savoury foods was reduced following real tDCS. Participants that exhibited more reflective choice behaviour were more susceptible to the anti-craving effects of tDCS than those that displayed more impulsive choice behaviour. No differences were seen in TD or food consumption after real versus sham tDCS. These findings support the efficacy of tDCS in temporarily lowering food cravings and identify the moderating role of TD behaviour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Transcranial magnetic stimulation probes the excitability of the primary motor cortex: A framework to account for the facilitating effects of acute whole-body exercise on motor processes

    Directory of Open Access Journals (Sweden)

    Karen Davranche

    2015-03-01

    Full Text Available The effects of exercise on decision-making performance have been studied using a wide variety of cognitive tasks and exercise interventions. Although the current literature supports a beneficial influence of acute exercise on cognitive performance, the mechanisms underlying this phenomenon have not yet been elucidated. We review studies that used single-pulse transcranial magnetic stimulation (TMS to probe the excitability of motor structures during whole-body exercise and present a framework to account for the facilitating effects of acute exercise on motor processes. Recent results suggest that, even in the absence of fatigue, the increase in corticospinal excitability classically reported during submaximal and exhausting exercises may be accompanied by a reduction in intracortical inhibition. We propose that reduced intracortical inhibition elicits an adaptive central mechanism that counteracts the progressive reduction in muscle responsiveness caused by peripheral fatigue. Such a reduction would render the motor cortex more sensitive to upstream influences, thus causing increased corticospinal excitability. Furthermore, reduction of intracortical inhibition may account for the more efficient descending drive and for the improvement of reaction time performance during exercise. The adaptive modulation in intracortical inhibition could be implemented through a general increase in reticular activation that would further account for enhanced sensory sensitivity.

  16. Behavioral effects of nicotinic antagonist mecamylamine in a rat model of depression: prefrontal cortex level of BDNF protein and monoaminergic neurotransmitters.

    Science.gov (United States)

    Aboul-Fotouh, Sawsan

    2015-03-01

    Several studies have pointed to the nicotinic acetylcholine receptor (nAChR) antagonists, such as mecamylamine (MEC), as a potential therapeutic target for the treatment of depression. The present study evaluated the behavioral and neurochemical effects of chronic administration of MEC (1, 2, and 4 mg/kg/day, intraperitoneally (i.p.)) in Wistar rats exposed to chronic restraint stress (CRS, 4 h × 6 W). MEC prevented CRS-induced depressive-like behavior via increasing sucrose preference, body weight, and forced swim test (FST) struggling and swimming while reducing immobility in FST and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity (adrenal gland weight and serum corticosterone). At the same time, MEC amended CRS-induced anxiety as indicated by decreasing central zone duration in open field test and increasing active interaction duration. Additionally, MEC modulated the prefrontal cortex (PFC) level of brain-derived neurotrophic factor (BDNF), 5-hydroxy tryptamine (5-HT), and norepinephrine (NE). In conclusion, the present data suggest that MEC possesses antidepressant and anxiolytic-like activities in rats exposed to CRS. These behavioral effects may be in part mediated by reducing HPA axis hyperactivity and increasing PFC level of BDNF and monoamines. Accordingly, these findings further support the hypothesis that nAChRs blockade might afford a novel promising strategy for pharmacotherapy of depression.

  17. Effect of Testosterone on Neuronal Morphology and Neuritic Growth of Fetal Lamb Hypothalamus-Preoptic Area and Cerebral Cortex in Primary Culture.

    Directory of Open Access Journals (Sweden)

    Radhika C Reddy

    Full Text Available Testosterone plays an essential role in sexual differentiation of the male sheep brain. The ovine sexually dimorphic nucleus (oSDN, is 2 to 3 times larger in males than in females, and this sex difference is under the control of testosterone. The effect of testosterone on oSDN volume may result from enhanced expansion of soma areas and/or dendritic fields. To test this hypothesis, cells derived from the hypothalamus-preoptic area (HPOA and cerebral cortex (CTX of lamb fetuses were grown in primary culture to examine the direct morphological effects of testosterone on these cellular components. We found that within two days of plating, neurons derived from both the HPOA and CTX extend neuritic processes and express androgen receptors and aromatase immunoreactivity. Both treated and control neurites continue to grow and branch with increasing time in culture. Treatment with testosterone (10 nM for 3 days significantly (P < 0.05 increased both total neurite outgrowth (35% and soma size (8% in the HPOA and outgrowth (21% and number of branch points (33% in the CTX. These findings indicate that testosterone-induced somal enlargement and neurite outgrowth in fetal lamb neurons may contribute to the development of a fully masculine sheep brain.

  18. Manipulation of the membrane binding site of vitamin K-dependent proteins: Enhanced biological function of human factor VII

    OpenAIRE

    Shah, Amit M.; Kisiel, Walter; Foster, Donald C.; Nelsestuen, Gary L.

    1998-01-01

    Recent studies suggested that modification of the membrane contact site of vitamin K-dependent proteins may enhance the membrane affinity and function of members of this protein family. The properties of a factor VII mutant, factor VII-Q10E32, relative to wild-type factor VII (VII, containing P10K32), have been compared. Membrane affinity of VII-Q10E32 was about 20-fold higher than that of wild-type factor VII. The rate of autoactivation VII-Q10E32 with soluble tissue factor was 100-fold fast...

  19. A hypothesis: factor VII governs clot formation, tissue repair and apoptosis.

    Science.gov (United States)

    Coleman, Lewis S

    2007-01-01

    A hypothesis: thrombin is a "Universal Enzyme of Energy Transduction" that employs ATP energy in flowing blood to activate biochemical reactions and cell effects in both hemostasis and tissue repair. All cells possess PAR-1 (thrombin) receptors and are affected by thrombin elevations, and thrombin effects on individual cell types are determined by their unique complement of PAR-1 receptors. Disruption of the vascular endothelium (VE) activates a tissue repair mechanism (TRM) consisting of the VE, tissue factor (TF), and circulating Factors VII, IX and X that governs localized thrombin elevations to activate clot formation and cellular effects that repair tissue damage. The culmination of the repair process occurs with the restoration of the VE followed by declines in thrombin production that causes Apoptosis ("programmed cell death") in wound-healing fibroblasts, which functions as a mechanism to draw wound edges together. The location and magnitude of TRM activity governs the location and magnitude of Factor VIII activity and clot formation, but the large size of Factor VIII prevents it from penetrating the clot formed by its activity, so that its effects are self-limiting. Factors VII, IX and X function primarily as tissue repair enzymes, while Factor VIII and Factor XIII are the only serine protease enzymes in the "Coagulation Cascade" that are exclusively associated with hemostasis.

  20. Modifying EPA radiation risk models based on BEIR VII

    International Nuclear Information System (INIS)

    Pawel, D.; Puskin, J.

    2007-01-01

    This paper summarizes a 'draft White Paper' that provides details on proposed changes in EPA's methodology for estimating radiogenic cancer risks. Many of the changes are based on the contents of a recent National Academy of Sciences (NAS) report (BEIR VII), that addresses cancer and genetic risks from low doses of low-LET radiation. The draft White Paper was prepared for a meeting with the EPA's Science Advisory Board's Radiation Advisory Committee (RAC) in September for seeking advice on the application of BEIR VII and on issues relating to these modifications and expansions. After receiving the Advisory review, we plan to implement the changes by publishing the new methodology in an EPA report, which we expect to submit to the RAC for final review. The revised methodology could then be applied to update the cancer risk coefficients for over 800 radionuclides that are published in EPA's Federal Guidance Report 13. (author)

  1. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    International Nuclear Information System (INIS)

    Cutting, R.S.; Coker, V.S.; Telling, N.D.; Kimber, R.L.; Pearce, C.I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J.R.

    2009-01-01

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe 3 O 4 powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion (∼10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a γ-camera to obtain real time images of a 99m Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more (∼20%) 99m Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral substrate supplied to Fe

  2. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    Energy Technology Data Exchange (ETDEWEB)

    Cutting, R. S.; Coker, V. S.; Telling, N. D.; Kimber, R. L.; Pearce, C. I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J. R.

    2009-09-09

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral

  3. Glucocorticoid Effects on Memory Consolidation Depend on Functional Interactions between the Medial Prefrontal Cortex and Basolateral Amygdala

    NARCIS (Netherlands)

    Roozendaal, Benno; McReynolds, Jayme R.; Van der Zee, Eddy A.; Lee, Sangkwan; McGaugh, James L.; McIntyre, Christa K.

    2009-01-01

    Considerable evidence indicates that the basolateral complex of the amygdala (BLA) interacts with efferent brain regions in mediating glucocorticoid effects on memory consolidation. Here, we investigated whether glucocorticoid influences on the consolidation of memory for emotionally arousing

  4. Vena porta thrombosis in patient with inherited factor VII deficiency

    DEFF Research Database (Denmark)

    Klovaite, Jolanta; Friis-Hansen, Lennart Jan; Larsen, Fin S

    2010-01-01

    Most clotting factor VII (FVII)-deficient patients suffer from bleeding episodes and occasionally thromboembolic complications after surgical interventions or replacement therapy. However, thromboses without apparent triggering factors may occur as well. We report a case of a pregnant woman...... vein with well expressed portosystemic collaterals, heterozygosity for three common polymorphisms in FVII gene, associated with reduction in plasma FVII levels, and no other factors predisposing to thrombosis....

  5. Lack of bleeding in patients with severe factor VII deficiency.

    Science.gov (United States)

    Barnett, J Mark; Demel, Kurt C; Mega, Anthony E; Butera, James N; Sweeney, Joseph D

    2005-02-01

    Factor VII deficiency, although rare, is now recognized as the most common autosomal recessive inherited factor deficiency. It is usually considered to be associated with bleeding only in the severely affected subject and heterozygotes (>10%) are not considered at risk. The general recommendation for surgery is to achieve a FVII level in excess of 15% (0.15 1U/mL). We present three cases of severe factor VII deficiency, each of whom appeared hemostatically competent based on clinical history. Subject 1 is a 33 year-old African-American female with a baseline FVII of American female with a factor VII level of 9% who underwent an elective left total hip replacement without any factor replacement and had no excessive bleeding, but who sustained a pulmonary embolism postoperatively. Subject 3 is a 19-year-old African-American male with a baseline FVII of 1% with a history of active participation in football without noticeable injury and who underwent an emergent appendectomy without bleeding. These three cases represent individuals with the severe form of FVII deficiency who did not exhibit excessive bleeding when challenged with surgical procedures. The clinical history would appear the most valuable tool in predicting the likelihood of bleeding in these patients, and we suggest that the presumption that all patients with severe FVII deficiency should receive replacement therapy before surgical procedures may not be valid in all cases. Copyright 2005 Wiley-Liss, Inc.

  6. Influence of Discussion Rating in Cooperative Learning Type Numbered Head Together on Learning Results Students VII MTSN Model Padang

    Science.gov (United States)

    Sasmita, E.; Edriati, S.; Yunita, A.

    2018-04-01

    Related to the math score of the first semester in class at seventh grade of MTSN Model Padang which much the score that low (less than KKM). It because of the students who feel less involved in learning process because the teacher don't do assessment the discussions. The solution of the problem is discussion assessment in Cooperative Learning Model type Numbered Head Together. This study aims to determine whether the discussion assessment in NHT effect on student learning outcomes of class VII MTsN Model Padang. The instrument used in this study is discussion assessment and final tests. The data analysis technique used is the simple linear regression analysis. Hypothesis test results Fcount greater than the value of Ftable then the hypothesis in this study received. So it concluded that the assessment of the discussion in NHT effect on student learning outcomes of class VII MTsN Model Padang.

  7. First living-related liver transplant to cure factor VII deficiency.

    Science.gov (United States)

    Mohan, Neelam; Karkra, Sakshi; Jolly, Anu S; Vohra, Vijay; Mohanka, Ravi; Rastogi, Amit; Soin, A S

    2015-09-01

    Congenital factor VII deficiency is an autosomal recessive serious disorder of blood coagulation with wide genotypic and phenotypic variations. The clinical presentation can vary from asymptomatic patients to patients with major bleedings in severe deficiency (factor VII factor VII. Treatment modalities include FFP and repeated recombinant factor VII infusions. We hereby report the first successful LRLT for factor VII deficiency in an infant, the first-ever youngest baby reported worldwide. A six-month-old male child presented with easy bruisability, ecchymotic patches, hematuria, and convulsions. CT of the head showed subdural hemorrhage, which was treated conservatively. He had markedly increased PT (120 s) with normal platelets, and aPTT with factor VII level factor VII level was 57%. A factor VII infusion plan for pre-, intra- and postoperative periods was formulated and TEG followed. Postoperatively, his factor VII started increasing from third day and was 38% on 24th day with PT factor VII deficiency. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats.

    Science.gov (United States)

    Cardinal, Rudolf N; Parkinson, John A; Lachenal, Guillaume; Halkerston, Katherine M; Rudarakanchana, Nung; Hall, Jeremy; Morrison, Caroline H; Howes, Simon R; Robbins, Trevor W; Everitt, Barry J

    2002-08-01

    The nucleus accumbens core (AcbC), anterior cingulate cortex (ACC), and central nucleus of the amygdala (CeA) are required for normal acquisition of tasks based on stimulus-reward associations. However, it is not known whether they are involved purely in the learning process or are required for behavioral expression of a learned response. Rats were trained preoperatively on a Pavlovian autoshaping task in which pairing a visual conditioned stimulus (CS+) with food causes subjects to approach the CS+ while not approaching an unpaired stimulus (CS-). Subjects then received lesions of the AcbC, ACC, or CeA before being retested. AcbC lesions severely impaired performance; lesioned subjects approached the CS+ significantly less often than controls, failing to discriminate between the CS+ and CS-. ACC lesions also impaired performance but did not abolish discrimination entirely. CeA lesions had no effect on performance. Thus, the CeA is required for learning, but not expression, of a conditioned approach response, implying that it makes a specific contribution to the learning of stimulus-reward associations.

  9. Effect of transcranial direct current stimulation (tDCS over the prefrontal cortex combined with cognitive training for treating schizophrenia: a sham-controlled randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Pedro Shiozawa

    Full Text Available Abstract Introduction: We report a transcranial direct current stimulation (tDCS protocol over the dorsolateral prefrontal cortex (DLPFC combined with cognitive training in schizophrenia. Method: We assessed psychotic symptoms in nine patients using the Positive and Negative Syndrome Scale (PANSS. All evaluations were scored at baseline, at the end of the intervention protocol, and during a 4-week follow-up. The tDCS protocol consisted of 10 consecutive sessions over 5-day periods. We placed the cathode over the right and the anode over the left DLPFC. For sham stimulation, we turned the device off after 60 seconds. Cognitive training consisted of the administration of N-back and sequence learning tasks. Results: We performed an analysis of covariance (ANCOVA to adjust for the dependent variable PANSS, considering the interaction with baseline severity scores (p = 0.619. Mixed analysis of variance (ANOVA showed no statistical significance between the groups regarding final PANSS scores. Conclusion: The results failed to demonstrate that the concomitant use of tDCS and cognitive training is effective to improve clinical outcomes in patients with schizophrenia. The present findings should be analyzed with care, considering the small sample size. Larger controlled trials on electric/cognitive stimulation should be produced in order to enhance therapeutic strategies in schizophrenia.

  10. Treatment effects on insular and anterior cingulate cortex activation during classic and emotional Stroop interference in child abuse-related complex post-traumatic stress disorder.

    Science.gov (United States)

    Thomaes, K; Dorrepaal, E; Draijer, N; de Ruiter, M B; Elzinga, B M; van Balkom, A J; Smit, J H; Veltman, D J

    2012-11-01

    Functional neuroimaging studies have shown increased Stroop interference coupled with altered anterior cingulate cortex (ACC) and insula activation in post-traumatic stress disorder (PTSD). These brain areas are associated with error detection and emotional arousal. There is some evidence that treatment can normalize these activation patterns. At baseline, we compared classic and emotional Stroop performance and blood oxygenation level-dependent responses (functional magnetic resonance imaging) of 29 child abuse-related complex PTSD patients with 22 non-trauma-exposed healthy controls. In 16 of these patients, we studied treatment effects of psycho-educational and cognitive behavioural stabilizing group treatment (experimental treatment; EXP) added to treatment as usual (TAU) versus TAU only, and correlations with clinical improvement. At baseline, complex PTSD patients showed a trend for increased left anterior insula and dorsal ACC activation in the classic Stroop task. Only EXP patients showed decreased dorsal ACC and left anterior insula activation after treatment. In the emotional Stroop contrasts, clinical improvement was associated with decreased dorsal ACC activation and decreased left anterior insula activation. We found further evidence that successful treatment in child abuse-related complex PTSD is associated with functional changes in the ACC and insula, which may be due to improved selective attention and lower emotional arousal, indicating greater cognitive control over PTSD symptoms.

  11. Inhibition of the cAMP/PKA/CREB Pathway Contributes to the Analgesic Effects of Electroacupuncture in the Anterior Cingulate Cortex in a Rat Pain Memory Model.

    Science.gov (United States)

    Shao, Xiao-Mei; Sun, Jing; Jiang, Yong-Liang; Liu, Bo-Yi; Shen, Zui; Fang, Fang; Du, Jun-Ying; Wu, Yuan-Yuan; Wang, Jia-Ling; Fang, Jian-Qiao

    2016-01-01

    Pain memory is considered as endopathic factor underlying stubborn chronic pain. Our previous study demonstrated that electroacupuncture (EA) can alleviate retrieval of pain memory. This study was designed to observe the different effects between EA and indomethacin (a kind of nonsteroid anti-inflammatory drugs, NSAIDs) in a rat pain memory model. To explore the critical role of protein kinase A (PKA) in pain memory, a PKA inhibitor was microinjected into anterior cingulate cortex (ACC) in model rats. We further investigated the roles of the cyclic adenosine monophosphate (cAMP), PKA, cAMP response element-binding protein (CREB), and cAMP/PKA/CREB pathway in pain memory to explore the potential molecular mechanism. The results showed that EA alleviates the retrieval of pain memory while indomethacin failed. Intra-ACC microinjection of a PKA inhibitor blocked the occurrence of pain memory. EA reduced the activation of cAMP, PKA, and CREB and the coexpression levels of cAMP/PKA and PKA/CREB in the ACC of pain memory model rats, but indomethacin failed. The present findings identified a critical role of PKA in ACC in retrieval of pain memory. We propose that the proper mechanism of EA on pain memory is possibly due to the partial inhibition of cAMP/PKA/CREB signaling pathway by EA.

  12. In vivo and in vitro effect of imipramine and fluoxetine on Na+,K+-ATPase activity in synaptic plasma membranes from the cerebral cortex of rats

    Directory of Open Access Journals (Sweden)

    L.M. Zanatta

    2001-10-01

    Full Text Available The effects of in vivo chronic treatment and in vitro addition of imipramine, a tricyclic antidepressant, or fluoxetine, a selective serotonin reuptake inhibitor, on the cortical membrane-bound Na+,K+-ATPase activity were studied. Adult Wistar rats received daily intraperitoneal injections of 10 mg/kg of imipramine or fluoxetine for 14 days. Twelve hours after the last injection rats were decapitated and synaptic plasma membranes (SPM from cerebral cortex were prepared to determine Na+,K+-ATPase activity. There was a significant decrease (10% in enzyme activity after imipramine but fluoxetine treatment caused a significant increase (27% in Na+,K+-ATPase activity compared to control (P<0.05, ANOVA; N = 7 for each group. When assayed in vitro, the addition of both drugs to SPM of naive rats caused a dose-dependent decrease in enzyme activity, with the maximal inhibition (60-80% occurring at 0.5 mM. We suggest that a imipramine might decrease Na+,K+-ATPase activity by altering membrane fluidity, as previously proposed, and b stimulation of this enzyme might contribute to the therapeutic efficacy of fluoxetine, since brain Na+,K+-ATPase activity is decreased in bipolar patients.

  13. Effects of Anodal High-Definition Transcranial Direct Current Stimulation on Bilateral Sensorimotor Cortex Activation During Sequential Finger Movements: An fNIRS Study.

    Science.gov (United States)

    Muthalib, Makii; Besson, Pierre; Rothwell, John; Ward, Tomas; Perrey, Stephane

    2016-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive electrical brain stimulation technique that can modulate cortical neuronal excitability and activity. This study utilized functional near infrared spectroscopy (fNIRS) neuroimaging to determine the effects of anodal high-definition (HD)-tDCS on bilateral sensorimotor cortex (SMC) activation. Before (Pre), during (Online), and after (Offline) anodal HD-tDCS (2 mA, 20 min) targeting the left SMC, eight healthy subjects performed a simple finger sequence (SFS) task with their right or left hand in an alternating blocked design (30-s rest and 30-s SFS task, repeated five times). In order to determine the level of bilateral SMC activation during the SFS task, an Oxymon MkIII fNIRS system was used to measure from the left and right SMC, changes in oxygenated (O2Hb) and deoxygenated (HHb) haemoglobin concentration values. The fNIRS data suggests a finding that compared to the Pre condition both the "Online" and "Offline" anodal HD-tDCS conditions induced a significant reduction in bilateral SMC activation (i.e., smaller decrease in HHb) for a similar motor output (i.e., SFS tap rate). These findings could be related to anodal HD-tDCS inducing a greater efficiency of neuronal transmission in the bilateral SMC to perform the same SFS task.

  14. Too much of a good thing: blocking noradrenergic facilitation in medial prefrontal cortex prevents the detrimental effects of chronic stress on cognition.

    Science.gov (United States)

    Jett, Julianne D; Morilak, David A

    2013-03-01

    Cognitive impairments associated with dysfunction of the medial prefrontal cortex (mPFC) are prominent in stress-related psychiatric disorders. We have shown that enhancing noradrenergic tone acutely in the rat mPFC facilitated extra-dimensional (ED) set-shifting on the attentional set-shifting test (AST), whereas chronic unpredictable stress (CUS) impaired ED. In this study, we tested the hypothesis that the acute facilitatory effect of norepinephrine (NE) in mPFC becomes detrimental when activated repeatedly during CUS. Using microdialysis, we showed that the release of NE evoked in mPFC by acute stress was unchanged at the end of CUS treatment. Thus, to then determine if repeated elicitation of this NE activity in mPFC during CUS may have contributed to the ED deficit, we infused a cocktail of α(1)-, β(1)-, and β(2)-adrenergic receptor antagonists into the mPFC prior to each CUS session, then tested animals drug free on the AST. Antagonist treatment prevented the CUS-induced ED deficit, suggesting that NE signaling during CUS compromised mPFC function. We confirmed that this was not attributable to sensitization of adrenergic receptor function following chronic antagonist treatment, by administering an additional microinjection into the mPFC immediately prior to ED testing. Acute antagonist treatment did not reverse the beneficial effects of chronic drug treatment during CUS, nor have any effect on baseline ED performance in chronic vehicle controls. Thus, we conclude that blockade of noradrenergic receptors in mPFC protected against the detrimental cognitive effects of CUS, and that repeated elicitation of noradrenergic facilitatory activity is one mechanism by which chronic stress may promote mPFC cognitive dysfunction.

  15. Effects of Vision Restoration Training on Early Visual Cortex in Patients With Cerebral Blindness Investigated With Functional Magnetic Resonance Imaging

    NARCIS (Netherlands)

    Raemaekers, M.; Bergsma, D.P.; van Wezel, Richard Jack Anton; van der Wildt, G.J.; van den Berg, A.V.

    Cerebral blindness is a loss of vision as a result of postchiasmatic damage to the visual pathways. Parts of the lost visual field can be restored through training. However, the neuronal mechanisms through which training effects occur are still unclear. We therefore assessed training-induced changes

  16. The Effect of Visual and Auditory Enhancements on Excitability of the Primary Motor Cortex during Motor Imagery: A Pilot Study

    Science.gov (United States)

    Ikeda, Kohei; Higashi, Toshio; Sugawara, Kenichi; Tomori, Kounosuke; Kinoshita, Hiroshi; Kasai, Tatsuya

    2012-01-01

    The effect of visual and auditory enhancements of finger movement on corticospinal excitability during motor imagery (MI) was investigated using the transcranial magnetic stimulation technique. Motor-evoked potentials were elicited from the abductor digit minimi muscle during MI with auditory, visual and, auditory and visual information, and no…

  17. Anodal vs cathodal stimulation of motor cortex: a modeling study

    NARCIS (Netherlands)

    Manola, L.; Holsheimer, J.; Veltink, Petrus H.; Buitenweg, Jan R.

    Objective. To explore the effects of electrical stimulation performed by an anode, a cathode or a bipole positioned over the motor cortex for chronic pain management. Methods. A realistic 3D volume conductor model of the human precentral gyrus (motor cortex) was used to calculate the

  18. The anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2009-01-01

    Full Text Available The anterior cingulate cortex (ACC has a role in attention, analysis of sensory information, error recognition, problem solving, detection of novelty, behavior, emotions, social relations, cognitive control, and regulation of visceral functions. This area is active whenever the individual feels some emotions, solves a problem, or analyzes the pros and cons of an action (if it is a right decision. Analogous areas are also found in higher mammals, especially whales, and they contain spindle neurons that enable complex social interactions. Disturbance of ACC activity is found in dementias, schizophrenia, depression, the obsessive-compulsive syndrome, and other neuropsychiatric diseases.

  19. Left insular cortex and left SFG underlie prismatic adaptation effects on time perception: evidence from fMRI.

    Science.gov (United States)

    Magnani, Barbara; Frassinetti, Francesca; Ditye, Thomas; Oliveri, Massimiliano; Costantini, Marcello; Walsh, Vincent

    2014-05-15

    Prismatic adaptation (PA) has been shown to affect left-to-right spatial representations of temporal durations. A leftward aftereffect usually distorts time representation toward an underestimation, while rightward aftereffect usually results in an overestimation of temporal durations. Here, we used functional magnetic resonance imaging (fMRI) to study the neural mechanisms that underlie PA effects on time perception. Additionally, we investigated whether the effect of PA on time is transient or stable and, in the case of stability, which cortical areas are responsible of its maintenance. Functional brain images were acquired while participants (n=17) performed a time reproduction task and a control-task before, immediately after and 30 min after PA inducing a leftward aftereffect, administered outside the scanner. The leftward aftereffect induced an underestimation of time intervals that lasted for at least 30 min. The left anterior insula and the left superior frontal gyrus showed increased functional activation immediately after versus before PA in the time versus the control-task, suggesting these brain areas to be involved in the executive spatial manipulation of the representation of time. The left middle frontal gyrus showed an increase of activation after 30 min with respect to before PA. This suggests that this brain region may play a key role in the maintenance of the PA effect over time. Copyright © 2014. Published by Elsevier Inc.

  20. Nattokinase decreases plasma levels of fibrinogen, factor VII, and factor VIII in human subjects.

    Science.gov (United States)

    Hsia, Chien-Hsun; Shen, Ming-Ching; Lin, Jen-Shiou; Wen, Yao-Ke; Hwang, Kai-Lin; Cham, Thau-Ming; Yang, Nae-Cherng

    2009-03-01

    Nattokinase, a serine proteinase from Bacillus subtilis, is considered to be one of the most active functional ingredients found in natto. In this study, we hypothesized that nattokinase could reduce certain factors of blood clotting and lipids that are associated with an increase risk for cardiovascular disease (CVD). Thus, an open-label, self-controlled clinical trial was conducted on subjects of the following groups: healthy volunteers (Healthy Group), patients with cardiovascular risk factors (Cardiovascular Group), and patients undergoing dialysis (Dialysis Group). All subjects ingested 2 capsules of nattokinase (2000 fibrinolysis units per capsule) daily orally for 2 months. The laboratory measurements were performed on the screening visit and, subsequently, regularly after the initiation of the study. The intent-to-treat analysis was performed on all 45 enrolled subjects. By use of mixed model analysis, a significant time effect, but not group effect, was observed in the change from baseline of fibrinogen (P = .003), factor VII (P nattokinase. No significant changes of uric acid or notable adverse events were observed in any of the subjects. In summary, this study showed that oral administration of nattokinase could be considered as a CVD nutraceutical by decreasing plasma levels of fibrinogen, factor VII, and factor VIII.

  1. Effect of Short-term Quercetin, Caloric Restriction and Combined Treatment on Age-related Oxidative Stress Markers in the Rat Cerebral Cortex

    Science.gov (United States)

    Alugoju, Phaniendra; Swamy, Vkd Krishan; Periyasamy, Latha

    2018-03-14

    Aging is characterized by gradual accumulation of macromolecular damage leading to progressive loss of physiological function and increased susceptibility to diverse diseases. Effective anti-aging strategies involving caloric restriction or antioxidant supplementation are receiving growing attention to attenuate macromolecular damage in age associated pathology. In the present study, we for the first time investigated the effect of quercetin, caloric restriction and combined treatment (caloric restriction with quercetin) on oxidative stress parameters, acetylcholinesterase and ATPases enzyme activities in the cerebral cortex of aged male Wistar rats. 21 months aged rats were divided into four groups (n=6-8) such as group 1-fed ad libitum (AL); group 2-quercetin supplementation of 50 mg/kg b.w/day for 45 days fed ad libitum (QUER); group 3: caloric restricted (CR) (fed 40% reduced AL for 45 days); group 4-fed 40% CR and 50 mg/kg b.w/day QUER for 45 days (CR + QUER). Group 5-three month age old rats served as young control (YOUNG). Our results demonstrate that combined treatment of caloric restriction and quercetin significantly improved the age associated decline in the activities of endogenous antioxidant enzymes [such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)] and glutathione (GSH) content and attenuated elevated levels of protein carbonyl content (PCC), lipid peroxidation, lipofuscin, reactive oxygen species (ROS), and nitric oxide (NO). Furthermore, it is also observed that combined treatment ameliorated age associated alterations in acetylcholine esterase (AChE) and adenosine triphosphatases (ATPases) such as Na+/K+-ATPase and Ca+2-ATPase (but not Mg+2- ATPase) enzyme activities. Finally, we conclude that combined treatment of caloric restriction and quercetin (but not either treatment alone) in late life is an effective anti-aging therapy to counteract the age related accumulation of oxidative macromolecular damage

  2. Perceptual and cognitive effects of antipsychotics in first-episode schizophrenia: the potential impact of GABA concentration in the visual cortex.

    Science.gov (United States)

    Kelemen, Oguz; Kiss, Imre; Benedek, György; Kéri, Szabolcs

    2013-12-02

    Schizophrenia is characterized by anomalous perceptual experiences (e.g., sensory irritation, inundation, and flooding) and specific alterations in visual perception. We aimed to investigate the effects of short-term antipsychotic medication on these perceptual alterations. We assessed 28 drug-naïve first episode patients with schizophrenia and 20 matched healthy controls at baseline and follow-up 8 weeks later. Contrast sensitivity was measured with steady- and pulsed-pedestal tests. Participants also received a motion coherence task, the Structured Interview for Assessing Perceptual Anomalies (SIAPA), and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Proton magnetic resonance spectroscopy was used to measure gamma-aminobutyric acid (GABA) levels in the occipital cortex (GABA/total creatine [Cr] ratio). Results revealed that, comparing baseline and follow-up values, patients with schizophrenia exhibited a marked sensitivity reduction on the steady-pedestal test at low spatial frequency. Anomalous perceptual experiences were also significantly ameliorated. Antipsychotic medications had no effect on motion perception. RBANS scores showed mild improvements. At baseline, but not at follow-up, patients with schizophrenia outperformed controls on the steady-pedestal test at low spatial frequency. The dysfunction of motion perception (higher coherence threshold in patients relative to controls) was similar at both assessments. There were reduced GABA levels in schizophrenia at both assessments, which were not related to perceptual functions. These results suggest that antipsychotics dominantly affect visual contrast sensitivity and anomalous perceptual experiences. The prominent dampening effect on low spatial frequency in the steady-pedestal test might indicate the normalization of putatively overactive magnocellular retino-geniculo-cortical pathways. © 2013.

  3. The effect of chronic phenytoin administration on single prolonged stress induced extinction retention deficits and glucocorticoid upregulation in the rat medial prefrontal cortex.

    Science.gov (United States)

    George, Sophie A; Rodriguez-Santiago, Mariana; Riley, John; Rodriguez, Elizabeth; Liberzon, Israel

    2015-01-01

    Post-traumatic stress disorder (PTSD) is a chronic, debilitating disorder. Only two pharmacological agents are approved for PTSD treatment, and they often do not address the full range of symptoms nor are they equally effective in all cases. Animal models of PTSD are critical for understanding the neurobiology involved and for identification of novel therapeutic targets. Using the rodent PTSD model, single prolonged stress (SPS), we have implicated aberrant excitatory neural transmission and glucocorticoid receptor (GR) upregulation in the medial prefrontal cortex (mPFC) and hippocampus (HPC) in fear memory abnormalities associated with PTSD. The objective of this study is to examine the potential protective effect of antiepileptic phenytoin (PHE) administration on SPS-induced extinction retention deficits and GR expression. Forty-eight SPS-treated male Sprague Dawley rats or controls were administered PHE (40, 20 mg/kg, vehicle) for 7 days following SPS stressors; then, fear conditioning, extinction, and extinction retention were tested. Fear conditioning and extinction were unaffected by SPS or PHE, but SPS impaired extinction retention, and both doses of PHE rescued this impairment. Similarly, SPS increased GR expression in the mPFC and dorsal HPC, and PHE prevented SPS-induced GR upregulation in the mPFC. These data demonstrate that PHE administration can prevent the development of extinction retention deficits and upregulation of GR. PHE exerts inhibitory effects on voltage-gated sodium channels and decreases excitatory neural transmission via glutamate antagonism. If glutamate hyperactivity in the days following SPS contributes to SPS-induced deficits, then these data may suggest that the glutamatergic system constitutes a target for secondary prevention.

  4. Transcranial magnetic stimulation with a half-sine wave pulse elicits direction-specific effects in human motor cortex

    DEFF Research Database (Denmark)

    Jung, Nikolai H; Delvendahl, Igor; Pechmann, Astrid

    2012-01-01

    Transcranial magnetic stimulation (TMS) commonly uses so-called monophasic pulses where the initial rapidly changing current flow is followed by a critically dampened return current. It has been shown that a monophasic TMS pulse preferentially excites different cortical circuits in the human motor...... hand area (M1-HAND), if the induced tissue current has a posterior-to-anterior (PA) or anterior-to-posterior (AP) direction. Here we tested whether similar direction-specific effects could be elicited in M1-HAND using TMS pulses with a half-sine wave configuration....

  5. Number-space interactions in the human parietal cortex: Enlightening the SNARC effect with functional near-infrared spectroscopy.

    Science.gov (United States)

    Cutini, Simone; Scarpa, Fabio; Scatturin, Pietro; Dell'Acqua, Roberto; Zorzi, Marco

    2014-02-01

    Interactions between numbers and space have become a major issue in cognitive neuroscience, because they suggest that numerical representations might be deeply rooted in cortical networks that also subserve spatial cognition. The spatial-numerical association of response codes (SNARC) is the most robust and widely replicated demonstration of the link between numbers and space: in magnitude comparison or parity judgments, participants' reaction times to small numbers are faster with left than right effectors, whereas the converse is found for large numbers. However, despite the massive body of research on number-space interactions, the nature of the SNARC effect remains controversial and no study to date has identified its hemodynamic correlates. Using functional near-infrared spectroscopy, we found a hemodynamic signature of the SNARC effect in the bilateral intraparietal sulcus, a core region for numerical magnitude representation, and left angular gyrus (ANG), a region implicated in verbal number processing. Activation of intraparietal sulcus was also modulated by numerical distance. Our findings point to number semantics as cognitive locus of number-space interactions, thereby revealing the intrinsic spatial nature of numerical magnitude representation. Moreover, the involvement of left ANG is consistent with the mediating role of verbal/cultural factors in shaping interactions between numbers and space.

  6. Pharmacological modulation of the short-lasting effects of antagonistic direct current-stimulation over the human motor cortex

    Directory of Open Access Journals (Sweden)

    Leila eChaieb

    2012-07-01

    Full Text Available Combined administration of transcranial direct current stimulation (tDCS with either pergolide (PGL or D-cycloserine (D-CYC can prolong the excitability-diminishing effects of cathodal, or the excitability enhancing effect of anodal stimulation for up to 24hrs poststimulation. However, it remains unclear whether the potentiation of the observed aftereffects is dominated by the polarity and duration of the stimulation, or the dual application of combined stimulation and drug administration. The present study looks at whether the aftereffects of oral administration of PGL (a D1/D2 agonist or D-CYC (a partial NMDA receptor agonist, in conjunction with the short duration antagonistic application of tDCS (either 5 min cathodal followed immediately by 5 min anodal or vice versa, that alone only induces short lasting aftereffects, can modulate cortical excitability in healthy human subjects, as revealed by a single-pulse MEP (motor-evoked-potential paradigm. Results indicate that the antagonistic application of DC currents induces short-term neuroplastic aftereffects that are dependent upon the polarity of the second application of short-duration tDCS. The application of D-cycloserine resulted in a reversal of this trend and so consequently a marked inhibition of cortical excitability with the cathodal-anodal stimulation order was observed. The administration of pergolide showed no significant aftereffects in either case. These results emphasise that the aftereffects of tDCS are dependent upon the stimulation orientation, and mirror the findings of other studies reporting the neuroplasticity inducing aftereffects of tDCS, and their prolongation when combined with the administration of CNS active drugs.

  7. Effects of Fluoxetine and Visual Experience on Glutamatergic and GABAergic Synaptic Proteins in Adult Rat Visual Cortex123

    Science.gov (United States)

    Beshara, Simon; Beston, Brett R.; Pinto, Joshua G. A.

    2015-01-01

    Abstract Fluoxetine has emerged as a novel treatment for persistent amblyopia because in adult animals it reinstates critical period-like ocular dominance plasticity and promotes recovery of visual acuity. Translation of these results from animal models to the clinic, however, has been challenging because of the lack of understanding of how this selective serotonin reuptake inhibitor affects glutamatergic and GABAergic synaptic mechanisms that are essential for experience-dependent plasticity. An appealing hypothesis is that fluoxetine recreates a critical period (CP)-like state by shifting synaptic mechanisms to be more juvenile. To test this we studied the effect of fluoxetine treatment in adult rats, alone or in combination with visual deprivation [monocular deprivation (MD)], on a set of highly conserved presynaptic and postsynaptic proteins (synapsin, synaptophysin, VGLUT1, VGAT, PSD-95, gephyrin, GluN1, GluA2, GluN2B, GluN2A, GABAAα1, GABAAα3). We did not find evidence that fluoxetine shifted the protein amounts or balances to a CP-like state. Instead, it drove the balances in favor of the more mature subunits (GluN2A, GABAAα1). In addition, when fluoxetine was paired with MD it created a neuroprotective-like environment by normalizing the glutamatergic gain found in adult MDs. Together, our results suggest that fluoxetine treatment creates a novel synaptic environment dominated by GluN2A- and GABAAα1-dependent plasticity. PMID:26730408

  8. Modeling ADHD-type arousal with unilateral frontal cortex damage in rats and beneficial effects of play therapy.

    Science.gov (United States)

    Panksepp, Jaak; Burgdorf, Jeff; Turner, Cortney; Gordon, Nakia

    2003-06-01

    It has been recently shown that human adolescents with Attention Deficit/Hyperactivity Disorder (ADHD) have frontal lobe deficits, especially on the right sides of their brains (). ADHD is commonly treated with psychostimulants which may have adverse consequences. Hence, less invasive therapies need to be developed. In the present work, we tested the ability of right frontal lesions to induce hyperactivity in rats. We also evaluated the effects of chronic play therapy during early adolescence to reduce both hyperactivity and the elevated playfulness later in development. Play therapy was able to reduce both hyperactivity and excessive playfulness. In additional work, we found that access to rough-and-tumble play in normal animals could enhance subsequent behavioral indices of behavioral inhibition (i.e., freezing in response to a startle stimulus) that appeared to be independent of increased fearfulness and fatigue. Overall, these results suggest that (1) neonatal frontal lobe lesions can be used as an animal model of the overactivity in ADHD and (2) rough-and-tumble play therapy may be a new useful treatment for ADHD.

  9. Effect of tricyclic antidepressants on transmitter-stimulated inositol phosphate production in rat brain cortex in vitro

    International Nuclear Information System (INIS)

    Nomura, S.; Enna, S.J.

    1986-01-01

    Tricyclic antidepressants (TCAs) have anticholinergic and α-adrenergic blocking properties. The present study was undertaken to examine the effects of amitriptyline, imipramine, and desipramine on inositol phosphate accumulation, a brain second messenger system associated with cholinergic and adrenergic receptors. Whereas the TCAs were 28 to 400-fold weaker than atropine as inhibitors of 3 H-QNB binding to brain cholinergic receptors, they were 600 to 2000-fold less active than atropine as inhibitors of carbachol-stimulated IP accumulation in brain. In contrast, the relative potencies of the TCAs and prazosin to inhibit norepinephrine-stimulated IP accumulation and 3 H-prazosin binding appeared to be similar in the two assays. The results suggest pharmacological differences between the cholinergic receptors labeled in the ONB binding assay and those mediating the IP response, whereas the α 1 -adrenergic receptors appear to be similar in the two systems. Since atropine is considered a nonselective muscarinic antagonist, it is possible that the TCAs may differentiate between cholinergic receptor subtypes, which may be an important component of their clinical response

  10. Activation of pyramidal neurons in mouse medial prefrontal cortex enhances food seeking behavior while reducing impulsivity in the absence of an effect on food intake

    Directory of Open Access Journals (Sweden)

    Daniel McAllister Warthen

    2016-03-01

    Full Text Available The medial prefrontal cortex (mPFC is involved in a wide range of executive cognitive functions, including reward evaluation, decision-making, memory extinction, mood, and task switching. Manipulation of the mPFC has been shown to alter food intake and food reward valuation, but whether exclusive stimulation of mPFC pyramidal neurons, which form the principle output of the mPFC, is sufficient to mediate food rewarded instrumental behavior is unknown. We sought to determine the behavioral consequences of manipulating mPFC output by exciting pyramidal neurons in mouse mPFC during performance of a panel of behavioral assays, focusing on food reward. We found that increasing mPFC pyramidal cell output using Designer Receptors Exclusively Activated by Designer Drugs (DREADD enhanced performance in instrumental food reward assays that assess food seeking behavior, while sparing effects in affect and food intake. Specifically, activation of mPFC pyramidal neurons enhanced operant responding for food reward, reinstatement of palatable food seeking, and suppression of impulsive responding for food reward. Conversely, activation of mPFC pyramidal neurons had no effect on unconditioned food intake, social interaction, or behavior in an open field. Furthermore, we found that behavioral outcome is influenced by the degree of mPFC activation, with a low drive sufficient to enhance operant responding and a higher drive required to alter impulsivity. Additionally, we provide data demonstrating that DREADD stimulation involves a nitric oxide synthase dependent pathway, similar to endogenous muscarinic M3 receptor stimulation, a finding that provides novel mechanistic insight into an increasingly widespread method of remote neuronal control.

  11. Effects of acamprosate on attentional set-shifting and cellular function in the prefrontal cortex of chronic alcohol-exposed mice

    Science.gov (United States)

    Hu, Wei

    Background: The medial prefrontal cortex (mPFC) inhibits impulsive and compulsive behaviors that characterize drug abuse and dependence. Acamprosate is the leading medication approved for the maintenance of abstinence, shown to reduce craving and relapse in animal models and human alcoholics. Whether acamprosate can modulate executive functions that are impaired by chronic ethanol exposure is unknown. Here we explored the effects of acamprosate on an attentional set-shifting task, and tested whether these behavioral effects are correlated with modulation of glutamatergic synaptic transmission and intrinsic excitability of mPFC neurons. Methods: We induced alcohol dependence in mice via chronic intermittent ethanol (CIE) exposure in vapor chambers and measured changes in alcohol consumption in a limited access 2-bottle choice paradigm. Impairments of executive function were assessed in an attentional set-shifting task. Acamprosate was applied subchronically for 2 days during withdrawal before the final behavioral test. Alcohol-induced changes in cellular function of layer 5/6 pyramidal neurons, and the potential modulation of these changes by acamprosate, were measured using patch clamp recordings in brain slices. Results: Chronic ethanol exposure impaired cognitive flexibility in the attentional set-shifting task. Acamprosate improved overall performance and reduced perseveration. Recordings of mPFC neurons showed that chronic ethanol exposure increased use-dependent presynaptic transmitter release and enhanced postsynaptic N-methyl-D-aspartate receptor (NMDAR) function. Moreover, CIE-treatment lowered input resistance, and decreased the threshold and the afterhyperpolarization (AHP) of action potentials, suggesting chronic ethanol exposure also impacted membrane excitability of mPFC neurons. However, acamprosate treatment did not reverse these ethanol-induced changes cellular function. Conclusion: Acamprosate improved attentional control of ethanol exposed animals

  12. Effect of retinal impulse blockage on cytochrome oxidase-poor interpuffs in the macaque striate cortex: quantitative EM analysis of neurons.

    Science.gov (United States)

    Wong-Riley, M T; Trusk, T C; Kaboord, W; Huang, Z

    1994-09-01

    One of the hallmarks of the primate striate cortex is the presence of cytochrome oxidase-rich puffs in its supragranular layers. Neurons in puffs have been classified as type A, B, and C in ascending order of cytochrome oxidase content, with type C cells being the most vulnerable to retinal impulse blockade. The present study aimed at analysing cytochrome oxidase-poor interpuffs with reference to their metabolic cell types and the effect of intraretinal tetrodotoxin treatment. The same three metabolic types were found in interpuffs, except that type B and C neurons were smaller and less cytochrome oxidase-reactive in interpuffs than in puffs. Type A neurons had small perikarya, low levels of cytochrome oxidase, and received exclusively symmetric axosomatic synapses. The largest neurons were pyramidal, type B cells with moderate cytochrome oxidase activity and were also contacted exclusively by symmetric axosomatic synapses. Type C cells medium-sized with a rich supply of large, darkly reactive mitochondria and possessed all the characteristics of GABAergic neurons. They were the only cell type that received both symmetric and asymmetric axosomatic synapses. Two weeks of monocular tetrodotoxin blockade in adult monkeys caused all three major cell types in deprived interpuffs to suffer a significant downward shift in the size and cytochrome oxidase reactivity of their mitochondria, but the effects were more severe in type B and C neurons. In nondeprived interpuffs, all three cell types gained both in size and absolute number of mitochondria, and type A cells also had an elevated level of cytochrome oxidase, indicating that they might be functioning at a competitive advantage over cells in deprived columns. However, type B and C neurons showed a net loss of darkly reactive mitochondria, indicating that these cells became less active. Thus, mature interpuff neurons remained vulnerable to retinal impulse blockade and the metabolic capacity of these cells remains tightly

  13. The effects of early hypo- and hyperthyroidism on the development of rat cerebellar cortex. III. Kinetics of cell proliferation in the external granular layer.

    Science.gov (United States)

    Lauder, J M

    1977-04-22

    The effects of early hypo- and hyperthyroidism on the rates of cell acquisition and proliferation have been studied in the external granular layer (EGL) of the developing rat cerebellar cortex at 10 days of age using quantitative autoradiographic methods. Both altered thyroid states reduce the rate of cell acquisition in the EGL, but appear to do so for different reasons. Hyperthyroidism shortens the average length of the cell cycle by decreasing the duration of the pre-DNA synthetic phase (G1), indicating that excess thyroxine may exert a direct effect on the EGL. This action involves the early onset of neuronal differentiation (cessation of proliferation)46 which presumably leads to the observed decrease in the rate of cell acquisition (increased doubling time). Such differentiating cells do not, however, leave the proliferative zone or the EGL prematurely, resulting in a reduced labeling index, mitotic index, and growth fraction as non-dividing cells dilute the proliferating cell population. Hypothyroidism, on the other hand, leads to no significant change in the length of the cell cycle or in the mitotic index, but causes a decreased labeling index and growth fraction, as well as a reduced rate of cell acquisition (increased doubling time). No significant change in the amount of cell death in the EGL could be found to explain this apparent discrepancy between the rate of cell proliferation (cell cycle length) and cell acqusiition. The answer to this puzzle appears to lie in the mitotic index, which is not affected to the same extent as the labeling index, although it is also slightly reduced. If cells were to remain longer in mitosis, this could result in a decreased labeling index and growth fraction but nearly normal mitotic index and cell cycle length (as measured using the % labeled mitoses method), since those cells dropping out of the cycling population would be counted as mitoses...

  14. Functional recovery after injury of motor cortex in rats: effects of rehabilitation and stem cell transplantation in a traumatic brain injury model of cortical resection.

    Science.gov (United States)

    Lee, Do-Hun; Lee, Ji Yeoun; Oh, Byung-Mo; Phi, Ji Hoon; Kim, Seung-Ki; Bang, Moon Suk; Kim, Seung U; Wang, Kyu-Chang

    2013-03-01

    Experimental studies and clinical trials designed to help patients recover from various brain injuries, such as stroke or trauma, have been attempted. Rehabilitation has shown reliable, positive clinical outcome in patients with various brain injuries. Transplantation of exogenous neural stem cells (NSCs) to repair the injured brain is a potential tool to help patient recovery. This study aimed to evaluate the therapeutic efficacy of a combination therapy consisting of rehabilitation and NSC transplantation compared to using only one modality. A model of motor cortex resection in rats was used to create brain injury in order to obtain consistent and prolonged functional deficits. The therapeutic results were evaluated using three methods during an 8-week period with a behavioral test, motor-evoked potential (MEP) measurement, and measurement of the degree of endogenous NSC production. All three treatment groups showed the effects of treatment in the behavioral test, although the NSC transplantation alone group (CN) exhibited slightly worse results than the rehabilitation alone group (CR) or the combination therapy group (CNR). The latency on MEP was shortened to a similar extent in all three groups compared to the untreated group (CO). However, the enhancement of endogenous NSC proliferation was dramatically reduced in the CN group compared not only to the CR and CNR groups but also to the CO group. The CR and CNR groups seemed to prolong the duration of endogenous NSC proliferation compared to the untreated group. A combination of rehabilitation and NSC transplantation appears to induce treatment outcomes that are similar to rehabilitation alone. Further studies are needed to evaluate the electrophysiological outcome of recovery and the possible effect of prolonging endogenous NSC proliferation in response to NSC transplantation and rehabilitation.

  15. Primary prophylaxis for children with severe congenital factor VII deficiency - Clinical and laboratory assessment.

    Science.gov (United States)

    Kuperman, A A; Barg, A A; Fruchtman, Y; Shaoul, E; Rosenberg, N; Kenet, G; Livnat, T

    2017-09-01

    Severe congenital factor VII (FVII) deficiency is a rare bleeding disorder. Prophylaxis with replacement therapy has been suggested to patients, yet the most beneficial dosing regimens and therapy intervals are still to be defined. Due to the lack of evidence-based data, we hereby present our experience with long-term administration and monitoring primary prophylaxis in children with severe FVII deficiency and an extremely high bleeding risk. Four children with familial FVII deficiency, treated by prophylactic recombinant activated factor VII (rFVIIa), 15-30μg/kg/dose, given 2-3 times weekly since infancy, are discussed. Clinical follow up and monitoring laboratory assays, including thrombin generation, measured at various time points after prophylactic rFVIIa administration are presented. Among our treated patients neither FVII activity nor thrombin generation parameters (both already declined 24h post rFVIIa administration) were able to predict the impact of prophylaxis, and could not be used as surrogate markers in order to assess the most beneficial treatment frequency. However, the long clinical follow-up and comprehensive laboratory assessment performed, have shown that early primary prophylaxis as administered in our cohort was safe and effective. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Beneficial nutritional properties of olive oil: implications for postprandial lipoproteins and factor VII.

    Science.gov (United States)

    Williams, C M

    2001-08-01

    Previous research concerning protective cardiovascular properties of olive oil has focussed on the beneficial consequences on blood cholesterol levels of substituting dietary saturated fatty acids with oleic acid. Despite evidence implicating raised circulating triglycerides in the postprandial state in the pathogenesis of atherosclerosis and thrombosis, little research had been conducted to investigate effects of monounsaturated fatty acids on postprandial events. In a case control study of southern (n = 30) versus northern European (n = 30) men, significant differences in postprandial triglyceride and apolipoprotein (apo) B-48 response were observed, with evidence of attenuated and potentially beneficial responses in the Southern Europeans. In a randomised controlled study manufactured foods typical of the Northern European food culture, were used to deliver diets rich in either saturated or monounsaturated fatty acids (from olive oil). During the period of the olive oil enriched diet, LDL-cholesterol levels were 15% lower (p factor VII, as well as the production of factor VII antigen, was reduced on the olive oil diet. The study demonstrated significant improvements in biomarkers for cardiovascular disease in subjects osed to high olive oil diets (Southern Europeans) or transferred to such diets in the short term (Northern European volunteers). The study produced novel findings with respect to potential mechanisms by which diets high in monounsaturated fatty acids (MUFA) can reduce population risk of cardiovascular disease.

  17. Tissue Factor–Factor VII Complex As a Key Regulator of Ovarian Cancer Phenotypes

    OpenAIRE

    Koizume, Shiro; Miyagi, Yohei

    2015-01-01

    Tissue factor (TF) is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII) is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF–fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are...

  18. Self-production of tissue factor-coagulation factor VII complex by ovarian cancer cells

    OpenAIRE

    Yokota, N; Koizume, S; Miyagi, E; Hirahara, F; Nakamura, Y; Kikuchi, K; Ruf, W; Sakuma, Y; Tsuchiya, E; Miyagi, Y

    2009-01-01

    Background: Thromboembolic events are a major complication in ovarian cancer patients. Tissue factor (TF) is frequently overexpressed in ovarian cancer tissue and correlates with intravascular thrombosis. TF binds to coagulation factor VII (fVII), changing it to its active form, fVIIa. This leads to activation of the extrinsic coagulation cascade. fVII is produced by the liver and believed to be supplied from blood plasma at the site of coagulation. However, we recently showed that ovarian ca...

  19. 29 CFR 1604.8 - Relationship of title VII to the Equal Pay Act.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Relationship of title VII to the Equal Pay Act. 1604.8... GUIDELINES ON DISCRIMINATION BECAUSE OF SEX § 1604.8 Relationship of title VII to the Equal Pay Act. (a) The... based on the Equal Pay Act may be raised in a proceeding under title VII. (c) Where such a defense is...

  20. The circadian oscillator of the cerebral cortex: molecular, biochemical and behavioral effects of deleting the Arntl clock gene in cortical neurons

    DEFF Research Database (Denmark)

    Bering, Tenna; Carstensen, Mikkel Bloss; Wörtwein, Gitta

    2018-01-01

    for normal function of the cortical circadian oscillator. Daily rhythms in running activity and temperature were not influenced, whereas the resynchronization response to experimental jet-lag exhibited minor though significant differences between genotypes. The tail-suspension test revealed significantly...... prolonged immobility periods in the knockout mouse indicative of a depressive-like behavioral state. This phenotype was accompanied by reduced norepinephrine levels in the cerebral cortex. Our data show that Arntl is required for normal cortical clock function and further give reason to suspect...... that the circadian oscillator of the cerebral cortex is involved in regulating both circadian biology and mood-related behavior and biochemistry....

  1. /sup 13/C-/sup 13/C spin-spin coupling in structural investigations. VII. Substitution effects and direct carbon-carbon constants of the triple bond in acetyline derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Proidakov, A.G.; Bazhenov, B.N.; Zinchenko, S.V.; Kalabin, G.A.

    1989-01-10

    The effects of substitution on the direct /sup 13/C-/sup 13/C spin-spin coupling constants of the triple bond were studied in 100 derivatives of acetylene. It was established that these parameters exhibit increased sensitivity to the effect of substituents compared with other types of compounds. The main factor which determines their variation is the electronegativity of the substituting groups, and in individual cases the /pi/-electronic effects are appreciable. The effect of the substituents with an element of the silicon subgroup at the /alpha/ position simultaneously at the triple bond or substituent of the above-mentioned type and a halogen atom.

  2. [Coagulation factor VII levels in uremic patients and theirs influence factors].

    Science.gov (United States)

    Fang, Jun; Xia, Ling-Hui; Wei, Wen-Ning; Song, Shan-Jun

    2004-12-01

    This study was aimed to investigate coagulation factor VII level in uremic patients with chronic renal failure and to explore theirs influence factors. The plasma levels of coagulation factor VII were detected in 30 uremic patients with chronic renal failure before and after hemodialysis for 1 month, the factor VII activity (FVII:C) was determined by one-stage coagulation method, while activated factor VII (FVIIa) was measured by one-stage coagulation method using recombinant soluble tissue factor, and factor VII antigen was detected by ELISA. The results showed that: (1) The FVIIa, FVII:C and FVIIAg levels in chronic uremic patients before hemodialysis were 4.00 +/- 0.86 microg/L, (148.5 +/- 40.4)% and (99.8 +/- 21.1)% respectively, which were significantly increased, as compared with healthy controls [2.77 +/- 1.02 microg/L, (113.1 +/- 33.0)% and (73.7 +/- 18.3)% respectively, P factor VII was positively correlated with levels of blood uria nitrogen and serum creatinine before hemodialysis but not after hemodialysis. It is concluded that the enhanced levels of coagulation factor VII in chronic uremic patients suggested abnormal activated state, herperactivity and elevated production of factor VII which correlated with renal functional injury. The abnormality of factor VII in uremia may be aggravated by hemodialysis. Coagulation factor (FVII) may be a risk factor for cardiovascular events in uremic patients who especially had been accepted long-term hemodialysis.

  3. Gene disruption reveals a dispensable role for plasmepsin VII in the Plasmodium berghei life cycle.

    Science.gov (United States)

    Mastan, Babu S; Kumari, Anchala; Gupta, Dinesh; Mishra, Satish; Kumar, Kota Arun

    2014-06-01

    Plasmepsins (PM), aspartic proteases of Plasmodium, comprises a family of ten proteins that perform critical functions in Plasmodium life cycle. Except VII and VIII, functions of the remaining plasmepsin members have been well characterized. Here, we have generated a mutant parasite lacking PM VII in Plasmodium berghei using reverse genetics approach. Systematic comparison of growth kinetics and infection in both mosquito and vertebrate host revealed that PM VII depleted mutants exhibited no defects in development and progressed normally throughout the parasite life cycle. These studies suggest a dispensable role for PM VII in Plasmodium berghei life cycle. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Uudised : Baltimaade suurim, XII "Jazzkaar". VII rahvusvaheline koorifestival. Leipzigis improviseeriti edukalt

    Index Scriptorium Estoniae

    2001-01-01

    23.-29. apr. toimuvast festivalist "Jazzkaar 2001". VII rahvusvahelisest koorifestivalist "Tallinn "2001". 6. ja 7. apr. Leipzigis toimunud V rahvusvahelisest improvisatsioonikonkursist, kus osalesid ka eesti interpreedid

  5. Mutagenic DNA repair in Escherichia coli. VII

    International Nuclear Information System (INIS)

    Bridges, B.A.; Mottershead, R.P.

    1978-01-01

    Incubation of E. coli WP2 in the presence of chloramphenicol (CAP) for 90 min before and 60 min after γ-irradiation had no effect on the induction of Trp + mutations. Bacteria that had been treated with CAP for 90 min prior to UV irradiation showed normal or near normal yields of induced mutations to streptomycin or colicin E2 resistance. Most of these mutations lost their photoreversibility (indicating 'fixation') during continued incubation with CAP for a further 60 min after irradiation, during which time neither protein nor DNA synthesis was detectable. It is suggested that CAP-sensitive protein synthesis is not required for mutagenic (error-prone) repair of lesions in pre-existing DNA, arguing against an inducible component in this repair. In contrast the frequency of UV-induced mutations to Trp + (largely at suppressor loci) was drastically reduced by CAP pretreatment, confirming the need for an active replication fork for UV-mutagenesis at these loci. It is known from the work of others that CAP given after UV abolishes mutagenesis at these loci. It is concluded that CAP-sensitive protein synthesis (consistent with a requirement for an inducible function) is necessary for mutagenic repair only in newly-replicated DNA (presumably at daughter strand gaps) and not in pre-existing DNA. The data are consistent with but do not prove the hypothesis that CAP-sensitive and insensitive modes of mutagenesis reflect minor differences in the operation of a single basic mutagenic repair system. (Auth.)

  6. Persistent antidepressant effect of low-dose ketamine and activation in the supplementary motor area and anterior cingulate cortex in treatment-resistant depression: A randomized control study.

    Science.gov (United States)

    Chen, Mu-Hong; Li, Cheng-Ta; Lin, Wei-Chen; Hong, Chen-Jee; Tu, Pei-Chi; Bai, Ya-Mei; Cheng, Chih-Ming; Su, Tung-Ping

    2018-01-01

    A single low-dose ketamine infusion exhibited a rapid antidepressant effect within 1h. Despite its short biological half-life (approximately 3h), the antidepressant effect of ketamine has been demonstrated to persist for several days. However, changes in brain function responsible for the persistent antidepressant effect of a single low-dose ketamine infusion remain unclear METHODS: Twenty-four patients with treatment-resistant depression (TRD) were randomized into three groups according to the treatment received: 0.5mg/kg ketamine, 0.2mg/kg ketamine, and normal saline infusion. Standardized uptake values (SUVs) of glucose metabolism measured through 18 F-FDG positron-emission-tomography before infusion and 1day after a 40-min ketamine or normal saline infusion were used for subsequent whole-brain voxel-wise analysis and were correlated with depressive symptoms, as defined using the Hamilton Depression Rating Scale-17 (HDRS-17) score RESULTS: The voxel-wise analysis revealed that patients with TRD receiving the 0.5mg/kg ketamine infusion had significantly higher SUVs (corrected for family-wise errors, P = 0.014) in the supplementary motor area (SMA) and dorsal anterior cingulate cortex (dACC) than did those receiving the 0.2mg/kg ketamine infusion. The increase in the SUV in the dACC was negatively correlated with depressive symptoms at 1day after ketamine infusion DISCUSSION: The persistent antidepressant effect of a 0.5mg/kg ketamine infusion may be mediated by increased activation in the SMA and dACC. The higher increase in dACC activation was related to the reduction in depressive symptoms after ketamine infusion. A 0.5mg/kg ketamine infusion facilitated the glutamatergic neurotransmission in the SMA and dACC, which may be responsible for the persistent antidepressant effect of ketamine much beyond its half-life. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of Transcranial Direct Current Stimulation of the Medial Prefrontal Cortex on the Gratitude of Individuals with Heterogeneous Ability in an Experimental Labor Market

    Directory of Open Access Journals (Sweden)

    Pengcheng Wang

    2017-11-01

    Full Text Available Gratitude is an important aspect of human sociality, which benefits mental health and interpersonal relationships. Thus, elucidating the neural mechanism of gratitude, which is only now beginning to be investigated, is important. To this end, this study specifies the medial prefrontal cortex (mPFC involved in the gratitude of heterogeneous individuals using the transcranial direct current stimulation (tDCS technique. Previous neural studies have shown the involvement of mPFC in social cognition and value evaluation, which are closely related to gratitude. However, the causal relationship between this neural area and gratitude has not been fully examined and the effect of individual social heterogeneity has been ignored. Meanwhile, behavioral economics studies have proposed that the abilities of employees in the labor market would affect their gratitude and emotional response. Thus, we designed an experiment based on gift exchange game to investigate the relationship between mPFC and gratitude of heterogeneous employees. Before the experiment, participants were asked to perform self-cognition of their abilities through an appropriately difficult task. We then used the effort of participants to imply their gratitude and analyzed the effort levels of employees with different abilities under anodal, cathodal, and sham stimulations. The results showed that employees under anodal stimulation were significantly likely to increase their effort than those under sham stimulation, and employees under cathodal stimulation ranked at the bottom of the list. Moreover, the effort levels of low-ability employees were obviously higher than those of high-ability employees. The cathodal stimulation of mPFC significantly reduced the effort levels of low-ability employees, whereas its anodal tDCS stimulation increased the effort levels of high-ability employees. These outcomes verify the relationship between mPFC and gratitude using tDCS and provided one of the first

  8. Self-generation and positivity effects following transcranial random noise stimulation in medial prefrontal cortex: A reality monitoring task in older adults.

    Science.gov (United States)

    Mammarella, Nicola; Di Domenico, Alberto; Palumbo, Rocco; Fairfield, Beth

    2017-06-01

    Activation of medial Prefrontal Cortex (mPFC) has been typically found during reality monitoring tasks (i.e., distinguishing between internal self-generated vs external information). No study, however, has yet investigated whether transcranial Random Noise Stimulation (tRNS) over the mPFC leads to a reduction in reality-monitoring misattributions in aging. In particular, stimulating mPFC should increase the number of cognitive operations engaged while encoding and this distinctive information may help older adults to discriminate between internal and external sources better. In addition, given that older adults are more sensitive to positively-charged information compared to younger adults and that mPFC is typically recruited during encoding of positive stimuli with reference to themselves, activation of mPFC should further sustain source retrieval in older adults. In this double-blind, sham-controlled study, we examined whether tRNS over the mPFC of healthy younger and older adults during encoding enhances subsequent reality monitoring for seen versus imagined emotionally-charged words. Our findings show that tRNS enhances reality monitoring for positively-charged imagined words in the older adult group alone, highlighting the role that mPFC plays in their memory for positive information. In line with the control-based account of positivity effects, our results add evidence about the neurocognitive processes involved in reality monitoring when older adults face emotionally-charged events. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effects of ketamine administration on mTOR and reticulum stress signaling pathways in the brain after the infusion of rapamycin into prefrontal cortex.

    Science.gov (United States)

    Abelaira, Helena M; Réus, Gislaine Z; Ignácio, Zuleide M; Dos Santos, Maria Augusta B; de Moura, Airam B; Matos, Danyela; Demo, Júlia P; da Silva, Júlia B I; Michels, Monique; Abatti, Mariane; Sonai, Beatriz; Dal Pizzol, Felipe; Carvalho, André F; Quevedo, João

    2017-04-01

    Recent studies show that activation of the mTOR signaling pathway is required for the rapid antidepressant actions of glutamate N-methyl-D-aspartate (NMDA) receptor antagonists. A relationship between mTOR kinase and the endoplasmic reticulum (ER) stress pathway, also known as the unfolded protein response (UPR) has been shown. We evaluate the effects of ketamine administration on the mTOR signaling pathway and proteins of UPR in the prefrontal cortex (PFC), hippocampus, amygdala and nucleus accumbens, after the inhibiton of mTOR signaling in the PFC. Male adult Wistar rats received pharmacological mTOR inhibitor, rapamycin (0.2 nmol), or vehicle into the PFC and then a single dose of ketamine (15 mg/kg, i.p.). The immunocontent of mTOR, eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), eukaryotic elongation factor 2 kinase (eEF2K) homologous protein (CHOP), PKR-like ER kinase (PERK) and inositol-requiring enzyme 1 (IRE1) - alpha were determined in the brain. The mTOR levels were reduced in the rapamycin group treated with saline and ketamine in the PFC; p4EBP1 levels were reduced in the rapamycin group treated with ketamine in the PFC and nucleus accumbens; the levels of peEF2K were increased in the PFC in the vehicle group treated with ketamine and reduced in the rapamycin group treated with ketamine. The PERK and IRE1-alpha levels were decreased in the PFC in the rapamycin group treated with ketamine. Our results suggest that mTOR signaling inhibition by rapamycin could be involved, at least in part, with the mechanism of action of ketamine; and the ketamine antidepressant on ER stress pathway could be also mediated by mTOR signaling pathway in certain brain structures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effect of Transcranial Direct Current Stimulation of the Medial Prefrontal Cortex on the Gratitude of Individuals with Heterogeneous Ability in an Experimental Labor Market.

    Science.gov (United States)

    Wang, Pengcheng; Wang, Guangrong; Niu, Xiaofei; Shang, Huiliang; Li, Jianbiao

    2017-01-01

    Gratitude is an important aspect of human sociality, which benefits mental health and interpersonal relationships. Thus, elucidating the neural mechanism of gratitude, which is only now beginning to be investigated, is important. To this end, this study specifies the medial prefrontal cortex (mPFC) involved in the gratitude of heterogeneous individuals using the transcranial direct current stimulation (tDCS) technique. Previous neural studies have shown the involvement of mPFC in social cognition and value evaluation, which are closely related to gratitude. However, the causal relationship between this neural area and gratitude has not been fully examined and the effect of individual social heterogeneity has been ignored. Meanwhile, behavioral economics studies have proposed that the abilities of employees in the labor market would affect their gratitude and emotional response. Thus, we designed an experiment based on gift exchange game to investigate the relationship between mPFC and gratitude of heterogeneous employees. Before the experiment, participants were asked to perform self-cognition of their abilities through an appropriately difficult task. We then used the effort of participants to imply their gratitude and analyzed the effort levels of employees with different abilities under anodal, cathodal, and sham stimulations. The results showed that employees under anodal stimulation were significantly likely to increase their effort than those under sham stimulation, and employees under cathodal stimulation ranked at the bottom of the list. Moreover, the effort levels of low-ability employees were obviously higher than those of high-ability employees. The cathodal stimulation of mPFC significantly reduced the effort levels of low-ability employees, whereas its anodal tDCS stimulation increased the effort levels of high-ability employees. These outcomes verify the relationship between mPFC and gratitude using tDCS and provided one of the first instances of

  11. [Effect of "Xingnao Kaiqiao Zhenfa" (Acupuncture Technique for Restoring Consciousness) Combined with Rehabilitation Training on Nerve Repair and Expression of Growth-associated Protein-43 of Peri-ischemic Cortex in Ischemic Stroke Rats].

    Science.gov (United States)

    Xu, Lei; Yan, Xing-Zhou; Li, Zhen-Yu; Cao, Xiao-Fang; Wang, Min

    2017-06-25

    To observe the effect of "Xingnao Kaiqiao Zhenfa" (acupuncture technique for restoring consciousness) combined with enriched rehabilitation training on motor function and expression of growth-associated protein-43 (GAP-43) of peri-ischemic cortex in ischemic stroke rats, so as to investigate its mechanism underlying improvement of ischemic stroke. SD rats were randomly divided into sham operation, model, rehabilitation and comprehensive rehabilitation groups, which were further divided into 3 time-points:7, 14 and 21 d ( n =6 in each). Cerebral ischemia(CI) model was established by occlusion of the middle cerebral artery with heat-coagulation. The rehabilitation group was treated by enriched rehabilitation training, once a day. The comprehensive rehabilitation group was treated by acupuncture combined with enriched rehabilitation training. Acupuncture was applied to bilateral "Neiguan"(PC 6) and "Shuigou"(GV 26) for 30 min, once a day. The neurological function score, balance-beam walking test and rotating-rod walking test were evaluated at the end of the corresponding treatment time. The expression of GAP-43 in peri-ischemic cortex was detected by immunohistochemistry. In comparison with the sham operation group, the scores of neurological function, beam walking test and rotating-rod walking test were significantly higher in the model group ( P beam walking and rotating-rod walking tests in the rehabilitation group compared with the model group on day 7 ( P >0.05). Compared with the model group at the other time points, the scores of neurological function, balance-beam walking test and rotating-rod walking test were significantly lower in the rehabilitation and comprehensive rehabilitation groups ( P beam walking test and rotating-rod walking test were significantly lower in the comprehensive rehabilitation group ( P <0.05). In comparison with the sham operation group, the number of GAP-43 positive cells of peri-ischemic cortex was significantly higher in the

  12. Word Recognition in Auditory Cortex

    Science.gov (United States)

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  13. Extended analysis of six-times ionized barium (Ba VII)

    International Nuclear Information System (INIS)

    Sharma, M.K.; Tauheed, A.; Rahimullah, K.

    2013-01-01

    The seventh spectrum of barium (Ba VII) has been investigated using experimental recordings made on a 3-m normal incidence vacuum spectrograph in Canada in the wavelength region 300–2000 Å. The data below 350 Å was supplemented from the spectrograms recorded on a 10.7-m grazing incidence spectrograph of NIST laboratory USA. The sources used to excite the spectra in both the cases were triggered spark. Previously reported levels of 5s 2 5p 2 , 5s5p 3 , 5s 2 5p5d and 5s 2 5p6s in Ba VII have been confirmed except the 1 P 1 level of 5s 2 5p5d. The analysis has been extended considerably to include new configurations 5s 2 5p6d and 5s 2 5p7s in odd parity configuration and doubly excited configurations 5s 2 5p6p, 5s 2 5p4f, 5s 2 5p5f, 5p 4 , 5s5p 2 5d and 5s5p 2 6s in even parity configuration. The 3 F 4 level of 5s 2 5p5d configuration has now been established through the identification of transitions from 5s 2 5p6p. In all, one hundred twenty-two levels have been established in this spectrum out of which ninety-two are new. A configuration interaction Hartree–Fock calculation supports the analysis. -- Highlights: ► The spectrum of Ba was recorded on a 3-m spectrograph with triggered spark source. ► Atomic transitions for Ba VII were identified to established new energy levels. ► CI calculations with relativistic corrections were made for theoretical predictions. ► Weighted oscillator strength (gf) and transition probabilities (gA) were calculated

  14. Management of factor VII-deficient patients undergoing joint surgeries--preliminary results of locally developed treatment regimen.

    Science.gov (United States)

    Windyga, J; Zbikowski, P; Ambroziak, P; Baran, B; Kotela, I; Stefanska-Windyga, E

    2013-01-01

    Inherited factor VII (FVII) deficiency is a rare coagulation disorder with variable haemorrhagic manifestations. In severely affected cases spontaneous haemarthroses leading to advanced arthropathy have been observed. Such cases may require surgery. Therapeutic options for bleeding prevention in FVII deficient patients undergoing surgery comprise various FVII preparations but the use of recombinant activated factor VII (rFVIIa) seems to be the treatment of choice. To present the outcome of orthopaedic surgery under haemostatic coverage of rFVIIa administered according to the locally established treatment regimen in five adult patients with FVII baseline plasma levels below 10 IU dL(-1). Two patients required total hip replacement (THR); three had various arthroscopic procedures. Recombinant activated factor VII was administered every 8 h on day of surgery (D0) followed by every 12-24 h for the subsequent 9-14 days, depending on the type of surgery. Factor VII plasma coagulation activity (FVII:C) was determined daily with no predefined therapeutic target levels. Doses of rFVIIa on D0 ranged from 18 to 37 μg kg(-1) b.w. and on the subsequent days--from 13 to 30 μg kg(-1) b.w. Total rFVIIa dose per procedure ranged from 16 to 37.5 mg, and the total number of doses per procedure was 16-31. None of our patients developed excessive bleeding including those in whom FVII:C trough levels returned nearly to the baseline level on the first post-op day. Preliminary results demonstrate that rFVIIa administered according to our treatment regimen is an effective and safe haemostatic agent for hypoproconvertinaemia patients undergoing orthopaedic surgery. © 2012 Blackwell Publishing Ltd.

  15. Effective Connectivity Hierarchically Links Temporoparietal and Frontal Areas of the Auditory Dorsal Stream with the Motor Cortex Lip Area during Speech Perception

    Science.gov (United States)

    Murakami, Takenobu; Restle, Julia; Ziemann, Ulf

    2012-01-01

    A left-hemispheric cortico-cortical network involving areas of the temporoparietal junction (Tpj) and the posterior inferior frontal gyrus (pIFG) is thought to support sensorimotor integration of speech perception into articulatory motor activation, but how this network links with the lip area of the primary motor cortex (M1) during speech…

  16. Dopamine and noradrenaline efflux in the prefrontal cortex in the light and dark period: Effects of novelty and handling and comparison to the nucleus accumbens

    NARCIS (Netherlands)

    Feenstra, M. G.; Botterblom, M. H.; Mastenbroek, S.

    2000-01-01

    We used on-line microdialysis measurements of dopamine and noradrenaline extracellular concentrations in the medial prefrontal cortex of awake, freely moving rats during the dark and the light period of the day to study whether (i) basal efflux would be higher in the active, dark period than in the

  17. Treatment effects on insular and anterior cingulate cortex activation during classic and emotional Stroop interference in child abuse-related complex post-traumatic stress disorder

    NARCIS (Netherlands)

    Thomaes, K.; Dorrepaal, E.; Draijer, P.J.; de Ruiter, M.B.; Elzinga, B.M.; van Balkom, A.J.L.M.; Smit, J.H.; Veltman, D.J.

    2012-01-01

    Background Functional neuroimaging studies have shown increased Stroop interference coupled with altered anterior cingulate cortex (ACC) and insula activation in post-traumatic stress disorder (PTSD). These brain areas are associated with error detection and emotional arousal. There is some evidence

  18. Treatment effects on insular and anterior cingulate cortex activation during classic and emotional Stroop interference in child abuse-related complex post-traumatic stress disorder

    NARCIS (Netherlands)

    Thomaes, K.; Dorrepaal, E.; Draijer, N.; de Ruiter, M. B.; Elzinga, B. M.; van Balkom, A. J.; Smit, J. H.; Veltman, D. J.

    2012-01-01

    Functional neuroimaging studies have shown increased Stroop interference coupled with altered anterior cingulate cortex (ACC) and insula activation in post-traumatic stress disorder (PTSD). These brain areas are associated with error detection and emotional arousal. There is some evidence that

  19. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment

    NARCIS (Netherlands)

    Papma, Janne M.; Smits, Marion; De Groot, Marius; Mattace-Raso, Francesco U. S.; van der Lugt, Aad; Vrooman, Henri A.; Niessen, W.J.; Koudstaal, Peter J.; van Swieten, John C.; van der Veen, Frederik M.; Prins, Niels D.

    2017-01-01

    Objectives: Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer’s disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the

  20. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment

    NARCIS (Netherlands)

    J.M. Papma (Janne); M. Smits (Marion); M. de Groot (Mirthe); F.U.S. Mattace Raso (Francesco); A. van der Lugt (Aad); H.A. Vrooman (Henri); W.J. Niessen (Wiro); P.J. Koudstaal (Peter Jan); J.C. van Swieten (John); F.M. van der Veen (Frederik); N.D. Prins (Niels)

    2017-01-01

    textabstractObjectives: Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer’s disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the

  1. Cocaine and Caffeine Effects on the Conditioned Place Preference Test: Concomitant Changes on Early Genes within the Mouse Prefrontal Cortex and Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Javier A. Muñiz

    2017-10-01

    Full Text Available Caffeine is the world's most popular psychostimulant and is frequently used as an active adulterant in many illicit drugs including cocaine. Previous studies have shown that caffeine can potentiate the stimulant effects of cocaine and cocaine-induced drug seeking behavior. However, little is known about the effects of this drug combination on reward-related learning, a key process in the maintenance of addiction and vulnerability to relapse. The goal of the present study was thus to determine caffeine and cocaine combined effects on the Conditioned Place Preference (CPP test and to determine potential differential mRNA expression in the Nucleus Accumbens (NAc and medial prefrontal cortex (mPFC of immediate-early genes (IEGs as well as dopamine and adenosine receptor subunits. Mice were treated with caffeine (5 mg/kg, CAF, cocaine (10 mg/kg, COC, or their combination (caffeine 5 mg/kg + cocaine 10 mg/kg, CAF-COC and trained in the CPP test or treated with repeated injections inside the home cage. NAc and mPFC tissues were dissected immediately after the CPP test, after a single conditioning session or following psychostimulant injection in the home cage for mRNA expression analysis. CAF-COC induced a marked change of preference to the drug conditioned side of the CPP and a significant increase in locomotion compared to COC. Gene expression analysis after CPP test revealed specific up-regulation in the CAF-COC group of Drd1a, cFos, and FosB in the NAc, and cFos, Egr1, and Npas4 in the mPFC. Importantly, none of these changes were observed when animals received same treatments in their home cage. With a single conditioning session, we found similar effects in both CAF and CAF-COC groups: increased Drd1a and decreased cFos in the NAc, and increased expression of Drd1a and Drd2, in the mPFC. Interestingly, we found that cFos and Npas4 gene expression were increased only in the mPFC of the CAF-COC. Our study provides evidence that caffeine acting as

  2. A role for very low-dose recombinant activated factor VII in refractory bleeding after cardiac surgery: Lessons from an observational study.

    Science.gov (United States)

    Hoffmann, Till; Assmann, Alexander; Dierksen, Angelika; Roussel, Elisabeth; Ullrich, Sebastian; Lichtenberg, Artur; Albert, Alexander; Sixt, Stephan

    2018-04-18

    Although off-label use of recombinant activated factor VII against refractory bleeding is incorporated in current guideline recommendations, safety concerns persist predominantly with respect to thromboembolic complications. We analyzed the safety and efficacy of recombinant activated factor VII at a very low dose in cardiosurgical patients with refractory bleeding. This prospective study includes 1180 cardiosurgical patients at risk of bleeding. Goal-directed substitution was based on real-time laboratory testing and clinical scoring of the bleeding intensity. All patients who fulfilled the criteria for enhanced risk of bleeding (n = 281) were consequently included in the present analysis. Patients in whom refractory bleeding developed despite substitution with specific hemostatic compounds (n = 167) received a single shot of very low-dose recombinant activated factor VII (≤20 μg/kg). Mortality and risk of thromboembolic complications, and freedom from stroke and acute myocardial infarction in particular, were analyzed (vs patients without recombinant activated factor VII) by multivariable logistic and Cox regression analyses, as well as Kaplan-Meier estimates. There was no increase in rates of mortality (30-day mortality 4.2% vs 7.0% with P = .418; follow-up survival 85.6% at 13.0 [interquartile range, 8.4-15.7] months vs 80.7% at 10.2 [interquartile range, 7.2-16.1] months with P = .151), thromboembolic complications (6.6% vs 9.6% with P = .637), renal insufficiency, need for percutaneous coronary intervention, duration of ventilation, duration of hospital stay, or rehospitalization in patients receiving very low-dose recombinant activated factor VII compared with patients not receiving recombinant activated factor VII. Complete hemostasis without any need for further hemostatic treatment was achieved after very low-dose recombinant activated factor VII administration in the majority of patients (up to 88.6% vs 0% with P factor VII treatment of

  3. Neutron flux measurements at the Wendelstein VII-A stellarator

    International Nuclear Information System (INIS)

    Weller, A.; Maassberg, H.

    1985-10-01

    In addition to charge exchange analysis (CX) and charge exchange recombination spectroscopy (CXRS), the time evolution of the central ion temperature during neutral beam heated plasma discharges in the Wendelstein VII-A stellarator is derived from the neutron flux from thermal D-D reactions. In general, good quantitative agreement between the different methods is obtained. Neutron flux measurements also permit to investigate the slowing down of fast D + -ions from neutral beam injection (NBI). The results agree well with the predictions based on the assumption of a collisional slowing down mechanism. (orig.)

  4. Technical progress report on Wendelstein VII-AS

    International Nuclear Information System (INIS)

    Sapper, J.

    1985-01-01

    The modification of the WENDELSTEIN experiment at Garching into an advanced version with modular design was approved in 1982, after a planning time of one and a half year. The essential components /1,2/ of the new WENDELSTEIN VII-AS device are: - A modular field system instead of a helix and TF-system, consisting of 45 nonplanar coils. - A modular vacuum vessel, adapted to the coil system. - An additional TF-system for t-variation, consisting of 10 plane coils. - A structure shell for the modular field coils so that the vessel is free of coil forces

  5. Weighted oscillator strengths and lifetimes for the S VII spectrum

    International Nuclear Information System (INIS)

    Borges, F.O.; Cavalcanti, G.H.; Trigueiros, A.G.; Jupen, C.

    2004-01-01

    The weighted oscillator strengths (gf) and the lifetimes presented in this work were carried out in a multiconfiguration Hartree-Fock relativistic approach. In this calculation, the electrostatic parameters were optimized by a least-squares procedure, in order to improve the adjustment to experimental energy levels. This method produces gf-values that are in better agreement with intensity observations and lifetime values that are closer to the experimental ones. In this work, we presented all the experimentally known electric dipole S VII spectral lines

  6. Preventive effects of physical exercise on the inhibition of creatine kinase in the cerebral cortex of mice exposed to cigarette smoke. DOI: 10.5007/1980-0037.2011v13n2p106

    Directory of Open Access Journals (Sweden)

    Daiane Bittencourt Fraga

    2011-02-01

    Full Text Available Recent studies have shown the health benefits of physical exercise, increasing the oxidative response of muscle. However, the effects of exercise on the brain are poorly understood and contradictory. The inhibition of creatine kinase (CK activity has been associated with the pathogenesis of a large number of diseases, especially in the brain. The objective of this study was to determine the preventive effects of physical exercise in the hippocampus and cerebral cortex of mice after chronic cigarette smoke exposure. Eight to 10-week-old male mice (C57BL-6 were divided into four groups and submitted to an exercise program (swimming, 5 times a week, for 8 weeks. After this period, the animals were passively exposed to cigarette smoke for 60 consecutive days, 3 times a day (4 Marlboro red cigarettes per session, for a total of 12 cigarettes. CK activity was measured in cerebral cortex and hippocampal homogenates. Enzyme activity was inhibited in the cerebral cortex of animals submitted to the inhalation of cigarette smoke. However, exercise prevented this inhibition. In contrast, CK activity remained unchanged in the hippocampus. This inhibition of CK by inhalation of cigarette smoke might be related to the process of cell death. Physical exercise played a preventive role in the inhibition of CK activity caused by exposure to cigarette smoke.

  7. Preventive effects of physical exercise on the inhibition of creatine kinase in the cerebral cortex of mice exposed to cigarette smoke. DOI: 10.5007/1980-0037.2011v13n2p106

    Directory of Open Access Journals (Sweden)

    Daiane Bittencourt Fraga

    2011-03-01

    Full Text Available Recent studies have shown the health benefits of physical exercise, increasing the oxidative response of muscle. However, the effects of exercise on the brain are poorly understood and contradictory. The inhibition of creatine kinase (CK activity has been associated with the pathogenesis of a large number of diseases, especially in the brain. The objective of this study was to determine the preventive effects of physical exercise in the hippocampus and cerebral cortex of mice after chronic cigarette smoke exposure. Eight to 10-week-old male mice (C57BL-6 were divided into four groups and submitted to an exercise program (swimming, 5 times a week, for 8 weeks. After this period, the animals were passively exposed to cigarette smoke for 60 consecutive days, 3 times a day (4 Marlboro red cigarettes per session, for a total of 12 cigarettes. CK activity was measured in cerebral cortex and hippocampal homogenates. Enzyme activity was inhibited in the cerebral cortex of animals submitted to the inhalation of cigarette smoke. However, exercise prevented this inhibition. In contrast, CK activity remained unchanged in the hippocampus. This inhibition of CK by inhalation of cigarette smoke might be related to the process of cell death. Physical exercise played a preventive role in the inhibition of CK activity caused by exposure to cigarette smoke.

  8. Continuous infusion of recombinant activated factor VII for bleeding control after lobectomy in a patient with inherited factor VII deficiency.

    Science.gov (United States)

    Miyata, Naoko; Isaka, Mitsuhiro; Kojima, Hideaki; Maniwa, Tomohiro; Takahashi, Shoji; Takamiya, Osamu; Ohde, Yasuhisa

    2016-03-01

    Inherited factor VII (FVII) deficiency is a rare recessive inherited coagulation disorder with limited available information, especially in patients undergoing major thoracic surgery. In addition, an optimal management strategy for the disease has not been defined. We herein report a case involving a 61-year-old man with asymptomatic FVII deficiency who underwent a right middle and lower lobectomy to treat lung cancer. To the best of our knowledge, the present report is the first to describe the use of recombinant activated FVII continuous infusion for bleeding control after a major thoracic surgery in a patient with inherited FVII deficiency.

  9. Evaluated Nuclear Data Covariances: The Journey From ENDF/B-VII.0 to ENDF/B-VII.1

    International Nuclear Information System (INIS)

    Smith, Donald L.

    2011-01-01

    Recent interest from data users on applications that utilize the uncertainties of evaluated nuclear reaction data has stimulated the data evaluation community to focus on producing covariance data to a far greater extent than ever before. Although some uncertainty information has been available in the ENDF/B libraries since the 1970's, this content has been fairly limited in scope, the quality quite variable, and the use of covariance data confined to only a few application areas. Today, covariance data are more widely and extensively utilized than ever before in neutron dosimetry, in advanced fission reactor design studies, in nuclear criticality safety assessments, in national security applications, and even in certain fusion energy applications. The main problem that now faces the ENDF/B evaluator community is that of providing covariances that are adequate both in quantity and quality to meet the requirements of contemporary nuclear data users in a timely manner. In broad terms, the approach pursued during the past several years has been to purge any legacy covariance information contained in ENDF/B-VI.8 that was judged to be subpar, to include in ENDF/B-VII.0 (released in 2006) only those covariance data deemed then to be of reasonable quality for contemporary applications, and to subsequently devote as much effort as the available time and resources allowed to producing additional covariance data of suitable scope and quality for inclusion in ENDF/B-VII.1. Considerable attention has also been devoted during the five years since the release of ENDF/B-VII.0 to examining and improving the methods used to produce covariance data from thermal energies up to the highest energies addressed in the ENDF/B library, to processing these data in a robust fashion so that they can be utilized readily in contemporary nuclear applications, and to developing convenient covariance data visualization capabilities. Other papers included in this issue discuss in considerable

  10. Cerebral cortex modulation of pain

    Institute of Scientific and Technical Information of China (English)

    Yu-feng XIE; Fu-quan HUO; Jing-shi TANG

    2009-01-01

    Pain is a complex experience encompassing sensory-discriminative, affective-motivational and cognitiv e-emotional com-ponents mediated by different mechanisms. Contrary to the traditional view that the cerebral cortex is not involved in pain perception, an extensive cortical network associated with pain processing has been revealed using multiple methods over the past decades. This network consistently includes, at least, the anterior cingulate cortex, the agranular insular cortex, the primary (SⅠ) and secondary somatosensory (SⅡ) cortices, the ventrolateral orbital cortex and the motor cortex. These corti-cal structures constitute the medial and lateral pain systems, the nucleus submedius-ventrolateral orbital cortex-periaque-ductal gray system and motor cortex system, respectively. Multiple neurotransmitters, including opioid, glutamate, GABA and dopamine, are involved in the modulation of pain by these cortical structures. In addition, glial cells may also be in-volved in cortical modulation of pain and serve as one target for pain management research. This review discusses recent studies of pain modulation by these cerebral cortical structures in animals and human.

  11. Verification OFENDF/B-VII.0, ENDF/B-VII.1 and JENDL-4.0 nuclear data libraries for criticality calculations using NEA/NSC benchmarks

    International Nuclear Information System (INIS)

    Bouhaddane, A.; Farkas, G.; Hascik, J.; Slugen, V.

    2015-01-01

    The paper presents verification of selected nuclear data libraries with the aim to apply them to fast reactor calculations. More precise results were achieved for thermal neutrons calculations. This corresponds with the demand for more precise nuclear data for fast reactors. However, fast neutron calculations show some consistency, in particular between ENDF-B/VII.1 and JENDL-4.0 nuclear data libraries. The results support the idea to prefer using newer ENDF-B/VII.1 instead of the previous version ENDF-B/VII.0. Certainly, there are still some issues to be addressed and there is potential to gain more conclusive results. Although, application of ENDF-B/VII.1 and JENDL-4.0 is expected for further calculations. (authors)

  12. Evidence supporting the use of recombinant activated factor VII in congenital bleeding disorders

    DEFF Research Database (Denmark)

    Johansson, Pär I; Ostrowski, Sisse R

    2010-01-01

    Recombinant activated factor VII (rFVIIa, NovoSeven) was introduced in 1996 for the treatment of hemophilic patients with antibodies against coagulation factor VIII or IX.......Recombinant activated factor VII (rFVIIa, NovoSeven) was introduced in 1996 for the treatment of hemophilic patients with antibodies against coagulation factor VIII or IX....

  13. Life-threatening bleeding in a case of autoantibody-induced factor VII deficiency.

    Science.gov (United States)

    Okajima, K; Ishii, M

    1999-02-01

    A male patient presented with life-threatening bleeding induced by autoantibody-induced factor VII (F.VII) deficiency. This patient had macroscopic hematuria, skin ecchymosis, gastrointestinal bleeding, and a neck hematoma that was causing disturbed respiration. He developed acute renal failure and acute hepatic failure, probably due to obstruction of the ureters and the biliary tract, respectively. Although activated partial thromboplastin time was normal, prothrombin time (PT) was remarkably prolonged at 71.8 seconds compared to 14.0 seconds in a normal control. Both the immunoreactive level of F.VII antigen and the F.VII activity of the patient's plasma samples were VII activity. These findings suggested the presence of a plasma inhibitor for F.VII. After administration of large doses of methylprednisolone, PT was gradually shortened and plasma levels of F.VII increased over time. Bleeding, acute renal failure, and acute hepatic failure improved markedly following the steroid treatment. These observations suggest that life-threatening bleeding can be induced by autoantibody-induced F.VII deficiency and that immunosuppressive therapy using large doses of steroid can be successful in inhibiting the production of the autoantibody.

  14. 76 FR 57013 - Recordkeeping and Reporting Requirements Under Title VII, the ADA, and GINA

    Science.gov (United States)

    2011-09-15

    ... EQUAL EMPLOYMENT OPPORTUNITY COMMISSION 29 CFR Part 1602 RIN 3046-AA89 Recordkeeping and Reporting Requirements Under Title VII, the ADA, and GINA AGENCY: Equal Employment Opportunity Commission. ACTION... under title VII, the ADA, and GINA. (76 FR 31892, June 2, 2011). No requests to present oral testimony...

  15. [Transcranial magnetic stimulation and motor cortex stimulation in neuropathic pain].

    Science.gov (United States)

    Mylius, V; Ayache, S S; Teepker, M; Kappus, C; Kolodziej, M; Rosenow, F; Nimsky, C; Oertel, W H; Lefaucheur, J P

    2012-12-01

    Non-invasive and invasive cortical stimulation allows the modulation of therapy-refractory neuropathic pain. High-frequency repetitive transcranial magnetic stimulation (rTMS) of the contralateral motor cortex yields therapeutic effects at short-term and predicts the benefits of epidural motor cortex stimulation (MCS). The present article summarizes the findings on application, mechanisms and therapeutic effects of cortical stimulation in neuropathic pain.

  16. Effect of Prenatal Protein Malnutrition on Long-Term Potentiation and BDNF Protein Expression in the Rat Entorhinal Cortex after Neocortical and Hippocampal Tetanization

    Directory of Open Access Journals (Sweden)

    Alejandro Hernández

    2008-01-01

    Full Text Available Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC in the adult progeny. Unlike normal eutrophic controls, 55–60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  17. Effect of prenatal protein malnutrition on long-term potentiation and BDNF protein expression in the rat entorhinal cortex after neocortical and hippocampal tetanization.

    Science.gov (United States)

    Hernández, Alejandro; Burgos, Héctor; Mondaca, Mauricio; Barra, Rafael; Núñez, Héctor; Pérez, Hernán; Soto-Moyano, Rubén; Sierralta, Walter; Fernández, Victor; Olivares, Ricardo; Valladares, Luis

    2008-01-01

    Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP) of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC) in the adult progeny. Unlike normal eutrophic controls, 55-60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF) in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  18. THE STUDY OF VITAMINS B1, B6, AND B12 EFFECTS ON ADRENAL CORTEX ADAPTATION BY MONITORING SOME ENZYME SYSTEMS IN RATS TRAINED BY SWIMMING

    Directory of Open Access Journals (Sweden)

    Dragana Veličković

    2014-06-01

    Full Text Available The adrenal hormones play a central role in response to environmental stimuli, both internal and external. We analyzed enzymes activities (LDH- lactate dehydrogenase, GLDHglutamate dehydrogenase and AcPh – acid phosphatase in adrenal cortex through swimming exercises and under the influence of B-group vitamins. The analyzed cases in the experiment revealed significant increase of enzyme activities, namely in the zona fasciculata and zona reticularis of the adrenal cortex. Physical exertion is a form of stress and causes steroidogenesis process expression. The vitamins used take part as co-ferments in production of a lot of enzymes and in their activities as well. Improvement of the enzyme system in adrenal glands in animals through swimming training with addition of vitamins B1, B6 and B12 leads to faster and long-term production of hormones necessary for stress response known as General Adaptation Syndrome

  19. Effect of transcranial direct current stimulation (tDCS) over the prefrontal cortex combined with cognitive training for treating schizophrenia: a sham-controlled randomized clinical trial

    OpenAIRE

    Shiozawa, Pedro; Gomes, July Silveira; Ducos, Daniella Valverde; Akiba, Henrique Teruo; Dias, Álvaro Machado; Trevizol, Alisson Paulino; Uchida, Ricardo R.; Orlov, Natasza; Cordeiro, Quirino

    2016-01-01

    Abstract Introduction: We report a transcranial direct current stimulation (tDCS) protocol over the dorsolateral prefrontal cortex (DLPFC) combined with cognitive training in schizophrenia. Method: We assessed psychotic symptoms in nine patients using the Positive and Negative Syndrome Scale (PANSS). All evaluations were scored at baseline, at the end of the intervention protocol, and during a 4-week follow-up. The tDCS protocol consisted of 10 consecutive sessions over 5-day periods. We pl...

  20. Behavioral Effects of Deep Brain Stimulation of the Anterior Nucleus of Thalamus, Entorhinal Cortex and Fornix in a Rat Model of Alzheimer′s Disease

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2015-01-01

    Full Text Available Background: Recent clinical and preclinical studies have suggested that deep brain stimulation (DBS can be used as a tool to enhance cognitive functions. The aim of the present study was to investigate the impact of DBS at three separate targets in the Papez circuit, including the anterior nucleus of thalamus (ANT, the entorhinal cortex (EC, and the fornix (FX, on cognitive behaviors in an Alzheimer′s disease (AD rat model. Methods: Forty-eight rats were subjected to an intrahippocampal injection of amyloid peptides 1-42 to induce an AD model. Rats were divided into six groups: DBS and sham DBS groups of ANT, EC, and FX. Spatial learning and memory were assessed by the Morris water maze (MWM. Recognition memory was investigated by the novel object recognition memory test (NORM. Locomotor and anxiety-related behaviors were detected by the open field test (OF. By using two-way analysis of variance (ANOVA, behavior differences between the six groups were analyzed. Results: In the MWM, the ANT, EC, and FX DBS groups performed differently in terms of the time spent in the platform zone (F(2,23 = 6.04, P < 0.01, the frequency of platform crossing (F(2,23 = 11.53, P < 0.001, and the percent time spent within the platform quadrant (F(2,23 = 6.29, P < 0.01. In the NORM, the EC and FX DBS groups spent more time with the novel object, although the ANT DBS group did not (F(2,23 = 10.03, P < 0.001. In the OF, all of the groups showed a similar total distance moved (F (1,42 = 1.14, P = 0.29 and relative time spent in the center (F(2,42 = 0.56, P = 0.58. Conclusions: Our results demonstrated that DBS of the EC and FX facilitated hippocampus-dependent spatial memory more prominently than ANT DBS. In add