WorldWideScience

Sample records for cortex gamma synchronization

  1. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia

    Directory of Open Access Journals (Sweden)

    Shenton Martha E

    2009-07-01

    Full Text Available Abstract Background Oscillatory electroencephalogram (EEG abnormalities may reflect neural circuit dysfunction in neuropsychiatric disorders. Previously we have found positive correlations between the phase synchronization of beta and gamma oscillations and hallucination symptoms in schizophrenia patients. These findings suggest that the propensity for hallucinations is associated with an increased tendency for neural circuits in sensory cortex to enter states of oscillatory synchrony. Here we tested this hypothesis by examining whether the 40 Hz auditory steady-state response (ASSR generated in the left primary auditory cortex is positively correlated with auditory hallucination symptoms in schizophrenia. We also examined whether the 40 Hz ASSR deficit in schizophrenia was associated with cross-frequency interactions. Sixteen healthy control subjects (HC and 18 chronic schizophrenia patients (SZ listened to 40 Hz binaural click trains. The EEG was recorded from 60 electrodes and average-referenced offline. A 5-dipole model was fit from the HC grand average ASSR, with 2 pairs of superior temporal dipoles and a deep midline dipole. Time-frequency decomposition was performed on the scalp EEG and source data. Results Phase locking factor (PLF and evoked power were reduced in SZ at fronto-central electrodes, replicating prior findings. PLF was reduced in SZ for non-homologous right and left hemisphere sources. Left hemisphere source PLF in SZ was positively correlated with auditory hallucination symptoms, and was modulated by delta phase. Furthermore, the correlations between source evoked power and PLF found in HC was reduced in SZ for the LH sources. Conclusion These findings suggest that differential neural circuit abnormalities may be present in the left and right auditory cortices in schizophrenia. In addition, they provide further support for the hypothesis that hallucinations are related to cortical hyperexcitability, which is manifested by

  2. Gamma oscillation maintains stimulus structure-dependent synchronization in cat visual cortex.

    Science.gov (United States)

    Samonds, Jason M; Bonds, A B

    2005-01-01

    Visual cortical cells demonstrate both oscillation and synchronization, although the underlying causes and functional significance of these behaviors remain uncertain. We simultaneously recorded single-unit activity with microelectrode arrays in supragranular layers of area 17 of cats paralyzed and anesthetized with propofol and N(2)O. Rate-normalized autocorrelograms of 24 cells reveal bursting (100%) and gamma oscillation (63%). Renewal density analysis, used to explore the source of oscillation, suggests a contribution from extrinsic influences such as feedback. However, a bursting refractory period, presumably membrane-based, could also encourage oscillatory firing. When we investigated the source of synchronization for 60 cell pairs we found only moderate correlation of synchrony with bursts and oscillation. We did, nonetheless, discover a possible functional role for oscillation. In all cases of cross-correlograms that exhibited oscillation, the strength of the synchrony was maintained throughout the stimulation period. When no oscillation was apparent, 75% of the cell pairs showed decay in their synchronization. The synchrony between cells is strongly dependent on similar response onset latencies. We therefore propose that structured input, which yields tight organization of latency, is a more likely candidate for the source of synchronization than oscillation. The reliable synchrony at response onset could be driven by spatial and temporal correlation of the stimulus that is preserved through the earlier stages of the visual system. Oscillation then contributes to maintenance of the synchrony to enhance reliable transmission of the information for higher cognitive processing.

  3. More Gamma More Predictions: Gamma-Synchronization as a Key Mechanism for Efficient Integration of Classical Receptive Field Inputs with Surround Predictions

    Science.gov (United States)

    Vinck, Martin; Bosman, Conrado A.

    2016-01-01

    During visual stimulation, neurons in visual cortex often exhibit rhythmic and synchronous firing in the gamma-frequency (30–90 Hz) band. Whether this phenomenon plays a functional role during visual processing is not fully clear and remains heavily debated. In this article, we explore the function of gamma-synchronization in the context of predictive and efficient coding theories. These theories hold that sensory neurons utilize the statistical regularities in the natural world in order to improve the efficiency of the neural code, and to optimize the inference of the stimulus causes of the sensory data. In visual cortex, this relies on the integration of classical receptive field (CRF) data with predictions from the surround. Here we outline two main hypotheses about gamma-synchronization in visual cortex. First, we hypothesize that the precision of gamma-synchronization reflects the extent to which CRF data can be accurately predicted by the surround. Second, we hypothesize that different cortical columns synchronize to the extent that they accurately predict each other’s CRF visual input. We argue that these two hypotheses can account for a large number of empirical observations made on the stimulus dependencies of gamma-synchronization. Furthermore, we show that they are consistent with the known laminar dependencies of gamma-synchronization and the spatial profile of intercolumnar gamma-synchronization, as well as the dependence of gamma-synchronization on experience and development. Based on our two main hypotheses, we outline two additional hypotheses. First, we hypothesize that the precision of gamma-synchronization shows, in general, a negative dependence on RF size. In support, we review evidence showing that gamma-synchronization decreases in strength along the visual hierarchy, and tends to be more prominent in species with small V1 RFs. Second, we hypothesize that gamma-synchronized network dynamics facilitate the emergence of spiking output that

  4. Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex.

    Science.gov (United States)

    Adesnik, Hillel

    2018-05-01

    Understanding the balance between synaptic excitation and inhibition in cortical circuits in the brain, and how this contributes to cortical rhythms, is fundamental to explaining information processing in the cortex. This study used cortical layer-specific optogenetic activation in mouse cortex to show that excitatory neurons in any cortical layer can drive powerful gamma rhythms, while inhibition balances excitation. The net impact of this is to keep activity within each layer in check, but simultaneously to promote the propagation of activity to downstream layers. The data show that rhythm-generating circuits exist in all principle layers of the cortex, and provide layer-specific balances of excitation and inhibition that affect the flow of information across the layers. Rhythmic activity can synchronize neural ensembles within and across cortical layers. While gamma band rhythmicity has been observed in all layers, the laminar sources and functional impacts of neuronal synchronization in the cortex remain incompletely understood. Here, layer-specific optogenetic stimulation demonstrates that populations of excitatory neurons in any cortical layer of the mouse's primary visual cortex are sufficient to powerfully entrain neuronal oscillations in the gamma band. Within each layer, inhibition balances excitation and keeps activity in check. Across layers, translaminar output overcomes inhibition and drives downstream firing. These data establish that rhythm-generating circuits exist in all principle layers of the cortex, but provide layer-specific balances of excitation and inhibition that may dynamically shape the flow of information through cortical circuits. These data might help explain how excitation/inhibition (E/I) balances across cortical layers shape information processing, and shed light on the diverse nature and functional impacts of cortical gamma rhythms. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  5. Deconstruction of spatial integrity in visual stimulus detected by modulation of synchronized activity in cat visual cortex.

    Science.gov (United States)

    Zhou, Zhiyi; Bernard, Melanie R; Bonds, A B

    2008-04-02

    Spatiotemporal relationships among contour segments can influence synchronization of neural responses in the primary visual cortex. We performed a systematic study to dissociate the impact of spatial and temporal factors in the signaling of contour integration via synchrony. In addition, we characterized the temporal evolution of this process to clarify potential underlying mechanisms. With a 10 x 10 microelectrode array, we recorded the simultaneous activity of multiple cells in the cat primary visual cortex while stimulating with drifting sine-wave gratings. We preserved temporal integrity and systematically degraded spatial integrity of the sine-wave gratings by adding spatial noise. Neural synchronization was analyzed in the time and frequency domains by conducting cross-correlation and coherence analyses. The general association between neural spike trains depends strongly on spatial integrity, with coherence in the gamma band (35-70 Hz) showing greater sensitivity to the change of spatial structure than other frequency bands. Analysis of the temporal dynamics of synchronization in both time and frequency domains suggests that spike timing synchronization is triggered nearly instantaneously by coherent structure in the stimuli, whereas frequency-specific oscillatory components develop more slowly, presumably through network interactions. Our results suggest that, whereas temporal integrity is required for the generation of synchrony, spatial integrity is critical in triggering subsequent gamma band synchronization.

  6. Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex.

    Directory of Open Access Journals (Sweden)

    Elsa van der Loo

    Full Text Available BACKGROUND: Non-pulsatile tinnitus is considered a subjective auditory phantom phenomenon present in 10 to 15% of the population. Tinnitus as a phantom phenomenon is related to hyperactivity and reorganization of the auditory cortex. Magnetoencephalography studies demonstrate a correlation between gamma band activity in the contralateral auditory cortex and the presence of tinnitus. The present study aims to investigate the relation between objective gamma-band activity in the contralateral auditory cortex and subjective tinnitus loudness scores. METHODS AND FINDINGS: In unilateral tinnitus patients (N = 15; 10 right, 5 left source analysis of resting state electroencephalographic gamma band oscillations shows a strong positive correlation with Visual Analogue Scale loudness scores in the contralateral auditory cortex (max r = 0.73, p<0.05. CONCLUSION: Auditory phantom percepts thus show similar sound level dependent activation of the contralateral auditory cortex as observed in normal audition. In view of recent consciousness models and tinnitus network models these results suggest tinnitus loudness is coded by gamma band activity in the contralateral auditory cortex but might not, by itself, be responsible for tinnitus perception.

  7. Dual Gamma Rhythm Generators Control Interlaminar Synchrony in Auditory Cortex

    Science.gov (United States)

    Ainsworth, Matthew; Lee, Shane; Cunningham, Mark O.; Roopun, Anita K.; Traub, Roger D.; Kopell, Nancy J.; Whittington, Miles A.

    2013-01-01

    Rhythmic activity in populations of cortical neurons accompanies, and may underlie, many aspects of primary sensory processing and short-term memory. Activity in the gamma band (30 Hz up to > 100 Hz) is associated with such cognitive tasks and is thought to provide a substrate for temporal coupling of spatially separate regions of the brain. However, such coupling requires close matching of frequencies in co-active areas, and because the nominal gamma band is so spectrally broad, it may not constitute a single underlying process. Here we show that, for inhibition-based gamma rhythms in vitro in rat neocortical slices, mechanistically distinct local circuit generators exist in different laminae of rat primary auditory cortex. A persistent, 30 – 45 Hz, gap-junction-dependent gamma rhythm dominates rhythmic activity in supragranular layers 2/3, whereas a tonic depolarization-dependent, 50 – 80 Hz, pyramidal/interneuron gamma rhythm is expressed in granular layer 4 with strong glutamatergic excitation. As a consequence, altering the degree of excitation of the auditory cortex causes bifurcation in the gamma frequency spectrum and can effectively switch temporal control of layer 5 from supragranular to granular layers. Computational modeling predicts the pattern of interlaminar connections may help to stabilize this bifurcation. The data suggest that different strategies are used by primary auditory cortex to represent weak and strong inputs, with principal cell firing rate becoming increasingly important as excitation strength increases. PMID:22114273

  8. Theta–gamma coordination between anterior cingulate and prefrontal cortex indexes correct attention shifts

    Science.gov (United States)

    Voloh, Benjamin; Valiante, Taufik A.; Everling, Stefan; Womelsdorf, Thilo

    2015-01-01

    Anterior cingulate and lateral prefrontal cortex (ACC/PFC) are believed to coordinate activity to flexibly prioritize the processing of goal-relevant over irrelevant information. This between-area coordination may be realized by common low-frequency excitability changes synchronizing segregated high-frequency activations. We tested this coordination hypothesis by recording in macaque ACC/PFC during the covert utilization of attention cues. We found robust increases of 5–10 Hz (theta) to 35–55 Hz (gamma) phase–amplitude correlation between ACC and PFC during successful attention shifts but not before errors. Cortical sites providing theta phases (i) showed a prominent cue-induced phase reset, (ii) were more likely in ACC than PFC, and (iii) hosted neurons with burst firing events that synchronized to distant gamma activity. These findings suggest that interareal theta–gamma correlations could follow mechanistically from a cue-triggered reactivation of rule memory that synchronizes theta across ACC/PFC. PMID:26100868

  9. Interaction of synchronized dynamics in cortex and basal ganglia in Parkinson's disease.

    Science.gov (United States)

    Ahn, Sungwoo; Zauber, S Elizabeth; Worth, Robert M; Witt, Thomas; Rubchinsky, Leonid L

    2015-09-01

    Parkinson's disease pathophysiology is marked by increased oscillatory and synchronous activity in the beta frequency band in cortical and basal ganglia circuits. This study explores the functional connections between synchronized dynamics of cortical areas and synchronized dynamics of subcortical areas in Parkinson's disease. We simultaneously recorded neuronal units (spikes) and local field potentials (LFP) from subthalamic nucleus (STN) and electroencephalograms (EEGs) from the scalp in parkinsonian patients, and analysed the correlation between the time courses of the spike-LFP synchronization and inter-electrode EEG synchronization. We found the (non-invasively obtained) time course of the synchrony strength between EEG electrodes and the (invasively obtained) time course of the synchrony between spiking units and LFP in STN to be weakly, but significantly, correlated with each other. This correlation is largest for the bilateral motor EEG synchronization, followed by bilateral frontal EEG synchronization. Our observations suggest that there may be multiple functional modes by which the cortical and basal ganglia circuits interact with each other in Parkinson's disease: not only may synchronization be observed between some areas in cortex and the basal ganglia, but also synchronization within cortex and within basal ganglia may be related, suggesting potentially a more global functional interaction. More coherent dynamics in one brain region may modulate or activate the dynamics of another brain region in a more powerful way, causing correlations between changes in synchrony strength in the two regions. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Endogenously generated gamma-band oscillations in early visual cortex: A neurofeedback study.

    Science.gov (United States)

    Merkel, Nina; Wibral, Michael; Bland, Gareth; Singer, Wolf

    2018-04-26

    Human subjects were trained with neurofeedback (NFB) to enhance the power of narrow-band gamma oscillations in circumscribed regions of early visual cortex. To select the region and the oscillation frequency for NFB training, gamma oscillations were induced with locally presented drifting gratings. The source and frequency of these induced oscillations were determined using beamforming methods. During NFB training the power of narrow band gamma oscillations was continuously extracted from this source with online beamforming and converted into the pitch of a tone signal. We found that seven out of ten subjects were able to selectively increase the amplitude of gamma oscillations in the absence of visual stimulation. One subject however failed completely and two subjects succeeded to manipulate the feedback signal by contraction of muscles. In all subjects the attempts to enhance visual gamma oscillations were associated with an increase of beta oscillations over precentral/frontal regions. Only successful subjects exhibited an additional marked increase of theta oscillations over precentral/prefrontal and temporal regions whereas unsuccessful subjects showed an increase of alpha band oscillations over occipital regions. We argue that spatially confined networks in early visual cortex can be entrained to engage in narrow band gamma oscillations not only by visual stimuli but also by top down signals. We interpret the concomitant increase in beta oscillations as indication for an engagement of the fronto-parietal attention network and the increase of theta oscillations as a correlate of imagery. Our finding support the application of NFB in disease conditions associated with impaired gamma synchronization. © 2018 Wiley Periodicals, Inc.

  11. Neuronal synchronization in human parietal cortex during saccade planning

    NARCIS (Netherlands)

    Werf, J. van der; Buchholz, V.N.; Jensen, O.; Medendorp, W.P.

    2009-01-01

    Neuropsychological and neuroimaging studies have implicated the human posterior parietal cortex (PPC) in sensorimotor integration and saccade planning However, the temporal dynamics of the underlying physiology and its relationship to observations in non-human primates have been difficult to pin

  12. Synchronous activity in cat visual cortex encodes collinear and cocircular contours.

    Science.gov (United States)

    Samonds, Jason M; Zhou, Zhiyi; Bernard, Melanie R; Bonds, A B

    2006-04-01

    We explored how contour information in primary visual cortex might be embedded in the simultaneous activity of multiple cells recorded with a 100-electrode array. Synchronous activity in cat visual cortex was more selective and predictable in discriminating between drifting grating and concentric ring stimuli than changes in firing rate. Synchrony was found even between cells with wholly different orientation preferences when their receptive fields were circularly aligned, and membership in synchronous groups was orientation and curvature dependent. The existence of synchrony between cocircular cells reinforces its role as a general mechanism for contour integration and shape detection as predicted by association field concepts. Our data suggest that cortical synchrony results from common and synchronous input from earlier visual areas and that it could serve to shape extrastriate response selectivity.

  13. Neuronal populations in the occipital cortex of the blind synchronize to the temporal dynamics of speech

    Science.gov (United States)

    Van Ackeren, Markus Johannes; Barbero, Francesca M; Mattioni, Stefania; Bottini, Roberto

    2018-01-01

    The occipital cortex of early blind individuals (EB) activates during speech processing, challenging the notion of a hard-wired neurobiology of language. But, at what stage of speech processing do occipital regions participate in EB? Here we demonstrate that parieto-occipital regions in EB enhance their synchronization to acoustic fluctuations in human speech in the theta-range (corresponding to syllabic rate), irrespective of speech intelligibility. Crucially, enhanced synchronization to the intelligibility of speech was selectively observed in primary visual cortex in EB, suggesting that this region is at the interface between speech perception and comprehension. Moreover, EB showed overall enhanced functional connectivity between temporal and occipital cortices that are sensitive to speech intelligibility and altered directionality when compared to the sighted group. These findings suggest that the occipital cortex of the blind adopts an architecture that allows the tracking of speech material, and therefore does not fully abstract from the reorganized sensory inputs it receives. PMID:29338838

  14. Synchronisation hubs in the visual cortex may arise from strong rhythmic inhibition during gamma oscillations.

    Science.gov (United States)

    Folias, Stefanos E; Yu, Shan; Snyder, Abigail; Nikolić, Danko; Rubin, Jonathan E

    2013-09-01

    Neurons in the visual cortex exhibit heterogeneity in feature selectivity and the tendency to generate action potentials synchronously with other nearby neurons. By examining visual responses from cat area 17 we found that, during gamma oscillations, there was a positive correlation between each unit's sharpness of orientation tuning, strength of oscillations, and propensity towards synchronisation with other units. Using a computational model, we demonstrated that heterogeneity in the strength of rhythmic inhibitory inputs can account for the correlations between these three properties. Neurons subject to strong inhibition tend to oscillate strongly in response to both optimal and suboptimal stimuli and synchronise promiscuously with other neurons, even if they have different orientation preferences. Moreover, these strongly inhibited neurons can exhibit sharp orientation selectivity provided that the inhibition they receive is broadly tuned relative to their excitatory inputs. These results predict that the strength and orientation tuning of synaptic inhibition are heterogeneous across area 17 neurons, which could have important implications for these neurons' sensory processing capabilities. Furthermore, although our experimental recordings were conducted in the visual cortex, our model and simulation results can apply more generally to any brain region with analogous neuron types in which heterogeneity in the strength of rhythmic inhibition can arise during gamma oscillations. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. GAMMA BAND PLASTICITY IN SENSORY CORTEX IS A SIGNATURE OF THE STRONGEST MEMORY RATHER THAN MEMORY OF THE TRAINING STIMULUS

    Science.gov (United States)

    Weinberger, Norman M.; Miasnikov, Alexandre A.; Bieszczad, Kasia M.; Chen, Jemmy C.

    2013-01-01

    Gamma oscillations (~30–120 Hz) are considered to be a reflection of coordinated neuronal activity, linked to processes underlying synaptic integration and plasticity. Increases in gamma power within the cerebral cortex have been found during many cognitive processes such as attention, learning, memory and problem solving in both humans and animals. However, the specificity of gamma to the detailed contents of memory remains largely unknown. We investigated the relationship between learning-induced increased gamma power in the primary auditory cortex (A1) and the strength of memory for acoustic frequency. Adult male rats (n = 16) received three days (200 trials each) of pairing a tone (3.66 kHz) with stimulation of the nucleus basalis, which implanted a memory for acoustic frequency as assessed by associatively-induced disruption of ongoing behavior, viz., respiration. Post-training frequency generalization gradients (FGGs) revealed peaks at non-CS frequencies in 11/16 cases, likely reflecting normal variation in pre-training acoustic experiences. A stronger relationship was found between increased gamma power and the frequency with the strongest memory (peak of the difference between individual post- and pre-training FGGs) vs. behavioral responses to the CS training frequency. No such relationship was found for the theta/alpha band (4–15 Hz). These findings indicate that the strength of specific increased neuronal synchronization within primary sensory cortical fields can determine the specific contents of memory. PMID:23669065

  16. Gamma band plasticity in sensory cortex is a signature of the strongest memory rather than memory of the training stimulus.

    Science.gov (United States)

    Weinberger, Norman M; Miasnikov, Alexandre A; Bieszczad, Kasia M; Chen, Jemmy C

    2013-09-01

    Gamma oscillations (∼30-120Hz) are considered to be a reflection of coordinated neuronal activity, linked to processes underlying synaptic integration and plasticity. Increases in gamma power within the cerebral cortex have been found during many cognitive processes such as attention, learning, memory and problem solving in both humans and animals. However, the specificity of gamma to the detailed contents of memory remains largely unknown. We investigated the relationship between learning-induced increased gamma power in the primary auditory cortex (A1) and the strength of memory for acoustic frequency. Adult male rats (n=16) received three days (200 trials each) of pairing a tone (3.66 kHz) with stimulation of the nucleus basalis, which implanted a memory for acoustic frequency as assessed by associatively-induced disruption of ongoing behavior, viz., respiration. Post-training frequency generalization gradients (FGGs) revealed peaks at non-CS frequencies in 11/16 cases, likely reflecting normal variation in pre-training acoustic experiences. A stronger relationship was found between increased gamma power and the frequency with the strongest memory (peak of the difference between individual post- and pre-training FGGs) vs. behavioral responses to the CS training frequency. No such relationship was found for the theta/alpha band (4-15 Hz). These findings indicate that the strength of specific increased neuronal synchronization within primary sensory cortical fields can determine the specific contents of memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Optimized gamma synchronization enhances functional binding of fronto-parietal cortices in mathematically gifted adolescents during deductive reasoning

    Directory of Open Access Journals (Sweden)

    Li eZhang

    2014-06-01

    Full Text Available As enhanced fronto-parietal network has been suggested to support reasoning ability of math-gifted adolescents, the main goal of this EEG source analysis is to investigate the temporal binding of the gamma-band (30-60Hz synchronization between frontal and parietal cortices in adolescents with exceptional mathematical ability, including the functional connectivity of gamma neurocognitive network, the temporal dynamics of fronto-parietal network (phase-locking durations and network lability in time domain, and the self-organized criticality of synchronizing oscillation. Compared with the average-ability subjects, the math-gifted adolescents show a highly integrated fronto-parietal network due to distant gamma phase-locking oscillations, which is indicated by lower modularity of the global network topology, more connector bridges between the frontal and parietal cortices and less connector hubs in the sensorimotor cortex. The time-domain analysis finds that, while maintaining more stable phase dynamics of the fronto-parietal coupling, the math-gifted adolescents are characterized by more extensive fronto-parietal connection reconfiguration. The results from sample fitting in the power-law model further find that the phase-locking durations in the math-gifted brain abides by a wider interval of the power-law distribution. This phase-lock distribution mechanism could represent a relatively optimized pattern for the functional binding of frontal-parietal network, which underlies stable fronto-parietal connectivity and increases flexibility of timely network reconfiguration.

  18. Selective Interareal Synchronization through Gamma Frequency Differences and Slower-Rhythm Gamma Phase Reset.

    Science.gov (United States)

    Burwick, Thomas; Bouras, Alexandros

    2017-03-01

    The communication-through-coherence (CTC) hypothesis states that a sending group of neurons will have a particularly strong effect on a receiving group if both groups oscillate in a phase-locked ("coherent") manner (Fries, 2005 , 2015 ). Here, we consider a situation with two visual stimuli, one in the focus of attention and the other distracting, resulting in two sites of excitation at an early cortical area that project to a common site in a next area. Taking a modeler's perspective, we confirm the workings of a mechanism that was proposed by Bosman et al. ( 2012 ) in the context of providing experimental evidence for the CTC hypothesis: a slightly higher gamma frequency of the attended sending site compared to the distracting site may cause selective interareal synchronization with the receiving site if combined with a slow-rhythm gamma phase reset. We also demonstrate the relevance of a slightly lower intrinsic frequency of the receiving site for this scenario. Moreover, we discuss conditions for a transition from bottom-up to top-down driven phase locking.

  19. Humor Appreciation Involves Parametric and Synchronized Activity in the Medial Prefrontal Cortex and Hippocampus.

    Science.gov (United States)

    Iidaka, Tetsuya

    2017-12-01

    Humor perception is a ubiquitous phenomenon in human societies. In theories of humor perception, three factors, non-seriousness, social context, and incongruity, have been implicated in humor. In another theory, however, elaboration and reinterpretation of contexts are considered to play a role in eliciting humor. Although the neural correlates of humor appreciation have been investigated using neuroimaging methods, only a few studies have conducted such experiments under natural conditions. In the present study, two functional magnetic resonance imaging experiments, using a comedy movie as a stimulus, were conducted to investigate the neural correlates of humor under natural conditions. The subjects' brain activity was measured while watching and enjoying a movie. In experiment 1, a parametric analysis showed that the medial prefrontal cortex (MPFC) and hippocampus/amygdala had a positive relationship with the subjective rating of funniness. In experiment 2, intersubject correlation was analyzed to investigate synchronized activity across all participants. Signal synchronization that paralleled increased funniness ratings was observed in the MPFC and hippocampus. Thus, it appears that both parametric and synchronized activity in the MPFC and hippocampus are important during humor appreciation. The present study has revealed the brain regions that are predominantly involved in humor sensation under natural condition. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice.

    Directory of Open Access Journals (Sweden)

    Víctor Rovira

    Full Text Available Disinhibition of the cortex (e.g., by GABA -receptor blockade generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14-20 days, the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7 than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05, which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s. We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere, and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges.

  1. Input-dependent frequency modulation of cortical gamma oscillations shapes spatial synchronization and enables phase coding.

    Science.gov (United States)

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-02-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes

  2. High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention.

    Science.gov (United States)

    Lobier, Muriel; Palva, J Matias; Palva, Satu

    2018-01-15

    Visuospatial attention prioritizes processing of attended visual stimuli. It is characterized by lateralized alpha-band (8-14 Hz) amplitude suppression in visual cortex and increased neuronal activity in a network of frontal and parietal areas. It has remained unknown what mechanisms coordinate neuronal processing among frontoparietal network and visual cortices and implement the attention-related modulations of alpha-band amplitudes and behavior. We investigated whether large-scale network synchronization could be such a mechanism. We recorded human cortical activity with magnetoencephalography (MEG) during a visuospatial attention task. We then identified the frequencies and anatomical networks of inter-areal phase synchronization from source localized MEG data. We found that visuospatial attention is associated with robust and sustained long-range synchronization of cortical oscillations exclusively in the high-alpha (10-14 Hz) frequency band. This synchronization connected frontal, parietal and visual regions and was observed concurrently with amplitude suppression of low-alpha (6-9 Hz) band oscillations in visual cortex. Furthermore, stronger high-alpha phase synchronization was associated with decreased reaction times to attended stimuli and larger suppression of alpha-band amplitudes. These results thus show that high-alpha band phase synchronization is functionally significant and could coordinate the neuronal communication underlying the implementation of visuospatial attention. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. State-dependent spike and local field synchronization between motor cortex and substantia nigra in hemiparkinsonian rats.

    Science.gov (United States)

    Brazhnik, Elena; Cruz, Ana V; Avila, Irene; Wahba, Marian I; Novikov, Nikolay; Ilieva, Neda M; McCoy, Alex J; Gerber, Colin; Walters, Judith R

    2012-06-06

    Excessive beta frequency oscillatory and synchronized activity has been reported in the basal ganglia of parkinsonian patients and animal models of the disease. To gain insight into processes underlying this activity, this study explores relationships between oscillatory activity in motor cortex and basal ganglia output in behaving rats after dopamine cell lesion. During inattentive rest, 7 d after lesion, increases in motor cortex-substantia nigra pars reticulata (SNpr) coherence emerged in the 8-25 Hz range, with significant increases in local field potential (LFP) power in SNpr but not motor cortex. In contrast, during treadmill walking, marked increases in both motor cortex and SNpr LFP power, as well as coherence, emerged in the 25-40 Hz band with a peak frequency at 30-35 Hz. Spike-triggered waveform averages showed that 77% of SNpr neurons, 77% of putative cortical interneurons, and 44% of putative pyramidal neurons were significantly phase-locked to the increased cortical LFP activity in the 25-40 Hz range. Although the mean lag between cortical and SNpr LFPs fluctuated around zero, SNpr neurons phase-locked to cortical LFP oscillations fired, on average, 17 ms after synchronized spiking in motor cortex. High coherence between LFP oscillations in cortex and SNpr supports the view that cortical activity facilitates entrainment and synchronization of activity in basal ganglia after loss of dopamine. However, the dramatic increases in cortical power and relative timing of phase-locked spiking in these areas suggest that additional processes help shape the frequency-specific tuning of the basal ganglia-thalamocortical network during ongoing motor activity.

  4. Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children.

    Science.gov (United States)

    Seither-Preisler, Annemarie; Parncutt, Richard; Schneider, Peter

    2014-08-13

    Playing a musical instrument is associated with numerous neural processes that continuously modify the human brain and may facilitate characteristic auditory skills. In a longitudinal study, we investigated the auditory and neural plasticity of musical learning in 111 young children (aged 7-9 y) as a function of the intensity of instrumental practice and musical aptitude. Because of the frequent co-occurrence of central auditory processing disorders and attentional deficits, we also tested 21 children with attention deficit (hyperactivity) disorder [AD(H)D]. Magnetic resonance imaging and magnetoencephalography revealed enlarged Heschl's gyri and enhanced right-left hemispheric synchronization of the primary evoked response (P1) to harmonic complex sounds in children who spent more time practicing a musical instrument. The anatomical characteristics were positively correlated with frequency discrimination, reading, and spelling skills. Conversely, AD(H)D children showed reduced volumes of Heschl's gyri and enhanced volumes of the plana temporalia that were associated with a distinct bilateral P1 asynchrony. This may indicate a risk for central auditory processing disorders that are often associated with attentional and literacy problems. The longitudinal comparisons revealed a very high stability of auditory cortex morphology and gray matter volumes, suggesting that the combined anatomical and functional parameters are neural markers of musicality and attention deficits. Educational and clinical implications are considered. Copyright © 2014 the authors 0270-6474/14/3410937-13$15.00/0.

  5. Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task.

    Science.gov (United States)

    Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa; Grün, Sonja

    2016-08-10

    The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons ("cell assemblies"). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published

  6. Motor cortex synchronization influences the rhythm of motor performance in premanifest huntington's disease.

    Science.gov (United States)

    Casula, Elias P; Mayer, Isabella M S; Desikan, Mahalekshmi; Tabrizi, Sarah J; Rothwell, John C; Orth, Michael

    2018-03-01

    In Huntington's disease there is evidence of structural damage in the motor system, but it is still unclear how to link this to the behavioral disorder of movement. One feature of choreic movement is variable timing and coordination between sequences of actions. We postulate this results from desynchronization of neural activity in cortical motor areas. The objective of this study was to explore the ability to synchronize activity in a motor network using transcranial magnetic stimulation and to relate this to timing of motor performance. We examined synchronization in oscillatory activity of cortical motor areas in response to an external input produced by a pulse of transcranial magnetic stimulation. We combined this with EEG to compare the response of 16 presymptomatic Huntington's disease participants with 16 age-matched healthy volunteers to test whether the strength of synchronization relates to the variability of motor performance at the following 2 tasks: a grip force task and a speeded-tapping task. Phase synchronization in response to M1 stimulation was lower in Huntington's disease than healthy volunteers (P synchronization (r = -0.356; P synchronization and desynchronization could be a physiological basis for some key clinical features of Huntington's disease. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  7. Locus coeruleus phasic discharge is essential for stimulus-induced gamma oscillations in the prefrontal cortex.

    Science.gov (United States)

    Neves, Ricardo M; van Keulen, Silvia; Yang, Mingyu; Logothetis, Nikos K; Eschenko, Oxana

    2018-03-01

    The locus coeruleus (LC) noradrenergic (NE) neuromodulatory system is critically involved in regulation of neural excitability via its diffuse ascending projections. Tonic NE release in the forebrain is essential for maintenance of vigilant states and increases the signal-to-noise ratio of cortical sensory responses. The impact of phasic NE release on cortical activity and sensory processing is less explored. We previously reported that LC microstimulation caused a transient desynchronization of population activity in the medial prefrontal cortex (mPFC), similar to noxious somatosensory stimuli. The LC receives nociceptive information from the medulla and therefore may mediate sensory signaling to its forebrain targets. Here we performed extracellular recordings in LC and mPFC while presenting noxious stimuli in urethane-anesthetized rats. A brief train of foot shocks produced a robust phasic response in the LC and a transient change in the mPFC power spectrum, with the strongest modulation in the gamma (30-90 Hz) range. The LC phasic response preceded prefrontal gamma power increase, and cortical modulation was proportional to the LC excitation. We also quantitatively characterized distinct cortical states and showed that sensory responses in both LC and mPFC depend on the ongoing cortical state. Finally, cessation of the LC firing by bilateral local iontophoretic injection of clonidine, an α 2 -adrenoreceptor agonist, completely eliminated sensory responses in the mPFC without shifting cortex to a less excitable state. Together, our results suggest that the LC phasic response induces gamma power increase in the PFC and is essential for mediating sensory information along an ascending noxious pathway. NEW & NOTEWORTHY Our study shows linear relationships between locus coeruleus phasic excitation and the amplitude of gamma oscillations in the prefrontal cortex. Results suggest that the locus coeruleus phasic response is essential for mediating sensory information

  8. Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex.

    Science.gov (United States)

    Marshall, Tom R; O'Shea, Jacinta; Jensen, Ole; Bergmann, Til O

    2015-01-28

    Covertly directing visuospatial attention produces a frequency-specific modulation of neuronal oscillations in occipital and parietal cortices: anticipatory alpha (8-12 Hz) power decreases contralateral and increases ipsilateral to attention, whereas stimulus-induced gamma (>40 Hz) power is boosted contralaterally and attenuated ipsilaterally. These modulations must be under top-down control; however, the control mechanisms are not yet fully understood. Here we investigated the causal contribution of the human frontal eye field (FEF) by combining repetitive transcranial magnetic stimulation (TMS) with subsequent magnetoencephalography. Following inhibitory theta burst stimulation to the left FEF, right FEF, or vertex, participants performed a visual discrimination task requiring covert attention to either visual hemifield. Both left and right FEF TMS caused marked attenuation of alpha modulation in the occipitoparietal cortex. Notably, alpha modulation was consistently reduced in the hemisphere contralateral to stimulation, leaving the ipsilateral hemisphere relatively unaffected. Additionally, right FEF TMS enhanced gamma modulation in left visual cortex. Behaviorally, TMS caused a relative slowing of response times to targets contralateral to stimulation during the early task period. Our results suggest that left and right FEF are causally involved in the attentional top-down control of anticipatory alpha power in the contralateral visual system, whereas a right-hemispheric dominance seems to exist for control of stimulus-induced gamma power. These findings contrast the assumption of primarily intrahemispheric connectivity between FEF and parietal cortex, emphasizing the relevance of interhemispheric interactions. The contralaterality of effects may result from a transient functional reorganization of the dorsal attention network after inhibition of either FEF. Copyright © 2015 the authors 0270-6474/15/351638-10$15.00/0.

  9. Effect of superlarge dose of gamma radiation on the rat cerebral cortex (ultrastructural aspects)

    International Nuclear Information System (INIS)

    Abdrakhmanov, A.A.; AN Kazakhskoj SSR, Alma-Ata

    1988-01-01

    Puberal Wistar line mall rats (180-210 g) were subjected to single whole-body gamma irradiation with 150 Gy dose and 75 Gy/min dose rate. Electron-microscopic investigation into dynamics of sensory-motor cortex ultrastructural changes during 24 hours after irradiation is conducted. Along with destructive changes compensator-reduction processes are developed in brain tissue at this period. Already during the first hours after irradiation the neutron ultrastructure change dynamics has been determined, alongside with direct radiation effect, by indirect effects juries of neuroglia and microcirculatory channel

  10. Effect of superlarge dose of gamma radiation on the rat cerebral cortex (ultrastructural aspects)

    Energy Technology Data Exchange (ETDEWEB)

    Abdrakhmanov, A A

    1988-06-01

    Puberal Wistar line mall rats (180-210 g) were subjected to single whole-body gamma irradiation with 150 Gy dose and 75 Gy/min dose rate. Electron-microscopic investigation into dynamics of sensory-motor cortex ultrastructural changes during 24 hours after irradiation is conducted. Along with destructive changes compensator-reduction processes are developed in brain tissue at this period. Already during the first hours after irradiation the neutron ultrastructure change dynamics has been determined, alongside with direct radiation effect, by indirect effects juries of neuroglia and microcirculatory channel.

  11. Direct electrical stimulation of human cortex evokes high gamma activity that predicts conscious somatosensory perception

    Science.gov (United States)

    Muller, Leah; Rolston, John D.; Fox, Neal P.; Knowlton, Robert; Rao, Vikram R.; Chang, Edward F.

    2018-04-01

    Objective. Direct electrical stimulation (DES) is a clinical gold standard for human brain mapping and readily evokes conscious percepts, yet the neurophysiological changes underlying these percepts are not well understood. Approach. To determine the neural correlates of DES, we stimulated the somatosensory cortex of ten human participants at frequency-amplitude combinations that both elicited and failed to elicit conscious percepts, meanwhile recording neural activity directly surrounding the stimulation site. We then compared the neural activity of perceived trials to that of non-perceived trials. Main results. We found that stimulation evokes distributed high gamma activity, which correlates with conscious perception better than stimulation parameters themselves. Significance. Our findings suggest that high gamma activity is a reliable biomarker for perception evoked by both natural and electrical stimuli.

  12. Theta synchronization between medial prefrontal cortex and cerebellum is associated with adaptive performance of associative learning behavior

    Science.gov (United States)

    Chen, Hao; Wang, Yi-jie; Yang, Li; Sui, Jian-feng; Hu, Zhi-an; Hu, Bo

    2016-01-01

    Associative learning is thought to require coordinated activities among distributed brain regions. For example, to direct behavior appropriately, the medial prefrontal cortex (mPFC) must encode and maintain sensory information and then interact with the cerebellum during trace eyeblink conditioning (TEBC), a commonly-used associative learning model. However, the mechanisms by which these two distant areas interact remain elusive. By simultaneously recording local field potential (LFP) signals from the mPFC and the cerebellum in guinea pigs undergoing TEBC, we found that theta-frequency (5.0–12.0 Hz) oscillations in the mPFC and the cerebellum became strongly synchronized following presentation of auditory conditioned stimulus. Intriguingly, the conditioned eyeblink response (CR) with adaptive timing occurred preferentially in the trials where mPFC-cerebellum theta coherence was stronger. Moreover, both the mPFC-cerebellum theta coherence and the adaptive CR performance were impaired after the disruption of endogenous orexins in the cerebellum. Finally, association of the mPFC -cerebellum theta coherence with adaptive CR performance was time-limited occurring in the early stage of associative learning. These findings suggest that the mPFC and the cerebellum may act together to contribute to the adaptive performance of associative learning behavior by means of theta synchronization. PMID:26879632

  13. Gamma-radiation produces abnormal Bergmann fibers and ectopic granule cells in mouse cerebellar cortex

    International Nuclear Information System (INIS)

    Inouye, Minoru; Hayasaka, Shizu; Funahashi, Atsushi; Yamamura, Hideki

    1992-01-01

    Morphological changes in Bergmann glial fibers in the developing cerebellar cortex produced by exposure to gamma-rays were investigated in association with ectopic granule cells. Six-day-old mice that had been exposed to 3 Gy of gamma-radiation were killed 6 hours after exposure or at 7 through 30 days of age. Their cerebella were examined histologically and immunohistochemically for glial fibrillary acidic protein in Bergmann fibers. Extensive cell death took place in the external granular layer (EGL) of the cerebellum from 6 through 24 hours after exposure. This led to the thinning of the EGL and a decrease in the number of migrating cells in the molecular layer. The number of Bergmann cells was not decreased, but the fibers in the molecular layer were distorted; whereas, in the control these fibers were straight and perpendicular to the pial surface. The EGL began to recover 2 days after exposure, and abnormally oriented migrating cells were seen. At 17 days of age, some cell clustering was observed in the molecular layer of the irradiated cerebellum. Distortion of the Bergmann fibers was marked in regions where ectopic granule cells appeared at 30 days of age. These findings suggest that the distortion of Bergmann fibers leads to the production of ectopic granule cells after exposure to gamma-radiation. (author)

  14. Dopamine Modulates Delta-Gamma Phase-Amplitude Coupling in the Prefrontal Cortex of Behaving Rats

    Science.gov (United States)

    Andino-Pavlovsky, Victoria; Souza, Annie C.; Scheffer-Teixeira, Robson; Tort, Adriano B. L.; Etchenique, Roberto; Ribeiro, Sidarta

    2017-01-01

    Dopamine release and phase-amplitude cross-frequency coupling (CFC) have independently been implicated in prefrontal cortex (PFC) functioning. To causally investigate whether dopamine release affects phase-amplitude comodulation between different frequencies in local field potentials (LFP) recorded from the medial PFC (mPFC) of behaving rats, we used RuBiDopa, a light-sensitive caged compound that releases the neurotransmitter dopamine when irradiated with visible light. LFP power did not change in any frequency band after the application of light-uncaged dopamine, but significantly strengthened phase-amplitude comodulation between delta and gamma oscillations. Saline did not exert significant changes, while injections of dopamine and RuBiDopa produced a slow increase in comodulation for several minutes after the injection. The results show that dopamine release in the medial PFC shifts phase-amplitude comodulation from theta-gamma to delta-gamma. Although being preliminary results due to the limitation of the low number of animals present in this study, our findings suggest that dopamine-mediated modification of the frequencies involved in comodulation could be a mechanism by which this neurotransmitter regulates functioning in mPFC. PMID:28536507

  15. Androgenic function of the adrenal cortex in external gamma-irradiation

    International Nuclear Information System (INIS)

    Kirkov, N.; Jordanov, J.

    1987-01-01

    Urinary 17-ketosteroid (17-KS) excretion served to evaluate the androgenic function of the adrenal cortex and the gonads of male albino Wistar rats, following single external gamma-irradiation ( 137 Cs) with dose 4 Gy. A three-phase undulant dynamics in 17-KS excretion was established after irradiation at a high level of significance (p<0,001): a fall down to 19% during the first two days; a rise on day 15 up to 185% and a second fall down to 70% on day 25. On day 30 urinary 17-KS excretion returned to normal. The reduced 17-KS excretion during the first two days may be due to blocking of androgenic hormone secretion and excretion, to inhibited excretory renal function and to changes in the liver metabolic function

  16. Decrease in early right alpha band phase synchronization and late gamma band oscillations in processing syntax in music.

    Science.gov (United States)

    Ruiz, María Herrojo; Koelsch, Stefan; Bhattacharya, Joydeep

    2009-04-01

    The present study investigated the neural correlates associated with the processing of music-syntactical irregularities as compared with regular syntactic structures in music. Previous studies reported an early ( approximately 200 ms) right anterior negative component (ERAN) by traditional event-related-potential analysis during music-syntactical irregularities, yet little is known about the underlying oscillatory and synchronization properties of brain responses which are supposed to play a crucial role in general cognition including music perception. First we showed that the ERAN was primarily represented by low frequency (music-syntactical irregularities as compared with music-syntactical regularities, were associated with (i) an early decrease in the alpha band (9-10 Hz) phase synchronization between right fronto-central and left temporal brain regions, and (ii) a late ( approximately 500 ms) decrease in gamma band (38-50 Hz) oscillations over fronto-central brain regions. These results indicate a weaker degree of long-range integration when the musical expectancy is violated. In summary, our results reveal neural mechanisms of music-syntactic processing that operate at different levels of cortical integration, ranging from early decrease in long-range alpha phase synchronization to late local gamma oscillations. 2008 Wiley-Liss, Inc.

  17. Vertical organization of gamma-aminobutyric acid-accumulating intrinsic neuronal systems in monkey cerebral cortex

    International Nuclear Information System (INIS)

    DeFelipe, J.; Jones, E.G.

    1985-01-01

    Light and electron microscopic methods were used to examine the neurons in the monkey cerebral cortex labeled autoradiographically following the uptake and transport of [ 3 H]-gamma-aminobutyric acid (GABA). Nonpyramidal cell somata in the sensory-motor areas and primary visual area (area 17) were labeled close to the injection site and at distances of 1 to 1.5 mm beyond the injection site, indicating labeling by retrograde axoplasmic transport. This labeling occurred preferentially in the vertical dimension of the cortex. Prior injections of colchicine, an inhibitor of axoplasmic transport, abolished all labeling of somata except those within the injection site. In each area, injections of superficial layers (I to III) produced labeling of clusters of cell somata in layer V, and injections of the deep layers (V and VI) produced labeling of clusters of cell somata in layers II and III. In area 17, injections of the superficial layers produced dense retrograde cell labeling in three bands: in layers IVC, VA, and VI. Vertically oriented chains of silver grains linked the injection sites with the resulting labeled cell clusters. In all areas, the labeling of cells in the horizontal dimension was insignificant. Electron microscopic examination of labeled neurons confirms that the neurons labeled at a distance from an injection site are nonpyramidal neurons, many with somata so small that they would be mistaken for neuroglial cells light microscopically. They receive few axosomatic synapses, most of which have symmetric membrane thickenings. The vertical chains of silver grains overlie neuronal processes identifiable as both dendrites and myelinated axons, but unmyelinated axons may also be included. The clusters of [ 3 H]GABA-labeled cells are joined to one another and to adjacent unlabeled cells by junctional complexes, including puncta adherentia and multi-lamellar cisternal complexes

  18. Chronic ketamine reduces the peak frequency of gamma oscillations in mouse prefrontal cortex ex vivo

    Directory of Open Access Journals (Sweden)

    James M. McNally

    2013-09-01

    Full Text Available Abnormalities in EEG gamma band oscillations (GBO, 30-80 Hz serve as a prominent biomarker of schizophrenia (Sz, associated with positive, negative and cognitive symptoms. Chronic, subanesthetic administration of antagonists of N-methyl-D-aspartate receptors (NMDAR, such as ketamine, elicits behavioral effects and alterations in cortical interneurons similar to those observed in Sz. However, the chronic effects of ketamine on neocortical GBO are poorly understood. Thus, here we examine the effects of chronic (5 daily i.p. injections application of ketamine (5 and 30 mg/kg and the more specific NMDAR antagonist, MK-801 (0.02, 0.5, and 2 mg/kg, on neocortical GBO ex vivo. Oscillations were generated by focal application of the glutamate receptor agonist, kainate, in coronal brain slices containing the prelimbic cortex. This region constitutes the rodent analogue of the human dorsolateral prefrontal cortex, a brain region strongly implicated in Sz-pathophysiology. Here we report the novel finding that chronic ketamine elicits a reduction in the peak oscillatory frequency of kainate-elicited oscillations (from 47 to 40 Hz at 30 mg/kg. Moreover, the power of GBO in the 40-50 Hz band was reduced. These findings are reminiscent of both the reduced resonance frequency and power of cortical oscillations observed in Sz clinical studies. Surprisingly, MK-801 had no significant effect, suggesting care is needed when equating Sz-like behavioral effects elicited by different NMDAR antagonists to alterations in GBO activity. We conclude that chronic ketamine in the mouse mimics GBO abnormalities observed in Sz patients. Use of this ex vivo slice model may be useful in testing therapeutic compounds which rescue these GBO abnormalities.

  19. Gamma knife radiosurgery for arteriovenous malformations located in the sensorimotor cortex

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Kazuhiro; Iwai, Yoshiyasu; Komiyama, Masaki; Nakajima, Hideki; Yasui, Toshihiro; Nishikawa, Misao; Sakamoto, Hiroaki; Morikawa, Toshie [Osaka City General Hospital (Japan)

    2002-05-01

    The goal of this study was to define treatment results of gamma knife radiosurgery (GKS) for arteriovenous malformation (AVM) located in the sensorimotor cortex. We analyzed 27 patients followed up for at least 12 months. The onset of AVM was convulsion 10, clinical hemorrhage 7, neurological deficits 4, and headache 3. The mean diameter of the AVM nidus was 22.2 mm (range 8.5-33.6 mm) and mean volume was 7.4 ml (range 0.32-19.9 ml). According to the Spetzler-Martin scale, the AVMs were Grade II in 13, Grade III in 10, and Grade IV in 4 of the patients. GKS was performed with a mean dose of 19.0 Gy (range 14-25 Gy) to the margin of the nidus. The mean follow-up period was 29 months (range 12-72 months). Six AVMs showed complete obliteration angiographically and 5 AVMs showed obliteration on magnetic resonance image. Sixteen AVMs showed nidus shrinkage. Eight (53%) of 15 patients followed up for more than 24 months showed obliteration. Complications consisted of 32 (11.5%) of 27 patients with evidence of radiation injury to the brain parenchyma. Symptoms of slight hemiparesis resolved completely in all patients within several months. (author)

  20. Gamma-aminobutyric acid (GABA)-B receptor 1 in cerebellar cortex of essential tremor.

    Science.gov (United States)

    Luo, C; Rajput, A H; Robinson, C A; Rajput, A

    2012-06-01

    Some reports suggest cerebellar dysfunction as the basis of essential tremor (ET). Several drugs with the action of gamma-aminobutyric acid (GABA) are known to improve ET. Autopsy studies were performed on brains from nine former patients followed at the Movement Disorders Clinic Saskatchewan, Canada, and compared with five normal control brains. We aimed to measure the concentration of GABA B receptor 1 (GBR1) in the brains of patients who had had ET and to compare them to the GABA concentration in brains of controls. Western blot was used to determine the expression of GBR1 in cerebellar cortex tissue. We found that compared to the controls, the ET brains had three different patterns of GBR1 protein concentration--two with high, four comparable, and three with marginally low levels. There was no association between the age of onset, severity or duration of tremor, the response to alcohol or other drugs and GBR1 level. Thus, we conclude that our study does not support that GBR1 is involved in ET. Further studies are needed to verify these results. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Histochemical changes of capillaries in rat brain cortex after irradiation with supralethal doses of gamma radiation

    International Nuclear Information System (INIS)

    Kamarad, V.; Dosoudilova, M.

    1987-01-01

    Changes were studied in the activities of alkaline phosphatase, ATP-splitting enzyme, thiaminepyrophosphatase, acetylcholinesterase, and of butyrylcholinesterase in the capillary sheet of the rat brain cortex of the laterobasal section of a parietal lobe following irradiation with 150 and 300 Gy. The animals were exposed to local irradiation of the head with gamma radiation using 60 Co at a dose rate of 6.9 Gy per min. The material was removed at the intervals of 30 and 60 mins after irradiation. All the studied enzymes, except the ATP-splitting enzyme, showed identical reaction to irradiation. At both intervals, the reaction after irradiation with 300 Gy was lower when compared to that after irradiation with 150 Gy. 30 mins after irradiation with 150 Gy an increased enzyme activity was shown followed by a marked decrease in the activity 60 mins after irradiation, compared with findings obtained from control animals. No similar time dependence was observed after irradiation with 300 Gy. The ATP-splitting enzyme showed a significant decrease in the activity 30 mins after irradiation with 150 Gy. On the other hand, 60 mins after irradiation with 150 Gy and at both time intervals after irradiation with 300 Gy, the activity was higher than that in control animals. (author). 6 figs., 14 refs

  2. Automated and angular time-synchronized directional gamma-ray scintillation sensor

    International Nuclear Information System (INIS)

    Kronenberg, S.; Brucker, G.J.

    1998-01-01

    The authors' previous research resulted in directional sensors for gamma rays and X rays that have a 4π solid angle of acceptance and, at the same time, a high angular resolution that is limited only by their ability to measure small angles. Angular resolution of ∼1 s of arc was achieved. These sensors are capable of operating and accurately detecting high and very low intensity radiation patterns. Such a system can also be used to image broad area sources and their scattering patterns. The principle of operation and design of directional sensors used in this study was described elsewhere; however, for convenience, a part of that text is repeated here. It was shown analytically that the angular distribution of radiation incident on the sensor is proportional to the first derivative of the scan data, that is, of the events' count rate versus orientation of the detector. The previously published results were obtained with a annual operating system. The detector assembly was set at a specific angle, and a pulse rate count was made. This was repeated at numerous other angles of orientation, a time-consuming and labor-intensive process. Recently, the authors automated this system, which is based on the detection of scintillations. The detector, which consists of a stack of plates of Lucite, plastic scintillator, and lead foils, rotates by means of a motor in front of a stationary photomultiplier tube (PMT). One revolution per second was chosen for the motor. At time zero, a trigger indicates that a revolution has started. The angle of orientation of the detector in the laboratory system is proportional to the time during one revolution. The process repeats itself a desired number of times. The trigger signal initiates a scan of a multichannel scalar (MCS). The detector assembly is allowed to rotate in the radiation field, and the MCS scans are repeated in an accumulated mode of operation until enough events are collected for the location of the radiation source to be

  3. Increased BOLD Signals Elicited by High Gamma Auditory Stimulation of the Left Auditory Cortex in Acute State Schizophrenia

    Directory of Open Access Journals (Sweden)

    Hironori Kuga, M.D.

    2016-10-01

    We acquired BOLD responses elicited by click trains of 20, 30, 40 and 80-Hz frequencies from 15 patients with acute episode schizophrenia (AESZ, 14 symptom-severity-matched patients with non-acute episode schizophrenia (NASZ, and 24 healthy controls (HC, assessed via a standard general linear-model-based analysis. The AESZ group showed significantly increased ASSR-BOLD signals to 80-Hz stimuli in the left auditory cortex compared with the HC and NASZ groups. In addition, enhanced 80-Hz ASSR-BOLD signals were associated with more severe auditory hallucination experiences in AESZ participants. The present results indicate that neural over activation occurs during 80-Hz auditory stimulation of the left auditory cortex in individuals with acute state schizophrenia. Given the possible association between abnormal gamma activity and increased glutamate levels, our data may reflect glutamate toxicity in the auditory cortex in the acute state of schizophrenia, which might lead to progressive changes in the left transverse temporal gyrus.

  4. Global field synchronization in gamma range of the sleep EEG tracks sleep depth: Artifact introduced by a rectangular analysis window.

    Science.gov (United States)

    Rusterholz, Thomas; Achermann, Peter; Dürr, Roland; Koenig, Thomas; Tarokh, Leila

    2017-06-01

    Investigating functional connectivity between brain networks has become an area of interest in neuroscience. Several methods for investigating connectivity have recently been developed, however, these techniques need to be applied with care. We demonstrate that global field synchronization (GFS), a global measure of phase alignment in the EEG as a function of frequency, must be applied considering signal processing principles in order to yield valid results. Multichannel EEG (27 derivations) was analyzed for GFS based on the complex spectrum derived by the fast Fourier transform (FFT). We examined the effect of window functions on GFS, in particular of non-rectangular windows. Applying a rectangular window when calculating the FFT revealed high GFS values for high frequencies (>15Hz) that were highly correlated (r=0.9) with spectral power in the lower frequency range (0.75-4.5Hz) and tracked the depth of sleep. This turned out to be spurious synchronization. With a non-rectangular window (Tukey or Hanning window) these high frequency synchronization vanished. Both, GFS and power density spectra significantly differed for rectangular and non-rectangular windows. Previous papers using GFS typically did not specify the applied window and may have used a rectangular window function. However, the demonstrated impact of the window function raises the question of the validity of some previous findings at higher frequencies. We demonstrated that it is crucial to apply an appropriate window function for determining synchronization measures based on a spectral approach to avoid spurious synchronization in the beta/gamma range. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons.

    Directory of Open Access Journals (Sweden)

    Richard Andersson

    Full Text Available BACKGROUND: Gamma oscillations are electric activity patterns of the mammalian brain hypothesized to serve attention, sensory perception, working memory and memory encoding. They are disrupted or altered in schizophrenic patients with associated cognitive deficits, which persist in spite of treatment with antipsychotics. Because cognitive symptoms are a core feature of schizophrenia it is relevant to explore signaling pathways that potentially regulate gamma oscillations. Dopamine has been reported to decrease gamma oscillation power via D1-like receptors. Based on the expression pattern of D4 receptors (D4R in hippocampus, and pharmacological effects of D4R ligands in animals, we hypothesize that they are in a position to regulate gamma oscillations as well. METHODOLOGY/PRINCIPAL FINDINGS: To address this hypothesis we use rat hippocampal slices and kainate-induced gamma oscillations. Local field potential recordings as well as intracellular recordings of pyramidal cells, fast-spiking and non-fast-spiking interneurons were carried out. We show that D4R activation with the selective ligand PD168077 increases gamma oscillation power, which can be blocked by the D4R-specific antagonist L745,870 as well as by the antipsychotic drug Clozapine. Pyramidal cells did not exhibit changes in excitatory or inhibitory synaptic current amplitudes, but inhibitory currents became more coherent with the oscillations after application of PD168077. Fast-spiking, but not non-fast spiking, interneurons, increase their action potential phase-coupling and coherence with regard to ongoing gamma oscillations in response to D4R activation. Among several possible mechanisms we found that the NMDA receptor antagonist AP5 also blocks the D4R mediated increase in gamma oscillation power. CONCLUSIONS/SIGNIFICANCE: We conclude that D4R activation affects fast-spiking interneuron synchronization and thereby increases gamma power by an NMDA receptor-dependent mechanism. This

  6. Recognition of abstract objects via neural oscillators: interaction among topological organization, associative memory and gamma band synchronization.

    Science.gov (United States)

    Ursino, Mauro; Magosso, Elisa; Cuppini, Cristiano

    2009-02-01

    Synchronization of neural activity in the gamma band is assumed to play a significant role not only in perceptual processing, but also in higher cognitive functions. Here, we propose a neural network of Wilson-Cowan oscillators to simulate recognition of abstract objects, each represented as a collection of four features. Features are ordered in topological maps of oscillators connected via excitatory lateral synapses, to implement a similarity principle. Experience on previous objects is stored in long-range synapses connecting the different topological maps, and trained via timing dependent Hebbian learning (previous knowledge principle). Finally, a downstream decision network detects the presence of a reliable object representation, when all features are oscillating in synchrony. Simulations performed giving various simultaneous objects to the network (from 1 to 4), with some missing and/or modified properties suggest that the network can reconstruct objects, and segment them from the other simultaneously present objects, even in case of deteriorated information, noise, and moderate correlation among the inputs (one common feature). The balance between sensitivity and specificity depends on the strength of the Hebbian learning. Achieving a correct reconstruction in all cases, however, requires ad hoc selection of the oscillation frequency. The model represents an attempt to investigate the interactions among topological maps, autoassociative memory, and gamma-band synchronization, for recognition of abstract objects.

  7. Neurological Change after Gamma Knife Radiosurgery for Brain Metastases Involving the Motor Cortex

    Science.gov (United States)

    Park, Chang-Yong; Choi, Hyun-Yong; Lee, Sang-Ryul; Roh, Tae Hoon; Seo, Mi-Ra

    2016-01-01

    Background Although Gamma Knife radiosurgery (GKRS) can provide beneficial therapeutic effects for patients with brain metastases, lesions involving the eloquent areas carry a higher risk of neurologic deterioration after treatment, compared to those located in the non-eloquent areas. We aimed to investigate neurological change of the patients with brain metastases involving the motor cortex (MC) and the relevant factors related to neurological deterioration after GKRS. Methods We retrospectively reviewed clinical, radiological and dosimetry data of 51 patients who underwent GKRS for 60 brain metastases involving the MC. Prior to GKRS, motor deficits existed in 26 patients (50.9%). The mean target volume was 3.2 cc (range 0.001–14.1) at the time of GKRS, and the mean prescription dose was 18.6 Gy (range 12–24 Gy). Results The actuarial median survival time from GKRS was 19.2±5.0 months. The calculated local tumor control rates at 6 and 12 months after GKRS were 89.7% and 77.4%, respectively. During the median clinical follow-up duration of 12.3±2.6 months (range 1–54 months), 18 patients (35.3%) experienced new or worsened neurologic deficits with a median onset time of 2.5±0.5 months (range 0.3–9.7 months) after GKRS. Among various factors, prescription dose (>20 Gy) was a significant factor for the new or worsened neurologic deficits in univariate (p=0.027) and multivariate (p=0.034) analysis. The managements of 18 patients were steroid medication (n=10), boost radiation therapy (n=5), and surgery (n=3), and neurological improvement was achieved in 9 (50.0%). Conclusion In our series, prescription dose (>20 Gy) was significantly related to neurological deterioration after GKRS for brain metastases involving the MC. Therefore, we suggest that careful dose adjustment would be required for lesions involving the MC to avoid neurological deterioration requiring additional treatment in the patients with limited life expectancy. PMID:27867921

  8. Histamine Enhances Theta-Coupled Spiking and Gamma Oscillations in the Medial Entorhinal Cortex Consistent With Successful Spatial Recognition.

    Science.gov (United States)

    Chen, Quanhui; Luo, Fenlan; Yue, Faguo; Xia, Jianxia; Xiao, Qin; Liao, Xiang; Jiang, Jun; Zhang, Jun; Hu, Bo; Gao, Dong; He, Chao; Hu, Zhian

    2017-06-07

    Encoding of spatial information in the superficial layers of the medial entorhinal cortex (sMEC) involves theta-modulated spiking and gamma oscillations, as well as spatially tuned grid cells and border cells. Little is known about the role of the arousal-promoting histaminergic system in the modification of information encoded in the sMEC in vivo, and how such histamine-regulated information correlates with behavioral functions. Here, we show that histamine upregulates the neural excitability of a significant proportion of neurons (16.32%, 39.18%, and 52.94% at 30 μM, 300 μM, and 3 mM, respectively) and increases local theta (4-12 Hz) and gamma power (low: 25-48 Hz; high: 60-120 Hz) in the sMEC, through activation of histamine receptor types 1 and 3. During spatial exploration, the strength of theta-modulated firing of putative principal neurons and high gamma oscillations is enhanced about 2-fold by histamine. The histamine-mediated increase of theta phase-locking of spikes and high gamma power is consistent with successful spatial recognition. These results, for the first time, reveal possible mechanisms involving the arousal-promoting histaminergic system in the modulation of spatial cognition. Published by Oxford University Press 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. Spontaneous high-gamma band activity reflects functional organization of auditory cortex in the awake macaque.

    Science.gov (United States)

    Fukushima, Makoto; Saunders, Richard C; Leopold, David A; Mishkin, Mortimer; Averbeck, Bruno B

    2012-06-07

    In the absence of sensory stimuli, spontaneous activity in the brain has been shown to exhibit organization at multiple spatiotemporal scales. In the macaque auditory cortex, responses to acoustic stimuli are tonotopically organized within multiple, adjacent frequency maps aligned in a caudorostral direction on the supratemporal plane (STP) of the lateral sulcus. Here, we used chronic microelectrocorticography to investigate the correspondence between sensory maps and spontaneous neural fluctuations in the auditory cortex. We first mapped tonotopic organization across 96 electrodes spanning approximately two centimeters along the primary and higher auditory cortex. In separate sessions, we then observed that spontaneous activity at the same sites exhibited spatial covariation that reflected the tonotopic map of the STP. This observation demonstrates a close relationship between functional organization and spontaneous neural activity in the sensory cortex of the awake monkey. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Overexpression of Dyrk1A, a Down Syndrome Candidate, Decreases Excitability and Impairs Gamma Oscillations in the Prefrontal Cortex.

    Science.gov (United States)

    Ruiz-Mejias, Marcel; Martinez de Lagran, Maria; Mattia, Maurizio; Castano-Prat, Patricia; Perez-Mendez, Lorena; Ciria-Suarez, Laura; Gener, Thomas; Sancristobal, Belen; García-Ojalvo, Jordi; Gruart, Agnès; Delgado-García, José M; Sanchez-Vives, Maria V; Dierssen, Mara

    2016-03-30

    The dual-specificity tyrosine phosphorylation-regulated kinase DYRK1A is a serine/threonine kinase involved in neuronal differentiation and synaptic plasticity and a major candidate of Down syndrome brain alterations and cognitive deficits. DYRK1A is strongly expressed in the cerebral cortex, and its overexpression leads to defective cortical pyramidal cell morphology, synaptic plasticity deficits, and altered excitation/inhibition balance. These previous observations, however, do not allow predicting how the behavior of the prefrontal cortex (PFC) network and the resulting properties of its emergent activity are affected. Here, we integrate functional, anatomical, and computational data describing the prefrontal network alterations in transgenic mice overexpressingDyrk1A(TgDyrk1A). Usingin vivoextracellular recordings, we show decreased firing rate and gamma frequency power in the prefrontal network of anesthetized and awakeTgDyrk1Amice. Immunohistochemical analysis identified a selective reduction of vesicular GABA transporter punctae on parvalbumin positive neurons, without changes in the number of cortical GABAergic neurons in the PFC ofTgDyrk1Amice, which suggests that selective disinhibition of parvalbumin interneurons would result in an overinhibited functional network. Using a conductance-based computational model, we quantitatively demonstrate that this alteration could explain the observed functional deficits including decreased gamma power and firing rate. Our results suggest that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of Down syndrome. DYRK1Ais a major candidate gene in Down syndrome. Its overexpression results into altered cognitive abilities, explained by defective cortical microarchitecture and excitation/inhibition imbalance. An open question is how these deficits impact the functionality of the prefrontal cortex network. Combining functional, anatomical, and computational approaches, we identified

  11. Synchronous induction of detachment and reattachment of symbiotic Chlorella spp. from the cell cortex of the host Paramecium bursaria.

    Science.gov (United States)

    Kodama, Yuuki; Fujishima, Masahiro

    2013-09-01

    Paramecium bursaria harbor several hundred symbiotic Chlorella spp. Each alga is enclosed in a perialgal vacuole membrane, which can attach to the host cell cortex. How the perialgal vacuole attaches beneath the host cell cortex remains unknown. High-speed centrifugation (> 1000×g) for 1min induces rapid detachment of the algae from the host cell cortex and concentrates the algae to the posterior half of the host cell. Simultaneously, most of the host acidosomes and lysosomes accumulate in the anterior half of the host cell. Both the detached algae and the dislocated acidic vesicles recover their original positions by host cyclosis within 10min after centrifugation. These recoveries were inhibited if the host cytoplasmic streaming was arrested by nocodazole. Endosymbiotic algae during the early reinfection process also show the capability of desorption after centrifugation. These results demonstrate that adhesion of the perialgal vacuole beneath the host cell cortex is repeatedly inducible, and that host cytoplasmic streaming facilitates recovery of the algal attachment. This study is the first report to illuminate the mechanism of the induction to desorb for symbiotic algae and acidic vesicles, and will contribute to the understanding of the mechanism of algal and organelle arrangements in Paramecium. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Synchronous changes of cortical thickness and corresponding white matter microstructure during brain development accessed by diffusion MRI tractography from parcellated cortex

    Directory of Open Access Journals (Sweden)

    Tina eJeon

    2015-12-01

    Full Text Available Cortical thickness (CT changes during normal brain development is associated with complicated cellular and molecular processes including synaptic pruning and apoptosis. In parallel, the microstructural enhancement of developmental white matter (WM axons with their neuronal bodies in the cerebral cortex has been widely reported with measurements of metrics derived from diffusion tensor imaging (DTI, especially fractional anisotropy (FA. We hypothesized that the changes of CT and microstructural enhancement of corresponding axons are highly interacted during development. DTI and T1-weighted images of 50 healthy children and adolescents between the ages of 7 to 25 years were acquired. With the parcellated cortical gyri transformed from T1-weighted images to DTI space as the tractography seeds, probabilistic tracking was performed to delineate the WM fibers traced from specific parcellated cortical regions. CT was measured at certain cortical regions and FA was measured from the WM fibers traced from same cortical regions. The CT of all frontal cortical gyri, includeing Brodmann areas 4, 6, 8, 9, 10, 11, 44, 45, 46 and 47, decreased significantly and heterogeneously; concurrently, significant and heterogeneous increases of FA of WM traced from corresponding regions were found. We further revealed significant correlation between the slopes of the CT decrease and the slopes of corresponding WM FA increase in all frontal cortical gyri, suggesting coherent cortical pruning and corresponding WM microstructural enhancement. Such correlation was not found in cortical regions other than frontal cortex. The molecular and cellular mechanisms of these synchronous changes may be associated with overlapping signaling pathways of axonal guidance, synaptic pruning, neuronal apoptosis and more prevalent interstitial neurons in the prefrontal cortex. Revealing the coherence of cortical and WM structural changes during development may open a new window for

  13. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex.

    Science.gov (United States)

    van Kerkoerle, Timo; Self, Matthew W; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R

    2014-10-07

    Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition.

  14. Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex

    NARCIS (Netherlands)

    Marshall, T.R.; O'Shea, J.; Jensen, O.; Bergmann, T.O.

    2015-01-01

    Covertly directing visuospatial attention produces a frequency-specific modulation of neuronal oscillations in occipital and parietal cortices: anticipatory alpha (8-12 Hz) power decreases contralateral and increases ipsilateral to attention, whereas stimulus-induced gamma (>40 Hz) power is boosted

  15. Feature selectivity of the gamma-band of the local field potential in primate primary visual cortex

    Directory of Open Access Journals (Sweden)

    Philipp Berens

    2008-12-01

    Full Text Available Extra-cellular voltage fluctuations (local field potentials; LFPs reflecting neural mass action are ubiquitous across species and brain regions. Numerous studies have characterized the properties of LFP signals in the cortex to study sensory and motor computations as well as cognitive processes like attention, perception and memory. In addition, its extracranial counterpart – the electroencelphalogram (EEG – is widely used in clinical applications. However, the link between LFP signals and the underlying activity of local populations of neurons remains largely elusive. Here, we review recent work elucidating the relationship between spiking activity of local neural populations and LFP signals. We focus on oscillations in the gamma-band (30-90Hz of the local field potential in the primary visual cortex (V1 of the macaque that dominate during visual stimulation. Given that in area V1 much is known about the properties of single neurons and the cortical architecture, it provides an excellent opportunity to study the mechanisms underlying the generation of the local field potential.

  16. Developmental disturbance of rat cerebral cortex following prenatal low-dose gamma-irradiation: a quantitative study

    International Nuclear Information System (INIS)

    Fukui, Y.; Hoshino, K.; Hayasaka, I.; Inouye, M.; Kameyama, Y.

    1991-01-01

    Pregnant rats were exposed to a single whole-body gamma-irradiation on Day 15 of gestation at a dose of 0.27, 0.48, 1.00, or 1.46 Gy. They were allowed to give birth and the offspring were killed at 6 or 12 weeks of age for microscopic and electron microscopic examinations of the cerebrum. Their body weight, brain weight, cortical thickness, and numerical densities of whole cells and synapses in somatosensory cortex were examined. Growth of the dendritic arborization of layer V pyramidal cells was also examined quantitatively with Golgi-Cox specimens. A significant dose-related reduction in brain weight was found in all irradiated groups. Neither gross malformation nor abnormality of cortical architecture was observed in the groups exposed to 0.27 Gy. A significant change was found in thickness of cortex in the groups exposed to 0.48 Gy or more. Cell packing density increased significantly in the group exposed to 1.00 Gy. Significant reduction in the number of intersections of dendrites with the zonal boundaries were found in the groups exposed to 0.27 Gy or more. There was no difference in the numerical density of synapses in layer I between the control and irradiated groups. These results suggested that doses as low as 0.27 Gy could cause a morphologically discernible change in the mammalian cerebrum

  17. Attentional modulation of cell-class-specific gamma-band synchronization in awake monkey area v4.

    NARCIS (Netherlands)

    Vinck, M.; Womelsdorf, T.; Buffalo, E.A.; Desimone, R.; Fries, P.

    2013-01-01

    Selective visual attention is subserved by selective neuronal synchronization, entailing precise orchestration among excitatory and inhibitory cells. We tentatively identified these as broad (BS) and narrow spiking (NS) cells and analyzed their synchronization to the local field potential in two

  18. Reduced gamma frequency in the medial frontal cortex of aged rats during behavior and rest: implications for age-related behavioral slowing.

    Science.gov (United States)

    Insel, Nathan; Patron, Lilian A; Hoang, Lan T; Nematollahi, Saman; Schimanski, Lesley A; Lipa, Peter; Barnes, Carol A

    2012-11-14

    Age-related cognitive and behavioral slowing may be caused by changes in the speed of neural signaling or by changes in the number of signaling steps necessary to achieve a given function. In the mammalian cortex, neural communication is organized by a 30-100 Hz "gamma" oscillation. There is a putative link between the gamma frequency and the speed of processing in a neural network: the dynamics of pyramidal neuron membrane time constants suggest that synaptic integration is framed by the gamma cycle, and pharmacological slowing of gamma also slows reaction times on behavioral tasks. The present experiments identify reductions in a robust 40-70 Hz gamma oscillation in the aged rat medial frontal cortex. The reductions were observed in the form of local field potentials, later peaks in fast-spiking neuron autocorrelations, and delays in the spiking of inhibitory neurons following local excitatory signals. Gamma frequency did not vary with movement speed, but rats with slower gamma also moved more slowly. Gamma frequency age differences were not observed in hippocampus. Hippocampal CA1 fast-spiking neurons exhibited interspike intervals consistent with a fast (70-100 Hz) gamma frequency, a pattern maintained across theta phases and theta frequencies independent of fluctuations in the average firing rates of the neurons. We propose that an average lengthening of the cortical 15-25 ms gamma cycle is one factor contributing to age-related slowing and that future attempts to offset cognitive declines will find a target in the response of fast-spiking inhibitory neurons to excitatory inputs.

  19. Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance.

    Science.gov (United States)

    Bailey, Jennifer Anne; Zatorre, Robert J; Penhune, Virginia B

    2014-04-01

    Evidence in animals and humans indicates that there are sensitive periods during development, times when experience or stimulation has a greater influence on behavior and brain structure. Sensitive periods are the result of an interaction between maturational processes and experience-dependent plasticity mechanisms. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 show enhancements in behavior and white matter structure compared with those who begin later. Plastic changes in white matter and gray matter are hypothesized to co-occur; therefore, the current study investigated possible differences in gray matter structure between early-trained (ET; 7) musicians, matched for years of experience. Gray matter structure was assessed using voxel-wise analysis techniques (optimized voxel-based morphometry, traditional voxel-based morphometry, and deformation-based morphometry) and surface-based measures (cortical thickness, surface area and mean curvature). Deformation-based morphometry analyses identified group differences between ET and LT musicians in right ventral premotor cortex (vPMC), which correlated with performance on an auditory motor synchronization task and with age of onset of musical training. In addition, cortical surface area in vPMC was greater for ET musicians. These results are consistent with evidence that premotor cortex shows greatest maturational change between the ages of 6-9 years and that this region is important for integrating auditory and motor information. We propose that the auditory and motor interactions required by musical practice drive plasticity in vPMC and that this plasticity is greatest when maturation is near its peak.

  20. Synchronization of gamma oscillations increases functional connectivity of human hippocampus and inferior-middle temporal cortex during repetitive visuomotor events

    Czech Academy of Sciences Publication Activity Database

    Babiloni, C.; Bareš, M.; Vecchio, F.; Brázdil, M.; Jurák, Pavel; Moretti, D. V.; Ubaldi, A.; Rossini, P. M.; Rektor, I.

    2004-01-01

    Roč. 19, č. 1 (2004), s. 1 - 11 ISSN 0953-816X Institutional research plan: CEZ:AV0Z2065902 Keywords : brain rhythms * CNV paradigm * stereo EEG Subject RIV: FH - Neurology Impact factor: 3.820, year: 2004

  1. Gamma-Aminobutyric Acid Concentration is Reduced in Visual Cortex in Schizophrenia and Correlates with Orientation-Specific Surround Suppression

    Science.gov (United States)

    Yoon, Jong H.; Maddock, Richard J.; Rokem, Ariel; Silver, Michael A.; Minzenberg, Michael J.; Ragland, J. Daniel; Carter, Cameron S.

    2010-01-01

    The neural mechanisms underlying cognitive deficits in schizophrenia remain largely unknown. The gamma-aminobutyric acid (GABA) hypothesis proposes that reduced neuronal GABA concentration and neurotransmission results in cognitive impairments in schizophrenia. However, few in vivo studies have directly examined this hypothesis. We employed magnetic resonance spectroscopy (MRS) at high field to measure visual cortical GABA levels in 13 subjects with schizophrenia and 13 demographically matched healthy control subjects. We found that the schizophrenia group had an approximately 10% reduction in GABA concentration. We further tested the GABA hypothesis by examining the relationship between visual cortical GABA levels and orientation-specific surround suppression (OSSS), a behavioral measure of visual inhibition thought to be dependent on GABAergic synaptic transmission. Previous work has shown that subjects with schizophrenia exhibit reduced OSSS of contrast discrimination (Yoon et al., 2009). For subjects with both MRS and OSSS data (n=16), we found a highly significant positive correlation (r=0.76) between these variables. GABA concentration was not correlated with overall contrast discrimination performance for stimuli without a surround (r=-0.10). These results suggest that a neocortical GABA deficit in subjects with schizophrenia leads to impaired cortical inhibition and that GABAergic synaptic transmission in visual cortex plays a critical role in OSSS. PMID:20220012

  2. Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats

    Energy Technology Data Exchange (ETDEWEB)

    Esquifino, A.I. [Dept. de Bioquimica y Biologia Molecular III, Universidad Complutense, Madrid (Spain); Seara, R.; Fernandez-Rey, E.; Lafuente, A. [Lab. de Toxicologia, Universidad de Vigo, Orense (Spain)

    2001-05-01

    This work examines changes of gamma aminobutyric acid (GABA) and taurine contents in the hypothalamus, striatum and prefrontal cortex of the rat after an alternate schedule of cadmium administration. Age-associated changes were also evaluated, of those before puberty and after adult age. In control rats GABA content decreased with age in the median eminence and in anterior, mediobasal and posterior hypothalamus, prefrontal cortex and the striatum. Taurine content showed similar results with the exception of mediobasal hypothalamus and striatum, where no changes were detected. In pubertal rats treated with cadmium from 30 to 60 days of life, GABA content significantly decreased in all brain regions except in the striatum. When cadmium was administered from day 60 to 90 of life, GABA content was significantly changed in prefrontal cortex only compared with the age matched controls. Taurine content showed similar results in pubertal rats, with the exception of the median eminence and the mediobasal hypothalamus, neither of which showed a change. However, when cadmium was administered to rats from day 60 to 90 of life, taurine content only changed in prefrontal cortex compared with the age matched controls. These results suggest that cadmium differentially affects GABA and taurine contents within the hypothalamus, median eminence, striatum and prefrontal cortex as a function of age. (orig.)

  3. Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats

    International Nuclear Information System (INIS)

    Esquifino, A.I.; Seara, R.; Fernandez-Rey, E.; Lafuente, A.

    2001-01-01

    This work examines changes of gamma aminobutyric acid (GABA) and taurine contents in the hypothalamus, striatum and prefrontal cortex of the rat after an alternate schedule of cadmium administration. Age-associated changes were also evaluated, of those before puberty and after adult age. In control rats GABA content decreased with age in the median eminence and in anterior, mediobasal and posterior hypothalamus, prefrontal cortex and the striatum. Taurine content showed similar results with the exception of mediobasal hypothalamus and striatum, where no changes were detected. In pubertal rats treated with cadmium from 30 to 60 days of life, GABA content significantly decreased in all brain regions except in the striatum. When cadmium was administered from day 60 to 90 of life, GABA content was significantly changed in prefrontal cortex only compared with the age matched controls. Taurine content showed similar results in pubertal rats, with the exception of the median eminence and the mediobasal hypothalamus, neither of which showed a change. However, when cadmium was administered to rats from day 60 to 90 of life, taurine content only changed in prefrontal cortex compared with the age matched controls. These results suggest that cadmium differentially affects GABA and taurine contents within the hypothalamus, median eminence, striatum and prefrontal cortex as a function of age. (orig.)

  4. Higher gamma-aminobutyric acid neuron density in the white matter of orbital frontal cortex in schizophrenia.

    Science.gov (United States)

    Joshi, Dipesh; Fung, Samantha J; Rothwell, Alice; Weickert, Cynthia Shannon

    2012-11-01

    In the orbitofrontal cortex (OFC), reduced gray matter volume and reduced glutamic acid decarboxylase 67kDa isoform (GAD67) messenger (m)RNA are found in schizophrenia; however, how these alterations relate to developmental pathology of interneurons is unclear. The present study therefore aimed to determine if increased interstitial white matter neuron (IWMN) density exists in the OFC; whether gamma-aminobutyric acid (GABA)ergic neuron density in OFC white matter was altered; and how IWMN density may be related to an early-expressed inhibitory neuron marker, Dlx1, in OFC gray matter in schizophrenia. IWMN densities were determined (38 schizophrenia and 38 control subjects) for neuronal nuclear antigen (NeuN+) and 65/67 kDa isoform of glutamic acid decarboxylase immunopositive (GAD65/67+) neurons. In situ hybridization was performed to determine Dlx1 and GAD67 mRNA expression in the OFC gray matter. NeuN and GAD65/67 immunopositive cell density was significantly increased in the superficial white matter in schizophrenia. Gray matter Dlx1 and GAD67 mRNA expression were reduced in schizophrenia. Dlx1 mRNA levels were negatively correlated with GAD65/67 IWMN density. Our study provides evidence that pathology of IWMNs in schizophrenia includes GABAergic interneurons and that increased IWMN density may be related to GABAergic deficits in the overlying gray matter. These findings provide evidence at the cellular level that the OFC is a site of pathology in schizophrenia and support the hypothesis that inappropriate migration of cortical inhibitory interneurons occurs in schizophrenia. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Neuromagnetic beta and gamma oscillations in the somatosensory cortex after music training in healthy older adults and a chronic stroke patient.

    Science.gov (United States)

    Jamali, Shahab; Fujioka, Takako; Ross, Bernhard

    2014-06-01

    Extensive rehabilitation training can lead to functional improvement even years after a stroke. Although neuronal plasticity is considered as a main origin of such ameliorations, specific subtending mechanisms need further investigation. Our aim was to obtain objective neuromagnetic measures sensitive to brain reorganizations induced by a music-supported training. We applied 20-Hz vibrotactile stimuli to the index finger and the ring finger, recorded somatosensory steady-state responses with magnetoencephalography, and analyzed the cortical sources displaying oscillations synchronized with the external stimuli in two groups of healthy older adults before and after musical training or without training. In addition, we applied the same analysis for an anecdotic report of a single chronic stroke patient with hemiparetic arm and hand problems, who received music-supported therapy (MST). Healthy older adults showed significant finger separation within the primary somatotopic map. Beta dipole sources were more anterior located compared to gamma sources. An anterior shift of sources and increases in synchrony between the stimuli and beta and gamma oscillations were observed selectively after music training. In the stroke patient a normalization of somatotopic organization was observed after MST, with digit separation recovered after training and stimulus induced gamma synchrony increased. The proposed stimulation paradigm captures the integrity of primary somatosensory hand representation. Source position and synchronization between the stimuli and gamma activity are indices, sensitive to music-supported training. Responsiveness was also observed in a chronic stroke patient, encouraging for the music-supported therapy. Notably, changes in somatosensory responses were observed, even though the therapy did not involve specific sensory discrimination training. The proposed protocol can be used for monitoring changes in neuronal organization during training and will improve

  6. Overall biological activity of sensorimotor and visual brain cortex of rabbits with early neurological disorders induced by high doses of γ-radiation

    International Nuclear Information System (INIS)

    Silin, D.Ya.

    1988-01-01

    The overall bioelectrical activity of the sensorimotor and visual brain cortex of rabbits was estimated during early neurological impairment caused by 120 Gy gamma irradiation. The characteristic changes were revealed in the amplitude, form, energy spectrum and spatial biopotential synchronization. The changes in the bioelectrical activity of the brain were associated with the clinically displayed stages of the neurological process development

  7. Synchronicity from Synchronized Chaos

    Directory of Open Access Journals (Sweden)

    Gregory S. Duane

    2015-03-01

    Full Text Available The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related eventsmysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1 synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2 the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable interpretations if the quantum world resides on a generalized synchronization “manifold”.

  8. Ways of making-sense: Local gamma synchronization reveals differences between semantic processing induced by music and language.

    Science.gov (United States)

    Barraza, Paulo; Chavez, Mario; Rodríguez, Eugenio

    2016-01-01

    Similar to linguistic stimuli, music can also prime the meaning of a subsequent word. However, it is so far unknown what is the brain dynamics underlying the semantic priming effect induced by music, and its relation to language. To elucidate these issues, we compare the brain oscillatory response to visual words that have been semantically primed either by a musical excerpt or by an auditory sentence. We found that semantic violation between music-word pairs triggers a classical ERP N400, and induces a sustained increase of long-distance theta phase synchrony, along with a transient increase of local gamma activity. Similar results were observed after linguistic semantic violation except for gamma activity, which increased after semantic congruence between sentence-word pairs. Our findings indicate that local gamma activity is a neural marker that signals different ways of semantic processing between music and language, revealing the dynamic and self-organized nature of the semantic processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Areas V1 and V2 show microsaccade-related 3-4-Hz covariation in gamma power and frequency.

    Science.gov (United States)

    Lowet, E; Roberts, M J; Bosman, C A; Fries, P; De Weerd, P

    2016-05-01

    Neuronal gamma-band synchronization (25-80 Hz) in visual cortex appears sustained and stable during prolonged visual stimulation when investigated with conventional averages across trials. However, recent studies in macaque visual cortex have used single-trial analyses to show that both power and frequency of gamma oscillations exhibit substantial moment-by-moment variation. This has raised the question of whether these apparently random variations might limit the functional role of gamma-band synchronization for neural processing. Here, we studied the moment-by-moment variation in gamma oscillation power and frequency, as well as inter-areal gamma synchronization, by simultaneously recording local field potentials in V1 and V2 of two macaque monkeys. We additionally analyzed electrocorticographic V1 data from a third monkey. Our analyses confirm that gamma-band synchronization is not stationary and sustained but undergoes moment-by-moment variations in power and frequency. However, those variations are neither random and nor a possible obstacle to neural communication. Instead, the gamma power and frequency variations are highly structured, shared between areas and shaped by a microsaccade-related 3-4-Hz theta rhythm. Our findings provide experimental support for the suggestion that cross-frequency coupling might structure and facilitate the information flow between brain regions. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Task-related activity in sensorimotor cortex in Parkinson’s disease and essential tremor: changes in beta and gamma bands

    Directory of Open Access Journals (Sweden)

    Nathan C Rowland

    2015-09-01

    Full Text Available In Parkinson’s disease patients in the OFF medication state, basal ganglia local field potentials exhibit changes in beta and gamma oscillations that correlate with reduced voluntary movement, manifested as rigidity and akinesia. However, magnetoencephalography and low-resolution electrocorticography (ECoG studies in Parkinson’s patients suggest that changes in sensorimotor cortical oscillations differ from those of the basal ganglia. To more clearly define the role of sensorimotor cortex oscillatory activity in Parkinson’s, we performed intraoperative, high-resolution (4 mm spacing ECoG recordings in 10 Parkinson’s patients (2 females, ages 47-72 undergoing deep brain stimulation (DBS lead placement in the awake, OFF medication state. We analyzed ECoG potentials during a computer-controlled reaching task designed to separate movement preparation from movement execution and compared findings to similar invasive recordings in eight patients with essential tremor (3 females, ages 59-78, a condition not associated with rigidity or akinesia. We show that 1 cortical beta spectral power at rest does not differ between Parkinson’s and essential tremor patients (p = 0.85, 2 early motor preparation in Parkinson’s patients in the OFF medication state is associated with a larger beta desynchronization compared to patients with essential tremor (p = 0.0061, and 3 cortical broadband gamma power is elevated in Parkinson’s patients compared to essential tremor patients during both rest and task recordings (p = 0.004. Our findings suggest an oscillatory profile in sensorimotor cortex of Parkinson’s patients that, in contrast to the basal ganglia, may act to promote movement to oppose the anti-kinetic bias of the dopamine-depleted state.

  11. Effect of caffeine on gamma-ray induced G2 arrest in well-synchronized Chinese hamster ovary cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Masunaga, Shin-ichiro [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Keng, P.C.

    1996-11-01

    G1-rich cells were separated from exponentially growing asynchronous cultured Chinese hamster ovary (CHO-K1) cells by centrifugal elutriation and a Coulter Counter. The G1-rich cells were incubated in medium that contained hydroxyurea (HU) to kill S phase cells and obtain the purest G1/S boundary cells possible. The HU-treated cells were washed, and were again incubated, in medium without HU, to allow these well-synchronized G1/S boundary cells to progress to S and G2/M phases. At various times after release from G1/S boundary, 4 Gy of gamma-ray and/or caffeine was administered to the cells. Eight hours after the removal of HU, cell-cycle analysis was performed with a flow cytometer. G2 arrest induced by gamma-rays was clearly shown when radiation was given earlier than 6.5 hours after HU removal. G2 arrest induced by radiation given 0.5-6.5 hours after HU removal was reduced by caffeine treatment given 6.0-6.5 hours after HU removal. Caffeine released radiation-induced G2 arrest when the radiation was given before the cultured cells entered G2/M phase and when caffeine was applied to the irradiated cells at the time when G1/S boundary cells not treated by radiation or with caffeine entered G2/M phase. Our method of centrifugal elutriation combined with incubation with HU was useful for isolating pure G1/S boundary cells from in vitro asynchronous cultures. (author)

  12. Effect of caffeine on gamma-ray induced G2 arrest in well-synchronized Chinese hamster ovary cells in vitro

    International Nuclear Information System (INIS)

    Masunaga, Shin-ichiro; Keng, P.C.

    1996-01-01

    G1-rich cells were separated from exponentially growing asynchronous cultured Chinese hamster ovary (CHO-K1) cells by centrifugal elutriation and a Coulter Counter. The G1-rich cells were incubated in medium that contained hydroxyurea (HU) to kill S phase cells and obtain the purest G1/S boundary cells possible. The HU-treated cells were washed, and were again incubated, in medium without HU, to allow these well-synchronized G1/S boundary cells to progress to S and G2/M phases. At various times after release from G1/S boundary, 4 Gy of gamma-ray and/or caffeine was administered to the cells. Eight hours after the removal of HU, cell-cycle analysis was performed with a flow cytometer. G2 arrest induced by gamma-rays was clearly shown when radiation was given earlier than 6.5 hours after HU removal. G2 arrest induced by radiation given 0.5-6.5 hours after HU removal was reduced by caffeine treatment given 6.0-6.5 hours after HU removal. Caffeine released radiation-induced G2 arrest when the radiation was given before the cultured cells entered G2/M phase and when caffeine was applied to the irradiated cells at the time when G1/S boundary cells not treated by radiation or with caffeine entered G2/M phase. Our method of centrifugal elutriation combined with incubation with HU was useful for isolating pure G1/S boundary cells from in vitro asynchronous cultures. (author)

  13. Gamma-Aminobutyric Acid Concentration is Reduced in Visual Cortex in Schizophrenia and Correlates with Orientation-Specific Surround Suppression

    OpenAIRE

    Yoon, Jong H.; Maddock, Richard J.; Rokem, Ariel; Silver, Michael A.; Minzenberg, Michael J.; Ragland, J. Daniel; Carter, Cameron S.

    2010-01-01

    The neural mechanisms underlying cognitive deficits in schizophrenia remain largely unknown. The gamma-aminobutyric acid (GABA) hypothesis proposes that reduced neuronal GABA concentration and neurotransmission results in cognitive impairments in schizophrenia. However, few in vivo studies have directly examined this hypothesis. We employed magnetic resonance spectroscopy (MRS) at high field to measure visual cortical GABA levels in 13 subjects with schizophrenia and 13 demographically matche...

  14. Representation of cognitive reappraisal goals in frontal gamma oscillations.

    Science.gov (United States)

    Kang, Jae-Hwan; Jeong, Ji Woon; Kim, Hyun Taek; Kim, Sang Hee; Kim, Sung-Phil

    2014-01-01

    Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35-55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: to decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals

  15. Hypergravity exposure decreases gamma-aminobutyric acid immunoreactivity in axon terminals contacting pyramidal cells in the rat somatosensory cortex: a quantitative immunocytochemical image analysis

    Science.gov (United States)

    D'Amelio, F.; Wu, L. C.; Fox, R. A.; Daunton, N. G.; Corcoran, M. L.; Polyakov, I.

    1998-01-01

    Quantitative evaluation of gamma-aminobutyric acid immunoreactivity (GABA-IR) in the hindlimb representation of the rat somatosensory cortex after 14 days of exposure to hypergravity (hyper-G) was conducted by using computer-assisted image processing. The area of GABA-IR axosomatic terminals apposed to pyramidal cells of cortical layer V was reduced in rats exposed to hyper-G compared with control rats, which were exposed either to rotation alone or to vivarium conditions. Based on previous immunocytochemical and behavioral studies, we suggest that this reduction is due to changes in sensory feedback information from muscle receptors. Consequently, priorities for muscle recruitment are altered at the cortical level, and a new pattern of muscle activity is thus generated. It is proposed that the reduction observed in GABA-IR of the terminal area around pyramidal neurons is the immunocytochemical expression of changes in the activity of GABAergic cells that participate in reprogramming motor outputs to achieve effective movement control in response to alterations in the afferent information.

  16. Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for γ-band oscillations.

    Science.gov (United States)

    Bastos, Andre M; Briggs, Farran; Alitto, Henry J; Mangun, George R; Usrey, W Martin

    2014-05-28

    Oscillatory synchronization of neuronal activity has been proposed as a mechanism to modulate effective connectivity between interacting neuronal populations. In the visual system, oscillations in the gamma-frequency range (30-100 Hz) are thought to subserve corticocortical communication. To test whether a similar mechanism might influence subcortical-cortical communication, we recorded local field potential activity from retinotopically aligned regions in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) of alert macaque monkeys viewing stimuli known to produce strong cortical gamma-band oscillations. As predicted, we found robust gamma-band power in V1. In contrast, visual stimulation did not evoke gamma-band activity in the LGN. Interestingly, an analysis of oscillatory phase synchronization of LGN and V1 activity identified synchronization in the alpha (8-14 Hz) and beta (15-30 Hz) frequency bands. Further analysis of directed connectivity revealed that alpha-band interactions mediated corticogeniculate feedback processing, whereas beta-band interactions mediated geniculocortical feedforward processing. These results demonstrate that although the LGN and V1 display functional interactions in the lower frequency bands, gamma-band activity in the alert monkey is largely an emergent property of cortex. Copyright © 2014 the authors 0270-6474/14/347639-06$15.00/0.

  17. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    International Nuclear Information System (INIS)

    Peoples, R.W.

    1989-01-01

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of [ 3 H] norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 x 10 -5 -10 -3 M, enhanced potassium stimulated [ 3 H] norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of [ 3 H] norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABA A receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABA A agonist muscimol, 10 -4 M, mimicked the effect of GABA, but the GABA B agonist (±)baclofen, 10 -4 M, did not affect the release of [ 3 H] norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABA A , but not GABA B , receptors. In contrast to the results that would be predicted for an event involving GABA A receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10 -8 and 10 -4 M. Thus these receptors may constitute a subclass of GABA A receptors. These results support a role of GABA uptake and GABA A receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat

  18. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, R.W.

    1989-01-01

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of ({sup 3}H) norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 {times} 10{sup {minus}5}-10{sup {minus}3} M, enhanced potassium stimulated ({sup 3}H) norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of ({sup 3}H) norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABA{sub A} receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABA{sub A} agonist muscimol, 10{sup {minus}4} M, mimicked the effect of GABA, but the GABA{sub B} agonist ({plus minus})baclofen, 10{sup {minus}4} M, did not affect the release of ({sup 3}H) norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABA{sub A}, but not GABA{sub B}, receptors. In contrast to the results that would be predicted for an event involving GABA{sub A} receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10{sup {minus}8} and 10{sup {minus}4} M. Thus these receptors may constitute a subclass of GABA{sub A} receptors. These results support a role of GABA uptake and GABA{sub A} receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat.

  19. Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory.

    Science.gov (United States)

    Bastos, André M; Loonis, Roman; Kornblith, Simon; Lundqvist, Mikael; Miller, Earl K

    2018-01-30

    All of the cerebral cortex has some degree of laminar organization. These different layers are composed of neurons with distinct connectivity patterns, embryonic origins, and molecular profiles. There are little data on the laminar specificity of cognitive functions in the frontal cortex, however. We recorded neuronal spiking/local field potentials (LFPs) using laminar probes in the frontal cortex (PMd, 8A, 8B, SMA/ACC, DLPFC, and VLPFC) of monkeys performing working memory (WM) tasks. LFP power in the gamma band (50-250 Hz) was strongest in superficial layers, and LFP power in the alpha/beta band (4-22 Hz) was strongest in deep layers. Memory delay activity, including spiking and stimulus-specific gamma bursting, was predominately in superficial layers. LFPs from superficial and deep layers were synchronized in the alpha/beta bands. This was primarily unidirectional, with alpha/beta bands in deep layers driving superficial layer activity. The phase of deep layer alpha/beta modulated superficial gamma bursting associated with WM encoding. Thus, alpha/beta rhythms in deep layers may regulate the superficial layer gamma bands and hence maintenance of the contents of WM. Copyright © 2018 the Author(s). Published by PNAS.

  20. GABAergic circuits control input-spike coupling in the piriform cortex.

    Science.gov (United States)

    Luna, Victor M; Schoppa, Nathan E

    2008-08-27

    Odor coding in mammals is widely believed to involve synchronized gamma frequency (30-70 Hz) oscillations in the first processing structure, the olfactory bulb. How such inputs are read in downstream cortical structures however is not known. Here we used patch-clamp recordings in rat piriform cortex slices to examine cellular mechanisms that shape how the cortex integrates inputs from bulb mitral cells. Electrical stimulation of mitral cell axons in the lateral olfactory tract (LOT) resulted in excitation of pyramidal cells (PCs), which was followed approximately 10 ms later by inhibition that was highly reproducible between trials in its onset time. This inhibition was somatic in origin and appeared to be driven through a feedforward mechanism, wherein GABAergic interneurons were directly excited by mitral cell axons. The precise inhibition affected action potential firing in PCs in two distinct ways. First, by abruptly terminating PC excitation, it limited the PC response to each EPSP to exactly one, precisely timed action potential. In addition, inhibition limited the summation of EPSPs across time, such that PCs fired action potentials in strong preference for synchronized inputs arriving in a time window of inputs arriving as a synchronized gamma frequency pattern.

  1. Comparison of the density of gamma-aminobutyric acid in the ventromedial prefrontal cortex of patients with first-episode psychosis and healthy controls.

    Science.gov (United States)

    Yang, Zhilei; Zhu, Yajing; Song, Zhenhua; Mei, Li; Zhang, Jianye; Chen, Tianyi; Wang, Yingchan; Xu, Yifeng; Jiang, Kaida; Li, Yao; Liu, Dengtang

    2015-12-25

    Abnormality in the concentration and functioning of gamma-aminobutyric acid (γ-aminobutyric acid, GABA) in the brain is not only an important hypothetical link to the cause of schizophrenia but it may also be correlated with the cognitive decline and negative symptoms of schizophrenia. Studies utilizing high field magnetic resonance spectroscopy (MRS) report abnormal density of GABA in the ventromedial prefrontal cortex (vmPFC) of patients with chronic schizophrenia, but these results may be confounded by study participants' prior use of antipsychotic medications. Compare the density of GABA in the vmPFC of patients with first-episode psychosis to that in healthy controls and assess the relationship of GABA density in the vmPFC to the severity of psychotic symptoms. Single-voxel (1)H-MRS was used to assess the concentration of GABA and other metabolites in the vmPFC of 22 patients with first-episode psychosis (10 with schizophrenia and 12 with schizophreniform disorder) and 23 healthy controls. Thirteen of the 22 patients were drug-naïve and 9 had used antipsychotic medication for less than 3 days. The Positive and Negative Syndrome Scale (PANSS) was used to evaluate the severity of psychotic symptoms in the patient group. The mean (sd) GABA density in the vmPFC was significantly higher in patients than in controls (2.28 [0.54] v. 1.93 [0.32] mM, t=2.62, p=0.012). The densities of other metabolites - including N-acetylaspartic acid (NAA), glutamic acid (GLU), and glutamine (GLN) - were not significantly different between patients and controls. Among the patients, GABA density in the vmPFC was not significantly correlated with PANSS total score or with any of the three PANSS subscale scores for positive symptoms, negative symptoms, and general psychopathology. GABA concentration was not associated with the duration of illness, but it was significantly correlated with patient age (r=0.47, p=0.026). Elevation of GABA density in the vmPFC of patients with first

  2. Phase-Amplitude Coupling and Long-Range Phase Synchronization Reveal Frontotemporal Interactions during Visual Working Memory.

    Science.gov (United States)

    Daume, Jonathan; Gruber, Thomas; Engel, Andreas K; Friese, Uwe

    2017-01-11

    It has been suggested that cross-frequency phase-amplitude coupling (PAC), particularly in temporal brain structures, serves as a neural mechanism for coordinated working memory storage. In this magnetoencephalography study, we show that during visual working memory maintenance, temporal cortex regions, which exhibit enhanced PAC, interact with prefrontal cortex via enhanced low-frequency phase synchronization. Healthy human participants were engaged in a visual delayed match-to-sample task with pictures of natural objects. During the delay period, we observed increased spectral power of beta (20-28 Hz) and gamma (40-94 Hz) bands as well as decreased power of theta/alpha band (7-9 Hz) oscillations in visual sensory areas. Enhanced PAC between the phases of theta/alpha and the amplitudes of beta oscillations was found in the left inferior temporal cortex (IT), an area known to be involved in visual object memory. Furthermore, the IT was functionally connected to the prefrontal cortex by increased low-frequency phase synchronization within the theta/alpha band. Together, these results point to a mechanism in which the combination of PAC and long-range phase synchronization subserves enhanced large-scale brain communication. They suggest that distant brain regions might coordinate their activity in the low-frequency range to engage local stimulus-related processing in higher frequencies via the combination of long-range, within-frequency phase synchronization and local cross-frequency PAC. Working memory maintenance, like other cognitive functions, requires the coordinated engagement of brain areas in local and large-scale networks. However, the mechanisms by which spatially distributed brain regions share and combine information remain primarily unknown. We show that the combination of long-range, low-frequency phase synchronization and local cross-frequency phase-amplitude coupling might serve as a mechanism to coordinate memory processes across distant brain areas

  3. U-shaped Relation between Prestimulus Alpha-band and Poststimulus Gamma-band Power in Temporal Tactile Perception in the Human Somatosensory Cortex.

    Science.gov (United States)

    Wittenberg, Marc André; Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim

    2018-04-01

    Neuronal oscillations are a ubiquitous phenomenon in the human nervous system. Alpha-band oscillations (8-12 Hz) have been shown to correlate negatively with attention and performance, whereas gamma-band oscillations (40-150 Hz) correlate positively. Here, we studied the relation between prestimulus alpha-band power and poststimulus gamma-band power in a suprathreshold tactile discrimination task. Participants received two electrical stimuli to their left index finger with different SOAs (0 msec, 100 msec, intermediate SOA, intermediate SOA ± 10 msec). The intermediate SOA was individually determined so that stimulation was bistable, and participants perceived one stimulus in half of the trials and two stimuli in the other half. We measured neuronal activity with magnetoencephalography (MEG). In trials with intermediate SOAs, behavioral performance correlated inversely with prestimulus alpha-band power but did not correlate with poststimulus gamma-band power. Poststimulus gamma-band power was high in trials with low and high prestimulus alpha-band power and low for intermediate prestimulus alpha-band power (i.e., U-shaped). We suggest that prestimulus alpha activity modulates poststimulus gamma activity and subsequent perception: (1) low prestimulus alpha-band power leads to high poststimulus gamma-band power, biasing perception such that two stimuli were perceived; (2) intermediate prestimulus alpha-band power leads to low gamma-band power (interpreted as inefficient stimulus processing), consequently, perception was not biased in either direction; and (3) high prestimulus alpha-band power leads to high poststimulus gamma-band power, biasing perception such that only one stimulus was perceived.

  4. A network of networks model to study phase synchronization using structural connection matrix of human brain

    Science.gov (United States)

    Ferrari, F. A. S.; Viana, R. L.; Reis, A. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.

    2018-04-01

    The cerebral cortex plays a key role in complex cortical functions. It can be divided into areas according to their function (motor, sensory and association areas). In this paper, the cerebral cortex is described as a network of networks (cortex network), we consider that each cortical area is composed of a network with small-world property (cortical network). The neurons are assumed to have bursting properties with the dynamics described by the Rulkov model. We study the phase synchronization of the cortex network and the cortical networks. In our simulations, we verify that synchronization in cortex network is not homogeneous. Besides, we focus on the suppression of neural phase synchronization. Synchronization can be related to undesired and pathological abnormal rhythms in the brain. For this reason, we consider the delayed feedback control to suppress the synchronization. We show that delayed feedback control is efficient to suppress synchronous behavior in our network model when an appropriate signal intensity and time delay are defined.

  5. Effects of twenty-minute 3G mobile phone irradiation on event related potential components and early gamma synchronization in auditory oddball paradigm.

    Science.gov (United States)

    Stefanics, G; Thuróczy, G; Kellényi, L; Hernádi, I

    2008-11-19

    We investigated the potential effects of 20 min irradiation from a new generation Universal Mobile Telecommunication System (UMTS) 3G mobile phone on human event related potentials (ERPs) in an auditory oddball paradigm. In a double-blind task design, subjects were exposed to either genuine or sham irradiation in two separate sessions. Before and after irradiation subjects were presented with a random series of 50 ms tone burst (frequent standards: 1 kHz, P=0.8, rare deviants: 1.5 kHz, P=0.2) at a mean repetition rate of 1500 ms while electroencephalogram (EEG) was recorded. The subjects' task was to silently count the appearance of targets. The amplitude and latency of the N100, N200, P200 and P300 components for targets and standards were analyzed in 29 subjects. We found no significant effects of electromagnetic field (EMF) irradiation on the amplitude and latency of the above ERP components. In order to study possible effects of EMF on attentional processes, we applied a wavelet-based time-frequency method to analyze the early gamma component of brain responses to auditory stimuli. We found that the early evoked gamma activity was insensitive to UMTS RF exposition. Our results support the notion, that a single 20 min irradiation from new generation 3G mobile phones does not induce measurable changes in latency or amplitude of ERP components or in oscillatory gamma-band activity in an auditory oddball paradigm.

  6. Neural Dynamics and Information Representation in Microcircuits of Motor Cortex

    Directory of Open Access Journals (Sweden)

    Yasuhiro eTsubo

    2013-05-01

    Full Text Available The brain has to analyze and respond to external events that can change rapidly from time to time, suggesting that information processing by the brain may be essentially dynamic rather than static. The dynamical features of neural computation are of significant importance in motor cortex that governs the process of movement generation and learning. In this paper, we discuss these features based primarily on our recent findings on neural dynamics and information coding in the microcircuit of rat motor cortex. In fact, cortical neurons show a variety of dynamical behavior from rhythmic activity in various frequency bands to highly irregular spike firing. Of particular interest are the similarity and dissimilarity of the neuronal response properties in different layers of motor cortex. By conducting electrophysiological recordings in slice preparation, we report the phase response curves of neurons in different cortical layers to demonstrate their layer-dependent synchronization properties. We then study how motor cortex recruits task-related neurons in different layers for voluntary arm movements by simultaneous juxtacellular and multiunit recordings from behaving rats. The results suggest an interesting difference in the spectrum of functional activity between the superficial and deep layers. Furthermore, the task-related activities recorded from various layers exhibited power law distributions of inter-spike intervals (ISIs, in contrast to a general belief that ISIs obey Poisson or Gamma distributions in cortical neurons. We present a theoretical argument that this power law of in vivo neurons may represent the maximization of the entropy of firing rate with limited energy consumption of spike generation. Though further studies are required to fully clarify the functional implications of this coding principle, it may shed new light on information representations by neurons and circuits in motor cortex.

  7. The 5-HT6 receptor antagonist idalopirdine potentiates the effects of donepezil on gamma oscillations in the frontal cortex of anesthetized and awake rats without affecting sleep-wake architecture.

    Science.gov (United States)

    Amat-Foraster, Maria; Leiser, Steven C; Herrik, Kjartan F; Richard, Nelly; Agerskov, Claus; Bundgaard, Christoffer; Bastlund, Jesper F; de Jong, Inge E M

    2017-02-01

    The 5-HT 6 receptor is a promising target for cognitive disorders, in particular for Alzheimer's disease (AD). The high affinity and selective 5-HT 6 receptor antagonist idalopirdine (Lu AE58054) is currently in development for mild-moderate AD as adjunct therapy to acetylcholinesterase inhibitors (AChEIs). We studied the effects of idalopirdine alone and in combination with the AChEI donepezil on cortical function using two in vivo electrophysiological methods. Neuronal network oscillations in the frontal cortex were measured during electrical stimulation of the brainstem nucleus pontis oralis (nPO) in the anesthetized rat and by an electroencephalogram (EEG) in the awake, freely moving rat. In conjunction with the EEG study, we investigated the effects of idalopirdine and donepezil on sleep-wake architecture using telemetric polysomnography. Idalopirdine (2 mg/kg i.v.) increased gamma power in the medial prefrontal cortex (mPFC) during nPO stimulation. Donepezil (0.3 and 1 mg/kg i.v.) also increased cortical gamma power and pretreatment with idalopirdine (2 mg/kg i.v.) potentiated and prolonged the effects of donepezil. Similarly, donepezil (1 and 3 mg/kg s.c.) dose-dependently increased frontal cortical gamma power in the freely moving rat and pretreatment with idalopirdine (10 mg/kg p.o.) augmented the effect of donepezil 1 mg/kg. Analysis of the sleep-wake architecture showed that donepezil (1 and 3 mg/kg s.c.) dose-dependently delayed sleep onset and decreased the time spent in both REM and non REM sleep stages. In contrast, idalopirdine (10 mg/kg p.o.) did not affect sleep-wake architecture nor the effects of donepezil. In summary, we show that idalopirdine potentiates the effects of donepezil on frontal cortical gamma oscillations, a pharmacodynamic biomarker associated with cognition, without modifying the effects of donepezil on sleep. The increased cortical excitability may contribute to the procognitive effects of idalopirdine in donepezil

  8. Increased overall cortical connectivity with syndrome specific local decreases suggested by atypical sleep-EEG synchronization in Williams syndrome.

    Science.gov (United States)

    Gombos, Ferenc; Bódizs, Róbert; Kovács, Ilona

    2017-07-21

    Williams syndrome (7q11.23 microdeletion) is characterized by specific alterations in neurocognitive architecture and functioning, as well as disordered sleep. Here we analyze the region, sleep state and frequency-specific EEG synchronization of whole night sleep recordings of 21 Williams syndrome and 21 typically developing age- and gender-matched subjects by calculating weighted phase lag indexes. We found broadband increases in inter- and intrahemispheric neural connectivity for both NREM and REM sleep EEG of Williams syndrome subjects. These effects consisted of increased theta, high sigma, and beta/low gamma synchronization, whereas alpha synchronization was characterized by a peculiar Williams syndrome-specific decrease during NREM states (intra- and interhemispheric centro-temporal) and REM phases of sleep (occipital intra-area synchronization). We also found a decrease in short range, occipital connectivity of NREM sleep EEG theta activity. The striking increased overall synchronization of sleep EEG in Williams syndrome subjects is consistent with the recently reported increase in synaptic and dendritic density in stem-cell based Williams syndrome models, whereas decreased alpha and occipital connectivity might reflect and underpin the altered microarchitecture of primary visual cortex and disordered visuospatial functioning of Williams syndrome subjects.

  9. In vivo magnetic resonance spectroscopy measurement of gray-matter and white-matter gamma-aminobutyric acid concentration in sensorimotor cortex using a motion-controlled MEGA point-resolved spectroscopy sequence.

    Science.gov (United States)

    Bhattacharyya, Pallab K; Phillips, Micheal D; Stone, Lael A; Lowe, Mark J

    2011-04-01

    Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the brain. Understanding the GABA concentration, in vivo, is important to understand normal brain function. Using MEGA point-resolved spectroscopy sequence with interleaved water scans to detect subject motion, GABA level of sensorimotor cortex was measured using a voxel identified from a functional magnetic resonance imaging scan. The GABA level in a 20×20×20-mm(3) voxel consisting of 37%±7% gray matter, 52%±12% white matter and 11%±8% cerebrospinal fluid in the sensorimotor region was measured to be 1.43±0.48 mM. In addition, using linear regression analysis, GABA concentrations within gray and white matter were calculated to be 2.87±0.61 and 0.33±0.11 mM, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. On Synchronization Primitive Systems.

    Science.gov (United States)

    The report studies the question: what synchronization primitive should be used to handle inter-process communication. A formal model is presented...between these synchronization primitives. Although only four synchronization primitives are compared, the general methods can be used to compare other... synchronization primitives. Moreover, in the definitions of these synchronization primitives, conditional branches are explicitly allowed. In addition

  11. For whom the bell tolls: periodic reactivation of sensory cortex in the gamma band as a substrate of visual working memory maintenance

    Directory of Open Access Journals (Sweden)

    Marieke Karlijn Van Vugt

    2014-09-01

    Full Text Available Working memory (WM is central to human cognition as it allows information to be kept online over brief periods of time and facilitates its usage in cognitive operations (Luck & Vogel, 2013. How this information maintenance actually is implemented is still a matter of debate. Several independent theories of WM, derived, respectively, from behavioral studies and neural considerations, advance the idea that items in WM decay over time and must be periodically reactivated. In this proposal, we show how recent data from intracranial EEG and attention research naturally leads to a simple model of such reactivation in the case of sensory memories. Specifically, in our model the amplitude of high-frequency activity (>50 Hz, in the gamma-band underlies the representation of items in high-level visual areas. This activity decreases to noise-levels within 500 ms, unless it is reactivated. We propose that top-down attention, which targets multiple sensory items in a cyclical or rhythmic fashion at around 6 to 10 Hz, reactivates these decaying gamma-band representations. Therefore, working memory capacity is essentially the number of representations that can simultaneously be kept active by a rhythmically sampling attentional spotlight given the known decay rate. Since attention samples at 6-10 Hz, the predicted WM capacity is 3-5 items, in agreement with empirical findings.

  12. For whom the bell tolls: periodic reactivation of sensory cortex in the gamma band as a substrate of visual working memory maintenance.

    Science.gov (United States)

    Van Vugt, Marieke Karlijn; Chakravarthi, Ramakrishna; Lachaux, Jean-Philippe

    2014-01-01

    Working memory (WM) is central to human cognition as it allows information to be kept online over brief periods of time and facilitates its usage in cognitive operations (Luck and Vogel, 2013). How this information maintenance actually is implemented is still a matter of debate. Several independent theories of WM, derived, respectively, from behavioral studies and neural considerations, advance the idea that items in WM decay over time and must be periodically reactivated. In this proposal, we show how recent data from intracranial EEG and attention research naturally leads to a simple model of such reactivation in the case of sensory memories. Specifically, in our model the amplitude of high-frequency activity (>50 Hz, in the gamma-band) underlies the representation of items in high-level visual areas. This activity decreases to noise-levels within 500 ms, unless it is reactivated. We propose that top-down attention, which targets multiple sensory items in a cyclical or rhythmic fashion at around 6-10 Hz, reactivates these decaying gamma-band representations. Therefore, working memory capacity is essentially the number of representations that can simultaneously be kept active by a rhythmically sampling attentional spotlight given the known decay rate. Since attention samples at 6-10 Hz, the predicted WM capacity is 3-5 items, in agreement with empirical findings.

  13. Synchronization of metronomes

    Science.gov (United States)

    Pantaleone, James

    2002-10-01

    Synchronization is a common phenomenon in physical and biological systems. We examine the synchronization of two (and more) metronomes placed on a freely moving base. The small motion of the base couples the pendulums causing synchronization. The synchronization is generally in-phase, with antiphase synchronization occurring only under special conditions. The metronome system provides a mechanical realization of the popular Kuramoto model for synchronization of biological oscillators, and is excellent for classroom demonstrations and an undergraduate physics lab.

  14. Long-range synchronization and local desynchronization of alpha oscillations during visual short-term memory retention in children.

    Science.gov (United States)

    Doesburg, Sam M; Herdman, Anthony T; Ribary, Urs; Cheung, Teresa; Moiseev, Alexander; Weinberg, Hal; Liotti, Mario; Weeks, Daniel; Grunau, Ruth E

    2010-04-01

    Local alpha-band synchronization has been associated with both cortical idling and active inhibition. Recent evidence, however, suggests that long-range alpha synchronization increases functional coupling between cortical regions. We demonstrate increased long-range alpha and beta band phase synchronization during short-term memory retention in children 6-10 years of age. Furthermore, whereas alpha-band synchronization between posterior cortex and other regions is increased during retention, local alpha-band synchronization over posterior cortex is reduced. This constitutes a functional dissociation for alpha synchronization across local and long-range cortical scales. We interpret long-range synchronization as reflecting functional integration within a network of frontal and visual cortical regions. Local desynchronization of alpha rhythms over posterior cortex, conversely, likely arises because of increased engagement of visual cortex during retention.

  15. Functional inactivation of hypocretin 1 receptors in the medial prefrontal cortex affects the pyramidal neuron activity and gamma oscillations: An in vivo multiple-channel single-unit recording study.

    Science.gov (United States)

    He, C; Chen, Q-H; Ye, J-N; Li, C; Yang, L; Zhang, J; Xia, J-X; Hu, Z-A

    2015-06-25

    The hypocretin signaling is thought to play a critical role in maintaining wakefulness via stimulating the subcortical arousal pathways. Although the cortical areas, including the medial prefrontal cortex (mPFC), receive dense hypocretinergic fibers and express its receptors, it remains unclear whether the hypocretins can directly regulate the neural activity of the mPFC in vivo. In the present study, using multiple-channel single-unit recording study, we found that infusion of the SB-334867, a blocker for the Hcrtr1, beside the recording sites within the mPFC substantially exerted an inhibitory effect on the putative pyramidal neuron (PPN) activity in naturally behaving rats. In addition, functional blockade of the Hcrtr1 also selectively reduced the power of the gamma oscillations. The PPN activity and the power of the neural oscillations were not affected after microinjection of the TCS-OX2-29, a blocker for the Hcrtr2, within the mPFC. Together, these data indicate that endogenous hypocretins acting on the Hcrtr1 are required for the normal neural activity in the mPFC in vivo, and thus might directly contribute cortical arousal and mPFC-dependent cognitive processes. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Overview of Cell Synchronization.

    Science.gov (United States)

    Banfalvi, Gaspar

    2017-01-01

    The widespread interest in cell synchronization is maintained by the studies of control mechanism involved in cell cycle regulation. During the synchronization distinct subpopulations of cells are obtained representing different stages of the cell cycle. These subpopulations are then used to study regulatory mechanisms of the cycle at the level of macromolecular biosynthesis (DNA synthesis, gene expression, protein synthesis), protein phosphorylation, development of new drugs, etc. Although several synchronization methods have been described, it is of general interest that scientists get a compilation and an updated view of these synchronization techniques. This introductory chapter summarizes: (1) the basic concepts and principal criteria of cell cycle synchronizations, (2) the most frequently used synchronization methods, such as physical fractionation (flow cytometry, dielectrophoresis, cytofluorometric purification), chemical blockade, (3) synchronization of embryonic cells, (4) synchronization at low temperature, (5) comparison of cell synchrony techniques, (6) synchronization of unicellular organisms, and (7) the effect of synchronization on transfection.

  17. Higher Order Spike Synchrony in Prefrontal Cortex during visual memory

    Directory of Open Access Journals (Sweden)

    Gordon ePipa

    2011-06-01

    Full Text Available Precise temporal synchrony of spike firing has been postulated as an important neuronal mechanism for signal integration and the induction of plasticity in neocortex. As prefrontal cortex plays an important role in organizing memory and executive functions, the convergence of multiple visual pathways onto PFC predicts that neurons should preferentially synchronize their spiking when stimulus information is processed. Furthermore, synchronous spike firing should intensify if memory processes require the induction of neuronal plasticity, even if this is only for short-term. Here we show with multiple simultaneously recorded units in ventral prefrontal cortex that neurons participate in 3 ms precise synchronous discharges distributed across multiple sites separated by at least 500 µm. The frequency of synchronous firing is modulated by behavioral performance and is specific for the memorized visual stimuli. In particular, during the memory period in which activity is not stimulus driven, larger groups of up to 7 sites exhibit performance dependent modulation of their spike synchronization.

  18. Stages of chaotic synchronization.

    Science.gov (United States)

    Tang, D. Y.; Dykstra, R.; Hamilton, M. W.; Heckenberg, N. R.

    1998-09-01

    In an experimental investigation of the response of a chaotic system to a chaotic driving force, we have observed synchronization of chaos of the response system in the forms of generalized synchronization, phase synchronization, and lag synchronization to the driving signal. In this paper we compare the features of these forms of synchronized chaos and study their relations and physical origins. We found that different forms of chaotic synchronization could be interpreted as different stages of nonlinear interaction between the coupled chaotic systems. (c) 1998 American Institute of Physics.

  19. Differences in MEG gamma oscillatory power during performance of a prosaccade task in adolescents with FASD

    Directory of Open Access Journals (Sweden)

    Julia M. Stephen

    2013-12-01

    Full Text Available Fetal alcohol spectrum disorder (FASD is characterized by a broad range of behavioral and cognitive deficits that impact the long-term quality of life for affected individuals. However, the underlying changes in brain structure and function associated with these cognitive impairments are not well understood. Previous studies identified deficits in behavioral performance of prosaccade tasks in children with FASD. In this study, we investigated group differences in gamma oscillations in response to a prosaccade task. We collected MEG data from 15 adolescents with FASD and 20 age-matched healthy controls (HC with a mean age of 15.9 ± 0.4 years. During the prosaccade task, the participants began each trial by gazing at a centrally-placed fixation point. After a variable delay, a peripheral target appeared along the horizontal meridian in left or right visual field. The participants were instructed to saccade to the target as quickly and accurately as possible. Eye movement was recorded and synchronized to the MEG data using an MEG compatible eye-tracker. The MEG data were analyzed relative to the onset of the visual saccade. Time frequency analysis was performed using Fieldtrip with a focus on group differences in gamma-band oscillations. Following left target presentation, we identified 4 clusters over right frontal, right parietal and left temporal/occipital cortex, with significantly different gamma-band (30-50 Hz power between FASD and HC. Furthermore, visual M100 latencies described in Coffman et al. (2012 corresponded with increased gamma power over right central cortex in FASD only, which may represent compensatory activity in this group. Gamma-band differences were not identified for stimulus-averaged responses implying that these gamma-band differences were related to differences in saccade network functioning. These gamma-band differences in power may provide indicators of atypical development of cortical networks in individuals with FASD.

  20. Corticomuscular synchronization with small and large dynamic force output

    Science.gov (United States)

    Andrykiewicz, Agnieszka; Patino, Luis; Naranjo, Jose Raul; Witte, Matthias; Hepp-Reymond, Marie-Claude; Kristeva, Rumyana

    2007-01-01

    Background Over the last few years much research has been devoted to investigating the synchronization between cortical motor and muscular activity as measured by EEG/MEG-EMG coherence. The main focus so far has been on corticomuscular coherence (CMC) during static force condition, for which coherence in beta-range has been described. In contrast, we showed in a recent study [1] that dynamic force condition is accompanied by gamma-range CMC. The modulation of the CMC by various dynamic force amplitudes, however, remained uninvestigated. The present study addresses this question. We examined eight healthy human subjects. EEG and surface EMG were recorded simultaneously. The visuomotor task consisted in isometric compensation for 3 forces (static, small and large dynamic) generated by a manipulandum. The CMC, the cortical EEG spectral power (SP), the EMG SP and the errors in motor performance (as the difference between target and exerted force) were analyzed. Results For the static force condition we found the well-documented, significant beta-range CMC (15–30 Hz) over the contralateral sensorimotor cortex. Gamma-band CMC (30–45 Hz) occurred in both small and large dynamic force conditions without any significant difference between both conditions. Although in some subjects beta-range CMC was observed during both dynamic force conditions no significant difference between conditions could be detected. With respect to the motor performance, the lowest errors were obtained in the static force condition and the highest ones in the dynamic condition with large amplitude. However, when we normalized the magnitude of the errors to the amplitude of the applied force (relative errors) no significant difference between both dynamic conditions was observed. Conclusion These findings confirm that during dynamic force output the corticomuscular network oscillates at gamma frequencies. Moreover, we show that amplitude modulation of dynamic force has no effect on the gamma CMC

  1. Corticomuscular synchronization with small and large dynamic force output

    Directory of Open Access Journals (Sweden)

    Witte Matthias

    2007-11-01

    Full Text Available Abstract Background Over the last few years much research has been devoted to investigating the synchronization between cortical motor and muscular activity as measured by EEG/MEG-EMG coherence. The main focus so far has been on corticomuscular coherence (CMC during static force condition, for which coherence in beta-range has been described. In contrast, we showed in a recent study 1 that dynamic force condition is accompanied by gamma-range CMC. The modulation of the CMC by various dynamic force amplitudes, however, remained uninvestigated. The present study addresses this question. We examined eight healthy human subjects. EEG and surface EMG were recorded simultaneously. The visuomotor task consisted in isometric compensation for 3 forces (static, small and large dynamic generated by a manipulandum. The CMC, the cortical EEG spectral power (SP, the EMG SP and the errors in motor performance (as the difference between target and exerted force were analyzed. Results For the static force condition we found the well-documented, significant beta-range CMC (15–30 Hz over the contralateral sensorimotor cortex. Gamma-band CMC (30–45 Hz occurred in both small and large dynamic force conditions without any significant difference between both conditions. Although in some subjects beta-range CMC was observed during both dynamic force conditions no significant difference between conditions could be detected. With respect to the motor performance, the lowest errors were obtained in the static force condition and the highest ones in the dynamic condition with large amplitude. However, when we normalized the magnitude of the errors to the amplitude of the applied force (relative errors no significant difference between both dynamic conditions was observed. Conclusion These findings confirm that during dynamic force output the corticomuscular network oscillates at gamma frequencies. Moreover, we show that amplitude modulation of dynamic force has no

  2. Time and frequency-dependent modulation of local field potential synchronization by deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Clinton B McCracken

    Full Text Available High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS, is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP, the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson's disease (PD. We performed simultaneous multi-site local field potential (LFP recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective, low-frequency (LF, 15 Hz; ineffective and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR, ventroanterior thalamus (VA, primary motor cortex (M1, and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic

  3. STUDYING BUSINESS CYCLES SYNCHRONIZATION

    Directory of Open Access Journals (Sweden)

    N. Servetnyk

    2014-06-01

    Full Text Available The paper researches business cycles synchronization. The fluctuations in post-Soviet countries are considered. The study examines different measures of synchronization in groups of countries according to some criteria.

  4. Clock synchronization and dispersion

    International Nuclear Information System (INIS)

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo; Wong, Franco N C

    2002-01-01

    We present a method to defeat effects of dispersion of timing signals when synchronizing clocks. It is based on the recently proposed 'conveyor belt synchronization' scheme and on the quantum dispersion cancellation effect

  5. Cell Division Synchronization

    Science.gov (United States)

    The report summarizes the progress in the design and construction of automatic equipment for synchronizing cell division in culture by periodic...Concurrent experiments in hypothermic synchronization of algal cell division are reported.

  6. Rhythm generation through period concatenation in rat somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Mark A Kramer

    2008-09-01

    Full Text Available Rhythmic voltage oscillations resulting from the summed activity of neuronal populations occur in many nervous systems. Contemporary observations suggest that coexistent oscillations interact and, in time, may switch in dominance. We recently reported an example of these interactions recorded from in vitro preparations of rat somatosensory cortex. We found that following an initial interval of coexistent gamma ( approximately 25 ms period and beta2 ( approximately 40 ms period rhythms in the superficial and deep cortical layers, respectively, a transition to a synchronous beta1 ( approximately 65 ms period rhythm in all cortical layers occurred. We proposed that the switch to beta1 activity resulted from the novel mechanism of period concatenation of the faster rhythms: gamma period (25 ms+beta2 period (40 ms = beta1 period (65 ms. In this article, we investigate in greater detail the fundamental mechanisms of the beta1 rhythm. To do so we describe additional in vitro experiments that constrain a biologically realistic, yet simplified, computational model of the activity. We use the model to suggest that the dynamic building blocks (or motifs of the gamma and beta2 rhythms combine to produce a beta1 oscillation that exhibits cross-frequency interactions. Through the combined approach of in vitro experiments and mathematical modeling we isolate the specific components that promote or destroy each rhythm. We propose that mechanisms vital to establishing the beta1 oscillation include strengthened connections between a population of deep layer intrinsically bursting cells and a transition from antidromic to orthodromic spike generation in these cells. We conclude that neural activity in the superficial and deep cortical layers may temporally combine to generate a slower oscillation.

  7. Synchronization of Multipoint Hoists

    Science.gov (United States)

    A contractor has conceived an electrohydraulic feedback system that will provide position synchronization of four aircraft cargo hoists. To... synchronized hoist system. Test results show that the feedback system concept provides adequate synchronization control; i.e., the platform pitch and roll

  8. Associative cortex features in the first olfactory brain relay station.

    Science.gov (United States)

    Doucette, Wilder; Gire, David H; Whitesell, Jennifer; Carmean, Vanessa; Lucero, Mary T; Restrepo, Diego

    2011-03-24

    Synchronized firing of mitral cells (MCs) in the olfactory bulb (OB) has been hypothesized to help bind information together in olfactory cortex (OC). In this survey of synchronized firing by suspected MCs in awake, behaving vertebrates, we find the surprising result that synchronized firing conveys information on odor value ("Is it rewarded?") rather than odor identity ("What is the odor?"). We observed that as mice learned to discriminate between odors, synchronous firing responses to the rewarded and unrewarded odors became divergent. Furthermore, adrenergic blockage decreases the magnitude of odor divergence of synchronous trains, suggesting that MCs contribute to decision-making through adrenergic-modulated synchronized firing. Thus, in the olfactory system information on stimulus reward is found in MCs one synapse away from the sensory neuron. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Pecora, Louis M.; Carroll, Thomas L.

    2015-01-01

    We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators

  10. GABAergic modulation of visual gamma and alpha oscillations and its consequences for working memory performance.

    Science.gov (United States)

    Lozano-Soldevilla, Diego; ter Huurne, Niels; Cools, Roshan; Jensen, Ole

    2014-12-15

    Impressive in vitro research in rodents and computational modeling has uncovered the core mechanisms responsible for generating neuronal oscillations. In particular, GABAergic interneurons play a crucial role for synchronizing neural populations. Do these mechanistic principles apply to human oscillations associated with function? To address this, we recorded ongoing brain activity using magnetoencephalography (MEG) in healthy human subjects participating in a double-blind pharmacological study receiving placebo, 0.5 mg and 1.5 mg of lorazepam (LZP; a benzodiazepine upregulating GABAergic conductance). Participants performed a demanding visuospatial working memory (WM) task. We found that occipital gamma power associated with WM recognition increased with LZP dosage. Importantly, the frequency of the gamma activity decreased with dosage, as predicted by models derived from the rat hippocampus. A regionally specific gamma increase correlated with the drug-related performance decrease. Despite the system-wide pharmacological intervention, gamma power drug modulations were specific to visual cortex: sensorimotor gamma power and frequency during button presses remained unaffected. In contrast, occipital alpha power modulations during the delay interval decreased parametrically with drug dosage, predicting performance impairment. Consistent with alpha oscillations reflecting functional inhibition, LZP affected alpha power strongly in early visual regions not required for the task demonstrating a regional specific occipital impairment. GABAergic interneurons are strongly implicated in the generation of gamma and alpha oscillations in human occipital cortex where drug-induced power modulations predicted WM performance. Our findings bring us an important step closer to linking neuronal dynamics to behavior by embracing established animal models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Synchronization of Concurrent Processes

    Science.gov (United States)

    1975-07-01

    Pettersen Stanford Ur.iversity Artificial Intelligence Laboratory ABSTRACT Th oaoer gives an overview of commonly used synchronization primitives and...wr.ters . ut.l.z.ng the DroDo4d synchronization primitive . The solution is simpler and shorter than other known S’ms The first sections of the paper...un reicr»» side il nrcttaary and Identity by block number) Scheduling, process scheduling, synchronization , mutual exclusion, semaphores , critical

  12. Adaptive Backoff Synchronization Techniques

    Science.gov (United States)

    1989-07-01

    Percentage of synchronization and non- synchronisation references that cause invalidations in directory schemes with 2, 3, 4, 5, and 64 pointers...processors to arrive. The slight relative increase of synchronisation overhead in all cases when going from two to five pointers is because synchronization ...MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS q~JU VLSI Memo No. 89-547 It July 1989 Adaptive Backoff Synchronization Techniques Anant

  13. Synchronization on effective networks

    International Nuclear Information System (INIS)

    Zhou Tao; Zhao Ming; Zhou Changsong

    2010-01-01

    The study of network synchronization has attracted increasing attentionrecently. In this paper, we strictly define a class of networks, namely effective networks, which are synchronizable and orientable networks. We can prove that all the effective networks with the same size have the same spectra, and are of the best synchronizability according to the master stability analysis. However, it is found that the synchronization time for different effective networks can be quite different. Further analysis shows that the key ingredient affecting the synchronization time is the maximal depth of an effective network: the larger depth results in a longer synchronization time. The secondary factor is the number of links. The increasing number of links connecting nodes in the same layer (horizontal links) will lead to longer synchronization time, whereas the increasing number of links connecting nodes in neighboring layers (vertical links) will accelerate the synchronization. Our analysis of the relationship between the structure and synchronization properties of the original and effective networks shows that the purely directed effective network can provide an approximation of the original weighted network with normalized input strength. Our findings provide insights into the roles of depth, horizontal and vertical links in the synchronizing process, and suggest that the spectral analysis is helpful yet insufficient for the comprehensive understanding of network synchronization.

  14. Synchronization on effective networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tao [Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhao Ming [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zhou Changsong, E-mail: cszhou@hkbu.edu.h [Department of Physics, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2010-04-15

    The study of network synchronization has attracted increasing attentionrecently. In this paper, we strictly define a class of networks, namely effective networks, which are synchronizable and orientable networks. We can prove that all the effective networks with the same size have the same spectra, and are of the best synchronizability according to the master stability analysis. However, it is found that the synchronization time for different effective networks can be quite different. Further analysis shows that the key ingredient affecting the synchronization time is the maximal depth of an effective network: the larger depth results in a longer synchronization time. The secondary factor is the number of links. The increasing number of links connecting nodes in the same layer (horizontal links) will lead to longer synchronization time, whereas the increasing number of links connecting nodes in neighboring layers (vertical links) will accelerate the synchronization. Our analysis of the relationship between the structure and synchronization properties of the original and effective networks shows that the purely directed effective network can provide an approximation of the original weighted network with normalized input strength. Our findings provide insights into the roles of depth, horizontal and vertical links in the synchronizing process, and suggest that the spectral analysis is helpful yet insufficient for the comprehensive understanding of network synchronization.

  15. OMEGA SYSTEM SYNCHRONIZATION.

    Science.gov (United States)

    TIME SIGNALS, * SYNCHRONIZATION (ELECTRONICS)), NETWORKS, FREQUENCY, STANDARDS, RADIO SIGNALS, ERRORS, VERY LOW FREQUENCY, PROPAGATION, ACCURACY, ATOMIC CLOCKS, CESIUM, RADIO STATIONS, NAVAL SHORE FACILITIES

  16. Synchronicity and Leadership

    NARCIS (Netherlands)

    Merry, Philip

    2017-01-01

    LAY SUMMARY SYNCHRONICITY AND LEADERSHIP TILBURG PHD DISSERTATION, PHILIP MERRY World’s First PhD to Research Synchronicity And Leadership Using Grounded Theory OUT OF THE BLUE COINCIDENCES: research topic Most people have had the experience of thinking of someone and then, almost magically have

  17. Synchronization of hyperchaotic oscillators

    DEFF Research Database (Denmark)

    Tamasevicius, A.; Cenys, A.; Mykolaitis, G.

    1997-01-01

    Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....

  18. RUN LENGTH SYNCHRONIZATION TECHNIQUES

    Science.gov (United States)

    An important aspect of digital communications is the problem of determining efficient methods for acquiring block synchronization . In this paper we...utilizes an N-digit sync sequence as prefix to the data blocks. The results of this study show that this technique is a practical method for acquiring block synchronization .

  19. Bursting synchronization in scale-free networks

    International Nuclear Information System (INIS)

    Batista, C.A.S.; Batista, A.M.; Pontes, J.C.A. de; Lopes, S.R.; Viana, R.L.

    2009-01-01

    Neuronal networks in some areas of the brain cortex present the scale-free property, i.e., the neuron connectivity is distributed according to a power-law, such that neurons are more likely to couple with other already well-connected ones. Neuron activity presents two timescales, a fast one related to action-potential spiking, and a slow timescale in which bursting takes place. Some pathological conditions are related with the synchronization of the bursting activity in a weak sense, meaning the adjustment of the bursting phase due to coupling. Hence it has been proposed that an externally applied time-periodic signal be applied in order to control undesirable synchronized bursting rhythms. We investigated this kind of intervention using a two-dimensional map to describe neurons with spiking-bursting activity in a scale-free network.

  20. Oscillations and Episodic Memory: Addressing the Synchronization/Desynchronization Conundrum

    OpenAIRE

    Hanslmayr, Simon; Staresina, Bernhard P.; Bowman, Howard

    2016-01-01

    Trends Data from rodent as well as human studies suggest that theta/gamma synchronization in the hippocampus (i.e., theta phase to gamma power cross-frequency coupling) mediates the binding of different elements in episodic memory. In vivo and in vitro animal studies suggest that theta provides selective time windows for fast-acting synaptic modifications and recent computational models have implemented these mechanisms to explain human memory formation and retrieval. Recent data from human e...

  1. Asynchronized synchronous machines

    CERN Document Server

    Botvinnik, M M

    1964-01-01

    Asynchronized Synchronous Machines focuses on the theoretical research on asynchronized synchronous (AS) machines, which are "hybrids” of synchronous and induction machines that can operate with slip. Topics covered in this book include the initial equations; vector diagram of an AS machine; regulation in cases of deviation from the law of full compensation; parameters of the excitation system; and schematic diagram of an excitation regulator. The possible applications of AS machines and its calculations in certain cases are also discussed. This publication is beneficial for students and indiv

  2. Synchronization of networks

    Indian Academy of Sciences (India)

    We study the synchronization of coupled dynamical systems on networks. The dynamics is .... Such a time-varying topology can occur in social networks, computer networks, WWW ... This has the effect of reducing the spread of the transverse ...

  3. Synchronization in complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  4. DIFFRACTION SYNCHRONIZATION OF LASERS,

    Science.gov (United States)

    semiconductor lasers while suppressing parasitic generation in the plane of the mirror. The diffraction coupling coefficient of open resonators is calculated, and the stability conditions of the synchronized system is determined.

  5. Traffic signal synchronization.

    Science.gov (United States)

    Huang, Ding-wei; Huang, Wei-neng

    2003-05-01

    The benefits of traffic signal synchronization are examined within the cellular automata approach. The microsimulations of traffic flow are obtained with different settings of signal period T and time delay delta. Both numerical results and analytical approximations are presented. For undersaturated traffic, the green-light wave solutions can be realized. For saturated traffic, the correlation among the traffic signals has no effect on the throughput. For oversaturated traffic, the benefits of synchronization are manifest only when stochastic noise is suppressed.

  6. Neural Synchronization and Cryptography

    Science.gov (United States)

    Ruttor, Andreas

    2007-11-01

    Neural networks can synchronize by learning from each other. In the case of discrete weights full synchronization is achieved in a finite number of steps. Additional networks can be trained by using the inputs and outputs generated during this process as examples. Several learning rules for both tasks are presented and analyzed. In the case of Tree Parity Machines synchronization is much faster than learning. Scaling laws for the number of steps needed for full synchronization and successful learning are derived using analytical models. They indicate that the difference between both processes can be controlled by changing the synaptic depth. In the case of bidirectional interaction the synchronization time increases proportional to the square of this parameter, but it grows exponentially, if information is transmitted in one direction only. Because of this effect neural synchronization can be used to construct a cryptographic key-exchange protocol. Here the partners benefit from mutual interaction, so that a passive attacker is usually unable to learn the generated key in time. The success probabilities of different attack methods are determined by numerical simulations and scaling laws are derived from the data. They show that the partners can reach any desired level of security by just increasing the synaptic depth. Then the complexity of a successful attack grows exponentially, but there is only a polynomial increase of the effort needed to generate a key. Further improvements of security are possible by replacing the random inputs with queries generated by the partners.

  7. A Semantics of Synchronization.

    Science.gov (United States)

    1980-09-01

    suggestion of having very hungry philosophers. One can easily imagine the complexity of the equivalent implementation using semaphores . Synchronization types...Edinburgh, July 1978. [STAR79] Stark, E.W., " Semaphore Primitives and Fair Mutual Exclusion," TM-158, Laboratory for Computer Science, M.I.T., Cambridge...AD-AQ91 015 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE--ETC F/S 9/2 A SEMANTICS OF SYNCHRONIZATION .(U) .C SEP 80 C A SEAQUIST N00015-75

  8. Pulse Synchronization System (PSS)

    International Nuclear Information System (INIS)

    1977-06-01

    This document is intended to serve as an operations manual, as well as a documentation of the backup analyses pertinent to the design as delivered. A history of earlier unsuccessful versions of the Pulse Synchronization System (PSS) is not included. The function of the PSS is to synchronize the time of arrival at the fusion target of laser pulses that are propagated through the 20 amplifier chains of the SHIVA laser. The positional accuracy requirement is +-1.5 mm (+-5 psec), and is obtained by the PSS with a wide margin factor

  9. Neural synchronization during face-to-face communication

    OpenAIRE

    Jiang, J.; Dai, B.; Peng, D.; Zhu, C.; Liu, L.; Lu, C.

    2012-01-01

    Although the human brain may have evolutionarily adapted to face-to-face communication, other modes of communication, e.g., telephone and e-mail, increasingly dominate our modern daily life. This study examined the neural difference between face-to-face communication and other types of communication by simultaneously measuring two brains using a hyperscanning approach. The results showed a significant increase in the neural synchronization in the left inferior frontal cortex during a face-to-...

  10. Abnormal hippocampal theta and gamma hypersynchrony produces network and spike timing disturbances in the Fmr1-KO mouse model of Fragile X syndrome

    NARCIS (Netherlands)

    Arbab, Tara; Battaglia, Francesco P.; Pennartz, Cyriel M. A.; Bosman, Conrado A.

    2018-01-01

    Neuronal networks can synchronize their activity through excitatory and inhibitory connections, which is conducive to synaptic plasticity. This synchronization is reflected in rhythmic fluctuations of the extracellular field. In the hippocampus, theta and gamma band LFP oscillations are a hallmark

  11. Theta band activity in response to emotional expressions and its relationship with gamma band activity as revealed by MEG and advanced beamformer source imaging

    Directory of Open Access Journals (Sweden)

    Qian eLuo

    2014-02-01

    Full Text Available Neuronal oscillations in the theta and gamma bands have been shown to be important for cognition. Here we examined the temporal and spatial relationship between the two frequency bands in emotional processing using Magnetoencephalography and an advanced dynamic beamformer source imaging method called Synthetic Aperture Magnetometry. We found that areas including the amygdala, visual and frontal cortex showed significant event-related synchronization (ERS in both bands, suggesting a functional association of neuronal oscillations in the same areas in the two bands. However, while the temporal profile in both bands was similar in the amygdala, the peak in gamma band power was much earlier within both visual and frontal areas. Our results do not support a traditional view that the localizations of lower and higher frequencies are spatially distinct. Instead, they suggest that in emotional processing, neuronal oscillations in the gamma and theta bands may reflect, at least in visual and frontal cortex either different but related functional processes or, perhaps more probably, different computational components of the same functional process.

  12. Synchronization of networks

    Indian Academy of Sciences (India)

    We study the synchronization of coupled dynamical systems on networks. The dynamics is governed by a local nonlinear oscillator for each node of the network and interactions connecting different nodes via the links of the network. We consider existence and stability conditions for both single- and multi-cluster ...

  13. Heartbeat synchronized with ventilation

    Science.gov (United States)

    Schäfer, Carsten; Rosenblum, Michael G.; Kurths, Jürgen; Abel, Hans-Henning

    1998-03-01

    It is widely accepted that cardiac and respiratory rhythms in humans are unsynchronised. However, a newly developed data analysis technique allows any interaction that does occur in even weakly coupled complex systems to be observed. Using this technique, we found long periods of hidden cardiorespiratory synchronization, lasting up to 20 minutes, during spontaneous breathing at rest.

  14. Synchronous, bilateral tonsillar carcinomas

    DEFF Research Database (Denmark)

    Nami Saber, Camelia; Grønhøj, Christian; Jensen, David Hebbelstrup

    2017-01-01

    INTRODUCTION: The incidence of oropharyngeal squamous cell carcinoma (OPSCC) is increasing, but data on the incidence of synchronous, bilateral tonsillar squamous cell carcinomas (BiTSCCs) is sparse. In this study, we report the incidence and tumour characteristics of BiTSCCs in a population-base...

  15. Continuous theta-burst stimulation modulates tactile synchronization.

    Science.gov (United States)

    Lee, Kevin Gh; Jacobs, Mark F; Asmussen, Michael J; Zapallow, Christopher M; Tommerdahl, Mark; Nelson, Aimee J

    2013-08-23

    Temporal order judgement (TOJ) is the ability to detect the order of occurrence of two sequentially delivered stimuli. Previous research has shown that TOJ in the presence of synchronized periodic conditioning stimuli impairs TOJ performance, and this phenomenon is suggested to be mediated by GABAergic interneurons that cause perceptual binding across the two skin sites. Application of continuous theta-burst repetitive TMS (cTBS) over primary somatosensory cortex (SI) alters temporal and spatial tactile perception. The purpose of this study was to examine TOJ perception in the presence and absence of synchronized periodic conditioning stimuli before and after cTBS applied over left-hemisphere SI. A TOJ task was administered on the right index and middle finger (D2 and D3) in two separate sessions in the presence and absence of conditioning stimuli (a background low amplitude sinusoidal vibration). CTBS reduced the impact of the conditioning stimuli on TOJ performance for up to 18 minutes following stimulation while sham cTBS did not affect TOJ performance. In contrast, the TOJ task performed in the absence of synchronized conditioning stimulation was unaltered following cTBS. We conclude that cTBS suppresses inhibitory networks in SI that mediate perceptual binding during TOJ synchronization. CTBS offers one method to suppress cortical excitability in the cortex and potentially benefit clinical populations with altered inhibitory cortical circuits. Additionally, TOJ measures with conditioning stimuli may provide an avenue to assess sensory processing in neurologically impaired patient populations.

  16. Injuries in synchronized skating.

    Science.gov (United States)

    Dubravcic-Simunjak, S; Kuipers, H; Moran, J; Simunjak, B; Pecina, M

    2006-06-01

    Synchronized skating is a relatively new competitive sport and data about injuries in this discipline are lacking. Therefore the purpose of this study was to investigate the frequency and pattern of acute and overuse injuries in synchronized skaters. Before and during the World Synchronized Skating Championship 2004, a questionnaire inquiring about the frequency of injuries in this skating discipline was given to 23 participating teams. A total of 514 women and 14 men senior skaters completed the questionnaires (100 % response). Two hundred and eighteen (42.4 %) female and 6 (42.9 %) male skaters had suffered from acute injuries during their synchronized skating career. As some skaters had suffered from more than one injury, the total number of acute injuries in females was 398 and in males 14. In female skaters 19.8 % of acute injuries were head injuries, 7.1 % trunk, 33.2 % upper, and 39.9 % lower extremity injuries. In male skaters 14.3 % were head injuries, 28.6 % upper, and 57.1 % lower extremity injuries, with no report of trunk injuries. Sixty-nine female and 2 male skaters had low back problems and 112 female and 2 male skaters had one or more overuse syndromes during their skating career. Of 155 overuse injuries in female skaters, 102 (65.8 %) occurred during their figure skating career, while 53 injuries (34.2 %) only occurred when they skated in synchronized skating teams. In male skaters, out of 5 overuse injuries, 4 (80 %) occurred in their figure skating career, while 1 (20 %) occurred during their synchronized skating career. Out of the total of 412 injuries, 338 (82 %) occurred during on-ice practice, while 74 (18 %) happened during off-ice training. Ninety-one (26.9 %) acute injures occurred while practicing individual elements, and 247 (73.1 %) on-ice injuries occurred while practicing different team elements. We conclude that injuries in synchronized skating should be of medical concern due to an increasing number of acute injuries, especially

  17. Instructor's guide : - synchronized skating school

    OpenAIRE

    Mokkila, Eveliina

    2011-01-01

    The starting point to the Instructor’s guide for synchronized skating school was the situation that Turun Riennon Taitoluistelu figure skating club constantly struggles to get enough skaters to the Beginner team in synchronized skating. The guidebook was written to guide the skating school instructors towards providing more synchronized skating teaching in their lessons. As a result from introducing synchronized skating more in the skating school, it is expected to have more children conti...

  18. Early continuous white noise exposure alters l-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit glutamate receptor 2 and gamma-aminobutyric acid type a receptor subunit beta3 protein expression in rat auditory cortex.

    Science.gov (United States)

    Xu, Jinghong; Yu, Liping; Zhang, Jiping; Cai, Rui; Sun, Xinde

    2010-02-15

    Auditory experience during the postnatal critical period is essential for the normal maturation of auditory function. Previous studies have shown that rearing infant rat pups under conditions of continuous moderate-level noise delayed the emergence of adult-like topographic representational order and the refinement of response selectivity in the primary auditory cortex (A1) beyond normal developmental benchmarks and indefinitely blocked the closure of a brief, critical-period window. To gain insight into the molecular mechanisms of these physiological changes after noise rearing, we studied expression of the AMPA receptor subunit GluR2 and GABA(A) receptor subunit beta3 in the auditory cortex after noise rearing. Our results show that continuous moderate-level noise rearing during the early stages of development decreases the expression levels of GluR2 and GABA(A)beta3. Furthermore, noise rearing also induced a significant decrease in the level of GABA(A) receptors relative to AMPA receptors. However, in adult rats, noise rearing did not have significant effects on GluR2 and GABA(A)beta3 expression or the ratio between the two units. These changes could have a role in the cellular mechanisms involved in the delayed maturation of auditory receptive field structure and topographic organization of A1 after noise rearing. Copyright 2009 Wiley-Liss, Inc.

  19. Increased phase synchronization during continuous face integration measured simultaneously with EEG and fMRI.

    Science.gov (United States)

    Kottlow, Mara; Jann, Kay; Dierks, Thomas; Koenig, Thomas

    2012-08-01

    Gamma zero-lag phase synchronization has been measured in the animal brain during visual binding. Human scalp EEG studies used a phase locking factor (trial-to-trial phase-shift consistency) or gamma amplitude to measure binding but did not analyze common-phase signals so far. This study introduces a method to identify networks oscillating with near zero-lag phase synchronization in human subjects. We presented unpredictably moving face parts (NOFACE) which - during some periods - produced a complete schematic face (FACE). The amount of zero-lag phase synchronization was measured using global field synchronization (GFS). GFS provides global information on the amount of instantaneous coincidences in specific frequencies throughout the brain. Gamma GFS was increased during the FACE condition. To localize the underlying areas, we correlated gamma GFS with simultaneously recorded BOLD responses. Positive correlates comprised the bilateral middle fusiform gyrus and the left precuneus. These areas may form a network of areas transiently synchronized during face integration, including face-specific as well as binding-specific regions and regions for visual processing in general. Thus, the amount of zero-lag phase synchronization between remote regions of the human visual system can be measured with simultaneously acquired EEG/fMRI. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Frontal midline theta rhythm and gamma power changes during focused attention on mental calculation: an MEG beamformer analysis

    Directory of Open Access Journals (Sweden)

    Ryouhei eIshii

    2014-06-01

    Full Text Available Frontal midline theta rhythm (Fmθ appears widely distributed over medial prefrontal areas in EEG recordings, indicating focused attention. Although mental calculation is often used as an attention-demanding task, little has been reported on calculation-related activation in Fmθ experiments. In this study we used spatially filtered MEG and permutation analysis to precisely localize cortical generators of the magnetic counterpart of Fmθ, as well as other sources of oscillatory activity associated with mental calculation processing (i.e., arithmetic subtraction. Our results confirmed and extended earlier EEG/MEG studies indicating that Fmθ during mental calculation is generated in the dorsal anterior cingulate and adjacent medial prefrontal cortex. Mental subtraction was also associated with gamma event-related synchronization, as an index of activation, in right parietal regions subserving basic numerical processing and number-based spatial attention. Gamma event-related desynchronization appeared in the right lateral prefrontal cortex, likely representing a mechanism to interrupt neural activity that can interfere with the ongoing cognitive task.

  1. Synchronizing Strategies under Partial Observability

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Laursen, Simon; Srba, Jiri

    2014-01-01

    Embedded devices usually share only partial information about their current configurations as the communication bandwidth can be restricted. Despite this, we may wish to bring a failed device into a given predetermined configuration. This problem, also known as resetting or synchronizing words, has...... been intensively studied for systems that do not provide any information about their configurations. In order to capture more general scenarios, we extend the existing theory of synchronizing words to synchronizing strategies, and study the synchronization, short-synchronization and subset...

  2. Synchronizing XPath Views

    DEFF Research Database (Denmark)

    Pedersen, Dennis; Pedersen, Torben Bach

    2004-01-01

    The increasing availability of XML-based data sources, e.g., for publishing data on the WWW, means that more and more applications (data consumers) rely on accessing and using XML data. Typically, the access is achieved by defining views over the XML data, and accessing data through these views....... However, the XML data sources are often independent of the data consumers and may change their schemas without notification, invalidating the XML views defined by the data consumers. This requires the view definitions to be updated to reflect the new structure of the data sources, a process termed view...... synchronization. XPath is the most commonly used language for retrieving parts of XML documents, and is thus an important cornerstone for XML view definitions. This paper presents techniques for discovering schema changes in XML data sources and synchronizing XPath-based views to reflect these schema changes...

  3. LHC synchronization test successful

    CERN Multimedia

    The synchronization of the LHC's clockwise beam transfer system and the rest of CERN's accelerator chain was successfully achieved last weekend. Tests began on Friday 8 August when a single bunch of a few particles was taken down the transfer line from the SPS accelerator to the LHC. After a period of optimization, one bunch was kicked up from the transfer line into the LHC beam pipe and steered about 3 kilometres around the LHC itself on the first attempt. On Saturday, the test was repeated several times to optimize the transfer before the operations group handed the machine back for hardware commissioning to resume on Sunday. The anti-clockwise synchronization systems will be tested over the weekend of 22 August.Picture:http://lhc-injection-test.web.cern.ch/lhc-injection-test/

  4. Programmable synchronous communications module

    International Nuclear Information System (INIS)

    Horelick, D.

    1979-10-01

    The functional characteristics of a programmable, synchronous serial communications CAMAC module with buffering in block format are described. Both bit and byte oriented protocols can be handled in full duplex depending on the program implemented. The main elements of the module are a Signetics 2652 Multi-Protocol Communications Controller, a Zilog Z-808 8 bit microprocessor with PROM and RAM, and FIFOs for buffering

  5. Cooperative synchronized assemblies enhance orientation discrimination.

    Science.gov (United States)

    Samonds, Jason M; Allison, John D; Brown, Heather A; Bonds, A B

    2004-04-27

    There is no clear link between the broad tuning of single neurons and the fine behavioral capabilities of orientation discrimination. We recorded from populations of cells in the cat visual cortex (area 17) to examine whether the joint activity of cells can support finer discrimination than found in individual responses. Analysis of joint firing yields a substantial advantage (i.e., cooperation) in fine-angle discrimination. This cooperation increases to more considerable levels as the population of an assembly is increased. The cooperation in a population of six cells provides encoding of orientation with an information advantage that is at least 2-fold in terms of requiring either fewer cells or less time than independent coding. This cooperation suggests that correlated or synchronized activity can increase information.

  6. Gamma Knife

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Gamma Knife Gamma Knife® is a radiation therapy that uses computerized ... If you're scheduled for radiation therapy using Gamma Knife®, a treatment team consisting of a radiation ...

  7. Phase synchronization of neuronal noise in mouse hippocampal epileptiform dynamics.

    Science.gov (United States)

    Serletis, Demitre; Carlen, Peter L; Valiante, Taufik A; Bardakjian, Berj L

    2013-02-01

    Organized brain activity is the result of dynamical, segregated neuronal signals that may be used to investigate synchronization effects using sophisticated neuroengineering techniques. Phase synchrony analysis, in particular, has emerged as a promising methodology to study transient and frequency-specific coupling effects across multi-site signals. In this study, we investigated phase synchronization in intracellular recordings of interictal and ictal epileptiform events recorded from pairs of cells in the whole (intact) mouse hippocampus. In particular, we focused our analysis on the background noise-like activity (NLA), previously reported to exhibit complex neurodynamical properties. Our results show evidence for increased linear and nonlinear phase coupling in NLA across three frequency bands [theta (4-10 Hz), beta (12-30 Hz) and gamma (30-80 Hz)] in the ictal compared to interictal state dynamics. We also present qualitative and statistical evidence for increased phase synchronization in the theta, beta and gamma frequency bands from paired recordings of ictal NLA. Overall, our results validate the use of background NLA in the neurodynamical study of epileptiform transitions and suggest that what is considered "neuronal noise" is amenable to synchronization effects in the spatiotemporal domain.

  8. Oscillations in the prefrontal cortex: a gateway to memory and attention.

    NARCIS (Netherlands)

    Benchenane, K.; Tiesinga, P.H.; Battaglia, F.P.

    2011-01-01

    We consider the potential role of oscillations in the prefrontal cortex (PFC) in mediating attention, working memory and memory consolidation. Activity in the theta, beta, and gamma bands is related to communication between PFC and different brain areas. While gamma/beta oscillations mediate

  9. Exploiting Schemas in Data Synchronization

    DEFF Research Database (Denmark)

    Foster, J. Nathan; Greenwald, Michael B.; Kirkegaard, Christian

    2005-01-01

    Increased reliance on optimistic data replication has led to burgeoning interest in tools and frameworks for disconnected updates to replicated data.We have implemented a generic synchronization framework, called HARMONY, that can be used to build state-based synchronizers for a wide variety...... of tree-structureddata formats. A novel feature of this framework is that the synchronization process - in particular, the recognition of conflicts - is driven by the schema of the structures being synchronized.We formalize HARMONY's synchronization algorithm, state a simple and intuitive specification......, and illustrate, using simple address books as a case study, how it can be used to synchronize trees representing a variety of specific forms of applicationdata, including sets, records, tuples, and relations....

  10. Content-based intermedia synchronization

    Science.gov (United States)

    Oh, Dong-Young; Sampath-Kumar, Srihari; Rangan, P. Venkat

    1995-03-01

    Inter-media synchronization methods developed until now have been based on syntactic timestamping of video frames and audio samples. These methods are not fully appropriate for the synchronization of multimedia objects which may have to be accessed individually by their contents, e.g. content-base data retrieval. We propose a content-based multimedia synchronization scheme in which a media stream is viewed as hierarchial composition of smaller objects which are logically structured based on the contents, and the synchronization is achieved by deriving temporal relations among logical units of media object. content-based synchronization offers several advantages such as, elimination of the need for time stamping, freedom from limitations of jitter, synchronization of independently captured media objects in video editing, and compensation for inherent asynchronies in capture times of video and audio.

  11. Early-onset cortico-cortical synchronization in the hemiparkinsonian rat model

    NARCIS (Netherlands)

    Javor-Duray, B.N.; Vinck, M.; van der Roest, M.; Mulder, A.B.; Stam, C.J.; Berendse, H.W.; Voorn, P.

    2015-01-01

    Changes in synchronized neuronal oscillatory activity are reported in both cortex and basal ganglia of Parkinson’s disease patients. The origin of these changes, in particular their relationship with the progressive nigrostriatal dopaminergic denervation, is unknown. Therefore, in the present study

  12. Physical Layer Ethernet Clock Synchronization

    Science.gov (United States)

    2010-11-01

    42 nd Annual Precise Time and Time Interval (PTTI) Meeting 77 PHYSICAL LAYER ETHERNET CLOCK SYNCHRONIZATION Reinhard Exel, Georg...oeaw.ac.at Nikolaus Kerö Oregano Systems, Mohsgasse 1, 1030 Wien, Austria E-mail: nikolaus.keroe@oregano.at Abstract Clock synchronization ...is a service widely used in distributed networks to coordinate data acquisition and actions. As the requirement to achieve tighter synchronization

  13. The Synchronic Fallacy

    DEFF Research Database (Denmark)

    Hansen, Erik W.

    , to exist, in order to underline the cognitive basis of man's (comprehension of) existence. A theory of history (existence) is set up on the basis of the traditional dualistic sign function, and the traditional sound-law concept and sound development are reinterpreted in terms of the theory's system...... of definitions. Historical linguistics ('change') is not dependent on an arbitrary synchronic theory. The two language universals polysemy and synonymy are reinterpreted and defined in accordance with the advanced definitions. Louis Hjelmslev's glossematic theory is the general horizon of the argument...

  14. Control of synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Synchronous motors are indubitably the most effective device to drive industrial production systems and robots with precision and rapidity. Their control law is thus critical for combining at the same time high productivity to reduced energy consummation. As far as possible, the control algorithms must exploit the properties of these actuators. Therefore, this work draws on well adapted models resulting from the Park's transformation, for both the most traditional machines with sinusoidal field distribution and for machines with non-sinusoidal field distribution which are more and more used in

  15. Psychic energy and synchronicity.

    Science.gov (United States)

    Zabriskie, Beverley

    2014-04-01

    Given Jung's interest in physics' formulations of psychic energy and the concept of time, overlaps and convergences in the themes addressed in analytical psychology and in quantum physics are to be expected. These are informed by the active intersections between the matter of mind and mindfulness re matter. In 1911, Jung initiated dinners with Einstein. Jung's definition of libido in the pivotal 1912 Fordham Lectures reveals the influence of these conversations. Twenty years later, a significant period in physics, Wolfgang Pauli contacted Jung. Their collaboration led to the theory of synchronicity. © 2014, The Society of Analytical Psychology.

  16. Laser Megajoule synchronization system

    International Nuclear Information System (INIS)

    Luttmann, M.; Pastor, J.F; Drouet, V.; Prat, M.; Raimbourg, J.; Adolf, A.

    2011-01-01

    This paper describes the synchronisation system under development on the Laser Megajoule (LMJ) in order to synchronize the laser quads on the target to better than 40 ps rms. Our architecture is based on a Timing System (TS) which delivers trigger signals with jitter down to 15 ps rms coupled with an ultra precision timing system with 5 ps rms jitter. In addition to TS, a sensor placed at the target chamber center measures the arrival times of the 3 omega nano joule laser pulses generated by front end shots. (authors)

  17. Interneuron Deficit Associates Attenuated Network Synchronization to Mismatch of Energy Supply and Demand in Aging Mouse Brains

    DEFF Research Database (Denmark)

    Jessen, Sanne Barsballe; Mathiesen, Claus; Lind, Barbara Lykke

    2017-01-01

    Higher cognitive functions depend critically on synchronized network activity in the gamma range (30-100 Hz), which results from activity of fast-spiking parvalbumin-positive (PV) interneurons. Here, we examined synaptic activity in the gamma band in relation to PV interneuron activity, stimulati...

  18. Accelerated testing for synchronous orbits

    Science.gov (United States)

    Mcdermott, P.

    1981-01-01

    Degradation of batteries during synchronous orbits is analyzed. Discharge and recharge rates are evaluated. The functional relationship between charge rate and degradation is mathematically determined.

  19. Medical issues in synchronized skating.

    Science.gov (United States)

    Abbott, Kristin; Hecht, Suzanne

    2013-01-01

    Synchronized skating is a unique sport of team skating and currently represents the largest competitive discipline in U.S. Figure Skating. Synchronized skating allows skaters to compete as part of a team with opportunities to represent their country in international competitions. As the popularity of the sport continues to grow, more of these athletes will present to sports medicine clinics with injuries and illnesses related to participation in synchronized skating. The purpose of this article is to review the common injuries and medical conditions affecting synchronized skaters.

  20. Enhancement of synchronized activity between hippocampal CA1 neurons during initial storage of associative fear memory.

    Science.gov (United States)

    Liu, Yu-Zhang; Wang, Yao; Shen, Weida; Wang, Zhiru

    2017-08-01

    Learning and memory storage requires neuronal plasticity induced in the hippocampus and other related brain areas, and this process is thought to rely on synchronized activity in neural networks. We used paired whole-cell recording in vivo to examine the synchronized activity that was induced in hippocampal CA1 neurons by associative fear learning. We found that both membrane potential synchronization and spike synchronization of CA1 neurons could be transiently enhanced after task learning, as observed on day 1 but not day 5. On day 1 after learning, CA1 neurons showed a decrease in firing threshold and rise times of suprathreshold membrane potential changes as well as an increase in spontaneous firing rates, possibly contributing to the enhancement of spike synchronization. The transient enhancement of CA1 neuronal synchronization may play important roles in the induction of neuronal plasticity for initial storage and consolidation of associative memory. The hippocampus is critical for memory acquisition and consolidation. This function requires activity- and experience-induced neuronal plasticity. It is known that neuronal plasticity is largely dependent on synchronized activity. As has been well characterized, repetitive correlated activity of presynaptic and postsynaptic neurons can lead to long-term modifications at their synapses. Studies on network activity have also suggested that memory processing in the hippocampus may involve learning-induced changes of neuronal synchronization, as observed in vivo between hippocampal CA3 and CA1 networks as well as between the rhinal cortex and the hippocampus. However, further investigation of learning-induced synchronized activity in the hippocampus is needed for a full understanding of hippocampal memory processing. In this study, by performing paired whole-cell recording in vivo on CA1 pyramidal cells (PCs) in anaesthetized adult rats, we examined CA1 neuronal synchronization before and after associative fear

  1. Micro-calibration of space and motion by photoreceptors synchronized in parallel with cortical oscillations: A unified theory of visual perception.

    Science.gov (United States)

    Jerath, Ravinder; Cearley, Shannon M; Barnes, Vernon A; Jensen, Mike

    2018-01-01

    A fundamental function of the visual system is detecting motion, yet visual perception is poorly understood. Current research has determined that the retina and ganglion cells elicit responses for motion detection; however, the underlying mechanism for this is incompletely understood. Previously we proposed that retinogeniculo-cortical oscillations and photoreceptors work in parallel to process vision. Here we propose that motion could also be processed within the retina, and not in the brain as current theory suggests. In this paper, we discuss: 1) internal neural space formation; 2) primary, secondary, and tertiary roles of vision; 3) gamma as the secondary role; and 4) synchronization and coherence. Movement within the external field is instantly detected by primary processing within the space formed by the retina, providing a unified view of the world from an internal point of view. Our new theory begins to answer questions about: 1) perception of space, erect images, and motion, 2) purpose of lateral inhibition, 3) speed of visual perception, and 4) how peripheral color vision occurs without a large population of cones located peripherally in the retina. We explain that strong oscillatory activity influences on brain activity and is necessary for: 1) visual processing, and 2) formation of the internal visuospatial area necessary for visual consciousness, which could allow rods to receive precise visual and visuospatial information, while retinal waves could link the lateral geniculate body with the cortex to form a neural space formed by membrane potential-based oscillations and photoreceptors. We propose that vision is tripartite, with three components that allow a person to make sense of the world, terming them "primary, secondary, and tertiary roles" of vision. Finally, we propose that Gamma waves that are higher in strength and volume allow communication among the retina, thalamus, and various areas of the cortex, and synchronization brings cortical

  2. Synchronized dynamic dose reconstruction

    International Nuclear Information System (INIS)

    Litzenberg, Dale W.; Hadley, Scott W.; Tyagi, Neelam; Balter, James M.; Ten Haken, Randall K.; Chetty, Indrin J.

    2007-01-01

    Variations in target volume position between and during treatment fractions can lead to measurable differences in the dose distribution delivered to each patient. Current methods to estimate the ongoing cumulative delivered dose distribution make idealized assumptions about individual patient motion based on average motions observed in a population of patients. In the delivery of intensity modulated radiation therapy (IMRT) with a multi-leaf collimator (MLC), errors are introduced in both the implementation and delivery processes. In addition, target motion and MLC motion can lead to dosimetric errors from interplay effects. All of these effects may be of clinical importance. Here we present a method to compute delivered dose distributions for each treatment beam and fraction, which explicitly incorporates synchronized real-time patient motion data and real-time fluence and machine configuration data. This synchronized dynamic dose reconstruction method properly accounts for the two primary classes of errors that arise from delivering IMRT with an MLC: (a) Interplay errors between target volume motion and MLC motion, and (b) Implementation errors, such as dropped segments, dose over/under shoot, faulty leaf motors, tongue-and-groove effect, rounded leaf ends, and communications delays. These reconstructed dose fractions can then be combined to produce high-quality determinations of the dose distribution actually received to date, from which individualized adaptive treatment strategies can be determined

  3. SLAC synchronous condenser

    International Nuclear Information System (INIS)

    Corvin, C.

    1995-06-01

    A synchronous condenser is a synchronous machine that generates reactive power that leads real power by 90 degrees in phase. The leading reactive power generated by the condenser offsets or cancels the normal lagging reactive power consumed by inductive and nonlinear loads at the accelerator complex. The quality of SLAC's utility power is improved with the addition of the condenser. The inertia of the condenser's 35,000 pound rotor damps and smoothes voltage excursions on two 12 kilovolt master substation buses, improving voltage regulation site wide. The condenser absorbs high frequency transients and noise in effect ''scrubbing'' the electric system power at its primary distribution source. In addition, the condenser produces a substantial savings in power costs. Federal and investor owned utilities that supply electric power to SLAC levy a monthly penalty for lagging reactive power delivered to the site. For the 1993 fiscal year this totaled over $285,000 in added costs for the year. By generating leading reactive power on site, thereby reducing total lagging reactive power requirements, a substantial savings in electric utility bills is achieved. Actual savings of $150,000 or more a year are possible depending on experimental operations

  4. FPGA based fast synchronous serial multi-wire links synchronization

    Science.gov (United States)

    Pozniak, Krzysztof T.

    2013-10-01

    The paper debates synchronization method of multi-wire, serial link of constant latency, by means of pseudo-random numbers generators. The solution was designed for various families of FPGA circuits. There were debated synchronization algorithm and functional structure of parameterized transmitter and receiver modules. The modules were realized in VHDL language in a behavioral form.

  5. Effects of selective REM sleep deprivation on prefrontal gamma activity and executive functions.

    Science.gov (United States)

    Corsi-Cabrera, M; Rosales-Lagarde, A; del Río-Portilla, Y; Sifuentes-Ortega, R; Alcántara-Quintero, B

    2015-05-01

    Given that the dorsolateral prefrontal cortex is involved in executive functions and is deactivated and decoupled from posterior associative regions during REM sleep, that Gamma temporal coupling involved in information processing is enhanced during REM sleep, and that adult humans spend about 90 min of every 24h in REM sleep, it might be expected that REM sleep deprivation would modify Gamma temporal coupling and have a deteriorating effect on executive functions. We analyzed EEG Gamma activity and temporal coupling during implementation of a rule-guided task before and after REM sleep deprivation and its effect on verbal fluency, flexible thinking and selective attention. After two nights in the laboratory for adaptation, on the third night subjects (n=18) were randomly assigned to either selective REM sleep deprivation effectuated by awakening them at each REM sleep onset or, the same number of NREM sleep awakenings as a control for unspecific effects of sleep interruptions. Implementation of abstract rules to guide behavior required greater activation and synchronization of Gamma activity in the frontopolar regions after REM sleep reduction from 20.6% at baseline to just 3.93% of total sleep time. However, contrary to our hypothesis, both groups showed an overall improvement in executive task performance and no effect on their capacity to sustain selective attention. These results suggest that after one night of selective REM sleep deprivation executive functions can be compensated by increasing frontal activation and they still require the participation of supervisory control by frontopolar regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Synchronization dynamics of two different dynamical systems

    International Nuclear Information System (INIS)

    Luo, Albert C.J.; Min Fuhong

    2011-01-01

    Highlights: → Synchronization dynamics of two distinct dynamical systems. → Synchronization, de-synchronization and instantaneous synchronization. → A controlled pendulum synchronizing with the Duffing oscillator. → Synchronization invariant set. → Synchronization parameter map. - Abstract: In this paper, synchronization dynamics of two different dynamical systems is investigated through the theory of discontinuous dynamical systems. The necessary and sufficient conditions for the synchronization, de-synchronization and instantaneous synchronization (penetration or grazing) are presented. Using such a synchronization theory, the synchronization of a controlled pendulum with the Duffing oscillator is systematically discussed as a sampled problem, and the corresponding analytical conditions for the synchronization are presented. The synchronization parameter study is carried out for a better understanding of synchronization characteristics of the controlled pendulum and the Duffing oscillator. Finally, the partial and full synchronizations of the controlled pendulum with periodic and chaotic motions are presented to illustrate the analytical conditions. The synchronization of the Duffing oscillator and pendulum are investigated in order to show the usefulness and efficiency of the methodology in this paper. The synchronization invariant domain is obtained. The technique presented in this paper should have a wide spectrum of applications in engineering. For example, this technique can be applied to the maneuvering target tracking, and the others.

  7. Business cycle synchronization in Europe

    DEFF Research Database (Denmark)

    Bergman, Ulf Michael; Jonung, Lars

    2011-01-01

    In this paper we study business cycle synchronization in the three Scandinavian countries Denmark, Norway and Sweden prior to, during and after the Scandinavian Currency Union 1873–1913. We find that the degree of synchronization tended to increase during the currency union, thus supporting earlier...

  8. Biologically Inspired Intercellular Slot Synchronization

    Directory of Open Access Journals (Sweden)

    Alexander Tyrrell

    2009-01-01

    Full Text Available The present article develops a decentralized interbase station slot synchronization algorithm suitable for cellular mobile communication systems. The proposed cellular firefly synchronization (CelFSync algorithm is derived from the theory of pulse-coupled oscillators, common to describe synchronization phenomena in biological systems, such as the spontaneous synchronization of fireflies. In order to maintain synchronization among base stations (BSs, even when there is no direct link between adjacent BSs, some selected user terminals (UTs participate in the network synchronization process. Synchronization emerges by exchanging two distinct synchronization words, one transmitted by BSs and the other by active UTs, without any a priori assumption on the initial timing misalignments of BSs and UTs. In large-scale networks with inter-BS site distances up to a few kilometers, propagation delays severely affect the attainable timing accuracy of CelFSync. We show that by an appropriate combination of CelFSync with the timing advance procedure, which aligns uplink transmission of UTs to arrive simultaneously at the BS, a timing accuracy within a fraction of the inter-BS propagation delay is retained.

  9. Introduction to media synchronization (Mediasync)

    NARCIS (Netherlands)

    M.A. Montagud Climent (Mario); P.S. Cesar Garcia (Pablo Santiago); F. Boronat (Fernando); A.J. Jansen (Jack)

    2018-01-01

    textabstractMedia synchronization is a core research area in multimedia systems. This chapter introduces the area by providing key definitions, classifications, and examples. It also discusses the relevance of different types of media synchronization to ensure satisfactory Quality of Experience

  10. Distributed Synchronization in Communication Networks

    Science.gov (United States)

    2018-01-24

    synchronization. Secondly, it is known that identical oscillators with sin() coupling functions are guaranteed to synchronize in phase on a complete...provide sufficient conditions for phase- locking , i.e., convergence to a stable equilibrium almost surely. We additionally find conditions when the

  11. [Synchronous sigmoideum- and caecum volvulus].

    Science.gov (United States)

    Berg, Anna Korsgaard; Perdawood, Sharaf Karim

    2015-09-21

    This case presents a synchronous sigmoid- and caecum volvulus in a 69-year old man with Parkinson's disease, hypertension and previous history of colonic volvulus. On admission the patient had abdominal pain, nausea, vomiting and constipation. The CT scan showed a sigmoid volvulus with a dilated caecum. The synchronous sigmoideum- and caecum volvulus was diagnosed intraoperatively. Total colectomy and ileostomy was performed.

  12. Digital synchronization and communication techniques

    Science.gov (United States)

    Lindsey, William C.

    1992-01-01

    Information on digital synchronization and communication techniques is given in viewgraph form. Topics covered include phase shift keying, modems, characteristics of open loop digital synchronizers, an open loop phase and frequency estimator, and a digital receiver structure using an open loop estimator in a decision directed architecture.

  13. Laparoscopic adrenal cortex

    International Nuclear Information System (INIS)

    Peyrolou, A.; Salom, A.; Harguindeguy; Taroco, L.; Ardao, G.; Broli, F. . E mail: andresssss@adinet.com.uy

    2005-01-01

    The paper presents the case of a female patient who carried an aldosterone-secreting tumor of adrenal cortex.In the analysis of diagnosis and para clinical examinations there is particular reference to the laparoscopic surgery mode of treatment.Diagnosis should be established on the basis of clinical and laboratory tests (hypopotassemia and hyperaldosteronism).Tumor topography was confirmed through CT scan, MRI and Scintiscan in left adrenal cortex.Resection was consequently made through laparoscopic surgery.The patients evolution was excellent from the surgical viewpoint,with I levels of blood pressure, potassium and aldosterone returned to normal

  14. Neural synchronization during face-to-face communication.

    Science.gov (United States)

    Jiang, Jing; Dai, Bohan; Peng, Danling; Zhu, Chaozhe; Liu, Li; Lu, Chunming

    2012-11-07

    Although the human brain may have evolutionarily adapted to face-to-face communication, other modes of communication, e.g., telephone and e-mail, increasingly dominate our modern daily life. This study examined the neural difference between face-to-face communication and other types of communication by simultaneously measuring two brains using a hyperscanning approach. The results showed a significant increase in the neural synchronization in the left inferior frontal cortex during a face-to-face dialog between partners but none during a back-to-back dialog, a face-to-face monologue, or a back-to-back monologue. Moreover, the neural synchronization between partners during the face-to-face dialog resulted primarily from the direct interactions between the partners, including multimodal sensory information integration and turn-taking behavior. The communicating behavior during the face-to-face dialog could be predicted accurately based on the neural synchronization level. These results suggest that face-to-face communication, particularly dialog, has special neural features that other types of communication do not have and that the neural synchronization between partners may underlie successful face-to-face communication.

  15. Movement-related changes in local and long-range synchronization in Parkinson’s disease revealed by simultaneous magnetoencephalography and intracranial recordings

    Science.gov (United States)

    Litvak, Vladimir; Eusebio, Alexandre; Jha, Ashwani; Oostenveld, Robert; Barnes, Gareth; Foltynie, Tom; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan I.; Friston, Karl; Brown, Peter

    2012-01-01

    Functional neurosurgery has afforded the opportunity to assess interactions between populations of neurons in the human cerebral cortex and basal ganglia in patients with Parkinson’s disease (PD). Interactions occur over a wide range of frequencies, and the functional significance of those above 30 Hz is particularly unclear. Do they improve movement and, if so, in what way? We acquired simultaneously magnetoencephalography (MEG) and direct recordings from the subthalamic nucleus (STN) in 17 PD patients. We examined the effect of synchronous and sequential finger movements and of the dopamine prodrug levodopa on induced power in the contralateral primary motor cortex (M1) and STN and on the coherence between the two structures. We observed discrete peaks in M1 and STN power over 60-90 Hz and 300-400 Hz. All these power peaks increased with movement and levodopa treatment. Only STN activity over 60-90 Hz was coherent with activity in M1. Directionality analysis showed that STN gamma activity at 60-90 Hz tended to drive gamma activity in M1. The effects of levodopa on both local and distant synchronisation over 60-90 Hz correlated with the degree of improvement in bradykinesia-rigidity, as did local STN activity at 300-400 Hz. Despite this, there were no effects of movement type, nor interactions between movement type and levodopa in the STN, nor in the coherence between STN and M1. We conclude that synchronisation over 60-90 Hz in the basal ganglia cortical network is prokinetic, but likely through a modulatory effect rather than any involvement in explicit motor processing. PMID:22855804

  16. Human gamma oscillations during slow wave sleep.

    Directory of Open Access Journals (Sweden)

    Mario Valderrama

    Full Text Available Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS. At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30-50 Hz and high (60-120 Hz frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves ("IN-phase" pattern, confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave ("ANTI-phase" pattern. This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks.

  17. Experience drives synchronization

    DEFF Research Database (Denmark)

    Pallesen, Karen Johanne; Bailey, Christopher J; Brattico, Elvira

    2015-01-01

    Musical expertise is associated with structural and functional changes in the brain that underlie facilitated auditory perception. We investigated whether the phase locking (PL) and amplitude modulations (AM) of neuronal oscillations in response to musical chords are correlated with musical...... and non-musicians the long-latency (> 200 ms) gamma-band PL was also sensitive to chord identity, and particularly to the amplitude modulations (beats) of the dissonant chord. These findings suggest that musical expertise modulates oscillation PL to musical chords and that the strength...

  18. Synchronous presentation of nasopharyngeal and renal cell carcinomas

    Directory of Open Access Journals (Sweden)

    Cem Boruban

    2006-06-01

    Full Text Available We report a rare case of synchronous presentation of nasopharyngeal and renal cell carcinomas in a-50-year old male patient with long standing smoking history. The patient was initially presented with a diagnosis of nasopharyngeal carcinoma. During staging process, the abdominal computed tomography detected a right renal solid mass, 6.5 cm in diameter, originating from posterior portion of the right renal cortex. Right radical nephrectomy was performed and pathological examination revealed renal cell carcinoma. Smoking was thought to be a risk factor for both cancers. Systemic evaluation of kidney should not be discarded in patients diagnosed with nasopharyngeal carcinoma living in western countries with a smoking history.

  19. Generalized synchronization between chimera states

    Science.gov (United States)

    Andrzejak, Ralph G.; Ruzzene, Giulia; Malvestio, Irene

    2017-05-01

    Networks of coupled oscillators in chimera states are characterized by an intriguing interplay of synchronous and asynchronous motion. While chimera states were initially discovered in mathematical model systems, there is growing experimental and conceptual evidence that they manifest themselves also in natural and man-made networks. In real-world systems, however, synchronization and desynchronization are not only important within individual networks but also across different interacting networks. It is therefore essential to investigate if chimera states can be synchronized across networks. To address this open problem, we use the classical setting of ring networks of non-locally coupled identical phase oscillators. We apply diffusive drive-response couplings between pairs of such networks that individually show chimera states when there is no coupling between them. The drive and response networks are either identical or they differ by a variable mismatch in their phase lag parameters. In both cases, already for weak couplings, the coherent domain of the response network aligns its position to the one of the driver networks. For identical networks, a sufficiently strong coupling leads to identical synchronization between the drive and response. For non-identical networks, we use the auxiliary system approach to demonstrate that generalized synchronization is established instead. In this case, the response network continues to show a chimera dynamics which however remains distinct from the one of the driver. Hence, segregated synchronized and desynchronized domains in individual networks congregate in generalized synchronization across networks.

  20. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.

    Science.gov (United States)

    Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor

    2012-01-29

    Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories.

  1. Three types of generalized synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Yang Junzhong [School of Science, Beijing University of Posts and Telecomunications, Beijing 100876 (China)]. E-mail: jzyang@bupt.edu.cn; Hu Gang [China Center for Advanced Science and Technology (CCAST) (World Laboratory), PO Box 8730, Beijing 100080 (China) and Department of Physics, Beijing Normal University, Beijing 100875 (China)]. E-mail: ganghu@bnu.edu.cn

    2007-02-05

    The roles played by drive and response systems on generalized chaos synchronization (GS) are studied. And the generalized synchronization is classified, based on these roles, to three distinctive types: the passive GS which is mainly determined by the response system and insensitive to the driving signal; the resonant GS where phase synchronization between the drive and response systems is preceding GS; and the interacting GS where both the drive and response have influences on the status of GS. The features of these GS types and the possible changes from one types to others are investigated.

  2. Three types of generalized synchronization

    International Nuclear Information System (INIS)

    Yang Junzhong; Hu Gang

    2007-01-01

    The roles played by drive and response systems on generalized chaos synchronization (GS) are studied. And the generalized synchronization is classified, based on these roles, to three distinctive types: the passive GS which is mainly determined by the response system and insensitive to the driving signal; the resonant GS where phase synchronization between the drive and response systems is preceding GS; and the interacting GS where both the drive and response have influences on the status of GS. The features of these GS types and the possible changes from one types to others are investigated

  3. [Neuroanatomy of Frontal Association Cortex].

    Science.gov (United States)

    Takada, Masahiko

    2016-11-01

    The frontal association cortex is composed of the prefrontal cortex and the motor-related areas except the primary motor cortex (i.e., the so-called higher motor areas), and is well-developed in primates, including humans. The prefrontal cortex receives and integrates large bits of diverse information from the parietal, temporal, and occipital association cortical areas (termed the posterior association cortex), and paralimbic association cortical areas. This information is then transmitted to the primary motor cortex via multiple motor-related areas. Given these facts, it is likely that the prefrontal cortex exerts executive functions for behavioral control. The functional input pathways from the posterior and paralimbic association cortical areas to the prefrontal cortex are classified primarily into six groups. Cognitive signals derived from the prefrontal cortex are conveyed to the rostral motor-related areas to transform them into motor signals, which finally enter the primary motor cortex via the caudal motor-related areas. Furthermore, it has been shown that, similar to the primary motor cortex, areas of the frontal association cortex form individual networks (known as "loop circuits") with the basal ganglia and cerebellum via the thalamus, and hence are extensively involved in the expression and control of behavioral actions.

  4. A computational role for bistability and traveling waves in motor cortex

    Directory of Open Access Journals (Sweden)

    Stewart eHeitmann

    2012-09-01

    Full Text Available Adaptive changes in behavior require rapid changes in brain states yet the brain must also remain stable. We investigated two neural mechanisms for evoking rapid transitions between spatiotemporal synchronization patterns of beta oscillations (13--30Hz in motor cortex. Cortex was modeled as a sheet of neural oscillators that were spatially coupled using a center-surround connection topology. Manipulating the inhibitory surround was found to evoke reliable transitions between synchronous oscillation patterns and traveling waves. These transitions modulated the simulated local field potential in agreement with physiological observations in humans. Intermediate levels of surround inhibition were also found to produce bistable coupling topologies that supported both waves and synchrony. State-dependent perturbation between bistable states produced very rapid transitions but were less reliable. We surmise that motor cortex may thus employ state-dependent computation to achieve very rapid changes between bistable motor states when the demand for speed exceeds the demand for accuracy.

  5. Noncoherent Symbol Synchronization Techniques

    Science.gov (United States)

    Simon, Marvin

    2005-01-01

    Traditional methods for establishing symbol synchronization (sync) in digital communication receivers assume that carrier sync has already been established, i.e., the problem is addressed at the baseband level assuming that a 'perfect' estimate of carrier phase is available. We refer to this approach as coherent symbol sync. Since, for NRZ signaling, a suppressed carrier sync loop such as an I-Q Costas loop includes integrate-and-dump (I and D) filters in its in-phase (1) and quadrature (Q) arms, the traditional approach is to first track the carrier in the absence of symbol sync information, then feed back the symbol sync estimate to these filters, and then iterate between the two to a desirable operating level In this paper, we revisit the symbol sync problem by examining methods for obtaining such sync in the absence of carrier phase information, i.e., so-called noncoherent symbol sync loops. We compare the performance of these loops with that of a well-known coherent symbol sync loop and examine the conditions under which one is preferable over the other.

  6. The making of analog module for gamma camera interface

    International Nuclear Information System (INIS)

    Yulinarsari, Leli; Rl, Tjutju; Susila, Atang; Sukandar

    2003-01-01

    The making of an analog module for gamma camera has been conducted. For computerization of planar gamma camera 37 PMT it has been developed interface hardware technology and software between the planar gamma camera with PC. With this interface gamma camera image information (Originally analog signal) was changed to digital single, therefore processes of data acquisition, image quality increase and data analysis as well as data base processing can be conducted with the help of computers, there are three gamma camera main signals, i.e. X, Y and Z . This analog module makes digitation of analog signal X and Y from the gamma camera that conveys position information coming from the gamma camera crystal. Analog conversion to digital was conducted by 2 converters ADC 12 bit with conversion time 800 ns each, conversion procedure for each coordinate X and Y was synchronized using suitable strobe signal Z for information acceptance

  7. Spontaneous Gamma Activity in Schizophrenia.

    Science.gov (United States)

    Hirano, Yoji; Oribe, Naoya; Kanba, Shigenobu; Onitsuka, Toshiaki; Nestor, Paul G; Spencer, Kevin M

    2015-08-01

    A major goal of translational neuroscience is to identify neural circuit abnormalities in neuropsychiatric disorders that can be studied in animal models to facilitate the development of new treatments. Oscillations in the gamma band (30-100 Hz) of the electroencephalogram have received considerable interest as the basic mechanisms underlying these oscillations are understood, and gamma abnormalities have been found in schizophrenia (SZ). Animal models of SZ based on hypofunction of the N-methyl-d-aspartate receptor (NMDAR) demonstrate increased spontaneous broadband gamma power, but this phenomenon has not been identified clearly in patients with SZ. To examine spontaneous gamma power and its relationship to evoked gamma oscillations in the auditory cortex of patients with SZ. We performed a cross-sectional study including 24 patients with chronic SZ and 24 matched healthy control participants at the Veterans Affairs Boston Healthcare System from January 1, 2009, through December 31, 2012. Electroencephalograms were obtained during auditory steady-state stimulation at multiple frequencies (20, 30, and 40 Hz) and during a resting state in 18 participants in each group. Electroencephalographic activity in the auditory cortex was estimated using dipole source localization. Auditory steady-state response (ASSR) measures included the phase-locking factor and evoked power. Spontaneous gamma power was measured as induced (non-phase-locked) gamma power in the ASSR data and as total gamma power in the resting-state data. The ASSR phase-locking factor was reduced significantly in patients with SZ compared with controls for the 40-Hz stimulation (mean [SD], 0.075 [0.028] vs 0.113 [0.065]; F1,46 = 6.79 [P = .012]) but not the 20- or the 30-Hz stimulation (0.042 [0.038] vs 0.043 [0.034]; F1,46 = 0.006 [P = .938] and 0.084 [0.040] vs 0.098 [0.050]; F1,46 = 1.605 [P = .212], respectively), repeating previous findings. The mean [SD] broadband-induced (30

  8. Cross-spectrum symbol synchronization

    Science.gov (United States)

    Mccallister, R. D.; Simon, M. K.

    1981-01-01

    A popular method of symbol synchronization exploits one aspect of generalized harmonic analysis, normally referred to as the cross-spectrum. Utilizing nonlinear techniques, the input symbol energy is effectively concentrated onto multiples of the symbol clock frequency, facilitating application of conventional phase lock synchronization techniques. A general treatment of the cross-spectrum technique is developed and shown to be applicable across a broad class of symbol modulation formats. An important specific symbol synchronization application is then treated, focusing the general development to provide both insight and quantitative measure of the performance impact associated with variation in these key synchronization parameters: symbol modulation format, symbol transition probability, symbol energy to noise density ratio, and symbol rate to filter bandwidth ratio.

  9. Cross-frequency synchronization connects networks of fast and slow oscillations during visual working memory maintenance.

    Science.gov (United States)

    Siebenhühner, Felix; Wang, Sheng H; Palva, J Matias; Palva, Satu

    2016-09-26

    Neuronal activity in sensory and fronto-parietal (FP) areas underlies the representation and attentional control, respectively, of sensory information maintained in visual working memory (VWM). Within these regions, beta/gamma phase-synchronization supports the integration of sensory functions, while synchronization in theta/alpha bands supports the regulation of attentional functions. A key challenge is to understand which mechanisms integrate neuronal processing across these distinct frequencies and thereby the sensory and attentional functions. We investigated whether such integration could be achieved by cross-frequency phase synchrony (CFS). Using concurrent magneto- and electroencephalography, we found that CFS was load-dependently enhanced between theta and alpha-gamma and between alpha and beta-gamma oscillations during VWM maintenance among visual, FP, and dorsal attention (DA) systems. CFS also connected the hubs of within-frequency-synchronized networks and its strength predicted individual VWM capacity. We propose that CFS integrates processing among synchronized neuronal networks from theta to gamma frequencies to link sensory and attentional functions.

  10. Gamma astronomy

    International Nuclear Information System (INIS)

    Cesarsky, C.; Cesarsky, J.P.

    1986-01-01

    This article overviews the gamma astronomy research. Sources already observed, and what causes to give to them; the galactic radiation and its interpretation; techniques already used and current projects [fr

  11. Gamma Spectroscopy

    NARCIS (Netherlands)

    Niemantsverdriet, J.W.; Butz, Tilman; Ertl, G.; Knözinger, H.; Schüth, F.

    2008-01-01

    No abstract. The sections in this article are 1 Introduction 2 Mössbauer Spectroscopy 3 Time-Differential Perturbed Angular Correlations (TDPAC) 4 Conclusions and Outlook Keywords: Mössbauer spectroscopy; gamma spectroscopy; perturbed angular correlation; TDPAC

  12. Principles of synchronous digital hierarchy

    CERN Document Server

    Jain, Rajesh Kumar

    2012-01-01

    The book presents the current standards of digital multiplexing, called synchronous digital hierarchy, including analog multiplexing technologies. It is aimed at telecommunication professionals who want to develop an understanding of digital multiplexing and synchronous digital hierarchy in particular and the functioning of practical telecommunication systems in general. The text includes all relevant fundamentals and provides a handy reference for problem solving or defining operations and maintenance strategies. The author covers digital conversion and TDM principles, line coding and digital

  13. Synchronous Half-Wave Rectifier

    Science.gov (United States)

    Rippel, Wally E.

    1989-01-01

    Synchronous rectifying circuit behaves like diode having unusually low voltage drop during forward-voltage half cycles. Circuit particularly useful in power supplies with potentials of 5 Vdc or less, where normal forward-voltage drops in ordinary diodes unacceptably large. Fabricated as monolithic assembly or as hybrid. Synchronous half-wave rectifier includes active circuits to attain low forward voltage drop and high rectification efficiency.

  14. Hybrid synchronization of hyperchaotic Lu system

    Indian Academy of Sciences (India)

    In this paper, we study the hybrid synchronization between two identical hyperchaotic Lu systems. Hybrid synchronization of hyperchaotic Lu system is achieved through synchronization of two pairs of states and anti-synchronization of the other two pairs of states. Active controls are designed to achieve hybrid ...

  15. Synchronization and anti-synchronization coexist in Chen-Lee chaotic systems

    International Nuclear Information System (INIS)

    Chen, J.-H.; Chen, H.-K.; Lin, Y.-K.

    2009-01-01

    This study demonstrates that synchronization and anti-synchronization can coexist in Chen-Lee chaotic systems by direct linear coupling. Based on Lyapunov's direct method, a linear controller was designed to assure that two different types of synchronization can simultaneously be achieved. Further, the hybrid projective synchronization of Chen-Lee chaotic systems was studied using a nonlinear control scheme. The nonlinear controller was designed according to the Lyapunov stability theory to guarantee the hybrid projective synchronization, including synchronization, anti-synchronization, and projective synchronization. Finally, numerical examples are presented in order to illustrate the proposed synchronization approach.

  16. Synchronized renal blood flow dynamics mapped with wavelet analysis of laser speckle flowmetry data

    DEFF Research Database (Denmark)

    Brazhe, Alexey R; Marsh, Donald J; von Holstein-Rathlou, Niels-Henrik

    2014-01-01

    of rat kidneys. The regulatory mechanism in the renal microcirculation generates oscillations in arterial blood flow at several characteristic frequencies. Our approach to laser speckle image processing allows detection of frequency and phase entrainments, visualization of their patterns, and estimation......Full-field laser speckle microscopy provides real-time imaging of superficial blood flow rate. Here we apply continuous wavelet transform to time series of speckle-estimated blood flow from each pixel of the images to map synchronous patterns in instantaneous frequency and phase on the surface...... of the extent of synchronization in renal cortex dynamics....

  17. Outer Synchronization of Complex Networks by Impulse

    International Nuclear Information System (INIS)

    Sun Wen; Yan Zizong; Chen Shihua; Lü Jinhu

    2011-01-01

    This paper investigates outer synchronization of complex networks, especially, outer complete synchronization and outer anti-synchronization between the driving network and the response network. Employing the impulsive control method which is uncontinuous, simple, efficient, low-cost and easy to implement in practical applications, we obtain some sufficient conditions of outer complete synchronization and outer anti-synchronization between two complex networks. Numerical simulations demonstrate the effectiveness of the proposed impulsive control scheme. (general)

  18. Unidirectional synchronization of Hodgkin-Huxley neurons

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo-Perez, Octavio [Division de Matematicas Aplicadas y Sistemas, Computacionales, IPICYT, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi (Mexico)]. E-mail: octavio@ipicyt.edu.mx; Femat, Ricardo [Division de Matematicas Aplicadas y Sistemas, Computacionales, IPICYT, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi (Mexico)]. E-mail: rfemat@ipicyt.edu.mx

    2005-07-01

    Synchronization dynamics of two noiseless Hodgkin-Huxley (HH) neurons under the action of feedback control is studied. The spiking patterns of the action potentials evoked by periodic external modulations attain synchronization states under the feedback action. Numerical simulations for the synchronization dynamics of regular-irregular desynchronized spiking sequences are displayed. The results are discussed in context of generalized synchronization. It is also shown that the HH neurons can be synchronized in face of unmeasured states.

  19. Subiculum-entorhinal cortex interactions during in vitro ictogenesis.

    Science.gov (United States)

    Herrington, Rochelle; Lévesque, Maxime; Avoli, Massimo

    2015-09-01

    Our aim was to establish the contribution of neuronal networks located in the entorhinal cortex (EC) and subiculum to the generation of interictal and ictal onset patterns recorded in vitro. We employed field potential recordings of epileptiform activity in rat brain slices induced with the application of the K(+) channel blocker 4-aminopyridine. Local connections between the EC and subiculum were severed to understand how EC-subicular circuits contribute to patterns of epileptiform synchronization. First, we found that ictal discharges occurred synchronously in these two structures, initiating from either the EC or subiculum, and were characterized by low voltage fast (LVF) or sudden onsets. Second, sudden onset ictal events initiated more frequently in the EC, whereas LVF onset ictal discharges appeared more likely to initiate in the subiculum (Psynchronization and, specifically, to ictogenesis in this in vitro model. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  20. Effects of stimulus-driven synchronization on sensory perception

    Directory of Open Access Journals (Sweden)

    Holden Jameson K

    2007-12-01

    Full Text Available Abstract Background A subject's ability to differentiate the loci of two points on the skin depends on the stimulus-evoked pericolumnar lateral inhibitory interactions which increase the spatial contrast between regions of SI cortex that are activated by stimulus-evoked afferent drive. Nevertheless, there is very little known about the impact that neuronal interactions – such as those evoked by mechanical skin stimuli that project to and coordinate synchronized activity in adjacent and/or near-adjacent cortical columns – could have on sensory information processing. Methods The temporal order judgment (TOJ and temporal discriminative threshold (TDT of 20 healthy adult subjects were assessed both in the absence and presence of concurrent conditions of tactile stimulation. These measures were obtained across a number of paired sites – two unilateral and one bilateral – and several conditions of adapting stimuli were delivered both prior to and concurrently with the TOJ and TDT tasks. The pairs of conditioning stimuli were synchronized and periodic, synchronized and non-periodic, or asynchronous and non-periodic. Results In the absence of any additional stimuli, TOJ and TDT results obtained from the study were comparable across a number of pairs of stimulus sites – unilateral as well as bilateral. In the presence of a 25 Hz conditioning sinusoidal stimulus which was delivered both before, concurrently and after the TOJ task, there was a significant change in the TOJ measured when the two stimuli were located unilaterally on digits 2 and 3. However, in the presence of the same 25 Hz conditioning stimulus, the TOJ obtained when the two stimuli were delivered bilaterally was not impacted. TDT measures were not impacted to the same degree by the concurrent stimuli that were delivered to the unilateral or bilateral stimulus sites. This led to the speculation that the impact that the conditioning stimuli – which were sinusoidal, periodic and

  1. Possible Quantum Absorber Effects in Cortical Synchronization

    Science.gov (United States)

    Kämpf, Uwe

    The Wheeler-Feynman transactional "absorber" approach was proposed originally to account for anomalous resonance coupling between spatio-temporally distant measurement partners in entangled quantum states of so-called Einstein-Podolsky-Rosen paradoxes, e.g. of spatio-temporal non-locality, quantum teleportation, etc. Applied to quantum brain dynamics, however, this view provides an anticipative resonance coupling model for aspects of cortical synchronization and recurrent visual action control. It is proposed to consider the registered activation patterns of neuronal loops in so-called synfire chains not as a result of retarded brain communication processes, but rather as surface effects of a system of standing waves generated in the depth of visual processing. According to this view, they arise from a counterbalance between the actual input's delayed bottom-up data streams and top-down recurrent information-processing of advanced anticipative signals in a Wheeler-Feynman-type absorber mode. In the framework of a "time-loop" model, findings about mirror neurons in the brain cortex are suggested to be at least partially associated with temporal rather than spatial mirror functions of visual processing, similar to phase conjugate adaptive resonance-coupling in nonlinear optics.

  2. Consensus and Synchronization in Complex Networks

    CERN Document Server

    2013-01-01

    Synchronization in complex networks is one of the most captivating cooperative phenomena in nature and has been shown to be of fundamental importance in such varied circumstances as the continued existence of species, the functioning of heart pacemaker cells, epileptic seizures, neuronal firing in the feline visual cortex and cognitive tasks in humans. E.g. coupled visual and acoustic interactions make fireflies flash, crickets chirp, and an audience clap in unison. On the other hand, in distributed systems and networks, it is often necessary for some or all of the nodes to calculate some function of certain parameters, e.g. sink nodes in sensor networks being tasked with calculating the average measurement value of all the sensors or multi-agent systems in which all agents are required to coordinate their speed and direction. When all nodes calculate the same function of the initial values in the system, they are said to reach consensus. Such concepts - sometimes also called state agreement, rendezvous, and ...

  3. The anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2009-01-01

    Full Text Available The anterior cingulate cortex (ACC has a role in attention, analysis of sensory information, error recognition, problem solving, detection of novelty, behavior, emotions, social relations, cognitive control, and regulation of visceral functions. This area is active whenever the individual feels some emotions, solves a problem, or analyzes the pros and cons of an action (if it is a right decision. Analogous areas are also found in higher mammals, especially whales, and they contain spindle neurons that enable complex social interactions. Disturbance of ACC activity is found in dementias, schizophrenia, depression, the obsessive-compulsive syndrome, and other neuropsychiatric diseases.

  4. Regulating prefrontal cortex activation

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders Bue

    2013-01-01

    The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala...... of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings...... of a regulatory effect of the PFC on the emotional control of our actions....

  5. Bodily Synchronization Underlying Joke Telling

    Directory of Open Access Journals (Sweden)

    R. C. Schmidt

    2014-08-01

    Full Text Available Advances in video and time series analysis have greatly enhanced our ability to study the bodily synchronization that occurs in natural interactions. Past research has demonstrated that the behavioral synchronization involved in social interactions is similar to dynamical synchronization found generically in nature. The present study investigated how the bodily synchronization in a joke telling task is spread across different nested temporal scales. Pairs of participants enacted knock-knock jokes and times series of their bodily activity were recorded. Coherence and relative phase analyses were used to evaluate the synchronization of bodily rhythms for the whole trial as well as at the subsidiary time scales of the whole joke, the setup of the punch line, the two-person exchange and the utterance. The analyses revealed greater than chance entrainment of the joke teller’s and joke responder’s movements at all time scales and that the relative phasing of the teller’s movements led those of the responder at the longer time scales. Moreover, this entrainment was greater when visual information about the partner’s movements was present but was decreased particularly at the shorter time scales when explicit gesturing in telling the joke was performed. In short, the results demonstrate that a complex interpersonal bodily dance occurs during structured conversation interactions and that this dance is constructed from a set of rhythms associated with the nested behavioral structure of the interaction.

  6. Vestibular hearing and neural synchronization.

    Science.gov (United States)

    Emami, Seyede Faranak; Daneshi, Ahmad

    2012-01-01

    Objectives. Vestibular hearing as an auditory sensitivity of the saccule in the human ear is revealed by cervical vestibular evoked myogenic potentials (cVEMPs). The range of the vestibular hearing lies in the low frequency. Also, the amplitude of an auditory brainstem response component depends on the amount of synchronized neural activity, and the auditory nerve fibers' responses have the best synchronization with the low frequency. Thus, the aim of this study was to investigate correlation between vestibular hearing using cVEMPs and neural synchronization via slow wave Auditory Brainstem Responses (sABR). Study Design. This case-control survey was consisted of twenty-two dizzy patients, compared to twenty healthy controls. Methods. Intervention comprised of Pure Tone Audiometry (PTA), Impedance acoustic metry (IA), Videonystagmography (VNG), fast wave ABR (fABR), sABR, and cVEMPs. Results. The affected ears of the dizzy patients had the abnormal findings of cVEMPs (insecure vestibular hearing) and the abnormal findings of sABR (decreased neural synchronization). Comparison of the cVEMPs at affected ears versus unaffected ears and the normal persons revealed significant differences (P < 0.05). Conclusion. Safe vestibular hearing was effective in the improvement of the neural synchronization.

  7. Gamma camera

    International Nuclear Information System (INIS)

    Berninger, W.H.

    1975-01-01

    The light pulse output of a scintillator, on which incident collimated gamma rays impinge, is detected by an array of photoelectric tubes each having a convexly curved photocathode disposed in close proximity to the scintillator. Electronic circuitry connected to outputs of the phototubes develops the scintillation event position coordinate electrical signals with good linearity and with substantial independence of the spacing between the scintillator and photocathodes so that the phototubes can be positioned as close to the scintillator as is possible to obtain less distortion in the field of view and improved spatial resolution as compared to conventional planar photocathode gamma cameras

  8. Discriminability of Single and Multichannel Intracortical Microstimulation within Somatosensory Cortex

    Directory of Open Access Journals (Sweden)

    Cynthia Kay Overstreet

    2016-12-01

    Full Text Available The addition of tactile and proprioceptive feedback to neuroprosthetic limbs is expected to significantly improve the control of these devices. Intracortical microstimulation (ICMS of somatosensory cortex is a promising method of delivering this sensory feedback. To date, the main focus of somatosensory ICMS studies has been to deliver discriminable signals, corresponding to varying intensity, to a single location in cortex. However, multiple independent and simultaneous streams of sensory information will need to be encoded by ICMS to provide functionally relevant feedback for a neuroprosthetic limb (e.g. encoding contact events and pressure on multiple digits.In this study, we evaluated the ability of an awake, behaving non-human primate (Macaca mulatta to discriminate ICMS stimuli delivered on multiple electrodes spaced within somatosensory cortex. We delivered serial stimulation on single electrodes to evaluate the discriminability of sensations corresponding to ICMS of distinct cortical locations. Additionally, we delivered trains of multichannel stimulation, derived from a tactile sensor, synchronously across multiple electrodes. Our results indicate that discrimination of multiple ICMS stimuli is a challenging task, but that discriminable sensory percepts can be elicited by both single and multichannel ICMS on electrodes spaced within somatosensory cortex.

  9. Gap junctions mediate large-scale Turing structures in a mean-field cortex driven by subcortical noise

    Science.gov (United States)

    Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Wilson, M. T.; Sleigh, J. W.

    2007-07-01

    One of the grand puzzles in neuroscience is establishing the link between cognition and the disparate patterns of spontaneous and task-induced brain activity that can be measured clinically using a wide range of detection modalities such as scalp electrodes and imaging tomography. High-level brain function is not a single-neuron property, yet emerges as a cooperative phenomenon of multiply-interacting populations of neurons. Therefore a fruitful modeling approach is to picture the cerebral cortex as a continuum characterized by parameters that have been averaged over a small volume of cortical tissue. Such mean-field cortical models have been used to investigate gross patterns of brain behavior such as anesthesia, the cycles of natural sleep, memory and erasure in slow-wave sleep, and epilepsy. There is persuasive and accumulating evidence that direct gap-junction connections between inhibitory neurons promote synchronous oscillatory behavior both locally and across distances of some centimeters, but, to date, continuum models have ignored gap-junction connectivity. In this paper we employ simple mean-field arguments to derive an expression for D2 , the diffusive coupling strength arising from gap-junction connections between inhibitory neurons. Using recent neurophysiological measurements reported by Fukuda [J. Neurosci. 26, 3434 (2006)], we estimate an upper limit of D2≈0.6cm2 . We apply a linear stability analysis to a standard mean-field cortical model, augmented with gap-junction diffusion, and find this value for the diffusive coupling strength to be close to the critical value required to destabilize the homogeneous steady state. Computer simulations demonstrate that larger values of D2 cause the noise-driven model cortex to spontaneously crystalize into random mazelike Turing structures: centimeter-scale spatial patterns in which regions of high-firing activity are intermixed with regions of low-firing activity. These structures are consistent with the

  10. Linear Synchronous Motor Repeatability Tests

    International Nuclear Information System (INIS)

    Ward, C.R.

    2002-01-01

    A cart system using linear synchronous motors was being considered for the Plutonium Immobilization Plant (PIP). One of the applications in the PIP was the movement of a stack of furnace trays, filled with the waste form (pucks) from a stacking/unstacking station to several bottom loaded furnaces. A system was ordered to perform this function in the PIP Ceramic Prototype Test Facility (CPTF). This system was installed and started up in SRTC prior to being installed in the CPTF. The PIP was suspended and then canceled after the linear synchronous motor system was started up. This system was used to determine repeatability of a linear synchronous motor cart system for the Modern Pit Facility

  11. A synchronous game for binary constraint systems

    Science.gov (United States)

    Kim, Se-Jin; Paulsen, Vern; Schafhauser, Christopher

    2018-03-01

    Recently, Slofstra proved that the set of quantum correlations is not closed. We prove that the set of synchronous quantum correlations is not closed, which implies his result, by giving an example of a synchronous game that has a perfect quantum approximate strategy but no perfect quantum strategy. We also exhibit a graph for which the quantum independence number and the quantum approximate independence number are different. We prove new characterisations of synchronous quantum approximate correlations and synchronous quantum spatial correlations. We solve the synchronous approximation problem of Dykema and the second author, which yields a new equivalence of Connes' embedding problem in terms of synchronous correlations.

  12. Control of non-conventional synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors,

  13. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.

    Science.gov (United States)

    DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire

    2016-10-05

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship

  14. Simulating synchronization in neuronal networks

    Science.gov (United States)

    Fink, Christian G.

    2016-06-01

    We discuss several techniques used in simulating neuronal networks by exploring how a network's connectivity structure affects its propensity for synchronous spiking. Network connectivity is generated using the Watts-Strogatz small-world algorithm, and two key measures of network structure are described. These measures quantify structural characteristics that influence collective neuronal spiking, which is simulated using the leaky integrate-and-fire model. Simulations show that adding a small number of random connections to an otherwise lattice-like connectivity structure leads to a dramatic increase in neuronal synchronization.

  15. Synchronous-flux-generator (SFG)

    Energy Technology Data Exchange (ETDEWEB)

    Zweygbergk, S.V.; Ljungstroem, O. (ed.)

    1976-01-01

    The synchronous machine is the most common rotating electric machine for producing electric energy in a large scale, but it is also used for other purposes. One well known everyday example is its use as driving motor in the electric synchronous clock. One has in this connection made full use of one of the main qualities of this kind of machine--its rotating speed is bound to the frequency of the feeding voltage, either if it is working as a motor or as a generator. Characteristics are discussed.

  16. Synchronization in primate cerebellar granule cell layer local field potentials: Basic anisotropy and dynamic changes during active expectancy

    Directory of Open Access Journals (Sweden)

    Richard Courtemanche

    2009-07-01

    Full Text Available The cerebellar cortex is remarkable for its organizational regularity, out of which task-related neural networks should emerge. So, in Purkinje cells, both complex and simple spike network patterns are evident in sensorimotor behavior. However, task-related patterns of activity in the granule cell layer (GCL have been less studied. We recorded local field potential (LFP activity simultaneously in pairs of GCL sites in monkeys performing an active expectancy (lever-press task, in passive expectancy, and at rest. LFP sites were selected when they showed strong 10-25 Hz oscillations; pair orientation was in stereotaxic sagittal and coronal (mainly, and diagonal. As shown previously, LFP oscillations at each site were modulated during the lever-press task. Synchronization across LFP pairs showed an evident basic anisotropy at rest: sagittal pairs of LFPs were better synchronized (more than double the cross-correlation coefficients than coronal pairs, and more than diagonal pairs. On the other hand, this basic anisotropy was modifiable: during the active expectancy condition, where sagittal and coronal orientations were tested, synchronization of LFP pairs would increase just preceding movement, most notably for the coronal pairs. This lateral extension of synchronization was not observed in passive expectancy. The basic pattern of synchronization at rest, favoring sagittal synchrony, thus seemed to adapt in a dynamic fashion, potentially extending laterally to include more cerebellar cortex elements. This dynamic anisotropy in LFP synchronization could underlie GCL network organization in the context of sensorimotor tasks.

  17. Frequency specific modulation of human somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Matteo eFeurra

    2011-02-01

    Full Text Available Oscillatory neuronal activities are commonly observed in response to sensory stimulation. However, their functional roles are still the subject of debate. One way to probe the roles of oscillatory neural activities is to deliver alternating current to the cortex at biologically relevant frequencies and examine whether such stimulation influences perception and cognition. In this study, we tested whether transcranial alternating current stimulation (tACS over the primary somatosensory cortex (SI could elicit tactile sensations in humans in a frequency dependent manner. We tested the effectiveness of tACS over SI at frequency bands ranging from 2 to 70 Hz. Our results show that stimulation in alpha (10-14 Hz and high gamma (52-70 Hz frequency range produces a tactile sensation in the contralateral hand. A weaker effect was also observed for beta (16-20 Hz stimulation. These findings highlight the frequency-dependency of effective tACS over SI with the effective frequencies corresponding to those observed in previous EEG/MEG studies of tactile perception. Our present study suggests that tACS could be used as a powerful online stimulation technique to reveal the causal roles of oscillatory brain activities.

  18. Gamma camera

    International Nuclear Information System (INIS)

    Tschunt, E.; Platz, W.; Baer, Ul; Heinz, L.

    1978-01-01

    A gamma camera has a plurality of exchangeable collimators, one of which is replaceably mounted in the ray inlet opening of the camera, while the others are placed on separate supports. Supports are swingably mounted upon a column one above the other

  19. Gamma camera

    International Nuclear Information System (INIS)

    Schlosser, P.A.; Steidley, J.W.

    1980-01-01

    The design of a collimation system for a gamma camera for use in nuclear medicine is described. When used with a 2-dimensional position sensitive radiation detector, the novel system can produce superior images than conventional cameras. The optimal thickness and positions of the collimators are derived mathematically. (U.K.)

  20. Impaired coupling of local and global functional feedbacks underlies abnormal synchronization and negative symptoms of schizophrenia.

    Science.gov (United States)

    Noh, Kyungchul; Shin, Kyung Soon; Shin, Dongkwan; Hwang, Jae Yeon; Kim, June Sic; Jang, Joon Hwan; Chung, Chun Kee; Kwon, Jun Soo; Cho, Kwang-Hyun

    2013-04-10

    Abnormal synchronization of brain oscillations is found to be associated with various core symptoms of schizophrenia. However, the underlying mechanism of this association remains yet to be elucidated. In this study, we found that coupled local and global feedback (CLGF) circuits in the cortical functional network are related to the abnormal synchronization and also correlated to the negative symptom of schizophrenia. Analysis of the magnetoencephalography data obtained from patients with chronic schizophrenia during rest revealed an increase in beta band synchronization and a reduction in gamma band power compared to healthy controls. Using a feedback identification method based on non-causal impulse responses, we constructed functional feedback networks and found that CLGF circuits were significantly reduced in schizophrenia. From computational analysis on the basis of the Wilson-Cowan model, we unraveled that the CLGF circuits are critically involved in the abnormal synchronization and the dynamical switching between beta and gamma bands power in schizophrenia. Moreover, we found that the abundance of CLGF circuits was negatively correlated with the development of negative symptoms of schizophrenia, suggesting that the negative symptom is closely related to the impairment of this circuit. Our study implicates that patients with schizophrenia might have the impaired coupling of inter- and intra-regional functional feedbacks and that the CLGF circuit might serve as a critical bridge between abnormal synchronization and the negative symptoms of schizophrenia.

  1. Basal ganglia impairments in autism spectrum disorder are related to abnormal signal gating to prefrontal cortex.

    Science.gov (United States)

    Prat, Chantel S; Stocco, Andrea; Neuhaus, Emily; Kleinhans, Natalia M

    2016-10-01

    Research on the biological basis of autism spectrum disorder has yielded a list of brain abnormalities that are arguably as diverse as the set of behavioral symptoms that characterize the disorder. Among these are patterns of abnormal cortical connectivity and abnormal basal ganglia development. In attempts to integrate the existing literature, the current paper tests the hypothesis that impairments in the basal ganglia's function to flexibly select and route task-relevant neural signals to the prefrontal cortex underpins patterns of abnormal synchronization between the prefrontal cortex and other cortical processing centers observed in individuals with autism spectrum disorder (ASD). We tested this hypothesis using a Dynamic Causal Modeling analysis of neuroimaging data collected from 16 individuals with ASD (mean age=25.3 years; 6 female) and 17 age- and IQ-matched neurotypical controls (mean age=25.6, 6 female), who performed a Go/No-Go test of executive functioning. Consistent with the hypothesis tested, a random-effects Bayesian model selection procedure determined that a model of network connectivity in which basal ganglia activation modulated connectivity between the prefrontal cortex and other key cortical processing centers best fit the data of both neurotypicals and individuals with ASD. Follow-up analyses suggested that the largest group differences were observed for modulation of connectivity between prefrontal cortex and the sensory input region in the occipital lobe [t(31)=2.03, p=0.025]. Specifically, basal ganglia activation was associated with a small decrease in synchronization between the occipital region and prefrontal cortical regions in controls; however, in individuals with ASD, basal ganglia activation resulted in increased synchronization between the occipital region and the prefrontal cortex. We propose that this increased synchronization may reflect a failure in basal ganglia signal gating mechanisms, resulting in a non-selective copying

  2. Word Recognition in Auditory Cortex

    Science.gov (United States)

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  3. Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches

    Science.gov (United States)

    Lowet, Eric; Roberts, Mark J.; Bonizzi, Pietro; Karel, Joël; De Weerd, Peter

    2016-01-01

    Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent) synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE) of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV) method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT) preceded by Singular Spectrum Decomposition (SSD) of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization-mediated information

  4. Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches.

    Directory of Open Access Journals (Sweden)

    Eric Lowet

    Full Text Available Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT preceded by Singular Spectrum Decomposition (SSD of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization

  5. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du

    2015-01-01

    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  6. Gamma oscillations: precise temporal coordination without a metronome.

    Science.gov (United States)

    Nikolić, Danko; Fries, Pascal; Singer, Wolf

    2013-02-01

    Gamma oscillations in the brain should not be conceptualized as a sine wave with constant oscillation frequency. Rather, these oscillations serve to concentrate neuronal discharges to particular phases of the oscillation cycle and thereby provide the substrate for various, functionally relevant synchronization phenomena. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Fermi Timing and Synchronization System

    International Nuclear Information System (INIS)

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D'Auria, G.

    2006-01-01

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed

  8. Epidemic Synchronization in Robotic Swarms

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Nielsen, Jens Frederik Dalsgaard; Ngo, Trung Dung

    2009-01-01

    Clock synchronization in swarms of networked mobile robots is studied in a probabilistic, epidemic framework. In this setting communication and synchonization is considered to be a randomized process, taking place at unplanned instants of geographical rendezvous between robots. In combination...... as an infinite-dimensional optimal controlproblem. Illustrative numerical examples are given and commented....

  9. Fermi Timing and Synchronization System

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D' Auria, G.

    2006-07-19

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.

  10. Main injector synchronous timing system

    International Nuclear Information System (INIS)

    Blokland, W.; Steimel, J.

    1998-01-01

    The Synchronous Timing System is designed to provide sub-nanosecond timing to instrumentation during the acceleration of particles in the Main Injector. Increased energy of the beam particles leads to a small but significant increase in speed, reducing the time it takes to complete a full turn of the ring by 61 nanoseconds (or more than 3 rf buckets). In contrast, the reference signal, used to trigger instrumentation and transmitted over a cable, has a constant group delay. This difference leads to a phase slip during the ramp and prevents instrumentation such as dampers from properly operating without additional measures. The Synchronous Timing System corrects for this phase slip as well as signal propagation time changes due to temperature variations. A module at the LLRF system uses a 1.2 Gbit/s G-Link chip to transmit the rf clock and digital data (e.g. the current frequency) over a single mode fiber around the ring. Fiber optic couplers at service buildings split off part of this signal for a local module which reconstructs a synchronous beam reference signal. This paper describes the background, design and expected performance of the Synchronous Timing System. copyright 1998 American Institute of Physics

  11. Main injector synchronous timing system

    International Nuclear Information System (INIS)

    Blokland, Willem; Steimel, James

    1998-01-01

    The Synchronous Timing System is designed to provide sub-nanosecond timing to instrumentation during the acceleration of particles in the Main Injector. Increased energy of the beam particles leads to a small but significant increase in speed, reducing the time it takes to complete a full turn of the ring by 61 nanoseconds (or more than 3 rf buckets). In contrast, the reference signal, used to trigger instrumentation and transmitted over a cable, has a constant group delay. This difference leads to a phase slip during the ramp and prevents instrumentation such as dampers from properly operating without additional measures. The Synchronous Timing System corrects for this phase slip as well as signal propagation time changes due to temperature variations. A module at the LLRF system uses a 1.2 Gbit/s G-Link chip to transmit the rf clock and digital data (e.g. the current frequency) over a single mode fiber around the ring. Fiber optic couplers at service buildings split off part of this signal for a local module which reconstructs a synchronous beam reference signal. This paper describes the background, design and expected performance of the Synchronous Timing System

  12. Generalized synchronization via impulsive control

    International Nuclear Information System (INIS)

    Zhang Rong; Xu Zhenyuan; Yang, Simon X.; He Xueming

    2008-01-01

    This paper demonstrates theoretically that two completely different systems can implement GS via impulsive control, moreover by using impulsive control, for a given manifold y = H(x) we construct a response system to achieve GS with drive system and the synchronization manifold is y = H(x). Our theoretical results are supported by numerical examples

  13. Learning through synchronous electronic discussion

    NARCIS (Netherlands)

    Kanselaar, G.; Veerman, A.L.; Andriessen, J.E.B.

    2000-01-01

    This article reports a study examining university student pairs carrying out an electronic discussion task in a synchronous computer mediated communication (CMC) system (NetMeeting). The purpose of the assignment was to raise students' awareness concerning conceptions that characterise effective

  14. Epidemic Synchronization in Robotic Swarms

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Nielsen, Jens Frederik Dalsgaard; Ngo, Trung Dung

    2009-01-01

    Clock synchronization in swarms of networked mobile robots is studied in a probabilistic, epidemic framework. In this setting communication and synchonization is considered to be a randomized process, taking place at unplanned instants of geographical rendezvous between robots. In combination wit...

  15. Digital device for synchronous storage

    International Nuclear Information System (INIS)

    Kobzar', Yu.M.; Kovtun, V.G.; Pashechko, N.I.

    1991-01-01

    Synchronous storage digital device for IR electron-photon emission spectrometer operating with analogue-to-digital converter F4223 or monocrystal converter K572PV1 is described. The device accomplished deduction of noise-background in each storage cycle. Summation and deduction operational time equals 90 ns, device output code discharge - 20, number of storages -2 23

  16. Neural synchronization via potassium signaling

    DEFF Research Database (Denmark)

    Postnov, Dmitry E; Ryazanova, Ludmila S; Mosekilde, Erik

    2006-01-01

    Using a relatively simple model we examine how variations of the extracellular potassium concentration can give rise to synchronization of two nearby pacemaker cells. With the volume of the extracellular space and the rate of potassium diffusion as control parameters, the dual nature of this reso...

  17. Anti-synchronization of chaotic oscillators

    International Nuclear Information System (INIS)

    Kim, Chil-Min; Rim, Sunghwan; Kye, Won-Ho; Ryu, Jung-Wan; Park, Young-Jai

    2003-01-01

    We have observed anti-synchronization phenomena in coupled identical chaotic oscillators. Anti-synchronization can be characterized by the vanishing of the sum of relevant variables. We have qualitatively analyzed its base mechanism by using the dynamics of the difference and the sum of the relevant variables in coupled chaotic oscillators. Near the threshold of the synchronization and anti-synchronization transition, we have obtained the novel characteristic relation

  18. Robust synchronization of chaotic systems via feedback

    Energy Technology Data Exchange (ETDEWEB)

    Femat, Ricardo [IPICYT, San Luis Potosi (Mexico). Dept. de Matematicas Aplicadas; Solis-Perales, Gualberto [Universidad de Guadalajara, Centro Univ. de Ciencias Exactas e Ingenierias (Mexico). Div. de Electronica y Computacion

    2008-07-01

    This volume includes the results derived during last ten years about both suppression and synchronization of chaotic -continuous time- systems. Along this time, the concept was to study how the intrinsic properties of dynamical systems can be exploited to suppress and to synchronize the chaotic behaviour and what synchronization phenomena can be found under feedback interconnection. A compilation of these findings is described in this book. This book shows a perspective on synchronization of chaotic systems. (orig.)

  19. Inter-subject synchronization of brain responses during natural music listening

    Science.gov (United States)

    Abrams, Daniel A.; Ryali, Srikanth; Chen, Tianwen; Chordia, Parag; Khouzam, Amirah; Levitin, Daniel J.; Menon, Vinod

    2015-01-01

    Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real-world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. PMID:23578016

  20. Two novel synchronization criterions for a unified chaotic system

    International Nuclear Information System (INIS)

    Tao Chaohai; Xiong Hongxia; Hu Feng

    2006-01-01

    Two novel synchronization criterions are proposed in this paper. It includes drive-response synchronization and adaptive synchronization schemes. Moreover, these synchronization criterions can be applied to a large class of chaotic systems and are very useful for secure communication

  1. 40 CFR 93.128 - Traffic signal synchronization projects.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Traffic signal synchronization... synchronization projects. Traffic signal synchronization projects may be approved, funded, and implemented without... include such regionally significant traffic signal synchronization projects. ...

  2. Synchronization of indirectly coupled Lorenz oscillators

    Indian Academy of Sciences (India)

    Synchronization of indirectly coupled Lorenz oscillators: An experimental study. Amit Sharma Manish Dev Shrimali. Synchronization, Coupled Systems and Networks Volume 77 Issue 5 November 2011 pp 881-889 ... The in-phase and anti-phase synchronization of indirectly coupled chaotic oscillators reported in Phys. Rev ...

  3. Control synchronization of differential mobile robots

    NARCIS (Netherlands)

    Nijmeijer, H.; Rodriguez Angeles, A.; Allgoewer, F.

    2004-01-01

    In this paper a synchronization controller for differential mobile robots is proposed. The synchronization goal is to control the angular position of each wheel to a desired trajectory and at the same time the differential (or synchronization) error between the angular positions of the two wheels.

  4. Chaos synchronization based on contraction principle

    International Nuclear Information System (INIS)

    Wang Junwei; Zhou Tianshou

    2007-01-01

    This paper introduces contraction principle. Based on such a principle, a novel scheme is proposed to synchronize coupled systems with global diffusive coupling. A rigorous sufficient condition on chaos synchronization is derived. As an example, coupled Lorenz systems with nearest-neighbor diffusive coupling are investigated, and numerical simulations are given to validate the proposed synchronization approach

  5. Global chaos synchronization of coupled parametrically excited ...

    Indian Academy of Sciences (India)

    In this paper, we study the synchronization behaviour of two linearly coupled parametrically excited chaotic pendula. The stability of the synchronized state is examined using Lyapunov stability theory and linear matrix inequality (LMI); and some sufficient criteria for global asymptotic synchronization are derived from which ...

  6. Synchronization of coupled nonidentical multidelay feedback systems

    International Nuclear Information System (INIS)

    Hoang, Thang Manh; Nakagawa, Masahiro

    2007-01-01

    We present the lag synchronization of coupled nonidentical multidelay feedback systems, in which the synchronization signal is the sum of nonlinearly transformed components of delayed state variable. The sufficient condition for synchronization is considered by the Krasovskii-Lyapunov theory. The specific examples will demonstrate and verify the effectiveness of the proposed model

  7. Synchronization and comparison of Lifelog audio recordings

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Hansen, Lars Kai

    2008-01-01

    as a preprocessing step to select and synchronize recordings before further processing. The two methods perform similarly in classification, but fingerprinting scales better with the number of recordings, while cross-correlation can offer sample resolution synchronization. We propose and investigate the benefits...... of combining the two. In particular we show that the combination allows sample resolution synchronization and scalability....

  8. Gamma camera

    International Nuclear Information System (INIS)

    Reiss, K.H.; Kotschak, O.; Conrad, B.

    1976-01-01

    A gamma camera with a simplified setup as compared with the state of engineering is described permitting, apart from good localization, also energy discrimination. Behind the usual vacuum image amplifier a multiwire proportional chamber filled with trifluorine bromium methane is connected in series. Localizing of the signals is achieved by a delay line, energy determination by means of a pulse height discriminator. With the aid of drawings and circuit diagrams, the setup and mode of operation are explained. (ORU) [de

  9. Gamma irradiator

    International Nuclear Information System (INIS)

    Simonet, G.

    1986-09-01

    Fiability of devices set around reactors depends on material resistance under irradiation noticeably joints, insulators, which belongs to composition of technical, safety or physical incasurement devices. The irradiated fuel elements, during their desactivation in a pool, are an interesting gamma irradiation device to simulate damages created in a nuclear environment. The existing facility at Osiris allows to generate an homogeneous rate dose in an important volume. The control of the element distances to irradiation box allows to control this dose rate [fr

  10. New type of chaos synchronization in discrete-time systems: the F-M synchronization

    Directory of Open Access Journals (Sweden)

    Ouannas Adel

    2018-04-01

    Full Text Available In this paper, a new type of synchronization for chaotic (hyperchaotic maps with different dimensions is proposed. The novel scheme is called F – M synchronization, since it combines the inverse generalized synchronization (based on a functional relationship F with the matrix projective synchronization (based on a matrix M. In particular, the proposed approach enables F – M synchronization with index d to be achieved between n-dimensional drive system map and m-dimensional response system map, where the synchronization index d corresponds to the dimension of the synchronization error. The technique, which exploits nonlinear controllers and Lyapunov stability theory, proves to be effective in achieving the F – M synchronization not only when the synchronization index d equals n or m, but even if the synchronization index d is larger than the map dimensions n and m. Finally, simulation results are reported, with the aim to illustrate the capabilities of the novel scheme proposed herein.

  11. New type of chaos synchronization in discrete-time systems: the F-M synchronization

    Science.gov (United States)

    Ouannas, Adel; Grassi, Giuseppe; Karouma, Abdulrahman; Ziar, Toufik; Wang, Xiong; Pham, Viet-Thanh

    2018-04-01

    In this paper, a new type of synchronization for chaotic (hyperchaotic) maps with different dimensions is proposed. The novel scheme is called F - M synchronization, since it combines the inverse generalized synchronization (based on a functional relationship F) with the matrix projective synchronization (based on a matrix M). In particular, the proposed approach enables F - M synchronization with index d to be achieved between n-dimensional drive system map and m-dimensional response system map, where the synchronization index d corresponds to the dimension of the synchronization error. The technique, which exploits nonlinear controllers and Lyapunov stability theory, proves to be effective in achieving the F - M synchronization not only when the synchronization index d equals n or m, but even if the synchronization index d is larger than the map dimensions n and m. Finally, simulation results are reported, with the aim to illustrate the capabilities of the novel scheme proposed herein.

  12. Gamma teletopography

    International Nuclear Information System (INIS)

    Simonet, G.

    1987-06-01

    The mapping of gamma sources radiation emission in a nuclear plant is an important safety point. A remote gamma ray mapping process was developed in SPS/CEA/SACLAY. It uses the ''pinhole camera'' principle, precursor of photography. It mainly consists of a radiation proof box, with a small orifice, containing sensitive emulsions at the opposite. A first conventional photographic type emulsion photographs the area. A second photographic emulsion shows up the gamma radiations. The superim position of the two shots gives immediate informations of the precise location of each source of radiation in the observed area. To make easier the presentation and to improve the accuracy of the results for radiation levels mapping, the obtained films are digitally processed. The processing assigns a colours scale to the various levels of observed radiations. Taking account physical data and standard parameters, it gets possible to estimate the dose rate. The device is portable. Its compactness and fully independent nature make it suitable for use anywhere. It can be adapted to a remote automatic handling system, robot... so as to avoid all operator exposure when the local dose rate is too high [fr

  13. Neural correlates of auditory temporal predictions during sensorimotor synchronization

    Directory of Open Access Journals (Sweden)

    Nadine ePecenka

    2013-08-01

    Full Text Available Musical ensemble performance requires temporally precise interpersonal action coordination. To play in synchrony, ensemble musicians presumably rely on anticipatory mechanisms that enable them to predict the timing of sounds produced by co-performers. Previous studies have shown that individuals differ in their ability to predict upcoming tempo changes in paced finger-tapping tasks (indexed by cross-correlations between tap timing and pacing events and that the degree of such prediction influences the accuracy of sensorimotor synchronization (SMS and interpersonal coordination in dyadic tapping tasks. The current functional magnetic resonance imaging study investigated the neural correlates of auditory temporal predictions during SMS in a within-subject design. Hemodynamic responses were recorded from 18 musicians while they tapped in synchrony with auditory sequences containing gradual tempo changes under conditions of varying cognitive load (achieved by a simultaneous visual n-back working-memory task comprising three levels of difficulty: observation only, 1-back, and 2-back object comparisons. Prediction ability during SMS decreased with increasing cognitive load. Results of a parametric analysis revealed that the generation of auditory temporal predictions during SMS recruits (1 a distributed network in cortico-cerebellar motor-related brain areas (left dorsal premotor and motor cortex, right lateral cerebellum, SMA proper and bilateral inferior parietal cortex and (2 medial cortical areas (medial prefrontal cortex, posterior cingulate cortex. While the first network is presumably involved in basic sensory prediction, sensorimotor integration, motor timing, and temporal adaptation, activation in the second set of areas may be related to higher-level social-cognitive processes elicited during action coordination with auditory signals that resemble music performed by human agents.

  14. Downregulation of GABA[Subscript A] Receptor Protein Subunits a6, ß2, d, e, ?2, ?, and ?2 in Superior Frontal Cortex of Subjects with Autism

    Science.gov (United States)

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rustan, Oyvind G.; Rooney, Robert J.; Thuras, Paul D.

    2014-01-01

    We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABA[subscript A]) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABA[subscript A] and GABA[subscript B] subunits and overall…

  15. Cerebral cortex modulation of pain

    Institute of Scientific and Technical Information of China (English)

    Yu-feng XIE; Fu-quan HUO; Jing-shi TANG

    2009-01-01

    Pain is a complex experience encompassing sensory-discriminative, affective-motivational and cognitiv e-emotional com-ponents mediated by different mechanisms. Contrary to the traditional view that the cerebral cortex is not involved in pain perception, an extensive cortical network associated with pain processing has been revealed using multiple methods over the past decades. This network consistently includes, at least, the anterior cingulate cortex, the agranular insular cortex, the primary (SⅠ) and secondary somatosensory (SⅡ) cortices, the ventrolateral orbital cortex and the motor cortex. These corti-cal structures constitute the medial and lateral pain systems, the nucleus submedius-ventrolateral orbital cortex-periaque-ductal gray system and motor cortex system, respectively. Multiple neurotransmitters, including opioid, glutamate, GABA and dopamine, are involved in the modulation of pain by these cortical structures. In addition, glial cells may also be in-volved in cortical modulation of pain and serve as one target for pain management research. This review discusses recent studies of pain modulation by these cerebral cortical structures in animals and human.

  16. Chaos synchronization of coupled hyperchaotic system

    International Nuclear Information System (INIS)

    Yang Lixin; Chu Yandong; Zhang Jiangang; Li Xianfeng

    2009-01-01

    Chaos synchronization, as an important topic, has become an active research subject in nonlinear science. Over the past two decades, chaos synchronization between nonlinear systems has been extensively studied, and many types of synchronization have been announced. This paper introduces synchronization of coupled hyperchaotic system, based on the Lapunov stability theory, asymptotic stability of the system is guaranteed by means of Lapunov function. The numerical simulation was provided in order to show the effectiveness of this method for the synchronization of the chaotic hyperchaotic Chen system and Rossler system.

  17. Adaptive feedback synchronization of Lue system

    International Nuclear Information System (INIS)

    Han, X.; Lu, J.-A.; Wu, X.

    2004-01-01

    This letter further improves and extends the works of Chen and Lue [Chaos, Solitons and Fractals 14 (2002) 643] and Wang et al. [Phys. Lett. A 312 (2003) 34]. In detail, the linear feedback synchronization and adaptive feedback synchronization for Lue system are discussed. And the lower bound of the feedback gain in linear feedback synchronization is presented. The adaptive feedback synchronization with only one controller is designed, which improves the proof in the work by Wang et al. The adaptive synchronization with two controllers for completely uncertain Lue system is also discussed, which extends the work of Chen and Lue. Also, numerical simulations show the effectiveness of these methods

  18. Targeting engineering synchronization in chaotic systems

    Science.gov (United States)

    Bhowmick, Sourav K.; Ghosh, Dibakar

    2016-07-01

    A method of targeting engineering synchronization states in two identical and mismatch chaotic systems is explained in detail. The method is proposed using linear feedback controller coupling for engineering synchronization such as mixed synchronization, linear and nonlinear generalized synchronization and targeting fixed point. The general form of coupling design to target any desire synchronization state under unidirectional coupling with the help of Lyapunov function stability theory is derived analytically. A scaling factor is introduced in the coupling definition to smooth control without any loss of synchrony. Numerical results are done on two mismatch Lorenz systems and two identical Sprott oscillators.

  19. Spontaneous high-frequency (10-80 Hz) oscillations during up states in the cerebral cortex in vitro.

    Science.gov (United States)

    Compte, Albert; Reig, Ramon; Descalzo, Vanessa F; Harvey, Michael A; Puccini, Gabriel D; Sanchez-Vives, Maria V

    2008-12-17

    High-frequency oscillations in cortical networks have been linked to a variety of cognitive and perceptual processes. They have also been recorded in small cortical slices in vitro, indicating that neuronal synchronization at these frequencies is generated in the local cortical circuit. However, in vitro experiments have hitherto necessitated exogenous pharmacological or electrical stimulation to generate robust synchronized activity in the beta/gamma range. Here, we demonstrate that the isolated cortical microcircuitry generates beta and gamma oscillations spontaneously in the absence of externally applied neuromodulators or synaptic agonists. We show this in a spontaneously active slice preparation that engages in slow oscillatory activity similar to activity during slow-wave sleep. beta and gamma synchronization appeared during the up states of the slow oscillation. Simultaneous intracellular and extracellular recordings revealed synchronization between the timing of incoming synaptic events and population activity. This rhythm was mechanistically similar to pharmacologically induced gamma rhythms, as it also included sparse, irregular firing of neurons within the population oscillation, predominant involvement of inhibitory neurons, and a decrease of oscillation frequency after barbiturate application. Finally, we show in a computer model how a synaptic loop between excitatory and inhibitory neurons can explain the emergence of both the slow (network. We therefore conclude that oscillations in the beta/gamma range that share mechanisms with activity reported in vivo or in pharmacologically activated in vitro preparations can be generated during slow oscillatory activity in the local cortical circuit, even without exogenous pharmacological or electrical stimulation.

  20. The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats

    Science.gov (United States)

    Zheng, Chenguang; Bieri, Kevin Wood; Trettel, Sean Gregory; Colgin, Laura Lee

    2015-01-01

    In hippocampal area CA1 of rats, the frequency of gamma activity has been shown to increase with running speed (Ahmed and Mehta, 2012). This finding suggests that different gamma frequencies simply allow for different timings of transitions across cell assemblies at varying running speeds, rather than serving unique functions. However, accumulating evidence supports the conclusion that slow (~25–55 Hz) and fast (~60–100 Hz) gamma are distinct network states with different functions. If slow and fast gamma constitute distinct network states, then it is possible that slow and fast gamma frequencies are differentially affected by running speed. In this study, we tested this hypothesis and found that slow and fast gamma frequencies change differently as a function of running speed in hippocampal areas CA1 and CA3, and in the superficial layers of the medial entorhinal cortex (MEC). Fast gamma frequencies increased with increasing running speed in all three areas. Slow gamma frequencies changed significantly less across different speeds. Furthermore, at high running speeds, CA3 firing rates were low, and MEC firing rates were high, suggesting that CA1 transitions from CA3 inputs to MEC inputs as running speed increases. These results support the hypothesis that slow and fast gamma reflect functionally distinct states in the hippocampal network, with fast gamma driven by MEC at high running speeds and slow gamma driven by CA3 at low running speeds. PMID:25601003

  1. Analysis of remote synchronization in complex networks

    Science.gov (United States)

    Gambuzza, Lucia Valentina; Cardillo, Alessio; Fiasconaro, Alessandro; Fortuna, Luigi; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2013-12-01

    A novel regime of synchronization, called remote synchronization, where the peripheral nodes form a phase synchronized cluster not including the hub, was recently observed in star motifs [Bergner et al., Phys. Rev. E 85, 026208 (2012)]. We show the existence of a more general dynamical state of remote synchronization in arbitrary networks of coupled oscillators. This state is characterized by the synchronization of pairs of nodes that are not directly connected via a physical link or any sequence of synchronized nodes. This phenomenon is almost negligible in networks of phase oscillators as its underlying mechanism is the modulation of the amplitude of those intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity and robustness of these states and bridge the gap from their recent observation in simple toy graphs to complex networks.

  2. Producing Newborn Synchronous Mammalian Cells

    Science.gov (United States)

    Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen

    2008-01-01

    A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.

  3. Maps of the Auditory Cortex.

    Science.gov (United States)

    Brewer, Alyssa A; Barton, Brian

    2016-07-08

    One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration.

  4. Gamma teletopography

    International Nuclear Information System (INIS)

    Simonet, G.

    1986-09-01

    To set the gamma activity cartography is an important element of safety in numerous cases: intervention in hot cell, search of a radioactive source, examination of radioactive waste circuit followed by a reprocessing definition of decontamination and decommissioning processes and for all other accidents. The device presented here is like a ''black box'' with an aperture and an emulsion photosensitive to the opposite; a classical film takes photography of the place; a X-ray type emulsion gives a spot more or less contrasted and extensive corresponding to each source. Images can be processed with a microprocessor [fr

  5. Structure-function relationship in complex brain networks expressed by hierarchical synchronization

    International Nuclear Information System (INIS)

    Zhou Changsong; Zemanova, Lucia; Zamora-Lopez, Gorka; Hilgetag, Claus C; Kurths, Juergen

    2007-01-01

    The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks

  6. Structure-function relationship in complex brain networks expressed by hierarchical synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Changsong [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Zemanova, Lucia [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Zamora-Lopez, Gorka [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Hilgetag, Claus C [Jacobs University Bremen, Campus Ring 6, Rm 116, D-28759 Bremen (Germany); Kurths, Juergen [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany)

    2007-06-15

    The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks.

  7. Chemosensory Learning in the Cortex

    Directory of Open Access Journals (Sweden)

    Edmund eRolls

    2011-09-01

    Full Text Available Taste is a primary reinforcer. Olfactory-taste and visual-taste association learning takes place in the primate including human orbitofrontal cortex to build representations of flavour. Rapid reversal of this learning can occur using a rule-based learning system that can be reset when an expected taste or flavour reward is not obtained, that is by negative reward prediction error, to which a population of neurons in the orbitofrontal cortex responds. The representation in the orbitofrontal cortex but not the primary taste or olfactory cortex is of the reward value of the visual / olfactory / taste / input as shown by devaluation experiments in which food is fed to satiety, and by correlations with the activations with subjective pleasantness ratings in humans. Sensory-specific satiety for taste, olfactory, visual, and oral somatosensory inputs produced by feeding a particular food to satiety are implemented it is proposed by medium-term synaptic adaptation in the orbitofrontal cortex. Cognitive factors, including word-level descriptions, modulate the representation of the reward value of food in the orbitofrontal cortex, and this effect is learned it is proposed by associative modification of top-down synapses onto neurons activated by bottom-up taste and olfactory inputs when both are active in the orbitofrontal cortex. A similar associative synaptic learning process is proposed to be part of the mechanism for the top-down attentional control to the reward value vs the sensory properties such as intensity of taste and olfactory inputs in the orbitofrontal cortex, as part of a biased activation theory of selective attention.

  8. Early hypersynchrony in juvenile PINK1-/- motor cortex is rescued by antidromic stimulation

    Directory of Open Access Journals (Sweden)

    Romain eCARRON

    2014-05-01

    Full Text Available In Parkinson’s disease, cortical networks show enhanced synchronized activity but whether this precedes motor signs is unknown. We investigated this question in PINK1-/- mice, a genetic rodent model of the PARK6 variant of familial Parkinson’s disease which shows impaired spontaneous locomotion at 16 months. We used two-photon calcium imaging and whole-cell patch clamp in slices from juvenile (P14-P21 wild-type or PINK1-/- mice. We designed a horizontal tilted cortico-subthalamic slice where the only connection between cortex and subthalamic nucleus (STN is the hyperdirect cortico-subthalamic pathway. We report excessive correlation and synchronization in PINK1-/- M1 cortical networks 15 months before motor impairment. The percentage of correlated pairs of neurons and their strength of correlation were higher in the PINK1-/- M1 than in the wild type network and the synchronized network events involved a higher percentage of neurons. Both features were independent of thalamo-cortical pathways, insensitive to chronic levodopa treatment of pups, but totally reversed by antidromic invasion of M1 pyramidal neurons by axonal spikes evoked by high frequency stimulation (HFS of the STN. Our study describes an early excess of synchronization in the PINK1-/- cortex and suggests a potential role of antidromic activation of cortical interneurons in network desynchronization. Such backward effect on interneurons activity may be of importance for HFS-induced network desynchronization.

  9. Gamma knife

    International Nuclear Information System (INIS)

    Kawamoto, Shunsuke; Takakura, Kintomo

    1991-01-01

    As to the gamma knife which is the radiation surgery device developed in Sweden a quarter century ago, its principle, structure, treatment techniques, already established clinical effect and the problems being left for hereafter are described. This treatment means supplements the operation under microscopes, and at present it takes the important position in neurosurgery, but hereafter, by the interdisciplinary cooperation of neurosurgery and clinical radiobiology, the more development can be expected. The method of irradiating the radiation of high dose selectively to a target region and breaking its tissue is called radiosurgery, and the device developed for this purpose is the gamma knife. First, it was applied to functional diseases, but good results were obtained by its application to auditory nerve and brain blood vessels, and it establishes the position as the safe treatment method of the morbid state in the deep part of brains, which is difficult to reach by operation. Accompanying the recent progress of the operation of skull base part, attention is paid to its application to various tumors in skull base. On the other hand, the radiosurgery combining a cyclotron or a linear accelerator with stereotaxic brain surgery is actively tried mainly to the deformation of brain blood vessels. (K.I.)

  10. Synchronous implementation of optoelectronic NOR and XNOR logic gates using parallel synchronization of three chaotic lasers

    International Nuclear Information System (INIS)

    Yan Sen-Lin

    2014-01-01

    The parallel synchronization of three chaotic lasers is used to emulate optoelectronic logic NOR and XNOR gates via modulating the light and the current. We deduce a logical computational equation that governs the chaotic synchronization, logical input, and logical output. We construct fundamental gates based on the three chaotic lasers and define the computational principle depending on the parallel synchronization. The logic gate can be implemented by appropriately synchronizing two chaotic lasers. The system shows practicability and flexibility because it can emulate synchronously an XNOR gate, two NOR gates, and so on. The synchronization can still be deteceted when mismatches exist with a certain range. (general)

  11. Oxygen enhancement ratios in synchronous HeLa cells exposed to low-LET radiation

    International Nuclear Information System (INIS)

    Sapozink, M.D.

    1977-01-01

    HeLa cells were synchronized by the mitotic selection method and rendered hypoxic by coincubation with an excess of heavily irradiated, but metabolically active, feeder cells. An oxygen enhancement ratio (OER) of about 3 was obtained in interphase HeLa cells irradiated with x or gamma rays. A significantly lower OER was obtained with cells in, or close to, mitosis. The significance of this decrease in the oxygen effect in mitotic cells is discussed

  12. PET System Synchronization and Timing Resolution Using High-Speed Data Links

    OpenAIRE

    Aliaga Varea, Ramón José; Monzó Ferrer, José María; SPAGGIARI, MICHELE; Ferrando Jódar, Néstor; Gadea Gironés, Rafael; Colom Palero, Ricardo José

    2011-01-01

    Current PET systems with fully digital trigger rely on early digitization of detector signals and the use of digital processors, usually FPGAs, for recognition of valid gamma events on single detectors. Timestamps are assigned and later used for coincidence analysis. In order to maintain a decent timing resolution for events detected on different acquisition boards, it is necessary that local timestamps on different FPGAs be synchronized. Sub-nanosecond accuracy is mandatory if we want this e...

  13. Partial Synchronization Manifolds for Linearly Time-Delay Coupled Systems

    OpenAIRE

    Steur, Erik; van Leeuwen, Cees; Michiels, Wim

    2014-01-01

    Sometimes a network of dynamical systems shows a form of incomplete synchronization characterized by synchronization of some but not all of its systems. This type of incomplete synchronization is called partial synchronization. Partial synchronization is associated with the existence of partial synchronization manifolds, which are linear invariant subspaces of C, the state space of the network of systems. We focus on partial synchronization manifolds in networks of system...

  14. Patchwork-Type Spontaneous Activity in Neonatal Barrel Cortex Layer 4 Transmitted via Thalamocortical Projections

    Directory of Open Access Journals (Sweden)

    Hidenobu Mizuno

    2018-01-01

    Full Text Available Summary: Establishment of precise neuronal connectivity in the neocortex relies on activity-dependent circuit reorganization during postnatal development; however, the nature of cortical activity during this period remains largely unknown. Using two-photon calcium imaging of the barrel cortex in vivo during the first postnatal week, we reveal that layer 4 (L4 neurons within the same barrel fire synchronously in the absence of peripheral stimulation, creating a “patchwork” pattern of spontaneous activity corresponding to the barrel map. By generating transgenic mice expressing GCaMP6s in thalamocortical axons, we show that thalamocortical axons also demonstrate the spontaneous patchwork activity pattern. Patchwork activity is diminished by peripheral anesthesia but is mostly independent of self-generated whisker movements. The patchwork activity pattern largely disappeared during postnatal week 2, as even L4 neurons within the same barrel tended to fire asynchronously. This spontaneous L4 activity pattern has features suitable for thalamocortical (TC circuit refinement in the neonatal barrel cortex. : By two-photon calcium imaging of layer 4 neurons and thalamocortical axon terminals in neonatal mouse barrel cortex, Mizuno et al. find a patchwork-like spontaneous activity pattern corresponding to the barrel map, which may be important for thalamocortical circuit maturation. Keywords: activity-dependent development, spontaneous activity, synchronized activity, barrel cortex, thalamocortical axons, neonates, in vivo calcium imaging, awake, single-cell labeling, whisker monitoring

  15. High-Frequency Network Oscillations in Cerebellar Cortex

    Science.gov (United States)

    Middleton, Steven J.; Racca, Claudia; Cunningham, Mark O.; Traub, Roger D.; Monyer, Hannah; Knöpfel, Thomas; Schofield, Ian S.; Jenkins, Alistair; Whittington, Miles A.

    2016-01-01

    SUMMARY Both cerebellum and neocortex receive input from the somatosensory system. Interaction between these regions has been proposed to underpin the correct selection and execution of motor commands, but it is not clear how such interactions occur. In neocortex, inputs give rise to population rhythms, providing a spatiotemporal coding strategy for inputs and consequent outputs. Here, we show that similar patterns of rhythm generation occur in cerebellum during nicotinic receptor subtype activation. Both gamma oscillations (30–80 Hz) and very fast oscillations (VFOs, 80–160 Hz) were generated by intrinsic cerebellar cortical circuitry in the absence of functional glutamatergic connections. As in neocortex, gamma rhythms were dependent on GABAA receptor-mediated inhibition, whereas VFOs required only nonsynaptically connected intercellular networks. The ability of cerebellar cortex to generate population rhythms within the same frequency bands as neocortex suggests that they act as a common spatiotemporal code within which corticocerebellar dialog may occur. PMID:18549787

  16. Thalamic deactivation at sleep onset precedes that of the cerebral cortex in humans

    Science.gov (United States)

    Magnin, Michel; Rey, Marc; Bastuji, Hélène; Guillemant, Philippe; Mauguière, François; Garcia-Larrea, Luis

    2010-01-01

    Thalamic and cortical activities are assumed to be time-locked throughout all vigilance states. Using simultaneous intracortical and intrathalamic recordings, we demonstrate here that the thalamic deactivation occurring at sleep onset most often precedes that of the cortex by several minutes, whereas reactivation of both structures during awakening is synchronized. Delays between thalamus and cortex deactivations can vary from one subject to another when a similar cortical region is considered. In addition, heterogeneity in activity levels throughout the cortical mantle is larger than previously thought during the descent into sleep. Thus, asynchronous thalamo-cortical deactivation while falling asleep probably explains the production of hypnagogic hallucinations by a still-activated cortex and the common self-overestimation of the time needed to fall asleep. PMID:20142493

  17. Nonlinearity induced synchronization enhancement in mechanical oscillators

    Science.gov (United States)

    Czaplewski, David A.; Lopez, Omar; Guest, Jeffrey R.; Antonio, Dario; Arroyo, Sebastian I.; Zanette, Damian H.

    2018-05-08

    An autonomous oscillator synchronizes to an external harmonic force only when the forcing frequency lies within a certain interval, known as the synchronization range, around the oscillator's natural frequency. Under ordinary conditions, the width of the synchronization range decreases when the oscillation amplitude grows, which constrains synchronized motion of micro- and nano-mechanical resonators to narrow frequency and amplitude bounds. The present invention shows that nonlinearity in the oscillator can be exploited to manifest a regime where the synchronization range increases with an increasing oscillation amplitude. The present invention shows that nonlinearities in specific configurations of oscillator systems, as described herein, are the key determinants of the effect. The present invention presents a new configuration and operation regime that enhances the synchronization of micro- and nano-mechanical oscillators by capitalizing on their intrinsic nonlinear dynamics.

  18. A chimeric path to neuronal synchronization

    Science.gov (United States)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an "all or none" phenomenon, but can pass through an intermediate stage (chimera).

  19. Continuous and discontinuous transitions to synchronization.

    Science.gov (United States)

    Wang, Chaoqing; Garnier, Nicolas B

    2016-11-01

    We describe how the transition to synchronization in a system of globally coupled Stuart-Landau oscillators changes from continuous to discontinuous when the nature of the coupling is moved from diffusive to reactive. We explain this drastic qualitative change as resulting from the co-existence of a particular synchronized macrostate together with the trivial incoherent macrostate, in a range of parameter values for which the latter is linearly stable. In contrast to the paradigmatic Kuramoto model, this particular state observed at the synchronization transition contains a finite, non-vanishing number of synchronized oscillators, which results in a discontinuous transition. We consider successively two situations where either a fully synchronized state or a partially synchronized state exists at the transition. Thermodynamic limit and finite size effects are briefly discussed, as well as connections with recently observed discontinuous transitions.

  20. Synchronization in complex networks with switching topology

    International Nuclear Information System (INIS)

    Wang, Lei; Wang, Qing-guo

    2011-01-01

    This Letter investigates synchronization issues of complex dynamical networks with switching topology. By constructing a common Lyapunov function, we show that local and global synchronization for a linearly coupled network with switching topology can be evaluated by the time average of second smallest eigenvalues corresponding to the Laplacians of switching topology. This result is quite powerful and can be further used to explore various switching cases for complex dynamical networks. Numerical simulations illustrate the effectiveness of the obtained results in the end. -- Highlights: → Synchronization of complex networks with switching topology is investigated. → A common Lyapunov function is established for synchronization of switching network. → The common Lyapunov function is not necessary to monotonically decrease with time. → Synchronization is determined by the second smallest eigenvalue of its Laplacian. → Synchronization criterion can be used to investigate various switching cases.

  1. A chimeric path to neuronal synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L. [School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709 (United States)

    2015-01-15

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  2. Synchronizing noisy nonidentical oscillators by transient uncoupling

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, Aditya, E-mail: adityat@iitk.ac.in; Mannattil, Manu, E-mail: mmanu@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India); Schröder, Malte, E-mail: malte@nld.ds.mpg.de [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Timme, Marc, E-mail: timme@nld.ds.mpg.de [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Department of Physics, Technical University of Darmstadt, 64289 Darmstadt (Germany); Chakraborty, Sagar, E-mail: sagarc@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India); Mechanics and Applied Mathematics Group, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India)

    2016-09-15

    Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed “generalized synchronization.” Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the units stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.

  3. A chimeric path to neuronal synchronization

    International Nuclear Information System (INIS)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  4. Synchronization

    Indian Academy of Sciences (India)

    abnormally low heart rate known as bradycardia. This results in symptoms like fatigue, dizziness and fainting. In such cases ... cycle. Owing to this interaction, the flashing frequencies get entrained and the phases of the fireflies are locked.

  5. Explosive synchronization coexists with classical synchronization in the Kuramoto model

    Energy Technology Data Exchange (ETDEWEB)

    Danziger, Michael M., E-mail: michael.danziger@biu.ac.il; Havlin, Shlomo [Department of Physics, Bar-Ilan University, Ramat Gan (Israel); Moskalenko, Olga I.; Kurkin, Semen A. [Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya, 83, Saratov 410012 (Russian Federation); Saratov State Technical University, Politehnicheskaya, 77, Saratov 410054 (Russian Federation); Zhang, Xiyun [Department of Physics, East China Normal University, Shanghai 200062 (China); Boccaletti, Stefano [CNR-Institute of Complex Systems, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence (Italy); The Italian Embassy in Israel, 25 Hamered Street, 68125 Tel Aviv (Israel)

    2016-06-15

    Explosive synchronization has recently been reported in a system of adaptively coupled Kuramoto oscillators, without any conditions on the frequency or degree of the nodes. Here, we find that, in fact, the explosive phase coexists with the standard phase of the Kuramoto oscillators. We determine this by extending the mean-field theory of adaptively coupled oscillators with full coupling to the case with partial coupling of a fraction f. This analysis shows that a metastable region exists for all finite values of f > 0, and therefore explosive synchronization is expected for any perturbation of adaptively coupling added to the standard Kuramoto model. We verify this theory with GPU-accelerated simulations on very large networks (N ∼ 10{sup 6}) and find that, in fact, an explosive transition with hysteresis is observed for all finite couplings. By demonstrating that explosive transitions coexist with standard transitions in the limit of f → 0, we show that this behavior is far more likely to occur naturally than was previously believed.

  6. Gamma camera

    International Nuclear Information System (INIS)

    Tschunt, E.; Platz, W.; Baer, U.; Heinz, L.

    1978-01-01

    A gamma camera has a plurality of exchangeable collimators, one of which is mounted in the ray inlet opening of the camera, while the others are placed on separate supports. The supports are swingably mounted upon a column one above the other through about 90 0 to a collimator exchange position. Each of the separate supports is swingable to a vertically aligned position, with limiting of the swinging movement and positioning of the support at the desired exchange position. The collimators are carried on the supports by means of a series of vertically disposed coil springs. Projections on the camera are movable from above into grooves of the collimator at the exchange position, whereupon the collimator is turned so that it is securely prevented from falling out of the camera head

  7. Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing.

    Science.gov (United States)

    Kőszeghy, Áron; Lasztóczi, Bálint; Forro, Thomas; Klausberger, Thomas

    2018-01-01

    The orbitofrontal cortex (OFC) has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs) in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.

  8. Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing

    Directory of Open Access Journals (Sweden)

    Áron Kőszeghy

    2018-04-01

    Full Text Available The orbitofrontal cortex (OFC has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.

  9. Development of a synchronous subset of AADL

    DEFF Research Database (Denmark)

    Filali, Mamoun; Lawall, Julia

    2010-01-01

    We study the definition and the mapping of an AADL subset: the so called synchronous subset. We show that the data port protocol used for delayed and immediate connections between periodic threads can be interpreted in a  synchronous way. In this paper, we formalize this interpretation and study ...... the development of its mapping such that the original synchronous semantics is preserved. For that purpose, we use refinements through the Event B method....

  10. Adaptive Synchronization of Robotic Sensor Networks

    OpenAIRE

    Yıldırım, Kasım Sinan; Gürcan, Önder

    2014-01-01

    The main focus of recent time synchronization research is developing power-efficient synchronization methods that meet pre-defined accuracy requirements. However, an aspect that has been often overlooked is the high dynamics of the network topology due to the mobility of the nodes. Employing existing flooding-based and peer-to-peer synchronization methods, are networked robots still be able to adapt themselves and self-adjust their logical clocks under mobile network dynamics? In this paper, ...

  11. Method for Converter Synchronization with RF Injection

    OpenAIRE

    Joshua P. Bruckmeyer; Ivica Kostanic

    2015-01-01

    This paper presents an injection method for synchronizing analog to digital converters (ADC). This approach can eliminate the need for precision routed discrete synchronization signals of current technologies, such as JESD204. By eliminating the setup and hold time requirements at the conversion (or near conversion) clock rate, higher sample rate systems can be synchronized. Measured data from an existing multiple ADC conversion system was used to evaluate the method. Coherent beams were simu...

  12. The synchronization of three fractional differential systems

    International Nuclear Information System (INIS)

    Li Changpin; Yan Jianping

    2007-01-01

    In this paper, a new method is proposed and applied to the synchronization of fractional differential systems (or 'differential systems with fractional orders'), where both drive and response systems have the same dimensionality and are coupled by the driving signal. The present technique is based on the stability criterion of linear fractional systems. This method is implemented in (chaos) synchronization of the fractional Lorenz system, Chen system and Chua circuit. Numerical simulations show the present synchronization method works well

  13. Fitness for synchronization of network motifs

    DEFF Research Database (Denmark)

    Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.

    2004-01-01

    We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...... that the fitness for synchronization correlates well with motifs interconnectedness and structural complexity. Possible implications for present debates about network evolution in biological and other systems are discussed....

  14. Synchronizing a class of uncertain chaotic systems

    International Nuclear Information System (INIS)

    Chen Maoyin; Zhou Donghua; Shang Yun

    2005-01-01

    This Letter deals with the synchronization of a class of uncertain chaotic systems in the drive-response framework. A robust adaptive observer based response system is designed to synchronize a given chaotic system with unknown parameters and external disturbances. Lyapunov stability ensures the global synchronization between the drive and response systems even if Lipschitz constants on function matrices and bounds on uncertainties are unknown. Numerical simulation of Genesio-Tesi system verifies the effectiveness of this scheme

  15. Impulsive synchronization of Chen's hyperchaotic system

    International Nuclear Information System (INIS)

    Haeri, Mohammad; Dehghani, Mahsa

    2006-01-01

    In this Letter the impulsive synchronization of the Chen's hyperchaotic systems is discussed. Some new and sufficient conditions on varying impulsive distance are established in order to guarantee the synchronizabillity of the systems using the synchronization method. In particular, some simple conditions are derived in synchronizing the systems by equal impulsive distances. Two illustrative examples are provided to show the feasibility and the effectiveness of the proposed method. The boundaries of the stable regions are also estimated

  16. A True Open-Loop Synchronization Technique

    DEFF Research Database (Denmark)

    Golestan, Saeed; Vidal, Ana; Yepes, Alejandro G.

    2016-01-01

    Synchronization techniques can be broadly classified into two major categories: Closed-loop and open-loop methods. The open-loop synchronization (OLS) techniques, contrary to the closed-loop ones, are unconditionally stable and benefit from a fast dynamic response. Their performance, however, tends...... is to develop a true OLS (and therefore, unconditionally stable) technique without any need for the calculation of sine and cosine functions. The effectiveness of the proposed synchronization technique is confirmed through the simulation and experimental results....

  17. A single phase synchronous micromotor

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, T.

    1982-01-25

    The excitation winding of a synchronous micromotor, wound on a bobin made of an electricity insulating material (EIM), is located in a cylindrical mount, whose exterior walls are thicker than the interior ones. From above the mount is covered by a pole top with comb poles. The rotor poles are made of a permanent magnet, seated on a bushing which rotates on a shaft. The stable rotation of the rotor is supported by a stop bearing and a guide bearing, where the latter consists of a magnetic part and a nonmagnetic part.

  18. Synchronous Oscillations in Microtubule Polymerization

    Science.gov (United States)

    Carlier, M. F.; Melki, R.; Pantaloni, D.; Hill, T. L.; Chen, Y.

    1987-08-01

    Under conditions where microtubule nucleation and growth are fast (i.e., high magnesium ion and tubulin concentrations and absence of glycerol), microtubule assembly in vitro exhibits an oscillatory regime preceding the establishment of steady state. The amplitude of the oscillations can represent >50% of the maximum turbidity change and oscillations persist for up to 20 periods of 80 s each. Oscillations are accompanied by extensive length redistribution of microtubules. Preliminary work suggests that the oscillatory kinetics can be simulated using a model in which many microtubules undergo synchronous transitions between growing and rapidly depolymerizing phases, complicated by the kinetically limiting rate of nucleotide exchange on free tubulin.

  19. Seamless Image Mosaicking via Synchronization

    Science.gov (United States)

    Santellani, E.; Maset, E.; Fusiello, A.

    2018-05-01

    This paper proposes an innovative method to create high-quality seamless planar mosaics. The developed pipeline ensures good robustness against many common mosaicking problems (e.g., misalignments, colour distortion, moving objects, parallax) and differs from other works in the literature because a global approach, known as synchronization, is used for image registration and colour correction. To better conceal the mosaic seamlines, images are cut along specific paths, computed using a Voronoi decomposition of the mosaic area and a shortest path algorithm. Results obtained on challenging real datasets show that the colour correction mitigates significantly the colour variations between the original images and the seams on the final mosaic are not evident.

  20. Efficient Synchronization Primitives for GPUs

    OpenAIRE

    Stuart, Jeff A.; Owens, John D.

    2011-01-01

    In this paper, we revisit the design of synchronization primitives---specifically barriers, mutexes, and semaphores---and how they apply to the GPU. Previous implementations are insufficient due to the discrepancies in hardware and programming model of the GPU and CPU. We create new implementations in CUDA and analyze the performance of spinning on the GPU, as well as a method of sleeping on the GPU, by running a set of memory-system benchmarks on two of the most common GPUs in use, the Tesla...

  1. Synchronization of coupled metronomes on two layers

    Science.gov (United States)

    Zhang, Jing; Yu, Yi-Zhen; Wang, Xin-Gang

    2017-12-01

    Coupled metronomes serve as a paradigmatic model for exploring the collective behaviors of complex dynamical systems, as well as a classical setup for classroom demonstrations of synchronization phenomena. Whereas previous studies of metronome synchronization have been concentrating on symmetric coupling schemes, here we consider the asymmetric case by adopting the scheme of layered metronomes. Specifically, we place two metronomes on each layer, and couple two layers by placing one on top of the other. By varying the initial conditions of the metronomes and adjusting the friction between the two layers, a variety of synchronous patterns are observed in experiment, including the splay synchronization (SS) state, the generalized splay synchronization (GSS) state, the anti-phase synchronization (APS) state, the in-phase delay synchronization (IPDS) state, and the in-phase synchronization (IPS) state. In particular, the IPDS state, in which the metronomes on each layer are synchronized in phase but are of a constant phase delay to metronomes on the other layer, is observed for the first time. In addition, a new technique based on audio signals is proposed for pattern detection, which is more convenient and easier to apply than the existing acquisition techniques. Furthermore, a theoretical model is developed to explain the experimental observations, and is employed to explore the dynamical properties of the patterns, including the basin distributions and the pattern transitions. Our study sheds new lights on the collective behaviors of coupled metronomes, and the developed setup can be used in the classroom for demonstration purposes.

  2. Pilotless Frame Synchronization Using LDPC Code Constraints

    Science.gov (United States)

    Jones, Christopher; Vissasenor, John

    2009-01-01

    A method of pilotless frame synchronization has been devised for low- density parity-check (LDPC) codes. In pilotless frame synchronization , there are no pilot symbols; instead, the offset is estimated by ex ploiting selected aspects of the structure of the code. The advantag e of pilotless frame synchronization is that the bandwidth of the sig nal is reduced by an amount associated with elimination of the pilot symbols. The disadvantage is an increase in the amount of receiver data processing needed for frame synchronization.

  3. Synchronization Analysis of the Supermarket Refrigeration System

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Chen, Liang; Larsen, Lars Finn Sloth

    2009-01-01

    is analyzed using the bifurcation and chaos theory. It is demonstrated that the system can have a complex chaotic behavior, which is far from the synchronization. This shows that making the system chaotic is a good choice for a de-synchronization strategy. The positive maximum Lyapunov exponent is usually...... taken as an indication of the existence of chaos. It is used in the paper as a measure of performance for the tendency of the system to synchronize, that is, the higher value of the maximum Lyapunov exponent the lower risk for synchronization....

  4. Acoustophoretic Synchronization of Mammalian Cells in Microchannels

    DEFF Research Database (Denmark)

    Thévoz, P.; Adams, J.D.; Shea, H.

    2010-01-01

    We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel to selec......We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel...

  5. Price synchronization in retailing: some empirical evidence

    Directory of Open Access Journals (Sweden)

    Marcelo Resende

    2014-06-01

    Full Text Available The paper investigates the synchronization of price changes in the context of retail tire dealers in São Paulo-Brazil and selected items in supermarkets for cleaning supplies and food in Rio de Janeiro-Brazil. Results indicate similar and non-negligible synchronization for different brands, although magnitudes are distant from a perfect synchronization pattern. We find interesting patterns in inter-firm competition, with similar magnitudes across different tire types. Intra-chain synchronization is substantial, indicating that a common price adjustment policy tends to be sustained for each chain across different products.

  6. Sub-nanosecond clock synchronization and trigger management in the nuclear physics experiment AGATA

    International Nuclear Information System (INIS)

    Bellato, M; Isocrate, R; Rampazzo, G; Bazzacco, D; Bortolato, D; Triossi, A; Chavas, J; Mengoni, D; Recchia, F

    2013-01-01

    The new-generation spectrometer AGATA, the Advanced GAmma Tracking Array, requires sub-nanosecond clock synchronization among readout and front-end electronics modules that may lie hundred meters apart. We call GTS (Global Trigger and Synchronization System) the infrastructure responsible for precise clock synchronization and for the trigger management of AGATA. It is made of a central trigger processor and nodes, connected in a tree structure by means of optical fibers operated at 2Gb/s. The GTS tree handles the synchronization and the trigger data flow, whereas the trigger processor analyses and eventually validates the trigger primitives centrally. Sub-nanosecond synchronization is achieved by measuring two different types of round-trip times and by automatically correcting for phase-shift differences. For a tree of depth two, the peak-to-peak clock jitter at each leaf is 70 ps; the mean phase difference is 180 ps, while the standard deviation over such phase difference, namely the phase equalization repeatability, is 20 ps. The GTS system has run flawlessly for the two-year long AGATA campaign, held at the INFN Legnaro National Laboratories, Italy, where five triple clusters of the AGATA sub-array were coupled with a variety of ancillary detectors

  7. Sub-nanosecond clock synchronization and trigger management in the nuclear physics experiment AGATA

    Science.gov (United States)

    Bellato, M.; Bortolato, D.; Chavas, J.; Isocrate, R.; Rampazzo, G.; Triossi, A.; Bazzacco, D.; Mengoni, D.; Recchia, F.

    2013-07-01

    The new-generation spectrometer AGATA, the Advanced GAmma Tracking Array, requires sub-nanosecond clock synchronization among readout and front-end electronics modules that may lie hundred meters apart. We call GTS (Global Trigger and Synchronization System) the infrastructure responsible for precise clock synchronization and for the trigger management of AGATA. It is made of a central trigger processor and nodes, connected in a tree structure by means of optical fibers operated at 2Gb/s. The GTS tree handles the synchronization and the trigger data flow, whereas the trigger processor analyses and eventually validates the trigger primitives centrally. Sub-nanosecond synchronization is achieved by measuring two different types of round-trip times and by automatically correcting for phase-shift differences. For a tree of depth two, the peak-to-peak clock jitter at each leaf is 70 ps; the mean phase difference is 180 ps, while the standard deviation over such phase difference, namely the phase equalization repeatability, is 20 ps. The GTS system has run flawlessly for the two-year long AGATA campaign, held at the INFN Legnaro National Laboratories, Italy, where five triple clusters of the AGATA sub-array were coupled with a variety of ancillary detectors.

  8. Wireless Synchronization of a Multi-Pinhole Small Animal SPECT Collimation Device With a Clinical Scanner

    Science.gov (United States)

    DiFilippo, Frank P.; Patel, Sagar

    2009-06-01

    A multi-pinhole collimation device for small animal single photon emission computed tomography (SPECT) uses the gamma camera detectors of a standard clinical SPECT scanner. The collimator and animal bed move independently of the detectors, and therefore their motions must be synchronized. One approach is manual triggering of the SPECT acquisition simultaneously with a programmed motion sequence for the device. However, some data blurring and loss of image quality result, and true electronic synchronization is preferred. An off-the-shelf digital gyroscope with integrated Bluetooth interface provides a wireless solution to device synchronization. The sensor attaches to the SPECT gantry and reports its rotational speed to a notebook computer controlling the device. Software processes the rotation data in real-time, averaging the signal and issuing triggers while compensating for baseline drift. Motion commands are sent to the collimation device with minimal delay, within approximately 0.5 second of the start of SPECT gantry rotation. Test scans of a point source demonstrate an increase in true counts and a reduction in background counts compared to manual synchronization. The wireless rotation sensor provides robust synchronization of the collimation device with the clinical SPECT scanner and enhances image quality.

  9. Retinal oscillations carry visual information to cortex

    Directory of Open Access Journals (Sweden)

    Kilian Koepsell

    2009-04-01

    Full Text Available Thalamic relay cells fire action potentials that transmit information from retina to cortex. The amount of information that spike trains encode is usually estimated from the precision of spike timing with respect to the stimulus. Sensory input, however, is only one factor that influences neural activity. For example, intrinsic dynamics, such as oscillations of networks of neurons, also modulate firing pattern. Here, we asked if retinal oscillations might help to convey information to neurons downstream. Specifically, we made whole-cell recordings from relay cells to reveal retinal inputs (EPSPs and thalamic outputs (spikes and then analyzed these events with information theory. Our results show that thalamic spike trains operate as two multiplexed channels. One channel, which occupies a low frequency band (<30 Hz, is encoded by average firing rate with respect to the stimulus and carries information about local changes in the visual field over time. The other operates in the gamma frequency band (40-80 Hz and is encoded by spike timing relative to retinal oscillations. At times, the second channel conveyed even more information than the first. Because retinal oscillations involve extensive networks of ganglion cells, it is likely that the second channel transmits information about global features of the visual scene.

  10. Gamma camera

    International Nuclear Information System (INIS)

    Conrad, B.; Heinzelmann, K.G.

    1975-01-01

    A gamma camera is described which obviates the distortion of locating signals generally caused by the varied light conductive capacities of the light conductors in that the flow of light through each light conductor may be varied by means of a shutter. A balancing of the flow of light through each of the individual light conductors, in effect, collective light conductors may be balanced on the basis of their light conductive capacities or properties, so as to preclude a distortion of the locating signals caused by the varied light conductive properties of the light conductors. Each light conductor has associated therewith two, relative to each other, independently adjustable shutters, of which one forms a closure member and the other an adjusting shutter. In this embodiment of the invention it is thus possible to block all of the light conductors leading to a photoelectric transducer, with the exception of those light conductors which are to be balanced. The balancing of the individual light conductors may then be obtained on the basis of the output signals of the photoelectric transducer. (auth)

  11. Gamma ray generator

    Science.gov (United States)

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  12. Impulsive Synchronization and Adaptive-Impulsive Synchronization of a Novel Financial Hyperchaotic System

    Directory of Open Access Journals (Sweden)

    Xiuli Chai

    2013-01-01

    Full Text Available The impulsive synchronization and adaptive-impulsive synchronization of a novel financial hyperchaotic system are investigated. Based on comparing principle for impulsive functional differential equations, several sufficient conditions for impulsive synchronization are derived, and the upper bounds of impulsive interval for stable synchronization are estimated. Furthermore, a nonlinear adaptive-impulsive control scheme is designed to synchronize the financial system using invariant principle of impulsive dynamical systems. Moreover, corresponding numerical simulations are presented to illustrate the effectiveness and feasibility of the proposed methods.

  13. Synchronization of coupled chaotic dynamics on networks

    Indian Academy of Sciences (India)

    We review some recent work on the synchronization of coupled dynamical systems on a variety of networks. When nodes show synchronized behaviour, two interesting phenomena can be observed. First, there are some nodes of the floating type that show intermittent behaviour between getting attached to some clusters ...

  14. Synchronization and emergence in complex systems

    Indian Academy of Sciences (India)

    ... complex systems. Fatihcan M Atay. Synchronization, Coupled Systems and Networks Volume 77 Issue 5 November 2011 pp 855-863 ... We show how novel behaviour can emerge in complex systems at the global level through synchronization of the activities of their constituent units. Two mechanisms are suggested for ...

  15. Dependence of synchronization frequency of Kuramoto oscillators ...

    Indian Academy of Sciences (India)

    Kuramoto oscillators have been proposed earlier as a model for interacting systems that exhibit synchronization. In this article, we study the difference between networks with symmetric and asymmetric distribution of natural frequencies. We first indicate that synchronization frequency of oscillators in a completely connected ...

  16. Synchronization of oscillators in complex networks

    Indian Academy of Sciences (India)

    Theory of identical or complete synchronization of identical oscillators in arbitrary networks is introduced. In addition, several graph theory concepts and results that augment the synchronization theory and a tie in closely to random, semirandom, and regular networks are introduced. Combined theories are used to explore ...

  17. Synchronized Data Aggregation for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2014-01-01

    Wireless Sensor Networks (WSNs) are used for monitoring and data collection purposes. A key challenge in effective data collection is to schedule and synchronize the activities of the nodes with global clock. This paper proposes the Synchronized Data Aggregation Algorithm (SDA) using spanning tree...

  18. A clock synchronization skeleton based on RTAI

    NARCIS (Netherlands)

    Huang, Y.; Visser, P.M.; Broenink, Johannes F.

    2006-01-01

    This paper presents a clock synchronization skeleton based on RTAI (Real Time Application Interface). The skeleton is a thin layer that provides unified but extendible interfaces to the underlying operating system, the synchronization algorithms and the upper level applications in need of clock

  19. Analytical treatment for synchronizing chaos through unidirectional ...

    Indian Academy of Sciences (India)

    Abstract. The idea of synchronization can be explicitly demonstrated by both numerical and ana- lytical means on a nonlinear electronic circuit. Also, we introduce a scheme to obtain various logic gate structures, using synchronization of chaotic systems. By a small change in the response param- eter of unidirectionally ...

  20. Synchronization of oscillators in complex networks

    Indian Academy of Sciences (India)

    Abstract. Theory of identical or complete synchronization of identical oscillators in arbitrary networks is introduced. In addition, several graph theory concepts and results that augment the synchronization theory and a tie in closely to random, semirandom, and regular networks are introduced. Combined theories are used to ...

  1. Identical synchronization of coupled Rossler systems

    DEFF Research Database (Denmark)

    Yanchuk, S.; Maistrenko, Y.; Mosekilde, Erik

    1999-01-01

    Analyzing the transverse stability of low periodic orbits embedded in the synchronized chaotic state for a system of two coupled Rössler oscillators, we obtain the conditions for synchronization and determine the coupling parameters for which riddled basins of attraction may arise. It is shown how...

  2. Chaos synchronization of nonlinear Bloch equations

    International Nuclear Information System (INIS)

    Park, Ju H.

    2006-01-01

    In this paper, the problem of chaos synchronization of Bloch equations is considered. A novel nonlinear controller is designed based on the Lyapunov stability theory. The proposed controller ensures that the states of the controlled chaotic slave system asymptotically synchronizes the states of the master system. A numerical example is given to illuminate the design procedure and advantage of the result derived

  3. Synchronization in Quantum Key Distribution Systems

    Directory of Open Access Journals (Sweden)

    Anton Pljonkin

    2017-10-01

    Full Text Available In the description of quantum key distribution systems, much attention is paid to the operation of quantum cryptography protocols. The main problem is the insufficient study of the synchronization process of quantum key distribution systems. This paper contains a general description of quantum cryptography principles. A two-line fiber-optic quantum key distribution system with phase coding of photon states in transceiver and coding station synchronization mode was examined. A quantum key distribution system was built on the basis of the scheme with automatic compensation of polarization mode distortions. Single-photon avalanche diodes were used as optical radiation detecting devices. It was estimated how the parameters used in quantum key distribution systems of optical detectors affect the detection of the time frame with attenuated optical pulse in synchronization mode with respect to its probabilistic and time-domain characteristics. A design method was given for the process that detects the time frame that includes an optical pulse during synchronization. This paper describes the main quantum communication channel attack methods by removing a portion of optical emission. This paper describes the developed synchronization algorithm that takes into account the time required to restore the photodetector’s operation state after the photon has been registered during synchronization. The computer simulation results of the developed synchronization algorithm were analyzed. The efficiency of the developed algorithm with respect to synchronization process protection from unauthorized gathering of optical emission is demonstrated herein.

  4. Communicating via robust synchronization of chaotic lasers

    International Nuclear Information System (INIS)

    Lopez-Gutierrez, R.M.; Posadas-Castillo, C.; Lopez-Mancilla, D.; Cruz-Hernandez, C.

    2009-01-01

    In this paper, the robust synchronization problem for coupled chaotic Nd:YAG lasers is addressed. We resort to complex systems theory to achieve chaos synchronization. Based on stability theory, it is shown that the state trajectories of the perturbed error synchronization are ultimately bounded, provided the unperturbed synchronization error system is exponentially stable, and some conditions on the bounds of the perturbation terms are satisfied. So that, encoding, transmission, and decoding in chaotic optical communications are presented. We analyze the transmission and recovery of encrypted information when parameter mismatches are considered. Computer simulations are provided to show the effectiveness of this robustness synchronization property, we present the encrypted transmission of image messages, and we show that, the transmitted image is faithfully recovered.

  5. Communicating via robust synchronization of chaotic lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Gutierrez, R.M. [Engineering Faculty, Baja California Autonomous University (UABC), Km. 103 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico); Posadas-Castillo, C. [Engineering Faculty, Baja California Autonomous University (UABC), Km. 103 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico); FIME, Autonomous University of Nuevo Leon (UANL), Pedro de Alba, S.N., Cd. Universitaria, San Nicolas de los Garza, NL (Mexico); Lopez-Mancilla, D. [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de los Lagos, Universidad de Guadalajara (CULagos-UdeG), Enrique Diaz de Leon s/n, 47460 Lagos de Moreno, Jal. (Mexico); Cruz-Hernandez, C. [Electronics and Telecommunications Department, Scientific Research and Advanced Studies of Ensenada (CICESE), Km. 107 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico)], E-mail: ccruz@cicese.mx

    2009-10-15

    In this paper, the robust synchronization problem for coupled chaotic Nd:YAG lasers is addressed. We resort to complex systems theory to achieve chaos synchronization. Based on stability theory, it is shown that the state trajectories of the perturbed error synchronization are ultimately bounded, provided the unperturbed synchronization error system is exponentially stable, and some conditions on the bounds of the perturbation terms are satisfied. So that, encoding, transmission, and decoding in chaotic optical communications are presented. We analyze the transmission and recovery of encrypted information when parameter mismatches are considered. Computer simulations are provided to show the effectiveness of this robustness synchronization property, we present the encrypted transmission of image messages, and we show that, the transmitted image is faithfully recovered.

  6. Synchronization in networks with heterogeneous coupling delays

    Science.gov (United States)

    Otto, Andreas; Radons, Günter; Bachrathy, Dániel; Orosz, Gábor

    2018-01-01

    Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied. A decomposition of the network dynamics is obtained by block diagonalizing a newly introduced adjacency lag operator which contains the topology of the network as well as the corresponding coupling delays. This generalizes the master stability function approach, which was developed for homogenous delays. As a result the network dynamics can be analyzed by delay differential equations with distributed delay, where different delay distributions emerge for different network modes. Frequency domain methods are used for the stability analysis of synchronized equilibria and synchronized periodic orbits. As an example, the synchronization behavior in a system of delay-coupled Hodgkin-Huxley neurons is investigated. It is shown that the parameter regions where synchronized periodic spiking is unstable expand when increasing the delay heterogeneity.

  7. Chaos synchronization based on intermittent state observer

    Institute of Scientific and Technical Information of China (English)

    Li Guo-Hui; Zhou Shi-Ping; Xu De-Ming

    2004-01-01

    This paper describes the method of synchronizing slave to the master trajectory using an intermittent state observer by constructing a synchronizer which drives the response system globally tracing the driving system asymptotically. It has been shown from the theory of synchronization error-analysis that a satisfactory result of chaos synchronization is expected under an appropriate intermittent period and state observer. Compared with continuous control method,the proposed intermittent method can target the desired orbit more efficiently. The application of the method is demonstrated on the hyperchaotic Rossler systems. Numerical simulations show that the length of the synchronization interval rs is of crucial importance for our scheme, and the method is robust with respect to parameter mismatch.

  8. Effects of frustration on explosive synchronization

    Science.gov (United States)

    Huang, Xia; Gao, Jian; Sun, Yu-Ting; Zheng, Zhi-Gang; Xu, Can

    2016-12-01

    In this study, we consider the emergence of explosive synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees and frustration is included in the system. This assumption can enhance or delay the explosive transition to synchronization. Interestingly, a de-synchronization phenomenon occurs and the type of phase transition is also changed. Furthermore, we provide an analytical treatment based on a star graph, which resembles that obtained in scale-free networks. Finally, a self-consistent approach is implemented to study the de-synchronization regime. Our findings have important implications for controlling synchronization in complex networks because frustration is a controllable parameter in experiments and a discontinuous abrupt phase transition is always dangerous in engineering in the real world.

  9. MRI volumetry of prefrontal cortex

    Science.gov (United States)

    Sheline, Yvette I.; Black, Kevin J.; Lin, Daniel Y.; Pimmel, Joseph; Wang, Po; Haller, John W.; Csernansky, John G.; Gado, Mokhtar; Walkup, Ronald K.; Brunsden, Barry S.; Vannier, Michael W.

    1995-05-01

    Prefrontal cortex volumetry by brain magnetic resonance (MR) is required to estimate changes postulated to occur in certain psychiatric and neurologic disorders. A semiautomated method with quantitative characterization of its performance is sought to reliably distinguish small prefrontal cortex volume changes within individuals and between groups. Stereological methods were tested by a blinded comparison of measurements applied to 3D MR scans obtained using an MPRAGE protocol. Fixed grid stereologic methods were used to estimate prefrontal cortex volumes on a graphic workstation, after the images are scaled from 16 to 8 bits using a histogram method. In addition images were resliced into coronal sections perpendicular to the bicommissural plane. Prefrontal cortex volumes were defined as all sections of the frontal lobe anterior to the anterior commissure. Ventricular volumes were excluded. Stereological measurement yielded high repeatability and precision, and was time efficient for the raters. The coefficient of error was volumetry by stereology can yield accurate and repeatable measurements. Small frontal lobe volume reductions in patients with brain disorders such as depression and schizophrenia can be efficiently assessed using this method.

  10. Variance based OFDM frame synchronization

    Directory of Open Access Journals (Sweden)

    Z. Fedra

    2012-04-01

    Full Text Available The paper deals with a new frame synchronization scheme for OFDM systems and calculates the complexity of this scheme. The scheme is based on the computing of the detection window variance. The variance is computed in two delayed times, so a modified Early-Late loop is used for the frame position detection. The proposed algorithm deals with different variants of OFDM parameters including guard interval, cyclic prefix, and has good properties regarding the choice of the algorithm's parameters since the parameters may be chosen within a wide range without having a high influence on system performance. The verification of the proposed algorithm functionality has been performed on a development environment using universal software radio peripheral (USRP hardware.

  11. Concurrent systems and time synchronization

    Science.gov (United States)

    Burgin, Mark; Grathoff, Annette

    2018-05-01

    In the majority of scientific fields, system dynamics is described assuming existence of unique time for the whole system. However, it is established theoretically, for example, in relativity theory or in the system theory of time, and validated experimentally that there are different times and time scales in a variety of real systems - physical, chemical, biological, social, etc. In spite of this, there are no wide-ranging scientific approaches to exploration of such systems. Therefore, the goal of this paper is to study systems with this property. We call them concurrent systems because processes in them can go, events can happen and actions can be performed in different time scales. The problem of time synchronization is specifically explored.

  12. Synchronization of world economic activity

    Science.gov (United States)

    Groth, Andreas; Ghil, Michael

    2017-12-01

    Common dynamical properties of business cycle fluctuations are studied in a sample of more than 100 countries that represent economic regions from all around the world. We apply the methodology of multivariate singular spectrum analysis (M-SSA) to identify oscillatory modes and to detect whether these modes are shared by clusters of phase- and frequency-locked oscillators. An extension of the M-SSA approach is introduced to help analyze structural changes in the cluster configuration of synchronization. With this novel technique, we are able to identify a common mode of business cycle activity across our sample, and thus point to the existence of a world business cycle. Superimposed on this mode, we further identify several major events that have markedly influenced the landscape of world economic activity in the postwar era.

  13. Chaos synchronization between Chen system and Genesio system

    International Nuclear Information System (INIS)

    Wu Xianyong; Guan Zhihong; Wu Zhengping; Li Tao

    2007-01-01

    This Letter presents two synchronization schemes between two different chaotic systems. Active control synchronization and adaptive synchronization between Chen system and Genesio system are studied, different controllers are designed to synchronize the drive and response systems, active control synchronization is used when system parameters are known; adaptive synchronization is employed when system parameters are unknown or uncertain. Simulation results show the effectiveness of the proposed schemes

  14. Synchronous inhibitory potentials precede seizure-like events in acute models of focal limbic seizures.

    Science.gov (United States)

    Uva, Laura; Breschi, Gian Luca; Gnatkovsky, Vadym; Taverna, Stefano; de Curtis, Marco

    2015-02-18

    Interictal spikes in models of focal seizures and epilepsies are sustained by the synchronous activation of glutamatergic and GABAergic networks. The nature of population spikes associated with seizure initiation (pre-ictal spikes; PSs) is still undetermined. We analyzed the networks involved in the generation of both interictal and PSs in acute models of limbic cortex ictogenesis induced by pharmacological manipulations. Simultaneous extracellular and intracellular recordings from both principal cells and interneurons were performed in the medial entorhinal cortex of the in vitro isolated guinea pig brain during focal interictal and ictal discharges induced in the limbic network by intracortical and brief arterial infusions of either bicuculline methiodide (BMI) or 4-aminopyridine (4AP). Local application of BMI in the entorhinal cortex did not induce seizure-like events (SLEs), but did generate periodic interictal spikes sensitive to the glutamatergic non-NMDA receptor antagonist DNQX. Unlike local applications, arterial perfusion of either BMI or 4AP induced focal limbic SLEs. PSs just ahead of SLE were associated with hyperpolarizing potentials coupled with a complete blockade of firing in principal cells and burst discharges in putative interneurons. Interictal population spikes recorded from principal neurons between two SLEs correlated with a depolarizing potential. We demonstrate in two models of acute limbic SLE that PS events are different from interictal spikes and are sustained by synchronous activation of inhibitory networks. Our findings support a prominent role of synchronous network inhibition in the initiation of a focal seizure. Copyright © 2015 the authors 0270-6474/15/353048-08$15.00/0.

  15. The Functions of the Orbitofrontal Cortex

    Science.gov (United States)

    Rolls, Edmund T.

    2004-01-01

    The orbitofrontal cortex contains the secondary taste cortex, in which the reward value of taste is represented. It also contains the secondary and tertiary olfactory cortical areas, in which information about the identity and also about the reward value of odours is represented. The orbitofrontal cortex also receives information about the sight…

  16. In sync: gamma oscillations and emotional memory

    Directory of Open Access Journals (Sweden)

    Drew Battenfield Headley

    2013-11-01

    Full Text Available Emotional experiences leave vivid memories that can last a lifetime. The emotional facilitation of memory has been attributed to the engagement of diffusely projecting neuromodulatory systems that enhance the consolidation of synaptic plasticity in regions activated by the experience. This process requires the propagation of signals between brain regions, and for those signals to induce long-lasting synaptic plasticity. Both of these demands are met by gamma oscillations, which reflect synchronous population activity on a fast timescale (35-120 Hz. Regions known to participate in the formation of emotional memories, such as the basolateral amygdala, also promote gamma-band activation throughout cortical and subcortical circuits. Recent studies have demonstrated that gamma oscillations are enhanced during emotional situations, coherent between regions engaged by salient stimuli, and predict subsequent memory for cues associated with aversive stimuli. Furthermore, neutral stimuli that come to predict emotional events develop enhanced gamma oscillations, reflecting altered processing in the brain, which may underpin how past emotional experiences color future learning and memory.

  17. In sync: gamma oscillations and emotional memory.

    Science.gov (United States)

    Headley, Drew B; Paré, Denis

    2013-11-21

    Emotional experiences leave vivid memories that can last a lifetime. The emotional facilitation of memory has been attributed to the engagement of diffusely projecting neuromodulatory systems that enhance the consolidation of synaptic plasticity in regions activated by the experience. This process requires the propagation of signals between brain regions, and for those signals to induce long-lasting synaptic plasticity. Both of these demands are met by gamma oscillations, which reflect synchronous population activity on a fast timescale (35-120 Hz). Regions known to participate in the formation of emotional memories, such as the basolateral amygdala, also promote gamma-band activation throughout cortical and subcortical circuits. Recent studies have demonstrated that gamma oscillations are enhanced during emotional situations, coherent between regions engaged by salient stimuli, and predict subsequent memory for cues associated with aversive stimuli. Furthermore, neutral stimuli that come to predict emotional events develop enhanced gamma oscillations, reflecting altered processing in the brain, which may underpin how past emotional experiences color future learning and memory.

  18. Effect of neon ions on synchronized Chinese hamster cells

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.; Carpenter, S.G.; Tokita, N. (Los Alamos National Lab., NM (USA)); Howard, J. (Lawrence Berkeley Lab., CA (USA))

    1985-08-01

    The variation in radiosensitivity across the cell cycle after exposure to neon ions and /sup 60/Co ..gamma..-rays is reported for cultured hamster cells. The cells were first synchronized by mitotic selection, then resynchronized in the region of the G/sub 1//S boundary by treatment with 10/sup -3/ M hydroxyurea. Although the use of hydroxyurea improves the synchrony, it does sensitize cells at the G/sub 1//S boundary to some degree. The cells were exposed at the plateau and the distal peak position of a neon ion beam modified by a 10 cm wide ridge filter. The results indicate that the variation (ratio of maximum to minimum survival after fixed doses of radiation that are approximately matched to produce similar cell killing) was approximately 80 to 100-fold for /sup 60/Co ..gamma..-rays and neon ions at the plateau, and 25-fold for distal peak neon ions. While the r.b.e. of distal peak neon ions decreased rapidly with increasing dose for cells in late S-phase, the r.b.e. is independent of dose for cells at the G/sub 1//S boundary.

  19. V123 Beam Synchronous Encoder Module

    International Nuclear Information System (INIS)

    Kerner, T.; Conkling, C. R.; Oerter, B.

    1999-01-01

    The V123 Synchronous Encoder Module transmits events to distributed trigger modules and embedded decoders around the RHIC rings where they are used to provide beam instrumentation triggers [1,2,3]. The RHIC beam synchronous event link hardware is mainly comprised of three VMEbus board designs, the central input modules (V201), and encoder modules (V123), and the distributed trigger modules (V124). Two beam synchronous links, one for each ring, are distributed via fiberoptic and fanned out via twisted wire pair cables. The V123 synchronizes with the RF system clock derived from the beam bucket frequency and a revolution fiducial pulse. The RF system clock is used to create the beam synchronous event link carrier and events are synchronized with the rotation fiducial. A low jitter RF clock is later recovered from this carrier by phase lock loops in the trigger modules. Prioritized hardware and software triggers fill up to 15 beam event code transmission slots per revolution while tracking the ramping RF acceleration frequency and storage frequency. The revolution fiducial event is always the first event transmitted which is used to synchronize the firing of the abort kicker and to locate the first bucket for decoders distributed about the ring

  20. Bursting synchronization in clustered neuronal networks

    International Nuclear Information System (INIS)

    Yu Hai-Tao; Wang Jiang; Deng Bin; Wei Xi-Le

    2013-01-01

    Neuronal networks in the brain exhibit the modular (clustered) property, i.e., they are composed of certain subnetworks with differential internal and external connectivity. We investigate bursting synchronization in a clustered neuronal network. A transition to mutual-phase synchronization takes place on the bursting time scale of coupled neurons, while on the spiking time scale, they behave asynchronously. This synchronization transition can be induced by the variations of inter- and intracoupling strengths, as well as the probability of random links between different subnetworks. Considering that some pathological conditions are related with the synchronization of bursting neurons in the brain, we analyze the control of bursting synchronization by using a time-periodic external signal in the clustered neuronal network. Simulation results show a frequency locking tongue in the driving parameter plane, where bursting synchronization is maintained, even in the presence of external driving. Hence, effective synchronization suppression can be realized with the driving parameters outside the frequency locking region. (interdisciplinary physics and related areas of science and technology)

  1. Synchronization of Estrus in Cattle: A Review

    Directory of Open Access Journals (Sweden)

    R. Islam

    2011-06-01

    Full Text Available Numbers of estrus synchronization programmes are available in cattle based on the use of various hormones like progesterone, prostaglandin F2a and their various combinations with other hormones like estrogen and Gonadotrophin Releasing hormone (GnRH. Selection of appropriate estrus synchronization protocol should be made on the basis of management capabilities and expectations of the farmer. Synchronization of oestrus can be accomplished with the injection of prostaglandin F2a alone, but it needs proper detection of the ovarian status of the cows as prostaglandin F2a is active in only functional corpus luteum in between 8 to 17 days of estrous cycle. Progesterone may reduce fertility up to 14 percent, but short time progesterone exposure (less than 14 days is beneficial. Addition of GnRH in the Progesterone or Prostaglandin based synchronization programme is helpful for more synchrony in estrus as GnRH may be helpful to synchronize the oestrous cycle in delayed pubertal heifers and post partum cows (Post partum anoestrum and further a single, timed artificial insemination is possible with this method. New methods of synchronizing estrus in which the GnRH-PG protocol is preceded by progesterone treatment offer effective synchronization of estrus with high fertility. [Vet. World 2011; 4(3.000: 136-141

  2. Induction of self awareness in dreams through frontal low current stimulation of gamma activity.

    Science.gov (United States)

    Voss, Ursula; Holzmann, Romain; Hobson, Allan; Paulus, Walter; Koppehele-Gossel, Judith; Klimke, Ansgar; Nitsche, Michael A

    2014-06-01

    Recent findings link fronto-temporal gamma electroencephalographic (EEG) activity to conscious awareness in dreams, but a causal relationship has not yet been established. We found that current stimulation in the lower gamma band during REM sleep influences ongoing brain activity and induces self-reflective awareness in dreams. Other stimulation frequencies were not effective, suggesting that higher order consciousness is indeed related to synchronous oscillations around 25 and 40 Hz.

  3. Brain gamma-aminobutyric acid deficiency in dialysis encephalopathy.

    Science.gov (United States)

    Sweeney, V P; Perry, T L; Price, J D; Reeve, C E; Godolphin, W J; Kish, S J

    1985-02-01

    We measured levels of gamma-aminobutyric acid (GABA) in the CSF and in the autopsied brain of patients with dialysis encephalopathy. GABA concentrations were low in the CSF of three of five living patients. Mean GABA content was reduced by 30 to 50% in five brain regions (frontal, occipital, and cerebellar cortex, caudate nucleus, and medial dorsal thalamus) in five fatal cases. GABA content was normal in brain regions where GABA is characteristically reduced in Huntington's disease. Choline acetyltransferase activity was diminished (by 25 to 35%) in cerebral cortex of the dialysis encephalopathy patients.

  4. Synchronous retinotopic frontal-temporal activity during long-term memory for spatial location.

    Science.gov (United States)

    Slotnick, Scott D

    2010-05-12

    Early visual areas in occipital cortex are known to be retinotopic. Recently, retinotopic maps have been reported in frontal and parietal cortex during spatial attention and working memory. The present event-related potential (ERP) and functional magnetic resonance imaging (fMRI) study determined whether spatial long-term memory was associated with retinotopic activity in frontal and parietal regions, and assessed whether retinotopic activity in these higher level control regions was synchronous with retinotopic activity in lower level visual sensory regions. During encoding, abstract shapes were presented to the left or right of fixation. During retrieval, old and new shapes were presented at fixation and participants classified each shape as old and previously on the "left", old and previously on the "right", or "new". Retinotopic effects were manifested by accurate memory for items previously presented on the left producing activity in the right hemisphere and accurate memory for items previously presented on the right producing activity in the left hemisphere. Retinotopic ERP activity was observed in frontal regions and visual sensory (occipital and temporal) regions. In frontal cortex, retinotopic fMRI activity was localized to the frontal eye fields. There were no significant ERP or fMRI retinotopic memory effects in parietal regions. The present long-term memory retinotopic effects complement previous spatial attention and working memory findings (and suggest retinotopic activity in parietal cortex may require an external peripheral stimulus). Furthermore, ERP cross-correlogram analysis revealed that retinotopic activations in frontal and temporal regions were synchronous, indicating that these regions interact during retrieval of spatial information. (c) 2010 Elsevier B.V. All rights reserved.

  5. Fuzzy stability and synchronization of hyperchaos systems

    International Nuclear Information System (INIS)

    Wang Junwei; Xiong Xiaohua; Zhao Meichun; Zhang Yanbin

    2008-01-01

    This paper studies stability and synchronization of hyperchaos systems via a fuzzy-model-based control design methodology. First, we utilize a Takagi-Sugeno fuzzy model to represent a hyperchaos system. Second, we design fuzzy-model-based controllers for stability and synchronization of the system, based on so-called 'parallel distributed compensation (PDC)'. Third, we reduce a question of stabilizing and synchronizing hyperchaos systems to linear matrix inequalities (LMI) so that convex programming techniques can solve these LMIs efficiently. Finally, the generalized Lorenz hyperchaos system is employed to illustrate the effectiveness of our designing controller

  6. Transmission delays in hardware clock synchronization

    Science.gov (United States)

    Shin, Kang G.; Ramanathan, P.

    1988-01-01

    Various methods, both with software and hardware, have been proposed to synchronize a set of physical clocks in a system. Software methods are very flexible and economical but suffer an excessive time overhead, whereas hardware methods require no time overhead but are unable to handle transmission delays in clock signals. The effects of nonzero transmission delays in synchronization have been studied extensively in the communication area in the absence of malicious or Byzantine faults. The authors show that it is easy to incorporate the ideas from the communication area into the existing hardware clock synchronization algorithms to take into account the presence of both malicious faults and nonzero transmission delays.

  7. Permutation parity machines for neural synchronization

    International Nuclear Information System (INIS)

    Reyes, O M; Kopitzke, I; Zimmermann, K-H

    2009-01-01

    Synchronization of neural networks has been studied in recent years as an alternative to cryptographic applications such as the realization of symmetric key exchange protocols. This paper presents a first view of the so-called permutation parity machine, an artificial neural network proposed as a binary variant of the tree parity machine. The dynamics of the synchronization process by mutual learning between permutation parity machines is analytically studied and the results are compared with those of tree parity machines. It will turn out that for neural synchronization, permutation parity machines form a viable alternative to tree parity machines

  8. Synchronization Of Parallel Discrete Event Simulations

    Science.gov (United States)

    Steinman, Jeffrey S.

    1992-01-01

    Adaptive, parallel, discrete-event-simulation-synchronization algorithm, Breathing Time Buckets, developed in Synchronous Parallel Environment for Emulation and Discrete Event Simulation (SPEEDES) operating system. Algorithm allows parallel simulations to process events optimistically in fluctuating time cycles that naturally adapt while simulation in progress. Combines best of optimistic and conservative synchronization strategies while avoiding major disadvantages. Algorithm processes events optimistically in time cycles adapting while simulation in progress. Well suited for modeling communication networks, for large-scale war games, for simulated flights of aircraft, for simulations of computer equipment, for mathematical modeling, for interactive engineering simulations, and for depictions of flows of information.

  9. The least channel capacity for chaos synchronization.

    Science.gov (United States)

    Wang, Mogei; Wang, Xingyuan; Liu, Zhenzhen; Zhang, Huaguang

    2011-03-01

    Recently researchers have found that a channel with capacity exceeding the Kolmogorov-Sinai entropy of the drive system (h(KS)) is theoretically necessary and sufficient to sustain the unidirectional synchronization to arbitrarily high precision. In this study, we use symbolic dynamics and the automaton reset sequence to distinguish the information that is required in identifying the current drive word and obtaining the synchronization. Then, we show that the least channel capacity that is sufficient to transmit the distinguished information and attain the synchronization of arbitrarily high precision is h(KS). Numerical simulations provide support for our conclusions.

  10. Adaptive H∞ Chaos Anti-synchronization

    International Nuclear Information System (INIS)

    Ahn, Choon Ki

    2010-01-01

    A new adaptive H ∞ anti-synchronization (AHAS) method is proposed for chaotic systems in the presence of unknown parameters and external disturbances. Based on the Lyapunov theory and linear matrix inequality formulation, the AHAS controller with adaptive laws of unknown parameters is derived to not only guarantee adaptive anti-synchronization but also reduce the effect of external disturbances to an H ∞ norm constraint. As an application of the proposed AHAS method, the H ∞ anti-synchronization problem for Genesio–Tesi chaotic systems is investigated. (general)

  11. Analysis of Synchronization for Coupled Hybrid Systems

    DEFF Research Database (Denmark)

    Li, Zheng; Wisniewski, Rafal

    2006-01-01

    In the control systems with coupled multi-subsystem, the subsystems might be synchronized (i.e. all the subsystems have the same operation states), which results in negative influence to the whole system. For example, in the supermarket refrigeration systems, the synchronized switch of each...... subsystem will cause low efficiency, inferior control performance and a high wear on the compressor. This paper takes the supermarket refrigeration systems as an example to analyze the synchronization and its coupling strengths of coupled hybrid systems, which may provide a base for further research...... of control strategies. This paper combines topology and section mapping theories together to show a new way of analyzing hybrid systems...

  12. Chaos synchronization of the energy resource system

    International Nuclear Information System (INIS)

    Li Xiuchun; Xu Wei; Li Ruihong

    2009-01-01

    This paper presents the chaos synchronization problem for new dynamical system (that is, energy resource demand-supply system), where the controller is designed using two different control methods. Firstly, based on stability criterion of linear system, chaotic synchronization is achieved with the help of the active theory, and accordingly, the simulation results are given for verifying the feasibility of the method. Secondly, based on Lyapunov stability theory, on the assumption that all the parameters of the system are unknown, adaptive control approach is proposed to make the states of two chaotic systems asymptotic synchronization. In the end, numerical simulations are used to show the effectiveness of the proposed control method.

  13. Synchronization of two coupled turbulent fires

    Science.gov (United States)

    Takagi, Kazushi; Gotoda, Hiroshi; Miyano, Takaya; Murayama, Shogo; Tokuda, Isao T.

    2018-04-01

    We numerically study the scale-free nature of a buoyancy-induced turbulent fire and synchronization of two coupled turbulent fires. A scale-free structure is detected in weighted networks between vortices, while its lifetime obeys a clear power law, indicating intermittent appearances, disappearances, and reappearances of the scale-free property. A significant decrease in the distance between the two fire sources gives rise to a synchronized state in the near field dominated by the unstable motion of large-scale of transverse vortex rings. The synchronized state vanishes in the far field forming well-developed turbulent plumes, regardless of the distance between the two fire sources.

  14. Synchronization System for Next Generation Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Zavriyev, Anton [MagiQ Technologies, Inc., Somerville, MA (United States)

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  15. Usability of synchronization for cognitive modeling

    International Nuclear Information System (INIS)

    Diebner, Hans H.; Grond, Florian

    2005-01-01

    We discuss the synchronization features of a previously introduced adaptive system for dynamics recognition in more detail. We investigate the usability of synchronization for modeling and parameter estimations. It is pointed out inhowfar the adaptive system based on synchronization can become a powerful tool in modeling. The adaptive system can store modules of pre-adapted dynamics and is potentially capable of undergoing self-modification. We compare the stored modules with pre-knowledge that a modeler puts into his or her models. In this sense the adaptive system functions like an expert system

  16. Dopamine depletion increases the power and coherence of high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.

    Science.gov (United States)

    Ge, Shunnan; Yang, Chen; Li, Min; Li, Jiang; Chang, Xiaozan; Fu, Jian; Chen, Lei; Chang, Chongwang; Wang, Xuelian; Zhu, Junling; Gao, Guodong

    2012-07-17

    Studies on patients with Parkinson's disease and in animal models have observed enhanced synchronization of oscillations in several frequency bands within and between the cortical-basal ganglia (BG) structures. Recent research has also shown that synchronization of high-voltage spindles (HVSs) in the cortex, striatum and substantia nigra pars reticulate is increased by dopamine depletion. However, more evidence is needed to determine whether HVS activity in the whole cortex-BG network represents homologous alteration following dopamine depletion. As the globus pallidus (GP) is in a central position to propagate and synchronize oscillations in the cortical-BG circuits, we employed local-field potentials and electrocorticogram to simultaneously record oscillations in the GP and primary (M1) and secondary (M2) motor cortices on freely moving 6-hydroxydopamine (6-OHDA) lesioned and control rats. Results showed that HVS episodes recorded from GP, and M2 and M1 cortex areas were more numerous and longer in 6-OHDA lesioned rats compared to controls. Relative power associated with HVS activity in the GP, and M2 and M1 cortices of 6-OHDA lesioned rats was significantly greater than that for control rats. Coherence values for HVS activity between the GP, and M2 and M1 cortex areas were significantly increased by dopamine depletion. Time lag between the M1 cortex HVS and GP HVS was significantly shorter for dopamine depleted than normal rats. Findings indicate a crucial rule for dopamine in the regulation of HVS activity in the whole cortical-BG circuit, and suggest a close relationship between abnormally synchronized HVS oscillations in the cortex-BG network and Parkinson's disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Cosmic gamma bursts

    International Nuclear Information System (INIS)

    Ehstulin, I.V.

    1980-01-01

    A brief consideration is being given to the history of cosmic gamma burst discovery and modern knowledge of their properties. The time dependence of gamma bursts is described and their possible sources are discussed

  18. Synchronous ethernet and IEEE 1588 in telecoms next generation synchronization networks

    CERN Document Server

    2013-01-01

    This book addresses the multiple technical aspects of the distribution of synchronization in new generation telecommunication networks, focusing in particular on synchronous Ethernet and IEEE1588 technologies. Many packet network engineers struggle with understanding the challenges that precise synchronization distribution can impose on networks. The usual “why”, “when” and particularly “how” can cause problems for many engineers. In parallel to this, some other markets have identical synchronization requirements, but with their own design requirements, generating further questions. This book attempts to respond to the different questions by providing background technical information. Invaluable information on state of-the-art packet network synchronization and timing architectures is provided, as well as an unbiased view on the synchronization technologies that have been internationally standardized over recent years, with the aim of providing the average reader (who is not skilled in the art) wi...

  19. Coexistence and switching of anticipating synchronization and lag synchronization in an optical system

    International Nuclear Information System (INIS)

    Wu, Liang; Zhu, Shiqun

    2003-01-01

    The chaotic synchronization between two bi-directionally coupled external cavity single-mode semiconductor lasers is investigated. Numerical simulation shows that anticipating synchronization and lag synchronization coexist and switch between each other in certain parameter regime. The anticipating time with different effects that were discussed quite differently in the previous theoretical analysis and experimental observation is determined by the involved parameters in the system

  20. Distinct timescales of population coding across cortex.

    Science.gov (United States)

    Runyan, Caroline A; Piasini, Eugenio; Panzeri, Stefano; Harvey, Christopher D

    2017-08-03

    The cortex represents information across widely varying timescales. For instance, sensory cortex encodes stimuli that fluctuate over few tens of milliseconds, whereas in association cortex behavioural choices can require the maintenance of information over seconds. However, it remains poorly understood whether diverse timescales result mostly from features intrinsic to individual neurons or from neuronal population activity. This question remains unanswered, because the timescales of coding in populations of neurons have not been studied extensively, and population codes have not been compared systematically across cortical regions. Here we show that population codes can be essential to achieve long coding timescales. Furthermore, we find that the properties of population codes differ between sensory and association cortices. We compared coding for sensory stimuli and behavioural choices in auditory cortex and posterior parietal cortex as mice performed a sound localization task. Auditory stimulus information was stronger in auditory cortex than in posterior parietal cortex, and both regions contained choice information. Although auditory cortex and posterior parietal cortex coded information by tiling in time neurons that were transiently informative for approximately 200 milliseconds, the areas had major differences in functional coupling between neurons, measured as activity correlations that could not be explained by task events. Coupling among posterior parietal cortex neurons was strong and extended over long time lags, whereas coupling among auditory cortex neurons was weak and short-lived. Stronger coupling in posterior parietal cortex led to a population code with long timescales and a representation of choice that remained consistent for approximately 1 second. In contrast, auditory cortex had a code with rapid fluctuations in stimulus and choice information over hundreds of milliseconds. Our results reveal that population codes differ across cortex

  1. On synchronization of three chaotic systems

    International Nuclear Information System (INIS)

    Yan Jianping; Li Changpin

    2005-01-01

    In this paper, a simple but efficient method is applied to the synchronization of three chaotic systems, i.e., the chaotic Lorenz, Chua, and Chen systems. Numerical simulations show this method works very well

  2. Robust adaptive synchronization of general dynamical networks ...

    Indian Academy of Sciences (India)

    Robust adaptive synchronization; dynamical network; multiple delays; multiple uncertainties. ... Networks such as neural networks, communication transmission networks, social rela- tionship networks etc. ..... a very good effect. Pramana – J.

  3. Multivalued synchronization by Poincaré coupling

    Science.gov (United States)

    Ontañón-García, L. J.; Campos-Cantón, E.; Femat, R.; Campos-Cantón, I.; Bonilla-Marín, M.

    2013-10-01

    This work presents multivalued chaotic synchronization via coupling based on the Poincaré plane. The coupling is carried out by an underdamped signal, triggered every crossing event of the trajectory of the master system through a previously defined Poincaré plane. A master-slave system is explored, and the synchronization between the systems is detected via the auxiliary system approach and the maximum conditional Lyapunov exponent. Due to the response to specific conditions two phenomena may be obtained: univalued and multivalued synchronization. Since the Lyapunov exponent is not enough to detect these two phenomena, the distance between the pieces of trajectories of the slave and auxiliary systems with different initial conditions is also used as a tool for the detection of multivalued synchronization. Computer simulations using the benchmark chaotic systems of Lorenz and Rössler are used to exemplify the approach proposed.

  4. New GOES satellite synchronized time code generation

    Science.gov (United States)

    Fossler, D. E.; Olson, R. K.

    1984-01-01

    The TRAK Systems' GOES Satellite Synchronized Time Code Generator is described. TRAK Systems has developed this timing instrument to supply improved accuracy over most existing GOES receiver clocks. A classical time code generator is integrated with a GOES receiver.

  5. Synchronization in complex networks with adaptive coupling

    International Nuclear Information System (INIS)

    Zhang Rong; Hu Manfeng; Xu Zhenyuan

    2007-01-01

    Generally it is very difficult to realized synchronization for some complex networks. In order to synchronize, the coupling coefficient of networks has to be very large, especially when the number of coupled nodes is larger. In this Letter, we consider the problem of synchronization in complex networks with adaptive coupling. A new concept about asymptotic stability is presented, then we proved by using the well-known LaSalle invariance principle, that the state of such a complex network can synchronize an arbitrary assigned state of an isolated node of the network as long as the feedback gain is positive. Unified system is simulated as the nodes of adaptive coupling complex networks with different topologies

  6. Synchronous correlation matrices and Connes’ embedding conjecture

    Energy Technology Data Exchange (ETDEWEB)

    Dykema, Kenneth J., E-mail: kdykema@math.tamu.edu [Department of Mathematics, Texas A& M University, College Station, Texas 77843-3368 (United States); Paulsen, Vern, E-mail: vern@math.uh.edu [Department of Mathematics, University of Houston, Houston, Texas 77204 (United States)

    2016-01-15

    In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.

  7. Some Considerations on Seriality and Synchronicity

    OpenAIRE

    Elena Nechita

    2010-01-01

    This paper presents an overview of the results that have been obtained lately on seriality and synchronicity and their link, in the light of the new theories and within the frame of complexity science.

  8. Some Considerations on Seriality and Synchronicity

    Directory of Open Access Journals (Sweden)

    Elena Nechita

    2010-01-01

    Full Text Available This paper presents an overview of the results that have been obtained lately on seriality and synchronicity and their link, in the light of the new theories and within the frame of complexity science.

  9. High Speed Frame Synchronization and Viterbi Decoding

    DEFF Research Database (Denmark)

    Paaske, Erik; Justesen, Jørn; Larsen, Knud J.

    1996-01-01

    The purpose of Phase 1 of the study is to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. The systems we consider are high data rate space communication systems. Also...... components. Node synchronization performed within a Viterbi decoder is discussed, and algorithms for frame synchronization are described and analyzed. We present a list of system configurations that we find potentially useful. Further, the high level architecture of units that contain frame synchronization...... and various other functions needed in a complete system is presented. Two such units are described, one for placement before the Viterbi decoder and another for placement after the decoder. The high level architectures of three possible implementations of Viterbi decoders are described: The first...

  10. High Speed Frame Synchronization and Viterbi Decoding

    DEFF Research Database (Denmark)

    Paaske, Erik; Justesen, Jørn; Larsen, Knud J.

    1998-01-01

    The study has been divided into two phases. The purpose of Phase 1 of the study was to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. After selection of which specific...... potentially useful.Algorithms for frame synchronization are described and analyzed. Further, the high level architecture of units that contain frame synchronization and various other functions needed in a complete system is presented. Two such units are described, one for placement before the Viterbi decoder...... towards a realization in an FPGA.Node synchronization performed within a Viterbi decoder is discussed, and the high level architectures of three possible implementations of Viterbi decoders are described: The first implementation uses a number of commercially available decoders while the the two others...

  11. Dependence of synchronization frequency of Kuramoto oscillators ...

    Indian Academy of Sciences (India)

    2Department of Theoretical Physics, Physical Research Laboratory, ... on the sine of the phase difference between the oscillators and hence, ... we study the change in synchronization frequency as the symmetry is changed under the limit of.

  12. Dreams: a framework for distributed synchronous coordination

    NARCIS (Netherlands)

    Proença, J.; Clarke, D.; Vink, de E.P.; Arbab, F.

    2012-01-01

    Synchronous coordination systems, such as Reo, exchange data via indivisible actions, while distributed systems are typically asynchronous and assume that messages can be delayed or get lost. To combine these seemingly contradictory notions, we introduce the Dreams framework. Coordination patterns

  13. Pitch Synchronous Segmentation of Speech Signals

    Data.gov (United States)

    National Aeronautics and Space Administration — The Pitch Synchronous Segmentation (PSS) that accelerates speech without changing its fundamental frequency method could be applied and evaluated for use at NASA....

  14. SYNCHRONIZATION OF OVULATION IN BEEF HERDS ...

    African Journals Online (AJOL)

    IMPROVED CONCEPTION RATE AFTER AND INTERRUPTED COURSE ... with normal first insemination figures uncomplicated by synchronization and ... get her pregnant again so that she can consistently recalve ... Delayed ovulation may also contribute towards lower .... Effect of syttdtottizotbn on genad hcrd fatility.

  15. Synchronized flow in oversaturated city traffic.

    Science.gov (United States)

    Kerner, Boris S; Klenov, Sergey L; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael

    2013-11-01

    Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. E 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.

  16. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Broomhead, Laurent.

    1980-01-01

    The nuclear gamma astronomy is presented, in particular the Gamma Ray Observatory, an enormous eight tonnes machine fitted with gamma telescopes, scheduled for launching around 1985. It is thereby hoped to study the natural nuclear reactions which occur when stars explode [fr

  17. Stochastic synchronization in finite size spiking networks

    Science.gov (United States)

    Doiron, Brent; Rinzel, John; Reyes, Alex

    2006-09-01

    We study a stochastic synchronization of spiking activity in feedforward networks of integrate-and-fire model neurons. A stochastic mean field analysis shows that synchronization occurs only when the network size is sufficiently small. This gives evidence that the dynamics, and hence processing, of finite size populations can be drastically different from that observed in the infinite size limit. Our results agree with experimentally observed synchrony in cortical networks, and further strengthen the link between synchrony and propagation in cortical systems.

  18. Stochastic Hydrodynamic Synchronization in Rotating Energy Landscapes

    OpenAIRE

    Koumakis, N.; Di Leonardo, R.

    2013-01-01

    Hydrodynamic synchronization provides a general mechanism for the spontaneous emergence of coherent beating states in independently driven mesoscopic oscillators. A complete physical picture of those phenomena is of definite importance to the understanding of biological cooperative motions of cilia and flagella. Moreover, it can potentially suggest novel routes to exploit synchronization in technological applications of soft matter. We demonstrate that driving colloidal particles in rotating ...

  19. Synchronous and Asynchronous ATM Multiplexor Properties Comparsion

    OpenAIRE

    Jan Zabka

    2006-01-01

    The article is aimed to ATM multiplexor computer model utilisation. Based on simulation runs we try to review aspects of use a synchronous and asynchronous ATM multiplexors. ATM multiplexor is the input queuing model with three inputs. Synchronous multiplexor works without an input priority. Multiplexor inputs are served periodically. Asynchronous multiplexor model supports several queuing and priority mechanisms. CLR and CTD are basic performance parameters. Input cell flows are genera...

  20. Projective synchronization based on suitable separation

    International Nuclear Information System (INIS)

    Li Guohui; Xiong Chuan; Sun Xiaonan

    2007-01-01

    A new approach for constructing a projective-synchronized chaotic slave system is proposed in this paper. This method is based on suitable separation by decomposing the system as the linear part and the nonlinear one. From matrix measure theory, some simple but efficient criteria are derived for projective synchronization of chaotic system. Numerical simulations for the Lorenz system show that this control method works very well

  1. Full state hybrid projective synchronization in hyperchaotic systems

    International Nuclear Information System (INIS)

    Chu Yandong; Chang Yingxiang; Zhang Jiangang; Li Xianfeng; An Xinlei

    2009-01-01

    In this letter, we investigate the full state hybrid projective synchronization (FSHPS) which includes complete synchronization, anti-synchronization and projective synchronization as its special items. Based on Lyapunov stability theory a controller can be designed for achieving the FSHPS of hyperchaotic systems. Numerical simulations are provided to verify the effectiveness of the proposed scheme.

  2. Complete synchronization of two Chen-Lee systems

    International Nuclear Information System (INIS)

    Sheu, L-J; Chen, J-H; Chen, H-K; Tam, L-M; Lao, S-K; Chen, W-C; Lin, K-T

    2008-01-01

    This study demonstrates that complete synchronization of two Chen-Lee chaotic systems can be easily achieved. The upper bound of the Chen-Lee chaotic system is estimated numerically. A controller is designed to synchronize two chaotic systems. Sufficient conditions for synchronization are obtained using Lyapunov's direct method. Two numerical examples are presented to verify the proposed synchronization approach

  3. Nonlinear observer based phase synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Meng Juan; Wang Xingyuan

    2007-01-01

    This Letter analyzes the phase synchronization problem of autonomous chaotic systems. Based on the nonlinear state observer algorithm and the pole placement technique, a phase synchronization scheme is designed. The phase synchronization of a new chaotic system is achieved by using this observer controller. Numerical simulations further demonstrate the effectiveness of the proposed phase synchronization scheme

  4. Reduction in Cortical Gamma Synchrony during Depolarized State of Slow Wave Activity in Mice

    Directory of Open Access Journals (Sweden)

    EUNJIN eHWANG

    2013-12-01

    Full Text Available EEG gamma band oscillations have been proposed to account for the neural synchronization crucial for perceptual integration. While increased gamma power and synchronization is generally observed during cognitive tasks performed during wake, several studies have additionally reported increased gamma power during sleep or anesthesia, raising questions about the characteristics of gamma oscillation during impaired consciousness and its role in conscious processing. Phase-amplitude modulation has been observed between slow wave activity (SWA, 0.5–4 Hz and gamma oscillations during ketamine/xylazine anesthesia or sleep, showing increased gamma activity corresponding to the depolarized (ON state of SWA. Here we divided gamma activity into its ON and OFF (hyperpolarized state components based on the phase of SWA induced by ketamine/xylazine anesthesia and compared their power and synchrony with wake state levels in mice. We further investigated the state-dependent changes in both gamma power and synchrony across primary motor and primary somatosensory cortical regions and their interconnected thalamic regions throughout anesthesia and recovery. As observed previously, gamma power was as high as during wake specifically during the ON state of SWA. However, the synchrony of this gamma activity between somatosensory-motor cortical regions was significantly reduced compared to the baseline wake state. In addition, the somatosensory-motor cortical synchrony of gamma oscillations was reduced and restored in an anesthetic state-dependent manner, reflecting the changing depth of anesthesia. Our results provide evidence that during anesthesia changes in long-range information integration between cortical regions might be more critical for changes in consciousness than changes in local gamma oscillatory power.

  5. Frame Synchronization Without Attached Sync Markers

    Science.gov (United States)

    Hamkins, Jon

    2011-01-01

    We describe a method to synchronize codeword frames without making use of attached synchronization markers (ASMs). Instead, the synchronizer identifies the code structure present in the received symbols, by operating the decoder for a handful of iterations at each possible symbol offset and forming an appropriate metric. This method is computationally more complex and doesn't perform as well as frame synchronizers that utilize an ASM; nevertheless, the new synchronizer acquires frame synchronization in about two seconds when using a 600 kbps software decoder, and would take about 15 milliseconds on prototype hardware. It also eliminates the need for the ASMs, which is an attractive feature for short uplink codes whose coding gain would be diminished by the overheard of ASM bits. The lack of ASMs also would simplify clock distribution for the AR4JA low-density parity-check (LDPC) codes and adds a small amount to the coding gain as well (up to 0.2 dB).

  6. Synchronization of mobile chaotic oscillator networks

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Naoya, E-mail: fujiwara@csis.u-tokyo.ac.jp [Center for Spatial Information Science, The University of Tokyo, 277-8568 Chiba (Japan); Kurths, Jürgen [Potsdam Institute for Climate Impact Research (PIK), 14473 Potsdam, Germany and Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen (United Kingdom); Díaz-Guilera, Albert [Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona (Spain)

    2016-09-15

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  7. Synchronization of mobile chaotic oscillator networks

    International Nuclear Information System (INIS)

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2016-01-01

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  8. Synchronization of mobile chaotic oscillator networks.

    Science.gov (United States)

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2016-09-01

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  9. Explosive synchronization transitions in complex neural networks

    Science.gov (United States)

    Chen, Hanshuang; He, Gang; Huang, Feng; Shen, Chuansheng; Hou, Zhonghuai

    2013-09-01

    It has been recently reported that explosive synchronization transitions can take place in networks of phase oscillators [Gómez-Gardeñes et al. Phys. Rev. Lett. 106, 128701 (2011)] and chaotic oscillators [Leyva et al. Phys. Rev. Lett. 108, 168702 (2012)]. Here, we investigate the effect of a microscopic correlation between the dynamics and the interacting topology of coupled FitzHugh-Nagumo oscillators on phase synchronization transition in Barabási-Albert (BA) scale-free networks and Erdös-Rényi (ER) random networks. We show that, if natural frequencies of the oscillations are positively correlated with node degrees and the width of the frequency distribution is larger than a threshold value, a strong hysteresis loop arises in the synchronization diagram of BA networks, indicating the evidence of an explosive transition towards synchronization of relaxation oscillators system. In contrast to the results in BA networks, in more homogeneous ER networks, the synchronization transition is always of continuous type regardless of the width of the frequency distribution. Moreover, we consider the effect of degree-mixing patterns on the nature of the synchronization transition, and find that the degree assortativity is unfavorable for the occurrence of such an explosive transition.

  10. Activity-dependent changes in excitability of perirhinal cortex networks in vitro.

    Science.gov (United States)

    Biagini, Giuseppe; D'Antuono, Margherita; Inaba, Yuji; Kano, Toshiyuki; Ragsdale, David; Avoli, Massimo

    2015-04-01

    Rat brain slices comprising the perirhinal cortex (PC) and a portion of the lateral nucleus of the amygdala (LA), in standard medium, can generate synchronous oscillatory activity that is associated with action potential discharge and reflects the activation of glutamatergic and GABAergic receptors. We report here that similar synchronous oscillatory events are recorded in the PC in response to single-shock, electrical stimuli delivered in LA. In addition, we found that the latency of these responses progressively increased when the stimulus interval was varied from 10 to 1 s; for example, the response latency during stimuli delivered at 1 Hz was more than twofold longer than that seen during stimulation at 0.1 Hz. This prolongation in latency occurred after approximately 5 stimuli, attained a steady value after 24-35 stimuli, and recovered to control values 30 s after stimulation arrest. These frequency-dependent changes in latency continued to occur during NMDA receptor antagonism but weakened following application of GABAA and/or GABAB receptor blockers. Our findings identify a new type of short-term plasticity that is mediated by GABA receptor function and may play a role in decreasing neuronal network synchronization during repeated activation. We propose that this frequency-dependent adaptive mechanism influences the excitability of limbic networks, thus potentially controlling epileptiform synchronization.

  11. Cortical oscillations in auditory perception and speech: evidence for two temporal windows in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Huan eLuo

    2012-05-01

    Full Text Available Natural sounds, including vocal communication sounds, contain critical information at multiple time scales. Two essential temporal modulation rates in speech have been argued to be in the low gamma band (~20-80 ms duration information and the theta band (~150-300 ms, corresponding to segmental and syllabic modulation rates, respectively. On one hypothesis, auditory cortex implements temporal integration using time constants closely related to these values. The neural correlates of a proposed dual temporal window mechanism in human auditory cortex remain poorly understood. We recorded MEG responses from participants listening to non-speech auditory stimuli with different temporal structures, created by concatenating frequency-modulated segments of varied segment durations. We show that these non-speech stimuli with temporal structure matching speech-relevant scales (~25 ms and ~200 ms elicit reliable phase tracking in the corresponding associated oscillatory frequencies (low gamma and theta bands. In contrast, stimuli with non-matching temporal structure do not. Furthermore, the topography of theta band phase tracking shows rightward lateralization while gamma band phase tracking occurs bilaterally. The results support the hypothesis that there exists multi-time resolution processing in cortex on discontinuous scales and provide evidence for an asymmetric organization of temporal analysis (asymmetrical sampling in time, AST. The data argue for a macroscopic-level neural mechanism underlying multi-time resolution processing: the sliding and resetting of intrinsic temporal windows on privileged time scales.

  12. Fault-tolerant clock synchronization in distributed systems

    Science.gov (United States)

    Ramanathan, Parameswaran; Shin, Kang G.; Butler, Ricky W.

    1990-01-01

    Existing fault-tolerant clock synchronization algorithms are compared and contrasted. These include the following: software synchronization algorithms, such as convergence-averaging, convergence-nonaveraging, and consistency algorithms, as well as probabilistic synchronization; hardware synchronization algorithms; and hybrid synchronization. The worst-case clock skews guaranteed by representative algorithms are compared, along with other important aspects such as time, message, and cost overhead imposed by the algorithms. More recent developments such as hardware-assisted software synchronization and algorithms for synchronizing large, partially connected distributed systems are especially emphasized.

  13. Quantum synchronization in an optomechanical system based on Lyapunov control.

    Science.gov (United States)

    Li, Wenlin; Li, Chong; Song, Heshan

    2016-06-01

    We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.103605, to more widespread quantum generalized synchronization. Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike the effort to construct a special coupling synchronization system, we purposefully design extra control fields based on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives, which is more suitable for generalized synchronization control, and the control fields can be achieved simply with a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations is also discussed.

  14. Programmer for automatic gamma spectrometry; Ordonnateur de sequence pour spectrometrie gamma automatique

    Energy Technology Data Exchange (ETDEWEB)

    Romanetti, R [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1968-04-01

    With this apparatus, which is constructed of logical integrated circuits, it is possible both to synchronize an automatic gamma spectrometry assembly and to record the spectra on punched cards. An IBM terminal will make it possible with the help of analysis by the least squares method and by a direct dialogue with an IBM 360 computer to obtain analytical results almost instantaneously. (author) [French] Cet appareil, realise en circuits integres logiques, permet d'une part de synchroniser un ensemble automatique de spectrometrie gamma et d'autre part d'enregistrer les spectres sur cartes perforees. Un terminal IBM permettra, a l'aide d'un programme d'analyse par la methode des moindres carres et par un dialogue direct avec un ordinateur IBM 360, de disposer presque intanstanement des resultats des analyses. (auteur)

  15. Reactor gamma spectrometry: status

    International Nuclear Information System (INIS)

    Gold, R.; Kaiser, B.J.

    1979-01-01

    Current work is described for Compton Recoil Gamma-Ray Spectrometry including developments in experimental technique as well as recent reactor spectrometry measurements. The current status of the method is described concerning gamma spectromoetry probe design and response characteristics. Emphasis is given to gamma spectrometry work in US LWR and BR programs. Gamma spectrometry in BR environments are outlined by focussing on start-up plans for the Fast Test Reactor (FTR). Gamma spectrometry results are presented for a LWR pressure vessel mockup in the Poolside Critical Assembly (PCA) at Oak Ridge National Laboratory

  16. Induction of cell death in the testis of Heteracris littoralis by gamma rays

    International Nuclear Information System (INIS)

    Al-Taweel, A.A.; Shawkit, M.A.

    1983-01-01

    Cell killing by gamma rays was studied in Heteracris littoralis. Primary spermatocytes, which are encysted and have cytoplasmic connection, show unusual dose-response kinetics with no shoulder at low doses. Also, the spermatocytes do not die independently but in groups, usually with whole cysts degenerating synchronously. (author)

  17. Fault-Tolerant Self-Stabilizing Distributed Clock Synchronization Protocol for Arbitrary Digraphs

    Science.gov (United States)

    Malekpour, Mahyar R. (Inventor)

    2014-01-01

    A self-stabilizing network in the form of an arbitrary, non-partitioned digraph includes K nodes having a synchronizer executing a protocol. K-1 monitors of each node may receive a Sync message transmitted from a directly connected node. When the Sync message is received, the logical clock value for the receiving node is set to between 0 and a communication latency value (gamma) if the clock value is less than a minimum event-response delay (D). A new Sync message is also transmitted to any directly connected nodes if the clock value is greater than or equal to both D and a graph threshold (T(sub S)). When the Sync message is not received the synchronizer increments the clock value if the clock value is less than a resynchronization period (P), and resets the clock value and transmits a new Sync message to all directly connected nodes when the clock value equals or exceeds P.

  18. Chaos synchronization in autonomous chaotic system via hybrid feedback control

    International Nuclear Information System (INIS)

    Yang Lixin; Chu Yandong; Zhang Jiangang; Li Xianfeng; Chang Yingxiang

    2009-01-01

    This paper presents the synchronization of chaos by designing united controller. First, this method is implemented in synchronization of a simple system, then we realize the synchronization of Lue hyperchaotic system, we also take tracking control to realize the synchronization of Lue hyperchaotic system. Comparing with results, we can find that hybrid feedback control approach is more effective than tracking control for hyperchaotic system. Numerical simulations show the united synchronization method works well.

  19. Synchronization of Coupled Neurons Controlled by a Pacemaker

    International Nuclear Information System (INIS)

    Li Mei-Sheng; Zhang Hong-Hui; Zhao Yong; Shi Xia

    2011-01-01

    We investigate synchronization of Hindmarsh—Rose neurons with gap junctions under the control of a pacemaker. In a ring Hindmarsh—Rose neuronal network, the coupled neurons with the pacemaker can occur in synchronization more easily than those without the pacemaker. Furthermore, the pacemaker can induce phase synchronization or nearly-complete synchronization of nonidentical neurons. This synchronization can occur more easily when time delay is considered. Theses results can be helpful to understand the activities of the real neuronal system. (general)

  20. Chaos synchronizations of chaotic systems via active nonlinear control

    International Nuclear Information System (INIS)

    Huang, J; Xiao, T J

    2008-01-01

    This paper not only investigates the chaos synchronization between two LCC chaotic systems, but also discusses the chaos synchronization between LCC system and Genesio system. Some novel active nonlinear controllers are designed to achieve synchronizations between drive and response systems effectively. Moreover, the sufficient conditions of synchronizations are derived by using Lyapunov stability theorem. Numerical simulations are presented to verify the theoretical analysis, which shows that the synchronization schemes are global effective

  1. Guide to Synchronization of Video Systems to IRIG Timing

    Science.gov (United States)

    1992-07-01

    and industry. 1-2 CHAPTER 2 SYNCHRONISATION Before delving into the details of synchronization , a review is needed of the reasons for synchronizing ... Synchronization of Video Systems to IRIG Timing Optical Systems Group Range Commanders Council White Sands Missile Range, NM 88002-5110 RCC Document 456-92 Range...This document addresses a broad field of video synchronization to IRIG timing with emphasis on color synchronization . This document deals with

  2. GammaWorkshops Proceedings

    International Nuclear Information System (INIS)

    Ramebaeck, H.; Straelberg, E.; Klemola, S.; Nielsen, Sven P.; Palsson, S.E.

    2012-01-01

    Due to a sparse interaction during the last years between practioners in gamma ray spectrometry in the Nordic countries, a NKS activity was started in 2009. This GammaSem was focused on seminars relevant to gamma spectrometry. A follow up seminar was held in 2010. As an outcome of these activities it was suggested that the 2011 meeting should be focused on practical issues, e.g. different corrections needed in gamma spectrometric measurements. This three day's meeting, GammaWorkshops, was held in September at Risoe-DTU. Experts on different topics relevant for gamma spectrometric measurements were invited to the GammaWorkshops. The topics included efficiency transfer, true coincidence summing corrections, self-attenuation corrections, measurement of natural radionuclides (natural decay series), combined measurement uncertainty calculations, and detection limits. These topics covered both lectures and practical sessions. The practical sessions included demonstrations of tools for e.g. corrections and calculations of the above meantioned topics. (Author)

  3. Fast Self-Synchronization between LowVoltage Microgrid and Inverter using Virtual Synchronous Converter

    Directory of Open Access Journals (Sweden)

    Md Ruhul Amin

    2017-12-01

    Full Text Available In this paper, a fast self-synchronization known as virtual synchronous converter (VSCon between single-phase microgrid and inverter in low-voltage microgrid, has been developed in Matlab/Simulink. The idea is to any phase locked loop (PLL circuit for inverter-microgrid synchronization in order to improve the synchronization time. As known, it is difficult and lengthy process to tune the PLL gain parameters to reach suitable performance for synchronizing among the voltage, phase-angle and frequency between them. Due to this problem, a fast self synchronization technique is needed in order to minimize the time losses at the microgrid connection. Therefore, the VSCon has been developed which is based on the synchronous generator mathematical model but in virtual environment representation. It has been applied in the inverter control for generating switching pattern to the inverter switches in order to respond to the grid voltage for improve the synchronization. For a prove of concept, several simulation tests in MATLAB models have been conducted, in order to see the effectiveness of this VSCon. First test has been conducted, when a 240V, 50Hz frequency grid source is used for observing the self-synchronization the system with the power flows output. Furthermore, the next test is conducted when the grid frequency is changed from the rated frequency at 50Hz to 51Hz and the result shows the VSCon in inverter control takes nearly 40ms to synchronize to this new frequency value. The test on grid phase-angle delay also been tested when ac grid voltage has 150 phase delay. As from all the results, the improved inverter control with VSCon structure is able to have fast and self-synchronized between the invertergrid connection before the power from the inverter can be transferred.

  4. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    Science.gov (United States)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  5. Optogenetically evoked gamma oscillations are disturbed by cocaine administration

    Directory of Open Access Journals (Sweden)

    Jonathan E Dilgen

    2013-11-01

    Full Text Available Drugs of abuse have enormous societal impact by degrading the cognitive abilities, emotional state and social behavior of addicted individuals. Among other events involved in the addiction cycle, the study of a single exposure to cocaine, and the contribution of the effects of that event to the continuous and further use of drugs of abuse are fundamental. Gamma oscillations are thought to be important neural correlates of cognitive processing in the prefrontal cortex (PFC which include decision making, set shifting and working memory. It follows that cocaine exposure might modulate gamma oscillations, which could result in reduced cognitive ability. Parvalbumin-positive fast-spiking interneurons play an orchestrating role in gamma oscillation induction and it has been shown recently that gamma oscillations can be induced in an anesthetized animal using optogenetic techniques. We use a knock-in mouse model together with optogenetics and in vivo electrophysiology to study the effects of acute cocaine on PFC gamma oscillation as a step toward understanding the cortical changes that may underlie continuous use of stimulants. Our results show that acute cocaine administration increases entrainment of the gamma oscillation to the optogentically induced driving frequency. Our results also suggest that this modulation of gamma oscillations is driven trough activation of DAD1 receptors. The acute cocaine-mediated changes in mPFC may underlie the enhancement of attention and awareness commonly reported by cocaine users and may contribute to the further use and abuse of psychostimulants.

  6. Graph properties of synchronized cortical networks during visual working memory maintenance.

    Science.gov (United States)

    Palva, Satu; Monto, Simo; Palva, J Matias

    2010-02-15

    Oscillatory synchronization facilitates communication in neuronal networks and is intimately associated with human cognition. Neuronal activity in the human brain can be non-invasively imaged with magneto- (MEG) and electroencephalography (EEG), but the large-scale structure of synchronized cortical networks supporting cognitive processing has remained uncharacterized. We combined simultaneous MEG and EEG (MEEG) recordings with minimum-norm-estimate-based inverse modeling to investigate the structure of oscillatory phase synchronized networks that were active during visual working memory (VWM) maintenance. Inter-areal phase-synchrony was quantified as a function of time and frequency by single-trial phase-difference estimates of cortical patches covering the entire cortical surfaces. The resulting networks were characterized with a number of network metrics that were then compared between delta/theta- (3-6 Hz), alpha- (7-13 Hz), beta- (16-25 Hz), and gamma- (30-80 Hz) frequency bands. We found several salient differences between frequency bands. Alpha- and beta-band networks were more clustered and small-world like but had smaller global efficiency than the networks in the delta/theta and gamma bands. Alpha- and beta-band networks also had truncated-power-law degree distributions and high k-core numbers. The data converge on showing that during the VWM-retention period, human cortical alpha- and beta-band networks have a memory-load dependent, scale-free small-world structure with densely connected core-like structures. These data further show that synchronized dynamic networks underlying a specific cognitive state can exhibit distinct frequency-dependent network structures that could support distinct functional roles. Copyright 2009 Elsevier Inc. All rights reserved.

  7. moviEEG: An animation toolbox for visualization of intracranial electroencephalography synchronization dynamics.

    Science.gov (United States)

    Wong, Simeon M; Ibrahim, George M; Ochi, Ayako; Otsubo, Hiroshi; Rutka, James T; Snead, O Carter; Doesburg, Sam M

    2016-06-01

    We introduce and describe the functions of moviEEG (Multiple Overlay Visualizations for Intracranial ElectroEncephaloGraphy), a novel MATLAB-based toolbox for spatiotemporal mapping of network synchronization dynamics in intracranial electroencephalography (iEEG) data. The toolbox integrates visualizations of inter-electrode phase-locking relationships in peri-ictal epileptogenic networks with signal spectral properties and graph-theoretical network measures overlaid upon operating room images of the electrode grid. Functional connectivity between every electrode pair is evaluated over a sliding window indexed by phase synchrony. Two case studies are presented to provide preliminary evidence for the application of the toolbox to guide network-based mapping of epileptogenic cortex and to distinguish these regions from eloquent brain networks. In both cases, epileptogenic cortex was visually distinct. We introduce moviEEG, a novel toolbox for animation of oscillatory network dynamics in iEEG data, and provide two case studies showing preliminary evidence for utility of the toolbox in delineating the epileptogenic zone. Despite evidence that atypical network synchronization has shown to be altered in epileptogenic brain regions, network based techniques have yet to be incorporated into clinical pre-surgical mapping. moviEEG provides a set of functions to enable easy visualization with network based techniques. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Breaking projective chaos synchronization secure communication using filtering and generalized synchronization

    International Nuclear Information System (INIS)

    Alvarez, G.; Li Shujun; Montoya, F.; Pastor, G.; Romera, M.

    2005-01-01

    This paper describes the security weaknesses of a recently proposed secure communication method based on chaotic masking using projective synchronization of two chaotic systems. We show that the system is insecure and how to break it in two different ways, by high-pass filtering and by generalized synchronization

  9. Pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions

    International Nuclear Information System (INIS)

    Yan-Li, Zou; Guan-Rong, Chen

    2009-01-01

    This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the controlled network to an extended network of N+1 nodes without controls. It is shown that the controlled synchronizability of the given network is determined by the real part of the smallest nonzero eigenvalue of the coupling matrix of its extended network when the synchronized region is unbounded; but it is determined by the ratio of the real parts of the largest and the smallest nonzero eigenvalues of the coupling matrix when the synchronized region is bounded. Both theoretical analysis and numerical simulation show that the portion of controlled nodes has no critical values when the synchronized region is unbounded, but it has a critical value when the synchronized region is bounded. In the former case, therefore, it is possible to control the network to achieve synchronization by pinning only one node. In the latter case, the network can achieve controlled synchronization only when the portion of controlled nodes is larger than the critical value. (general)

  10. Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems

    Science.gov (United States)

    Chen, Ming; He, Jing; Cao, Zizheng; Tang, Jin; Chen, Lin; Wu, Xian

    2014-09-01

    In this paper, we propose and experimentally demonstrate a symbol synchronization and sampling frequency synchronization techniques in real-time direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) system, over 100-km standard single mode fiber (SSMF) using a cost-effective directly modulated distributed feedback (DFB) laser. The experiment results show that the proposed symbol synchronization based on training sequence (TS) has a low complexity and high accuracy even at a sampling frequency offset (SFO) of 5000-ppm. Meanwhile, the proposed pilot-assisted sampling frequency synchronization between digital-to-analog converter (DAC) and analog-to-digital converter (ADC) is capable of estimating SFOs with an accuracy of technique can also compensate SFO effects within a small residual SFO caused by deviation of SFO estimation and low-precision or unstable clock source. The two synchronization techniques are suitable for high-speed DDO-OFDM transmission systems.

  11. Acoustic Trauma Changes the Parvalbumin-Positive Neurons in Rat Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Congli Liu

    2018-01-01

    Full Text Available Acoustic trauma is being reported to damage the auditory periphery and central system, and the compromised cortical inhibition is involved in auditory disorders, such as hyperacusis and tinnitus. Parvalbumin-containing neurons (PV neurons, a subset of GABAergic neurons, greatly shape and synchronize neural network activities. However, the change of PV neurons following acoustic trauma remains to be elucidated. The present study investigated how auditory cortical PV neurons change following unilateral 1 hour noise exposure (left ear, one octave band noise centered at 16 kHz, 116 dB SPL. Noise exposure elevated the auditory brainstem response threshold of the exposed ear when examined 7 days later. More detectable PV neurons were observed in both sides of the auditory cortex of noise-exposed rats when compared to control. The detectable PV neurons of the left auditory cortex (ipsilateral to the exposed ear to noise exposure outnumbered those of the right auditory cortex (contralateral to the exposed ear. Quantification of Western blotted bands revealed higher expression level of PV protein in the left cortex. These findings of more active PV neurons in noise-exposed rats suggested that a compensatory mechanism might be initiated to maintain a stable state of the brain.

  12. Spindle-like thalamocortical synchronization in a rat brain slice preparation.

    Science.gov (United States)

    Tancredi, V; Biagini, G; D'Antuono, M; Louvel, J; Pumain, R; Avoli, M

    2000-08-01

    We obtained rat brain slices (550-650 microm) that contained part of the frontoparietal cortex along with a portion of the thalamic ventrobasal complex (VB) and of the reticular nucleus (RTN). Maintained reciprocal thalamocortical connectivity was demonstrated by VB stimulation, which elicited orthodromic and antidromic responses in the cortex, along with re-entry of thalamocortical firing originating in VB neurons excited by cortical output activity. In addition, orthodromic responses were recorded in VB and RTN following stimuli delivered in the cortex. Spontaneous and stimulus-induced coherent rhythmic oscillations (duration = 0.4-3.5 s; frequency = 9-16 Hz) occurred in cortex, VB, and RTN during application of medium containing low concentrations of the K(+) channel blocker 4-aminopyridine (0.5-1 microM). This activity, which resembled electroencephalograph (EEG) spindles recorded in vivo, disappeared in both cortex and thalamus during application of the excitatory amino acid receptor antagonist kynurenic acid in VB (n = 6). By contrast, cortical application of kynurenic acid (n = 4) abolished spindle-like oscillations at this site, but not those recorded in VB, where their frequency was higher than under control conditions. Our findings demonstrate the preservation of reciprocally interconnected cortical and thalamic neuron networks that generate thalamocortical spindle-like oscillations in an in vitro rat brain slice. As shown in intact animals, these oscillations originate in the thalamus where they are presumably caused by interactions between RTN and VB neurons. We propose that this preparation may help to analyze thalamocortical synchronization and to understand the physiopathogenesis of absence attacks.

  13. Blending Online Asynchronous and Synchronous Learning

    Directory of Open Access Journals (Sweden)

    Lisa C. Yamagata-Lynch

    2014-04-01

    Full Text Available In this article I will share a qualitative self-study about a 15-week blended 100% online graduate level course facilitated through synchronous meetings on Blackboard Collaborate and asynchronous discussions on Blackboard. I taught the course at the University of Tennessee (UT during the spring 2012 semester and the course topic was online learning environments. The primary research question of this study was: How can the designer/instructor optimize learning experiences for students who are studying about online learning environments in a blended online course relying on both synchronous and asynchronous technologies? I relied on student reflections of course activities during the beginning, middle, and the end of the semester as the primary data source to obtain their insights regarding course experiences. Through the experiences involved in designing and teaching the course and engaging in this study I found that there is room in the instructional technology research community to address strategies for facilitating online synchronous learning that complement asynchronous learning. Synchronous online whole class meetings and well-structured small group meetings can help students feel a stronger sense of connection to their peers and instructor and stay engaged with course activities. In order to provide meaningful learning spaces in synchronous learning environments, the instructor/designer needs to balance the tension between embracing the flexibility that the online space affords to users and designing deliberate structures that will help them take advantage of the flexible space.

  14. Emergent explosive synchronization in adaptive complex networks

    Science.gov (United States)

    Avalos-Gaytán, Vanesa; Almendral, Juan A.; Leyva, I.; Battiston, F.; Nicosia, V.; Latora, V.; Boccaletti, S.

    2018-04-01

    Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone cannot be enough to explain all the structural features observed in many real-world networks. In this work, we propose an adaptive network model where the dynamical evolution of the node states toward synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely, brain networks, for which the emergence of explosive synchronization has been observed.

  15. Adaptive Control Algorithm of the Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Shevchenko Victor

    2017-01-01

    Full Text Available The article discusses the the problem of controlling a synchronous generator, namely, maintaining the stability of the control object in the conditions of occurrence of noise and disturbances in the regulatory process. The model of a synchronous generator is represented by a system of differential equations of Park-Gorev, where state variables are computed relative to synchronously rotating d, q-axis. Management of synchronous generator is proposed to organize on the basis of the position-path control using algorithms to adapt with the reference model. Basic control law directed on the stabilizing indicators the frequency generated by the current and the required power level, which is achieved by controlling the mechanical torque on the shaft of the turbine and the value of the excitation voltage of the synchronous generator. Modification of the classic adaptation algorithm using the reference model, allowing to minimize the error of the reference regulation and the model under investigation within the prescribed limits, produced by means of the introduction of additional variables controller adaptation in the model. Сarried out the mathematical modeling of control provided influence on the studied model of continuous nonlinear and unmeasured the disturbance. Simulation results confirm the high level accuracy of tracking and adaptation investigated model with respect to the reference, and the present value of the loop error depends on parameters performance of regulator.

  16. Chaotic synchronization of two complex nonlinear oscillators

    International Nuclear Information System (INIS)

    Mahmoud, Gamal M.; Mahmoud, Emad E.; Farghaly, Ahmed A.; Aly, Shaban A.

    2009-01-01

    Synchronization is an important phenomenon commonly observed in nature. It is also often artificially induced because it is desirable for a variety of applications in physics, applied sciences and engineering. In a recent paper [Mahmoud GM, Mohamed AA, Aly SA. Strange attractors and chaos control in periodically forced complex Duffing's oscillators. Physica A 2001;292:193-206], a system of periodically forced complex Duffing's oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. Their connection to solutions of the nonlinear Schroedinger equation has also been pointed out. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using active control and global synchronization techniques. We derive analytical expressions for control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.

  17. Gamma Splines and Wavelets

    Directory of Open Access Journals (Sweden)

    Hannu Olkkonen

    2013-01-01

    Full Text Available In this work we introduce a new family of splines termed as gamma splines for continuous signal approximation and multiresolution analysis. The gamma splines are born by -times convolution of the exponential by itself. We study the properties of the discrete gamma splines in signal interpolation and approximation. We prove that the gamma splines obey the two-scale equation based on the polyphase decomposition. to introduce the shift invariant gamma spline wavelet transform for tree structured subscale analysis of asymmetric signal waveforms and for systems with asymmetric impulse response. Especially we consider the applications in biomedical signal analysis (EEG, ECG, and EMG. Finally, we discuss the suitability of the gamma spline signal processing in embedded VLSI environment.

  18. GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks

    Directory of Open Access Journals (Sweden)

    Meeri Eeva-Liisa Mäkinen

    2018-03-01

    Full Text Available The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging and temporal resolution microelectrode array (MEA. We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling.

  19. GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks

    Science.gov (United States)

    Mäkinen, Meeri Eeva-Liisa; Ylä-Outinen, Laura; Narkilahti, Susanna

    2018-01-01

    The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging) and temporal resolution microelectrode array (MEA). We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling. PMID:29559893

  20. Adaptive response of yeast cultures (Saccharomyces Cerevisiae) exposed to low dose of gamma radiation

    International Nuclear Information System (INIS)

    Kulcsar, Agnes; Savu, D.; Petcu, I.; Gherasim, Raluca

    2003-01-01

    The present study was planned as follows: (i) setting up of standard experimental conditions for investigation of radio-induced adaptive response in lower Eucaryotes; (ii) developing of procedures for synchronizing Saccharomyces cerevisiae X 310 D cell cultures and cell cycle stages monitoring; (iii) investigation of gamma (Co-60) and UV irradiation effects on the viability of synchronized and non-synchronized cell cultures of Saccharomyces cerevisiae; the effects were correlated with the cell density and cell cycle stage; (iv) study of the adaptive response induced by irradiation and setting up of the experimental conditions for which this response is optimized. The irradiations were performed by using a Co-60 with doses of 10 2 - 10 4 Gy and dose rates ranging from 2.2 x 10 2 Gy/h to 8.7 x 10 3 Gy/h. The study of radioinduced adaptive response was performed by applying a pre-irradiation treatment of 100-500 Gy, followed by challenge doses of 2-4 kGy delivered at different time intervals, ranging from 1 h to 4 h. The survival rate of synchronized and non-synchronized cultures as a function of exposure dose shows an exponential decay shape. No difference in viability of the cells occurred between synchronized and non-synchronized cultures. The pre-irradiation of cells with 100 and 200 Gy were most efficient to induce an adaptive response for the yeast cells. In this stage of work we proved the occurrence of the adaptive response in the case of synchronized yeast cultures exposed to gamma radiation. The results will be used in the future to investigate the dependence of this response on the cell cycle and the possibility to induce such a response by a low level electromagnetic field. (authors)

  1. Synchronization coupled systems to complex networks

    CERN Document Server

    Boccaletti, Stefano; del Genio, Charo I; Amann, Andreas

    2018-01-01

    A modern introduction to synchronization phenomena, this text presents recent discoveries and the current state of research in the field, from low-dimensional systems to complex networks. The book describes some of the main mechanisms of collective behaviour in dynamical systems, including simple coupled systems, chaotic systems, and systems of infinite-dimension. After introducing the reader to the basic concepts of nonlinear dynamics, the book explores the main synchronized states of coupled systems and describes the influence of noise and the occurrence of synchronous motion in multistable and spatially-extended systems. Finally, the authors discuss the underlying principles of collective dynamics on complex networks, providing an understanding of how networked systems are able to function as a whole in order to process information, perform coordinated tasks, and respond collectively to external perturbations. The demonstrations, numerous illustrations and application examples will help advanced graduate s...

  2. Method of synchronizing independent functional unit

    Science.gov (United States)

    Kim, Changhoan

    2018-03-13

    A system for synchronizing parallel processing of a plurality of functional processing units (FPU), a first FPU and a first program counter to control timing of a first stream of program instructions issued to the first FPU by advancement of the first program counter; a second FPU and a second program counter to control timing of a second stream of program instructions issued to the second FPU by advancement of the second program counter, the first FPU is in communication with a second FPU to synchronize the issuance of a first stream of program instructions to the second stream of program instructions and the second FPU is in communication with the first FPU to synchronize the issuance of the second stream program instructions to the first stream of program instructions.

  3. Designing Learning Resources in Synchronous Learning Environments

    DEFF Research Database (Denmark)

    Christiansen, Rene B

    2015-01-01

    Computer-mediated Communication (CMC) and synchronous learning environments offer new solutions for teachers and students that transcend the singular one-way transmission of content knowledge from teacher to student. CMC makes it possible not only to teach computer mediated but also to design...... and create new learning resources targeted to a specific group of learners. This paper addresses the possibilities of designing learning resources within synchronous learning environments. The empirical basis is a cross-country study involving students and teachers in primary schools in three Nordic...... Countries (Denmark, Sweden and Norway). On the basis of these empirical studies a set of design examples is drawn with the purpose of showing how the design fulfills the dual purpose of functioning as a remote, synchronous learning environment and - using the learning materials used and recordings...

  4. Adaptive elimination of synchronization in coupled oscillator

    Science.gov (United States)

    Zhou, Shijie; Ji, Peng; Zhou, Qing; Feng, Jianfeng; Kurths, Jürgen; Lin, Wei

    2017-08-01

    We present here an adaptive control scheme with a feedback delay to achieve elimination of synchronization in a large population of coupled and synchronized oscillators. We validate the feasibility of this scheme not only in the coupled Kuramoto’s oscillators with a unimodal or bimodal distribution of natural frequency, but also in two representative models of neuronal networks, namely, the FitzHugh-Nagumo spiking oscillators and the Hindmarsh-Rose bursting oscillators. More significantly, we analytically illustrate the feasibility of the proposed scheme with a feedback delay and reveal how the exact topological form of the bimodal natural frequency distribution influences the scheme performance. We anticipate that our developed scheme will deepen the understanding and refinement of those controllers, e.g. techniques of deep brain stimulation, which have been implemented in remedying some synchronization-induced mental disorders including Parkinson disease and epilepsy.

  5. Phase synchronization in train connection timetables

    Energy Technology Data Exchange (ETDEWEB)

    Fretter, Christoph; Mueller-Hannemann, Matthias [Martin Luther Universitaet, Halle-Wittenberg (Germany); Krumov, Lachezar; Weihe, Karsten [TU Darmstadt (Germany); Huett, Marc-Thorsten [Jacobs University, Bremen (Germany)

    2010-07-01

    Train connection timetables are an important research topic in algorithmics. Finding optimal or near-optimal timetables under the subsidiary conditions of minimizing travel times and other criteria is an important contribution to the functioning of public transportation. In addition to efficiency (given, e.g. by minimal average travel times), the robustness of the timetable, i.e. a minimization of delay propagation, is an important criterion. Here we study the balance of efficiency and robustness in train connection timetables from the perspective of synchronization, exploiting the fact that a major part of the trains run nearly periodically. We find that synchronization is highest at intermediate-sized stations. We argue that this synchronization perspectives opens a new avenue towards an understanding of train connection timetables by representing them as spatiotemporal phase patterns. Robustness and efficiency can then be viewed as properties of this phase pattern.

  6. Synchronous characterization of semiconductor microcavity laser beam.

    Science.gov (United States)

    Wang, T; Lippi, G L

    2015-06-01

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures.

  7. Synthesizing Modular Invariants for Synchronous Code

    Directory of Open Access Journals (Sweden)

    Pierre-Loic Garoche

    2014-12-01

    Full Text Available In this paper, we explore different techniques to synthesize modular invariants for synchronous code encoded as Horn clauses. Modular invariants are a set of formulas that characterizes the validity of predicates. They are very useful for different aspects of analysis, synthesis, testing and program transformation. We describe two techniques to generate modular invariants for code written in the synchronous dataflow language Lustre. The first technique directly encodes the synchronous code in a modular fashion. While in the second technique, we synthesize modular invariants starting from a monolithic invariant. Both techniques, take advantage of analysis techniques based on property-directed reachability. We also describe a technique to minimize the synthesized invariants.

  8. Trigger delay compensation of beam synchronous sampling

    International Nuclear Information System (INIS)

    Steimel, J.

    1996-05-01

    One of the problems of providing beam feedback in a large accelerator is the lack of beam synchronous trigger signals far from the RF signal source. IF single bucket resolutions are required, a cable extending from the RF source to the other side of the accelerator will not provide a synchronous signal if the RF frequency changes significantly with respect to the cable delay. This paper offers a solution to this problem by locking to the RF, at the remote location, using a digital phase locked loop. Then, the digitized frequency value is used to calculate the phase shift required to remain synchronized to the beam. Results are shown for phase lock to the Fermilab Main Ring RF. 1 ref., 4 figs

  9. Suppression of synchronous resonance for VSGs

    DEFF Research Database (Denmark)

    Yang, Dongsheng; Wu, Heng; Wang, Xiongfei

    2017-01-01

    The virtual synchronous generator (VSG) is an attractive interfacing technique for high-penetration renewable generation. By incorporating the inertia control, the grid-connected voltage-source converter can behave in a similar way with the SGs, which is helpful to enhance the stability of the po......The virtual synchronous generator (VSG) is an attractive interfacing technique for high-penetration renewable generation. By incorporating the inertia control, the grid-connected voltage-source converter can behave in a similar way with the SGs, which is helpful to enhance the stability...... of the power system. However, it is reported that the synchronous frequency resonance (SFR) can be aroused in the VSG due to the resonance peaks in the power control loops at the fundamental frequency. By modelling the power control loop in the dq domain, the mechanism underlying the SFR is studied. It reveals...

  10. Adaptive elimination of synchronization in coupled oscillator

    International Nuclear Information System (INIS)

    Zhou, Shijie; Lin, Wei; Ji, Peng; Feng, Jianfeng; Zhou, Qing; Kurths, Jürgen

    2017-01-01

    We present here an adaptive control scheme with a feedback delay to achieve elimination of synchronization in a large population of coupled and synchronized oscillators. We validate the feasibility of this scheme not only in the coupled Kuramoto’s oscillators with a unimodal or bimodal distribution of natural frequency, but also in two representative models of neuronal networks, namely, the FitzHugh–Nagumo spiking oscillators and the Hindmarsh–Rose bursting oscillators. More significantly, we analytically illustrate the feasibility of the proposed scheme with a feedback delay and reveal how the exact topological form of the bimodal natural frequency distribution influences the scheme performance. We anticipate that our developed scheme will deepen the understanding and refinement of those controllers, e.g. techniques of deep brain stimulation, which have been implemented in remedying some synchronization-induced mental disorders including Parkinson disease and epilepsy. (paper)

  11. Pinning synchronization of a mobile agent network

    International Nuclear Information System (INIS)

    Wang, Lei; Sun, You-xian

    2009-01-01

    We investigate the problem of controlling a group of mobile agents in a plane in order to move them towards a desired orbit via pinning control, in which each agent is associated with a chaotic oscillator coupled with those of neighboring agents, and the pinning strategy is to have the common linear feedback acting on a small fraction of agents by random selection. We explore the effects of the pinning probability, feedback gains and agent density in the pinning synchronization of a mobile agent network under a fast-switching constraint, and perform numerical simulations for validation. In particular, we show that there exists a critical pinning density for network synchronization with an unbounded region: above the threshold, the dynamical network can be controlled by pinning; below it, anarchy prevails. And for the network with a single bounded synchronization region, pinning control has little effect as regards enhancing network synchronizability

  12. Measures of Quantum Synchronization in Continuous Variable Systems

    Science.gov (United States)

    Mari, A.; Farace, A.; Didier, N.; Giovannetti, V.; Fazio, R.

    2013-09-01

    We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems.

  13. Analysis of ECT Synchronization Performance Based on Different Interpolation Methods

    Directory of Open Access Journals (Sweden)

    Yang Zhixin

    2014-01-01

    Full Text Available There are two synchronization methods of electronic transformer in IEC60044-8 standard: impulsive synchronization and interpolation. When the impulsive synchronization method is inapplicability, the data synchronization of electronic transformer can be realized by using the interpolation method. The typical interpolation methods are piecewise linear interpolation, quadratic interpolation, cubic spline interpolation and so on. In this paper, the influences of piecewise linear interpolation, quadratic interpolation and cubic spline interpolation for the data synchronization of electronic transformer are computed, then the computational complexity, the synchronization precision, the reliability, the application range of different interpolation methods are analyzed and compared, which can serve as guide studies for practical applications.

  14. On synchronized regions of discrete-time complex dynamical networks

    International Nuclear Information System (INIS)

    Duan Zhisheng; Chen Guanrong

    2011-01-01

    In this paper, the local synchronization of discrete-time complex networks is studied. First, it is shown that for any natural number n, there exists a discrete-time network which has at least left floor n/2 right floor +1 disconnected synchronized regions for local synchronization, which implies the possibility of intermittent synchronization behaviors. Different from the continuous-time networks, the existence of an unbounded synchronized region is impossible for discrete-time networks. The convexity of the synchronized regions is also characterized based on the stability of a class of matrix pencils, which is useful for enlarging the stability region so as to improve the network synchronizability.

  15. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Fichtel, C.E.

    1975-01-01

    The first certain detection of celestial high energy gamma rays came from a satellite experiment flown on the third Orbiting Solar Observatory (OSO-111). A Gamma ray spark chamber telescope with substantively greater sensitivity and angular resolution (a few degrees) flown on the second Small Astronomy Satellite (SAS-II) has now provided a better picture of the gamma ray sky, and particularly the galactic plane and pulsars. This paper will summarize the present picture of gamma ray astronomy as it has developed at this conference from measurements made with experiments carried out on balloons, those remaining on the ground, and ones flown on satellites. (orig.) [de

  16. Synchronous gastric neuroendocrine carcinoma and hepatocellular carcinoma

    DEFF Research Database (Denmark)

    Ewertsen, Caroline; Henriksen, Birthe Merete; Hansen, Carsten Palnæs

    2009-01-01

    of synchronous gastric NEC and hepatocellular carcinoma in a patient with several other precancerous lesions is presented. The patient had anaemia, and a gastric tumour and two duodenal polyps were identified on upper endoscopy. A CT scan of the abdomen revealed several lesions in the liver. The lesions were...... invisible on B-mode sonography and real-time sonography fused with CT was used to identify and biopsy one of the lesions. Histology showed hepatocellular carcinoma. A literature search showed that only one case of a hepatocellular carcinoma synchronous with a gastric NEC has been reported previously. TRIAL...

  17. Characteristics of silent countingin synchronized swimmers

    Directory of Open Access Journals (Sweden)

    Sergey V. Leonov

    2012-01-01

    Full Text Available This article describes the temporal characteristics of silent counting as used duringa competition by the Russian youth team of synchronized swimmers. Theathletes listened to the music that accompanied their performance at the competition.Diff erent indices of silent counting were defi ned, such as the beginningand cessation of diff erent periods of counting, counting frequency, the stabilityof the temporal structure of silent counting, the degree of synchronization of silentcounting at diff erent moments during the sports program. We studied therelationship of these characteristics of counting with expert estimates of the athletes’sense of tempo, coordination of movements, and choreographic abilities.

  18. Multithreading for synchronization tolerance in matrix factorization

    International Nuclear Information System (INIS)

    Buttari, Alfredo; Dongarra, Jack; Husbands, Parry; Kurzak, Jakub; Yelick, Katherine

    2007-01-01

    Physical constraints such as power, leakage and pin bandwidth are currently driving the HPC industry to produce systems with unprecedented levels of concurrency. In these parallel systems, synchronization and memory operations are becoming considerably more expensive than before. In this work we study parallel matrix factorization codes and conclude that they need to be re-engineered to avoid unnecessary (and expensive) synchronization. We propose the use of multithreading combined with intelligent schedulers and implement representative algorithms in this style. Our results indicate that this strategy can significantly outperform traditional codes

  19. Carrier and symbol synchronization system performance study

    Science.gov (United States)

    Lindsey, W. C.

    1976-01-01

    Results pertinent to predicting the performance of convolutionally encoded binary phase-shift keyed communication links were presented. The details of the development are provided in four sections. These sections are concerned with developing the bit error probability performance degradations due to PN despreading by a time-shared delay locked loop, the Costas demodulation process, symbol synchronization effects and cycle slipping phenomena in the Costas loop. In addition, Costas cycle slipping probabilities are studied as functions of Doppler count time and signal-to-noise conditions. The effect of cycle slipping in the symbol synchronizer is also studied as a function of channel Doppler and other frequency uncertainties.

  20. GPS synchronized power system phase angle measurements

    Science.gov (United States)

    Wilson, Robert E.; Sterlina, Patrick S.

    1994-09-01

    This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.

  1. Modulated Field Synchronous Generator for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2013-01-01

    Full Text Available This paper presents a modern electromechanical conversion systemsolution as the modulated field synchronous generator, offering on theone hand, an output voltage with constant frequency in terms of speedvariation of the wind turbine and on the other hand an advantagepower / weight ratio due to the high frequency for which the magneticcircuit of the electric machine is sized. The mathematical model of the modulated field synchronous generator is implemented in MatLABmodeling language, highlighting the command structure on thetransistors bases of the inverter transistors, through which thefunctioning of the electric machine can be studied, especially in terms of the frequency of the delivered voltage.

  2. The transition to chaotic phase synchronization

    DEFF Research Database (Denmark)

    Mosekilde, E.; Laugesen, J. L.; Zhusubaliyev, Zh. T.

    2012-01-01

    The transition to chaotic phase synchronization for a periodically driven spiral-type chaotic oscillator is known to involve a dense set of saddle-node bifurcations. By following the synchronization transition through the cascade of period-doubling bifurcations in a forced Ro¨ssler system...... to the torus doubling bifurcations that take place outside this domain. By examining a physiology-based model of the blood flow regulation to the individual functional unit (nephron) of the kidney we demonstrate how a similar bifurcation structure may arise in this system as a response to a periodically...

  3. Synchronous generator wind energy conversion control system

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  4. Synchronous Control of Modular Multilevel Converters

    DEFF Research Database (Denmark)

    Oleschuk, Valentin; Blaabjerg, Frede; Bose, Bimal K.

    2002-01-01

    A novel method of direct synchronous pulsewidth modulation (PWM) is applied for control of modular multilevel converters consisting from three standard triphase inverter modules along with an 0.33 p.u. output transformer. The proposed method provides synchronisation of the voltage waveforms...... for each module and the composed voltage at the output of the converter. Multilevel output voltage of the converter has quarter-wave symmetry during the whole range including the zone of overmodulation. Both continuous and discontinuous versions of synchronous PWM, based on vector approach...

  5. The Significance of Memory in Sensory Cortex.

    Science.gov (United States)

    Muckli, Lars; Petro, Lucy S

    2017-05-01

    Early sensory cortex is typically investigated in response to sensory stimulation, masking the contribution of internal signals. Recently, van Kerkoerle and colleagues reported that attention and memory signals segregate from sensory signals within specific layers of primary visual cortex, providing insight into the role of internal signals in sensory processing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. The significance of memory in sensory cortex

    OpenAIRE

    Muckli, Lars; Petro, Lucy S.

    2017-01-01

    Early sensory cortex is typically investigated in response to sensory stimulation, masking the contribution of internal signals. Recently, van Kerkoerle and colleagues reported that attention and memory signals segregate from sensory signals within specific layers of primary visual cortex, providing insight into the role of internal signals in sensory processing.

  7. Visual cortex plasticity evokes excitatory alterations in the hippocampus

    Directory of Open Access Journals (Sweden)

    Marian Tsanov

    2009-11-01

    Full Text Available The integration of episodic sequences in the hippocampus is believed to occur during theta rhythm episodes, when cortico-hippocampal dialog results in reconfiguration of neuronal assemblies. As the visual cortex (VC is a major source of sensory information to the hippocampus, information processing in the cortex may affect hippocampal network oscillations, facilitating the induction of synaptic modifications. We investigated to what degree the field activity in the primary VC, elicited by sensory or electrical stimulation, correlates with hippocampal oscillatory and synaptic responsiveness, in freely behaving adult rats. We found that the spectral power of theta rhythm (4-10Hz in the dentate gyrus (DG, increases in parallel with high-frequency oscillations in layer 2/3 of the VC and that this correlation depends on the degree of exploratory activity. When we mimic robust thalamocortical activity by theta-burst application to dorsal lateral geniculate nucleus, a hippocampal theta increase occurs, followed by a persistent potentiation of the DG granule field population spike. Furthermore, the potentiation of DG neuronal excitability tightly correlates with the concurrently occurring VC plasticity. The concurrent enhancement of VC and DG activity is also combined with a highly negative synchronization between hippocampal and cortical low frequency oscillations. Exploration of familiar environment decreases the degree of this synchrony. Our data propose that novel visual information can induce high-power fluctuations in intrinsic excitability for both VC and hippocampus, potent enough to induce experience-dependent modulation of cortico-hippocampal connections. This interaction may comprise one of the endogenous triggers for long-term synaptic plasticity in the hippocampus.

  8. Kainate-induced network activity in the anterior cingulate cortex.

    Science.gov (United States)

    Shinozaki, R; Hojo, Y; Mukai, H; Hashizume, M; Murakoshi, T

    2016-06-14

    Anterior cingulate cortex (ACC) plays a pivotal role in higher order processing of cognition, attention and emotion. The network oscillation is considered an essential means for integration of these CNS functions. The oscillation power and coherence among related areas are often dis-regulated in several psychiatric and pathological conditions with a hemispheric asymmetric manner. Here we describe the network-based activity of field potentials recorded from the superficial layer of the mouse ACC in vitro using submerged type recordings. A short activation by kainic acid administration to the preparation induced populational activities ranging over several frequency bands including theta (3-8Hz), alpha (8-12Hz), beta (13-30Hz), low gamma (30-50Hz) and high gamma (50-80Hz). These responses were repeatable and totally abolished by tetrodotoxin, and greatly diminished by inhibitors of ionotropic and metabotropic glutamate receptors, GABAA receptor or gap-junctions. These observations suggest that the kainate-induced network activity can be a useful model of the network oscillation in the ACC circuit. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Intrinsic frequency biases and profiles across human cortex.

    Science.gov (United States)

    Mellem, Monika S; Wohltjen, Sophie; Gotts, Stephen J; Ghuman, Avniel Singh; Martin, Alex

    2017-11-01

    Recent findings in monkeys suggest that intrinsic periodic spiking activity in selective cortical areas occurs at timescales that follow a sensory or lower order-to-higher order processing hierarchy (Murray JD, Bernacchia A, Freedman DJ, Romo R, Wallis JD, Cai X, Padoa-Schioppa C, Pasternak T, Seo H, Lee D, Wang XJ. Nat Neurosci 17: 1661-1663, 2014). It has not yet been fully explored if a similar timescale hierarchy is present in humans. Additionally, these measures in the monkey studies have not addressed findings that rhythmic activity within a brain area can occur at multiple frequencies. In this study we investigate in humans if regions may be biased toward particular frequencies of intrinsic activity and if a full cortical mapping still reveals an organization that follows this hierarchy. We examined the spectral power in multiple frequency bands (0.5-150 Hz) from task-independent data using magnetoencephalography (MEG). We compared standardized power across bands to find regional frequency biases. Our results demonstrate a mix of lower and higher frequency biases across sensory and higher order regions. Thus they suggest a more complex cortical organization that does not simply follow this hierarchy. Additionally, some regions do not display a bias for a single band, and a data-driven clustering analysis reveals a regional organization with high standardized power in multiple bands. Specifically, theta and beta are both high in dorsal frontal cortex, whereas delta and gamma are high in ventral frontal cortex and temporal cortex. Occipital and parietal regions are biased more narrowly toward alpha power, and ventral temporal lobe displays specific biases toward gamma. Thus intrinsic rhythmic neural activity displays a regional organization but one that is not necessarily hierarchical. NEW & NOTEWORTHY The organization of rhythmic neural activity is not well understood. Whereas it has been postulated that rhythms are organized in a hierarchical manner across

  10. Visual Categorization and the Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Jamie K Fitzgerald

    2012-05-01

    Full Text Available The primate brain is adept at rapidly grouping items and events into functional classes, or categories, in order to recognize the significance of stimuli and guide behavior. Higher cognitive functions have traditionally been considered the domain of frontal areas. However, increasing evidence suggests that parietal cortex is also involved in categorical and associative processes. Previous work showed that the parietal cortex is highly involved in spatial processing, attention and saccadic eye movement planning, and more recent studies have found decision-making signals in LIP. We recently found that a subdivision of parietal cortex, the lateral intraparietal area (LIP, reflects learned categories for multiple types of visual stimuli. Additionally, a comparison of categorization signals in parietal and frontal areas found stronger and earlier categorization signals in parietal cortex, arguing that parietal abstract association or category signals are unlikely to arise via feedback from prefrontal cortex (PFC.

  11. Membrane Potential Dynamics of Spontaneous and Visually Evoked Gamma Activity in V1 of Awake Mice

    NARCIS (Netherlands)

    Perrenoud, Q.; Pennartz, C.M.A.; Gentet, L.J.

    2016-01-01

    Cortical gamma activity (30-80 Hz) is believed to play important functions in neural computation and arises from the interplay of parvalbumin-expressing interneurons (PV) and pyramidal cells (PYRs). However, the subthreshold dynamics underlying its emergence in the cortex of awake animals remain

  12. Gamma tomography apparatus

    International Nuclear Information System (INIS)

    Span, F.J.

    1988-01-01

    The patent concerns a gamma tomography apparatus for medical diagnosis. The apparatus comprises a gamma scintillation camera head and a suspension system for supporting and positioning the camera head with respect for the patient. Both total body scanning and single photon emission tomography can be carried out with the apparatus. (U.K.)

  13. Gamma-sterilization

    International Nuclear Information System (INIS)

    Lindgren, E.

    1974-01-01

    The author makes a survey of his experience in sterilization and sterility control of medical products. At present three different methods are used, steamsterilization, gassterilizing and gammasterilizing. The investments and costs for gamma radiation is presented and a comparison of the costs for gamma- and gassterilization including sterility control is made. (M.S.)

  14. Gamma-ray sources

    International Nuclear Information System (INIS)

    Hermsen, W.

    1980-01-01

    Results are presented from an analysis of the celestial gamma-ray fine-scale structure based on over half of the data which may ultimately be available from the COS-B satellite. A catalogue consisting of 25 gamma-ray sources measured at energies above 100 MeV is presented. (Auth.)

  15. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Hillier, R.

    1984-01-01

    The book reviews the development of gamma ray astronomy over the past twenty five years. A large section of the book is devoted to the problems of background radiation and the design of detectors. Gamma rays from the sun, the galactic disc, the galaxy, and extra galactic sources; are also discussed. (U.K.)

  16. Injuries and medical issues in synchronized Olympic sports.

    Science.gov (United States)

    Mountjoy, Margo

    2009-01-01

    Spectators of the Olympic Games can enjoy a wide variety of sports, including strength, team, timed, endurance, and artistic sports. In the Olympic program, there are two synchronized events: synchronized diving and synchronized swimming. The precision of the synchronization of the athlete's movements and skills is an added feature of entertainment. Synchronized athletes have additional training requirements to perfect the synchronization of their skills. The physical demands on the athlete from the repetition of training required for the perfection of synchronization result in injuries unique to these sports. Although both traumatic and overuse injuries occur, overuse injuries are more common. As these disciplines are artistic, judged sports, these athletes also are susceptible to eating disorders and the female athlete triad. This article reviews the training regimen of these athletes and outlines the injuries and health concerns that are common in the synchronized sports.

  17. Hybrid synchronization of two independent chaotic systems on ...

    Indian Academy of Sciences (India)

    Keywords. Hybrid synchronization; complex network; information source; chaotic system. ... encryption and decryption through synchronization. However, the ... Certainly, if the two systems are different, the security would be improved. How.

  18. Making sense of media synchronicity in humanitarian crises

    NARCIS (Netherlands)

    Muhren, W.J.; van den Eede, G.G.P.; van de Walle, B.A.

    2009-01-01

    This paper reintroduces concepts from sensemaking in media synchronicity theory (MST). It focuses on how media should support synchronicity to fit communication needs when making sense of a humanitarian crisis situation. Findings from interviews with senior management of humanitarian aid

  19. The effects of three methods of synchronization on estrus induction ...

    African Journals Online (AJOL)

    The effects of three methods of synchronization on estrus induction and ... Due to the importances of estrus synchronization in sheep reproduction and fertility, the ... sponges (medroxyprogesterone) and controlled intravaginal drug-releasing ...

  20. RBF neural network based H∞ synchronization for unknown chaotic ...

    Indian Academy of Sciences (India)

    , 172 ... the effect of disturbance to an H∞ norm constraint. It is shown that ... unknown chaotic systems; linear matrix inequality (LMI); learning law. 1. Introduction .... (9) is RBFNN H∞ synchronized if the synchronization error e(t) satisfies. ∫ ∞.

  1. Analysis of synchronization in a supermarket refrigeration system

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Leth, John-Josef; Rasmussen, Jakob Gulddahl

    2014-01-01

    increases both the energy consumption and the wear of components. Besides this practical importance, from the theoretical point of view, synchronization, likewise stability, Zeno phenomenon, and chaos, is an interesting dynamical phenomenon. The study of synchronization in the supermarket refrigeration...

  2. Robust adaptive synchronization of general dynamical networks ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6. Robust ... A robust adaptive synchronization scheme for these general complex networks with multiple delays and uncertainties is established and raised by employing the robust adaptive control principle and the Lyapunov stability theory. We choose ...

  3. Hypothesis test for synchronization: twin surrogates revisited.

    Science.gov (United States)

    Romano, M Carmen; Thiel, Marco; Kurths, Jürgen; Mergenthaler, Konstantin; Engbert, Ralf

    2009-03-01

    The method of twin surrogates has been introduced to test for phase synchronization of complex systems in the case of passive experiments. In this paper we derive new analytical expressions for the number of twins depending on the size of the neighborhood, as well as on the length of the trajectory. This allows us to determine the optimal parameters for the generation of twin surrogates. Furthermore, we determine the quality of the twin surrogates with respect to several linear and nonlinear statistics depending on the parameters of the method. In the second part of the paper we perform a hypothesis test for phase synchronization in the case of experimental data from fixational eye movements. These miniature eye movements have been shown to play a central role in neural information processing underlying the perception of static visual scenes. The high number of data sets (21 subjects and 30 trials per person) allows us to compare the generated twin surrogates with the "natural" surrogates that correspond to the different trials. We show that the generated twin surrogates reproduce very well all linear and nonlinear characteristics of the underlying experimental system. The synchronization analysis of fixational eye movements by means of twin surrogates reveals that the synchronization between the left and right eye is significant, indicating that either the centers in the brain stem generating fixational eye movements are closely linked, or, alternatively that there is only one center controlling both eyes.

  4. Effects of synchronous coaching in teacher training

    NARCIS (Netherlands)

    Hooreman, Ralph W.; Kommers, Petrus A.M.; Jochems, Wim M.G.

    2008-01-01

    Historically, the nature of coaching the teachers is asynchronously: a reflective discussion with the supervisory coach is the follow-up after a lesson has been taught. We expect that synchronous (immediate) coaching may complement and to a certain extent supplant the asynchronous feedback.

  5. Distance learning through synchronous interactive television.

    Science.gov (United States)

    Hall, Janis L

    2007-01-01

    The advent and popularity of asynchronous online learning has somewhat obscured a standby technology developed over the last two decades. Interactive videoconferencing, sometimes called "interactive television," though not as glamorous and popular a topic at distance-learning conferences, is still alive and well at many institutions. Three or four years ago, many of us were led to believe that interactive television would go the way of the dinosaurs-everything would soon be in an asynchronous format or on individual desktops. There would no longer be any need for elaborately designed classrooms, networks, and operations staff. To date, this prediction has not come true. In fact, synchronous interactive television has experienced significant growth as newer, easier, and cheaper technologies allow institutions to reach more students with less resource investment. Faculty and students, while appreciating the convenience of asynchronous delivery, still express a need for synchronous communication. This article explores the issues involved in synchronous distance education, the current technologies and proposed future developments, and best practices in terms of classroom design, faculty use, and operational issues. It is not a research article but an anecdotal case study based on Washington State University's experiences over the last 20 years in developing and adapting to new synchronous technologies and creating the support and technical infrastructure to best deliver academic courses through this medium.

  6. Relaxation of synchronization on complex networks.

    Science.gov (United States)

    Son, Seung-Woo; Jeong, Hawoong; Hong, Hyunsuk

    2008-07-01

    We study collective synchronization in a large number of coupled oscillators on various complex networks. In particular, we focus on the relaxation dynamics of the synchronization, which is important from the viewpoint of information transfer or the dynamics of system recovery from a perturbation. We measure the relaxation time tau that is required to establish global synchronization by varying the structural properties of the networks. It is found that the relaxation time in a strong-coupling regime (K>Kc) logarithmically increases with network size N , which is attributed to the initial random phase fluctuation given by O(N-1/2) . After elimination of the initial-phase fluctuation, the relaxation time is found to be independent of the system size; this implies that the local interaction that depends on the structural connectivity is irrelevant in the relaxation dynamics of the synchronization in the strong-coupling regime. The relaxation dynamics is analytically derived in a form independent of the system size, and it exhibits good consistency with numerical simulations. As an application, we also explore the recovery dynamics of the oscillators when perturbations enter the system.

  7. Synchronizing data from irregularly sampled sensors

    Science.gov (United States)

    Uluyol, Onder

    2017-07-11

    A system and method include receiving a set of sampled measurements for each of multiple sensors, wherein the sampled measurements are at irregular intervals or different rates, re-sampling the sampled measurements of each of the multiple sensors at a higher rate than one of the sensor's set of sampled measurements, and synchronizing the sampled measurements of each of the multiple sensors.

  8. Blended synchronous learning environment: Student perspectives

    Directory of Open Access Journals (Sweden)

    Conklina Sheri

    2017-06-01

    Full Text Available Distance education environments can take many forms, from asynchronous to blended synchronous environments. Blended synchronous learning environment (BSLE can be defined as an innovative setting in which students can decide to attend classes either face-to-face or via a synchronous virtual connection. Many educators are unfamiliar teaching in BSLE because of lack of experience or exposure to this delivery method. Thus, it is important to understand the optimal organisational structures and the effective management of BSLE courses to facilitate student learning and interaction. Seeking to understand this teaching method, an exploratory mixed-method study was conducted to examine graduate students’ perceptions of the BSLE. Quantitative and qualitative data was collected from a questionnaire and analysed. The findings revealed that students were satisfied with the BSLE, interactions, and the instructor. However, findings showed that the instructor divided attention between face-to-face and online synchronous students, which can cause cognitive overload and compromise the quality of instruction. Additionally, this study suggests that technical difficulties can affect students’ satisfaction with BSLE courses. Implications for further research and limitations are discussed.

  9. Long distance synchronization of mobile robots

    NARCIS (Netherlands)

    Alvarez Aguirre, A.; Nijmeijer, H.; Oguchi, T.

    2010-01-01

    This paper considers the long distance master-slave and mutual synchronization of unicycle-type mobile robots. The issues that arise when the elements of a robotic network are placed in different locations are addressed, specifically the time-delay induced by the communication channel linking the

  10. Synchronization of chaos by nonlinear feedback

    International Nuclear Information System (INIS)

    Cheng Yanxiang

    1995-01-01

    The authors point out that synchronization of chaos may also be achieved by a nonlinear feedback without decomposing the original system. They apply the idea to the Lorentz system, and discuss several forms of nonlinear feedbacks by Lyapunov function and numerical method

  11. Online Moderation of Synchronous E-Argumentation

    Science.gov (United States)

    Asterhan, Christa S. C.; Schwarz, Baruch B.

    2010-01-01

    In this paper, we present findings on moderation of synchronous, small-group argumentation in blended, co-located learning environments. Drawing on findings from the literature on human facilitation of dialogue in face-to-face settings, we first elaborate on the potential promise of this new practice. However, little is known about what…

  12. Clock Synchronization for Multihop Wireless Sensor Networks

    Science.gov (United States)

    Solis Robles, Roberto

    2009-01-01

    In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…

  13. An Online Synchronous Test for Professional Interpreters

    Science.gov (United States)

    Chen, Nian-Shing; Ko, Leong

    2010-01-01

    This article is based on an experiment designed to conduct an interpreting test for multiple candidates online, using web-based synchronous cyber classrooms. The test model was based on the accreditation test for Professional Interpreters produced by the National Accreditation Authority of Translators and Interpreters (NAATI) in Australia.…

  14. Control of a superconducting synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y; Pei, R; Jiang, Q; Hong, Z; Coombs, T A [Engineering Department, Cambridge University, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2007-04-15

    This paper presents a control algorithm for starting up a high temperature superconducting synchronous motor. The mathematical model of the motor has been established in m-file in Matlab and the parameters have been identified by means of the finite-element analysis method. Different starting methods for the motor have been compared and discussed, and eventually a hybrid control algorithm is proposed.

  15. Is synchronous computermediated communication a viable ...

    African Journals Online (AJOL)

    Employing a conversationanalytic perspective, the logs were analysed to determine whether the interaction reflected in them replicated that characteristic of face-to-face classroom interaction. Once the discourse study had been completed, the logs were used to determine learners' perceptions of synchronous learning.

  16. Synchronic tutoring of a virtual community

    NARCIS (Netherlands)

    Simons, P.R.J.; Ligorio, M.B.; Talamo, A.

    2002-01-01

    The role of tutors has changed over time, depending on models of learning and on the technology available. This article discusses the evolution of the tutor role and presents a new model concerning the tutoring functions in a synchronous virtual community. The definition of a virtual community

  17. Permanent synchronization of camcorders via LANC protocol

    Science.gov (United States)

    Vrancic, Damir; Smith, Steven L.

    2006-02-01

    A device, which keeps two camcorders permanently in synchronization, has been developed. The mentioned device uses LANC (CONTROL-L) camcorder's inputs for synchronization. It enables controlling of two camcorders simultaneously via built-in buttons, by using external LANC remote controller and/or by the PC via serial (RS232) communication. Since device requires LANC inputs on camcorders or ACC inputs on still cameras, it can be used on some camcorders produced by manufacturers Sony and Canon or some still cameras produced by Sony. The device initially synchronizes camcorders or still cameras by applying arbitrarily delayed power-up pulses on LANC (ACC) inputs. Then, on user demand, the camcorders can be permanently synchronized (valid only for some camcorders produced by Sony). The effectiveness of the proposed device is demonstrated by several experiments on three types of camcorders (DCR-TRV900E, HDR-HC1, HVR-Z1U) and one type of still camera (DSC-V1). The electronic schemes, PCB layouts, firmware and communication programs are freely available (under GPL licence).

  18. Asynchronous versus Synchronous Learning in Pharmacy Education

    Science.gov (United States)

    Motycka, Carol A.; St. Onge, Erin L.; Williams, Jennifer

    2013-01-01

    Objective: To better understand the technology being used today in pharmacy education through a review of the current methodologies being employed at various institutions. Also, to discuss the benefits and difficulties of asynchronous and synchronous methodologies, which are being utilized at both traditional and distance education campuses.…

  19. Symbol synchronization in convolutionally coded systems

    Science.gov (United States)

    Baumert, L. D.; Mceliece, R. J.; Van Tilborg, H. C. A.

    1979-01-01

    Alternate symbol inversion is sometimes applied to the output of convolutional encoders to guarantee sufficient richness of symbol transition for the receiver symbol synchronizer. A bound is given for the length of the transition-free symbol stream in such systems, and those convolutional codes are characterized in which arbitrarily long transition free runs occur.

  20. Traveling-wave synchronous coil gun

    International Nuclear Information System (INIS)

    Elliott, D.G.

    1991-01-01

    This paper reports on a traveling-wave synchronous coil gun which permits independent adjustment of the magnetic field and armature current for high velocity at low armature mass fraction. Magnetic field energy is transferred from the rear of the wave to the front without passing through the power supply. Elaborate switching is required

  1. Efficient Distribution of Triggered Synchronous Block Diagrams

    Science.gov (United States)

    2011-10-21

    latest input data it reads fromW ∗. IfR ∗ receives a message fromW ∗ whose fresh-bit is false, meaning that R∗ has already read the latest output data...assumptions on clock synchronization. This has the advantage of providing implementations that are robust to various types of timing uncertainties such as

  2. Supplementary material for: The adaptive synchronization of ...

    Indian Academy of Sciences (India)

    Supplementary material for: The adaptive synchronization of fractional-order Liu chaotic system with unknown parameters. ADELEH NOURIAN and SAEED BALOCHIAN. -50. -40. -30. -20. -10. 0. 10. 20. 30. 40. -25. -20. -15. -10. -5. 0. 5. 10. 15. 20. 25. Y. Z. -12. -10. -8. -6. -4. -2. 0. 2. 4. 6. 8. -25. -20. -15. -10. -5. 0. 5. 10. 15.

  3. Synchronous Computer-Mediated Communication and Interaction

    Science.gov (United States)

    Ziegler, Nicole

    2016-01-01

    The current study reports on a meta-analysis of the relative effectiveness of interaction in synchronous computer-mediated communication (SCMC) and face-to-face (FTF) contexts. The primary studies included in the analysis were journal articles and dissertations completed between 1990 and 2012 (k = 14). Results demonstrate that interaction in SCMC…

  4. Synchronization of Time-Continuous Chaotic Oscillators

    DEFF Research Database (Denmark)

    Yanchuk, S.; Maistrenko, Yuri; Mosekilde, Erik

    2003-01-01

    Considering a system of two coupled identical chaotic oscillators, the paper first establishes the conditions of transverse stability for the fully synchronized chaotic state. Periodic orbit threshold theory is applied to determine the bifurcations through which low-periodic orbits embedded...

  5. Synchronicity and the meaning-making psyche.

    Science.gov (United States)

    Colman, Warren

    2011-09-01

    This paper contrasts Jung's account of synchronicity as evidence of an objective principle of meaning in Nature with a view that emphasizes human meaning-making. All synchronicities generate indicative signs but only where this becomes a 'living symbol' of a transcendent intentionality at work in a living universe does synchronicity generate the kind of symbolic meaning that led Jung to posit the existence of a Universal Mind. This is regarded as a form of personal, experiential knowledge belonging to the 'imaginal world of meaning' characteristic of the 'primordial mind', as opposed to the 'rational world of knowledge' in which Jung attempted to present his experiences as if they were empirically and publicly verifiable. Whereas rational knowledge depends on a form of meaning in which causal chains and logical links are paramount, imaginal meaning is generated by forms of congruent correspondence-a feature that synchronicity shares with metaphor and symbol-and the creation of narratives by means of retroactive organization of its constituent elements. © 2011, The Society of Analytical Psychology.

  6. Multiswitching combination–combination synchronization of chaotic ...

    Indian Academy of Sciences (India)

    2017-02-09

    Feb 9, 2017 ... restricted to single drive–response system model. It is therefore interesting to ask whether these studies ... this scheme, a universal controller is designed to realize synchronization between a combination of two ... literature [33]. In view of the above discussions, in this paper, we present a new multiswitching ...

  7. On the structure of phase synchronized chaos

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Zhusubaliyev, Zhanybai T.; Laugesen, Jakob L.

    2013-01-01

    It is well-known that the transition to chaotic phase synchronization for a periodically driven chaotic oscillator of spiral type involves a dense set of saddle-node bifurcations. However, the way of formation and precise organization of these saddle node bifurcation curves have only recently bee...

  8. Comment on two papers of chaotic synchronization

    International Nuclear Information System (INIS)

    Li Lixiang; Peng Haipeng; Wang Xiangdong; Yang Yixian

    2004-01-01

    This Letter comments on two papers of chaotic synchronization, namely [Phys. Rev. Lett. 76 (1996) 1232] and [Phys. Lett. A 321 (2004) 50]. We find that some statements in the two papers are incorrect by numerical simulations. The consequence of the incorrectness is analyzed as well

  9. Adaptive projective synchronization between different chaotic ...

    Indian Academy of Sciences (India)

    Numerical simulation results are performed to explain the effectiveness and feasibility of ... analysis of nonlinear dynamics have gained immense popularity during the last few ... applications of projective synchronization is in secure communication [31] due to ... of uncertain chaotic systems using adaptive control method.

  10. Synchronization Phenomena in Nephron-Nephron Interaction

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N.-H.; Yip, K.-P.; Sosnovtseva, Olga

    2001-01-01

    Experimental data for tubular pressure oscillations in rat kidneys are analyzed in order to examine the different types of synchronization that can arise between neighboring functional units. For rats with normal blood pressure, the individual unit (the nephron) typically exhibits regular oscilla...

  11. Global chaos synchronization of coupled parametrically excited ...

    Indian Academy of Sciences (India)

    In order to ascertain the error dynamics, we define the synchronization error as ... The following theorem is related to the general control matrix: C = ( c11 c12 .... ates as a means of accounting for the initial transients, we display in figure 5 the.

  12. Design of multistable systems via partial synchronization

    Indian Academy of Sciences (India)

    Mohammad Ali Khan

    2017-07-05

    Jul 5, 2017 ... The basic idea of the scheme is to design partial synchronization of states between the coupled systems and ... Numerical simulation results consisting of ... systems of the same order via active control is discussed. In §3, the ...

  13. Synchronization analysis of coloured delayed networks under ...

    Indian Academy of Sciences (India)

    This paper investigates synchronization of coloured delayed networks under decentralized pinning intermittent control. To begin with, the time delays are taken into account in the coloured networks. In addition, we propose a decentralized pinning intermittent control for coloured delayed networks, which is different from that ...

  14. from synchronic variation to a grammaticalization path

    African Journals Online (AJOL)

    Kate H

    Abstract. The authors argue that the synchronic variation of cognate objects of weather verbs exhibited in six African languages of South Africa (Sepedi, Sesotho, Tshivenda, isiXhosa, Xitsonga, and. isiZulu) has a diachronic explanation, and may be represented as a grammaticalization path. This path gradually leads from ...

  15. Compatibility of Motion Facilitates Visuomotor Synchronization

    Science.gov (United States)

    Hove, Michael J.; Spivey, Michael J.; Krumhansl, Carol L.

    2010-01-01

    Prior research indicates that synchronized tapping performance is very poor with flashing visual stimuli compared with auditory stimuli. Three finger-tapping experiments compared flashing visual metronomes with visual metronomes containing a spatial component, either compatible, incompatible, or orthogonal to the tapping action. In Experiment 1,…

  16. Electrotonic vascular signal conduction and nephron synchronization

    DEFF Research Database (Denmark)

    Marsh, D.J.; Toma, I.; Sosnovtseva, Olga

    2009-01-01

    Marsh DJ, Toma I, Sosnovtseva OV, Peti-Peterdi J, Holstein-Rathlou NH. Electrotonic vascular signal conduction and nephron synchronization. Am J Physiol Renal Physiol 296: F751-F761, 2009. First published December 30, 2008; doi:10.1152/ajprenal.90669.2008.-Tubuloglomerular feedback (TGF) and the ......Marsh DJ, Toma I, Sosnovtseva OV, Peti-Peterdi J, Holstein-Rathlou NH. Electrotonic vascular signal conduction and nephron synchronization. Am J Physiol Renal Physiol 296: F751-F761, 2009. First published December 30, 2008; doi:10.1152/ajprenal.90669.2008.-Tubuloglomerular feedback (TGF......) and the myogenic mechanism control afferent arteriolar diameter in each nephron and regulate blood flow. Both mechanisms generate self-sustained oscillations, the oscillations interact, TGF modulates the frequency and amplitude of the myogenic oscillation, and the oscillations synchronize; a 5: 1 frequency ratio...... is the most frequent. TGF oscillations synchronize in nephron pairs supplied from a common cortical radial artery, as do myogenic oscillations. We propose that electrotonic vascular signal propagation from one juxtaglomerular apparatus interacts with similar signals from other nephrons to produce...

  17. Community Pharmacist Attitudes on Medication Synchronization Programs

    Directory of Open Access Journals (Sweden)

    Matthew Witry

    2017-05-01

    Full Text Available Background: Medication synchronization is a service offered by an increasing number of community pharmacies that aligns refilling of a patient’s multiple medications. Purported benefits include increased adherence and improved dispensing efficiency. Objective: To assess community pharmacist agreement with a set of declarative statements about medication synchronization programs and to identify variation related to pharmacist characteristics. Methods: In 2015, a cross-sectional survey was mailed to 1,000 pharmacists from 5 Midwestern U.S. states using 4-contacts and an online option. Respondents used a 7-point Likert scale to agree or disagree with 5 statements about medication synchronization. Demographic and workplace characteristics were collected. Data were analyzed using descriptive statistics and factor analysis. Multiple linear regression tested the relationship between pharmacist characteristics and a 4-item attitude composite. Results: There were 258 usable responses for a response rate of 28.8%. About half (45.0% reported their pharmacy offered medication synchronization. Most pharmacists (82.6% agreed this service has a positive impact on patient adherence but 57% agreed that a “significant change to workflow” was or would be required. Pharmacist agreement that the program provides financial benefits to the pharmacy was higher than agreement that the service provides more opportunities for patient interactions (p<0.001. In the multiple regression analysis, having a PharmD and working at a pharmacy offering Medication Therapy Management were associated with more positive scores on the medication synchronization benefits composite whereas working in a staff role (rather than a manager/owner was lower. No demographic predictors were significantly associated with agreeing that a significant change to workflow would be required for implementation. Conclusions: Pharmacists generally were positive about medication synchronization

  18. Synchronous adenocarcinomas of the colon presenting as synchronous colocolic intussusceptions in an adult

    Directory of Open Access Journals (Sweden)

    Chen Chuang-Wei

    2012-12-01

    Full Text Available Abstract Intussusception is uncommon in adults. To our knowledge, synchronous colocolic intussusceptions have never been reported in the literature. Here we described the case of a 59-year-old female of synchronous colocolic intussusceptions presenting as acute abdomen that was diagnosed by CT preoperatively. Laparotomy with radical right hemicolectomy and sigmoidectomy was undertaken without reduction of the invagination due to a significant risk of associated malignancy. The final diagnosis was synchronous adenocarcinoma of proximal transverse colon and sigmoid colon without lymph nodes or distant metastasis. The patient had an uneventful recovery. The case also emphasizes the importance of thorough exploration during surgery for bowel invagination since synchronous events may occur.

  19. Generalized synchronization in discrete maps. New point of view on weak and strong synchronization

    International Nuclear Information System (INIS)

    Koronovskii, Alexey A.; Moskalenko, Olga I.; Shurygina, Svetlana A.; Hramov, Alexander E.

    2013-01-01

    In the present Letter we show that the concept of the generalized synchronization regime in discrete maps needs refining in the same way as it has been done for the flow systems Koronovskii et al. [Koronovskii AA, Moskalenko OI, Hramov AE. Nearest neighbors, phase tubes, and generalized synchronization. Phys Rev E 2011;84:037201]. We have shown that, in the general case, when the relationship between state vectors of the interacting chaotic maps are considered, the prehistory must be taken into account. We extend the phase tube approach to the systems with a discrete time coupled both unidirectionally and mutually and analyze the essence of the generalized synchronization by means of this technique. Obtained results show that the division of the generalized synchronization into the weak and the strong ones also must be reconsidered. Unidirectionally coupled logistic maps and Hénon maps coupled mutually are used as sample systems.

  20. Research on synchronization technology of frequency hopping communication system

    Science.gov (United States)

    Zhao, Xiangwu; Quan, Houde; Cui, Peizhang

    2018-05-01

    Frequency Hopping (FH) communication is a technology of spread spectrum communication. It has strong anti-interference, anti-interception and security capabilities, and has been widely applied in the field of communications. Synchronization technology is one of the most crucial technologies in frequency hopping communication. The speed of synchronization establishment and the reliability of synchronous system directly affect the performance of frequency hopping communication system. Therefore, the research of synchronization technology in frequency hopping communication has important value.