WorldWideScience

Sample records for corrosive materials

  1. Corrosion of reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-01-15

    Much operational experience and many experimental results have accumulated in recent years regarding corrosion of reactor materials, particularly since the 1958 Geneva Conference on the Peaceful Uses of Atomic Energy, where these problems were also discussed. It was, felt that a survey and critical appraisal of the results obtained during this period had become necessary and, in response to this need, IAEA organized a Conference on the Corrosion of Reactor Materials at Salzburg, Austria (4-9 June 1962). It covered many of the theoretical, experimental and engineering problems relating to the corrosion phenomena which occur in nuclear reactors as well as in the adjacent circuits

  2. Corrosion resistant composite materials

    International Nuclear Information System (INIS)

    Ul'yanin, E.A.

    1986-01-01

    Foundations for corrosion-resistant composite materials design are considered with account of components compatibility. Fibrous and lamellar composites with metal matrix, dispersion-hardened steels and alloys, refractory metal carbides-, borides-, nitrides-, silicides-based composites are described. Cermet compositions and fields of their application, such as protective coatings for operation in agressive media at high temperatures, are presented

  3. Corrosion of Ceramic Materials

    Science.gov (United States)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  4. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  5. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  6. DPC materials and corrosion environments.

    Energy Technology Data Exchange (ETDEWEB)

    Ilgen, Anastasia Gennadyevna; Bryan, Charles R.; Teich-McGoldrick, Stephanie; Hardin, Ernest

    2014-10-01

    After an exposition of the materials used in DPCs and the factors controlling material corrosion in disposal environments, a survey is given of the corrosion rates, mechanisms, and products for commonly used stainless steels. Research needs are then identified for predicting stability of DPC materials in disposal environments. Stainless steel corrosion rates may be low enough to sustain DPC basket structural integrity for performance periods of as long as 10,000 years, especially in reducing conditions. Uncertainties include basket component design, disposal environment conditions, and the in-package chemical environment including any localized effects from radiolysis. Prospective disposal overpack materials exist for most disposal environments, including both corrosion allowance and corrosion resistant materials. Whereas the behavior of corrosion allowance materials is understood for a wide range of corrosion environments, demonstrating corrosion resistance could be more technically challenging and require environment-specific testing. A preliminary screening of the existing inventory of DPCs and other types of canisters is described, according to the type of closure, whether they can be readily transported, and what types of materials are used in basket construction.

  7. Corrosion of metallic materials. Dry corrosion, aqueous corrosion and corrosion by liquid metal, methods of protection

    International Nuclear Information System (INIS)

    Helie, Max

    2015-01-01

    This book is based on a course on materials given in an engineering school. The author first gives an overview of metallurgy issues: metallic materials (pure metals, metallic alloys), defects of crystal lattices (point defects, linear defects or dislocations), equilibrium diagrams, steels and cast, thermal processing of steels, stainless steels, aluminium and its alloys, copper and its alloys. The second part addresses the properties and characterization of surfaces and interfaces: singularity of a metal surface, surface energy of a metal, energy of grain boundaries, adsorption at a material surface, metal-electrolyte interface, surface oxide-electrolyte interface, techniques of surface analysis. The third chapter addresses the electrochemical aspects of corrosion: description of the corrosion phenomenon, free enthalpy of a compound and free enthalpy of a reaction, case of dry corrosion (thermodynamic aspect, Ellingham diagram, oxidation mechanisms, experimental study, macroscopic modelling), case of aqueous corrosion (electrochemical thermodynamics and kinetics, experimental determination of corrosion rate). The fourth part addresses the different forms of aqueous corrosion: generalized corrosion (atmospheric corrosion, mechanisms and tests), localized corrosion (galvanic, pitting, cracking, intergranular, erosion and cavitation), particular cases of stress cracking (stress corrosion, fatigue-corrosion, embrittlement by hydrogen), and bi-corrosion (of non alloyed steels, of stainless steels, and of aluminium and copper alloys). The sixth chapter addresses the struggle and the protection against aqueous corrosion: methods of prevention, scope of use of main alloys, geometry-based protection of pieces, use of corrosion inhibitors, use of organic or metallic coatings, electrochemical protection. The last chapter proposes an overview of corrosion types in industrial practices: in the automotive industry, in the oil industry, in the aircraft industry, and in the

  8. Corrosion and chemical resistant masonry materials handbook

    National Research Council Canada - National Science Library

    Sheppard, Walter Lee

    1986-01-01

    ... and other equipment. But few other than chemists and chemical engineers identify "corrosion" as chemical degradation or destruction of a material, and therefore, something that can happen to nonmetals (concrete, plastics, brick, timber, etc.) as well as to nletals. The National Association of Corrosion Engineers so defined "corrosion" over thirty years ago but this f...

  9. Corrosion of fuel assembly materials

    International Nuclear Information System (INIS)

    Noe, M.; Frejaville, G.; Beslu, P.

    1985-08-01

    Corrosion of zircaloy-4 is reviewed in relation with previsions of improvement in PWRs performance: higher fuel burnup; increase coolant temperature, implying nucleate boiling on the hot clad surfaces; increase duration of the cycle due to load-follow operation. Actual knowledge on corrosion rates, based partly on laboratory tests, is insufficient to insure that external clad corrosion will not constitute a limitation to these improvements. Therefore, additional testing within representative conditions is felt necessary [fr

  10. Materials corrosion and protection at high temperatures

    International Nuclear Information System (INIS)

    Balbaud, F.; Desgranges, Clara; Martinelli, Laure; Rouillard, Fabien; Duhamel, Cecile; Marchetti, Loic; Perrin, Stephane; Molins, Regine; Chevalier, S.; Heintz, O.; David, N.; Fiorani, J.M.; Vilasi, M.; Wouters, Y.; Galerie, A.; Mangelinck, D.; Viguier, B.; Monceau, D.; Soustelle, M.; Pijolat, M.; Favergeon, J.; Brancherie, D.; Moulin, G.; Dawi, K.; Wolski, K.; Barnier, V.; Rebillat, F.; Lavigne, O.; Brossard, J.M.; Ropital, F.; Mougin, J.

    2011-01-01

    This book was made from the lectures given in 2010 at the thematic school on 'materials corrosion and protection at high temperatures'. It gathers the contributions from scientists and engineers coming from various communities and presents a state-of-the-art of the scientific and technological developments concerning the behaviour of materials at high temperature, in aggressive environments and in various domains (aerospace, nuclear, energy valorization, and chemical industries). It supplies pedagogical tools to grasp high temperature corrosion thanks to the understanding of oxidation mechanisms. It proposes some protection solutions for materials and structures. Content: 1 - corrosion costs; macro-economical and metallurgical approach; 2 - basic concepts of thermo-chemistry; 3 - introduction to the Calphad (calculation of phase diagrams) method; 4 - use of the thermodynamic tool: application to pack-cementation; 5 - elements of crystallography and of real solids description; 6 - diffusion in solids; 7 - notions of mechanics inside crystals; 8 - high temperature corrosion: phenomena, models, simulations; 9 - pseudo-stationary regime in heterogeneous kinetics; 10 - nucleation, growth and kinetic models; 11 - test experiments in heterogeneous kinetics; 12 - mechanical aspects of metal/oxide systems; 13 - coupling phenomena in high temperature oxidation; 14 - other corrosion types; 15 - methods of oxidized surfaces analysis at micro- and nano-scales; 16 - use of SIMS in the study of high temperature corrosion of metals and alloys; 17 - oxidation of ceramics and of ceramic matrix composite materials; 18 - protective coatings against corrosion and oxidation; 19 - high temperature corrosion in the 4. generation of nuclear reactor systems; 20 - heat exchangers corrosion in municipal waste energy valorization facilities; 21 - high temperature corrosion in oil refining and petrochemistry; 22 - high temperature corrosion in new energies industry. (J.S.)

  11. Corrosion Characteristics of the SMART Materials

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jong Hyuk; Jeong, Y. H.; Choi, B. K.; Soh, J. R.; Lee, D. J.; Choi, B. S

    2000-05-01

    This report summarized the corrosion characteristics of the candidate steam generator tubes (PT-7M, ASTM Gr.2, Inconel-600), which are considering as the core materials in SMART. Also, this evaluated the waterchemstry conditions of commercial power plant including the PWR, BWR, WWER, PHWR, RBMK plants in comparison with that of SMART. And this report described that the microstructures of as-received PT-7M, ASTM Gr.2, and Inconel-600 as the candidate materials of fuel cladding and steam generator tubes and characterized the corrosion properties of the materials, which were tested systematically in the conditions of standard, ammonia solution and ammonia nodular to evaluate the corrosion resistance.

  12. Corrosion Characteristics of the SMART Materials

    International Nuclear Information System (INIS)

    Baek, Jong Hyuk; Jeong, Y. H.; Choi, B. K.; Soh, J. R.; Lee, D. J.; Choi, B. S.

    2000-05-01

    This report summarized the corrosion characteristics of the candidate steam generator tubes (PT-7M, ASTM Gr.2, Inconel-600), which are considering as the core materials in SMART. Also, this evaluated the waterchemstry conditions of commercial power plant including the PWR, BWR, WWER, PHWR, RBMK plants in comparison with that of SMART. And this report described that the microstructures of as-received PT-7M, ASTM Gr.2, and Inconel-600 as the candidate materials of fuel cladding and steam generator tubes and characterized the corrosion properties of the materials, which were tested systematically in the conditions of standard, ammonia solution and ammonia nodular to evaluate the corrosion resistance

  13. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  14. Aqueous Corrosion Rates for Waste Package Materials

    Energy Technology Data Exchange (ETDEWEB)

    S. Arthur

    2004-10-08

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  15. Aqueous Corrosion Rates for Waste Package Materials

    International Nuclear Information System (INIS)

    Arthur, S.

    2004-01-01

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports

  16. Stress Corrosion of Ceramic Materials.

    Science.gov (United States)

    1986-08-01

    rupture directly, or are hydrolyzed by the water in the environment. This type of reaction is known to be important to the corrosion of glass in basic...covered .ith silanol groups so that the surface is virtually uncharged. As the pH is increased, the surface gradually hydrolyzes forming silanolate...is plotted assuming a decay distance of 0.3 nm. The data on lecithin is obtained by a non-fracture technique in which the layer spacing is determined

  17. Corrosion evaluation of service water system materials

    International Nuclear Information System (INIS)

    Stein, A.A.; Felder, C.M.; Martin, R.L.

    1994-01-01

    The availability and reliability of the service water system is critical for safe operation of a nuclear power plant. Degradation of the system piping and components has forced utilities to re-evaluate the corrosion behavior of current and alternative system materials, to support assessments of the remaining service life of the service water system, selection of replacement materials, implementation of corrosion protection methods and corrosion monitoring programs, and identification of maintenance and operational constraints consistent with the materials used. TU Electric and Stone and Webster developed a service water materials evaluation program for the Comanche Peak Steam Electric Station. Because of the length of exposure and the generic interest in this program by the nuclear power industry, EPRI joined TU to co-sponsor the test program. The program was designed to evaluate the corrosion behavior of current system materials and candidate replacement materials and to determine the operational and design changes which could improve the corrosion performance of the system. Although the test program was designed to be representative of service water system materials and environments targeted to conditions at Comanche Peak, these conditions are typical of and relevant to other fresh water cooled nuclear service water systems. Testing was performed in raw water and water treated with biocide under typical service water operating conditions including continuous flow, intermittent flow, and stagnant conditions. The test program evaluated the 300 Series and 6% molybdenum stainless steels, copper-nickel, titanium, carbon steel, and a formed-in-place nonmetallic pipe lining to determine susceptibility to general, crevice, and microbiologically influenced corrosion and pitting attack. This report presents the results of the test program after 4 years of exposure

  18. In hydrofluoric acid corrosion-resistant materials

    International Nuclear Information System (INIS)

    Hauffe, K.

    1985-01-01

    Copper, red brass (Cu-15 Zn), special treated carbon steel and chromium-nickel-molybdenum steel represent materials of high resistivity against concentrated hydrofluoric acid ( 2 O 3 ) are employed for windows in the presence of hydrogen fluoride and/or hydrofluoric acid because of their superior optical properties and their excellent corrosion resistance. Polyethylen, polypropylene and polyvinyl chloride (PVC) belong to the cheapest corrosion resistant material for container and for coatings in the presence of hydrofluoric acid. Special polyester resins reinforced by glass or graphite fibers have been successfully employed as material for production units with hydrofluoric acid containing liquids up to 330 K. By carbon reinforced epoxy resin represents a corrosion resistant coating. Because of their excellent friction and corrosion resistance against concentrated hot hydrofluoric acid and HNO 3 -HF-solutions, PTFE and polyvinylidene fluoride are used as material for valves and axles in such environment. The expensive alloys, as for instance hastelloy and monel, are substituted more and more by fiber-reinfored polyolefins, PVC and fluorine containing polymers. (orig.) [de

  19. Corrosion of barrier materials in seawater environments

    International Nuclear Information System (INIS)

    Heiser, J.H.; Soo, P.

    1995-07-01

    A brief review has been carried out on the performance of barrier materials for low-level radioactive wastes in seawater environments. The environments include those for shallower coastal waters as well as the deep ocean (down to 3800 m). The review is mainly focused on metallic materials since they are the most common for seawater service and they have the largest data base. Information from the literature is usually pertinent to shallower coastal locations, but there is a valuable source of corrosion data obtained from several studies of metallic specimens exposed to ocean-bed conditions. In addition, the corrosion of carbon steel barriers has been evaluated for actual waste containers that were retrieved from previously-used disposal sites in the Atlantic and Pacific Oceans. Of the metallic materials studied, carbon steel showed the least corrosion resistance. Failure by non-uniform attack in a typical waste container could occur in as little as 25 y in some ocean environments ' Penetration by local attack, such as pitting and crevice corrosion resistance was also observed for more expensive materials such as low-alloy steels, stainless steels, titanium alloys, zirconium alloys, copper alloys, nickel alloys, aluminum alloys, and lead alloys

  20. Plant corrosion: prediction of materials performance

    International Nuclear Information System (INIS)

    Strutt, J.E.; Nicholls, J.R.

    1987-01-01

    Seventeen papers have been compiled forming a book on computer-based approaches to corrosion prediction in a wide range of industrial sectors, including the chemical, petrochemical and power generation industries. Two papers have been selected and indexed separately. The first describes a system operating within BNFL's Reprocessing Division to predict materials performance in corrosive conditions to aid future plant design. The second describes the truncation of the distribution function of pit depths during high temperature oxidation of a 20Cr austenitic steel in the fuel cladding in AGR systems. (U.K.)

  1. Corrosion of metal materials embedded in concrete

    International Nuclear Information System (INIS)

    Duffo, G.S.; Farina, S.B.; Schulz, F.M.

    2010-01-01

    Carbon steel is the material most frequently used to strengthen reinforced concrete structures; however, stainless steel and galvanized steel reinforcements are also used in construction concretes; and they are not often used in Latin America. Meanwhile, there are other metals that are embedded in the concrete forming part of the openings (aluminum) or in tubing systems (copper and lead). The use of concrete as a cementing material is also useful for immobilizing wastes, such as for example those generated by the nuclear industry. There is a great deal of research and development on the corrosion of steel reinforcements, but the same is not true for the behavior of other metals embedded in concrete and that also undergo corrosive processes. This work aims to study the corrosion of different metals: copper, lead, aluminum, zinc, stainless steel and carbon steel; embedded in concrete with and without the presence of aggressive species for the metal materials. Test pieces were made of mortar containing rods of different materials for testing, and with chlorides added in concentrations of 0; 0.3 % and 1% (mass of chloride per mass of cement). The test pieces were exposed to different conditions; laboratory environment with a relative humidity (RH) of 45%, a controlled atmosphere with 98% RH and submerged in a solution of 3.5% NaCl. The susceptibility to corrosion of the different metals was evaluated using techniques to monitor the corrosion potential, the resistivity of the mortar and the polarization resistance (PR). The rods were weighed before being placed inside the test pieces to later determine the loss of weight generated by the corrosion process. Polarization curves for the metals were also traced in a simulated pore solution (SPS) and in SPS with added chloride. The results obtained to date show that, of all the metals analyzed, aluminum is the most susceptible to corrosion, and that the test specimens with 0% and 1% of chloride exposed to the laboratory

  2. Corrosive wear. Evaluation of wear and corrosive resistant materials; Noetningskorrosion. Utvaerdering av noetnings- och korrosionsbestaendiga material

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H.; Hjertsen, D.; Waara, P.; Prakash, B.; Hardell, J.

    2007-12-15

    With a new purchase of a waste conveyer screw at hand, for the 'A-warehouse' at the combined power and heating plant at E.ON Norrkoeping, the request for improved construction materials was raised. The previous screw required maintenance with very short intervals due to the difficult operation conditions. With the new screw the expectation is to manage 6 months of operation without interruption. The environment for the screw has two main components that sets the demand on the materials, on one hand the corrosive products that comes along and which forms at digestion of the waste and on the other hand the abrasive content in the waste. The term of the mechanism is wear-corrosion and can give considerably higher material loss than the two mechanisms wear and corrosion separately. Combination of a strong corrosive environment together with extensive wear is something that we today have limited knowledge about. The overall objective of the project has been to establish better wear and corrosive resistant construction materials for a waste conveyer screw that will lead to reduced operational disturbance costs. The evaluation has been performed in both controlled laboratory environments and in field tests, which has given us a better understanding of what materials are more suitable in this tough environment and has given us a tool for future predictions of the wear rate of the different material. The new conveyer screw, installed in February 2007 and with which the field test have been performed, has considerably reduced the wear of the construction and the target of 6 month maintenance-free operation is met with this screw for all the evaluated materials. The wear along the screw varies very much and with a clear trend for all the materials to increase towards the feeding direction of the screw. As an example, the wear plate SS2377 (stainless duplex steel) has a useful life at the most affected areas that is calculated to be 1077 days of operation with the

  3. Corrosion and alteration of materials from the nuclear industry

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Feron, D.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Santarini, G.; Seiler, J.M.; Vernaz, E.; Richet, C.

    2010-01-01

    The control of the corrosion phenomenon is of prime importance for the nuclear industry. The efficiency and the safety of facilities can be affected by this phenomenon. The nuclear industry has to face corrosion for a large variety of materials submitted to various environments. Metallic corrosion operates in the hot and aqueous environment of water reactors which represent the most common reactor type in the world. Progresses made in the control of the corrosion of the different components of these reactors allow to improve their safety. Corrosion is present in the facilities of the back-end of the fuel cycle as well (corrosion in acid environment in fuel reprocessing plants, corrosion of waste containers in disposal and storage facilities, etc). The future nuclear systems will widen even more the range of materials to be studied and the situations in which they will be placed (corrosion by liquid metals or by helium impurities). Very often, corrosion looks like a patchwork of particular cases in its description. The encountered corrosion problems and their study are presented in this book according to chapters representing the main sectors of the nuclear industry and classified with respect to their phenomenology. This monograph illustrates the researches in progress and presents some results of particular importance obtained recently. Content: 1 - Introduction: context, stakes and goals; definition of corrosion; a complex science; corrosion in the nuclear industry; 2 - corrosion in water reactors - phenomenology, mechanisms, remedies: A - uniform corrosion: mechanisms, uniform corrosion of fuel cladding, in-situ measurement of generalized corrosion rate by electrochemical methods, uniform corrosion of nickel alloys, characterization of the passive layer and growth mechanisms, the PACTOLE code - an integrating tool, influence of water chemistry on corrosion and contamination, radiolysis impact on uniform corrosion; B - stress corrosion: stress corrosion cracking

  4. Prevention of nuclear fuel cladding materials corrosion

    International Nuclear Information System (INIS)

    Yang, K.R.; Yang, J.C.; Lee, I.C.; Kang, H.D.; Cho, S.W.; Whang, C.K.

    1983-01-01

    The only way which could be performed by the operator of nuclear power plant to minimizing the degradation of nuclear fuel cladding material is to control the water quality of primary coolant as specified standard conditions which dose not attack the cladding material. If the water quality of reactor coolant does not meet far from the specification, the failure will occure not only cladding material itself but construction material of primary system which contact with the coolant. The corrosion product of system material are circulate through the whole primary system with the coolant and activated by the neutron near the reactor core. The activated corrosion products and fission products which released from fuel rod to the coolant, so called crud, will repeate deposition and redeposition continuously on the fuel rod and construction material surface. As a result we should consider heat transfer problem. In this study following activities were performed; 1. The crud sample was taken from the spent fuel rod surface of Kori unit one and analized for radioactive element and non radioactive chemical species. 2. The failure mode of nuclear fuel cladding material was estimated by the investigation of releasing type of fission products from the fuel rod to the reactor coolant using the iodine isotopes concentration of reactor coolants. 3. A study was carried out on the sipping test results of spent fuel and a discussion was made on the water quality control records through the past three cycle operation period of Kori unit one plant. (Author)

  5. Erosion and corrosion of nuclear power plant materials

    International Nuclear Information System (INIS)

    1994-01-01

    This conference is composed of 23 papers, grouped in 3 sessions which main themes are: analysis of corrosion and erosion damages of nuclear power plant equipment and influence of water chemistry, temperature, irradiations, metallurgical and electrochemical factors, flow assisted cracking, stress cracking; monitoring and control of erosion and corrosion in nuclear power plants; susceptibility of structural materials to erosion and corrosion and ways to improve the resistance of materials, steels, coatings, etc. to erosion, corrosion and cracking

  6. Corrosion resistance of copper canister weld material

    International Nuclear Information System (INIS)

    Gubner, Rolf; Andersson, Urban

    2007-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast iron insert fitted inside a copper canister. SKB has since several years developed manufacturing processes for the canister components using a network of manufacturers. For the encapsulation process SKB has built the Canister Laboratory to demonstrate and develop the encapsulation technique in full scale. The critical part of the encapsulation of spent fuel is the sealing of the canister which is done by welding the copper lid to the cylindrical part of the canister. Two welding techniques have been developed in parallel, Electron Beam Welding (EBW) and Friction Stir Welding (FSW). During the past two decades, SKB has developed the technology EBW at The Welding Institute (TWI) in Cambridge, UK. The development work at the Canister Laboratory began in 1999. In electron beam welding, a gun is used to generate the electron beam which is aimed at the joint. The beam heats up the material to the melting point allowing a fusion weld to be formed. The gun was developed by TWI and has a unique design for use at reduced pressure. The system has gone through a number of improvements under the last couple of years including implementation of a beam oscillation system. However, during fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities at the new grain boundaries that might pose adverse effects on the corrosion resistance of welds. As a new method for joining, SKB has been developing friction stir welding (FSW) for sealing copper canisters for spent nuclear fuel in cooperation with TWI since 1997. FSW was invented in 1991 at TWI and is a thermo

  7. Corrosion resistance of copper canister weld material

    Energy Technology Data Exchange (ETDEWEB)

    Gubner, Rolf; Andersson, Urban [Corrosion and Metals Research Institute, Sto ckholm (Sweden)

    2007-03-15

    The proposed design for a final repository for spent fuel and other long-lived residues is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast iron insert fitted inside a copper canister. SKB has since several years developed manufacturing processes for the canister components using a network of manufacturers. For the encapsulation process SKB has built the Canister Laboratory to demonstrate and develop the encapsulation technique in full scale. The critical part of the encapsulation of spent fuel is the sealing of the canister which is done by welding the copper lid to the cylindrical part of the canister. Two welding techniques have been developed in parallel, Electron Beam Welding (EBW) and Friction Stir Welding (FSW). During the past two decades, SKB has developed the technology EBW at The Welding Institute (TWI) in Cambridge, UK. The development work at the Canister Laboratory began in 1999. In electron beam welding, a gun is used to generate the electron beam which is aimed at the joint. The beam heats up the material to the melting point allowing a fusion weld to be formed. The gun was developed by TWI and has a unique design for use at reduced pressure. The system has gone through a number of improvements under the last couple of years including implementation of a beam oscillation system. However, during fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities at the new grain boundaries that might pose adverse effects on the corrosion resistance of welds. As a new method for joining, SKB has been developing friction stir welding (FSW) for sealing copper canisters for spent nuclear fuel in cooperation with TWI since 1997. FSW was invented in 1991 at TWI and is a thermo

  8. Materials characterization center workshop on corrosion of engineered barriers

    Energy Technology Data Exchange (ETDEWEB)

    Merz, M.D.; Zima, G.E.; Jones, R.H.; Westerman, R.E.

    1981-03-01

    A workshop on corrosion test procedures for materials to be used as barriers in nuclear waste repositories was conducted August 19 and 20, 1980, at the Battelle Seattle Research Center. The purpose of the meeting was to obtain guidance for the Materials Characterization Center in preparing test procedures to be approved by the Materials Review Board. The workshop identified test procedures that address failure modes of uniform corrosion, pitting and crevice corrosion, stress corrosion, and hydrogen effects that can cause delayed failures. The principal areas that will require further consideration beyond current engineering practices involve the analyses of pitting, crevice corrosion, and stress corrosion, especially with respect to quantitative predictions of the lifetime of barriers. Special techniques involving accelerated corrosion testing for uniform attack will require development.

  9. Materials characterization center workshop on corrosion of engineered barriers

    International Nuclear Information System (INIS)

    Merz, M.D.; Zima, G.E.; Jones, R.H.; Westerman, R.E.

    1981-03-01

    A workshop on corrosion test procedures for materials to be used as barriers in nuclear waste repositories was conducted August 19 and 20, 1980, at the Battelle Seattle Research Center. The purpose of the meeting was to obtain guidance for the Materials Characterization Center in preparing test procedures to be approved by the Materials Review Board. The workshop identified test procedures that address failure modes of uniform corrosion, pitting and crevice corrosion, stress corrosion, and hydrogen effects that can cause delayed failures. The principal areas that will require further consideration beyond current engineering practices involve the analyses of pitting, crevice corrosion, and stress corrosion, especially with respect to quantitative predictions of the lifetime of barriers. Special techniques involving accelerated corrosion testing for uniform attack will require development

  10. Effect of Flow Velocity on Corrosion Rate and Corrosion Protection Current of Marine Material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong Jong [Kunsan National University, Kunsan (Korea, Republic of); Han, Min Su; Jang, Seok Ki; Kim, Seong Jong [Mokpo National Maritime University, Mokpo (Korea, Republic of)

    2015-10-15

    In spite of highly advanced paint coating techniques, corrosion damage of marine metal and alloys increase more and more due to inherent micro-cracks and porosities in coatings formed during the coating process. Furthermore, flowing seawater conditions promote the breakdown of the protective oxide of the materials introducing more oxygen into marine environments, leading to the acceleration of corrosion. Various corrosion protection methods are available to prevent steel from marine corrosion. Cathodic protection is one of the useful corrosion protection methods by which the potential of the corroded metal is intentionally lowered to an immune state having the advantage of providing additional protection barriers to steel exposed to aqueous corrosion or soil corrosion, in addition to the coating. In the present investigation, the effect of flow velocity was examined for the determination of the optimum corrosion protection current density in cathodic protection as well as the corrosion rate of the steel. It is demonstrated from the result that the material corrosion under dynamic flowing conditions seems more prone to corrosion than under static conditions.

  11. Coal Ash Corrosion Resistant Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  12. Electrochemical Corrosion Testing of Neutron Absorber Materials

    International Nuclear Information System (INIS)

    Tedd Lister; Ron Mizia; Sandra Birk; Brent Matteson; Hongbo Tian

    2006-01-01

    The Yucca Mountain Project (YMP) has been directed by DOE-RW to develop a new repository waste package design based on the transport, aging, and disposal canister (TAD) system concept. A neutron poison material for fabrication of the internal spent nuclear fuel (SNF) baskets for these canisters needs to be identified. A material that has been used for criticality control in wet and dry storage of spent nuclear fuel is borated stainless steel. These stainless products are available as an ingot metallurgy plate product with a molybdenum addition and a powder metallurgy product that meets the requirements of ASTM A887, Grade A. A new Ni-Cr-Mo-Gd alloy has been developed by the Idaho National Laboratory (INL) with its research partners (Sandia National Laboratory and Lehigh University) with DOE-EM funding provided by the National Spent Nuclear Fuel Program (NSNFP). This neutron absorbing alloy will be used to fabricate the SNF baskets in the DOE standardized canister. The INL has designed the DOE Standardized Spent Nuclear Fuel Canister for the handling, interim storage, transportation, and disposal in the national repository of DOE owned spent nuclear fuel (SNF). A corrosion testing program is required to compare these materials in environmental conditions representative of a breached waste canister. This report will summarize the results of crevice corrosion tests for three alloys in solutions representative of ionic compositions inside the waste package should a breech occur. The three alloys in these tests are Neutronit A978 (ingot metallurgy, hot rolled), Neutrosorb 304B4 Grade A (powder metallurgy, hot rolled), and Ni-Cr-Mo-Gd alloy (ingot metallurgy, hot rolled)

  13. Corrosion of materials for heat exchangers and the countermeasures

    International Nuclear Information System (INIS)

    Kawamoto, Teruaki

    1978-01-01

    When the materials for heat exchangers are selected, the heat transfer performance, mechanical strength, workability, cost, corrosion resistance and so on are taken in consideration. Most of the failure of heat exchangers is due to corrosion, and the corrosion failure on cooling water side occurs frequently, to which attention is not paid much usually. The rate of occurrence of corrosion failure is overwhelmingly high in heating tubes, and the failure owing to cooling water exceeds that owing to process fluid. The material of heating tubes is mostly aluminum brass, and local failure such as pitting corrosion or stress corrosion cracking holds a majority. The cause of corrosion failure due to cooling water is mostly the poor water quality. The mechanism of corrosion of metals can be explained by the electrochemical reaction between the metals and solutions. As for the factors affecting corrosion, dissolved oxygen, pH, Cl - ions, temperature, flow velocity, and foreign matters are enumerated. Copper alloys are sensitive to the effect of polluted sea water. Erosion corrosion is caused by eddies and bubbles owing to high flow velocity, and impingement attack is caused by scratching foreign matters. The quality of fresh water affects corrosion more than sea water in case of copper alloys. The preliminary examination of water quality is essential. (Kako, I.)

  14. Removal of corrosion products of construction materials in heat carrier

    International Nuclear Information System (INIS)

    1975-01-01

    A review of reported data has been made on the removal of structural material corrosion products into the heat-carrying agent of power reactors. The corrosion rate, and at the same time, removal of corrosion products into the heat-carrying agent (water) decreases with time. Thus, for example, the corrosion rate of carbon steel in boiling water at 250 deg C and O 2 concentration of 0.1 mg/1 after 3000 hr is 0.083 g/m 2 . day; after 9000 hr the corrosion rate has been reduced 2.5 times. Under static conditions the transfer rate of corrosion products into water has been smaller than in the stream and also depends on time. The corrosion rate of carbon steel under nuclear plant operating conditions is almost an order higher over that of steel Kh18N10T

  15. Metallic materials corrosion problems in molten salt reactors

    International Nuclear Information System (INIS)

    Chauvin, G.; Dixmier, J.; Jarny, P.

    1977-01-01

    The USA forecastings concerning the molten salt reactors are reviewed (mixtures of fluorides containing the fuel, operating between 560 and 700 0 C). Corrosion problems are important in these reactors. The effects of certain characteristic factors on corrosion are analyzed: humidity and metallic impurities in the salts, temperature gradients, speed of circulation of salts, tellurium from fission products, coupling. In the molten fluorides and experimental conditions, the materials with high Ni content are particularly corrosion resistant alloys (hastelloy N). The corrosion of this material is about 2.6 mg.cm -2 at 700 0 C [fr

  16. Corrosion aspects of steel radioactive waste containers in cementitious materials

    International Nuclear Information System (INIS)

    Smart, Nick

    2012-01-01

    Nick Smart from Serco, UK, gave an overview of the effects of cementitious materials on the corrosion of steel during storage and disposal of various low- and intermediate-level radioactive wastes. Steel containers are often used as an overpack for the containment of radioactive wastes and are routinely stored in an open atmosphere. Since this is an aerobic and typically humid environment, the steel containers can start to corrode whilst in storage. Steel containers often come into contact with cementitious materials (e.g. grout encapsulants, backfill). An extensive account of different steel container designs and of steel corrosion mechanisms was provided. Steel corrosion rates under conditions buffered by cementitious materials have been evaluated experimentally. The main conclusion was that the cementitious environment generally facilitates the passivation of steel materials. Several general and localised corrosion mechanisms need to be considered when evaluating the performance of steel containers in cementitious environments, and environmental thresholds can be defined and used with this aim. In addition, the consequences of the generation of gaseous hydrogen by the corrosion of carbon steel under anoxic conditions must be taken into account. Discussion of the paper included: Is crevice corrosion really significant in cementitious systems? Crevice corrosion is unlikely in the cementitious backfill considered because it will tend to neutralise any acidic conditions in the crevice. What is the role of microbially-induced corrosion (MIC) in cementitious systems? Microbes are likely to be present in a disposal facility but their effect on corrosion is uncertain

  17. Corrosion resistance of high-performance materials titanium, tantalum, zirconium

    CERN Document Server

    2012-01-01

    Corrosion resistance is the property of a material to resist corrosion attack in a particular aggressive environment. Although titanium, tantalum and zirconium are not noble metals, they are the best choice whenever high corrosion resistance is required. The exceptionally good corrosion resistance of these high–performance metals and their alloys results from the formation of a very stable, dense, highly adherent, and self–healing protective oxide film on the metal surface. This naturally occurring oxide layer prevents chemical attack of the underlying metal surface. This behavior also means, however, that high corrosion resistance can be expected only under neutral or oxidizing conditions. Under reducing conditions, a lower resistance must be reckoned with. Only very few inorganic and organic substances are able to attack titanium, tantalum or zirconium at ambient temperature. As the extraordinary corrosion resistance is coupled with an excellent formability and weldability these materials are very valua...

  18. Irradiation-Accelerated Corrosion of Reactor Core Materials. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zhujie [Univ. of Michigan, Ann Arbor, MI (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Bartels, David [Univ. of Notre Dame, IN (United States)

    2015-04-02

    This project aims to understand how radiation accelerates corrosion of reactor core materials. The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, as well as the success of most all GenIV concepts. Of these four drivers, the combination of radiation and corrosion places the most severe demands on materials, for which an understanding of the fundamental science is simply absent. Only a few experiments have been conducted to understand how corrosion occurs under irradiation, yet the limited data indicates that the effect is large; irradiation causes order of magnitude increases in corrosion rates. Without a firm understanding of the mechanisms by which radiation and corrosion interact in film formation, growth, breakdown and repair, the extension of the current LWR fleet beyond 60 years and the success of advanced nuclear energy systems are questionable. The proposed work will address the process of irradiation-accelerated corrosion that is important to all current and advanced reactor designs, but remains very poorly understood. An improved understanding of the role of irradiation in the corrosion process will provide the community with the tools to develop predictive models for in-reactor corrosion, and to address specific, important forms of corrosion such as irradiation assisted stress corrosion cracking.

  19. A study of microbial population dynamics associated with corrosion rates influenced by corrosion control materials

    NARCIS (Netherlands)

    Chang, Yu Jie; Hung, Chun Hsiung; Lee, Jyh Wei; Chang, Yi Tang; Lin, Fen Yu; Chuang, Chun Jie

    2015-01-01

    This research aims to analyze the variations of microbial community structure under anaerobic corrosive conditions, using molecular fingerprinting method. The effect of adding various materials to the environment on the corrosion mechanism has been discussed. In the initial experiment,

  20. HIGH TEMPERATURE CORROSION RESISTANCE OF METALLIC MATERIALS IN HARSH CONDITIONS

    OpenAIRE

    Novello, Frederic; Dedry, Olivier; De Noose, Vincent; Lecomte-Beckers, Jacqueline

    2014-01-01

    Highly efficient energy recovery from renewable sources and from waste incineration causes new problems of corrosion at high temperature. A similar situation exists for new recycling processes and new energy storage units. These corrosions are generally considered to be caused by ashes or molten salts, the composition of which differs considerably from one plant to another. Therefore, for the assessment of corrosion-resistance of advanced materials, it is essential to precisely evaluate the c...

  1. Corrosion behavior of construction materials for intermediate temperature steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Jensen, Jens Oluf

    2013-01-01

    Different corrosion resistant stainless steels, nickel-based alloys, pure nickel, Ta-coated stainless steel (AISI 316L), niobium, platinum and gold rods were evaluated as possible materials for use in the intermediate temperature (200-400 °C) acidic water electrolysers. The corrosion resistance w...

  2. An overview of materials degradation by stress corrosion in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P. M. [Framatome ANP, Tour Areva, 92084 Paris La Defense Cedex (France)

    2004-07-01

    The aging of water cooled and moderated nuclear steam supply systems has given rise to many material corrosion problems of which stress corrosion cracking has proved to be one of the most serious. The aim of this paper is to review some examples of corrosion and particularly stress corrosion problems from the author's experience of interpreting and modelling these phenomena in PWR systems. Examples of stress corrosion cracking in PWR systems described include the major issue of Alloy 600 intergranular cracking in primary PWR coolants, for which it is generally perceived that both adequate life prediction models and remedial measures now exist. Intergranular corrosion and stress corrosion cracking of Alloy 600 steam generator tubes that occur in occluded superheated crevices on the secondary side of steam generators due to hide-out and concentration of water borne impurities are also addressed. Rather less extensive or well known examples are discussed such as the stress corrosion cracking of carbon and low alloy steels and of stainless steels in occluded dead-leg situations where it is sometimes difficult to guarantee adequate control of water chemistry, particularly at plant start-up. Reference is also be made to the use of high strength fastener materials in PWR systems as well as to the emerging issue of the effect of high neutron doses on the stress corrosion resistance of core structural components fabricated from austenitic stainless steels. (authors)

  3. An overview of materials degradation by stress corrosion in PWRs

    International Nuclear Information System (INIS)

    Scott, P. M.

    2004-01-01

    The aging of water cooled and moderated nuclear steam supply systems has given rise to many material corrosion problems of which stress corrosion cracking has proved to be one of the most serious. The aim of this paper is to review some examples of corrosion and particularly stress corrosion problems from the author's experience of interpreting and modelling these phenomena in PWR systems. Examples of stress corrosion cracking in PWR systems described include the major issue of Alloy 600 intergranular cracking in primary PWR coolants, for which it is generally perceived that both adequate life prediction models and remedial measures now exist. Intergranular corrosion and stress corrosion cracking of Alloy 600 steam generator tubes that occur in occluded superheated crevices on the secondary side of steam generators due to hide-out and concentration of water borne impurities are also addressed. Rather less extensive or well known examples are discussed such as the stress corrosion cracking of carbon and low alloy steels and of stainless steels in occluded dead-leg situations where it is sometimes difficult to guarantee adequate control of water chemistry, particularly at plant start-up. Reference is also be made to the use of high strength fastener materials in PWR systems as well as to the emerging issue of the effect of high neutron doses on the stress corrosion resistance of core structural components fabricated from austenitic stainless steels. (authors)

  4. CORROSION ISSUES ASSOCIATED WITH AUSTENITIC STAINLESS STEEL COMPONENTS USED IN NUCLEAR MATERIALS EXTRACTION AND SEPARATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Louthan, M.; Sindelar, R.

    2012-12-17

    This paper illustrated the magnitude of the systems, structures and components used at the Savannah River Site for nuclear materials extraction and separation processes. Corrosion issues, including stress corrosion cracking, pitting, crevice corrosion and other corrosion induced degradation processes are discussed and corrosion mitigation strategies such as a chloride exclusion program and corrosion release testing are also discussed.

  5. Humid-air and aqueous corrosion models for corrosion-allowance barrier material

    International Nuclear Information System (INIS)

    Lee, J.H.; Atkins, J.E.; Andrews, R.W.

    1995-01-01

    Humid-air and aqueous general and pitting corrosion models (including their uncertainties) for the carbon steel outer containment barrier were developed using the corrosion data from literature for a suite of cast irons and carbon steels which have similar corrosion behaviors to the outer barrier material. The corrosion data include the potential effects of various chemical species present in the testing environments. The atmospheric corrosion data also embed any effects of cyclic wetting and drying and salts that may form on the corroding specimen surface. The humid-air and aqueous general corrosion models are consistent in that the predicted humid-air general corrosion rates at relative humidities between 85 and 100% RH are close to the predicted aqueous general corrosion rates. Using the expected values of the model parameters, the model predicts that aqueous pitting corrosion is the most likely failure mode for the carbon steel outer barrier, and an earliest failure (or initial pit penetration) of the 100-mm thick barrier may occur as early as about 500 years if it is exposed continuously to an aqueous condition at between 60 and 70 degrees C

  6. Corrosion Detection of Reinforcement of Building Materials with Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Jia Peng

    2017-06-01

    Full Text Available The extensive use of reinforced materials in the construction industry has raised increased concerns about their safety and durability, while corrosion detection of steel materials is becoming increasingly important. For the scientific management, timely repair and health monitoring of construction materials, as well as to ensure construction safety and prevent accidents, this paper investigates corrosion detection on construction materials based on piezoelectric sensors. At present, the commonly used corrosion detection methods include physical and electrochemical methods, but there are shortcomings such as large equipment area, low detection frequency, and complex operation. In this study an improved piezoelectric ultrasonic sensor was designed, which could not only detect the internal defects of buildings while not causing structural damage, but also realize continuous detection and enable qualitative and quantitative assessment. Corrosion detection of reinforced building materials with piezoelectric sensors is quick and accurate, which can find hidden dangers and provide a reliable basis for the safety of the buildings.

  7. Minimize corrosion degradation of steam generator tube materials

    International Nuclear Information System (INIS)

    Lu, Y.

    2006-01-01

    As part of a coordinated program, AECL is developing a set of tools to aid with the prediction and management of steam generator performance. Although stress corrosion cracking (of Alloy 800) has not been detected in any operating steam generator, for life management it is necessary to develop mechanistic models to predict the conditions under which stress corrosion cracking is plausible. Experimental data suggest that all steam generator tube materials are susceptible to corrosion degradation under some specific off-specification conditions. The tolerance to the chemistry upset for each steam generator tube alloy is different. Electrochemical corrosion behaviors of major steam generator tube alloys were studied under the plausible aggressive crevice chemistry conditions. The potential hazardous conditions leading to steam generator tube degradation and the conditions, which can minimize steam generator tube degradation have been determined. Recommended electrochemical corrosion potential/pH zones were defined for all major steam generator tube materials, including Alloys 600, 800, 690 and 400, under CANDU steam generator operating and startup conditions. Stress corrosion cracking tests and accelerated corrosion tests were carried out to verify and revise the recommended electrochemical corrosion potential/pH zones. Based on this information, utilities can prevent steam generator material degradation surprises by appropriate steam generator water chemistry management and increase the reliability of nuclear power generating stations. (author)

  8. Corrosion assessment of refractory materials for high temperature waste vitrification

    International Nuclear Information System (INIS)

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.

    1995-01-01

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosion coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials

  9. Prediction of Corrosion of Advanced Materials and Fabricated Components

    Energy Technology Data Exchange (ETDEWEB)

    A. Anderko; G. Engelhardt; M.M. Lencka (OLI Systems Inc.); M.A. Jakab; G. Tormoen; N. Sridhar (Southwest Research Institute)

    2007-09-29

    The goal of this project is to provide materials engineers, chemical engineers and plant operators with a software tool that will enable them to predict localized corrosion of process equipment including fabricated components as well as base alloys. For design and revamp purposes, the software predicts the occurrence of localized corrosion as a function of environment chemistry and assists the user in selecting the optimum alloy for a given environment. For the operation of existing plants, the software enables the users to predict the remaining life of equipment and help in scheduling maintenance activities. This project combined fundamental understanding of mechanisms of corrosion with focused experimental results to predict the corrosion of advanced, base or fabricated, alloys in real-world environments encountered in the chemical industry. At the heart of this approach is the development of models that predict the fundamental parameters that control the occurrence of localized corrosion as a function of environmental conditions and alloy composition. The fundamental parameters that dictate the occurrence of localized corrosion are the corrosion and repassivation potentials. The program team, OLI Systems and Southwest Research Institute, has developed theoretical models for these parameters. These theoretical models have been applied to predict the occurrence of localized corrosion of base materials and heat-treated components in a variety of environments containing aggressive and non-aggressive species. As a result of this project, a comprehensive model has been established and extensively verified for predicting the occurrence of localized corrosion as a function of environment chemistry and temperature by calculating the corrosion and repassivation potentials.To support and calibrate the model, an experimental database has been developed to elucidate (1) the effects of various inhibiting species as well as aggressive species on localized corrosion of nickel

  10. Environmental degradation of materials and corrosion control in metals

    International Nuclear Information System (INIS)

    Lou, J.; Elboujdaini, M.; Shoesmith, D.; Patnaik, P.C.

    2003-01-01

    The first International Symposium on Environmental Degradation of Materials and Corrosion Control In Metals (EDMCCM), held in Quebec City in 1999, was very successful. Encouraged by this success. the Metallurgical Society of CIM organized the Second International Conference in what is hoped will be an on-going series. This meeting was held in Vancouver, British Columbia, Canada, in August 2003. The objective of this conference was to provide a wide-ranging forum for the discussion of recent developments in the study and understanding of corrosion degradation of metals and alloys and the variety of processes by which corrosion damage accumulates. The scope of the meeting ranged from the fundamental to the very applied with a primary emphasis on the inter-relationships between chemical, electrochemical, mechanical and metallurgical features of corrosion. This symposium was an excellent forum for the exchange of ideas and approaches between generally disparate fields of endeavour. The success of the symposium can be gauged from the large number of papers presented and the outstanding level of international participation, with authors from China, Iran, Japan, North America, Russia, United Kingdom and Venezuela. In addition authors from six Canadian provinces (Alberta, British Columbia, New Brunswick, Ontario, Quebec, Saskatchewan) participated. Six keynote presentations covered a wide range of topics and industries in corrosion and corrosion control, and a total 45 papers were presented, spread over three days in six individual sessions; Electrochemistry and Corrosion of Metals, Corrosion and Cracking Behaviour. Hydrogen in Steel and Pipeline Corrosion, Corrosion Case Studies and Applications, Characterization of Corrosion Behaviour, and Corrosion Protection Coatings. (author)

  11. Decontamination and materials corrosion concerns in the BWR

    International Nuclear Information System (INIS)

    Gordon, B.M.; Gordon, G.M.

    1988-01-01

    The qualification of chemical decontamination processes to decontaminate complete systems or individual components in essential if effective inspection, maintenance, repair or replacement of plant components is to be achieved with minimum exposure of workers to ionizing radiation. However, it is critical that the benefits of decontamination processes are not overshadowed by deleterious materials/ corrosion side effects during the application of the process or during subsequent operation. This paper discusses such potential corrosion/materials problems in the BWR and presents relevant available corrosion data for the various commercial decontamination processes. (author)

  12. Corrosion resistance of metal materials for HLW canister

    International Nuclear Information System (INIS)

    Furuya, Takashi; Muraoka, Susumu; Tashiro, Shingo

    1982-02-01

    In order to verify the materials as an important artificial barrier for canister of vitrified high-level waste from spent fuel reprocessing, data and reports were researched on corrosion resistance of the materials under conditions from glass form production to final disposal. Then, in this report, investigated subjects, improvement methods and future subjects are reviewed. It has become clear that there would be no problem on the inside and outside corrosion of the canister during glass production, but long term corrosion and radiation effect tests and the vitrification methods would be subjects in future on interim storage and final disposal conditions. (author)

  13. Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Brad J.; Peterova, Adela

    2014-01-01

    This paper describes experimental investigations on corrosion-induced deterioration in reinforced cementitious materials and the subsequent development and implementation of a novel conceptual model. Rejnforced mortar specimens of varying water-to-cement ratios were subjected to current-induced c......This paper describes experimental investigations on corrosion-induced deterioration in reinforced cementitious materials and the subsequent development and implementation of a novel conceptual model. Rejnforced mortar specimens of varying water-to-cement ratios were subjected to current......-dependent concentrations of corrosion products averaged through the specimen thickness. Digital image correlation (DIC) was used to measure corrosion-induced deformations including deformations between steel and cementitious matrix as well as formation and propagation of corrosion-induced cracks. Based on experimental...... observations, a conceptual model was developed to describe the penetration of solid corrosion products into capillary pores of the cementitious matrix. Only capillary pores within a corrosion accommodating region (CAR), i.e. in close proximity of the steel reinforcement, were considered accessible...

  14. Grain boundary corrosion of copper canister material

    International Nuclear Information System (INIS)

    Fennell, P.A.H.; Graham, A.J.; Smart, N.R.; Sofield, C.J.

    2001-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister. The potential for grain boundary corrosion was investigated by exposing copper specimens, which had undergone different heat treatments and hence had different grain sizes, to aerated artificial bentonite-equilibrated groundwater with two concentrations of chloride, for increasing periods of time. The degree of grain boundary corrosion was determined by atomic force microscopy (AFM) and optical microscopy. AFM showed no increase in grain boundary 'ditching' for low chloride groundwater. In high chloride groundwater the surface was covered uniformly with a fine-grained oxide. No increases in oxide thickness were observed. No significant grain boundary attack was observed using optical microscopy either. The work suggests that in aerated artificial groundwaters containing chloride ions, grain boundary corrosion of copper is unlikely to adversely affect SKB's copper canisters

  15. Corrosion and alteration of materials from the nuclear industry; La Corrosion et l'alteration des materiaux du nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Feron, D.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Santarini, G.; Seiler, J.M.; Vernaz, E.; Richet, C.

    2010-07-01

    The control of the corrosion phenomenon is of prime importance for the nuclear industry. The efficiency and the safety of facilities can be affected by this phenomenon. The nuclear industry has to face corrosion for a large variety of materials submitted to various environments. Metallic corrosion operates in the hot and aqueous environment of water reactors which represent the most common reactor type in the world. Progresses made in the control of the corrosion of the different components of these reactors allow to improve their safety. Corrosion is present in the facilities of the back-end of the fuel cycle as well (corrosion in acid environment in fuel reprocessing plants, corrosion of waste containers in disposal and storage facilities, etc). The future nuclear systems will widen even more the range of materials to be studied and the situations in which they will be placed (corrosion by liquid metals or by helium impurities). Very often, corrosion looks like a patchwork of particular cases in its description. The encountered corrosion problems and their study are presented in this book according to chapters representing the main sectors of the nuclear industry and classified with respect to their phenomenology. This monograph illustrates the researches in progress and presents some results of particular importance obtained recently. Content: 1 - Introduction: context, stakes and goals; definition of corrosion; a complex science; corrosion in the nuclear industry; 2 - corrosion in water reactors - phenomenology, mechanisms, remedies: A - uniform corrosion: mechanisms, uniform corrosion of fuel cladding, in-situ measurement of generalized corrosion rate by electrochemical methods, uniform corrosion of nickel alloys, characterization of the passive layer and growth mechanisms, the PACTOLE code - an integrating tool, influence of water chemistry on corrosion and contamination, radiolysis impact on uniform corrosion; B - stress corrosion: stress corrosion cracking

  16. Corrosion degradation of materials in nuclear reactors and its control

    International Nuclear Information System (INIS)

    Kain, Vivekanand

    2016-01-01

    As in every industry, nuclear industry also faces the challenge of corrosion degradation due to the exposure of the materials to the working environment. The aggressiveness of the environment is enhanced by the presence of radiation and high temperature and high-pressure environment. Radiation has influence on both the materials (changes in microstructure and microchemistry) and the aqueous environment (radiolysis producing oxidizing conditions). A survey of all the light water reactors in the world showed that stress corrosion cracking (SCC) and flow accelerated corrosion (FAC) account for more than two third of all the corrosion degradation cases. This paper visits these two forms of corrosion in nuclear power plants and illustrates cases from Indian nuclear power plants. Remedial measures against these two forms of corrosion that are possible to be employed and the actual measures employed in Indian nuclear power plants are discussed. Key features of SCC in different types of nuclear power plants are discussed. Main reasons for irradiation assisted stress corrosion cracking (IASCC) are presented and discussed. The signature patterns of single and dual phase FAC captured from components replaced from Indian nuclear power plants are presented. The development of a correlation between the scallop size and rate of single phase FAC - based on the database developed in Indian nuclear power plants is presented. Based on these two forms of degradation in nuclear reactors, design of materials that would resist these forms of degradation is presented. (author)

  17. Corrosion behavior of construction materials for ionic liquid hydrogen compressor

    DEFF Research Database (Denmark)

    Arjomand Kermani, Nasrin; Petrushina, Irina; Nikiforov, Aleksey Valerievich

    2016-01-01

    The corrosion behavior of various commercially available stainless steels and nickel-based alloys as possible construction materials for components which are in direct contact with one of five different ionic liquids was evaluated. The ionic liquids, namely: 1-ethyl-3-methylimidazolium triflate, 1...... liquid hydrogen compressor. An electrochemical cell was specially designed, and steady-state cyclic voltammetry was used to measure the corrosion resistance of the alloys in the ionic liquids at 23 °C, under atmospheric pressure. The results showed a very high corrosion resistance and high stability...... for all the alloys tested. The two stainless steels, AISI 316L and AISI 347 showed higher corrosion resistance compared to AISI 321 in all the ionic liquids tested. It was observed that small addition of molybdenum, tantalum, and niobium to the alloys increased the corrosion stability in the ionic liquids...

  18. Study of stress corrosion cracking initiation of high alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Blahetova, Marie; Cihal, Vladimir; Lasek, Stanislav [Department of Materials Engineering, VSB - Technical University of Ostrava, tr. 17. listopadu 15, 708 33 Ostrava - Poruba (Czech Republic)

    2004-07-01

    The stainless steels and related alloys with sufficient resistance to a general corrosion can be susceptible to a localized corrosion (pitting, cracking, intergranular corrosion) in certain environment under specific conditions. The Drop Evaporation Test (DET) was developed for study of stainless materials resistance to stress corrosion cracking (SCC) at elevated temperatures 100 - 300 deg. C under constant external load using a chloride containing water solution. In the contribution the initiation and propagation of short cracks as well as pits were observed during the test. The crack initiation and/or propagation can be influenced by the cyclic thermal stresses, when the diluted water solution drops cool down the hot sample. The coordinates measurement of microscopic pits and sharp corrosion crack tips by the travelling microscope method allowed to derive the crack growth lengths and rates of short cracks. (authors)

  19. Study of stress corrosion cracking initiation of high alloy materials

    International Nuclear Information System (INIS)

    Blahetova, Marie; Cihal, Vladimir; Lasek, Stanislav

    2004-01-01

    The stainless steels and related alloys with sufficient resistance to a general corrosion can be susceptible to a localized corrosion (pitting, cracking, intergranular corrosion) in certain environment under specific conditions. The Drop Evaporation Test (DET) was developed for study of stainless materials resistance to stress corrosion cracking (SCC) at elevated temperatures 100 - 300 deg. C under constant external load using a chloride containing water solution. In the contribution the initiation and propagation of short cracks as well as pits were observed during the test. The crack initiation and/or propagation can be influenced by the cyclic thermal stresses, when the diluted water solution drops cool down the hot sample. The coordinates measurement of microscopic pits and sharp corrosion crack tips by the travelling microscope method allowed to derive the crack growth lengths and rates of short cracks. (authors)

  20. On The Research Of The Materials Corrosion Stability

    International Nuclear Information System (INIS)

    Bolotnikov, A.

    1998-01-01

    The contact of chemically active working medium with machine parts results in their corrosion damage. The problem is especially actual when a plant destined to work with another medium is used. Protracted reliable operation of these machines can be guaranteed only by a correct selection of part materials which ensures both their high corrosion stability in the given medium and necessary strength under working conditions. Resistance of materials to corrosion (including that are known as rust-resisting ones) essentially depends on the reagent type. Literature contains limited amount of information about materials behavior in the given medium. Necessity of such information even on the initial stage of design demands an effective method of the fast corrosion stability examination. The low rate of the chemical reaction under normal conditions leads to difficulties while discovering such method. This paper is dedicated to solution of the foregoing problem. Theoretical grounds, descriptions of experimental plant, and results of the test are adduced

  1. Corrosion and tribological properties of basalt fiber reinforced composite materials

    Science.gov (United States)

    Ha, Jin Cheol; Kim, Yun-Hae; Lee, Myeong-Hoon; Moon, Kyung-Man; Park, Se-Ho

    2015-03-01

    This experiment has examined the corrosion and tribological properties of basalt fiber reinforced composite materials. There were slight changes of weight after the occurring of corrosion based on time and H2SO4 concentration, but in general, the weight increased. It is assumed that this happens due to the basalt fiber precipitate. Prior to the corrosion, friction-wear behavior showed irregular patterns compared to metallic materials, and when it was compared with the behavior after the corrosion, the coefficient of friction was 2 to 3 times greater. The coefficient of friction of all test specimen ranged from 0.1 to 0.2. Such a result has proven that the basalt fiber, similar to the resin rubber, shows regular patterns regardless of time and H2SO4 concentration because of the space made between resins and reinforced materials.

  2. Corrosion of container and infrastructure materials under clay repository conditions

    International Nuclear Information System (INIS)

    Debruyn, W.; Dresselaers, J.; Vermeiren, P.; Kelchtermans, J.; Tas, H.

    1991-01-01

    With regard to the disposal of high-level radioactive waste, it was recommended in a IAEA Technical Committee meeting to perform tests in realistic environments corresponding with normal and accidental conditions, to qualify and apply corrosion monitoring techniques for corrosion evaluation under real repository conditions and to develop corrosion and near-field evolution models. The actual Belgian experimental programme for the qualification of a container for long-term HLW storage in clay formations complies with these recommendations. The emphasis in the programme is indeed on in situ corrosion testing and monitoring and on in situ control of the near-field chemistry. Initial field experiments were performed in a near-surface clay quarry at Terhaegen. Based on a broad laboratory material screening programme and in agreement with the Commission of the European Communities, three reference materials were chosen for extensive in situ overpack testing. Ti/0.2 Pd and Hastelloy C-4 were chosen as reference corrosion resistant materials and a low-carbon steel as corrosion allowance reference material. This report summarizes progress made in the material qualification programme since the CEC contract of 1983-84. 57 Figs.; 15 Tabs.; 18 Refs

  3. Research process of nondestructive testing pitting corrosion in metal material

    Directory of Open Access Journals (Sweden)

    Bo ZHANG

    2017-12-01

    Full Text Available Pitting corrosion directly affects the usability and service life of metal material, so the effective nondestructive testing and evaluation on pitting corrosion is of great significance for fatigue life prediction because of data supporting. The features of pitting corrosion are elaborated, and the relation between the pitting corrosion parameters and fatigue performance is pointed out. Through introducing the fundamental principles of pitting corrosion including mainly magnetic flux leakage inspection, pulsed eddy current and guided waves, the research status of nondestructive testing technology for pitting corrosion is summarized, and the key steps of nondestructive testing technologies are compared and analyzed from the theoretical model, signal processing to industrial applications. Based on the analysis of the signal processing specificity of different nondestructive testing technologies in detecting pitting corrosion, the visualization combined with image processing and signal analysis are indicated as the critical problems of accurate extraction of pitting defect information and quantitative characterization for pitting corrosion. The study on non-contact nondestructive testing technologies is important for improving the detection precision and its application in industries.

  4. Corrosion of structural materials for Generation IV systems

    International Nuclear Information System (INIS)

    Balbaud-Celerier, F.; Cabet, C.; Courouau, J.L.; Martinelli, L.; Arnoux, P.

    2009-01-01

    The Generation IV International Forum aims at developing future generation nuclear energy systems. Six systems have been selected for further consideration: sodium-cooled fast reactor (SFR), gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR) and very high temperature reactor (VHTR). CEA, in the frame of a national program, of EC projects and of the GIF, contributes to the structural materials developments and research programs. Particularly, corrosion studies are being performed in the complex environments of the GEN IV systems. As a matter of fact, structural materials encounter very severe conditions regarding corrosion concerns: high temperatures and possibly aggressive chemical environments. Therefore, the multiple environments considered require also a large diversity of materials. On the other hand, the similar levels of working temperatures as well as neutron spectrum imply also similar families of materials for the various systems. In this paper, status of the research performed in CEA on the corrosion behavior of the structural material in the different environments is presented. The materials studied are either metallic materials as austenitic (or Y, La, Ce doped) and ferrito-martensitic steels, Ni base alloys, ODS steels, or ceramics and composites. In all the environments studied, the scientific approach is identical, the objective being in all cases the understanding of the corrosion processes to establish recommendations on the chemistry control of the coolant and to predict the long term behavior of the materials by the development of corrosion models. (author)

  5. Grain boundary corrosion of copper canister weld material

    International Nuclear Information System (INIS)

    Gubner, Rolf; Andersson, Urban; Linder, Mats; Nazarov, Andrej; Taxen, Claes

    2006-01-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow, they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister, based on the recommendations of the report SKB-TR--01-09 (INIS ref. 32025363). Grain boundary corrosion of copper is not expected to be a problem for the copper canisters in a repository. However, as one step in the experimental verification it is necessary to study grain boundary corrosion of copper in an environment where it may occur. A literature study aimed to find one or several solutions that are aggressive with respect to grain boundary corrosion of copper. Copper specimens cut from welds of real copper canisters where exposed to aerated ammonium hydroxide solution for a period of 14 days at 80 degrees C and 10 bar pressure. The samples were investigated prior to exposure using the scanning Kelvin probe technique to characterize anodic and cathodic areas on the samples. The degree of corrosion was determined by optical microscopy. No grain boundary corrosion could be observed in the autoclave experiments, however, a higher rate of corrosion was observed for the weld material compared to the base material. The work suggests that grain boundary corrosion of copper weld material is most unlikely to adversely affect SKB's copper canisters under the conditions in the repository

  6. Grain boundary corrosion of copper canister weld material

    Energy Technology Data Exchange (ETDEWEB)

    Gubner, Rolf; Andersson, Urban; Linder, Mats; Nazarov, Andrej; Taxen, Claes [Corrosion and Metals Research Inst. (KIMAB), Stockholm (Sweden)

    2006-01-15

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow, they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister, based on the recommendations of the report SKB-TR--01-09 (INIS ref. 32025363). Grain boundary corrosion of copper is not expected to be a problem for the copper canisters in a repository. However, as one step in the experimental verification it is necessary to study grain boundary corrosion of copper in an environment where it may occur. A literature study aimed to find one or several solutions that are aggressive with respect to grain boundary corrosion of copper. Copper specimens cut from welds of real copper canisters where exposed to aerated ammonium hydroxide solution for a period of 14 days at 80 degrees C and 10 bar pressure. The samples were investigated prior to exposure using the scanning Kelvin probe technique to characterize anodic and cathodic areas on the samples. The degree of corrosion was determined by optical microscopy. No grain boundary corrosion could be observed in the autoclave experiments, however, a higher rate of corrosion was observed for the weld material compared to the base material. The work suggests that grain boundary corrosion of copper weld material is most unlikely to adversely affect SKB's copper canisters under the conditions in the repository.

  7. Corrosion of candidate materials in Lake Rotokawa geothermal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Estill, J.C.; McCright, R.D.

    1995-05-01

    Corrosion rates were determined for CDA 613, CDA 715, A-36 carbon steel, 1020 carbon steel, and Alloy 825 flat coupons which were exposed to geothermal spring water at Paraiki site number 9 near Lake Rotokawa, New Zealand. Qualitative observations of the corrosion performance of Type 304L stainless steel and CDA 102 exposed to the same environment were noted. CDA 715, Alloy 825, 1020 carbon steel, and other alloys are being considered for the materials of construction for high-level radioactive waste containers for the United States civilian radioactive waste disposal program. Alloys CDA 613 and CDA 102 were tested to provide copper-based materials for corrosion performance comparison purposes. A36 was tested to provide a carbon steel baseline material for comparison purposes, and alloy 304L stainless steel was tested to provide an austenitic stainless steel baseline material for comparison purposes. In an effort to gather corrosion data from an environment that is rooted in natural sources of water and rock, samples of some of the proposed container materials were exposed to a geothermal spring environment. At the proposed site at Yucca Mountain, Nevada, currently under consideration for high-level nuclear waste disposal, transient groundwater may come in contact with waste containers over the course of a 10,000-year disposal period. The geothermal springs environment, while extremely more aggressive than the anticipated general environment at Yucca Mountain, Nevada, could have similarities to the environment that arises at selected local sites on a container as a result of crevice corrosion, pitting corrosion, microbiologically influenced corrosion (MIC), or the concentration of the ionic species due to repetitive evaporation or boiling of the groundwater near the containers. The corrosion rates were based on weight loss data obtained after six weeks exposure in a 90{degrees}C, low-pH spring with relatively high concentrations of SO{sub 4}{sup 2-} and Cl{sup -}.

  8. Corrosion of ferrous materials in a basaltic environment

    International Nuclear Information System (INIS)

    Brehm, W.F.

    1990-01-01

    The results of corrosion tests on A27 cast low-carbon steel are discussed. The corrosion performance of these materials was tested in condensed systems at temperature ranging from 50 C to 200 C and in air-steam mixtures between 150 C and 300 C. The groundwater used was a deoxygenated mild sodium chloride solution. When used, the packing material was 75 percent crushed basalt and 25 percent Wyoming sodium bentonite. In synthetic groundwater corrosion rates for both cast carbon steel and A387 steel in saturated packing and air-steam mixtures were low; maximum rates of 9 μm/a for A27 steel and 1.8 μm/a for A387 steel were observed. These maximum rates were observed at intermediate temperatures because of the formation of non-protective corrosion films. In A27 steel magnetite was the principal corrosion product, with non-protective siderite observed at 100 C. Pits were difficult to produce in saturated packing in A27 steel and did not grow. In air-steam mixtures corrosion rates of both steels were again very low, less than 1 μm/a. Magnetite and small amounts of hematite were detected in corrosion product films

  9. Corrosion behaviour of construction materials for high temperature steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    2011-01-01

    temperature proton exchange membrane (PEM) steam electrolysers. Steady-state voltammetry was used in combination with scanning electron microscopy and energy-dispersive X-ray spectroscopy to evaluate the stability of the mentioned materials. It was found that stainless steels were the least resistant...... to corrosion under strong anodic polarisation. Among alloys, Ni-based showed the highest corrosion resistance in the simulated PEM electrolyser medium. In particular, Inconel 625 was the most promising among the tested corrosion-resistant alloys for the anodic compartment in high temperature steam electrolysis...

  10. Corrosion behaviour of materials selected for FMIT lithium system

    Energy Technology Data Exchange (ETDEWEB)

    Bazinet, G.D.; Brehm, W.F.

    1983-09-01

    The corrosion behavior of selected materials in a liquid lithium environment was studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. Testing conditions ranged from about 3700 to about6500 hours of exposure to flowing lithium at temperatures from 230/sup 0/ to 270/sup 0/C and static lithium at temperatures from 200/sup 0/ to 500/sup 0/C. Principal areas of investigation included lithium corrosion/erosion effects on FMIT lithium system baseline and candidate materials. Material coupons and full-size prototypic components were evaluated to determine corrosion rates, fatigue crack growth rates, structural compatibility, and component acceptability for the lithium system. Based on the results of these studies, concerns regarding system materials and component designs were satisfactorily resolved to support a 20-year design life requirement for the FMIT lithium system.

  11. Corrosion behaviour of materials selected for FMIT lithium system

    International Nuclear Information System (INIS)

    Bazinet, G.D.; Brehm, W.F.

    1983-01-01

    The corrosion behavior of selected materials in a liquid lithium environment was studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. Testing conditions ranged from about 3700 to about6500 hours of exposure to flowing lithium at temperatures from 230 0 to 270 0 C and static lithium at temperatures from 200 0 to 500 0 C. Principal areas of investigation included lithium corrosion/erosion effects on FMIT lithium system baseline and candidate materials. Material coupons and full-size prototypic components were evaluated to determine corrosion rates, fatigue crack growth rates, structural compatibility, and component acceptability for the lithium system. Based on the results of these studies, concerns regarding system materials and component designs were satisfactorily resolved to support a 20-year design life requirement for the FMIT lithium system

  12. Materials compatibility and corrosion issues for accelerator transmutation of waste

    International Nuclear Information System (INIS)

    Staudhammer, K.

    1992-08-01

    The need to understand the materials issues in an accelerator transmutation of waste (ATW) system is essential. This report focuses on the spallation container material, as this material is exposed to some of the most crucial environmental conditions of simultaneous radiation and corrosion in the system. The most severe design being considered is that of liquid lead. In previous investigations of lead compatibility with materials, the chemistry of the system was derived solely from the corrosion products; however, in an ATW system, the chemistry of the lead changes not only with the derived corrosion products of the material being tested but also with the buildup of the daughter production with time. Daughter production builds up and introduces elements that may have a great effect on the corrosion activity of the liquid lead. Consequently, data on liquid lead compatibility can be regarded only as a guide and must be reevaluated when particular daughter products are added. This report is intended to be a response to specific materials issues and concerns expressed by the ATW design working group and addresses the compatibility/corrosion concerns

  13. Microstructural aspects of materials failure and corrosion

    International Nuclear Information System (INIS)

    Ferguson, I.F.

    1979-02-01

    Scanning and transmission electron microscopy, microprobe (electron, nuclear and Auger) analysis, X-ray diffraction and ferrography are applied to a wide range of problems of interest to the UKAEA. These include: the preparation of transistors, the coating of bearings, component reliability, the microstructure and behaviour of type 316 and other steels, the examination of the surface layers of various ceramics, steels and other alloys, as well as the corrosion of steels and Zircaloy. (author)

  14. Active Waste Materials Corrosion and Decontamination Tests

    International Nuclear Information System (INIS)

    Danielson, M.J.; Elmore, M.R.; Pitman, S.G.

    2000-01-01

    Stainless steel alloys, 304L and 316L, were corrosion tested in representative radioactive samples of three actual Hanford tank waste solutions (Tanks AW-101, C-104, AN-107). Both the 304L and 316L exhibited good corrosion performance when immersed in boiling waste solutions. The maximum general corrosion rate was 0.015 mm/y (0.60 mils per year). Generally, the 304L had a slightly higher rate than the 316L. No localized attack was observed after 122 days of testing in the liquid phase, liquid/vapor phase, or vapor phase. Radioactive plate-out decontamination tests indicated that a 24-hour exposure to 1 und M HNO 3 could remove about 99% of the radioactive components in the metal film when exposed to the C-104 and AN-107 solutions. The decontamination results are less certain for the AW-101 solution, since the initial contamination readings exceeded the capacity of the meter used for this test

  15. Corrosion of candidate materials for canister: applications in rock salt formations

    International Nuclear Information System (INIS)

    Azkarate, I.; Madina, V.; Barrio, A. del; Macarro, J.M.

    1994-01-01

    Previous corrosion studies carried out on various metallic materials in typical salt rock environments show that carbon steel and titanium alloys are the most promising candidates for canister applications in this geological formation. Although carbon steels have a low corrosion resistance, they are considered acceptable as corrosion-allowance materials for a thick walled container due to their practical immunity to the localized corrosion phenomena such as stress corrosion cracking, pitting or crevice corrosion. Aiming to improve the performances of these materials, studies on the effect of small additions of Ni and V on the general corrosion are in process. The improvement in the resistance to general corrosion should not be accompanied by a sensitivity to stress corrosion cracking. On the contrary, alfa titanium alloys are considered the most resistant materials to general corrosion in salt brines. However, pitting, are potential deficiencies of this corrosion-resistant materials for a thin walled container. (Author)

  16. Corrosion behaviour of construction materials for high temperature water electrolysers

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, A.; Petruchina, I.; Christensen, E.; Bjerrum, N.J.; Tomas-Garcya, A.L. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemistry, Materials Science Group

    2010-07-01

    This presentation reported on a study in which the feasibility of using different corrosion resistant stainless steels as a possible metallic bipolar plate and construction material was evaluated in terms of corrosion resistance under conditions corresponding to the conditions in high temperature proton exchange membrane (PEM) water electrolysers (HTPEMWE). PEM water electrolysis technology has been touted as an effective alternative to more conventional alkaline water electrolysis. Although the energy efficiency of this technology can be increased considerably at temperatures above 100 degrees C, this increases the demands to all the used materials with respect to corrosion stability and thermal stability. In this study, Ni-based alloys as well as titanium and tantalum samples were exposed to anodic polarization in 85 per cent phosphoric acid electrolyte solution. Tests were performed at 80 and 120 degrees C to determine the dependence of corrosion speed and working temperature. Platinum and gold plates were also tested for a comparative evaluation. Steady-state voltammetry was used along with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Titanium showed the poorest corrosion resistance, while Ni-based alloys showed the highest corrosion resistance, with Inconel R 625 being the most promising alloy for the bipolar plate of an HTPEMWE. 3 refs., 1 tab., 2 figs.

  17. Study on corrosion of metal materials in nitrate molten salts

    Science.gov (United States)

    Zhai, Wei; Yang, Bo; Li, Maodong; Li, Shiping; Xin, Mingliang; Zhang, Shuanghong; Huang, Guojia

    2017-01-01

    High temperature molten salts as a heat transfer heat storage medium has been more widely used in the field of concentrated solar thermal power generation. In the thermal heat storage system, metal material stability and performance at high temperatures are of one major limitation in increasing this operating temperature. In this paper, study on corrosion of 321H, 304, 316L, P91 metal materials in modified solar two molten salts. The corrosion kinetics of 304, 316L, 321H, P91 metal material in the modified solar two molten salts at 450°C, 500°C is also investigated. Under the same condition it was found that 304, 321H corroded at a rate of 40% less than P91. Spallation of corrosion products was observed on P91 steel, while no obvious observed on other kinds of stainless steel. Corrosion rates of 304, 321H, and 316L slowly increased with temperature. Oxidation mechanisms little varied with temperature. Corrosion products of metal materials observed at 450°C, 500°C were primarily Fe oxide and Fe, Cr oxide.

  18. Electrochemical Corrosion Testing of Neutron Absorber Materials

    International Nuclear Information System (INIS)

    Tedd Lister; Ron Mizia; Arnold Erickson; Tammy Trowbridge

    2007-01-01

    This report summarizes the results of crevice-corrosion tests for six alloys in solutions representative of ionic compositions inside the Yucca Mountain waste package should a breech occur. The alloys in these tests are Neutronit A978a (ingot metallurgy, hot rolled), Neutrosorb Plus 304B4 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B5 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B6 Grade Ab (powder metallurgy, hot rolled), Ni-Cr-Mo-Gd alloy2 (ingot metallurgy, hot rolled), and Alloy 22 (ingot metallurgy, hot rolled)

  19. Corrosion and material transfer in a sodium loop

    International Nuclear Information System (INIS)

    Garcia, A.M.; Espigares, M.M.; Arroyo, J.; Borgstedt, H.U.; Kernforschungszentrum Karlsruhe G.m.b.H.

    1984-01-01

    The corrosion and material transfer behaviour of the martensitic steel X18 CrMoVNb 12 1 as a function of the temperature and the position is studied in the ML-1 sodium loop. Up to 600 C the material has the same good compatibility with liquid sodium as austenitic stainless steels, as well in the corrosion region of the loop as in the deposition zone in the cooled leg. The steel is not sensitive to carburization or decarburization under the conditions in the sodium rig. (author)

  20. Materials and corrosion programs sponsored by the Gas Research Institute

    International Nuclear Information System (INIS)

    Flowers, A.

    1980-01-01

    The paper deals briefly with the Gas Research Institute and its research in materials and corrosion. As a not-for-profit organization, the Gas Research Institute plans, finances, and manages applied and basic research and technological development programs associated with gaseous fuels. These programs are in the general areas of production, transportation, storage, utilization and conservation of natural and manufactured gases and related products. Research results, whether experimental or analytical, are evaluated and publicly disseminated. Materials and corrosion research is concentrated in the SNG from Coal and Non-fossil Hydrogen subprograms

  1. Nuclear reactor structural material forming less radioactive corrosion product

    International Nuclear Information System (INIS)

    Nakazawa, Hiroshi.

    1988-01-01

    Purpose: To provide nuclear reactor structural materials forming less radioactive corrosion products. Constitution: Ni-based alloys such as inconel alloy 718, 600 or inconel alloy 750 and 690 having excellent corrosion resistance and mechanical property even in coolants at high temperature and high pressure have generally been used as nuclear reactor structural materials. However, even such materials yield corrosion products being attacked by coolants circulating in the nuclear reactor, which produce by neutron irradiation radioactive corrosion products, that are deposited in primary circuit pipeways to constitute exposure sources. The present invention dissolves dissolves this problems by providing less activating nuclear reactor structural materials. That is, taking notice on the fact that Ni-58 contained generally by 68 % in Ni changes into Co-58 under irradiation of neutron thereby causing activation, the surface of nuclear reactor structural materials is applied with Ni plating by using Ni with a reduced content of Ni-58 isotopes. Accordingly, increase in the radiation level of the nuclear reactor structural materials can be inhibited. (K.M.)

  2. Materials and coatings to resist high temperature oxidation and corrosion

    International Nuclear Information System (INIS)

    1977-01-01

    Object of the given papers are the oxidation and corrosion behaviour of several materials (such as stainless steels, iron-, or nickel-, or cobalt-base alloys, Si-based ceramics) used at high temperatures and various investigations on high-temperature protective coatings. (IHoe) [de

  3. Irradiation-accelerated corrosion of reactor core materials

    International Nuclear Information System (INIS)

    Bartels, David; Was, Gary; Jiao, Zhijie

    2012-09-01

    The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, but also applies to most all other GenIV concepts. Of these four drivers, the combination of radiation and corrosion presents a unique and extremely challenging environment for materials, for which an understanding of the fundamental science is essentially absent. Irradiation can affect corrosion or oxidation in at least three different ways. Radiation interaction with water results in the decomposition of water into radicals and oxidizing species that will increase the electrochemical corrosion potential and lead to greater corrosion rates. Irradiation of the solid surface can produce excited states that can alter corrosion, such as in the case of photo-induced corrosion. Lastly, displacement damage in the solid will result in a high flux of defects to the solid-solution interface that can alter and perhaps, accelerate interface reactions. While there exists reasonable understanding of how corrosion is affected by irradiation of the aqueous environment, there is little understanding of how irradiation affects corrosion through its impact on the solid, whether metal or oxide. The reason is largely due to the difficulty of conducting experiments that can measure this effect separately. We have undertaken a project specifically to separate the several effects of irradiation on the mechanisms of corrosion. We seek to answer the question: How does radiation damage to the solution-oxide couple affect the oxidation process differently from radiation damage to either component alone? The approach taken in this work is to closely compare corrosion accelerated by (1) proton irradiation, (2) electron irradiation, and (3) chemical corrosion potential effects alone, under typical PWR operating conditions at 300 deg. C. Both 316 stainless steel and zirconium are to be studied. The proton

  4. Investigation of corrosion and stress corrosion cracking in bolting materials on light water reactors

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1986-01-01

    Laboratory experiments performed at Brookhaven National Laboratory have shown that the concentration of boric acid to a moist paste at approximately the boiling point of water can produce corrosion rates of the order of approximately 3.5mm per year on bolting and piping materials, which values are consistent with service experience. Other failure evaluation experience has shown that primary coolant-lubricant interaction may lead to stress corrosion cracking (SCC) of steam generator manway studs. An investigation was also performed on eleven lubricants and their effects on A193 B7 and A540 B24 bolting materials. H 2 S generation by the lubricants, coefficient of friction results and transgranular SCC of the bolting materials in steam are discussed. (author)

  5. Investigation of corrosion and stress corrosion cracking in bolting materials on light water reactors

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1985-01-01

    Laboratory experiments performed at BNL have shown that the concentration of boric acid to a moist paste at approximately the boiling point of water can produce corrosion rates of the order of several tenths of an inch per year on bolting and piping materials, which values are consistent with service experience. Other failure evaluation experience has shown that primary coolant/lubricant interaction may lead to stress corrosion cracking (SCC) of steam generator manway studs. An investigation was also performed on eleven lubricants and their effects on A193 B7 and A540 B24 bolting materials. H 2 S generation by the lubricants, coefficient of friction results and transgranular SCC of the bolting materials in steam are discussed. 13 refs

  6. Material selection and corrosion control practices in petroleum production

    International Nuclear Information System (INIS)

    Tuttle, R.N.

    1980-01-01

    The intent of this paper is to review briefly the current state of the art and to discuss some of the anticipated future oil and gas drilling and production activities which may challenge the materials selection and corrosion technologies. The current state of art discussions in this paper have been augmented by providing a list of references so that interested engineers may delve into each subject in more detail as desired. The technological areas which appear to require additional input to meet future needs include high strength tubular goods for sour gas service, corrosion resistant high strength alloys, definition of the effects of pressure, temperature, and fluid composition on corrosion behavior, and fatigue properties of various steels in seawater

  7. Selection of Corrosion Resistant Materials for Nuclear Waste Repositories

    International Nuclear Information System (INIS)

    R.B. Rebak

    2006-01-01

    Several countries are considering geological repositories to dispose of nuclear waste. The environment of most of the currently considered repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories, alloys such as carbon steel, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking

  8. Corrosion fatigue of high strength fastener materials in seawater

    Science.gov (United States)

    Tipton, D. G.

    1983-12-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  9. High temperature corrosion of separator materials for MCFC

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Masahiro; Tanimoto, Kazumi; Kojima, Toshikatsu [Osaka National Research Institute (Japan)] [and others

    1996-12-31

    The Molten Carbonate Fuel Cell (MCFC) is one of promising high efficiency power generation devices with low emission. Molten carbonate used for its electrolyte plays an important role in MCFC. It separates between anode and cathode gas environment and provides ionic conductivity on MCFC operation. Stainless steel is conventionally used as separator/current collector materials in MCFC cathode environment. As corrosion of the components of MCFC caused by the electrolyte proceeds with the electrolyte consumption, the corrosion in the MCFC is related to its performance and life. To understand and inhibit the corrosion in the MCFC is important to realize MCFC power generation system. We have studied the effect of alkaline earth carbonate addition into carbonate on corrosion of type 316L stainless steel. In this paper, we describe the effect of the temperature on corrosion behavior of type 316L stainless steel with carbonate mixture, (Li{sub 0.62}K{sub 0.38}){sub 2}CO{sub 3}, under the cathode environment in out-of-cell test.

  10. Lead-Bismuth technology ; corrosion resistance of structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ji Young; Park, Won Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    Lead-Bismuth (Pb-Bi) eutectic alloy was determined as a coolant material for the HYPER system being studied by KAERI. The Pb-Bi alloy as a coolant, has a number of the favorable thermo-physical and technological properties, while it is comparatively corrosive to the structural materials. It is necessary to solve this problem for providing a long failure-proof operation of the facilities with Pb-Bi coolant. It seems to be possible to maintain corrosion resistance on structural material up to 600 deg C by using of various technologies, but it needs more studies for application to large-scale NPPs. 22 refs., 11 figs., 7 tabs. (Author)

  11. Corrosion of copper-based materials in gamma radiation

    International Nuclear Information System (INIS)

    Yunker, W.H.

    1986-06-01

    The corrosion behaviors of pure copper (CDA 101), 7% aluminum-copper bronze (CDA 613) and 30% nickel-copper (CDA 715) are being studied in a gamma radiation field of 1 x 10 5 R/h. These studies are in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project, by Lawrence Livermore National Laboratory (LLNL), of copper-based materials for possible use in container systems for the permanent geologic burial of nuclear waste. Weight loss, tear drop (stressed), and crevice specimens of the three materials were exposed to water vapor-air atmospheres at 95 0 C and 150 0 C and to liquid water at 95 0 C for periods of one, three, and six months. Longer exposures are in progress. Measurements include: changes in the chemical composition of the gas and water, specimen weight changes, oxide film weights, evidence of microcracking and crevice corrosion, and chemical composition of the oxide films by Auger electron spectroscopy and x-ray diffraction. Interim results show considerable pit and under-film corrosion of alloys CDA 613 and CDA 715. Uniform corrosion rates range from 0.012 mil/yr (0.30 μm/yr) to 0.22 mil/yr (5.6 μm/yr), based on specimen weight losses during six- and seven-month exposures. The time dependencies will be determined as more data become available

  12. Corrosion evaluation of materials in sulfur compound environments

    International Nuclear Information System (INIS)

    Maoying Teng; Iuanjou Yang

    1993-01-01

    The para-toluene sulfonic acid (PTSA) serves as a catalyst in producing diethylene glycol dibenzoate (DEGDB) and decomposes with increasing time at elevated temperature. Due to the presence of bisulfite ion, it is important to evaluate the corrosion properties of materials in this metastable environments. A potentiodynamic method was used to screen materials' properties in a PTSA solution. A surface analysis technique was also performed to investigate the oxide films. The critical current density and passive current density were substantially reduced when Fe alloyed with Cr and/or Ni. With the addition of Mo in Fe-Ni-Cr alloys, the critical current density was lowered further to show the beneficial effect of alloyed Mo. A plot of the corrosion rate of materials in DEGDB as a function of Ni/Cr ratio shows the linearity with increasing Ni/Cr ratio, disregard the type of materials. The corrosion rate of pure chromium can be estimated as ∼ 2.0 mpy by extrapolation of the linearity to Ni/Cr = 0. This is also the minimum corrosion rate that even Fe-Ni-Cr alloys were alloyed with Mo. Surface analysis results showed that the dissolution of Fe and/or Ni leads to a higher surface chromium content and results in the formation of chromium oxide on metal surface. This chromium oxide then prevents metal from corrosion. It is concluded that the higher the nickel content the higher the corrosion rate of materials. The composition potential-pH diagrams for Fe-S-H 2 O and Ni-S-H 2 O show that the stability fields of FeS and NiS cover a wide range of pH. The effect of sulfur or sulfide ions in promoting dissolution of Fe and/or Ni are highly possible. The activating influence of sulfur compounds on Ni is stronger than that of Fe, although the highly electronic conductivity of iron sulfides can catalyze the cathodic reaction. Undoubtedly, sulfur compound strongly depassivates high Ni contents materials

  13. Corrosion of canister materials for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Bernhard [KIT Karlsruhe (Germany). Institut fuer Nukleare Entsorgung (INE)

    2017-08-15

    In the period between 1980 and 2004, corrosion studies on various metallic materials have been performed at the Research Center Karlsruhe. The objectives of these experimental studies addressed mainly the performance of canister materials for heat producing, high-level wastes and spent nuclear fuels for a repository in a German salt dome. Additional studies covered the performance of steels for packaging wastes with negligible heat production under conditions to be expected in rocksalt and in the Konrad iron ore mine. The results of the investigations have been published in journals and conference proceedings but also in ''grey literature''. This paper presents a summary of the results of corrosion experiments with fine-grained steels and nodular cast steel.

  14. Corrosion of canister materials for radioactive waste disposal

    International Nuclear Information System (INIS)

    Kienzler, Bernhard

    2017-01-01

    In the period between 1980 and 2004, corrosion studies on various metallic materials have been performed at the Research Center Karlsruhe. The objectives of these experimental studies addressed mainly the performance of canister materials for heat producing, high-level wastes and spent nuclear fuels for a repository in a German salt dome. Additional studies covered the performance of steels for packaging wastes with negligible heat production under conditions to be expected in rocksalt and in the Konrad iron ore mine. The results of the investigations have been published in journals and conference proceedings but also in ''grey literature''. This paper presents a summary of the results of corrosion experiments with fine-grained steels and nodular cast steel.

  15. Corrosion performance of tube support materials

    International Nuclear Information System (INIS)

    Malagola, P.

    1985-01-01

    The problem of denting in steam generators leads to change in the conception of the tube support plates. A new material is now used for this component, a 13% Cr steel, which composition has been adjusted for weldability and mechanical resistance criteria. The geometry of trefoil support plate (TSP) has also been improved, using a broached TSP (quadrifoiled holes) instead of a drilled TSP. Tests have been performed on 13% Cr and C-steel broached TSP, and drilled TSP, to confirm the better resistance to denting of this new configuration

  16. Evaluation of corrosion characteristics of SMART materials (III)

    International Nuclear Information System (INIS)

    Jeong, Y. H.; Park, S. Y.; Baek, J. H.; Choi, B. K.; Park, J. Y.; Lee, M. H.; Kim, J. H.; Bang, J. G.

    2006-02-01

    The corrosion characteristics of materials (Low-Sn Zircaloy-4, Zr-1.0Nb, PT-7M, ASTM Gr. 2 Ti, Inconel-690 alloys) for cladding and heat-exchanger tubes of SMART were evaluated in ammonia aqueous solution contained recirculating loop of pH 9.98 at 360 .deg. C 300 .deg. C. And CEDM materials (ball bearing, ball screw, magnetic material) were evaluated in ammonia aqueous solution contained static autoclave of pH 9.98 at 120 .deg. C

  17. The aqueous corrosion behavior of technetium - Alloy and composite materials

    International Nuclear Information System (INIS)

    Jarvinen, G.; Kolman, D.; Taylor, C.; Goff, G.; Cisneros, M.; Mausolf, E.; Poineau, F.; Koury, D.; Czerwinski, K.

    2013-01-01

    Metal waste forms are under study as possible disposal forms for technetium and other fission products. The alloying of Tc is desirable to reduce the melting point of the Tc-containing metal waste form and potentially improve its corrosion resistance. Technetium-nickel composites were made by mixing the two metal powders and pressing the mixture to make a pellet. The as-pressed composite materials were compared to sintered composites and alloys of identical composition in electrochemical corrosion tests. As-pressed samples were not robust enough for fine polishing and only a limited number of corrosion tests were performed. Alloys and composites with 10 wt% Tc appear to be more corrosion resistant at open circuit than the individual components based on linear polarization resistance and polarization data. The addition of 10 wt% Tc to Ni appears beneficial at open circuit, but detrimental upon anodic polarization. Qualitatively, the polarizations of 10 wt% Tc alloys and composites appear like crude addition of Tc plus Ni. The 1 wt% Tc alloys behave like pure Ni, but some effect of Tc is seen upon polarization. Cathodic polarization of Tc by Ni appears feasible based on open circuit potential measurements, however, zero resistance ammetry and solution measurements are necessary to confirm cathodic protection

  18. The aqueous corrosion behavior of technetium - Alloy and composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G.; Kolman, D.; Taylor, C.; Goff, G.; Cisneros, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mausolf, E.; Poineau, F.; Koury, D.; Czerwinski, K. [Department of Chemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154 (United States)

    2013-07-01

    Metal waste forms are under study as possible disposal forms for technetium and other fission products. The alloying of Tc is desirable to reduce the melting point of the Tc-containing metal waste form and potentially improve its corrosion resistance. Technetium-nickel composites were made by mixing the two metal powders and pressing the mixture to make a pellet. The as-pressed composite materials were compared to sintered composites and alloys of identical composition in electrochemical corrosion tests. As-pressed samples were not robust enough for fine polishing and only a limited number of corrosion tests were performed. Alloys and composites with 10 wt% Tc appear to be more corrosion resistant at open circuit than the individual components based on linear polarization resistance and polarization data. The addition of 10 wt% Tc to Ni appears beneficial at open circuit, but detrimental upon anodic polarization. Qualitatively, the polarizations of 10 wt% Tc alloys and composites appear like crude addition of Tc plus Ni. The 1 wt% Tc alloys behave like pure Ni, but some effect of Tc is seen upon polarization. Cathodic polarization of Tc by Ni appears feasible based on open circuit potential measurements, however, zero resistance ammetry and solution measurements are necessary to confirm cathodic protection.

  19. ERG review of waste package container materials selection and corrosion

    International Nuclear Information System (INIS)

    Moak, D.P.; Perrin, J.S.

    1986-07-01

    The Engineering Review Group (ERG) was established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering-related issues in the US Department of Energy's nuclear waste repository program. The October 1984 meeting of the ERG reviewed the waste package container materials selection and corrosion. This report documents the ERG's comments and recommendations on these subjects and the ONWI response to the specific points raised by the ERG

  20. Corrosion behavior of materials selected for FMIT lithium system

    International Nuclear Information System (INIS)

    Bazinet, G.D.; Down, M.G.; Matlock, D.K.

    1983-01-01

    The corrosion program consisted of a multi-disciplinary approach utilizing the liquid lithium test resources and capabilities of several laboratories. Specific concerns associated with the overall objective of materials corrosion behavior were evaluated at each laboratory. Testing conditions included: approx. 3700 hours of exposure to flowing lithium at temperatures from 230 0 C to 270 0 C and approx. 6500 hours of exposure to flowing lithium at an isothermal temperature of 270 0 C. Principal areas of investigation, to be discussed here briefly, included lithium corrosion effects on the following: (1) types 304 and 304L austenitic stainless steels, which are specified as reference materials for the FMIT lithium system; (2) type 304 stainless steel weldments (w/type 308 stainless steel filler) typical of specified tube and butt welds in the lithium system design; (3) titanium, zirconium and yttrium, which represent potential hot trap getter materials; (4) BNi4 braze alloy, used as a potential attachement method in the plug/seat fabrication of liquid lithium valves; and (5) type 321 stainless steel bellows, typical of bellows used in potential liquid lithium valve designs

  1. Corrosion behavior of materials selected for FMIT lithium system

    Energy Technology Data Exchange (ETDEWEB)

    Bazinet, G.D.; Down, M.G.; Matlock, D.K.

    1983-01-01

    The corrosion program consisted of a multi-disciplinary approach utilizing the liquid lithium test resources and capabilities of several laboratories. Specific concerns associated with the overall objective of materials corrosion behavior were evaluated at each laboratory. Testing conditions included: approx. 3700 hours of exposure to flowing lithium at temperatures from 230/sup 0/C to 270/sup 0/C and approx. 6500 hours of exposure to flowing lithium at an isothermal temperature of 270/sup 0/C. Principal areas of investigation, to be discussed here briefly, included lithium corrosion effects on the following: (1) types 304 and 304L austenitic stainless steels, which are specified as reference materials for the FMIT lithium system; (2) type 304 stainless steel weldments (w/type 308 stainless steel filler) typical of specified tube and butt welds in the lithium system design; (3) titanium, zirconium and yttrium, which represent potential hot trap getter materials; (4) BNi4 braze alloy, used as a potential attachement method in the plug/seat fabrication of liquid lithium valves; and (5) type 321 stainless steel bellows, typical of bellows used in potential liquid lithium valve designs.

  2. Corrosion of candidate container materials by Yucca Mountain bacteria

    International Nuclear Information System (INIS)

    Horn, J; Jones, D; Lian, T; Martin, S; Rivera, A

    1999-01-01

    Several candidate container materials have been studied in modified Yucca Mountain (YM) ground water in the presence or absence of YM bacteria. YM bacteria increased corrosion rates by 5-6 fold in UNS G10200 carbon steel, and nearly 100-fold in UNS NO4400 Ni-Cu alloy. YM bacteria caused microbiologically influenced corrosion (MIC) through de-alloying or Ni-depletion of Ni-Cu alloy as evidenced by scanning electronic microscopy (SEM) and inductively coupled plasma spectroscopy (ICP) analysis. MIC rates of more corrosion-resistant alloys such as UNS NO6022 Ni-Cr- MO-W alloy, UN's NO6625 Ni-Cr-Mo alloy, and UNS S30400 stainless steel were measured below 0.05 umyr, however YM bacteria affected depletion of Cr and Fe relative to Ni in these materials. The chemical change on the metal surface caused by depletion was characterized in anodic polarization behavior. The anodic polarization behavior of depleted Ni-based alloys was similar to that of pure Ni. Key words: MIC, container materials, YM bacteria, de-alloying, Ni-depletion, Cr-depletion, polarization resistance, anodic polarization,

  3. Experiments and models of general corrosion and flow-assisted corrosion of materials in nuclear reactor environments

    Science.gov (United States)

    Cook, William Gordon

    Corrosion and material degradation issues are of concern to all industries. However, the nuclear power industry must conform to more stringent construction, fabrication and operational guidelines due to the perceived additional risk of operating with radioactive components. Thus corrosion and material integrity are of considerable concern for the operators of nuclear power plants and the bodies that govern their operations. In order to keep corrosion low and maintain adequate material integrity, knowledge of the processes that govern the material's breakdown and failure in a given environment are essential. The work presented here details the current understanding of the general corrosion of stainless steel and carbon steel in nuclear reactor primary heat transport systems (PHTS) and examines the mechanisms and possible mitigation techniques for flow-assisted corrosion (FAC) in CANDU outlet feeder pipes. Mechanistic models have been developed based on first principles and a 'solution-pores' mechanism of metal corrosion. The models predict corrosion rates and material transport in the PHTS of a pressurized water reactor (PWR) and the influence of electrochemistry on the corrosion and flow-assisted corrosion of carbon steel in the CANDU outlet feeders. In-situ probes, based on an electrical resistance technique, were developed to measure the real-time corrosion rate of reactor materials in high-temperature water. The probes were used to evaluate the effects of coolant pH and flow on FAC of carbon steel as well as demonstrate of the use of titanium dioxide as a coolant additive to mitigated FAC in CANDU outlet feeder pipes.

  4. State of the art review of degradation processes in LMFBR materials. Volume II. Corrosion behavior

    International Nuclear Information System (INIS)

    Dillon, R.D.

    1975-01-01

    Degradation of materials exposed to Na in LMFBR service is reviewed. The degradation processes are discussed in sections on corrosion and mass transfer, erosion, wear and self welding, sodium--water reactions, and external corrosion. (JRD)

  5. Metallic materials corrosion in the CRNL radwaste incinerator

    International Nuclear Information System (INIS)

    Tapping, R.L.; McVey, E.G.; Disney, D.J.

    1987-01-01

    Corrosion coupon evaluation and in-service materials performance for the CRNL waste incinerator has been carried out since 1980. Data are presented to show that types 309, 310 and 446 stainless steel, Alloy 625 and Alloy 333 all perform well in short-term tests in the afterburner environment (850-1000 0 C) but are subject to sigma-phase embrittlement and grain boundary carbide precipitation following long-term exposures. Several alloys performed satisfactorily in the primary chamber (500 0 C), and the material of construction, type 310 stainless steel, continues to provide good service

  6. Materials and corrosion characterization using the confocal resonator

    Energy Technology Data Exchange (ETDEWEB)

    Tigges, C.P.; Sorensen, N.R.; Hietala, V.M.; Plut, T.A. [and others

    1997-05-01

    Improved characterization and process control is important to many Sandia and DOE programs related to manufacturing. Many processes/structures are currently under-characterized including thin film growth, corrosion and semiconductor structures, such as implant profiles. A sensitive tool is required that is able to provide lateral and vertical imaging of the electromagnetic properties of a sample. The confocal resonator is able to characterize the surface and near-surface impedance of materials. This device may be applied to a broad range of applications including in situ evaluation of thin film processes, physical defect detection/characterization, the characterization of semiconductor devices and corrosion studies. In all of these cases, the technology should work as a real-time process diagnostic or as a feedback mechanism regarding the quality of a manufacturing process. This report summarizes the development and exploration of several diagnostic applications.

  7. Corrosion-Resistant Container for Molten-Material Processing

    Science.gov (United States)

    Stern, Theodore G.; McNaul, Eric

    2010-01-01

    In a carbothermal process, gaseous methane is passed over molten regolith, which is heated past its melting point to a temperature in excess of 1,625 C. At this temperature, materials in contact with the molten regolith (or regolith simulant) corrode and lose their structural properties. As a result, fabricating a crucible to hold the molten material and providing a method of contact heating have been problematic. Alternative containment approaches use a large crucible and limit the heat zone of the material being processed, which is inefficient because of volume and mass constraints. Alternative heating approaches use non-contact heating, such as by laser or concentrated solar energy, which can be inefficient in transferring heat and thus require higher power heat sources to accomplish processing. The innovation is a combination of materials, with a substrate material having high structural strength and stiffness and high-temperature capability, and a coating material with a high corrosion resistance and high-temperature capability. The material developed is a molybdenum substrate with an iridium coating. Creating the containment crucible or heater jacket using this material combination requires only that the molybdenum, which is easily processed by conventional methods such as milling, electric discharge machining, or forming and brazing, be fabricated into an appropriate shape, and that the iridium coating be applied to any surfaces that may come in contact with the corrosive molten material. In one engineering application, the molybdenum was fashioned into a container for a heat pipe. Since only the end of the heat pipe is used to heat the regolith, the container has a narrowing end with a nipple in which the heat pipe is snugly fit, and the external area of this nipple, which contacts the regolith to transfer heat into it, is coated with iridium. At the time of this reporting, no single material has been found that can perform the functions of this combination

  8. Corrosion of structural materials and electrochemistry in high temperature water of nuclear power systems

    International Nuclear Information System (INIS)

    Uchida, Shunsuke

    2014-01-01

    The latest experiences with corrosion in the cooling systems of nuclear power plants are reviewed. High temperature cooling water causes corrosion of structural materials, which often leads to adverse effects in the plants, e.g., generating defects in materials of major components and fuel claddings, increasing shutdown radiation and increasing the volume of radwaste sources. Corrosion behaviors are much affected by water qualities and differ according to the values of water qualities and the materials themselves. In order to establish reliable operation, each plant requires its own unique optimal water chemistry control based on careful consideration of its system, materials and operational history. Electrochemistry is one of key issues that determine corrosion related problems but it is not the only issue. Most phenomena for corrosion related problems, e.g., flow-accelerated corrosion (FAC), intergranular stress corrosion cracking (IGSCC), primary water stress corrosion cracking (PWSCC) and thinning of fuel cladding materials, can be understood based on an electrochemical index, e.g., electrochemical corrosion potential (ECP), conductivities and pH. The most important electrochemical index, ECP, can be measured at elevated temperature and applied to in situ sensors of corrosion conditions to detect anomalous conditions of structural materials at their very early stages. In the paper, theoretical models based on electrochemistry to estimate wall thinning rate of carbon steel piping due to flow-accelerated corrosion and corrosive conditions determining IGSCC crack initiation and growth rate are introduced. (author)

  9. Corrosion studies on HGW-canister materials for marine disposal

    International Nuclear Information System (INIS)

    Taylor, K.J.; Bland, I.D.; Marsh, G.P.

    1984-07-01

    A combination of mathematical modelling and experimental studies has been used to investigate and assess the long term corrosion behaviour of heat generating waste canister/ overpack materials under conditions relevant to deep ocean disposal. Preliminary operation of the model, using improved electrochemical kinetic data from the experimental programme, has indicated that the general corrosion rate of carbon steel at 90 deg C will be 57 μm yr -1 which is equivalent to a metal loss of 57 mm in 1000 years. This prediction compares favourably with the results from long term tests, which are also in progress, for plain and electron beam welded carbon steel specimens embedded in marine sediment at 90 deg C under active dissolution conditions. Tests with γ-radiation at a dose rate of 1.5 x 10 5 R h -1 have shown that the pH of seawater falls to 3.7 after 5000 hours exposure causing a significant increase in the corrosion rate of carbon steel from 50 to 80 μm yr -1 . Further work is in progress to investigate the mechanism of this acidification and whether it also occurs at the more realistic lower radiation dose rates. (author)

  10. Corrosion problems of materials for mechanical, power and chemical engineering

    International Nuclear Information System (INIS)

    Bouska, P.; Cihal, V.; Malik, K.; Vyklicky, M.; Stefec, R.

    1988-01-01

    The proceedings contain 47 contributions, out of which 8 have been inputted in INIS. These are concerned with various corrosion problems of WWER primary circuit components and their testing. The factors affecting the corrosion resistance are analyzed, the simultaneous corrosion action of decontamination of steels is assessed, and the corrosion cracking of special steels is dealt with. The effects of deformation on the corrosion characteristics are examined for steel to be used in fast reactors. The corrosion potentials were measured for various steels. A testing facility for corrosion-mechanical tests is briefly described. (M.D.). 5 figs., 5 tabs., 25 refs

  11. Detrimental effect of Air pollution, Corrosion on Building Materials and Historical Structures

    OpenAIRE

    N. Venkat Rao; M. Rajasekhar; Dr. G. Chinna Rao

    2016-01-01

    The economy of any country would be drastically changed if there were no corrosion. The annual cost of corrosion world wise is over 3 % of the worlds GDP. As pet the sources available, India losses $ 45 billion every year on account of corrosion of infrastructure, Industrial machinery and other historical heritage. Keeping this critical and alarming situation in view, this paper focuses on how all these forms of corrosion affect building materials and historical structures. It als...

  12. Corrosion of structural materials and electrochemistry in high temperature water of nuclear power systems

    International Nuclear Information System (INIS)

    Uchida, Shunsuke

    2008-01-01

    The latest experiences with corrosion in the cooling systems of nuclear power plants are reviewed. High temperature cooling water causes corrosion of structural materials, which often leads to adverse effects in the plants, e.g., increased shutdown radiation, generation of defects in materials of major components and fuel claddings, and increased volume of radwaste sources. Corrosion behavior is greatly affected by water quality and differs according to the water quality values and the materials themselves. In order to establish reliable operation, each plant requires its own unique optimal water chemistry control based on careful consideration of its system, materials and operational history. Electrochemistry is one of the key issues that determine corrosion-related problems, but it is not the only issue. Most corrosion-related phenomena, e.g., flow accelerated corrosion (FAC), intergranular stress corrosion cracking (IGSCC), primary water stress corrosion cracking (PWSCC) and thinning of fuel cladding materials, can be understood based on an electrochemical index, e.g., the electrochemical corrosion potential (ECP), conductivities and pH. The most important electrochemical index, the ECP, can be measured at elevated temperature and applied to in situ sensors of corrosion conditions to detect anomalous conditions of structural materials at their very early stages. (orig.)

  13. Dictionary corrosion and corrosion control

    International Nuclear Information System (INIS)

    1985-01-01

    This dictionary has 13000 entries in both languages. Keywords and extensive accompanying information simplify the choice of word for the user. The following topics are covered: Theoretical principles of corrosion; Corrosion of the metals and alloys most frequently used in engineering. Types of corrosion - (chemical-, electro-chemical, biological corrosion); forms of corrosion (superficial, pitting, selective, intercrystalline and stress corrosion; vibrational corrosion cracking); erosion and cavitation. Methods of corrosion control (material selection, temporary corrosion protection media, paint and plastics coatings, electro-chemical coatings, corrosion prevention by treatment of the corrosive media); Corrosion testing methods. (orig./HP) [de

  14. Hydrofluoric Acid Corrosion Study of High-Alloy Materials

    International Nuclear Information System (INIS)

    Osborne, P.E.

    2002-01-01

    A corrosion study involving high-alloy materials and concentrated hydrofluoric acid (HF) was conducted in support of the Molten Salt Reactor Experiment Conversion Project (CP). The purpose of the test was to obtain a greater understanding of the corrosion rates of materials of construction currently used in the CP vs those of proposed replacement parts. Results of the study will help formulate a change-out schedule for CP parts. The CP will convert slightly less than 40 kg of 233 U from a gas (UF 6 ) sorbed on sodium fluoride pellets to a more stable oxide (U 3 O 8 ). One by-product of the conversion is the formation of concentrated HF. Six moles of highly corrosive HF are produced for each mole of UF 6 converted. This acid is particularly corrosive to most metals, elastomers, and silica-containing materials. A common impurity found in 233 U is 232 U. This impurity isotope has several daughters that make the handling of the 233 U difficult. Traps of 233 U may have radiation fields of up to 400 R at contact, a situation that makes the process of changing valves or working on the CP more challenging. It is also for this reason that a comprehensive part change-out schedule must be established. Laboratory experiments involving the repeated transfer of HF through 1/2-in. metal tubing and valves have proven difficult due to the corrosivity of the HF upon contact with all wetted parts. Each batch of HF is approximately 1.5 L of 33 wt% HF and is transferred most often as a vapor under vacuum and at temperatures of up to 250 C. Materials used in the HF side of the CP include Hastelloy C-276 and Monel 400 tubing, Haynes 230 and alloy C-276 vessels, and alloy 400 valve bodies with Inconel (alloy 600) bellows. The chemical compositions of the metals discussed in this report are displayed in Table 1. Of particular concern are the almost 30 vendor-supplied UG valves that have the potential for exposure to HF. These valves have been proven to have a finite life due to failure

  15. Hydrofluoric Acid Corrosion Study of High-Alloy Materials

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, P.E.

    2002-09-11

    A corrosion study involving high-alloy materials and concentrated hydrofluoric acid (HF) was conducted in support of the Molten Salt Reactor Experiment Conversion Project (CP). The purpose of the test was to obtain a greater understanding of the corrosion rates of materials of construction currently used in the CP vs those of proposed replacement parts. Results of the study will help formulate a change-out schedule for CP parts. The CP will convert slightly less than 40 kg of {sup 233}U from a gas (UF{sub 6}) sorbed on sodium fluoride pellets to a more stable oxide (U{sub 3}O{sub 8}). One by-product of the conversion is the formation of concentrated HF. Six moles of highly corrosive HF are produced for each mole of UF{sub 6} converted. This acid is particularly corrosive to most metals, elastomers, and silica-containing materials. A common impurity found in {sup 233}U is {sup 232}U. This impurity isotope has several daughters that make the handling of the {sup 233}U difficult. Traps of {sup 233}U may have radiation fields of up to 400 R at contact, a situation that makes the process of changing valves or working on the CP more challenging. It is also for this reason that a comprehensive part change-out schedule must be established. Laboratory experiments involving the repeated transfer of HF through 1/2-in. metal tubing and valves have proven difficult due to the corrosivity of the HF upon contact with all wetted parts. Each batch of HF is approximately 1.5 L of 33 wt% HF and is transferred most often as a vapor under vacuum and at temperatures of up to 250 C. Materials used in the HF side of the CP include Hastelloy C-276 and Monel 400 tubing, Haynes 230 and alloy C-276 vessels, and alloy 400 valve bodies with Inconel (alloy 600) bellows. The chemical compositions of the metals discussed in this report are displayed in Table 1. Of particular concern are the almost 30 vendor-supplied UG valves that have the potential for exposure to HF. These valves have been

  16. Research and development activities at INE concerning corrosion of final repository container materials

    International Nuclear Information System (INIS)

    Kienzler, Bernhard

    2017-01-01

    The present work provides a historical overview of the research and development activities carried out at the (Nuclear) Research Center Karlsruhe (today KIT) since the beginning of the 1980s on the corrosion of materials which might be suitable for construction of containers for highly radioactive wastes. The report relates almost exclusively to the work performed by Dr. Emmanuel Smailos, who elaborated the corrosion of various materials at the Institute for Nuclear Waste Disposal (INE). The requirements for the containers and materials, which were subject to changes in time, are presented. The changes were strongly influenced by the changed perception of the use of nuclear energy. The selection of the materials under investigations, the boundary conditions for the corrosion experiments and the analytical methods are described. Results of the corrosion of the materials such as finegrained steel, Hastelloy C4, nodular cast iron, titanium-palladium and copper or copper-nickel alloys in typical salt solutions are summarized. The findings of special investigations, e.g. corrosion under irradiation or the influence of sulfide on the corrosion rates are shown. For construction of disposal canisters, experiments were conducted to determine the contact corrosion, the influence of the hydrogen embrittlement of Ti-Pd and fine-grained steels on the corrosion behavior as well as the corrosion behavior of welding and the influence of different welding processes with the resulting heat-affected zones on the corrosion behavior. The work was contributed to several European research programs and was well recognized in the USA. Investigations on the corrosion of steels in non-saline solutions and corrosion under interim storage conditions as well as under the expected conditions of the Konrad repository for low-level radioactive wastes are also described. In addition, the experiments on ceramic materials are presented and the results of the corrosion of Al 2 O 3 and ZrO 2 ceramics

  17. Corrosion of NdFeB permanent magnet materials

    International Nuclear Information System (INIS)

    Warren, G.W.; Gao, G.; Li, Q.

    1991-01-01

    NdFeB is an important class of new magnetic materials, however corrosion resistance is a serious concern and literature on the electrochemical behavior of NdFeB is scarce. This paper reports the results of an electrochemical investigation of the corrosion behavior of sintered NdFeB magnets obtained from three manufacturers. Linear polarization (cyclic voltammetry) experiments were conducted in aqueous solutions ranging in pH from 0.7 to 13.5. A limited degree of passivation was observed in all solutions which is believed to be due to the formation of a complex Fe-Nd oxide and/or hydroxide film. The presence of a small amount of chloride ion, 10 to 100 ppm, shows only a slight effect, but higher concentrations (1000 ppm) cause a total breakdown in passivity and a dramatic increase in anodic current. The cathodic potential sweep shows an abrupt and unusual oxidation process, giving rise to an oxidation peak not commonly seen. This peak may result from dissolution of the film or preferential attack of intergranular phases

  18. Stress corrosion cracking of equipment materials in domestic pressurized water reactors and the relevant safety management

    International Nuclear Information System (INIS)

    Sun Haitao

    2015-01-01

    International and domestic research and project state about stress corrosion cracking of nuclear equipments and materials (including austenitic stainless steel and nickel based alloys) in pressurized water reactor are discussed, and suggestions on how to prevent, mitigate ana deal with the stress corrosion cracking issues in domestic reactors are given in this paper based on real case analysis and study ondomestic nuclear equipment and material stress corrosion cracking failure. (author)

  19. Corrosion of Structural Materials in Liquid Metals Used as Fast Reactor Coolants

    International Nuclear Information System (INIS)

    Balbaud-Célérier, F.; Courouau, J.L.; Martinelli, L.

    2013-01-01

    Conclusions: • Thermodynamic data give the stable state of the system, the compounds susceptible to form but no information on the kinetics of the process; • Need to perform corrosion tests in controlled conditions of temperature, chemistry, hydrodynamics; • Comparison of the materials behaviour: first selection of materials, optimisation of the composition; • Fundamental work on the understanding of the corrosion process to develop corrosion models and predictive laws to guarantee the long term behaviour

  20. Preliminary sensitivity analyses of corrosion models for BWIP [Basalt Waste Isolation Project] container materials

    International Nuclear Information System (INIS)

    Anantatmula, R.P.

    1984-01-01

    A preliminary sensitivity analysis was performed for the corrosion models developed for Basalt Waste Isolation Project container materials. The models describe corrosion behavior of the candidate container materials (low carbon steel and Fe9Cr1Mo), in various environments that are expected in the vicinity of the waste package, by separate equations. The present sensitivity analysis yields an uncertainty in total uniform corrosion on the basis of assumed uncertainties in the parameters comprising the corrosion equations. Based on the sample scenario and the preliminary corrosion models, the uncertainty in total uniform corrosion of low carbon steel and Fe9Cr1Mo for the 1000 yr containment period are 20% and 15%, respectively. For containment periods ≥ 1000 yr, the uncertainty in corrosion during the post-closure aqueous periods controls the uncertainty in total uniform corrosion for both low carbon steel and Fe9Cr1Mo. The key parameters controlling the corrosion behavior of candidate container materials are temperature, radiation, groundwater species, etc. Tests are planned in the Basalt Waste Isolation Project containment materials test program to determine in detail the sensitivity of corrosion to these parameters. We also plan to expand the sensitivity analysis to include sensitivity coefficients and other parameters in future studies. 6 refs., 3 figs., 9 tabs

  1. Container material for the disposal of highly radioactive wastes: corrosion chemistry aspects

    International Nuclear Information System (INIS)

    Grauer, R.

    1984-08-01

    Prior to disposal in crystalline formations it is planned to enclose vitrified highly radioactive waste from nuclear power plants in metallic containers ensuring their isolation from the groundwater for at least 1,000 years. Appropriate metals can be either thermodynamically stable in the repository environment (such as copper), passive materials with very low corrosion rates (titanium, nickel alloys), or metals such as cast iron or unalloyed cast steels which, although they corrode, can be used in sections thick enough to allow for this corrosion. The first part of the report presents the essentials of corrosion science in order to enable even a non-specialist to follow the considerations and arguments necessary to choose the material and design the container against corrosion. Following this, the principles of the long-term extrapolation of corrosion behaviour are discussed. The second part summarizes and comments upon the literature search carried out to identify published results relevant to corrosion in a repository environment. Results of archeaological studies are included wherever possible. Not only the general corrosion behaviour but also localized corrosion and stress corrosion cracking are considered, and the influence of hydrogen on the material behaviour is discussed. Taking the corrosion behaviour as criterion, the author suggests the use either of copper or of cast iron or steel as an appropriate container material. The report concludes with proposals for further studies. (Auth.)

  2. Material irradiation techniques used in corrosion and wear analysis

    International Nuclear Information System (INIS)

    Tenreiro, Claudio

    1996-01-01

    Full text: Nuclear physics methods, applied to material analysis are discussed and some application examples are given. Experiments have been performed to study corrosion du to the presence of humidity and sulfur compounds. The use of resonant reactors allows the determination of depth profiles of H and S from structures located in particularly contaminated areas. The method provides a non destructive and quick way of estimating the effect of such elements in different types of structures, such as the ones used in high voltage transmission lines. Also the wear out rates in mechanical engine components having a difficult direct access, have been evaluated by proton activation analysis. The evaluation of the advantages of this method is being done. The effect of irradiation damage on superconducting high temperature ceramics was analyzed by the interaction of energetic alpha particles with high T c YBaCuO samples

  3. Study on Corrosion of Materials by Fluoric Acid and Silicofluoric Acid

    International Nuclear Information System (INIS)

    Park, Kun You; Kwon, Yeong Soo; Kuk, Myung Ho; Kim, Myun Sup

    1986-01-01

    The corrosion properties of 304 Stainless steel, Cupro-nickel, NiCrMo alloy in hydrofluoric acid and silicofluoric acid has been studied. The corrosion resistance of NiCrMo alloy and Cupro-nickel in hydrofluoric acid or mixed acid of hydrofluoric and sulfuric acid is excellent. Because of lower corrosion resistance of 304 Stainless steel, it would not be used for these corrosion resistant materials. The corrosion activation energy of 304 Stainless steel, Cupro-nickel and NiCrMo alloy in 40% HF solution are 42.7, 58.9 and 89.7 kJ/mol, respectively. By these values, it is assumed that the corrosion rate determining step is the chemical reaction on surface of metals. In the plastics, Teflon and polychloro tetrafluoroethylene are most excellent for corrosion resistance in hydrofluoric acid

  4. Effect of chloride concentration and pH on pitting corrosion of waste package container materials

    International Nuclear Information System (INIS)

    Roy, A.K.; Fleming, D.L.; Gordon, S.R.

    1996-12-01

    Electrochemical cyclic potentiodynamic polarization experiments were performed on several candidate waste package container materials to evaluate their susceptibility to pitting corrosion at 90 degrees C in aqueous environments relevant to the potential underground high-level nuclear waste repository. Results indicate that of all the materials tested, Alloy C-22 and Ti Grade-12 exhibited the maximum corrosion resistance, showing no pitting or observable corrosion in any environment tested. Efforts were also made to study the effect of chloride ion concentration and pH on the measured corrosion potential (Ecorr), critical pitting and protection potential values

  5. Corrosion resistant materials for fluorine and hydrogen fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Hauffe, K.

    1984-12-01

    Aluminum and Duralumin are resistant against fluorine and hydrogen fluoride up to 600 and 700 K, respectively. The resistance of nickel and its alloys, particularly monel, against fluorine and hydrogen fluoride is fairly good up to 900 and 800 K. During the attack of nickel-chromium alloys by fluorine between 1000 and 1300 K, it appears an inner fluorination similarly to the inner oxidation. The resistance of titanium in water-free liquid fluorine at lower temperatures with <0,3 mm.a/sup -1/ is comparable to that of nickel and monel. However, the corrosion of titanium in gaseous fluorine amounts at 377 K only 0,0082 mm.a/sup -1/. In spite of their limited resistance against fluorine and hydrogen fluoride, very pure molybdenum and tungsten are employed as construction materials in the rocket technology because of their large strength at high temperatures if fluorine-hydrogen and fluorine-hydrazine flames are used. Lanthanum and calcium borides are only little attacked by fluorine hydrazine flames between 1400 and 1800 K; they are superior to all special grade alloys. The same is true in a lower temperature region (290-400 K) with fluorcarbon resins. Organic materials substitute in increasing extent metal alloys and non-metal inorganic materials.

  6. Corrosion resistant materials for fluorine and hydrogen fluoride

    International Nuclear Information System (INIS)

    Hauffe, K.

    1984-01-01

    Aluminum and Duralumin are resistant against fluorine and hydrogen fluoride up to 600 and 700 K, respectively. The resistance of nickel and its alloys, particularly monel, against fluorine and hydrogen fluoride is fairly good up to 900 and 800 K. During the attack of nickel-chromium alloys by fluorine between 1000 and 1300 K, it appears an inner fluorination similarly to the inner oxidation. The resistance of titanium in water-free liquid fluorine at lower temperatures with -1 is comparable to that of nickel and monel. However, the corrosion of titanium in gaseous fluorine amounts at 377 K only 0,0082 mm.a -1 . In spite of their limited resistance against fluorine and hydrogen fluoride, very pure molybdenum and tungsten are employed as construction materials in the rocket technology because of their large strength at high temperatures if fluorine-hydrogen and fluorine-hydrazine flames are used. Lanthanum and calcium borides are only little attacked by fluorine hydrazine flames between 1400 and 1800 K; they are superior to all special grade alloys. The same is true in a lower temperature region (290-400 K) with fluorcarbon resins. Organic materials substitute in increasing extent metal alloys and non-metal inorganic materials. (orig.) [de

  7. Corrosion test plan to guide canister material selection and design for a tuff repository

    International Nuclear Information System (INIS)

    McCright, R.D.; van Konynenburg, R.A.; Ballou, L.B.

    1983-11-01

    Corrosion rates and the mode of corrosion attack form a most important basis for selection of canister materials and design of a nuclear waste package. Type 304L stainless steel was selected as the reference material for canister fabrication because of its generally excellent corrosion resistance in water, steam and air. However, 304L may be susceptible to localized and stress-assisted forms of corrosion under certain conditions. Alternative alloys are also investigated; these alloys were chosen because of their improved resistance to these forms of corrosion. The fabrication and welding processes, as well as the glass pouring operation for defense and commercial high-level wastes, may influence the susceptibility of the canister to localized and stress forms of corrosion. 12 references, 2 figures, 4 tables

  8. Area effect on galvanic corrosion of condenser materials with titanium tubes in nuclear power plants

    International Nuclear Information System (INIS)

    Hwang, Seong Sik; Kim, Joung Soo; Kim, Uh Chul

    1993-01-01

    Titanium tubes have recently been used in condensers of nuclear power plants since titanium has very good corrosion resistance to seawater. However, when it is connected to Cu alloys as tube sheet materials and these Cu alloys are connected to carbon steels as water box materials, it makes significant galvanic corrosion on connected materials. It is expected from electrochemical tests that the corrosion rate of carbon steel will increase when it is galvanically coupled with Ti or Cu in sea water and the corrosion rate of Cu will increase when it is coupled with Ti, of this couple is exposed to sea water for a long time. It is also expected that the surface area ratios, R 1 (surface area of carbon steel/surface area of Ti) and R 2 (surface area of carbon steel/surface area of Cu) are very improtant for the galvanic corrosion of carbon steel and that these should not be kept to low values in order to minimize the galvanic corrosion on the carbon steel of the water box. Immersed galvanic corrosion tests show that the corrosion rate of carbon steel is 4.4 mpy when this ratio is 10 -2 . The galvanic corrosion rate of this carbon steel is increased from 4.4 mpy to 13 mpy at this area ratio, 1, when this connected galvanic specimen is galvanically coupled with a Ti tube. This can be rationalized by the combined effects of R 1 and R 2 on the polarization curve. (Author)

  9. Corrosion performance of advanced structural materials in sodium.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L. (Nuclear Engineering Division)

    2012-05-16

    This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory, the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux

  10. Corrosion performance of advanced structural materials in sodium

    International Nuclear Information System (INIS)

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L.

    2012-01-01

    This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory, the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux Test Facility, and

  11. Erosion-corrosion of structural materials of wet steam turbines

    International Nuclear Information System (INIS)

    Tomarov, G.V.

    1989-01-01

    A model of erosion-corrosion wear of elements of a wet steam zone and a condensate-feeding path of turbines is considered. It is shown that diffusion of impurities and corrosion products in pores of an oxide layer is the control mechanism under conditions of laminar flow of a media. Processes of mass transfer are controlling factors in turbulent flow

  12. Crevice corrosion resistance of high alloyed materials in 3.5 % NaCl solution

    International Nuclear Information System (INIS)

    Alar, Vesna; Stojanovic, Ivan; Simunovic, Vinko

    2014-01-01

    The effects of applied torque on the corrosion behaviour of W.-Nr. 1.4404 and 1.4462 stainless steels and W.-Nr. 2.4605 and 2.4858 nickel alloys with crevices were investigated using the cyclic potentiodynamic polarization method. Crevice corrosion (material-to-polytetrafluoroethylene) was tested in 3.5 % NaCl solution at 22 C. The corroded surface was examined using scanning electron microscopy. The results indicate similar trends in susceptibility to crevice corrosion with increasing torque. Among the four specimens, the W.-Nr. 1.4404 is the most susceptible to crevice corrosion. (orig.)

  13. 49 CFR 195.559 - What coating material may I use for external corrosion control?

    Science.gov (United States)

    2010-10-01

    ...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating... 49 Transportation 3 2010-10-01 2010-10-01 false What coating material may I use for external corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...

  14. Corrosion of container materials for disposal of high-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Chun, K.S.; Park, H.S.; Yeon, J.W.; Ha, Y.K. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    In the corrosion aspect of container for the deep geological disposal of high-level radioactive waste, disposal concepts and the related container materials, which have been developed by advanced countries, have been reviewed. The disposal circumstances could be divided into the saturated and the unsaturated zones. The candidate materials in the countries, which consider the disposal in the unsaturated zone, are the corrosion resistant materials such as supper alloys and stainless steels, but those in the saturated zone is cupper, one of the corrosion allowable materials. By the results of the pitting corrosion test of sensitized stainless steels (such as 304, 304L, 316 and 316L), pitting potential is decreased with the degree of sensitization and the pitting corrosion resistance of 316L is higher than others. And so, the long-term corrosion experiment with 316L stainless steel specimens, sebsitized and non-sensitized, under the compacted bentonite and synthetic granitic groundwater has been being carried out. The results from the experiment for 12 months indicate that no evidence of pitting corrosion of the specimens has been observed but the crevice corrosion has occurred on the sensitized specimens even for 3 months. (author). 33 refs., 19 figs., 10 tabs.

  15. Study on metal material corrosion behavior of packaging of cement solidified form

    International Nuclear Information System (INIS)

    He Zhouguo; Lin Meiqiong; Fan Xianhua

    1997-01-01

    The corrosion behavior of A3 carbon steel is studied by the specimens that are exposed to atmosphere, embedded in cement solidified form or immersed in corrosion liquid. The corrosion rate is determined by mass change of the specimens. In order to compare the corrosion resistant performance of various coatings, the specimens painted with various material such as epoxide resin, propionic acid resin, propane ether resin and Ti-white paint are tested. The results of the tests show that corrosion rate of A3 carbon steel is less than 10 -3 mm·a -1 in the atmosphere and the cement solidified from, less than 0.1 mm·a -1 in the corrosion liquids, and pH value in the corrosion liquids also affect the corrosion rate of A3 carbon steel. The corrosion resistant performance of Ti-white paint is better than that of other paints. So, A3 carbon steel as packaging material can meet the requirements during storage

  16. Stress corrosion cracking of candidate materials for nuclear waste containers

    International Nuclear Information System (INIS)

    Maiya, P.S.; Shack, W.J.; Kassner, T.F.

    1989-09-01

    Types 304L and 316L stainless steel (SS), Incoloy 825, Cu, Cu-30%Ni, and Cu-7%Al have been selected as candidate materials for the containment of high-level nuclear waste at the proposed Yucca Mountain Site in Nevada. The susceptibility of these materials to stress corrosion cracking has been investigated by slow-strain-rate tests (SSRTs) in water which simulates that from well J-13 (J-13 water) and is representative of the groundwater present at the Yucca Mountain site. The SSRTs were performed on specimens exposed to simulated J-13 water at 93 degree C and at a strain rate 10 -7 s -1 under crevice conditions and at a strain rate of 10 -8 s -1 under both crevice and noncrevice conditions. All the tests were interrupted after nominal elongation strains of 1--4%. Examination by scanning electron microscopy showed some crack initiation in virtually all specimens. Optical microscopy of metallographically prepared transverse sections of Type 304L SS suggests that the crack depths are small (<10 μm). Preliminary results suggest that a lower strain rate increases the severity of cracking of Types 304L and 316L SS, Incoloy 825, and Cu but has virtually no effect on Cu-30%Ni and Cu-7%Al. Differences in susceptibility to cracking were evaluated in terms of a stress ratio, which is defined as the ratio of the increase in stress after local yielding in the environment to the corresponding stress increase in an identical test in air, both computed at the same strain. On the basis of this stress ratio, the ranking of materials in order of increasing resistance to cracking is: Types 304L SS < 316L SS < Incoloy 825 congruent Cu-30%Ni < Cu congruent Cu-7%Al. 9 refs., 12 figs., 7 tabs

  17. Assessing microbiologically induced corrosion of waste package materials in the Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J. M., LLNL

    1998-01-01

    The contribution of bacterial activities to corrosion of nuclear waste package materials must be determined to predict the adequacy of containment for a potential nuclear waste repository at Yucca Mountain (YM), NV. The program to evaluate potential microbially induced corrosion (MIC) of candidate waste container materials includes characterization of bacteria in the post-construction YM environment, determination of their required growth conditions and growth rates, quantitative assessment of the biochemical contribution to metal corrosion, and evaluation of overall MIC rates on candidate waste package materials.

  18. Corrosion studies on HGW-canister materials for marine disposal

    International Nuclear Information System (INIS)

    Taylor, K.J.; Bland, I.D.; Smith, S.; Marsh, G.P.

    1986-03-01

    Results are presented from theoretical and experimental work undertaken to investigate and assess the general corrosion behaviour of carbon steel canister/overpacks for heat generating nuclear waste under marine disposal conditions. The mean general corrosion rates of carbon steels, determined experimentally by polarisation resistance measurements on specimens in on-going immersion tests, are between 65-124 μm yr -1 at 90 0 C and 5-25 μm yr -1 at 25 0 C and are tending to increase with time. Anomalously high corrosion rates are being indicated by similar tests at 50 0 C. It is not clear what reliance should be placed on the polarisation resistance results, however, and therefore no conclusion will be drawn until the tests are dismantled and inspected in the 1985/86 programme. Tests with γ-radiation on forged carbon steel specimens immersed in deaerated seawater at 90 0 C show that this causes an acceleration of corrosion rate at the three dose rates down to at least 300 R h -1 . Deep ocean sediment from GME also accelerates the corrosion rate of carbon steel in deaerated seawater both with and without γ-radiation. The effect diminishes with continued exposure and is thought to be due to the presence of either an additional so far unidentified oxidising agent or some component which reduces the corrosion protection afforded by the build up of a corrosion product layer. Acquisition of improved electrochemical kinetic data for the mathematical model is now complete, and the model has been run for temperatures of 25 and 90 0 C, where it predicts steady corrosion rates of 19.3 and 180 μm/yr. The model has shown that the rate of attack is not influenced greatly by the depth of sediment, and that the component of corrosion caused by radiation is of the order of 7 mm over 1000 years. (author)

  19. Corrosion investigation of material combinations in a mobile phone dome-key pad system

    DEFF Research Database (Denmark)

    Ambat, Rajan; Møller, Per

    2007-01-01

    to multiple corrosion problems. In this paper, the corrosion susceptibility of dome (Ag/AISI 202 steel) and key pad system (Au/Ni/Cu) is investigated with an aim to understand the corrosion performance of such multi-material combinations in chloride containing environment. Investigation includes...... microstructural studies, polarization measurements using microelectrochemical technique, salt spray testing, and corrosion morphology analysis. The immersion Au layer on pads showed pores, and rolled bonded silver layer on dome had cracks and kinks. The difference in electrochemical behaviour of the metallic...... layers together with imperfections in the top layer results in severe pitting due to galvanic coupling. However, corrosion performance of the pads was much worse than domes. The results are applicable to a broad spectrum of PCB parts where similar material combinations are employed, especially Au/Ni/Cu....

  20. Corrosion properties of sealing surface material for RPV under abnormal working conditions

    International Nuclear Information System (INIS)

    Liu Jinhua; Wen Yan; Zhang Xuemei; Hou Songmin; Gong Bin; He Yanchun

    2012-01-01

    Based on the corrosion issue of sealing surface material for RPV in some nuclear projects, the corrosion properties of sealing surface material for RPV under abnormal working conditions were investigated. The corrosion behavior of 308L stainless steel were studied by using autoclave in different contents of Cl - solutions, and these samples were observed and analyzed by means of the metalloscope and Scanning electron microscope (SEM). Results show that no pitting, crevice and stress corrosion occurred, when the content of Cl - was lower than 1 mg/L at the temperatures of 270℃ and the pressure of 5.5 MPa. However, with the increase of the content of Cl - , the susceptibility to pitting, crevice and stress corrosion of 308L was enhanced remarkably. (authors)

  1. Evaluation of corrosion resistance of various concrete reinforcing materials.

    Science.gov (United States)

    2013-06-01

    The Vermont Agency of Transportation undertook a simple experiment to determine the corrosion : resistance ability of various reinforcing steels (rebar) that may be used in bridges and other concrete : structures. Eight types of rebar were used in th...

  2. Corrosion behaviors of SMART materials in the ammonia atmosphere

    International Nuclear Information System (INIS)

    Baek, J. H.; Lee, M. H.; Choi, B. S.; Kim, J. P.; Jung, Y. H.; Lee, D. J.

    1999-01-01

    The corrosion characteristics of the zirconium-based alloy(Low-Sn Zircaloy-4) and titanium-based alloys(PT-7M and ASTM Gr.2), which would be used for fuel cladding tube and steam generator tube in the SMART, were investigated at 360 deg C, 400 deg C, 500 deg C, and 520 deg C in the ammonia atmosphere. In all test conditions, the resistance to uniform and nodular corrosion of zirconium-based alloy was inferior to that of titanium-based alloys. In the case of 360 deg C test, the corrosion rate of zirconium-based alloy decreased slightly with increasing the ammonia concentration, while that of titanium-based alloys increased. The test results above 400 deg C showed that the corrosion resistance of PT-7M alloys was superior to that of ASTM Gr.2 alloy and was not influenced from the variation of ammonia concentration

  3. Reactor Structure Materials: Corrosion of Reactor Core Internals

    International Nuclear Information System (INIS)

    Van Dyck, S.

    2000-01-01

    The objectives of SCK-CEN's R and D programme on the corrosion of reactor core internals are: (1) to gain mechanistic insight into the Irradition Assisted Stress Corrosion Cracking (IASCC) phenomenon by studying the influence of separate parameters in well controlled experiments; (2) to develop and validate a predictive capability on IASCC by model description and (3) to define and validate countermeasures and monitoring techniques for application in reactors. Progress and achievements in 1999 are described

  4. 49 CFR 195.581 - Which pipelines must I protect against atmospheric corrosion and what coating material may I use?

    Science.gov (United States)

    2010-10-01

    ... corrosion and what coating material may I use? 195.581 Section 195.581 Transportation Other Regulations... Corrosion Control § 195.581 Which pipelines must I protect against atmospheric corrosion and what coating... atmosphere, except pipelines under paragraph (c) of this section. (b) Coating material must be suitable for...

  5. Corrosion properties of cladding materials from Zr1Nb alloy

    International Nuclear Information System (INIS)

    Kloc, K.; Kosler, S.

    1975-01-01

    The corrosion behaviour was observed of the Zr1Nb alloy in hot water and superheated steam and the effects of impurity content, of the purity of the corrosion environment and of the heat treatment of the alloy were studied on the alloy corrosion resistance. Also studied were the absorption of hydrogen by the alloy and its behaviour in reactor situations. It was ascertained that the alloy has a good corrosion resistance up to a temperature of 350 degC. The corrosion resistance is reduced by the presence of nitrogen above 50 to 70 ppm and of carbon above 50 to 90 ppm. A graphic representation is given of the dependence of corrosion resistance on the temperature of annealing, the nitrogen content of the alloy and the time of the action of hot water or steam, as well as the dependence of the hydrogen content in the alloy on the peripheral tension of the cladding in hot water both in non-active environment and at irradiation with a neutron flux of approximately 10 20 n/cm 2 . (J.B.)

  6. Assessment of Corrosion Characteristics and Development of Remedial Technologies in Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo; Kim, J. S.; Lim, Y. S. (and others)

    2007-04-15

    In general, materials having superior resistance to corrosion are used for main components and structures in nuclear power plants (NPPs) to improve their safety. During long-term operations in the high temperature and pressure environment, however, localized-corrosion related degradations occur frequently in those materials, leading to unexpected shutdown of the plants. The unexpected shutdowns may lower the operating efficiency of the power generation and expand the repair period, which results in a huge economical loss. Moreover, since the damages may cause a leakage of the primary coolant that brings about a contamination by radioactive substances, the corrosion related degradations of structural materials have become a menace to the safety of NPPs. The steam generator tubes forming a boundary between the primary and secondary sides of NPPs are one of the main components that are most damaged by corrosion. Therefore, it is strongly required to verify the degradation mechanisms of Alloy 182 and Alloy 600 materials used in the steam generator tubes and primary systems, to establish remedial techniques for the degradations, to manage the damages, and to develop techniques for the extension of the plant's life. In this study, (1) the assessment techniques of corrosion damages were improved and the database of the obtained results were established. (2) The basic technologies of the management of corrosion damages were developed for the practical use. (3) The fundamental technologies for inhibition and repair of corrosion damages were also developed. The results of this project are applicable to the assessment, failure analysis and life estimation of the materials against corrosion damages. The assessment data obtained in this work are available for the technical references of the corrosion failures of components in NPPs during operation. Furthermore, it is applicable to establish materials design requirements, to establish the optimum operation condition and to

  7. CORROSION AND WEAR PROPERTIES OF MATERIALS USED FOR MINCED MEAT PRODUCTION

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Hansen, Martin Otto Laver; Hilbert, Lisbeth Rischel

    2009-01-01

    measurements. Combined sliding wear and corrosion conditions have been simulated in laboratory using a block-on-ring setup allowing for electrochemical measurements. Detailed information concerning the mechanism of possible material degradation is provided by these results, together with microstructural...

  8. Corrosion of Aluminum Alloys in the Presence of Fire-Retardant Aircraft Interior Materials

    Science.gov (United States)

    1995-10-01

    This research project was to evaluate the potential for fire-retardant materials used in aircraft interiors to cause corrosion of aluminum structural alloys. Service Difficulty Reports (SDR's) were reviewed for several aircraft types, and the most fr...

  9. Stress corrosion cracking of the tubing materials for nuclear steam generators in an environment containing lead

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Kim, Uh Chul; Lee, Eun Hee; Hwang, Seong Sik

    2004-01-01

    Steam generator tube materials show a high susceptibility to stress corrosion cracking (SCC) in an environment containing lead species and some nuclear power plants currently have degradation problems associated with lead-induced stress corrosion cracking in a caustic solution. Effects of an applied potential on SCC is tested for middle-annealed Alloy 600 specimens since their corrosion potential can be changed when lead oxide coexists with other oxidizing species like copper oxide in the sludge. In addition, all the steam generator tubing materials used for nuclear power plants being operated and currently under construction in Korea are tested in a caustic solution with lead oxide. (author)

  10. ANDRA - Referential Materials. Volume 1: Context and scope; Volume 2: Argillaceous materials; Volume 3: Cementitious materials; Volume 4: The corrosion of metallic materials

    International Nuclear Information System (INIS)

    2001-01-01

    This huge document gathers four volumes. The first volume presents some generalities about materials used in the storage of radioactive materials (definition, design principle, current choices and corresponding storage components, general properties of materials and functions of the corresponding storage components, physical and chemical solicitations experienced by materials in a storage), and the structure and content of the other documents. The second volume addresses argillaceous materials. It presents some generalities about these materials in the context of a deep geological storage, and about their design. It presents and comments the crystalline and chemical, and physical and chemical characteristics of swelling argillaceous materials and minerals, describes how these swelling argillaceous materials are shaped and set up, presents and comments physical properties (hydraulic, mechanical and thermal properties) of these materials, comments and discusses the modelling of the geo-chemical behaviour, and their behaviour in terms of containment and transport of radionuclides. The third volume addresses cementitious materials. It presents some generalities about these materials in the context of a deep geological storage, and about their definition and specifications. It presents some more detailed generalities (cement definition and composition, hydration, microstructure of hydrated cements, adjuvants), presents and comments their physical properties (fresh concrete structure and influence of composition, main aimed properties in the hardened status, transfer, mechanical, and thermal properties, shaping and setting up of these materials, technical solutions for hydraulic works). The fourth volume addresses the corrosion of metallic materials. It presents some generalities about these materials in the context of a deep geological storage of radioactive materials. It presents metallic materials and discusses their corrosion behaviour. It describes the peculiarities

  11. Crevice Corrosion Behavior of Candidate Nuclear Waste Container Materials in Repository Environment Paper Number 02529

    International Nuclear Information System (INIS)

    Hua, F.; Sarver, J.; Mohn, W.

    2001-01-01

    Alloy 22 (UNS N06022) and Ti Grade 7 (UNS R52400) have been proposed as the corrosion resistant materials for fabricating the waste package outer barrier and the drip shield, respectively for the proposed nuclear waste repository Yucca Mountain Project. In this work, the susceptibility of welded and annealed Alloy 22 (N06022) and Ti Grade 7 (UNS R52400) to crevice corrosion was studied by the Multiple Crevice Assembly (ASTM G78) method combined with surface morphological observation after four and eight weeks of exposure to the Basic Saturated Water (BSW-12) in a temperature range from 60 to 105 C. The susceptibility of the materials to crevice corrosion was evaluated based on the appearance of crevice attack underneath the crevice formers and the weight loss data. The results showed that, after exposed to BSW-12 for four and eight weeks, no obvious crevice attack was observed on these materials. The descaled weight loss increased with the increase in temperature for all materials. The weight loss, however, is believed to be caused by general corrosion, rather than crevice corrosion. There was no significant difference between the annealed and welded materials either. On the other hand, to conclude that these materials are immune to crevice corrosion in BSW-12 will require longer term testing

  12. Highly corrosion resistant zirconium based alloy for reactor structural material

    International Nuclear Information System (INIS)

    Ito, Yoichi.

    1996-01-01

    The alloy of the present invention is a zirconium based alloy comprising tin (Sn), chromium (Cr), nickel (Ni) and iron (Fe) in zirconium (Zr). The amount of silicon (Si) as an impurity is not more than 60ppm. It is preferred that Sn is from 0.9 to 1.5wt%, that of Cr is from 0.05 to 0.15wt%, and (Fe + Ni) is from 0.17 to 0.5wt%. If not less than 0.12wt% of Fe is added, resistance against nodular corrosion is improved. The upper limit of Fe is preferably 0.40wt% from a view point of uniform suppression for the corrosion. The nodular corrosion can be suppressed by reducing the amount of Si-rich deposition product in the zirconium based alloy. Accordingly, a highly corrosion resistant zirconium based alloy improved for the corrosion resistance of zircaloy-2 and usable for a fuel cladding tube of a BWR type reactor can be obtained. (I.N.)

  13. Construction and Application of a National Data-Sharing Service Network of Material Environmental Corrosion

    Directory of Open Access Journals (Sweden)

    Xiaogang Li

    2007-12-01

    Full Text Available This article discusses the key features of a newly developed national data-sharing online network for material environmental corrosion. Written in Java language and based on Oracle database technology, the central database in the network is supported with two unique series of corrosion failure data, both of which were accumulated during a long period of time. The first category of data, provided by national environment corrosion test sites, is corrosion failure data for different materials in typical environments (atmosphere, seawater and soil. The other category is corrosion data in production environments, provided by a variety of firms. This network system enables standardized management of environmental corrosion data, an effective data sharing process, and research and development support for new products and after-sale services. Moreover this network system provides a firm base and data-service platform for the evaluation of project bids, safety, and service life. This article also discusses issues including data quality management and evaluation in the material corrosion data sharing process, access authority of different users, compensation for providers of shared historical data, and finally, the related policy and law legal processes, which are required to protect the intellectual property rights of the database.

  14. High Temperature Corrosion of Superheater Materials for Power Production through Biomass

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Nielsen, Karsten agersted

    The aim of the present study has been to establish a fundamental knowledge of the corrosion mechanisms acting on materials for use in biomass fired power plants. The knowledge is created based on laboratory exposures on selected materials in well-defined corrosive gas environments. An experimental...... facility has been established wherein the planned exposures are completed. Specimens were exposed in combined synthetic flue gas at temperatures up to 900C. The specimens could be cooled to 300C below the gas temperature. Gas flow and gas mixture can be varied according to the conditions found in a power......) on the corrosion progress has been investigated.In addition the corrosion behaviour of the same materials was investigated after having been exposed under a cover of ash in air in a furnace at temperatures of 525C, 600C and 700C. The ashes utilised are from a straw-fired power plant and a synthetic ash composed...

  15. Microscopy investigation on the corrosion of Canadian generation IV SCWR materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. [CanmetMATERIALS, Hamilton, ON (Canada); Huang, X. [Carleton Univ., Ottawa, ON (Canada); Zeng, Y.; Zheng, W. [CanmetMATERIALS, Hamilton, ON (Canada); Woo, O.T.; Guzonas, D. [Atomic Energy Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Selection of fuel cladding materials for the Canadian Generation-IV Supercritical Water-cooled Reactor (SCWR) concept faces major challenges due to the severe operating conditions (650 {sup o}C and 25 MPa). High temperature microstructure stability and excellent resistance to general corrosion and stress corrosion cracking are key criteria. While corrosion resistance are generally assessed using weight change measurements and surface oxide examinations by optical and Scanning Electron Microscope (SEM) techniques, for materials exposed to SCW conditions, advanced analytical techniques that involve the use of Focused Ion Beam (FIB) and Transmission Electron Microscopy (TEM) techniques are required. This paper provides examples of such work conducted at CanmetMATERIALS and AECL to provide an in-depth understanding of the corrosion mechanisms of alloys exposed under SCW conditions. (author)

  16. Filling the gaps in SCWR materials research: advanced nuclear corrosion research facilities in Hamilton

    International Nuclear Information System (INIS)

    Krausher, J.L.; Zheng, W.; Li, J.; Guzonas, D.; Botton, G.

    2011-01-01

    Research efforts on materials selection and development in support of the design of supercritical water-cooled reactors (SCWRs) have produced a considerable amount of data on corrosion, creep and other related properties. Summaries of the data on corrosion [1] and stress corrosion cracking [2] have recently been produced. As research on the SCWR advances, gaps and limitations in the published data are being identified. In terms of corrosion properties, these gaps can be seen in several areas, including: 1) the test environment, 2) the physical and chemical severity of the tests conducted as compared with likely reactor service/operating conditions, and 3) the test methods used. While some of these gaps can be filled readily using existing facilities, others require the availability of advanced test facilities for specific tests and assessments. In this paper, highlights of the new materials research facilities jointly established in Hamilton by CANMET Materials Technology Laboratory and McMaster University are presented. (author)

  17. General corrosion of metallic materials in boric acid environments

    International Nuclear Information System (INIS)

    Gras, J.M.

    1994-05-01

    Certain low-alloy steel components in PWR primary circuit were corroded by leaking water containing boric acid. A number of studies have been performed by manufacturers in the USA and by EDF in France to determine the rate of general corrosion for low-alloy steels in media containing varying concentrations of boric acid. The first part of this paper summarizes the studies performed and indicates how far work has advanced to date in establishing the resistance of stainless steels to general corrosion in concentrated boric acid solutions. The second part of the paper discusses the mechanism of corrosion and proposes a model. Carbon steels and low-alloy steels - carbon steels and low-alloy steels in deaerated diluted boric acid solutions (pH > 4) corrode very slowly ( -1 . (author). 31 refs., 12 figs., 13 tabs

  18. Hot corrosion behavior of magnesia-stabilized ceramic material in a lithium molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Soo-Haeng, E-mail: nshcho1@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Sung-Wook [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Dae-Young [Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Jong-Hyeon, E-mail: jonglee@cnu.ac.kr [Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Graduate School of Advanced Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Rapidly Solidified Materials Research Center, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of)

    2017-07-15

    The isothermal and cyclic corrosion behaviors of magnesia-stabilized zirconia in a LiCl-Li{sub 2}O molten salt were investigated at 650 °C in an argon atmosphere. The weights of as-received and corroded specimens were measured and the microstructures, morphologies, and chemical compositions were analyzed by scanning electron microscopy, X-ray energy dispersive spectroscopy, and X-ray diffraction. For processes where Li is formed at the cathode during electrolysis, the corrosion rate was about five times higher than those of isothermal and thermal cycling processes. During isothermal tests, the corrosion product Li{sub 2}ZrO{sub 3} was formed after 216 h. During thermal cycling, Li{sub 2}ZrO{sub 3} was not detected until after the completion of 14 cycles. There was no evidence of cracks, pores, or spallation on the corroded surfaces, except when Li was formed. We demonstrate that magnesia-stabilized zirconia is beneficial for increasing the hot corrosion resistance of structural materials subjected to high temperature molten salts containing Li{sub 2}O. - Highlights: •Corrosion mechanism of MSZin LiCl-Li{sub 2}O molten salt is proposed. •Formation of Li{sub 2}ZrO{sub 3}is main corrosion mechanism. •There were no cracks, pores and spallation after corrosion test. •MSZ shows high corrosion resistance to LiCl-Li{sub 2}O molten salt.

  19. Application Of Fractal Dimension On Atmospheric Corrosion Of Galvanized Iron Roofing Material

    Directory of Open Access Journals (Sweden)

    Issa A.K

    2015-08-01

    Full Text Available Abstract Corrosion rates of galvanized iron roofing sheet In yola north eastern part of Nigeria were assessed and determined by weight loss method and scanner fractal analysis method. Scanning electronic machine SEM was used to transform corrosion coupons to electronic form for image j processing and analysing software The result of corrosion rates for these two methods after six months of the samples exposure in industrial. Coastal market and urban areas in the region are 1.51 1.079 1.051 0.779 and 1.9941 1.9585 1.9565 1.9059 for weight loss and scanner fractal dimension methods respectively. and the results from the two methods were in agreement This establish the reliability of fractal dimension in measuring atmospheric corrosion this research also provides alternative method of measuring atmospheric corrosion and overcome the limitation of conventional weight loss technique in its inability to measure corrosion rate which is not significantly change over a long period of time moreover weight loss cannot demonstrate the area of concentration of corrosion on the surface of the coupon it rather gives the weight loss value and this will aid in determining the real level or extent of corrosion damage in the material and this can be obtained when measuring the material through fractal analysis these results clearly indicate that corrosion is heavier on locations close to the industrial areas. This also shows the negative impact of industrial activities on the corrodible materials and consequently on the plants and environment.

  20. General and crevice corrosion study of the in-wall shielding materials for ITER vacuum vessel

    Science.gov (United States)

    Joshi, K. S.; Pathak, H. A.; Dayal, R. K.; Bafna, V. K.; Kimihiro, Ioki; Barabash, V.

    2012-11-01

    Vacuum vessel In-Wall Shield (IWS) will be inserted between the inner and outer shells of the ITER vacuum vessel. The behaviour of IWS in the vacuum vessel especially concerning the susceptibility to crevice of shielding block assemblies could cause rapid and extensive corrosion attacks. Even galvanic corrosion may be due to different metals in same electrolyte. IWS blocks are not accessible until life of the machine after closing of vacuum vessel. Hence, it is necessary to study the susceptibility of IWS materials to general corrosion and crevice corrosion under operations of ITER vacuum vessel. Corrosion properties of IWS materials were studied by using (i) Immersion technique and (ii) Electro-chemical Polarization techniques. All the sample materials were subjected to a series of examinations before and after immersion test, like Loss/Gain weight measurement, SEM analysis, and Optical stereo microscopy, measurement of surface profile and hardness of materials. After immersion test, SS 304B4 and SS 304B7 showed slight weight gain which indicate oxide layer formation on the surface of coupons. The SS 430 material showed negligible weight loss which indicates mild general corrosion effect. On visual observation with SEM and Metallography, all material showed pitting corrosion attack. All sample materials were subjected to series of measurements like Open Circuit potential, Cyclic polarization, Pitting potential, protection potential, Critical anodic current and SEM examination. All materials show pitting loop in OC2 operating condition. However, its absence in OC1 operating condition clearly indicates the activity of chloride ion to penetrate oxide layer on the sample surface, at higher temperature. The critical pitting temperature of all samples remains between 100° and 200°C.

  1. Assessment of Corrosion, Fretting, and Material Loss of Retrieved Modular Total Knee Arthroplasties.

    Science.gov (United States)

    Martin, Audrey J; Seagers, Kirsten A; Van Citters, Douglas W

    2017-07-01

    Modular junctions in total hip arthroplasties have been associated with fretting, corrosion, and debris release. The purpose of this study is to analyze damage severity in total knee arthroplasties of a single design by qualitative visual assessment and quantitative material loss measurements to evaluate implant performance and patient impact via material loss. Twenty-two modular knee retrievals of the same manufacturer were identified from an institutional review board-approved database. Junction designs included tapers with an axial screw and tapers with a radial screw. Constructs consisted of 2 metal alloys: CoCr and Ti6Al4V. Components were qualitatively scored and quantitatively measured for corrosion and fretting. Negative values represent adhered material. Statistical differences were analyzed using sign tests. Correlations were tested with a Spearman rank order test (P corrosion than other components, suggesting preferential corrosion when interfacing with Ti6Al4V. Overall, although corrosion was noted in this series, material loss was low, and none were revised for clinical metal-related reaction. This suggests the clinical impact from corrosion in total knee arthroplasty is low. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Scoping corrosion tests on candidate waste package basket materials for the Yucca Mountain project

    International Nuclear Information System (INIS)

    Konynenburg, R.A. van; Curtis, P.G.; Summers, T.S.E.

    1998-03-01

    A scoping corrosion test was performed on candidate waste package basket materials. The corrosion medium was a pH-buffered solution of chemical species expected to be produced by radiolysis. The test was conducted at 90 C for 96 hours. Samples included aluminum-, copper-, stainless steel- and zirconium-based metallic materials and several ceramics, incorporating neutron-absorbing elements. Sample weight losses and solution chemical changes were measured. Both corrosion of the host materials and dissolution of the neutron-absorbing elements were studied. The ceramics and the zirconium-based materials underwent only minor corrosion. The stainless steel-based materials performed well except for a welded sample. The aluminum- and copper-based materials exhibited the highest corrosion rates. Boron dissolution depends on its chemical form. Boron oxide and many metal borides dissolve readily in acidic solutions while high-chromium borides and boron carbide, though thermodynamically unstable, exhibit little dissolution in short times. The results of solution chemical analyses were consistent with this. Gadolinium did not dissolve significantly from monazite, and hafnium showed little dissolution from a variety of host materials, in keeping with its low solubility

  3. Corrosion of candidate iron-base waste package structural barrier materials in moist salt environments

    International Nuclear Information System (INIS)

    Westerman, R.E.; Pitman, S.G.

    1984-11-01

    Mild steels are considered to be strong candidates for waste package structural barrier (e.g., overpack) applications in salt repositories. Corrosion rates of these materials determined in autoclave tests utilizing a simulated intrusion brine based on Permian Basin core samples are low, generally <25 μm (1 mil) per year. When the steels are exposed to moist salts containing simulated inclusion brines, the corrosion rates are found to increase significantly. The magnesium in the inclusion brine component of the environment is believed to be responsible for the increased corrosion rates. 1 reference, 4 figures, 2 tables

  4. Study on applying technology of utilizing long-term materials for corrosion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Chul; Park, Young Kyu; Baek, Soo Gon; Lee, Jong Sub [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Park, Yong Soo [Yonsei University, Seoul (Korea, Republic of); Hwang, Won Suk [Inha University (Korea, Republic of); Song, Rhyo Seong [Hankuk Aviation, University (Korea, Republic of)

    1996-12-31

    Nowadays, as the pollution in seawater is escalating rapidly because of fast industrialization, corrosion rate and repairing frequency of seawater facilities in power plant are increasing. In addition, new construction is restricted with narrow limits due to the deterioration of social condition, asking for extension of facility life and repairing frequency. The objectives of this study are to select the appropriate new high corrosion resistance materials and apply them in the field, to make the corrosion data base in accordance with their usage conditions and to predict the remaining life and optimum repairing period by predicting the life of facilities. (author). 77 refs., 54 figs.

  5. Corrosion of copper-based materials in irradiated moist air systems

    International Nuclear Information System (INIS)

    Reed, D.T.; Van Konynenburg, R.A.

    1991-06-01

    The atmospheric corrosion of oxygen-free copper (CDA-102), 70/30 copper-nickel (CDA-715), and 7% aluminum bronze (CDA-613) in an irradiated moist air environment was investigated. Experiments were performed in both dry and 40% RH (at sign 90 degree C) air at temperatures of 90 and 150 degree C. Initial corrosion rates were determined based on a combination of weight gain and weight loss measurements. Corrosion products observed were identified. These experiments support efforts by the Yucca Mountain Project (YMP) to evaluate possible metallic barrier materials for nuclear waste containers. 8 refs., 1 fig., 2 tabs

  6. Corrosion behavior of copper-base materials in a gamma-irradiated environment

    International Nuclear Information System (INIS)

    Yunker, W.H.

    1990-09-01

    Specimens of three copper-base materials were corrosion tested with gamma radiation exposure dose rates in the range of 1.9 x 10 3 R/h to 4.9 x 10 5 R/h. Materials used were pure copper, 7% aluminum bronze and 30% copper-nickel. Exposures were performed in moist air at 95 degree C and 150 degree C and liquid Well J-13 water at 95 degree C, for periods of up to 16 months. Specimens were monitored for uniform weight loss, stress-induced corrosion and crevice corrosion. Specimen surfaces were examined visually at 10X magnification as well as by Auger Electron Spectroscopy, x-ray diffraction and metallography. Corrosion was not severe in any of the cases. In general, the pure copper was corroded most uniformly while the copper-nickel was the least reproducibly corroded. 11 refs, 40 figs., 15 tabs

  7. Investigation of corrosion of materials of the irradiation device in the RA reactor

    International Nuclear Information System (INIS)

    Zaric, M.; Mance, A.; Vlajic, M.

    1963-12-01

    Devices for sample irradiation in the vertical RA reactor channels will be made of aluminium alloys. According to the regulations concerned with introducing materials into the RA reactor core, corrosion characterisation of these materials is an obligation. Corrosion properties of four aluminium alloys were investigated both in contact with stainless steel and without it. First part of this report deals with the corrosion testing of aluminium alloys in water by gravimetric and electrochemical methods. Bi-distilled water at temperatures less than 100 deg C was used. Second part is related to aluminium alloys corrosion in carbon dioxide gas under experimental conditions. The second part of research was initiated by the design of the head of the independent CO 2 loop for samples cooling [sr

  8. Corrosion behavior of copper-base materials in a gamma-irradiated environment; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yunker, W.H.

    1990-09-01

    Specimens of three copper-base materials were corrosion tested with gamma radiation exposure dose rates in the range of 1.9 {times} 10{sup 3} R/h to 4.9 {times} 10{sup 5} R/h. Materials used were pure copper, 7% aluminum bronze and 30% copper-nickel. Exposures were performed in moist air at 95{degree}C and 150{degree}C and liquid Well J-13 water at 95{degree}C, for periods of up to 16 months. Specimens were monitored for uniform weight loss, stress-induced corrosion and crevice corrosion. Specimen surfaces were examined visually at 10X magnification as well as by Auger Electron Spectroscopy, x-ray diffraction and metallography. Corrosion was not severe in any of the cases. In general, the pure copper was corroded most uniformly while the copper-nickel was the least reproducibly corroded. 11 refs, 40 figs., 15 tabs.

  9. Evaluation of nitrogen containing reducing agents for the corrosion control of materials relevant to nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Padma S. [Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamilnadu (India); Mohan, D. [Department of Chemistry, Anna University, Chennai, Tamilnadu (India); Chandran, Sinu; Rajesh, Puspalata; Rangarajan, S. [Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamilnadu (India); Velmurugan, S., E-mail: svelu@igcar.gov.in [Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamilnadu (India)

    2017-02-01

    Materials undergo enhanced corrosion in the presence of oxidants in aqueous media. Usually, hydrogen gas or water soluble reducing agents are used for inhibiting corrosion. In the present study, the feasibility of using alternate reducing agents such as hydrazine, aqueous ammonia, and hydroxylamine that can stay in the liquid phase was investigated. A comparative study of corrosion behavior of the structural materials of the nuclear reactor viz. carbon steel (CS), stainless steel (SS-304 LN), monel-400 and incoloy-800 in the oxidizing and reducing conditions was also made. In nuclear industry, the presence of radiation field adds to the corrosion problems. The radiolysis products of water such as oxygen and hydrogen peroxide create an oxidizing environment that enhances the corrosion. Electrochemical studies at 90 °C showed that the reducing agents investigated were efficient in controlling corrosion processes in the presence of oxygen and hydrogen peroxide. Evaluation of thermal stability of hydrazine and its effect on corrosion potential of SS-304 LN were also investigated in the temperature range of 200–280 °C. The results showed that the thermal decomposition of hydrazine followed a first order kinetics. Besides, a change in electrochemical corrosion potential (ECP) was observed from −0.4 V (Vs SHE) to −0.67 V (Vs SHE) on addition of 5 ppm of hydrazine at 240 °C. Investigations were also made to understand the distribution behavior of hydrogen peroxide and hydrazine in water-steam phases and it was found that both the phases showed identical behavior. - Highlights: • Hydrazine was found to be a promising reducing agent for oxidant control. • In presence of hydrazine corrosion potential of SS304 LN was well below −230 mV. • SS304LN could be protected from IGSCC by hydrazine addition. • Thermal and radiation stability of hydrazine at 285 °C was found satisfactory.

  10. Corrosion of Selected Materials in Boiling Sulfuric Acid for the Nuclear Power Industries

    International Nuclear Information System (INIS)

    Kim, Dong Jin; Lee, Han Hee; Kwon, Hyuk Chul; Kim, Hong Pyo; Hwang, Seong Sik

    2007-01-01

    Iodine sulfur (IS) process is one of the promising processes for a hydrogen production by using a high temperature heat generated by a very high temperature gas cooled reactor(VHTR) in the nuclear power industries. Even though the IS process is very efficient for a hydrogen production and it is not accompanied by a carbon dioxide evolution, the highly corrosive environment of the process limits its application in the industry. Corrosion tests of selected materials were performed in sulfuric acid to select appropriate materials compatible with the IS process. The materials used in this work were Fe-Cr alloys, Fe-Ni-Cr alloys, Fe-Si alloys, Ni base alloys, Ta, Ti, Zr, SiC, Fe-Si, etc. The test environments were 50 wt% sulfuric acid at 120 .deg. C and 98 wt% at 320 .deg. C. Corrosion rates were measured by using a weight change after an immersion. The surface morphologies and cross sectional areas of the corroded materials were examined by using SEM equipped with EDS. Corrosion behaviors of the materials were discussed in terms of the chemical composition of the materials, a weight loss, the corrosion morphology, the precipitates in the microstructure and the surface layer composition

  11. Electrochemical investigations for understanding and controlling corrosion in nuclear reactor materials

    International Nuclear Information System (INIS)

    Gnanamoorthy, J.B.

    1998-01-01

    Electrochemical techniques such as potentiodynamic polarization have been used at the Indira Gandhi Centre for Atomic Research at Kalpakkam for understanding and controlling the corrosion of nuclear reactor materials such as austenitic stainless steels and chrome-moly steels. Results on the measurements of critical potentials for pitting and crevice corrosion of stainless steels and their weldments and of laser surface modified stainless steels in aqueous chloride solutions are discussed. Investigations carried out to correlate the degree of sensitization in types 304 and 316 stainless steels, measured by the electrochemical potentiokinetic reactivation technique, with the susceptibility to intergranular corrosion and intergranular stress corrosion cracking have been discussed. The stress corrosion cracking behaviour of weldments of type 316 stainless steel was studied in a boiling solution of a mixture of 5 M NaCl and 0.15 M Na 2 SO 4 acidified to give a pH of 1.3 by monitoring of the open circuit potential with time as well as by anodic polarization. Interesting information could also been obtained on the microbiologically influenced corrosion of type 304 stainless steels in a fresh water system by carrying out cyclic potentiodynamic polarization measurements as well as by monitoring the open circuit potential measurements with exposure time. Since secondary phases present (or developed during thermal ageing) in stainless steels have a significant influence on their corrosion behaviour, the estimation of these secondary phases by electrochemical methods has also been discussed. (author)

  12. Corrosion Assessment of Candidate Materials for the SHINE Subcritical Assembly Vessel and Components FY15 Report

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steven J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-01

    In the previous report of this series, a literature review was performed to assess the potential for substantial corrosion issues associated with the proposed SHINE process conditions to produce 99Mo. Following the initial review, substantial laboratory corrosion testing was performed emphasizing immersion and vapor-phase exposure of candidate alloys in a wide variety of solution chemistries and temperatures representative of potential exposure conditions. Stress corrosion cracking was not identified in any of the exposures up to 10 days at 80°C and 10 additional days at 93°C. Mechanical properties and specimen fracture face features resulting from slow-strain rate tests further supported a lack of sensitivity of these alloys to stress corrosion cracking. Fluid velocity was found not to be an important variable (0 to ~3 m/s) in the corrosion of candidate alloys at room temperature and 50°C. Uranium in solution was not found to adversely influence potential erosion-corrosion. Potentially intense radiolysis conditions slightly accelerated the general corrosion of candidate alloys, but no materials were observed to exhibit an annualized rate above 10 μm/y.

  13. Integrated Corrosion Facility for long-term testing of candidate materials for high-level radioactive waste containment

    International Nuclear Information System (INIS)

    Estill, J.C.; Dalder, E.N.C.; Gdowski, G.E.; McCright, R.D.

    1994-10-01

    A long-term-testing facility, the Integrated Corrosion Facility (I.C.F.), is being developed to investigate the corrosion behavior of candidate construction materials for high-level-radioactive waste packages for the potential repository at Yucca Mountain, Nevada. Corrosion phenomena will be characterized in environments considered possible under various scenarios of water contact with the waste packages. The testing of the materials will be conducted both in the liquid and high humidity vapor phases at 60 and 90 degrees C. Three classes of materials with different degrees of corrosion resistance will be investigated in order to encompass the various design configurations of waste packages. The facility is expected to be in operation for a minimum of five years, and operation could be extended to longer times if warranted. A sufficient number of specimens will be emplaced in the test environments so that some can be removed and characterized periodically. The corrosion phenomena to be characterized are general, localized, galvanic, and stress corrosion cracking. The long-term data obtained from this study will be used in corrosion mechanism modeling, performance assessment, and waste package design. Three classes of materials are under consideration. The corrosion resistant materials are high-nickel alloys and titanium alloys; the corrosion allowance materials are low-alloy and carbon steels; and the intermediate corrosion resistant materials are copper-nickel alloys

  14. Results and recommendations from the reactor chemistry and corrosion tasks of the reactor materials program

    International Nuclear Information System (INIS)

    Baumann, E.W.; Ondrejcin, R.S.

    1990-11-01

    Within the general context of extended service life, the Reactor Materials Program was initiated in 1984. This comprehensive program addressed material performance in SRS reactor tanks and the primary coolant or Process Water System (PWS) piping. Three of the eleven tasks concerned moderator quality and corrosion mitigation. Definition and control of the stainless steel aqueous environment is a key factor in corrosion mitigation. The Reactor Materials Program systematically investigated the SRS environment and its effect on crack initiation and propagation in stainless steel, with the objective of improving this environment. The purpose of this report is to summarize the contributions of Tasks 6, 7 and 10 of the Reactor Materials Program to the understanding and control of moderator quality and its relationship to mitigation of stress corrosion cracking

  15. Corrosion behaviour of container materials for geological disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Accary, A.

    1985-01-01

    The disposal of high level radioactive waste in geological formations, based on the multibarrier concept, may include the use of a container as one of the engineered barriers. In this report the requirements imposed on this container and the possible degradation processes are reviewed. Further on an overview is given of the research being carried out by various research centres in the European Community on the assessment of the corrosion behaviour of candidate container materials. The results obtained on a number of materials under various testing conditions are summarized and evaluated. As a result, three promising materials have been selected for a detailed joint testing programme. It concerns two highly corrosion resistant alloys, resp. Ti-Pd (0.2 Pd%) and Hastelloy C4 and one consumable material namely a low carbon steel. Finally the possibilities of modelling the corrosion phenomena are discussed

  16. Development of metallic system multi-composite materials for compound environment and corrosion monitoring technology

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi

    1996-01-01

    For the structural materials used for the pressure boundary of nuclear power plants and others, the long term durability over several decades under the compound environment, in which the action of radiation and the corrosion and erosion in the environment of use are superposed, is demanded. To its controlling factors, the secular change of materials due to irradiation ageing and the chemical and physical properties of extreme compound environment are related complicatedly. In the first period of this research, the development of the corrosion-resistant alloys with the most excellent adaptability to environments was carried out by the combination of new alloy design and alloy manufacturing technology. In the second period, in order to heighten the adaptability as the pressure boundary materials between different compound environments, the creation of metallic system multi-composite materials has been advanced. Also corrosion monitoring technique is being developed. The stainless steel for water-cooled reactors, the wear and corrosion-resistant superalloy for reactor core, the corrosion-resistant alloy and the metallic refractory material for reprocessing nitric acid reaction vessels are reported. (K.I.)

  17. Corrosion resistance of ceramic materials in pyrochemical reprocessing atmosphere by using molten salt for spent nuclear oxide fuel. Corrosion research under chlorine gas condition

    International Nuclear Information System (INIS)

    Takeuchi, Masayuki; Hanada, Keiji; Koizumi, Tsutomu; Aose, Shinichi; Kato, Toshihiro

    2002-12-01

    Pyrochemical reprocessing using molten salts (RIAR process) has been recently developed for spent nuclear oxide fuel and discussed in feasibility study. It is required to improve the corrosion resistance of equipments such as electrolyzer because the process is operated in severe corrosion environment. In this study, the corrosion resistance of ceramic materials was discussed through the thermodynamic calculation and corrosion test. The corrosion test was basically carried out in alkali molten salt under chlorine gas condition. And further consideration about the effects of oxygen, carbon and main fission product's chlorides were evaluated in molten salt. The result of thermodynamic calculation shows most of ceramic oxides have good chemical stability on chlorine, oxygen and uranyl chloride, however the standard Gibb's free energies with carbon have negative value. On the other hand, eleven kinds of ceramic materials were examined by corrosion test, then silicon nitride, mullite and cordierite have a good corrosion resistance less than 0.1 mm/y. Cracks were not observed on the materials and flexural strength did not reduce remarkably after 480 hours test in molten salt with Cl 2 -O 2 bubbling. In conclusion, these three ceramic materials are most applicable materials for the pyrochemical reprocessing process with chlorine gas condition. (author)

  18. Corrosion and corrosion control

    International Nuclear Information System (INIS)

    Khanna, A.S.; Totlani, M.K.

    1995-01-01

    Corrosion has always been associated with structures, plants, installations and equipment exposed to aggressive environments. It effects economy, safety and product reliability. Monitoring of component corrosion has thus become an essential requirement for the plant health and safety. Protection methods such as appropriate coatings, cathodic protection and use of inhibitors have become essential design parameters. High temperature corrosion, especially hot corrosion, is still a difficult concept to accommodate in corrosion allowance; there is a lack of harmonized system of performance testing of materials at high temperatures. In order to discuss and deliberate on these aspects, National Association for Corrosion Engineers International organised a National Conference on Corrosion and its Control in Bombay during November 28-30, 1995. This volume contains papers presented at the symposium. Paper relevant to INIS is indexed separately. refs., figs., tabs

  19. Corrosion studies on selected metallic materials for application in nuclear waste disposal containers

    International Nuclear Information System (INIS)

    Smailos, E.; Fiehn, B.; Gago, J.A.; Azkarate, I.

    1994-03-01

    In previous corrosion studies, carbon steels and the alloy Ti 99.8-Pd were identified as promising materials for heat-generating nuclear waste containers acting as a radionuclide barrier in a rock-salt repository. To characterize the long-term corrosion behaviour of these materials in more detail, a research programme including laboratory-scale and in-situ corrosion studies has been undertaken jointly by KfK and ENRESA/INASMET. In the period under review, gamma irradiation corrosion studies of up to about 6 months at 10 Gy/h and stress corrosion cracking studies at slow strain rates (10 -4 -10 -7 s -1 ) were performed on three preselected carbon steels in disposal relevant brines (NaCl-rich, MgCl 2 -rich) at 90 C and 150 C (TStE 355, TStE 460, 15 MnNi 6.3). Moreover, results were obtained from long-term in-situ corrosion studies (maximum test duration 9 years) conducted on carbon steel, Ti 99.8-Pd, Hastelloy C4, Ni-resist D4, and Si-cast iron in boreholes in the Asse salt mine. (orig./MM) [de

  20. Corrosion rate of construction materials in hot phosphoric acid with the contribution of anodic polarization

    Energy Technology Data Exchange (ETDEWEB)

    Kouril, M. [Institute of Chemical Technology, Technicka 5, 166 28 Prague (Czech Republic); Christensen, E. [Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby (Denmark); Eriksen, S.; Gillesberg, B. [Tantaline A/S, Nordborgvej 81, 6430 Nordborg (Denmark)

    2012-04-15

    The paper is focused on selection of a proper material for construction elements of water electrolysers, which make use of a 85% phosphoric acid as an electrolyte at temperature of 150 C and which might be loaded with anodic polarization up to 2.5 V versus a saturated Ag/AgCl electrode (SSCE). Several grades of stainless steels were tested as well as tantalum, niobium, titanium, nickel alloys and silicon carbide. The corrosion rate was evaluated by means of mass loss at free corrosion potential as well as under various levels of polarization. The only corrosion resistant material in 85% phosphoric acid at 150 C and at polarization of 2.5 V/SSCE is tantalum. In that case, even a gentle cathodic polarization is harmful in such an acidic environment. Hydrogen reduction leads to tantalum hydride formation, to loss of mechanical properties and to complete disintegration of the metal. Contrary to tantalum, titanium is free of any corrosion resistance in hot phosphoric acid. Its corrosion rate ranges from tens of millimetres to metres per year depending on temperature of the acid. Alloy bonded tantalum coating was recognized as an effective corrosion protection for both titanium and stainless steel. Its serviceability might be limited by slow dissolution of tantalum that is in order of units of mm/year. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Material compatibility and corrosion control of the KWU chemical cleaning process

    International Nuclear Information System (INIS)

    Odar, S.

    1994-01-01

    The concentrations of salt impurities within the deposits on the tube sheet and in the tube to tube-support-plate crevices can induce a variety of corrosion mechanisms on steam generator tubes. One of the most effective ways of counteracting corrosion mechanisms and thus of improving steam generator performance is to clean the steam generators and keep them in a clean condition. As shown by field results chemical cleaning is a way of removing hazardous deposits from steam generators. All available chemical cleaning processes use inhibitors to control the corrosion except the KWU chemical cleaning process. In this article the corrosion control technique of KWU Chemical Cleaning Process without using conventional inhibitors will be explained and the state of the field experience with respect to material compatibility will be presented. (author). 4 figs., 1 tab., 8 refs

  2. Microbial corrosion of metallic materials in a deep nuclear-waste repository

    Directory of Open Access Journals (Sweden)

    Stoulil J.

    2016-06-01

    Full Text Available The study summarises current knowledge on microbial corrosion in a deep nuclear-waste repository. The first part evaluates the general impact of microbial activity on corrosion mechanisms. Especially, the impact of microbial metabolism on the environment and the impact of biofilms on the surface of structure materials were evaluated. The next part focuses on microbial corrosion in a deep nuclear-waste repository. The study aims to suggest the development of the repository environment and in that respect the viability of bacteria, depending on the probable conditions of the environment, such as humidity of bentonite, pressure in compact bentonite, the impact of ionizing radiation, etc. The last part is aimed at possible techniques for microbial corrosion mechanism monitoring in the conditions of a deep repository. Namely, electrochemical and microscopic techniques were discussed.

  3. Some problems on the aqueous corrosion of structural materials in nuclear engineering

    International Nuclear Information System (INIS)

    Coriou, H.; Grall, L.

    1964-01-01

    The purpose of this report is to give a comprehensive view of some aqueous corrosion studies which have been carried out with various materials for utilization either in nuclear reactors or in irradiated fuel treatment plants. The various subjects are listed below. Austenitic Fe-Ni-Cr alloys: the behaviour of austenitic Fe-Ni-Cr alloys in nitric medium and in the presence of hexavalent chromium; the stress corrosion of austenitic alloys in alkaline media at high temperatures; the stress corrosion of austenitic Fe-Ni-Cr alloys in 650 C steam. Ferritic steels: corrosion of low alloy steels in water at 25 and 360 C; zirconium alloys; the behaviour of ultrapure zirconium in water and steam at high temperature. (authors) [fr

  4. Corrosion susceptibility study of candidate pin materials for ALTC (Active Lithium/Thionyl Chloride) batteries

    Science.gov (United States)

    Bovard, Francine S.; Cieslak, Wendy R.

    1987-09-01

    The corrosion susceptibilities of eight alternate battery pin material candidates for ALTC (Active Lithium/Thionyl Chloride) batteries in 1.5M LiAlCl4/SOCl2 electrolyte have been investigated using ampule exposure and electrochemical tests. The thermal expansion coefficients of these candidate materials are expected to match Sandia-developed Li-corrosion resistant glasses. The corrosion resistances of the candidate materials, which included three stainless steels (15-5 PH, 17-4 PH, and 446), three Fe-Ni glass sealing alloys (Kovar, Alloy 52, and Niromet 426), a Ni-based alloy (Hastelloy B-2) and a zirconium-based alloy (Zircaloy), were compared to the reference materials Ni and 316L SS. All of the candidate materials showed some evidence of corrosion and, therefore, did not perform as well as the reference materials. The Hastelloy B-2 and Zircaloy are clearly unacceptable materials for this application. Of the remaining alternate materials, the 446 SS and Alloy 52 are the most promising candidates.

  5. Accessibility evaluation of the IFMIF liquid lithium loop considering activated erosion/corrosion materials deposition

    International Nuclear Information System (INIS)

    Nakamura, H.; Takemura, M.; Yamauchi, M.; Fischer, U.; Ida, M.; Mori, S.; Nishitani, T.; Simakov, S.; Sugimoto, M.

    2005-01-01

    This paper presents an evaluation of accessibility of the Li loop piping considering activated corrosion product. International Fusion Materials Irradiation Facility (IFMIF) is a deuteron-lithium (Li) stripping reaction neutron source for fusion materials testing. Target assembly and back wall are designed as fully remote maintenance component. Accessibility around the Li loop piping will depend on activation level of the deposition materials due to the back wall erosion/corrosion process under liquid Li flow. Activation level of the corrosion products coming from the AISI 316LN back wall is calculated by the ACT-4 of the THIDA-2 code system. The total activities after 1 day, 1 week, 1 month and 1 year cooling are 3.1 x 10 14 , 2.8 x 10 14 , 2.3 x 10 14 and 7.5 x 10 13 Bq/kg, respectively. Radiation dose rate around the Li loop pipe is calculated by QAD-CGGP2R code. Activated area of the back wall is 100 cm 2 . Corrosion rate is assumed 1 μm/year. When 10% of the corrosion material is supposed to be deposited on the inner surface of the pipe, the dose rate is calculated to be less than a permissible level of 10 μSv/h for hands-on maintenance, therefore, the maintenance work is assessed to be possible

  6. High temperature corrosion of superheater materials for power production through biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gotthjaelp, K.; Broendsted, P. [Forskningscenter Risoe (Denmark); Jansen, P. [FORCE Institute (Denmark); Montgomery, M.; Nielsen, K.; Maahn, E. [Technical Univ. of Denmark, Corrosion and Surface Techn. Inst. of Manufacturing Engineering (Denmark)

    1996-08-01

    The aim of the present study has been to establish a fundamental knowledge of the corrosion mechanisms acting on materials for use in biomass fired power plants. The knowledge is created based on laboratory exposures of selected materials in well-defined corrosive gas environments. The experiments using this facility includes corrosion studies of two types of high temperature resistant steels, Sanvik 8LR30 (18Cr 10Ni Ti) and Sanicro 28 (27Cr 31Ni 4Mo), investigated at 600 deg. C in time intervals up to 300 hours. The influence of HCl (200 ppm) and of SO{sub 2} (300 ppm) on the corrosion progress has been investigated. In addition the corrosion behaviour of the same materials was investigated after having been exposed under a cover of ash in air in a furnace at temperatures of 525 deg. C, 600 deg. C, and 700 deg. C. The ashes utilised are from a straw fired power plant and a synthetic ash composed of potassium chloride (KCl) and potassium sulphate (K{sub 2}SO{sub 4}). Different analysis techniques to characterise the composition of the ash coatings have been investigated in order to judge the reliability and accuracy of the SEM-EDX method. The results are considered as an important step towards a better understanding of the high temperature corrosion under the conditions found in biomass fired power plants. One of the problems to solve in a suggested subsequent project is to combine the effect of the aggressive gases (SO{sub 2} and HCl) and the active ash coatings on high temperature corrosion of materials. (EG) 20 refs.

  7. Study on fracture and stress corrosion cracking behavior of casing sour service materials

    International Nuclear Information System (INIS)

    Sequera, C.; Gordon, H.

    2003-01-01

    Present work describes sulphide stress corrosion cracking and fracture toughness tests performed to high strength sour service materials of T-95, C-100 and C-110 oil well tubular grades. P-110 was considered as a reference case, since it is one of the high strength materials included in specification 5CT of American Petroleum Institute, API. Sulphide stress corrosion cracking, impact and fracture toughness values obtained in the tests show that there is a correspondence among them. A decreasing classification order was established, namely C-100, T-95, C-110 and P-110. Special grades steels studied demonstrated a better behavior in the evaluated properties than the reference case material grade: P-110. Results obtained indicate that a higher sulphide stress corrosion cracking resistance is related to a higher toughness. The fracture toughness results evidence the hydrogen influence on reducing the toughness values. (author)

  8. Corrosion behaviour of boiler tube materials during combustion of fuels containing Zn and Pb

    Energy Technology Data Exchange (ETDEWEB)

    Bankiewicz, D.

    2012-11-01

    Many power plants burning challenging fuels such as waste-derived fuels experience failures of the superheaters and/or increased waterwall corrosion due to aggressive fuel components already at low temperatures. To minimize corrosion problems in waste-fired boilers, the steam temperature is currently kept at a relatively low level which drastically limits power production efficiency. The elements found in deposits of waste and waste-derived fuels burning boilers that are most frequently associated with high-temperature corrosion are: Cl, S, and there are also indications of Br; alkali metals, mainly K and Na, and heavy metals such as Pb and Zn. The low steam pressure and temperature in waste-fired boilers also influence the temperature of the waterwall steel which is nowadays kept in the range of 300 deg C - 400 deg C. Alkali chloride (KCl, NaCl) induced high-temperature corrosion has not been reported to be particularly relevant at such low material temperatures, but the presence of Zn and Pb compounds in the deposits have been found to induce corrosion already in the 300 deg C - 400 deg C temperature range. Upon combustion, Zn and Pb may react with Cl and S to form chlorides and sulphates in the flue gases. These specific heavy metal compounds are of special concern due to the formation of low melting salt mixtures. These low melting, gaseous or solid compounds are entrained in the flue gases and may stick or condense on colder surfaces of furnace walls and superheaters when passing the convective parts of the boiler, thereby forming an aggressive deposit. A deposit rich in heavy metal (Zn, Pb) chlorides and sulphates increases the risk for corrosion which can be additionally enhanced by the presence of a molten phase. The objective of this study was to obtain better insight into high-temperature corrosion induced by Zn and Pb and to estimate the behaviour and resistance of some boiler superheater and waterwall materials in environments rich in those heavy metals

  9. Corrosion of heat exchanger materials under heat transfer conditions

    International Nuclear Information System (INIS)

    Tapping, R.L.; Lavoie, P.A.; Disney, D.J.

    1987-01-01

    Severe pitting has occurred in moderator heat exchangers tubed with Incoloy-800 in Pickering Nuclear Generating Station. The pitting originated on the cooling side (outside) of the tubes and perforation occurred in less than two years. It was known from corrosion testing at CRNL that Incoloy-800 was not susceptible to pitting in Lake Ontario water under isothermal conditions. Corrosion testing with heat transfer across the tube wall was carried out, and it was noted that severe pitting could occur under deposits formed on the tubes in silty Lake Ontario water. Subsequent testing, carried out in co-operation with Ontario Hydro Research Division, investigated the pitting resistance of other candidate tubing alloys: Incoloy-825, 904 L stainless steel, AL-6X, Inconel-625, 70:30 Cu:Ni, titanium, Sanicro-30 and Sanicro-28 1 . Of these, only titanium and Sanicro-28 have not suffered some degree of pitting attack in silt-containing Lake Ontario Water. In the absence of silt, and hence deposits, no pitting took place on any of the alloys tested

  10. Corrosion response of nuclear reactor materials to mixtures of decontamination reagents

    International Nuclear Information System (INIS)

    Speranzini, R.A.; Burchart, P.A.; Kanhai, K.A.

    1989-01-01

    An experimental study of the corrosiveness of mixtures of citric acid, oxalic acid, and EDTA to nuclear reactor materials was undertaken. Specimens of type 304 stainless steel (SS), type 410 SS, carbon steel (CS) 1018 and A508, and heat-treated alloy 600 were suspended in recirculating mixtures of two or more combinations of citric acid, oxalic acid, and EDTA at temperatures of 90 C or 117 C for 22 hours. The results suggest that removal of oxalic acid from decontamination solutions should lower the corrosiveness of the solutions to nuclear reactor materials, particularly types 304 SS and 410 SS

  11. Influence of stainless steel Internals on Corrosion of tower wall materials

    Science.gov (United States)

    Chen, Bing; Ren, Ke

    2017-12-01

    In view of the galvanic corrosion of the tower wall material in the tower of a refinery atmospheric vacuum distillation unit, the electrochemical behavior of Q345R steel, stainless steel (201, 304 cold-rolled plate, 304 hot rolled plate and 316L) in 3.5%NaCl solution was studied by electrochemical method. The results show that the corrosion potential of Q345R is much lower than that of stainless steel, and the corrosion rate of Q345R is higher than that of stainless steel. As the anode is etched as the anode corrosion, the anode polarizability of stainless steel shows strong polarization ability, which is anodic polarization control, and Q345R is anode Active polarization control; Q345R / 201 galvanic pair may be the most serious corrosion, and Q345R/316L galvanic couple may be relatively slight. Therefore, in the actual production of tower equipment, material design or tower to upgrade the replacement, it are recommended to use the preferred anode and cathode potential difference with the use of materials.

  12. A non-destructive test method to monitor corrosion products and corrosion-induced cracking in reinforced cement based materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Peterova, Adela

    2011-01-01

    ) was conducted to describe the impact of water-to-cement ratio and corrosion current density (i.e., corrosion rate) on the reinforcement corrosion process. Focus was placed, in particular on the determination of the corrosion accommodating region (CAR) and time to corrosion-induced cracking. Experimental results...... showed that x-ray attenuation measurements allow determination of the actual concentrations of corrosion products averaged through the specimen thickness. The total mass loss of steel measured by x-ray attenuation was found to be in very good agreement with the calculated mass loss obtained by Faraday......’s law. Furthermore, experimental results demonstrated that the depth of penetration of corrosion products as well as time to corrosion-induced cracking is varying for the different water-to-cement ratios and applied corrosion current densities....

  13. General corrosion, irradiation-corrosion, and environmental-mechanical evaluation of nuclear-waste-package structural-barrier materials. Progress report

    International Nuclear Information System (INIS)

    Westerman, R.E.; Pitman, S.G.; Nelson, J.L.

    1982-09-01

    Pacific Northwest Laboratory is studying the general corrosion, irradiation-corrosion, and environmentally enhanced crack propagation of five candidate materials in high-temperature aqueous environments simulating those expected in basalt and tuff repositories. The materials include three cast ferrous materials (ductile cast iron and two low-alloy Cr-Mo cast steels) and two titanium alloys, titanium Grade 2 (commercial purity) and Grade 12 (a Ti-Ni-Mo alloy). The general corrosion results are being obtained by autoclave exposure of specimens to slowly replenished simulated ground water flowing upward through a bed of the appropriate crushed rock (basalt or tuff), which is maintained at the desired test temperature (usually 250 0 C). In addition, tests are being performed in deionized water. Metal penetration rates of iron-base alloys are being derived by stripping off the corrosion product film and weighing the specimen after the appropriate exposure time. The corrosion of titanium alloy specimens is being determined by weight gain methods. The irradiation-corrosion studies are similar to the general corrosion tests, except that the specimen-bearing autoclaves are held in a 60 Co gamma radiation field at dose rates up to 2 x 10 6 rad/h. For evaluating the resistance of the candidate materials to environmentally enhanced crack propagation, three methods are being used: U-bend and fracture toughness specimens exposed in autoclaves; slow strain rate studies in repository-relevant environments to 300 0 C; and fatigue crack growth rate studies at ambient pressure and 90 0 C. The preliminary data suggest a 1-in. corrosion allowance for iron-base barrier elements intended for 1000-yr service in basalt or tuff repositories. No evidence has yet been found that titanium Grade 2 or Grade 12 is susceptible to environmentally induced crack propagation or, by extension, to stress corrosion cracking

  14. Corrosion behavior of biodegradable material AZ31 coated with beeswax-colophony resin

    Science.gov (United States)

    Gumelar, Muhammad Dikdik; Putri, Nur Ajrina; Anggaravidya, Mahendra; Anawati, Anawati

    2018-05-01

    Magnesium (Mg) and its alloys are potential candidates for biodegradable implant materials owing to their ability to degrade spontaneously in a physiological environment. However, the degradation rate is still considered too fast in human body solution. A coating is typically applied to slowdown corrosion rate of Mg alloys. In this work, an organic coating of mixture beeswax-colophony with ratios of 40-60, 50-50, and 60-40 in wt% was synthesized and applied on commercial magnesium alloyAZ31. The coated specimens were then characterized with SEM and XRF. The corrosion behavior of the coated specimens was evaluated by immersion test in 0.9 wt% NaCl solution at 37°C for 14 days. The results indicated that the coating material improved the corrosion resistance of the AZ31 alloy.

  15. Preliminary corrosion models for BWIP [Basalt Waste Isolation Project] canister materials

    International Nuclear Information System (INIS)

    Fish, R.L.; Anantatmula, R.P.

    1983-01-01

    Waste package development for the Basalt Waste Isolation Project (BWIP) requires the generation of materials degradation data under repository relevant conditions. These data are used to develop predictive models for the behavior of each component of waste package. The component models are exercised in performance analyses to optimize the waste package design. This document presents all repository relevant canister materials corrosion data that the BWIP and others have developed to date, describes the methodology used to develop preliminary corrosion models and provides the mathematical description of the models for both low carbon steel and Fe9Cr1Mo steel. Example environment/temperature history and model application calculations are presented to aid in understanding the models. The models are preliminary in nature and will be updated as additional corrosion data become available. 6 refs., 5 tabs

  16. Evaluation on mechanical and corrosion properties of steam generator tubing materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Sup; Lee, Byong Whi; Lee, Sang Kyu; Lee, Young Ho; Kim, Jun Whan; Lee, Ju Seok; Kwon, Hyuk Sang; Kim, Su Jung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-06-15

    Steam generator is one of the major components of nuclear reactor pressure boundary. It's main function os transferring heat which generated in the reactor to turbine generator through steam generator tube. In these days, steam generator tubing materials of operating plant are used Inconel 600 alloys. But according to the operation time, there are many degradation phenomena which included mechanical damage due to flow induced vibration and corrosion damage due to PWSCC, IGA/SCC and pitting etc. Recently Inconel 690 alloys are selected as new and replacement steam generator tubes for domestic nuclear power plant. But there are few study about mechanical and corrosion properties of Inconel 600 and 690. The objectives of this study is to evaluate and compare mechanical and corrosion propertied of steam generator tube materials.

  17. Evaluation on mechanical and corrosion properties of steam generator tubing materials

    International Nuclear Information System (INIS)

    Kim, In Sup; Lee, Byong Whi; Lee, Sang Kyu; Lee, Young Ho; Kim, Jun Whan; Lee, Ju Seok; Kwon, Hyuk Sang; Kim, Su Jung

    1998-06-01

    Steam generator is one of the major components of nuclear reactor pressure boundary. It's main function os transferring heat which generated in the reactor to turbine generator through steam generator tube. In these days, steam generator tubing materials of operating plant are used Inconel 600 alloys. But according to the operation time, there are many degradation phenomena which included mechanical damage due to flow induced vibration and corrosion damage due to PWSCC, IGA/SCC and pitting etc. Recently Inconel 690 alloys are selected as new and replacement steam generator tubes for domestic nuclear power plant. But there are few study about mechanical and corrosion properties of Inconel 600 and 690. The objectives of this study is to evaluate and compare mechanical and corrosion propertied of steam generator tube materials

  18. Natural analogues for expansion due to the anaerobic corrosion of ferrous materials

    International Nuclear Information System (INIS)

    Smart, N.R.; Adams, R.

    2006-10-01

    In Sweden, spent nuclear fuel will be encapsulated in sealed cylindrical canisters, consisting of a cast iron insert and a copper outer container. The canisters will be placed in a deep geologic repository and surrounded by bentonite. If a breach of the outer copper container were to occur the cast iron insert would undergo anaerobic corrosion, forming a magnetite film whose volume would be greater than that of the base metal. In principle there is a possibility that accumulation of iron corrosion product could cause expansion of the copper canister. Anaerobic corrosion rates are very slow, so in the work described in this report reference was made to analogous materials that had been corroding for long periods in natural anoxic aqueous environments. The report considers the types of naturally occurring environments that may give rise to anoxic environments similar to deep geological groundwater and where ferrous materials may be found. Literature information regarding the corrosion of iron archaeological artefacts is summarised and a number of specific archaeological artefacts containing iron and copper corroding in constrained geometries in anoxic natural waters are discussed in detail. No evidence was obtained from natural analogues which would suggest that severe damage is likely to occur to the SKB waste canister design as a result of expansive corrosion of cast iron under repository conditions

  19. Natural analogues for expansion due to the anaerobic corrosion of ferrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Smart, N.R.; Adams, R. [Serco Assurance, Culham Science Centre (United Kingdom)

    2006-10-15

    In Sweden, spent nuclear fuel will be encapsulated in sealed cylindrical canisters, consisting of a cast iron insert and a copper outer container. The canisters will be placed in a deep geologic repository and surrounded by bentonite. If a breach of the outer copper container were to occur the cast iron insert would undergo anaerobic corrosion, forming a magnetite film whose volume would be greater than that of the base metal. In principle there is a possibility that accumulation of iron corrosion product could cause expansion of the copper canister. Anaerobic corrosion rates are very slow, so in the work described in this report reference was made to analogous materials that had been corroding for long periods in natural anoxic aqueous environments. The report considers the types of naturally occurring environments that may give rise to anoxic environments similar to deep geological groundwater and where ferrous materials may be found. Literature information regarding the corrosion of iron archaeological artefacts is summarised and a number of specific archaeological artefacts containing iron and copper corroding in constrained geometries in anoxic natural waters are discussed in detail. No evidence was obtained from natural analogues which would suggest that severe damage is likely to occur to the SKB waste canister design as a result of expansive corrosion of cast iron under repository conditions.

  20. Radiometric investigation of effect of decontamination agents on corrosion behavior of structural materials for nuclear power engineering

    International Nuclear Information System (INIS)

    Silber, R.; Ecksteinova, A.

    1987-01-01

    The tracer technique is used in monitoring corrosion behaviour of high-alloy steels used as structural materials in nuclear power engineering. Radioisotopes 59 Fe, 51 Cr, 58 Co and 60 Co produced by neutron irradiation of steel are mainly used for labelling steel components. The actual corrosion test proceeds in a facility whose description is given. The facility allows automatic sampling of corrosion medium fractions in preset intervals. The fractions are evaluated using a multi-channel analyzer with a Ge(Li) detector. The method can be applied in, e.g., monitoring extraction corrosion, the effect of decontamination agents on the corrosion of alloy steels and the effect of heat treatment of steels of their corrosion resistance in a model corrosion environment. (Z.M.). 2 fig., 1 tab., 5 refs

  1. Stress corrosion cracking susceptibility of selected materials for steam plant bolting applications

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, P.; Noga, J.O.; Ogundele, G.

    1996-12-01

    The incidence of alloy steel bolting failure in nuclear and fossil fired generating plants was discussed. The problem manifests itself in the form of intergranular stress corrosion cracking. A study was conducted to rank the susceptibility of three materials (Alloy AISI, type 4140, Alloy ASTM A564-92AXM 13 and Inconel 718) to stress corrosion cracking and to determine threshold stress intensity factors of currently used and alternate alloys in service environments typically encountered in steam generating utility plants. Although most alloy steel bolting failures have involved Cr-Mo, failures have also been reported for all the above mentioned materials. Attempts to minimize the occurrence of stress corrosion cracking have involved a ban on molybdenum disulphide, limiting bolt tightening torque and placing an upper limit on bolt hardness, and by correlation on tensile strength. Slow strain rate and wedge opening-loading specimen tests were used to evaluate commonly used and superior alternative bolting materials. Electrochemical polarization tests were also conducted. Threshold stresses in a H{sub 2}S environment were determined according to NACE standard TM-01-77. Results showed that, to a certain degree, all tested materials were susceptible to stress corrosion cracking. They ranked as follows from best to worst performance: (1) the Inconel 718, (2) alloy SM 13, and (3) alloy 4140. 9 refs., 20 tabs., 34 figs.

  2. Corrosion resistance of metallic materials for use in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Legry, J.P.; Pelras, M.; Turluer, G.

    1989-01-01

    This paper reviews the corrosion resistance properties required from metallic materials to be used in the various developments of the PUREX process for nuclear fuel reprocessing. Stainless steels, zirconium or titanium base alloys are considered for the various plant components, where nitric acid is the main electrolyte with differing acid and nitrate concentrations, temperature and oxidizing species. (author)

  3. PRODUCTION OF POROUS POWDER MATERIALS OF SPHERICAL POWDERS OF CORROSION-RESISTANT STEEL

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevskij

    2012-01-01

    Full Text Available Production of porous powder materials from spherical powders of corrosion-resistant steel 12Х18н10Т with formation at low pressures 120–140 mpa in the mold with the subsequent activated sintering became possible due to increase of duration of process of spattering and formation of condensate particles (Si–C or (Mo–Si on surface.

  4. Corrosion control of electronic materials; Denshi zairyo no fushoku seigyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Y. [Hitachi Ltd., Tokyo (Japan). Mechanical Engineering Research Lab.

    1995-11-20

    Electronic materials are used in wide varieties of materials starting from hightech products like large computers, information network facilities and so forth, to vehicles, home electrical appliances, OA facilities, video game. Again, even though the part itself may be comparatively simple, high reliability is required when used in high degree system. Further, their uses irrespective to indoor or outdoor environments, are spread to wide range starting from the severe corrosive environments like coastal industrial area, drainage treatment place and so forth to low corrosive environments like general housing, offices and so forth. However, the classification of materials according to the environments where they are used is not so much carried out because preference is given to the function as an electronic part different to the large mechanical construction materials. In this report, regarding the corrosion control technology of electronic materials specially approach is made from material side, and among the various types of electronic materials, aluminium cable for LSI and magnetic materials are outlined. 37 refs., 10 figs., 2 tabs.

  5. Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review.

    Science.gov (United States)

    Grengg, Cyrill; Mittermayr, Florian; Ukrainczyk, Neven; Koraimann, Günther; Kienesberger, Sabine; Dietzel, Martin

    2018-05-01

    Microbial induced concrete corrosion (MICC) is recognized as one of the main degradation mechanisms of subsurface infrastructure worldwide, raising the demand for sustainable construction materials in corrosive environments. This review aims to summarize the key research progress acquired during the last decade regarding the understanding of MICC reaction mechanisms and the development of durable materials from an interdisciplinary perspective. Special focus was laid on aspects governing concrete - micoorganisms interaction since being the central process steering biogenic acid corrosion. The insufficient knowledge regarding the latter is proposed as a central reason for insufficient progress in tailored material development for aggressive wastewater systems. To date no cement-based material exists, suitable to withstand the aggressive conditions related to MICC over its entire service life. Research is in particular needed on the impact of physiochemical material parameters on microbial community structure, growth characteristics and limitations within individual concrete speciation. Herein an interdisciplinary approach is presented by combining results from material sciences, microbiology, mineralogy and hydrochemistry to stimulate the development of novel and sustainable materials and mitigation strategies for MICC. For instance, the application of antibacteriostatic agents is introduced as an effective instrument to limit microbial growth on concrete surfaces in aggressive sewer environments. Additionally, geopolymer concretes are introduced as highly resistent in acid environments, thus representing a possible green alternative to conventional cement-based construction materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Corrosion of Structural Materials for Advanced Supercritical Carbon- Dioxide Brayton Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States)

    2017-05-13

    The supercritical carbon-dioxide (referred to as SC-CO2 hereon) Brayton cycle is being considered for power conversion systems for a number of nuclear reactor concepts, including the sodium fast reactor (SFR), fluoride saltcooled high temperature reactor (FHR), and high temperature gas reactor (HTGR), and several types of small modular reactors (SMR). The SC-CO2 direct cycle gas fast reactor has also been recently proposed. The SC-CO2 Brayton cycle (discussed in Chapter 1) provides higher efficiencies compared to the Rankine steam cycle due to less compression work stemming from higher SC-CO2 densities, and allows for smaller components size, fewer components, and simpler cycle layout. For example, in the case of a SFR using a SC-CO2 Brayton cycle instead of a steam cycle would also eliminate the possibility of sodium-water interactions. The SC-CO2 cycle has a higher efficiency than the helium Brayton cycle, with the additional advantage of being able to operate at lower temperatures and higher pressures. In general, the SC-CO2 Brayton cycle is well-suited for any type of nuclear reactor (including SMR) with core outlet temperature above ~ 500°C in either direct or indirect versions. In all the above applications, materials corrosion in high temperature SC-CO2 is an important consideration, given their expected lifetimes of 20 years or longer. Our discussions with National Laboratories and private industry early on in this project indicated materials corrosion to be one of the significant gaps in the implementation of SC-CO2 Brayton cycle. Corrosion can lead to a loss of effective load-bearing wall thickness of a component and can potentially lead to the generation of oxide particulate debris which can lead to three-body wear in turbomachinery components. Another environmental degradation effect that is rather unique to CO2 environment is the possibility

  7. Corrosion in Supercritical carbon Dioxide: Materials, Environmental Purity, Surface Treatments, and Flow Issues

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Anderson, Mark

    2013-12-10

    The supercritical CO{sub 2} Brayton cycle is gaining importance for power conversion in the Generation IV fast reactor system because of its high conversion efficiencies. When used in conjunction with a sodium fast reactor, the supercritical CO{sub 2} cycle offers additional safety advantages by eliminating potential sodium-water interactions that may occur in a steam cycle. In power conversion systems for Generation IV fast reactors, supercritical CO{sub 2} temperatures could be in the range of 30°C to 650°C, depending on the specific component in the system. Materials corrosion primarily at high temperatures will be an important issue. Therefore, the corrosion performance limits for materials at various temperatures must be established. The proposed research will have four objectives centered on addressing corrosion issues in a high-temperature supercritical CO{sub 2} environment: Task 1: Evaluation of corrosion performance of candidate alloys in high-purity supercritical CO{sub 2}: The following alloys will be tested: Ferritic-martensitic Steels NF616 and HCM12A, austenitic alloys Incoloy 800H and 347 stainless steel, and two advanced concept alloys, AFA (alumina forming austenitic) steel and MA754. Supercritical CO{sub 2} testing will be performed at 450°C, 550°C, and 650°C at a pressure of 20 MPa, in a test facility that is already in place at the proposing university. High purity CO{sub 2} (99.9998%) will be used for these tests. Task 2: Investigation of the effects of CO, H{sub 2}O, and O{sub 2} impurities in supercritical CO{sub 2} on corrosion: Impurities that will inevitably present in the CO{sub 2} will play a critical role in dictating the extent of corrosion and corrosion mechanisms. These effects must be understood to identify the level of CO{sub 2} chemistry control needed to maintain sufficient levels of purity to manage corrosion. The individual effects of important impurities CO, H{sub 2}O, and O{sub 2} will be investigated by adding them

  8. Localized corrosion and stress corrosion cracking of candidate materials for high-level radioactive waste disposal containers in U.S

    International Nuclear Information System (INIS)

    Farmer, J.C.; McCright, R.D.

    1989-01-01

    Three ion-based to nickel-based austenitic alloys and three copper-based alloys are being considered in the United States as candidate materials for the fabrication of high-level radioactive waste containers. The austenitic alloys are Types 304L and 316L stainless steels as well as the high-nickel material Alloy 825. The copper-based alloys are CDA 102 (oxygen-free copper) CDA 613 (Cu7Al), and CDA 715 (Cu-30Ni). Waste in the forms of spent fuel assemblies from reactors and borosilicate glass will be sent to a proposed repository at Yucca Mountain, Nevada. The decay of radionuclides will result in the generation of substantial heat and in gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including: undesirable phase transformations due to a lack of phase stability; atmospheric oxidation; general aqueous corrosion; pitting; crevice corrosion; intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This paper is an analysis of data from the literature relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of these alloys

  9. The influence of introduced micro-organisms on corrosion of repository construction materials

    International Nuclear Information System (INIS)

    West, J.M.

    1985-01-01

    The work described in this report forms part of a wider project on the role of geomicrobiology in radioactive waste containment. This has established the presence of microbes in relevant geological formations including several groups of significance to waste containment. Microbial groups demonstrated have included those which could influence deterioration of repository structural materials, eg. sulphate reducing bacteria (SRB). This report describes work carried out to assess this role. More specifically the objectives of this phase of the project are: identification of suitable microbial isolates; to ascertain the growth characteristics of the isolates; to develop and construct experimental cells for use in corrosion rate tests; and to conduct preliminary short term experiments in static conditions designed to assess corrosion rates of mild steel in an ideal growth environment for SRB. Using information gained from these experiments to initiate long term corrosion experiments of steel in an SRB inoculated bentonite simulating near-field conditions in a backfill/canister system. (author)

  10. Influence of the filler material on the pitting corrosion in welded duplex stainless

    International Nuclear Information System (INIS)

    Munez, C. J.; Utrilla, M. V.; Urena, A.; Otero, E.

    2007-01-01

    In this work, it has been studied the pitting corrosion resistance of welding duplex stainless steel 2205. Unions were made by GMAW process with different fillers: duplex ER 2209 and two austenitic (ER 316LSi and ER 308LSi). the microstructure obtained with the duplex ER 2209 filler is similar to the duplex 2205 base material, but the unions produced with the austenitic fillers cause a decrease of the phases relationα/γ. To evaluate the influence of the filler on the weld, the pitting corrosion resistance was determined by electrochemical critical pitting temperature test (TCP) and the mechanical properties by the hardness. The phases imbalance produced for the dissimilar fillers bring out a variation of the pitting corrosion resistance and the mechanical properties. (Author)

  11. Material irradiation techniques used in corrosion and wear analysis; Irradiacion de materiales, tecnicas de estudios de corrosion y desgaste

    Energy Technology Data Exchange (ETDEWEB)

    Tenreiro, Claudio [Chile Univ., Santiago (Chile). Facultad de Ciencias. Dept. de Fisica

    1997-12-31

    Full text: Nuclear physics methods, applied to material analysis are discussed and some application examples are given. Experiments have been performed to study corrosion du to the presence of humidity and sulfur compounds. The use of resonant reactors allows the determination of depth profiles of H and S from structures located in particularly contaminated areas. The method provides a non destructive and quick way of estimating the effect of such elements in different types of structures, such as the ones used in high voltage transmission lines. Also the wear out rates in mechanical engine components having a difficult direct access, have been evaluated by proton activation analysis. The evaluation of the advantages of this method is being done. The effect of irradiation damage on superconducting high temperature ceramics was analyzed by the interaction of energetic alpha particles with high T{sub c} YBaCuO samples.

  12. Laboratory corrosion tests on candidate high-level waste container materials: Results from the Belgian programme

    International Nuclear Information System (INIS)

    Druyts, F.; Kursten, B.; Iseghem, P. Van

    2004-01-01

    The Belgian SAFIR-2 concept foresees the geological disposal of conditioned high-level radioactive waste in stainless steel containers and overpacks placed in a concrete gallery backfilled with Boom clay or a bentonite-type backfill. In addition to earlier in situ experiments, we used a laboratory approach to investigate the corrosion properties of selected stainless steels in Boom clay and bentonite environments. In the SAFIR-2 concept, AISI 316L hMo is the main candidate overpack material. As an alternative, we also investigated the higher alloyed stainless steel UHB 904L. Our study focused on localised corrosion and in particular pitting. We used cyclic potentiodynamic polarisation measurements to determine the pit nucleation potential E NP and the protection potential E PP . The evolution of the corrosion potential with time was determined by monitoring the open circuit potential in synthetic clay-water over extended periods. In this paper we present and discuss some results from our laboratory programme, focusing on long-term interactions between the stainless steel overpack and the backfill materials. We describe in particular the influence of chloride and thio-sulphate ions on the pitting corrosion behaviour. The results show that, under geochemical conditions typical for geological disposal, i.e. [Cl-] ∼ 30 mg/L for a Boom clay backfill and [Cl-] ∼ 90 mg/L for a bentonite backfill, neither AISI 316L hMo nor UHB 904L is expected to present pitting problems. An important factor in the long-term prediction of the corrosion behaviour however, is the robustness of the model for the evolution of the geochemistry of the backfill. Indeed, at chloride levels higher than 1000 mg/L, we predict pitting corrosion for AISI 316L hMo. (authors)

  13. Corrosion engineering

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, M.G.

    1986-01-01

    This book emphasizes the engineering approach to handling corrosion. It presents corrosion data by corrosives or environments rather than by materials. It discusses the corrosion engineering of noble metals, ''exotic'' metals, non-metallics, coatings, mechanical properties, and corrosion testing, as well as modern concepts. New sections have been added on fracture mechanics, laser alloying, nuclear waste isolation, solar energy, geothermal energy, and the Statue of Liberty. Special isocorrosion charts, developed by the author, are introduced as a quick way to look at candidates for a particular corrosive.

  14. A survey on the corrosion susceptibility of Alloy 800 CANDU steam generator tubing materials

    International Nuclear Information System (INIS)

    Lu, Y.C.; Dupuis, M.; Burns, D.

    2008-01-01

    To provide support for a proactive steam generator (SG) aging management strategy, a survey on the corrosion susceptibility of the archived Alloy 800 tubing from CANDU SGs under plausible crevice chemistry conditions was conducted to assess the potential material degradation issues in CANDU SGs. Archived Alloy 800 samples were collected from four CANDU utilities. High-temperature electrochemical analysis was carried out to assess the corrosion susceptibility of the archived SG tubing under simulated CANDU crevice chemistry conditions at both 150 o C and 300 o C. The potentiodynamic polarization results obtained from the archived CANDU SG tubes were compared to the data from ex-service tubes removed from Darlington Nuclear Generating Station (DNGS) SGs and a reference nuclear grade Alloy 800 tubing. It was found that the removed Darlington SG tubes, with signs of in-service degradation, were more susceptible to pitting corrosion than the reference nuclear grade Alloy 800 tubing. At 150 o C, under the same neutral crevice chemistry conditions, the potentiodynamic polarization curve of the ex-service Darlington SG tubing has an active peak, which is a sign of propensity to crevice/underdeposit corrosion. This active peak was not observed in any of the potentiodynamic polarization curves of all archived Alloy 800 CANDU SG tubing indicating that archived CANDU SG tubes are less susceptible to the underdeposit corrosion under SG startup conditions. The corrosion behaviour of the archived Alloy 800 tubes from CANDU SG was similar to that of the reference nuclear grade Alloy 800 tubing. The results of this survey suggest that the Alloy 800 tubing materials used in the existing CANDU utilities (other than ex-service DNGS tubing) will continue to have reliable performance under specified CANDU operating conditions. Ex-service SG tubing from DNGS, although showing lower than average corrosion resistance, still has a wide acceptable operating margin and the in

  15. Hybrid-Biocomposite Material for Corrosion Prevention in Pipeline: a review

    International Nuclear Information System (INIS)

    Suriani, M. J.; Nik, W. B. Wan

    2017-01-01

    One of the most challenging issues in the oil and gas industry is corrosion assessment and management in subsea structures or equipment. At present, almost all steel pipelines are sensitive to corrosion in harsh working environments, particularly in salty water and sulphur ingress media. Nowadays, the most commonly practiced solution for a damaged steel pipe is to entirely remove the pipe, to remove only a localized damaged section and then replace it with a new one, or to cover it with a steel patch through welding, respectively. Numerous literatures have shown that fiber-reinforced polymer-based composites can be effectively used for steel pipe repairs. Considerable research has also been carried out on the repair of corroded and gouged pipes incorporated with hybrid natural fiber-reinforced composite wraps. Currently, further research in the field should focus on enhanced use of the lesser and highly explored hybrid-biocomposite material for the development in corrosion prevention. A hybrid-biocomposite material from renewable resource based derivatives is cost-effective, abundantly available, biodegradable, and an environmentally benign alternative for corrosion prevention. The aim of this article is to provide a comprehensive review and to bridge the gap by developing a new hybrid-biocomposite with superhydrophobic surfaces.

  16. Material characterization and corrosion control in wet storage of Chilean spent fuel

    International Nuclear Information System (INIS)

    Lamas, C.; Klein, J.; Escobar, I.

    2002-01-01

    Chile has two MTR type research reactors and the spent fuel will be stored in water previous to the conditioning for final disposal. One of the serious problem presented during wet storage is the phenomenon of corrosion, which depends on the water quality, the structural materials and the storage conditions. Thus, it is necessary to solve how to guarantee the integrity of the spent fuel during its wet storage. The water quality and fuel assembly materials are being characterized with the purpose to define the criteria of surveillance and control of corrosion as a function of time. The behavior of the 6061 Al and N4 Al alloys is being studied to characterize the susceptibility to pitting corrosion in solutions with chloride and cadmium as aggressive ions. The analyses were performed in a three-electrode electrochemical cell with 6061 Al and N4 Al as working electrodes. Platinum wire was the auxiliary electrode while Ag/AgCl was the reference electrode. To obtain the electrochemical characterization the polarization curves were used and the evolution of the corrosion potential of the aluminum alloys and SS 304 were measured. The electrolyte was deionized water with different concentrations of chloride and cadmium. At present, the results show that 6061 Al and N4 Al alloys are more susceptible to be attacked by pitting due to the presence of chloride than cadmium. (author)

  17. Hybrid-Biocomposite Material for Corrosion Prevention in Pipeline: a review

    Energy Technology Data Exchange (ETDEWEB)

    Suriani, M. J.; Nik, W. B. Wan [Universiti Malaysia Terengganu, Terengganu (Malaysia)

    2017-04-15

    One of the most challenging issues in the oil and gas industry is corrosion assessment and management in subsea structures or equipment. At present, almost all steel pipelines are sensitive to corrosion in harsh working environments, particularly in salty water and sulphur ingress media. Nowadays, the most commonly practiced solution for a damaged steel pipe is to entirely remove the pipe, to remove only a localized damaged section and then replace it with a new one, or to cover it with a steel patch through welding, respectively. Numerous literatures have shown that fiber-reinforced polymer-based composites can be effectively used for steel pipe repairs. Considerable research has also been carried out on the repair of corroded and gouged pipes incorporated with hybrid natural fiber-reinforced composite wraps. Currently, further research in the field should focus on enhanced use of the lesser and highly explored hybrid-biocomposite material for the development in corrosion prevention. A hybrid-biocomposite material from renewable resource based derivatives is cost-effective, abundantly available, biodegradable, and an environmentally benign alternative for corrosion prevention. The aim of this article is to provide a comprehensive review and to bridge the gap by developing a new hybrid-biocomposite with superhydrophobic surfaces.

  18. Contribution to the study of metallic materials bio-corrosion phenomena

    International Nuclear Information System (INIS)

    Feron, D.

    2004-05-01

    After having recalled the main electrochemical methods used for the study of metallic materials bio-deterioration phenomena, the corrosion of non or low alloy steels in anaerobic conditions is dealt with: the obtained results reveal a strong interaction between the metallic ions and the growth of sulfato reducing bacteria with inhibiting or accelerating ions of this growth. Concerning the corrosion, the chromium and molybdenum additions have a favourable effect on the resistance of low alloy steels. The sulfides impose the electrochemical behaviour of these materials, whereas the role of hydrogenases on the cathodic reaction is still to be specified to explain the observed localized corrosion, including the pure cultures of sulfato-reducing bacteria. The behaviour of stainless steels in seawater can be explained by an enzymatic catalysis of the cathodic reaction. Such a model takes into account the general behaviour of passivable alloys in natural waters in a general way and has allowed to perfect a synthetic seawater which leads to corrosion phenomena by crevice effect on stainless steels similar to those observed in natural seawater. The coupling of the aerobic conditions with the leading part of the enzymes on the cathodic reaction and of the anaerobic conditions with the presence of sulfides (which decrease the resistance of the passive layer) is the most unfavourable situation for the resistance of passivable alloys. These results lead to the concept of electrochemically activated bio-films which could be used in particular in energy production (fuel cells). (O.M.)

  19. Corrosion evaluation of materials from the second deployment of the Gulf of Mexico Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zeman, G.J.

    1979-10-01

    The corrosion behavior and nature of films formed on 5052 aluminum, CA706 copper-nickel alloy, AL-6X stainless alloy, and grade 2 titanium in seawater during the second deployment of the Gulf of Mexico Experiment (GOME II) were evaluated by optical and scanning-electron microscopy as well as gravimetric measurements. The thickness of the corrosion-product and biofouling film on the copper-nickel alloy increased linearly with time over the 99-day duration of the experiment, whereas the film thickness on aluminum was independent of exposure time. The uniform corrosion of aluminum and the copper-nickel alloy, based upon defilmed metal loss from preweighed ring specimens, was approx. 0.3 and 0.7 mils, respectively, for the 55-day exposure period. The thin films formed on stainless alloy and titanium were composed primarily of organic residues. The corrosion resistance of titanium and stainless alloy was excellent under the conditions in this experiment, although some evidence for pitting attack was found for the latter material. This study is directed toward the evaluation of candidate materials for OTEC heat exchangers.

  20. Corrosion resistance of structural material AlMg-2 in water following heat treatment and cooling

    International Nuclear Information System (INIS)

    Maman Kartaman A; Djoko Kisworo; Dedi Hariyadi; Sigit

    2005-01-01

    Corrosion tests of structural material AlMg-2 in water were carried out using autoclave in order to study the effects of heat treatment on the corrosion resistance of the material. Prior to the tests, the samples were heat-treated at temperatures of 90, 200, 300 and 500 °C and cooled in air, sand and water. The corrosion tests were conducted in water at temperature of 150 °C for 250 hours. The results showed that AlMg-2 samples were corroded although the increase of mass gain was relatively small. Heat treatment from 90 to 500 °C in sand cooling media resulted in an increase of mass gain despite that at 300 °C the increase was less than those at 200 °C and 500 °C. For water cooling media in the temperature range of 90 to 200 °C, the mass gain increased from 0.1854 g/cm 2 to 2.1204 g/cm 2 although after 200 °C it decreased to 1.8207 g/cm 2 and 1.6779 g/cm 2 respectively. For air cooling media, the mass gain was relatively constant. Based on the experiment results, it can be concluded that heat treatment and cooling did not significantly influence the corrosion resistance of material AlMg-2. The passive film Al 2 O 3 on the surface was able to protect the inner surface from further corrosion. Water media with pH range from 4 – 9 did not cause damage to passive layer formed. (author)

  1. Corrosion behavior of Ni-based structural materials for electrolytic reduction in lithium molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Soo Haeng, E-mail: nshcho1@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeokdaero Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Park, Sung Bin [Korea Atomic Energy Research Institute, 1045 Daedeokdaero Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Lee, Jong Hyeon, E-mail: jonglee@cnu.ac.kr [Graduate School of Green Energy Technology, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Hur, Jin Mok; Lee, Han Soo [Korea Atomic Energy Research Institute, 1045 Daedeokdaero Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2011-05-01

    In this study, the corrosion behavior of new Ni-based structural materials was studied for electrolytic reduction after exposure to LiCl-Li{sub 2}O molten salt at 650 deg. C for 24-216 h under an oxidizing atmosphere. The new alloys with Ni, Cr, Al, Si, and Nb as the major components were melted at 1700 deg. C under an inert atmosphere. The melt was poured into a preheated metallic mold to prepare an as-cast alloy. The corrosion products and fine structures of the corroded specimens were characterized by scanning electron microscope (SEM), Energy Dispersive X-ray Spectroscope (EDS), and X-ray diffraction (XRD). The corrosion products of as cast and heat treated low Si/high Ti alloys were Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4}, Ni, NiO, and (Al,Nb,Ti)O{sub 2}; those of as cast and heat treated high Si/low Ti alloys were Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4}, Ni, and NiO. The corrosion layers of as cast and heat treated low Si/high Ti alloys were continuous and dense. However, those of as cast and heat treated high Si/low Ti alloys were discontinuous and cracked. Heat treated low Si/high Ti alloy showed the highest corrosion resistance among the examined alloys. The superior corrosion resistance of the heat treated low Si/high Ti alloy was attributed to the addition of an appropriate amount of Si, and the metallurgical evaluations were performed systematically.

  2. Corrosion behavior of Ni-based structural materials for electrolytic reduction in lithium molten salt

    International Nuclear Information System (INIS)

    Cho, Soo Haeng; Park, Sung Bin; Lee, Jong Hyeon; Hur, Jin Mok; Lee, Han Soo

    2011-01-01

    In this study, the corrosion behavior of new Ni-based structural materials was studied for electrolytic reduction after exposure to LiCl-Li 2 O molten salt at 650 deg. C for 24-216 h under an oxidizing atmosphere. The new alloys with Ni, Cr, Al, Si, and Nb as the major components were melted at 1700 deg. C under an inert atmosphere. The melt was poured into a preheated metallic mold to prepare an as-cast alloy. The corrosion products and fine structures of the corroded specimens were characterized by scanning electron microscope (SEM), Energy Dispersive X-ray Spectroscope (EDS), and X-ray diffraction (XRD). The corrosion products of as cast and heat treated low Si/high Ti alloys were Cr 2 O 3 , NiCr 2 O 4 , Ni, NiO, and (Al,Nb,Ti)O 2 ; those of as cast and heat treated high Si/low Ti alloys were Cr 2 O 3 , NiCr 2 O 4 , Ni, and NiO. The corrosion layers of as cast and heat treated low Si/high Ti alloys were continuous and dense. However, those of as cast and heat treated high Si/low Ti alloys were discontinuous and cracked. Heat treated low Si/high Ti alloy showed the highest corrosion resistance among the examined alloys. The superior corrosion resistance of the heat treated low Si/high Ti alloy was attributed to the addition of an appropriate amount of Si, and the metallurgical evaluations were performed systematically.

  3. Possibility of Localized Corrosion of PWR primary side materials in oxidative decontamination condition

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Jung, Jun Young; Won, Huijun; Kim, Seon Byeong; Choi, Wangkyu; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Primary circuit of a PWR (radionuclides uptake in the inner oxide layer and oxide/metal interface occurred inevitably. Therefore, it is necessary to remove the inner oxide layer as well as the outer oxide layer to achieve excellent decontamination effects. It is known that the outer oxide layers are typically composed of Fe{sub 3}O{sub 4} and NiFe{sub 2}O{sub 4}. On the other hand, the inner oxide layers are composed of Cr{sub 2}O{sub 3}, (Ni{sub 1-x}Ni{sub x})(Cr{sub 1-y}Fe{sub y}){sub 2}O{sub 4}, and FeCr{sub 2}O{sub 4}. Because of chromium in the trivalent oxidation state which is difficult to dissolve, the oxide layer has an excellent protectiveness and is hard to decontaminate. For the dissolution of chromium-rich oxide, there have been developed an alkaline permanganate (AP) or nitric permanganate (NP). A disadvantage of the AP process is the generation of a large volume of secondary waste. On the other hand, NP process is highly incompatible to the corrosion of the structure materials. In this study as a part of developing decontamination process, we investigated the corrosion behavior of the structure materials such as Inconel-600 and type 304 stainless steel in NP and AP oxidative decontamination conditions for the safe use of an oxidative phase in PWR system decontamination. The corrosion behavior was analyzed through the potential-pH equilibrium for the system of Cr-H{sub 2}O / Mn-H{sub 2}O at 90 .deg. C and potentiodynamic polarization in a typical AP and NP solution were evaluated. The AP or NP treated specimen surface was observed using an optical microscope and scanning electron microscopy (SEM) for an evaluation of the localized corrosion. The possibility of localized corrosion of PWR primary side materials under oxidative decontamination condition was evaluated using a potentiodynamic polarization technique, observation of localized corrosion morphology, and consideration of potential-pH diagrams at 90 .deg. C. From the results of these tests, we

  4. Coated silicon comprising material for protection against environmental corrosion

    Science.gov (United States)

    Hazel, Brian Thomas (Inventor)

    2009-01-01

    In accordance with an embodiment of the invention, an article is disclosed. The article comprises a gas turbine engine component substrate comprising a silicon material; and an environmental barrier coating overlying the substrate, wherein the environmental barrier coating comprises cerium oxide, and the cerium oxide reduces formation of silicate glass on the substrate upon exposure to corrodant sulfates.

  5. Effect of temperature, of oxygen content and the downstream effect on corrosion rate of structural materials in liquid sodium

    International Nuclear Information System (INIS)

    Ilincev, G.

    1988-01-01

    The effects were experimentally tested of temperature and of oxygen content on the corrosion rate of structural materials in liquid sodium and on reducing the corrosion rate down the sodium stream. The results of the experiments are shown in graphs and tables and are discussed in detail. The duration of all tests was standard 1,000 hours. The test parameters were set such as to determine the effect of temperature on corrosion of a quantity of various materials in sodium with a low oxygen content (1.2 to 2 ppm) at temperatures of 500 to 800 degC and in sodium with a high oxygen content (345 ppm) at temperatures of 500 to 700 degC. More experiments served the determination of the effect of a different oxygen content varying between 1.2 and 2 ppm at a constant temperature of 600 degC. The materials being tested included main structural materials used for fast reactor construction and materials allowing to establish the effect of main alloying elements on their corrosion in liquid sodium of different temperatures and purity grades. The relationships showing the effects of temperature and oxygen content in sodium on the rate of corrosion of various structural materials in hot parts of the installation and on the reduction in the rate of corrosion downstream due to sodium saturation with corrosion products were constructed using the experimental results. (Z.M.). 15 figs., 2 tabs., 7 refs

  6. Effect of supplementary cementing materials on the concrete corrosion control

    International Nuclear Information System (INIS)

    Mejia de Gutierrez, R.

    2003-01-01

    Failure of concrete after a period of years, less than the life expected for which it was designed, may be caused by the environment to which it has been exposed or by a variety of internal causes. The incorporation of supplementary materials has at the Portland cement the purpose of improving the concrete microstructure and also of influence the resistance of concrete to environmental attacks. Different mineral by-products as ground granulated blast furnaces slag (GGBS), silica fume (SF), meta kaolin (MK), fly ash (FA) and other products have been used as supplementary cementing materials. This paper is about the behavior of concrete in the presence of mineral additions. Compared to Portland cements, blended cements show lower heat of hydration, lower permeability, greater resistance to sulphates and sea water. These blended cements find the best application when requirements of durability are regarded as a priority specially on high performance concrete: (Author) 11 refs

  7. Corrosion Processes of the CANDU Steam Generator Materials in the Presence of Silicon Compounds

    International Nuclear Information System (INIS)

    Lucan, Dumitra; Fulger, Manuela; Velciu, Lucian; Lucan, Georgiana; Jinescu, Gheorghita

    2006-01-01

    The feedwater that enters the steam generators (SG) under normal operating conditions is extremely pure but, however, it contains low levels (generally in the μg/l concentration range) of impurities such as iron, chloride, sulphate, silicate, etc. When water is converted into steam and exits the steam generator, the non-volatile impurities are left behind. As a result of their concentration, the bulk steam generator water is considerably higher than the one in the feedwater. Nevertheless, the concentrations of corrosive impurities are in general sufficiently low so that the bulk water is not significantly aggressive towards steam generator materials. The impurities and corrosion products existing in the steam generator concentrate in the porous deposits on the steam generator tubesheet. The chemical reactions that take place between the components of concentrated solutions generate an aggressive environment. The presence of this environment and of the tubesheet crevices lead to localized corrosion and thus the same tubes cannot ensure the heat transfer between the fluids of the primary and secondary circuits. Thus, it becomes necessary the understanding of the corrosion process that develops into SG secondary side. The purpose of this paper is the assessment of corrosion behavior of the tubes materials (Incoloy-800) at the normal secondary circuit parameters (temperature = 2600 deg C, pressure = 5.1 MPa). The testing environment was demineralized water containing silicon compounds, at a pH=9.5 regulated with morpholine and cyclohexyl-amine (all volatile treatment - AVT). The paper presents the results of metallographic examinations as well as the results of electrochemical measurements. (authors)

  8. Progress with alloy 33 (UNS R20033), a new corrosion resistant chromium-based austenitic material

    International Nuclear Information System (INIS)

    Koehler, M.; Heubner, U.; Eichenhofer, K.W.; Renner, M.

    1996-01-01

    Alloy 33 (UNS R20033), a new chromium-based corrosion resistant austenitic material with nominally (wt. %) 33 Cr, 32 Fe, 31 Ni, 1.6 Mo, 0.6 Cu, 0.4 N has been introduced to the market in 1995. This paper provides new data on this alloy with respect to mechanical properties, formability, weldability, sensitization characteristics and corrosion behavior. Mechanical properties of weldments including ductility have been established, and match well with those of wrought plate material, without any degradation of ISO V-notch impact toughness in the heat affected zone. When aged up to 8 hours between 600 C and 1,000 C the alloy is not sensitized when tested in boiling azeotropic nitric acid (Huey test). Under field test conditions alloy 33 shows excellent resistance to corrosion in flowing 96--98.5% H 2 SO 4 at 135 C--140 C and flowing 99.1% H 2 SO 4 at 150 C. Alloy 33 has also been tested with some success in 96% H 2 SO 4 with nitrosyl additions at 240 C. In nitric acid alloy 33 is corrosion resistant up to 85% HNO 3 and 75 C or even more. Alloy 33 is also corrosion resistant in 1 mol. HCl at 40 C and in NaOH/NaOCl-solutions. In artificial seawater the pitting potential remains unchanged up to 75 C and is still well above the seawater's redox potential at 95 C. Alloy 33 can be easily manufactured into all product forms required. The new data provided support the multipurpose character of alloy 33 to cope successfully with many requirements of the Chemical Process Industry, the Oil and Gas Industry and the Refinery Industry

  9. Corrosion of target and structural materials in water irradiated by an 800 MeV proton beam

    International Nuclear Information System (INIS)

    Butt, D.P.; Kanner, G.S.; Lillard, R.S.

    1996-01-01

    Radiation enhanced, aqueous corrosion of solid neutron-targets such as tungsten or tantalum, or target cladding or structural materials such as superalloys and stainless steels, is a significant concern in accelerator-driven transmutation technologies. In this paper we briefly describe our current methods for control and in situ monitoring of corrosion in accelerator cooling water loops. Using floating, electrochemical impedance spectroscopy (EIS), we have measured the corrosion rates of aluminum 6061, copper, Inconel 718, and 304L stainless steel in the flow loop of a water target irradiated by a μamp, 800 MeV proton beam. Impedance spectroscopy allows us to model the corrosion process of a material as an equivalent electrical circuit. Thus the polarization resistance, which is inversely proportional to the corrosion rate, can be extracted from the frequency response of a metal specimen. During a three month period, without the use of corrosion mitigation techniques, we observed increases of several orders of magnitude in the water conductivity and the corrosion rates. The increase in corrosion is at least partially attributed to a build up of peroxide in our pseudo-closed loop system. In this paper we also briefly describe our second generation experiments, scheduled to begin in late 1996. In these experiments we plan to measure the corrosion rates of tungsten, tantalum, Inconel 718, 316L and 304L stainless steel, HT-9 austenitic stainless steel, and aluminum 5053. Two or three electrode probes of each material are being placed directly in the proton beam, in a high neutron flux region, or a significant distance from the high radiation area. We will be measuring corrosion rates, changes in pH and conductivity, and we will be establishing parameters for filtration and mitigation of corrosion. We will also discuss our ideas for making in situ measurements of water radiolysis using optical and laser diagnostic techniques

  10. Corrosion Behavior of Candidate Materials Used for Urea Hydrolysis Equipment in Coal-Fired Selective Catalytic Reduction Units

    Science.gov (United States)

    Lu, Jintao; Yang, Zhen; Zhang, Bo; Huang, Jinyang; Xu, Hongjie

    2018-05-01

    Corrosion tests were performed in the laboratory in order to assess the corrosion resistance of candidate materials used in urea hydrolysis equipment. The materials to be evaluated were exposed at 145 °C for 1000 h. Alloys 316L, 316L Mod., HR3C, Inconel 718, and TC4 were evaluated. Additionally, aluminide and chromate coatings applied to a 316L substrate were examined. After exposure, the mass changes in the test samples were measured by a discontinuous weighing method, and the morphologies, compositions, and phases of the corrosion products were analyzed using scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Results indicated that continuous pitting and dissolution corrosion were the main failure modes for 316L stainless steel. 316L Mod. and HR3C alloy showed better corrosion resistance than 316L due to their relatively high Cr contents, but HR3C exhibited a strong tendency toward intergranular corrosion. Inconel 718, TC4, and aluminide and chromate coating samples showed similar corrosion processes: only depositions formed by hydrothermal reactions were observed. Based on these results, a possible corrosion process in the urea hydrolysis environment was discussed for these candidate materials and questions to be clarified were proposed.

  11. Application of a passive electrochemical noise technique to localized corrosion of candidate radioactive waste container materials

    International Nuclear Information System (INIS)

    Korzan, M.A.

    1994-05-01

    One of the key engineered barriers in the design of the proposed Yucca Mountain repository is the waste canister that encapsulates the spent fuel elements. Current candidate metals for the canisters to be emplaced at Yucca Mountain include cast iron, carbon steel, Incoloy 825 and titanium code-12. This project was designed to evaluate passive electrochemical noise techniques for measuring pitting and corrosion characteristics of candidate materials under prototypical repository conditions. Experimental techniques were also developed and optimized for measurements in a radiation environment. These techniques provide a new method for understanding material response to environmental effects (i.e., gamma radiation, temperature, solution chemistry) through the measurement of electrochemical noise generated during the corrosion of the metal surface. In addition, because of the passive nature of the measurement the technique could offer a means of in-situ monitoring of barrier performance

  12. Study on corrosion behavior of candidate materials in 650℃ supercritical water

    International Nuclear Information System (INIS)

    Ma Shuli; Luo Ying; Zhang Qiang; Wang Hao; Qiu Shaoyu

    2014-01-01

    The general corrosion behavior of three candidate materials (347, HR3C and In-718) was investigated in 650 ℃/25 MPa deionized water. Morphology and composition of the surface oxide film with different exposure time were observed through FEG-SEM and EDS. The phase constitute was analyzed by GIXRD. For all the test materials, the weight loss follows typical parabolic law and the weight loss of 347 shows more than 40 times higher than that of HR3C and In-718. The oxide film of three alloys mainly consists of Ni(Cr, Fe) 2 O 4 . In-718 shows severe pitting and the oxide film of 347 appears significant spalling, while HR3C has compact oxide film. In the high temperature supercritical water, the high Cr content may enhance the general corrosion property of the alloys, while addition of Nb may be detrimental to the pitting resistance of alloys. (authors)

  13. Stress corrosion cracking tests on high-level-waste container materials in simulated tuff repository environments

    International Nuclear Information System (INIS)

    Abraham, T.; Jain, H.; Soo, P.

    1986-06-01

    Types 304L, 316L, and 321 austenitic stainless steel and Incoloy 825 are being considered as candidate container materials for emplacing high-level waste in a tuff repository. The stress corrosion cracking susceptibility of these materials under simulated tuff repository conditions was evaluated by using the notched C-ring method. The tests were conducted in boiling synthetic groundwater as well as in the steam/air phase above the boiling solutions. All specimens were in contact with crushed Topopah Spring tuff. The investigation showed that microcracks are frequently observed after testing as a result of stress corrosion cracking or intergranular attack. Results showing changes in water chemistry during test are also presented

  14. Some problems on the aqueous corrosion of structural materials in nuclear engineering; Problemes de corrosion aqueuse de materiaux de structure dans les constructions nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H; Grall, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The purpose of this report is to give a comprehensive view of some aqueous corrosion studies which have been carried out with various materials for utilization either in nuclear reactors or in irradiated fuel treatment plants. The various subjects are listed below. Austenitic Fe-Ni-Cr alloys: the behaviour of austenitic Fe-Ni-Cr alloys in nitric medium and in the presence of hexavalent chromium; the stress corrosion of austenitic alloys in alkaline media at high temperatures; the stress corrosion of austenitic Fe-Ni-Cr alloys in 650 C steam. Ferritic steels: corrosion of low alloy steels in water at 25 and 360 C; zirconium alloys; the behaviour of ultrapure zirconium in water and steam at high temperature. (authors) [French] On presente un ensemble d'etudes de corrosion en milieu aqueux effectuees sur des materiaux utilises, soit dans la construction des reacteurs soit pour la realisation des usines de traitement des combustibles irradies. Les differents sujets etudies sont les suivants. Les alliages austenitiques Fer-Nickel-Chrome: comportement d'alliages austenitiques fer-nickel-chrome en milieu nitrique en presence de chrome hexavalent; Corrosion sous contrainte d'alliages austenitiques dans les milieux alcalins a haute temperature; Corrosion sous contrainte dans la vapeur a 650 C d'alliages austenitiques fer-nickel-chrome. Les aciers ferritiques; Corrosion d'aciers faiblement allies dans l'eau a 25 et 360 C; le zirconium et ses alliages; Comportement du zirconium tres pur dans l'eau et la vapeur a haute temperature. (auteurs)

  15. Localized corrosion and stress corrosion cracking of candidate materials for high-level radioactive waste disposal containers in the US: A literature review

    International Nuclear Information System (INIS)

    Farmer, J.C.; McCright, R.D.

    1988-01-01

    Container materials may undergo any of several modes of degradation in this environment, including: undesirable phase transformations due to lack of phase stability; atmospheric oxidation; general aqueous corrosion; pitting; crevice corrosion; intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This paper is an analysis of data from the literature relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of these alloys. Though all three austenitic candidates have demonstrated pitting and crevice corrosion in chloride-containing environments, Alloy 825 has the greatest resistance to these forms of localized attack. Both types 304L and 316L stainless steels are susceptible to SCC in acidic chloride media. In contrast, SCC has not been documented for Alloy 825 under comparable conditions. Gamma irradiation has been found to enhance SCC of Types 304 and 304L stainless steels, but it has no detectable effect on the resistance of Alloy 825 to SCC. Furthermore, while microbiologically induced corrosion effects have been observed for 300-series stainless steels, nickel-based alloys such as Alloy 825 seem to be immune to such problems. Of the copper-based alloys, CDA 715 has the best overall resistance to localized attack. Its resistance to pitting is comparable to that of CDA 613 and superior to that of CDA 102. Observed rates of dealloying in CDA 715 are less than those observed in CDA 613 by orders of magnitude. The resistance of CDA 715 to SCC in tarnishing ammonical environments is comparable to that of CDA 102 and superior to that of CDA 613. Its resistance to SCC in nontarnishing ammonical environments is comparable to that of CDA 613 and superior to that of CDA 102. 22 refs., 8 figs., 4 tabs

  16. Revealing Nanoscale Passivation and Corrosion Mechanisms of Reactive Battery Materials in Gas Environments.

    Science.gov (United States)

    Li, Yuzhang; Li, Yanbin; Sun, Yongming; Butz, Benjamin; Yan, Kai; Koh, Ai Leen; Zhao, Jie; Pei, Allen; Cui, Yi

    2017-08-09

    Lithium (Li) metal is a high-capacity anode material (3860 mAh g -1 ) that can enable high-energy batteries for electric vehicles and grid-storage applications. However, Li metal is highly reactive and repeatedly consumed when exposed to liquid electrolyte (during battery operation) or the ambient environment (throughout battery manufacturing). Studying these corrosion reactions on the nanoscale is especially difficult due to the high chemical reactivity of both Li metal and its surface corrosion films. Here, we directly generate pure Li metal inside an environmental transmission electron microscope (TEM), revealing the nanoscale passivation and corrosion process of Li metal in oxygen (O 2 ), nitrogen (N 2 ), and water vapor (H 2 O). We find that while dry O 2 and N 2 (99.9999 vol %) form uniform passivation layers on Li, trace water vapor (∼1 mol %) disrupts this passivation and forms a porous film on Li metal that allows gas to penetrate and continuously react with Li. To exploit the self-passivating behavior of Li in dry conditions, we introduce a simple dry-N 2 pretreatment of Li metal to form a protective layer of Li nitride prior to battery assembly. The fast ionic conductivity and stable interface of Li nitride results in improved battery performance with dendrite-free cycling and low voltage hysteresis. Our work reveals the detailed process of Li metal passivation/corrosion and demonstrates how this mechanistic insight can guide engineering solutions for Li metal batteries.

  17. Control of molten salt corrosion of fusion structural materials by metallic beryllium

    International Nuclear Information System (INIS)

    Calderoni, P.; Sharpe, P.; Nishimura, H.; Terai, T.

    2009-01-01

    A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF + BeF 2 in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 deg. C, and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to levels close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimen corrosion progressed. Metallographic analysis of the samples after 500 h exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimen's surface.

  18. Improvement on corrosion resistance of NiTi orthopedic materials by carbon plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Poon, Ray W.Y.; Ho, Joan P.Y.; Luk, Camille M.Y.; Liu Xuanyong; Chung, Jonathan C.Y.; Chu, Paul K.; Yeung, Kelvin W.K.; Lu, William W.; Cheung, Kenneth M.C.

    2006-01-01

    Nickel-titanium shape memory alloys (NiTi) have potential applications as orthopedic implants because of their unique super-elastic properties and shape memory effects. However, the problem of out-diffusion of harmful Ni ions from the alloys during prolonged use inside a human body must be overcome before they can be widely used in orthopedic implants. In this work, we enhance the corrosion resistance of NiTi using carbon plasma immersion ion implantation and deposition (PIII and D). Our corrosion and simulated body fluid tests indicate that either an ion-mixed amorphous carbon coating fabricated by PIII and D or direct carbon PIII can drastically improve the corrosion resistance and block the out-diffusion of Ni from the materials. Results of atomic force microscopy (AFM) indicate that both C 2 H 2 -PIII and D and C 2 H 2 -PIII do not roughen the original flat surface to an extent that can lead to degradation in corrosion resistance

  19. The corrosion resistance of materials used for the manufacture of ear piercing studs

    International Nuclear Information System (INIS)

    Correa, O. V.; Saiki, M.; Rogero, S. O.; Costa, I.

    2003-01-01

    Nickel containing alloy shave been widely used as substrates for the manufacture of studs used for ear piercing. Unfortunately, nickel has also been related to the development of allergic contact dermatitis caused by skin sensitization due to Ni''2+ ions. Nickel ions can be leached out into the body fluids due to corrosion reactions. Defect free coatings are very difficult to produce, and therefore nickel free materials should be used as substrates of ear piercing studs, although the commercial alloys used usually contain this element. In this study, the corrosion resistance of two kinds of commercial studs prepared with nickel containing substrates and a titanium laboratory made stud was determined in a culture medium. The corrosion resistance of the studs was investigated by means of potentiodynamic polarization tests and electrochemical impedance spectroscopy as a function of immersion time in the culture medium. The elements that leached out into the medium due to corrosion reactions were analyzed by instrumental neutron activation analysis. The surfaces of the commercial gold-coated studs were examined by scanning electron microscopy and analyzed by energy dispersive spectroscopy, both before and after exposure to the culture medium. The cytotoxicity of the tested studs was also determined in the culture medium. (Author) 10 refs

  20. Suppressing hydrogen ingress during aqueous corrosion of CANDU Zr-2.5 Nb pressure tube material

    International Nuclear Information System (INIS)

    Elmoselhi, M.B.; Donner, A.; Brennenstuhl, A.; Warr, B.D.; Ellis, P.J.; Evans, D.W.

    2002-01-01

    As a result of their special properties, including low neutron cross-section and intrinsic corrosion resistance, Zr alloys are used in the fabrication of nuclear core components, particularly fuel cladding (in most reactor types) and also Zr-2.5 Nb pressure tubes in CANDU trademark (Canada Deuterium Uranium) reactors. Corrosion and H uptake during service can limit the life of these components. Therefore, remedial action may be appropriate to slow the H uptake rate and prolong the working life of these reactor components. This work has explored the possibility of reducing H uptake in pressure tube material by incorporating an inhibiting agent into the corrosion environment. Two approaches have been tested, depositing a thin metallic film on the initial oxide surface and adding an inhibiting agent to the solution. The latter approach appears more practical. Screening experiments were conducted in short-term (∝30 day) exposures in high temperature (340 C) aqueous out-reactor environments, simulating the CANDU trademark heat transport coolant with various chemistries. Compounds tested included aluminum acetate, aluminum nitrate, lithium nitrate, rhodium nitrate and yttrium nitrate. Comparison of results from the aluminum nitrate additives and aluminum acetate additives suggests that the nitrate anion is the effective ingredient for H ingress inhibition. The nitrate anion appears to reduce the rate of H ingress regardless of the associated cation. However, each cation appears to affect the rate of corrosion differently. These cations were found to be incorporated in the oxide film. (authors)

  1. Influence of pH and oxygen content of buffer solutions on the corrosion behaviour of metallic materials

    International Nuclear Information System (INIS)

    Wiedemann, K.H.

    1977-05-01

    The application of solutions to the decontamination of materials in nuclear installations is based on the condition that their corrosion behaviour is clearly understood. Since electrochemical corrosion is due to cathodic and anodic partial reactions which are influenced in different ways by the pH of the solution and the oxygen content it is suggested that the results of electrochemical experiments with buffer solutions be used as a model for predicting the corrosion behaviour of materials in other solutions. In the tests described here potentio-kinetic current-potential-curves have been traced and galvanic corrosion tests have been made. The results obtained in ascorbic acid, potassium hydrogen phthalate, ammonium citrate and acetate, sodium and potassium tartrate, ammonium hydrogen phosphate, sodium carbonate, hexamethylene tetramin, ethylene diamine enable - on the basis of summarized current-potential-curves - the metals studied to be classified in four groups characterized by clear differences concerning the influence of pH on the corrosion behaviour. (Auth.)

  2. Anti -corrosion Effect of ETA on Materials in Secondary Loop of PWR

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the world, over sixty percent of nuclear power plant have used advanced amunes ETA(Ethanolamine) as pH control agent in secondary loop of PWR. There are eighty percent of nuclear powerplants using ETA in USA. The corrosion of materials in steam generator (SG) tube and secondary looppower water reactor have been inhibited, the life of SG and the economics of the plant are increasedbecause of using ETA.

  3. Effect of supplementary cementing materials on the concrete corrosion control

    Directory of Open Access Journals (Sweden)

    Mejía de Gutiérrez, R.

    2003-12-01

    Full Text Available Failure of concrete after a period of years, less than the life expected for which it was designed, may be caused by the environment to which it has been exposed or by a variety of internal causes. The incorporation of supplementary materials has at the Portland cement the purpose of improving the concrete microstructure and also of influence the resistance of concrete to environmental attacks. Different mineral by-products as ground granulated blast furnace slag (GGBS, silica fume (SF, metakaolin (MK, fly ash (FA and other products have been used as supplementary cementing materials. This paper is about the behavior of concrete in the presence of mineral additions. Compared to Portland cements, blended cements show lower heat of hydration, lower permeability, greater resistance to sulphates and sea water. These blended cements find the best application when requirements of durability are regarded as a priority specially on high performance concrete.

    La falla del concreto en un tiempo inferior a la vida útil para la cual se diseñó puede ser consecuencia del medio ambiente al cual ha estado expuesto o de algunas otras causas de tipo interno. La incorporación de materiales suplementarios al cemento Portland tiene el propósito de mejorar la microestructura del concreto y también de contribuir a la resistencia del concreto a los ataques del medio ambiente. Diferentes minerales y subproductos tales como escorias granuladas de alto horno, humo de sílice, metacaolín, ceniza volante y otros productos han sido usados como materiales suplementarios cementantes. Este documento presenta el comportamiento del hormigón en presencia de diferentes adiciones. Los cementos adicionados, comparados con los cementos Portland muestran bajos calores de hidratación, baja permeabilidad, mayor resistencia a sulfatos y a agua de mar. Estos cementos adicionados encuentran un campo de aplicación importante cuando los requerimientos de durabilidad son

  4. Scratch, wear and corrosion resistant organic inorganic hybrid materials for metals protection and barrier

    International Nuclear Information System (INIS)

    Barletta, M.; Gisario, A.; Puopolo, M.; Vesco, S.

    2015-01-01

    Highlights: • Polysiloxane coatings as protective barriers to delay erosion/corrosion of Fe 430 B metal substrates. • Methyl groups feature a very small steric hindrance and confer ductility to the Si–O–Si backbone. • Phenyl groups feature a larger steric hindrance, but they ensure stability and high chemical inertness. • Remarkable adhesion to the substrate, good scratch resistance and high wear endurance. • Innovative ways to design of long lasting protective barriers against corrosion and aggressive chemicals. - Abstract: Polysiloxanes are widely used as protective barriers to delay erosion/corrosion and increase chemical inertness of metal substrates. In the present work, a high molecular weight methyl phenyl polysiloxane resin was designed to manufacture a protective coating for Fe 430 B structural steel. Methyl groups feature very small steric hindrance and confer ductility to the Si–O–Si backbone of the organic inorganic hybrid resin, thus allowing the achievement of high thickness. Phenyl groups feature larger steric hindrance, but they ensure stability and high chemical inertness. Visual appearance and morphology of the coatings were studied by field emission scanning electron microscopy and contact gauge surface profilometry. Micro-mechanical response of the coatings was analyzed by instrumented progressive load scratch, while wear resistance by dry sliding linear reciprocating tribological tests. Lastly, chemical inertness and corrosion endurance of the coatings were evaluated by linear sweep voltammetry and chronoamperometry in aggressive acid environment. The resulting resins yielded protective materials, which feature remarkable adhesion to the substrate, good scratch resistance and high wear endurance, thus laying the foundations to manufacture long lasting protective barriers against corrosion and, more in general, against aggressive chemicals

  5. Effect of heat treatment and composition on stress corrosion cracking of steam generation tubing materials

    International Nuclear Information System (INIS)

    Kim, H. P.; Hwang, S. S.; Kuk, I. H.; Kim, J. S.; Oh, C. Y.

    1998-01-01

    Effects of heat treatment and alloy composition on stress corrosion cracking (SCC) of steam generator tubing materials have been studied in 40% NaOH at 315.deg.C at potential of +200mV above corrosion potential using C-ring specimen and reverse U bend specimen. The tubing materials used were commercial Alloy 600, Alloy 690 and laboratory alloys, Ni-χCr-10Fe. Commercial Alloy 600, Alloy 690 were mill annealed or thermally treated.Laboratory alloy Ni-χCr-10Fe, and some of Alloy 600 and Alloy 690 were solution annealed. Polarization curves were measured to find out any relationship between SCC susceptibility and electrochemical behaviour. The variation in thermal treatment of Alloy 600 and Alloy 690 had no effect on polarization behaviour probably due to small area fraction of carbide and Cr depletion zone near grain boundary. In anodic polarization curves, the first and second anodic peaks at about 170mV and about at 260mV, respectively, above corrosion potential were independent of Cr content, whereas the third peak at 750mV above corrosion potential and passive current density in-creased with Cr content. SCC susceptibility decreased with Cr content and thermal treatment producing semicontinuous grain boundary decoration. Examination of cross sectional area of C-ring specimen showed deep SCC cracks for the alloys with less than 17%Cr and many shallow attacks for alloy 690. The role of Cr content in steam generator tubing materials and grain boundary carbide on SCC were discussed

  6. Corrosion Resistance of a Cast-Iron Material Coated With a Ceramic Layer Using Thermal Spray Method

    Science.gov (United States)

    Florea, C. D.; Bejinariu, C.; Munteanu, C.; Istrate, B.; Toma, S. L.; Alexandru, A.; Cimpoesu, R.

    2018-06-01

    Cast-iron 250 used for breake systems present many corrosion signs after a mean usage time based on the environment conditions they work. In order to improve them corrosion resistance we propose to cover the active part of the material using a ceramic material. The deposition process is an industrial deposition system based on thermal spraying that can cover high surfaces in low time. In this articol we analyze the influence of a ceramic layer (40-50 µm) on the corrosion resistance of FC250 cast iron. The results were analyzed using scanning electron microscopy (SEM), X-ray energy dispersive (EDS) and linear and cyclic potentiometry.

  7. Development of bushing material with higher corrosion and wear resistance; Taishoku taimamosei dogokin bush zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kira, T; Yokota, H; Kamiya, S [Taiho Kogyo Co. Ltd., Osaka (Japan)

    1997-10-01

    Recent diesel engines require a higher performance and a longer life. Due to higher cylinder pressure, the operating load and temperature of piston pin bushings become higher. Therefore, higher load capacity, higher wear resistance and higher corrosion resistance are required for piston pin bushings. For this reason, we have studied the effect of components added to copper alloy upon the corrosion resistance and the effect of hard particles dispersed in copper matrix upon the wear resistance and the influence of hard particles on the machinablity of materials. Based on the experimental results, we have developed a new bushing material improving wear and corrosion resistance. 17 figs., 3 tabs.

  8. Corrosion/95 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The papers in this conference represent the latest technological advances in corrosion control and prevention. The following subject areas are covered: cathodic protection in natural waters; materials for fossil fuel combustion and conversion systems; modern problems in atmospheric corrosion; innovative ideas for controlling the decaying infrastructure; deposits and their effects on corrosion in industry; volatile high temperature and non aqueous corrosion inhibitors; corrosion of light-weight and precoated metals for automotive application; refining industry corrosion; corrosion in pulp and paper industry; arctic/cold weather corrosion; materials selection for waste incinerators and associated equipment; corrosion measurement technology; environmental cracking of materials; advancing technology in the coating industry; corrosion in gas treating; green inhibition; recent advances in corrosion control of rail equipment; velocity effects and erosion corrosion in oil and gas production; marine corrosion; corrosion of materials in nuclear systems; underground corrosion control; corrosion in potable and industrial water systems in buildings and its impact on environmental compliance; deposit related boiler tube failures; boiler systems monitoring and control; recent developments and experiences in reactive metals; microbiologically influenced corrosion; corrosion and corrosion control for steel reinforced concrete; international symposium on the use of 12 and 13 Cr stainless steels in oil and gas production environments; subsea corrosion /erosion monitoring in production facilities; fiberglass reinforced pipe and tubulars in oilfield service; corrosion control technology in power transmission and distribution; mechanisms and methods of scale and deposit control; closing the loop -- results oriented cooling system monitoring and control; and minimization of aqueous discharge

  9. In situ corrosion studies on selected high level waste packaging materials under simulated disposal conditions in rock salt

    International Nuclear Information System (INIS)

    Smailos, E.; Schwarzkopf, W.; Koester, R.

    1988-01-01

    In order to qualify corrosion resistant materials for high level waste (HLW) packagings acting as a long-term barrier in a rock salt repository, the corrosion behavior of preselected materials is being investigated in laboratory-scale and in-situ experiments. This work reports about in-situ corrosion experiments on unalloyed steels, Ti 99.8-Pd, Hastelloy C4, and iron-base alloys, as nodular cast iron, Ni-Resist D4 and Si-cast iron, under simulated disposal conditions. The results of the investigations can be summarized as follows: (1) all materials investigated exhibited high resistance to corrosion under the conditions prevailing in the Brine Migration Test; (2) all materials and above all the materials with passivating oxide layers such as Ti 99.8-Pd and Hastelloy C4 which may corrode selectively already in the presence of minor amounts of brine had been resistant with respect to any type of local corrosion attack; the gamma-radiation of 3 · 10 2 Gy/h did not exert an influence on the corrosion behavior of the materials

  10. In-situ hot corrosion testing of candidate materials for exhaust valve spindles

    DEFF Research Database (Denmark)

    Bihlet, Uffe; Hoeg, Harro A.; Dahl, Kristian Vinter

    2011-01-01

    The two stroke diesel engine has been continually optimized since its invention more than a century ago. One of the ways to increase fuel efficiency further is to increase the compression ratio, and thereby the temperature in the combustion chamber. Because of this, and the composition of the fuel...... used, exhaust valve spindles in marine diesel engines are subjected to high temperatures and stresses as well as molten salt induced corrosion. To investigate candidate materials for future designs which will involve the HIP process, a spindle with Ni superalloy material samples inserted in a HIPd Ni49...

  11. Corrosion behavior of materials in a liquid Pb-Bi spallation target

    International Nuclear Information System (INIS)

    Barbier, F.; Balbaud, F.; Deloffre, P.; Terlain, A.

    2001-01-01

    Corrosion results of austenitic and martensitic steels exposed to Pb-Bi liquid alloy (material candidate for the spallation target of ADS) are presented. They show the large influence of parameters such as the oxygen content in Pb-Bi and the Pb-Bi velocity on the corrosion. At low O 2 content (7 10 -8 wt%) in Pb-Bi the steels can suffer from significant dissolution while at high O 2 (1-2 10 -6 wt%) content they can be covered by an oxide layer which protects them from the dissolution. Moreover it is shown that, in aniso-thermal systems, the deposit chemical composition formed in the cold parts can depend on the temperature. (authors)

  12. Release of corrosion products from construction materials containing cobalt. Pt.2: Inconel X750

    International Nuclear Information System (INIS)

    Falk, I.

    1978-02-01

    This report describes experimental work aimed at determining the release rate for corrosion products from 18Cr8Ni steel and Inconel X750 in BWR environments. For test purposes these environments were simulated in a high pressure loop, where irradiated samples of the materials were exposed for 720 hours. The amounts of released products were determined using gamma spectrometric analysis. The results show that the release from Inconel X750 is higher than that from 18Cr8Ni steel. The release calculated from Co58 measurements is 7 times higher and from Co60 measurements it is 1.5 times higher. Both the filtered and the deposited fractions of the released corrosion products exhibit the same relative concentrations of Co58 and Co60. (author)

  13. Corrosion failure of a bolt made of the 25Kh1MF material

    International Nuclear Information System (INIS)

    Liska, V.; Cechova, D.; Velkoborsky, J.

    1989-01-01

    M36x4 bolts, of which there are 222 at each nuclear power plant unit, are made of the 25Kh1MF or 38KhN3MFA steel. They are located in an environment with elevated temperature, with damp air and with boric acid. Corrosion of these bolts is due to the rather poor metallurgical quality of the steel. No inadmissible inhomogeneities of the type of lines of inclusions occur in the bolt material produced by cold rolling but defects of the type of laps were found on the threads. It is suggested that if the cold rolling technology were obviated, corrosion failure of the bolts might not occur. (M.D.). 7 figs., 3 refs

  14. Simultaneous sound velocity and thickness measurement by the ultrasonic pitch-catch method for corrosion-layer-forming polymeric materials.

    Science.gov (United States)

    Kusano, Masahiro; Takizawa, Shota; Sakai, Tetsuya; Arao, Yoshihiko; Kubouchi, Masatoshi

    2018-01-01

    Since thermosetting resins have excellent resistance to chemicals, fiber reinforced plastics composed of such resins and reinforcement fibers are widely used as construction materials for equipment in chemical plants. Such equipment is usually used for several decades under severe corrosive conditions so that failure due to degradation may result. One of the degradation behaviors in thermosetting resins under chemical solutions is "corrosion-layer-forming" degradation. In this type of degradation, surface resins in contact with a solution corrode, and some of them remain asa corrosion layer on the pristine part. It is difficult to precisely measure the thickness of the pristine part of such degradation type materials by conventional pulse-echo ultrasonic testing, because the sound velocity depends on the degree of corrosion of the polymeric material. In addition, the ultrasonic reflection interface between the pristine part and the corrosion layer is obscure. Thus, we propose a pitch-catch method using a pair of normal and angle probes to measure four parameters: the thicknesses of the pristine part and the corrosion layer, and their respective sound velocities. The validity of the proposed method was confirmed by measuring a two-layer sample and a sample including corroded parts. The results demonstrate that the pitch-catch method can successfully measure the four parameters and evaluate the residual thickness of the pristine part in the corrosion-layer-forming sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Studies of Corrosion Resistant Materials Being Considered for High-Level Nuclear Waste Containment in Yucca Mountain Relevant Environments

    International Nuclear Information System (INIS)

    McCright, R.D.; Ilevbare, G.; Estill, J.; Rebak, R.

    2001-01-01

    Containment of spent nuclear fuel and vitrified forms of high level nuclear waste require use of materials that are highly corrosion resistant to all of the anticipated environmental scenarios that can occur in a geological repository. Ni-Cr-Mo Alloy 22 (UNS N60622) is proposed for the corrosion resistant outer barrier of a two-layer waste package container at the potential repository site at Yucca Mountain. A range of water compositions that may contact the outer barrier is under consideration, and a testing program is underway to characterize the forms of corrosion and to quantify the corrosion rates. Results from the testing support models for long term prediction of the performance of the container. Results obtained to date indicate a very low general corrosion rate for Alloy 22 and very high resistance to all forms of localized and environmentally assisted cracking in environments tested to date

  16. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J C; Haslam, J J; Wong, F; Ji, X; Day, S D; Branagan, D J; Marshall, M C; Meacham, B E; Buffa, E J; Blue, C A; Rivard, J K; Beardsley, M B; Weaver, D T; Aprigliano, L F; Kohler, L; Bayles, R; Lemieux, E J; Wolejsza, T M; Martin, F J; Yang, N; Lucadamo, G; Perepezko, J H; Hildal, K; Kaufman, L; Heuer, A H; Ernst, F; Michal, G M; Kahn, H; Lavernia, E J

    2004-01-01

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an ''integral drip shield'' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  17. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    International Nuclear Information System (INIS)

    Keiser, D.D.

    1996-11-01

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne's waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne's metal waste form in light of the Yucca Mountain activities

  18. Method and device for the determination of material loss due to corrosion and/or erosion

    International Nuclear Information System (INIS)

    Dugstad, A.; Videm, K.

    1990-01-01

    The invention relates to a method and an apparatus for gauging material loss due to corrosion and/or erosion during a certain period of time from a given piece of material which previously has been made radioactive. The material loss is determined by measuring the intensity of the radiactive radiation from the material by means of a radiation intensity meter disposed at a measuring site a fixed distance from said piece of material for the measurement of the radioactive radiation from the piece both at the beginning and at the end of said period of time. Each of the measurements is calibrated by means of an additional radiation source disposed for controllably adopting either a most radiation screened position or alternatively a least screened position with respect to a radiation screen, and thereby providing a known radiation intensity at the measuring site in both positions. The least radiation screened position provides full unscreened radiation intensity at the measuring site, whereas the most screened position provides negligible radiation intensity at said site. The measurement results in the two positions are subsequently compared in order to deduce the contribution of said piece of material to the combined radiation intensity in proporsion to the known contribution of the radiation source. The additional radiation source is preferable made from a calibration body composed of the same material as the piece of material exposed to corrosion and/or erosion, the calibration body body being activated at the same time and by the same activation process as said piece. The calibration body is preferably dimensioned to provide at all time the same radiation intensity at the measuring site as a predetermined material loss from the piece of material, e.g. a prefixed thickness reduction of the same. 4 figs

  19. Assessment of corrosion characteristics and development of remedial technologies in nuclear materials

    International Nuclear Information System (INIS)

    Kim, Joung Soo; Kim, H. P.; Lim, Y. S. and others

    2005-04-01

    Main components and structures in nuclear power plants generally use materials having superior resistance to corrosion. Since the damages related to corrosion have become a menace to the safety of NPPs as well as economical loss and the steam generator tubing forming a boundary between the primary and secondary sides of NPPs is one of the main components that are most damaged by corrosion, it is strongly required to verify the mechanisms of the steam generator tubing degradations, to develop remedial techniques for the degradations, to manage the damages, and to develop techniques for the extension of the plant's life. In this study, the PWSCC characteristics of the archived steam generator tube materials in the domestic NPPs were evaluated and the databases of the obtained results were established. Also, the PWSCC characteristics of the welding material, Alloy 182, for Alloy 600, were evaluated. To verify the damage mechanisms of the circumferential SCC occurring in the expansion transition region of the tubes in the Korean standard NPPS, the evaluation technique for the residual stresses in the expanded region was acquired. A procedure of the inhibition technique for the SCC occurring in the secondary side of steam generators and a model for estimating the safety of damaged tubes by the structural leakage were developed, by which the fundamental technologies for the safe operations of NPPs, the management of the damages, and the expansion of the plant life were acquired. The material improvement technique for the integrity enhancement of tubes was developed. Along with the development of the Ni-coating technique the evaluation of the properties such as mechanical and SCC properties of the coated film was performed

  20. High temperature corrosion in chloridizing atmospheres: development of material quasi-stability diagrams and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Doublet, S.; Schuetze, M. [Karl-Winnacker-Institut der DECHEMA e.V., Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany)

    2004-07-01

    Chlorine gas is widely encountered in chemical industries, e. g. in waste incinerators and plastic/polymer decomposition mills. The presence of chlorine may significantly reduce the life-time of the components. Although metallic materials have been widely used under such conditions there is still a need for data on the role of the different alloying elements in commercial alloys. The purpose of this work is to produce a clear picture of which alloying elements play a detrimental role and which elements are beneficial. These results can be used as a tool for general assessment of metallic alloys with regard to their performance in chloridizing high temperature environments. A previous study has already been performed in oxidizing-chloridizing atmospheres and led to the elaboration of material quasi-stability diagrams. As a follow-up the present work has been performed in reducing-chloridizing atmospheres in order to validate these diagrams at low partial pressures of oxygen. The behaviour of 9 commercial materials where the content of the major alloying elements was varied in a systematic manner was investigated in reducing-chloridizing atmospheres (in Ar containing up to 2 vol.% Cl{sub 2} and down to 1 ppm O{sub 2}) at 800 deg. C. As the thermodynamical approach to corrosion in such atmospheres could not explain all the phenomena which occur, kinetics calculations i.e. diffusion calculations were carried out. Pack cementation and High Velocity Oxy-Fuel (HVOF) coatings were also developed from the best alloying elements previously found by the calculations and the corrosion experiments. Corrosion tests on the coated materials were then performed in the same conditions as the commercial alloys. (authors)

  1. Corrosion studies on type AISI 316L stainless steel and other materials in lithium-salt solutions

    International Nuclear Information System (INIS)

    Zheng, J.H.; Bogaerts, W.F.; Agema, K.; Phlippo, K.; Bruggeman, A.; Lorenzetto, P.; Embrechts, M.J.

    1991-01-01

    A possible concept for the blanket for next generation fusion devices is the lithium salt blanket, where lithium salt is dissolved in an aqueous coolant in order to provide for tritium. Type AISI 316L stainless steel has been considered as a structural material for such a blanket for NET (Next European Torus), and a systematic study of the corrosion behaviour of 316L stainless steel has been carried out in a number of lithium salt solutions. The experiments include cyclic potentiodynamic polarization measurement, crevice corrosion fatigue and stress corrosion cracking (SCC) tests. This paper presents a part of novel corrosion results concerning the compatibility of 316L steel and a series of other materials relevant to a fusion blanket environment. No major uniform corrosion problem has been observed, but localized corrosion, particularly corrosion fatigue and SCC, of 316L stainless steel have been found so far in a lithium hydroxide solution under some specific potential conditions. The critical electrochemical potential zones for SCC have been identified in the present study. (orig.)

  2. A method for measuring the corrosion rate of materials in spallation neutron source target/blanket cooling loops

    International Nuclear Information System (INIS)

    Lillard, R.S.; Butt, D.P.

    1999-01-01

    This paper summarizes the ongoing evaluation of the susceptibility of materials in accelerator target/blanket cooling loops to corrosion. To simulate the exposure environment in a target/blanket cooling loop, samples were irradiated by an 800 MeV proton beam at the A6 Target Station of the Los Alamos Neutron Science Center (LANSCE). To accomplish this, a cooling water loop capable of exposing corrosion samples to an 800 MeV proton beam at currents upwards of 1 mA was constructed. This loop allowed control and evaluation hydrogen water chemistry, water conductivity, and solution pH. Specially designed ceramic sealed samples were used to measure the real-time corrosion rates of materials placed directly in the proton beam using electrochemical impedance spectroscopy (EIS). EIS was also used to measure real-time corrosion rates of samples that were out of the proton beam and downstream from the in-beam samples. These out-of-beam probes primarily examined the effects of long lived water radiolysis products from proton irradiation on corrosion rates. An overview of the LANSCE corrosion loop, the corrosion probes, and data from an in-beam alloy 718 probe are presented

  3. Development of advanced corrosion resistant materials for molten coal ash; Yoyu sekitanbai ni taisuru kotaishokusei zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For development of materials for heat exchangers under severe corrosion environment due to ultra-high temperature coal combustion gas, basic data were surveyed. On the study in fiscal 1996, the corrosion resistance of one kind of commercially available material and 2 kinds of created materials was studied by coal slag coating test. The commercially available material was subjected to high- temperature corrosion tests of 1500 and 1550degC for a long time. The result showed that SiC is most excellent in the above temperature range. On new materials, 7 kinds of Cr2O3 system ceramics such as Cr2O3-Al2O3 system and Cr2O3- MgO system were selected considering high-temperature corrosion resistance, and the optimum composition and fabrication process of the new materials were studied. High- temperature corrosion tests, and measurement of thermal conductivity and thermal expansion were carried out for every specimen. The result suggested that some materials of Cr2O3- Al2O3 system are promising. 23 refs., 76 figs., 23 tabs.

  4. Corrosion Behaviors of Structural Materials in High Temperature S-CO{sub 2} Environments

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jung; Kim, Hyunmyung; Jang, Changheui [KAIST, Daejeon (Korea, Republic of)

    2014-04-15

    The isothermal corrosion tests of several types of stainless steels, Ni-based alloys, and ferritic-martensitic steels (FMS) were carried out at the temperature of 550 and 650 .deg. C in SFR S-CO{sub 2} environment (200 bar) for 1000 h. The weight gain was greater in the order of FMSs, stainless steels, and Ni-based alloys. For the FMSs (Fe-based with low Cr content), a thick outer Fe oxide, a middle (Fe,Cr)-rich oxide, and an inner (Cr,Fe)-rich oxide were formed. They showed significant weight gains at both 550 and 650 .deg. C. In the case of austenitic stainless steels (Fe-based) such as SS 316H and 316LN (18 wt.% Cr), the corrosion resistance was dependent on test temperatures except SS 310S (25 wt.% Cr). After corrosion test at 650 .deg. C, a large increase in weight gain was observed with the formation of outer thick Fe oxide and inner (Cr,Fe)-rich oxide. However, at 550 .deg. C, a thin Cr-rich oxide was mainly developed along with partially distributed small and nodular shaped Fe oxides. Meanwhile, for the Ni-based alloys (16-28 wt.% Cr), a very thin Cr-rich oxide was developed at both test temperatures. The superior corrosion resistance of high Cr or Ni-based alloys in the high temperature S-CO{sub 2} environment was attributed to the formation of thin Cr-rich oxide on the surface of the materials.

  5. Engineered materials characterization report for the Yucca Mountain Site Characterization Project. Volume 3: Corrosion and data modeling

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; McCright, R.D.; Roy, A.K.; Jones, D.A.

    1995-08-01

    This three-volume report serves several purposes. The first volume provides an introduction to the engineered materials effort for the Yucca Mountain Site Characterization Project. It defines terms and outlines the history of selection and characterization of these materials. A summary of the recent engineered barrier materials characterization workshop is presented, and the current candidate materials are listed. The second volume tabulates design data for engineered materials, and the third volume is devoted to corrosion data, radiation effects on corrosion, and corrosion modeling. The second and third volumes are intended to be evolving documents, to which new data will be added as they become available from additional studies. The initial version of Volume 3 is devoted to information currently available for environments most similar to those expected in the potential Yucca Mountain repository. This is volume three

  6. Corrosion measurements on apt prototypic materials in the Lansce high-power proton beam and applicability to other systems

    International Nuclear Information System (INIS)

    Lillard, R.S.; Gac, F.D.; James, M.R.; Maloy, S.A.; Paciotti, M.A.; Waters, L.S.; Willcutt, G.J.; Chandler, G.T.; Ferguson, P.D.

    2003-01-01

    The corrosion rates of several corrosion resistant materials behave in a similar manner even under the intense radiation of the LANSCE high-power beam. A second observation was made, showing that the corrosion rates saturated under high instantaneous radiation intensity in corrosion experiments conducted for the accelerator production of tritium (APT) programme. The LANSCE H + beam is not prototypic of the proposed APT production plant in several respects. The instantaneous proton flux in the APT production plant beam is about 10 times that of the LANSCE beam. The small transverse APT beam spot is rastered to spread the power density over the area of the target, and as the beam rasters, it creates a pulsed character to the beam at a specific location. In order to develop correlations that would enable extrapolation of the corrosion data to the proposed APT production plant, the experimental programme included measurements over a range of average beam currents, measurements at high and low instantaneous beam current, and measurements at various combinations of pulse width and repetition rate. The correlations that were developed are based on an approximately linear dependence of corrosion rate on average beam current (average radiation intensity) and the saturation effect observed at high instantaneous radiation intensity. For a given transverse beam profile and for the same average beam current, the correlations predict the highest corrosion rate in a do beam and the lowest corrosion rate in the lowest duty cycle beams. In the case of the APT extrapolation, the predicted corrosion rates were a factor of 5 lower than for a do beam depositing the same average power density. The measured corrosion rates and the formulated extrapolations are applicable to water-cooled targets and components in proton beams. (authors)

  7. Corrosion tests in Baltic sea water on heat exchanger tubes of various metallic materials

    International Nuclear Information System (INIS)

    Henrikson, S.; Knutsson, L.

    1975-05-01

    Seventeen different tube materials have been exposed to continuous and intermittent flow in Baltic Sea water (0.4 % Cl - ) at 50 deg C for a maximum of 15 000 hours. During testing the specimens have been examined at certain intervals. After testing the specimens have been examined visually and metallographically. The following materials were completely resistant: titanium, CuNi30Mn1Fe, Alloy 825 and the austenitic steels Cr18Ni24Mo4.5, Cr20Ni25Mo4.5Cu and Cr24Ni24Mo2Ti. The ferritic-austenitic steels Cr18Ni5Mo2Si and Cr25Ni5Mo1.5 on the other hand, seem to be attacked by local intercrystalline corrosion in the vicinity of the welds. The same type of attack occurs, against expectations, even in the entirely ferritic steels, especially in Cr21Mo3Ti; this attack was however shown to be caused by surface carburization. Admiralty brass (2.5 m/s), aluminium brass (3.0 m/s) and CuNi10Fe1Mn (3.5 m/s) have been attacked by erosion corrosion. The same type of attack, although to a considerably smaller extent, has also been observed for the three aluminium materials (2.5 m/s). (author)

  8. On the corrosion and soiling effects on materials by air pollution in Athens, Greece

    Directory of Open Access Journals (Sweden)

    C. Tzanis

    2011-12-01

    Full Text Available In the frame of the European project, entitled MULTI-ASSESS, specimens of structural metals, glass, stone and concrete materials were exposed to air pollution at a station, which was installed for this purpose on a building, located in the centre of Athens. The main purpose of this project was to determine the corrosion and soiling effects of air pollution on materials. A set of the specimens was exposed in a position that was sheltered from rain and partly from wind, and another set was exposed in unsheltered positions on the roof of the above said building. In addition, other specimens were exposed at different heights on the same building, in order to investigate for the first time the corrosion and soiling effects on various materials as a function of height. For the determination of these effects, chemical analysis of the specimens was performed and basic parameters as the weight change, the layer thickness and the optical properties were calculated. Finally, the results obtained are discussed and their plausible interpretation is attempted.

  9. Corrosion resistance of materials of construction for high temperature sulfuric acid service in thermochemical IS process. Alloy 800, Alloy 600, SUSXM15J1 and SiC

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Onuki, Kaoru; Shimizu, Saburo; Yamaguchi, Akihisa

    2006-01-01

    Exposure tests of candidate materials were carried out up to 1000 hr in the sulfuric acid environments of thermochemical hydrogen production IS process, focusing on the corrosion of welded portion and of crevice area. In the gas phase sulfuric acid decomposition condition at 850degC, welded samples of Alloy 800 and of Alloy 600 showed the same good corrosion resistance as the base materials. In the boiling condition of 95 wt% sulfuric acid solution, test sample of SiC showed the same good corrosion resistance. Also negligible corrosion was observed in crevice corrosion. (author)

  10. Critical analyses on the localized corrosion behaviour in materials of energetic interests: Inconcel 600 CSM and Deltacogne

    International Nuclear Information System (INIS)

    Borello, A.; Frangini, S.; Masci, D.

    1989-06-01

    Concerning the two commonly observed phenomena of localized corrosion of Inconel 600 in high temperature caustic environments normally encountered in steam generators of PWR nuclear reactors, the aim of this work is to investigate the intergranular and the stress corrosion cracking behaviour of two heats of Alloy 600, having different origin. In fact one heat was produced by Centro Sviluppo Materiali (CSM) in laboratory scale; the other one was manufactured by Deltacogne following conventional industrial practices. The evaluation of intergranular corrosion susceptibility has been performed by means of the modified Huey test and the Electrochemical Potentiokinetic Reactivation (EPR). The stress corrosion cracking susceptibility was determined by the slow strain rate technique. The results of the present study show that the CSM heat has a better behaviour than the Deltacogne one as for the stress corrosion cracking susceptibility. On the contrary, concerning the intergranular corrosion resistance, both used tests point out that the Deltacogne material has a lower susceptibility to this type of localized corrosion. The sensitization areas in the TTS diagram, depend, even for the same heat, on the type of the test used for the evaluation. (author)

  11. Corrosion testing of selected packaging materials for disposal of high-level waste glass in rock salt formations

    International Nuclear Information System (INIS)

    Smailos, E.; Schwarzkopf, W.; Koester, R.; Fiehn, B.; Halm, G.

    1990-05-01

    In previous corrosion studies performed in salt brines, unalloyed steels, Ti 99.8-Pd and Hastelloy C4 have proved to be the most promising materials for long-term resistant packagings to be used in heat-generating waste (vitrified HLW, spent fuel) disposal in rock-salt formations. To characterise the corrosion behaviour of these materials in more detail, further in-depth laboratory-scale and in-situ corrosion studies have been performed in the present study. Besides the above-mentioned materials, also some in-situ investigations of the iron-base materials Ni-Resist D2 and D4, cast iron and Si-cast iron have been carried out in order to complete the results available to date. (orig.) [de

  12. Corrosion/94 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The approximately 500 papers from this conference are divided into the following sections: Rail transit systems--stray current corrosion problems and control; Total quality in the coatings industry; Deterioration mechanisms of alloys at high temperatures--prevention and remediation; Research needs and new developments in oxygen scavengers; Computers in corrosion control--knowledge based system; Corrosion and corrosivity sensors; Corrosion and corrosion control of steel reinforced concrete structures; Microbiologically influenced corrosion; Practical applications in mitigating CO 2 corrosion; Mineral scale deposit control in oilfield-related operations; Corrosion of materials in nuclear systems; Testing nonmetallics for life prediction; Refinery industry corrosion; Underground corrosion control; Mechanisms and applications of deposit and scale control additives; Corrosion in power transmission and distribution systems; Corrosion inhibitor testing and field application in oil and gas systems; Decontamination technology; Ozone in cooling water applications, testing, and mechanisms; Corrosion of water and sewage treatment, collection, and distribution systems; Environmental cracking of materials; Metallurgy of oil and gas field equipment; Corrosion measurement technology; Duplex stainless steels in the chemical process industries; Corrosion in the pulp and paper industry; Advances in cooling water treatment; Marine corrosion; Performance of materials in environments applicable to fossil energy systems; Environmental degradation of and methods of protection for military and aerospace materials; Rail equipment corrosion; Cathodic protection in natural waters; Characterization of air pollution control system environments; and Deposit-related problems in industrial boilers. Papers have been processed separately for inclusion on the data base

  13. Green options for anti-corrosion of high strength concrete incorporating ternary pozzolan materials

    Directory of Open Access Journals (Sweden)

    Chen Yuan-Yuan

    2017-01-01

    Full Text Available This paper applied the densified mixture design algorithm(DMDA method by incorporating ternary pozzolans (fly ash, slag and silica fume; mix I and mix II to design high strength concrete (HSC mixtures with w/cm ratios from 0.24 to 0.30. Concrete without pozzolans was used as a control group (mix III, w/c from 0.24 to 0.30, and silica fume (5% was added as a substitute for part of the cement and set as mix IV. Experiments performed compressive strength, four-point resistance meter to measure the conductivity, and rapid chloride ion penetrability tests (ASTM C1202 were assessed the anti-corrosion. The life cycle inventory of LEED suggested by the PCA indicated the green options for cementitious materials. Results showed that mix I and II indicated cement used, CO2 reduction, raw materials and energy consumption all decreased more 50% than mix III, and mix IV was 5% less. The compressive strength and anti-corrosion levels showed that mix I and II were better than mix III and IV, and with ternary pozzolans could enhance the long-term durability (92 days due to a resistivity greater 20 KΩ-cm and a charge passed lower than 2000 Coulombs. HSC with an appropriate design could reduce the carbon footprint and improve the durability.

  14. Corrosion Behavior and Strength of Dissimilar Bonding Material between Ti and Mg Alloys Fabricated by Spark Plasma Sintering

    Science.gov (United States)

    Pripanapong, Patchara; Kariya, Shota; Luangvaranunt, Tachai; Umeda, Junko; Tsutsumi, Seiichiro; Takahashi, Makoto; Kondoh, Katsuyoshi

    2016-01-01

    Ti and solution treated Mg alloys such as AZ31B (ST), AZ61 (ST), AZ80 (ST) and AZ91 (ST) were successfully bonded at 475 °C by spark plasma sintering, which is a promising new method in welding field. The formation of Ti3Al intermetallic compound was found to be an important factor in controlling the bonding strength and galvanic corrosion resistance of dissimilar materials. The maximum bonding strength and bonding efficiency at 193 MPa and 96% were obtained from Ti/AZ91 (ST), in which a thick and uniform nano-level Ti3Al layer was observed. This sample also shows the highest galvanic corrosion resistance with a measured galvanic width and depth of 281 and 19 µm, respectively. The corrosion resistance of the matrix on Mg alloy side was controlled by its Al content. AZ91 (ST) exhibited the highest corrosion resistance considered from its corrode surface after corrosion test in Kroll’s etchant. The effect of Al content in Mg alloy on bonding strength and corrosion behavior of Ti/Mg alloy (ST) dissimilar materials is discussed in this work. PMID:28773788

  15. Corrosion Behavior and Strength of Dissimilar Bonding Material between Ti and Mg Alloys Fabricated by Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Patchara Pripanapong

    2016-08-01

    Full Text Available Ti and solution treated Mg alloys such as AZ31B (ST, AZ61 (ST, AZ80 (ST and AZ91 (ST were successfully bonded at 475 °C by spark plasma sintering, which is a promising new method in welding field. The formation of Ti3Al intermetallic compound was found to be an important factor in controlling the bonding strength and galvanic corrosion resistance of dissimilar materials. The maximum bonding strength and bonding efficiency at 193 MPa and 96% were obtained from Ti/AZ91 (ST, in which a thick and uniform nano-level Ti3Al layer was observed. This sample also shows the highest galvanic corrosion resistance with a measured galvanic width and depth of 281 and 19 µm, respectively. The corrosion resistance of the matrix on Mg alloy side was controlled by its Al content. AZ91 (ST exhibited the highest corrosion resistance considered from its corrode surface after corrosion test in Kroll’s etchant. The effect of Al content in Mg alloy on bonding strength and corrosion behavior of Ti/Mg alloy (ST dissimilar materials is discussed in this work.

  16. Stress corrosion cracking susceptibility of steam generator tube materials in AVT (all volatile treatment) chemistry contaminated with lead

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Castano, M.L.; Garcia, M.S.

    1996-01-01

    Alloy 600 steam generator tubing has shown a high susceptibility to stress corrosion degradation at the operation conditions of pressurized water reactors. Several contaminants, such as lead, have been postulated as being responsible for producing the secondary side stress corrosion cracking that has occurred mainly at the location where these contaminants can concentrate. An extensive experimental work has been carried out in order to better understand the effects of lead on the stress corrosion cracking susceptibility of steam generator tube materials, namely Alloys 600, 690 and 800. This paper presents the experimental work conducted with a view to determining the influence of lead oxide concentration in AVT (all volatile treatment) conditions on the stress corrosion resistance of nickel alloys used in the fabrication of steam generator tubing. (orig.)

  17. Corrosion susceptibility study of candidate pin materials for ALTC (active lithium/thionyl chloride) batteries. [Active lithium/thionyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Bovard, F.S.; Cieslak, W.R.

    1987-09-01

    (ALTC = active lithium/thionyl chloride.) We have investigated the corrosion susceptibilities of eight alternate battery pin materials in 1.5M LiAlCl/sub 4//SOCl/sub 2/ electrolyte using ampule exposure and electrochemical tests. The thermal expansion coefficients of these candidate materials are expected to match Sandia-developed Li-corrosion resistant glasses. The corrosion resistances of the candidate materials, which included three stainless steels (15-5 PH, 17-4 PH, and 446), three Fe-Ni glass sealing alloys (Kovar, Alloy 52, and Niromet 426), a Ni-based alloy (Hastelloy B-2) and a zirconium-based alloy (Zircaloy), were compared to the reference materials Ni and 316L SS. All of the candidate materials showed some evidence of corrosion and, therefore, did not perform as well as the reference materials. The Hastelloy B-2 and Zircaloy are clearly unacceptable materials for this application. Of the remaining alternate materials, the 446 SS and Alloy 52 are the most promising candidates.

  18. Standard Test Method for Stress-Corrosion of Titanium Alloys by Aircraft Engine Cleaning Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method establishes a test procedure for determining the propensity of aircraft turbine engine cleaning and maintenance materials for causing stress corrosion cracking of titanium alloy parts. 1.2 The evaluation is conducted on representative titanium alloys by determining the effect of contact with cleaning and maintenance materials on tendency of prestressed titanium alloys to crack when subsequently heated to elevated temperatures. 1.3 Test conditions are based upon manufacturer's maximum recommended operating solution concentration. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see and .

  19. Vapor corrosion of aluminum cladding alloys and aluminum-uranium fuel materials in storage environments

    International Nuclear Information System (INIS)

    Lam, P.; Sindelar, R.L.; Peacock, H.B. Jr.

    1997-04-01

    An experimental investigation of the effects of vapor environments on the corrosion of aluminum spent nuclear fuel (A1 SNF) has been performed. Aluminum cladding alloys and aluminum-uranium fuel alloys have been exposed to environments of air/water vapor/ionizing radiation and characterized for applications to degradation mode analysis for interim dry and repository storage systems. Models have been developed to allow predictions of the corrosion response under conditions of unlimited corrodant species. Threshold levels of water vapor under which corrosion does not occur have been identified through tests under conditions of limited corrodant species. Coupons of aluminum 1100, 5052, and 6061, the US equivalent of cladding alloys used to manufacture foreign research reactor fuels, and several aluminum-uranium alloys (aluminum-10, 18, and 33 wt% uranium) were exposed to various controlled vapor environments in air within the following ranges of conditions: Temperature -- 80 to 200 C; Relative Humidity -- 0 to 100% using atmospheric condensate water and using added nitric acid to simulate radiolysis effects; and Gamma Radiation -- none and 1.8 x 10 6 R/hr. The results of this work are part of the body of information needed for understanding the degradation of the A1 SNF waste form in a direct disposal system in the federal repository. It will provide the basis for data input to the ongoing performance assessment and criticality safety analyses. Additional testing of uranium-aluminum fuel materials at uranium contents typical of high enriched and low enriched fuels is being initiated to provide the data needed for the development of empirical models

  20. Corrosion resistant structural materials for use in lithium fluoride molten salts and thermonuclear device using it

    International Nuclear Information System (INIS)

    Kawamura, Kazutaka; Takagi, Ryuzo.

    1987-01-01

    Purpose: To provide blanket materials for thermo nuclear devices and structural materials for containers with less MHD effect and good heat exchanging efficiency. Constitution: LiF-PbF 2 is used as the liquid blanket material for moderating the MHD effect. That is, the lithium compound, in the form of a fluoride, can be made easily liquefiable being and PbF 2 is added for lowering the melting point. The reason of using the fluoride is that fluorine material is less activated by the adsorption of neutrons. Copper, phosphor bronze, nickel or nickel-based alloy, e.g., Monel metal is used as corrosion resistant structural material to LiF-PbF 2 molten salts. Use of copper as the low activating structural material can provide an excellent effect also in view of the maintenance and, further, a series of processes for purifying, separating injecting and recoverying tritium can be conducted safely and stationarily without contaminating the circumferences. (Kamimura, M.)

  1. Corrosion and Materials Performance in biomass fired and co-fired power plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, OH; Biede, O

    2003-01-01

    not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Co-firing of straw (10...... and 20% energy basis) with coal has shown corrosion rates lower than those in straw-fired plants. With both 10 and 20% straw, no chlorine corrosion was seen. This paper will describe the results from in situ investigations undertaken in Denmark on high temperature corrosion in biomass fired plants....... Results from 100% straw-firing, woodchip and co-firing of straw with coal will be reported. The corrosion mechanisms observed are summarized and the corrosion rates for 18-8 type stainless steels are compared....

  2. Evaluation of Corrosion of Aluminum Based Reactor Fuel Cladding Materials During Dry Storage

    International Nuclear Information System (INIS)

    Peacock, H.B. Jr.

    1999-01-01

    This report provides an evaluation of the corrosion behavior of aluminum cladding alloys and aluminum-uranium alloys at conditions relevant to dry storage. The details of the corrosion program are described and the results to date are discussed

  3. High temperature corrosion of advanced ceramic materials for hot gas filters. Topical report for part 1 of high temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Spear, K.E.; Crossland, C.E.; Shelleman, D.L.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering

    1997-12-11

    This program consists of two separate research areas. Part 1, for which this report is written, studied the high temperature corrosion of advanced ceramic hot gas filters, while Part 2 studied the long-term durability of ceramic heat exchangers to coal combustion environments. The objectives of Part 1 were to select two candidate ceramic filter materials for flow-through hot corrosion studies and subsequent corrosion and mechanical properties characterization. In addition, a thermodynamic database was developed so that thermochemical modeling studies could be performed to simulate operating conditions of laboratory reactors and existing coal combustion power plants, and to predict the reactions of new filter materials with coal combustion environments. The latter would make it possible to gain insight into problems that could develop during actual operation of filters in coal combustion power plants so that potential problems could be addressed before they arise.

  4. Molten salt corrosion behavior of structural materials in LiCl-KCl-UCl3 by thermogravimetric study

    Science.gov (United States)

    Rao, Ch Jagadeeswara; Ningshen, S.; Mallika, C.; Mudali, U. Kamachi

    2018-04-01

    The corrosion resistance of structural materials has been recognized as a key issue in the various unit operations such as salt purification, electrorefining, cathode processing and injection casting in the pyrochemical reprocessing of spent metallic nuclear fuels. In the present work, the corrosion behavior of the candidate materials of stainless steel (SS) 410, 2.25Cr-1Mo and 9Cr-1Mo steels was investigated in molten LiCl-KCl-UCl3 salt by thermogravimetric analysis under inert and reactive atmospheres at 500 and 600 °C, for 6 h duration. Insignificant weight gain (less than 1 mg/cm2) in the inert atmosphere and marginal weight gain (maximum 5 mg/cm2) in the reactive atmosphere were observed at both the temperatures. Chromium depletion rates and formation of Cr-rich corrosion products increased with increasing temperature of exposure in both inert and reactive atmospheres as evidenced by SEM and EDS analysis. The corrosion attack by LiCl-KCl-UCl3 molten salt, under reactive atmosphere for 6 h duration was more in the case of SS410 than 9Cr-1Mo steel followed by 2.25Cr-1Mo steel at 500 °C and the corrosion attack at 600 °C followed the order: 9Cr-1Mo steel >2.25Cr-1Mo steel > SS410. Outward diffusion of the minor alloying element, Mo was observed in 9Cr-1Mo and 2.25Cr-1Mo steels at both temperatures under reactive atmosphere. Laser Raman spectral analysis of the molten salt corrosion tested alloys under a reactive atmosphere at 500 and 600 °C for 6 h revealed the formation of unprotected Fe3O4 and α-as well as γ-Fe2O3. The results of the present study facilitate the selection of structural materials for applications in the corrosive molten salt environment at high temperatures.

  5. Corrosion studies on containment materials for vitrified high level nuclear waste

    International Nuclear Information System (INIS)

    Taylor, K.J.; Bland, I.D.; Marsh, G.P.

    1984-01-01

    The general corrosion of carbon steels buried in granite or bentonite beds and saturated with synthetic granitic ground water is investigated. Corrosion rates were measured after 170 and 470 days, and pitting corrosion after 200hrs and 300hrs. Experiments to measure corrosion rates due to radiolysis of γ-radiated argon-purged ground water were also carried out. Results support the feasibility of using carbon steel packs for isolating high-level wastes for 500-1000 yrs. (U.K.)

  6. Research and development activities at INE concerning corrosion of final repository container materials; F and E-Arbeiten zur Korrosion von Endlager-Behaelterwerkstoffen im INE

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Bernhard

    2017-10-01

    The present work provides a historical overview of the research and development activities carried out at the (Nuclear) Research Center Karlsruhe (today KIT) since the beginning of the 1980s on the corrosion of materials which might be suitable for construction of containers for highly radioactive wastes. The report relates almost exclusively to the work performed by Dr. Emmanuel Smailos, who elaborated the corrosion of various materials at the Institute for Nuclear Waste Disposal (INE). The requirements for the containers and materials, which were subject to changes in time, are presented. The changes were strongly influenced by the changed perception of the use of nuclear energy. The selection of the materials under investigations, the boundary conditions for the corrosion experiments and the analytical methods are described. Results of the corrosion of the materials such as finegrained steel, Hastelloy C4, nodular cast iron, titanium-palladium and copper or copper-nickel alloys in typical salt solutions are summarized. The findings of special investigations, e.g. corrosion under irradiation or the influence of sulfide on the corrosion rates are shown. For construction of disposal canisters, experiments were conducted to determine the contact corrosion, the influence of the hydrogen embrittlement of Ti-Pd and fine-grained steels on the corrosion behavior as well as the corrosion behavior of welding and the influence of different welding processes with the resulting heat-affected zones on the corrosion behavior. The work was contributed to several European research programs and was well recognized in the USA. Investigations on the corrosion of steels in non-saline solutions and corrosion under interim storage conditions as well as under the expected conditions of the Konrad repository for low-level radioactive wastes are also described. In addition, the experiments on ceramic materials are presented and the results of the corrosion of Al{sub 2}O{sub 3} and Zr

  7. Corrosion protection on superheaters of waste to energy plants. Experience with material and application; Korrosionsschutz im Ueberhitzerbereich. Erfahrungen mit Werkstoff und Applikation aus Qualitaetsbegleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidl, Werner; Herzog, Thomas; Magel, Gabi; Mueller, Wolfgang; Spiegel, Wolfgang [CheMin GmbH, Augsburg (Germany)

    2011-07-01

    Corrosion induced by chlorine at high temperatures and corrosion by salt melts sometimes cause severe risk and loss of operational availability in waste- and biomass-fired power plants. This corrosion very often affects the superheater. Due to high maintenance needs, several approaches to anti-corrosion coating have been developed. Nickel-based alloys such as alloy 625 are chosen to be applied as cladding or by thermal spraying. Operation periods have been considerably increased by these methods. But still there are some shortcomings in corrosion protection due to application and/or material. (orig.)

  8. Corrosion behaviour of container materials for geological disposal of high-level waste. Joint annual progress report 1983

    International Nuclear Information System (INIS)

    1985-01-01

    Within the framework of the Community R and D programme on management and storage of radioactive waste (shared-cost action), a research activity is aiming at the assessment of corrosion behaviour of potential container materials for geological disposal of vitrified high-level wastes. In this report, the results obtained during the year 1983 are described. Research performed at the Studiecentrum voor Kernenergie/Centre d'Etudes de l'Energie Nucleaire (SCK/CEN) at Mol (B), concerns the corrosion behaviour in clay environments. The behaviour in salt is tested by the Kernforschungszentrum (KfK) at Karlsruhe (D). Corrosion behaviour in granitic environments is being examined by the Commissariat a l'Energie Atomique (CEA) at Fontenay-aux-Roses (F) and the Atomic Energy Research Establishment (AERE) at Harwell (UK); the first is concentrating on corrosion-resistant materials and the latter on corrosion-allowance materials. Finally, the Centre National de la Recherche Scientifique (CNRS) at Vitry (F) is examining the formation and behaviour of passive layers on the metal alloys in the various environments

  9. Corrosion aspects of Ni-Cr-Fe based and Ni-Cu based steam generator tube materials

    International Nuclear Information System (INIS)

    Dutta, R.S.

    2009-01-01

    This paper reviews corrosion related issues of Ni-Cr-Fe based (in a general sense) and Ni-Cu based steam generator tube materials for nuclear power plants those have been dealt with for last more than four decades along with some updated information on corrosion research. The materials include austenitic stainless steels (SSs), Alloy 600, Monel 400, Alloy 800 and Alloy 690. Compatibility related issues of these alloys are briefly discussed along with the alloy chemistry and microstructure. For austenitic SSs, stress corrosion cracking (SCC) behaviour in high temperature aqueous environments is discussed. For Alloy 600, intergranular cracking in high temperature water including hydrogen-induced intergranular cracking is highlighted along with the interactions of material in various environments. In case of Monel 400, intergranular corrosion and pitting corrosion at ambient temperature and SCC behaviour at elevated temperature are briefly described. For Alloy 800, the discussion covers SCC behaviour, surface characterization and microstructural aspects of pitting, whereas hydrogen-related issues are also highlighted for Alloy 690.

  10. Study of the corrosion of AA 6061 in spent fuel materials

    International Nuclear Information System (INIS)

    Rodriguez, Sebastian; Haddad, Roberto; Lanzani, Liliana A.

    2003-01-01

    Localized attack induced by dust or other particles deposited on alloy AA 6061 surface under water has been addressed as a matter of concern after completion of an IAEA Coordinated Research Program (CRP) on the corrosion of aluminum clad spent fuel during storage in water basins. This attack has been observed in all kinds of waters, although it is more pronounced in those of higher conductivity. In these cases a strong attack (similar to pitting corrosion) up to several hundred microns in depth and about a millimeter in length has been found beneath the aluminum hydroxide blister formed in those places where specks had seated on. As this problem could seriously affect the fission product containing capacity of stored spent fuel even in well maintained high quality water, it is important to learn about the involved mechanism of attack and find out about the influence of particle composition, in order to establish the convenience or disapproval of the use of materials and procedures in storage basins. With this objective, an experimental approach has been developed to study the mechanism of corrosion attack linked with the deposition of particles of different composition on aluminum surfaces; this include two kinds of iron flakes, concrete powder, and sand particles. Immersion tests of up to 40 days have been conducted in nuclear grade demineralized water and sodium citrate solutions of several conductivities. The position of sediments was marked and followed through the process and the final state of the aluminum surfaces was assessed by optical and electron microscopy and other microanalysis techniques. Other complementary activities carried on in relation with this work are: through characterization of intermetallic particles in AA 6061, and the study of the electrochemical behavior of precipitates in high purity water. Mg 2 Si particles perform very actively, dissolving even in high pure water at open circuit potential, leaving a small hole on the surface. Iron

  11. Effect of corrosive marine atmosphere on construction materials in Tanzania: Exposure sites and preliminary results

    International Nuclear Information System (INIS)

    Mmari, A.G.; Uiso, C.B.S.; Makundi, I.N.; Potgieter-Vermaak, S.S.; Potgieter, J.H.; Van Grieken, R.

    2007-01-01

    Air pollution studies in Africa are limited and the influence of ambient air quality on buildings and constructions have not been investigated in the larger part of Sub-Saharan Africa. The increasing burden of emission from industry, traffic and coal power plants on ambient air pollution in Sub-Saharan Africa necessitated reviewing previous and current studies. In South Africa a 20-year exposure program, focusing on the effect of ambient exposure on various metals and alloys, showed that the amount of rainfall, relative humidity, atmospheric pollution, wind speed, solar radiation and structural design are some of the factors controlling atmospheric corrosion. Tanzania, being among the Sub-Saharan African countries and partly bordered by Indian ocean, the main source of marine atmosphere, experiences corrosive degradation on metal roofing and cementitious materials. This paper describes the exposure site set-up and will report on some preliminary results of air quality and its relation with the meteorological conditions, as well as surface changes observed, for the year one of exposure. These will thereafter be compared to the completed European and Asian studies, as reported by CLRTAP and RAPIDC respectively. (author)

  12. Dedicated new descaling method to characterize corrosion and cation release of SG tubing materials

    International Nuclear Information System (INIS)

    Clauzel, Maryline; Guillodo, Michael; Foucault, Marc; Engler, Nathalie; Chahma, Farah

    2012-09-01

    PWR steam generators (SGs), due to the huge wetted surface, are the main source of corrosion product release in the primary coolant circuit. Corrosion products may be transported throughout the whole circuit, activated in the core, and redeposited all over circuit surfaces, resulting in an increase of activity buildup. Understanding the phenomena leading to corrosion product release from SG tubing materials is of primary importance to minimize the global dose integrated by workers and to optimize the reactor shutdown duration and environment releases. Lab scale testing devices are a way to investigate cation release and propose mitigation measures. The descaling technique is based on the specific dissolution of the oxides making possible, by gravimetry, to directly evaluate the total quantity of corroded metal and the quantity of released elements. This technique allows for a statistical study as several SG coupons are exposed in one single test and is usually well-adapted to tubing materials having high or medium cation release behaviors, but has been proven too less accurate for the most recent manufactured SG tubes having low cation release rates. An optimized descaling technique has been developed to allow for the study of low-releasing SG tubing materials. Several steps of the process have been reconsidered. The electropolishing of the coupon is now performed after a careful determination of the thickness of the perturbed layer on the tube outer and/or inner surface to completely remove it so as to limit as much as possible the release of electro-polished faces which are not matter of the study. The number of coupons exposed in the autoclave has been reduced to avoid any saturation of the water primary chemistry, and two kinds of control coupons have been prepared instead of one in the former descaling method to take into account the uncertainties due to the descaling process as well as the CP possible redeposition on the coupons during exposure. Another

  13. Materials Characterization Center state-of-the-art report on corrosion data pertaining to metallic barriers for nuclear-waste repositories

    International Nuclear Information System (INIS)

    Merz, M.D.

    1982-10-01

    A compilation of published corrosion data on metals that have been suggested as canisters and overpack materials is presented. The data were categorized according to the solutions used in testing and divided into two parts: high-ionic strength solutions (such as seawater and brine) and low-ionic-strength waters (such as basalt and tuff waters). This distinction was made primarily because of the general difference in aggressiveness of these solutions with respect to general corrosion. A considerable amount of data indicated that titanium alloys have acceptably low uniform corrosion rates in anticipated repository sites; the other possible corrosion failure modes for titanium alloys, such as stress corrosion cracking and delayed failure due to hydrogen, have not been sufficiently studied to make any similar conclusions about lifetime with respect to these particular degradation processes. Other data suggested that iron-base alloys are sufficiently resistant to corrosion in basalt and tuff waters, although the effects of radiation and radiation combined with elevated temperature have not been reported in enough detail to conclusively qualify iron-base alloys for any particular barrier thickness in regard to uniform corrosion rate. The effect of overpack size on corrosion rate has been given little attention. A review of long-term underground data indicated that temperature and accessibility to oxygen were too different for deep geologic repositories to make the underground corrosion data directly applicable. However, the characteristics of corrosion attack, statistical treatment of data, and kinetics of corrosion showed that corrosion proceeds in a systematic and predictable way

  14. Characteristics of iron corrosion scales and water quality variations in drinking water distribution systems of different pipe materials.

    Science.gov (United States)

    Li, Manjie; Liu, Zhaowei; Chen, Yongcan; Hai, Yang

    2016-12-01

    Interaction between old, corroded iron pipe surfaces and bulk water is crucial to the water quality protection in drinking water distribution systems (WDS). Iron released from corrosion products will deteriorate water quality and lead to red water. This study attempted to understand the effects of pipe materials on corrosion scale characteristics and water quality variations in WDS. A more than 20-year-old hybrid pipe section assembled of unlined cast iron pipe (UCIP) and galvanized iron pipe (GIP) was selected to investigate physico-chemical characteristics of corrosion scales and their effects on water quality variations. Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Inductively Coupled Plasma (ICP) and X-ray Diffraction (XRD) were used to analyze micromorphology and chemical composition of corrosion scales. In bench testing, water quality parameters, such as pH, dissolved oxygen (DO), oxidation reduction potential (ORP), alkalinity, conductivity, turbidity, color, Fe 2+ , Fe 3+ and Zn 2+ , were determined. Scale analysis and bench-scale testing results demonstrated a significant effect of pipe materials on scale characteristics and thereby water quality variations in WDS. Characteristics of corrosion scales sampled from different pipe segments show obvious differences, both in physical and chemical aspects. Corrosion scales were found highly amorphous. Thanks to the protection of zinc coatings, GIP system was identified as the best water quality stability, in spite of high zinc release potential. It is deduced that the complicated composition of corrosion scales and structural break by the weld result in the diminished water quality stability in HP system. Measurement results showed that iron is released mainly in ferric particulate form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. NiTi Alloys: New Materials that enable Shockproof, Corrosion Immune Bearings

    Science.gov (United States)

    DellaCorte, Christopher

    2017-01-01

    Though steel is the dominant material of choice for mechanical components (bearings and gears) it has intrinsic limitations related to corrosion and plastic deformation. In contrast, dimensionally stable nickel-rich Ni-Ti alloys, such as Nitinol 60, are intrinsically rustproof and can withstand high contact loads without damage (denting). Over the last decade, focused RD to exploit these alloys for new applications has revealed the science behind NiTi's remarkable properties. In this presentation, the state-of-the-art of nickel-rich NiTi alloys will be introduced along with a discussion of how NASA is adopting this new technology inside the space station water recycling system as a pathfinder for more down-to-earth tribological challenges.

  16. Wrought stainless steel butt-welding fittings: including reference to other corrosion resistant materials - approved 1971

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    ANSI B16.9 is the American Standard for steel butt-welding fittings and although not so stated, it is implied that its scope deals primarily with the schedules of wall thicknesses which are common to carbon steel and the grades of alloy steel piping that are selected for pressure and temperature considerations. The purpose of this standard is to provide industry with a set of dimensional standards for butt-welding fittings that can be used with these light wall pipes of corrosion resisting materials. The center-to-end dimensions of all fittings are identical with those in ANSI B16.9 which give to industry the advantage of uniform design room practice and a maximum utilization of existing die equipment. The only departure from this is in the lap-joint stub end where for purposes of economy the face-to-end of the product has been reduced for use with thin wall piping

  17. Stands for testing the strength of welded pipe materials under the action of a corrosive medium

    Directory of Open Access Journals (Sweden)

    M.A. Kolodyi

    2017-12-01

    Full Text Available In order to study the features of the destruction of materials of pipelines for the transportation of oil, gas, products of processing of oil, water and other substances in the laboratory of the department of development of minerals named by prof. Bakka N.T. the complex of installations is invented, for which Ukrainian patents were obtained as utility models No. 30794, No. 52493, for the study of the working capacity of the elements of the listed pipeline systems in conditions that are as close as possible to the operational under the influence of the corrosive medium. Rotary vacuum devices were used as the basic elements of the proposed installations for testing the materials of the welded tubes for durability at single tensile and under flat stress conditions. The article presents the design of research stands for testing the durability of pipe materials and welds of pipelines using samples of materials and natural pipes (shortened under the influence of static, low cyclic and dynamic loads, and analyzes the influence of aggressive media.

  18. Corrosion behaviour of container materials for the disposal of high-level wastes in rock salt formations

    International Nuclear Information System (INIS)

    Smailos, E.; Schwarzkopf, W.; Koester, R.

    1986-01-01

    In 1983-84 extensive laboratory-scale experiments (immersion tests) to evaluate the long-term corrosion behaviour of selected materials in salt brines and first in situ experiments were performed. In the laboratory experiments the materials Ti 99.8-Pd, Hastelloy C4 and hot-rolled low carbon steel (reference materials in the joint European corrosion programme) as well as cast steel, spheoroidal cast iron, Si-cast iron and the Ni-Resists type D2 and D4 were investigated. The investigated parameters were: temperature (90 0 C; 170 0 C, 200 0 C), gamma-radiation (10 5 rad/h) and different compositions of salt brines. The results obtained show that, in addition to Ti 99.8-Pd, also Hastelloy C4 and unalloyed steels are in principle suitable for being used for long-term stable HLW-containers if the gamma dose rate is reduced by suitable shielding. Furthermore, the susceptibility of Hastelloy C4 to crevice corrosion must be taken into account. Further studies will be necessary to provide final evidence of the suitability of the materials examined. These will mainly involve clarification of questions related to hydrogen embrittlement (Ti 99.8-Pd, unalloyed steels) and to the influence of pressure and saline impurities (e.g. antiJ, antiBr) on corrosion

  19. Proceedings of the Ocean Thermal Energy Conversion (OTEC) Biofouling, Corrosion, and Materials Workshop, January 8-10, 1979, Rosslyn, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The 23 papers presented are entered in the data base separately. Round table sessions on measurement of R/sub f/ and analysis of heat transfer data, biology of fouling, corrosion and the application of materials, and fouling and countermeasures are included. (WHK)

  20. A study on the corrosion test of equipment material handling hot molten salt

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Jeong, M.S.; Hong, S.S.; Cho, S.H.; Shin, Y.J.; Park, H.S.; Zhang, J.S.

    1999-02-01

    On this technical report, corrosion behavior of austenitic stainless steels of SUS 316L and SUS 304L in molten salt of LiCl-Li 2 O has been investigated in the temperature range of 650 - 850 dg C. Corrosion products of SUS 316L in molten salt consisted of two layers, an outer layer of LiCrO 2 and inner layer of Cr 2 O 3 .The corrosion layer was uniform in molten salt of LiCl, but the intergranular corrosion occurred in addition to the uniform corrosion in mixed molten salt of LiCl-Li 2 O. The corrosion rate increased slowly with the increase of temperature up to 750 dg C, but above 750 dg C rapid increase in corrosion rate observed. SUS 316L stainless steel showed slower corrosion rate and higher activation energy for corrosion than SUS 304L, exhibiting higher corrosion resistance in the molten salt. In heat-resistant alloy, dense protective oxide scale of LiCrO 2 was formed in molten salt of LiCl. Whereas in mixed molten salt of LiCl-Li 2 O, porous non-protective scale of Li(Cr, Ni, Fe)O 2 was formed. (Author). 44 refs., 4 tabs., 16 figs

  1. Corrosion kinetics of alloy Ni-22Cr-13Mo-3W as structural material in high level nuclear waste containers

    International Nuclear Information System (INIS)

    Rodriguez, Martin A.

    2004-01-01

    Alloy Ni-22Cr-13Mo-3W (also known as C-22) is one of the candidates to fabricate high level nuclear waste containers. These containers are designed to maintain isolation of the waste for a minimum of 10,000 years. In this period, the material must be resistant to corrosion. If the containers were in contact with water, it is assumed that alloy C-22 may undergo three different corrosion mechanisms: general corrosion, localized corrosion and stress corrosion cracking. This thesis discusses only the first two types of degradation. Electrochemical techniques such as amperometry, potentiometry, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) and non-electrochemical techniques such as microscopic observation, X-ray fluorescence (XRF) and X-ray photoelectron spectroscopy (XPS) were applied to study the corrosion behavior of alloy C-22 in 1 M NaCl, 25 C degrees saturated NaF (approximately 1 M) and 0,5 M NaCl + 0,5 M NaF solutions. Effects of temperature, pH and alloy thermal aging were analyzed. The corrosion rates obtained at 90 C degrees were low ranging from 0.04 μm/year to 0.48 μm /year. They increased with temperature and decreased with solution pH. Most of the impedance measurements showed a simply capacitive behavior. A second high-frequency time constant was detected in some cases. It was attributed to the formation of a nickel oxide and/or hydroxide at potentials near the reversible potential for this reaction. The active/passive transition detected in some potentiodynamic polarization curves was attributed to the same process. The corrosion potential showed an important increase after 24 hours of immersion. This increase in the corrosion potential was associated with an improvement of the passive film. The corrosion potential was always lower than the re-passivation potential for the corresponding media. The trans passive behavior of alloy C-22 was mainly influenced by temperature and solution chemistry. A clear trans passive peak

  2. Cesium release from ceramic waste form materials in simulated canister corrosion product containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vittorio, Luca; Drabarek, Elizabeth; Chronis, Harriet; Griffith, Christopher S

    2004-07-01

    It has previously been demonstrated that immobilization of Cs{sup +} and/or Sr{sup 2+} sorbed on hexagonal tungsten oxide bronze (HTB) adsorbent materials can be achieved by heating the materials in air at temperatures in the range 500 - 1300 deg C. Highly crystalline powdered HTB materials formed by heating at 800 deg C show leach characteristics comparable to Cs-containing hot-pressed hollandites in the pH range from 0 to 12. As a very harsh leaching test, and also to model in a basic manner, leaching in the presence of canister corrosion products in oxidising environments, leaching of the bronzoid phases has been undertaken in Fe(NO{sub 3}){sub 3} solutions of increasing concentration. This is done in comparison with Cs -hollandite materials in order to compare the leaching characteristics of these two materials under such conditions. Both the Cs-loaded bronze and hollandite materials leach severely in Fe(NO{sub 3}){sub 3} losing virtually all of the immobilized Cs in a period of four days at 150 deg C. Total release of Cs and conversion of hollandite to titanium and iron titanium oxides begins to be observed at relatively low concentrations and is virtually complete after four days reaction in 0.5 mol/L Fe(NO{sub 3}){sub 3}. In the case of the bronze, all of the Cs is also extracted but the HTB structure is preserved. The reaction presumably involves an ion-exchange mechanism and iron oxide with a spinel structure is also observed at high Fe concentrations. (authors)

  3. Cesium release from ceramic waste form materials in simulated canister corrosion product containing solutions

    International Nuclear Information System (INIS)

    Vittorio, Luca; Drabarek, Elizabeth; Chronis, Harriet; Griffith, Christopher S.

    2004-01-01

    It has previously been demonstrated that immobilization of Cs + and/or Sr 2+ sorbed on hexagonal tungsten oxide bronze (HTB) adsorbent materials can be achieved by heating the materials in air at temperatures in the range 500 - 1300 deg C. Highly crystalline powdered HTB materials formed by heating at 800 deg C show leach characteristics comparable to Cs-containing hot-pressed hollandites in the pH range from 0 to 12. As a very harsh leaching test, and also to model in a basic manner, leaching in the presence of canister corrosion products in oxidising environments, leaching of the bronzoid phases has been undertaken in Fe(NO 3 ) 3 solutions of increasing concentration. This is done in comparison with Cs -hollandite materials in order to compare the leaching characteristics of these two materials under such conditions. Both the Cs-loaded bronze and hollandite materials leach severely in Fe(NO 3 ) 3 losing virtually all of the immobilized Cs in a period of four days at 150 deg C. Total release of Cs and conversion of hollandite to titanium and iron titanium oxides begins to be observed at relatively low concentrations and is virtually complete after four days reaction in 0.5 mol/L Fe(NO 3 ) 3 . In the case of the bronze, all of the Cs is also extracted but the HTB structure is preserved. The reaction presumably involves an ion-exchange mechanism and iron oxide with a spinel structure is also observed at high Fe concentrations. (authors)

  4. Creep resistance and material degradation of a candidate Ni–Mo–Cr corrosion resistant alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Sachin L., E-mail: sachin@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Bhattacharyya, Dhriti [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Yuan, Guangzhou; Li, Zhijun J. [Center of Thorium Molten Salts Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (China); Budzakoska-Testone, Elizabeth; De Los Reyes, Massey; Drew, Michael; Edwards, Lyndon [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2016-09-30

    This study investigated the creep deformation properties of GH3535, a Ni–Mo–Cr corrosion resistant structural alloy being considered for use in future Gen IV molten salt nuclear reactors (MSR) operating at around 700 °C. Creep testing of the alloy was conducted at 650–750 °C under applied stresses between 85–380 MPa. From the creep rupture results the long term creep strain and rupture life of the alloy were estimated by applying the Dorn Shepard and Larson Miller time-temperature parameters and the alloy's allowable ASME design stresses at the MSR's operating temperature were evaluated. The material's microstructural degradation at creep rupture was characterised using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The microstructural study revealed that the material failure was due to wedge cracking at triple grain boundary points and cavitation at coarse secondary grain boundary precipitates, nucleated and grown during high temperature exposure, leading to intergranular crack propagation. EBSD local misorientation maps clearly show that the root cause of cavitation and crack propagation was due to large strain localisation at the grain boundaries and triple points instigated by grain boundary sliding during creep deformation. This caused the grain boundary decohesion and subsequent material failure.

  5. Application of Boundary Element Method in Galvanic Corrosion Analysis for Metallic Materials used in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhamad Daud; Siti Radiah Mohd Kamarudin

    2011-01-01

    Boundary element method (BEM) is a numerical technique that used for modeling infinite domain as is the case for galvanic corrosion analysis. This paper presents the application of boundary element method for galvanic corrosion analysis between two different metallic materials. Aluminium (Al), and zinc (Zn) alloys were used separately coupled with the Carbon Steel (CS) in natural seawater. The measured conductivity of sea water is 30,800 μS/ cm at ambient temperature. Computer software system based on boundary element likes BEASY and ABAQUS can be used to accurately model and simulate the galvanic corrosion. However, the BEM based BEASY program will be used reasonably for predicting the galvanic current density distribution of coupled Al-CS and Zn-CS in this study. (author)

  6. Development of corrosion resistant materials for an electrolytic reduction process of a spent nuclear fuel

    International Nuclear Information System (INIS)

    Jong-Hyeon Lee; Soo-Haeng Cho; Jeong-Gook Oh; Eung-Ho Kim

    2008-01-01

    New alloys were designed and prepared to improve their corrosion resistance in an electrolytic reduction environment for a spent oxide fuel on the basis of a thermodynamical assessment. A considerable solubility of Si was confirmed in the Ni alloys and their corrosion resistance was drastically increased with the addition of Si. It was confirmed that a protective oxide layer was formed during a corrosion test due to a reaction among the alloying elements such as Cr, Al and Si. (authors)

  7. Corrosion resistance of tank material for flock storage in the Fukushima Daiichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sano, Yuichi; Anbai, Hiromu; Takeuchi, Masayuki; Ogino, Hideki; Koizumi, Kenji

    2014-01-01

    The installation of the storage tank made of SS400 is under planning in the Fukushima Daiichi nuclear power plant for the flock which was generated in the coagulation process for radioactive contaminated water. The flock contains the seawater and has a possibility to make a crevice and local corrosion on the surface of the tank. Air agitation will be applied in the storage tank to prevent the accumulation of the flock and hydrogen generated by radiolysis, which will increase the diffusion of oxygen and the corrosion of SS400. In addition, the effect of radiation from the flock on the corrosion should be considered. In this study, we investigated the corrosion behavior of SS400 in the flock under the aeration-agitation condition with γ-ray irradiation. Based on the flock storage condition announced by Tokyo Electric Power Company (TEPCO), immersion tests were performed with SS400 coupons under several conditions and corrosion rates were estimated by the weight loss of the coupons. After the immersion tests, the surfaces of the coupons were observed by microscopy for evaluating the local corrosion. To evaluate corrosion mechanism in detail, electrochemical tests were also carried out. In all of these tests, the non-radioactive flock as a surrogate and artificial seawater were used. Corrosion rates of SS400 increased significantly with aeration flow rates in the seawater with/without the flock, but this tendency was weaker in the seawater with the flock, especially under the condition where coupons were buried in the flock. The electrochemical tests indicated the suppression of the cathodic reaction, i.e. dissolved oxygen reduction, in the seawater with the flock. The effect of γ-ray irradiation on the corrosion rates was not remarkable under the assumed dose rate. Microscopic analysis of the immersed coupons showed no severe corrosion including local corrosion occurred. The corrosion rate could be decreased effectively by suppressing the dissolved oxygen reduction

  8. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  9. Weight loss studies of fastener materials corrosion in contact with timbers treated with copper azole and alkaline copper quaternary compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kear, Gareth [Building Research Association of New Zealand (BRANZ) Ltd., Science and Engineering Services, Private Bag 50 908, Porirua City 5240 (New Zealand)], E-mail: G.Kear@soton.ac.uk; Wu Haizhen; Jones, Mark S. [Building Research Association of New Zealand (BRANZ) Ltd., Science and Engineering Services, Private Bag 50 908, Porirua City 5240 (New Zealand)

    2009-02-15

    Corrosion rates of mild steel, AISI 316 stainless steel and hot-dipped galvanised steel in contact with preservative-treated Pinus radiata have been determined using four distinct accelerated (49 {+-} 1 deg. C) and non-accelerated (21 {+-} 2 deg. C) weight loss methodologies. The data were measured as a function of timber moisture content and copper concentration over periods of exposure ranging from 2 weeks to 14 months. The results show that the corrosion resistance of the stainless steel was not influenced by classification or magnitude of preservative loading. Corrosion rates of this material were multiple orders of magnitude lower than those of the mild and galvanised steels. In most instances, corrosion rates of hot-dipped galvanised layers in contact with alkaline copper quaternary-treated timbers were up to a factor of 10 times, or greater, than those measured for copper-chrome-arsenate treatments. A direct negative influence of copper ion concentration on the corrosion resistance of mild steel was also observed for each preservative type.

  10. Corrosion and Discharge Behaviors of Mg-Al-Zn and Mg-Al-Zn-In Alloys as Anode Materials

    Directory of Open Access Journals (Sweden)

    Jiarun Li

    2016-03-01

    Full Text Available The Mg-6%Al-3%Zn and Mg-6%Al-3%Zn-(1%, 1.5%, 2%In alloys were prepared by melting and casting. Their microstructures were investigated via metallographic and energy-dispersive X-ray spectroscopy (EDS analysis. Moreover, hydrogen evolution and electrochemical tests were carried out in 3.5 wt% NaCl solution aiming at identifying their corrosion mechanisms and discharge behaviors. The results suggested that indium exerts an improvement on both the corrosion rate and the discharge activity of Mg-Al-Zn alloy via the effects of grain refining, β-Mg17Al12 precipitation, dissolving-reprecipitation, and self-peeling. The Mg-6%Al-3%Zn-1.5%In alloy with the highest corrosion rate at free corrosion potential did not perform desirable discharge activity indicating that the barrier effect caused by the β-Mg17Al12 phase would have been enhanced under the conditions of anodic polarization. The Mg-6%Al-3%Zn-1.0%In alloy with a relative low corrosion rate and a high discharge activity is a promising anode material for both cathodic protection and chemical power source applications.

  11. Corrosion Behavior of Carbon Steel in Concrete Material Composed of Tin Slag Waste in Aqueous Chloride Solution

    Science.gov (United States)

    Rustandi, Andi; Cahyadi, Agung; Taruli Siallagan, Sonia; Wafa' Nawawi, Fuad; Pratesa, Yudha

    2018-01-01

    Tin slag is a byproduct of tin ore smelting process which is rarely utilized. The main purpose of this work is to investigate the use of tin slag for concrete cement material application compared to the industrial Ordinary Portland Cement (OPC). Tin slag composition was characterized by XRD and XRF analysis. The characterization results showed the similar chemical composition of tin slag and OPC. It also revealed the semi crystalline structure of tin slag sample. Several electrochemical tests were performed to evaluate corrosion behavior of tin slag, OPC and various mixed composition of both materials and the addition of CaO. The corrosion behavior of OPC and tin slag were evaluated by using Cyclic Polarization, Electrochemical Impedance Spectroscopy (EIS) and Electrochemical Frequency Modulation (EFM) methods. Aqueous sodium chloride (NaCl) solution with 3.5% w.t concentration which similar to seawater was used as the electrolyte in this work. The steel specimen used as the reinforce bar (rebar) material of the concrete was carbon steel AISI 1045. The rebar was embedded in the concrete cement which composed of OPC and the various composition of tin slag including slag without addition of CaO and slag mixed with addition of 50 % CaO. The electrochemical tests results revealed that tin slag affected its corrosion behavior which becoming more active and increasing the corrosion rate as well as decreasing the electrochemical impedance.

  12. Canister materials proposed for final disposal of high level nuclear waste - a review with respect to corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, E; Odoj, R; Merz, E [eds.

    1981-06-01

    Spent fuel from nuclear reactors has to be disposed of either after reprocessing or without such treatment. Due to toxic radiation the nuclear waste has to be isolated from the biosphere for 300-1000 years, or in extreme cases for more than 100,000 years. The nuclear waste will be enclosed in corrosion resistant canisters. These will be deposited in repositories in geological formations, such as granite, basalt, clay, bedded or domed salt, or the sediments beneath the deep ocean floor. There the canisters will be exposed to groundwater, brine or seawater at an elevated temperature. Species formed by radiolysis may affect the corrosivity of the agent. The corrosion resistance of candidate canister materials is evaluated by corrosion tests and by thermodynamic and mass transport calculations. Examination of ancient metal objects after long exposure in nature may give additional information. On the basis of the work carried out so far, the principal candidate canister materials are titanium materials, copper and high purity alumina.

  13. Development and Evaluation of Cement-Based Materials for Repair of Corrosion-Damaged Reinforced Concrete Slabs

    OpenAIRE

    Liu, Rongtang; Olek, J.

    2001-01-01

    In this study, the results of an extensive laboratory investigation conducted to evaluate the properties of concrete mixes used as patching materials to repair reinforced concrete slabs damaged by corrosion are reported. Seven special concrete mixes containing various combinations of chemical or mineral admixtures were developed and used as a patching material to improve the durability of the repaired slabs. Physical and mechanical properties of these mixes, such as compressive strength, stat...

  14. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    Science.gov (United States)

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.

  15. The corrosion resistance of materials used for the manufacture of ear piercing studs

    Directory of Open Access Journals (Sweden)

    Correa, O. V.

    2003-12-01

    Full Text Available Nickel containing alloys have been widely used as substrates for the manufacture of studs used for ear piercing. Unfortunately, nickel has also been related to the development of allergic contact dermatitis caused by skin sensitization due to Ni2+ ions. Nickel ions can be leached out into the body fluids due to corrosion reactions. Defect free coatings are very difficult to produce, and therefore nickel free materials should be used as substrates of ear piercing studs, although the commercial alloys used usually contain this element. In this study, the corrosion resistance of two kinds of commercial studs prepared with nickel containing substrates and a titanium laboratory made stud was determined in a culture medium. The corrosion resistance of the studs was investigated by means of potentiodynamic polarization tests and electrochemical impedance spectroscopy as a function of immersion time in the culture medium. The elements that leached out into the medium due to corrosion reactions were analyzed by instrumental neutron activation analysis. The surfaces of the commercial gold-coated studs were examined by scanning electron microscopy and analyzed by energy dispersive spectroscopy, both before and after exposure to the culture medium. The cytotoxicity of the tested studs was also determined in the culture medium.

    Aleaciones conteniendo níquel se han utilizado como substratos para la fabricación de aretes perforantes para orejas. Desafortunadamente, el níquel ha sido relacionado con el desarrollo de una reacción alérgica conocida como dermatitis de contacto, causada por la sensibilización debido a los iones de Ni2+. Estos iones pueden ser liberados hacia los fluidos corporales debido a las reacciones de corrosión. Los aretes, habitualmente, se revisten con películas de oro. Sin embargo, es muy difícil hacer los revestimientos libres de defectos superficiales. Por lo tanto, materiales sin níquel deber

  16. Stress corrosion cracking of steam generator tubing materials in lead containing solution

    International Nuclear Information System (INIS)

    Kim, H.P.; Hwang, S.S.; Kim, J.S.; Hong, J.H.

    2007-01-01

    Stress corrosion cracking (SCC) in lead (Pb) containing environments has been one of key issues in the nuclear power industry since Pb had been identified as a cause of the SCC of steam generator (SG) tubing materials in some power plants. To mitigate or prevent degradation of SG tubing materials, a mechanistic understanding of SCC in Pb containing environment is needed, along with an understanding of the source and transport behaviors of Pb species in the secondary circuit. In this work, SCC behaviors of Alloy 600 in Pb containing environments were studied. Influences of microstructures of Alloy 600 and the inhibitive additives were investigated using the C-ring and the slow strain rate tests in caustic solution and demineralized water at 315 o C. Microstructures of Alloy 600 were varied by heat treatment at different temperatures. The additives examined were nickel boride (NiB) and cerium boride (CeB 6 ). The surface films were analyzed using Auger Electron Spectroscopy (AES) and Energy Dispersive X-ray Spectroscopy (EDS). The SCC mode varied with microstructure. Effectiveness of the additives in Pb containing environments is discussed. (author)

  17. Effects of material property changes on irradiation assisted stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Morihito; Fukuya, Koji; Fujii, Katsuhiko [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    Irradiation assisted stress corrosion cracking (IASCC) susceptibility and radiation-induced material changes in microstructure and microchemistry under pressurized water reactor (PWR) environment were examined on irradiated stainless steels (SSs), post-irradiation annealed SSs and post-irradiation deformed SS. The yield stress and grain boundary segregation were considerably high in SSs highly irradiated to 1-8 x 10{sup 26}n/m{sup 2} (E > 0.1 MeV) in PWR at 290-320degC, resulting in a high IASCC susceptibility. Following post-irradiation annealing of highly irradiated SSs, IASCC susceptibility showed significant recovery from 89% (as-irradiated) to 8% (550degC) of %IGSCC, while the hardness recovered from Hv375 (400degC) to Hv315 (550degC). Apparent recovery of segregation at grain boundaries was not observed. The SSs irradiated to 5.3 x 10{sup 24}n/m{sup 2} (E>1MeV) in the Japan Materials Testing Reactor (JMTR) at < 400degC, which had grain boundary segregation and low hardness, showed no IASCC susceptibility. Due to post-irradiation deforming for JMTR irradiated SS, the hardness increased but IASCC did not occur. These results suggested that the hardening would be a key factor for IASCC initiation under PWR hydrogenated water and that a yield stress threshold for IASCC initiation under slow strain rate tensile (SSRT) testing would the about 600MPa. (author)

  18. Effects of material property changes on irradiation assisted stress corrosion cracking

    International Nuclear Information System (INIS)

    Nakano, Morihito; Fukuya, Koji; Fujii, Katsuhiko

    2002-01-01

    Irradiation assisted stress corrosion cracking (IASCC) susceptibility and radiation-induced material changes in microstructure and microchemistry under pressurized water reactor (PWR) environment were examined on irradiated stainless steels (SSs), post-irradiation annealed SSs and post-irradiation deformed SS. The yield stress and grain boundary segregation were considerably high in SSs highly irradiated to 1-8 x 10 26 n/m 2 (E > 0.1 MeV) in PWR at 290-320degC, resulting in a high IASCC susceptibility. Following post-irradiation annealing of highly irradiated SSs, IASCC susceptibility showed significant recovery from 89% (as-irradiated) to 8% (550degC) of %IGSCC, while the hardness recovered from Hv375 (400degC) to Hv315 (550degC). Apparent recovery of segregation at grain boundaries was not observed. The SSs irradiated to 5.3 x 10 24 n/m 2 (E>1MeV) in the Japan Materials Testing Reactor (JMTR) at < 400degC, which had grain boundary segregation and low hardness, showed no IASCC susceptibility. Due to post-irradiation deforming for JMTR irradiated SS, the hardness increased but IASCC did not occur. These results suggested that the hardening would be a key factor for IASCC initiation under PWR hydrogenated water and that a yield stress threshold for IASCC initiation under slow strain rate tensile (SSRT) testing would the about 600MPa. (author)

  19. Radiation Corrosion of in-reactor and nuclear Waste Canister overpack Materials

    International Nuclear Information System (INIS)

    Kim, Young Jin

    1986-01-01

    The effect of γ-radiation on the corrosion processes in aqueous environments has been reviewed, with particular emphasis on radiolysis of aqueous solutions and its effect on the corrosion mechanisms. A potentially critical feature of the corrosion environment would be the presence of a high γ-radiation field which could have a significant effect on corrosion processes. The radiation of an aqueous solution causes radiolysis of the water to produce a variety of products, such as H, OH, H 2 , O 2 , H 2 O 2 , etc. The radiolysis products would alter its redox chemistry, which could change the kinetics of both the initiation and propagation of corrosion processes. Similar, though not necessarily identical, effects are expected at a metal/solution interface. The possibility of different interactions at the interface is particularly relevant in determining the effects of radiation on corrosion processes. This review is divided into two section in terms of the action of radiation on: (1) the aqueous environment and (2) the corrosion process. The first part of this review focuses on the effects of γ-radiation on radiolysis of the aqueous environments, and the effects of γ-radiation on the metallic corrosion processes will be discussed later

  20. Corrosion Assessment of Candidate Materials for the SHINE Subcritical Assembly Vessel and Components FY14 Report

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steven J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-10-01

    Laboratory corrosion testing of candidate alloys—including Zr-4 and Zr-2.5Nb representing the target solution vessel, and 316L, 2304, 304L, and 17-4 PH stainless steels representing process piping and balance-of-plant components—was performed in support of the proposed SHINE process to produce 99Mo from low-enriched uranium. The test solutions used depleted uranyl sulfate in various concentrations and incorporated a range of temperatures, excess sulfuric acid concentrations, nitric acid additions (to simulate radiolysis product generation), and iodine additions. Testing involved static immersion of coupons in solution and in the vapor above the solution, and was extended to include planned-interval tests to examine details associated with stainless steel corrosion in environments containing iodine species. A large number of galvanic tests featuring couples between a stainless steel and a zirconium-based alloy were performed, and limited vibratory horn testing was incorporated to explore potential erosion/corrosion features of compatibility. In all cases, corrosion of the zirconium alloys was observed to be minimal, with corrosion rates based on weight loss calculated to be less than 0.1 mil/year with no change in surface roughness. The resulting passive film appeared to be ZrO2 with variations in thickness that influence apparent coloration (toward light brown for thicker films). Galvanic coupling with various stainless steels in selected exposures had no discernable effect on appearance, surface roughness, or corrosion rate. Erosion/corrosion behavior was the same for zirconium alloys in uranyl sulfate solutions and in sodium sulfate solutions adjusted to a similar pH, suggesting there was no negative effect of uranium resulting from fluid dynamic conditions aggressive to the passive film. Corrosion of the candidate stainless steels was similarly modest across the entire range of exposures. However, some sensitivity to corrosion of the stainless steels was

  1. Corrosion behavior of Zircaloy 4 cladding material. Evaluation of the hydriding effect

    International Nuclear Information System (INIS)

    Blat, M.

    1997-04-01

    In this work, particular attention has been paid to the hydriding effect in PIE and laboratory test to validate a detrimental hydrogen contribution on Zircaloy 4 corrosion behavior at high burnup. Laboratory corrosion tests results confirm that hydrides have a detrimental role on corrosion kinetics. This effect is particularly significant for cathodic charged samples with a massive hydride outer layer before corrosion test. PIE show that at high burnup a hydride layer is formed underneath the metal/oxide interface. The results of the metallurgical examinations are discussed with respect to the possible mechanisms involved in this detrimental effect of hydrogen. Therefore, according to the laboratory tests results and PIE, hydrogen could be a strong contributor to explain the increase in corrosion rate at high burnup. (author)

  2. Localized corrosion of metallic materials and γ radiation effects in passive layers under simulated radwaste repository conditions. Final report

    International Nuclear Information System (INIS)

    Schultze, J.W.; Kudelka, S.; Michaelis, A.; Schweinsberg, M.; Thies, A.

    1996-02-01

    The task of the project was to simulate the conditions in a radwaste repository and to perform local analyses in order to detect the critical conditions and material susceptibilities leading to localized corrosion of materials. The information thus obtained was to yield more precise data on the long-term stability of materials for the intended purpose, in order to be able to appropriately select or optimize the materials (Ti, TiO.2Pd, Hastelloy C4, fine-grained structural steel). A major aspect to be examined was natural inhomogeneities of the electrode surfaces, as determined by the grain structure of the selected materials. Thus a laterally inhomogeneous composition in the welded zone induces an inhomogeneous current distribution, and hence strong susceptibility to localized corrosion. This effect was to be quantified, and the localized corrosion processes had to be identified by means of novel, electrochemical methods with a resolution power of μm. The investigations were to be made under conditions as near to practice as possible, for instance by simulating radwaste repository conditions and performing measurements at elevated temperatures (170 C) in an autoclave. Another task was to examine the radiation effects of γ radiation on passive layers, and describe the possible modifications induced by recrystallisation, photocorrosion, or oxide formation. (orig./MM) [de

  3. Evaluation of materials' corrosion and chemistry issues for advanced gas cooled reactor steam generators using full scale plant simulations

    International Nuclear Information System (INIS)

    Woolsey, I.S.; Rudge, A.J.; Vincent, D.J.

    1998-01-01

    Advanced Gas Cooled Reactors (AGRS) employ once-through steam Generators of unique design to provide steam at approximately 530 degrees C and 155 bar to steam turbines of similar design to those of fossil plants. The steam generators are highly compact, and have either a serpentine or helical tube geometry. The tubes are heated on the outside by hot C0 2 gas, and steam is generated on the inside of the tubes. Each individual steam generator tube consists of a carbon steel feed and primary economiser section, a 9%Cr steel secondary economiser, evaporator and primary superheater, and a Type 316L austenitic stainless steel secondary superheater, all within a single tube pass. The multi-material nature of the individual tube passes, the need to maintain specific thermohydraulic conditions within the different material sections, and the difficulties of steam generator inspection and repair, have required extensive corrosion-chemistry test programmes to ensure waterside corrosion does not present a challenge to their integrity. A major part of these programmes has been the use of a full scale steam generator test facility capable of simulating all aspects of the waterside conditions which exist in the plant. This facility has been used to address a wide variety of possible plant drainage/degradation processes. These include; single- and two-phase flow accelerated corrosion of carbon steel, superheat margins requirements and the stress-corrosion behaviour of the austenitic superheaters, on-load corrosion of the evaporator materials, and iron transport and oxide deposition behaviour. The paper outlines a number of these, and indicates how they have been of value in helping to maintain reliable operation of the plant. (author)

  4. The corrosion of titanium and some other construction materials during hydrogen peroxide bleaching according to the field measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hyoekyvirta, O.; Pohjanne, P.; Heinaevaara, A. [Oy METSA-BOTNIA Ab, Kaskinen' s mill, 64260 Kaskinen (Finland); Hirvonen, J. [VTT Automation, Industrial Automation, P.O. Box 1301, FIN-02044 (Finland); Lewenstam, A. [Center for Process Analytical Chemistry and Sensor Technology ' ProSens' Abo Akademi University, 20500 Abo (Finland)

    1999-07-01

    In a Finnish pulp mill, the field measurements of different materials were performed in different stages of peroxide bleaching: P{sub 1} and P{sub 2}. The field measurements were performed with three different sensors. The sensors were designed in co-operation with Valmet Automation Kajaani Oy. Each sensor measured the corrosion potential, the redox potential and the weight losses of three different materials. Simultaneously, the data of the most important parameters of bleaching, i.e. temperature, pH, peroxide flow rate and concentration, mass flow, consistency, residuals, flow rate and concentration of alkaline, were collected in the data logger by a dedicated program. The results proved that the corrosion of different materials (stainless steel S31654, nickel-based alloy N10276 and titanium Gr. 5) could be estimated with field experiments. The uniform corrosion of titanium occurred in a certain bleaching situation. The field measurements gave a good estimation of whether the material dissolved during process operation or process disorders. Our results clearly show that the mixing of the chemicals can be reliably estimated, and thus advantageous for a pulp mill. The materials studied withstood the bleaching significantly better if the chemicals were mixed directly with a pulp. Usually the chemicals are mixed with alkaline and then added to the pulp. The field measurements could also be applied in ozone and in the peracetic acid bleaching stage. The sensors can be utilized as tools during process monitoring or diagnostics. With the aid of monitoring it is possible to clarify how the different process operation models affect the corrosion of materials. (author)

  5. The corrosion of titanium and some other construction materials during hydrogen peroxide bleaching according to the field measurements

    International Nuclear Information System (INIS)

    Hyoekyvirta, O.; Pohjanne, P.; Heinaevaara, A.; Hirvonen, J.; Lewenstam, A.

    1999-01-01

    In a Finnish pulp mill, the field measurements of different materials were performed in different stages of peroxide bleaching: P 1 and P 2 . The field measurements were performed with three different sensors. The sensors were designed in co-operation with Valmet Automation Kajaani Oy. Each sensor measured the corrosion potential, the redox potential and the weight losses of three different materials. Simultaneously, the data of the most important parameters of bleaching, i.e. temperature, pH, peroxide flow rate and concentration, mass flow, consistency, residuals, flow rate and concentration of alkaline, were collected in the data logger by a dedicated program. The results proved that the corrosion of different materials (stainless steel S31654, nickel-based alloy N10276 and titanium Gr. 5) could be estimated with field experiments. The uniform corrosion of titanium occurred in a certain bleaching situation. The field measurements gave a good estimation of whether the material dissolved during process operation or process disorders. Our results clearly show that the mixing of the chemicals can be reliably estimated, and thus advantageous for a pulp mill. The materials studied withstood the bleaching significantly better if the chemicals were mixed directly with a pulp. Usually the chemicals are mixed with alkaline and then added to the pulp. The field measurements could also be applied in ozone and in the peracetic acid bleaching stage. The sensors can be utilized as tools during process monitoring or diagnostics. With the aid of monitoring it is possible to clarify how the different process operation models affect the corrosion of materials. (author)

  6. Advanced in-situ characterisation of corrosion properties of LWR fuel cladding materials

    International Nuclear Information System (INIS)

    Arilahti, E.; Bojinov, M.; Beverskog, B.

    1999-01-01

    The trend towards higher fuel burnups imposes a demand for better corrosion and hydriding resistance of cladding materials. Development of new and improved cladding materials is a long process. There is a lack of fast and reliable in-situ techniques to investigate zirconium alloys in simulated or in-core LWR coolant conditions. This paper describes a Thin Layer Electrode (TLE) arrangement suitable for in-situ characterization of oxide films formed on fuel cladding materials. This arrangement enables us to carry out: Versatile Thin Layer Electrochemical measurements, including: (i) Thin Layer Electrochemical impedance Spectroscopic (TLEIS) measurements to characterize the oxidation kinetics and mechanisms of metals and the properties of their oxide films in aqueous environments. These measurements can also be performed in low conductivity electrolytes. (ii) Thin-Layer Wall-Jet (TLWJ) measurements, which give the possibility to detect soluble reaction products and to evaluate the influence of novel water chemistry additions on their release. Solid Contact measurements: (i) Contact Electric Resistance (CER) measurements to investigate the electronic properties of surface films on the basis of d.c. resistance measurements. (i) Contact Electric impedance (CEI) measurements to study the electronic properties of surface films using a.c. perturbation. All the above listed measurements can be performed using one single measurement device developed at VTT. This device can be conveniently inserted into an autoclave. Its geometry is currently being optimized in cooperation with the OECD Halden Reactor Project. In addition, the applicability of the device for in-core measurements has been investigated in a joint feasibility study performed by VTT and JRC Petten. Results of some autoclave studies of the effect of LiOH concentration on the stability of fuel cladding oxide films are presented in this paper. (author)

  7. Investigations on the corrosion resistance of metallic bipolar plates (BPP) in proton exchange membrane fuel cells (PEMFC) - understanding the effects of material, coating and manufacturing

    Science.gov (United States)

    Dur, Ender

    Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems are promising technology for contributing to meet the deficiency of world`s clean and sustainable energy requirements in the near future. Metallic bipolar plate (BPP) as one of the most significant components of PEMFC device accounts for the largest part of the fuel cell`s stack. Corrosion for metallic bipolar plates is a critical issue, which influences the performance and durability of PEMFC. Corrosion causes adverse impacts on the PEMFC`s performance jeopardizing commercialization. This research is aimed at determining the corrosion resistance of metallic BPPs, particularly stainless steels, used in PEMFC from different aspects. Material selection, coating selection, manufacturing process development and cost considerations need to be addressed in terms of the corrosion behavior to justify the use of stainless steels as a BPP material in PEMFC and to make them commercially feasible in industrial applications. In this study, Ti, Ni, SS304, SS316L, and SS 430 blanks, and BPPs comprised of SS304 and SS316L were examined in terms of the corrosion behavior. SS316L plates were coated to investigate the effect of coatings on the corrosion resistance performance. Stamping and hydroforming as manufacturing processes, and three different coatings (TiN, CrN, ZrN) applied via the Physical Vapor Deposition (PVD) method in three different thicknesses were selected to observe the effects of manufacturing processes, coating types and coating thicknesses on the corrosion resistance of BPP, respectively. Uncoated-coated blank and formed BPP were subjected to two different corrosion tests: potentiostatic and potentiodynamic. Some of the substantial results: 1- Manufacturing processes have an adverse impact on the corrosion resistance. 2- Hydroformed plates have slightly higher corrosion resistance than stamped samples. 3- BPPs with higher channel size showed better corrosion resistance. 4- Since none of the uncoated samples

  8. Materials corrosion and mitigation strategies for APT: End of year report, FY '96

    International Nuclear Information System (INIS)

    Lillard, R.S.; Butt, D.P.

    1996-01-01

    The authors major accomplishment in FY96 was the design and fabrication of the corrosion probes to be used ''In Beam'' during the FY97 irradiation period to begin on February 1, 1997. Never before have corrosion rate measurements been made on-line in such a high radiation environment. To measure corrosion rate as a function of beam time, it is necessary to electrical isolate the corrosion electrode to be examined form the plumbing system. Conventionally, this is accomplished with glass seals. Here irradiation of the glass may cause it to become conductive, rendering the seal useless. To overcome this problem, the corrosion probes to be used in-beam at the spallation neutron cooling water loop at the LANSCE A6 target station were fabricated with ceramic inserts which act as electrical feed-throughs. The corrosion sample is joined to the ceramic by means of a compression seal. The corrosion samples are closed end cylinders, 0.5 inches diameter x 6.25 inch length, that are constructed from Stainless Steel 304L, Stainless Steel 316L, Inconel 718, Tungsten, HT-9, and Tantalum. Because of their specialized nature, InTa Corporation, of Santa Clara, CA was contracted to manufacture these problems. As of November 1, 1996 delivery of these probes has begun and the authors anticipate having all of the probes in hand by Nov. 25

  9. Application of surface science to the study of the corrosion of PWR primary circuit materials

    International Nuclear Information System (INIS)

    Harris, S.J.

    1989-04-01

    This thesis describes a study of the corrosion and oxidation of PWR primary circuit materials using surface sensitive spectroscopic techniques. An X-ray photoemission spectroscopy (XPS) study of a number of mixed oxides of known composition is described and the information obtained is related to XPS measurements made on the surface of iron and nickel based alloys oxidised under controlled conditions. A secondary ion mass spectroscopy (SIMA) study on these mixed transition metal oxides is also described. The gaseous oxidation of stainless steel 3041 and Inconel-690 is examined. Both alloys were oxidised at 600K in air with the composition of the oxide films formed studied by a range of surface spectroscopic methods. Further experimental work was performed on Inconel-690 to examine the effects of surface pretreatment and the effects of low oxygen partial pressures on the formation of oxide films at 600 K. The incorporation of the radionuclide, cobalt-60, into the oxide films formed on structural components of a PWR, result in the build up of radiation fields. A method of pretreating the surface of the alloy stainless steel 3041, in order to reduce the level of cobalt adsorbed into the oxide film formed under simulated primary coolant conditions is examined and contrasts with treatments which have been developed to release cobalt adsorbed in existing oxide layers under reactor conditions are discussed. (author)

  10. Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material

    International Nuclear Information System (INIS)

    Gordon, G.

    2004-01-01

    Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the performance of Alloy 22

  11. Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material

    Energy Technology Data Exchange (ETDEWEB)

    G. Gordon

    2004-10-13

    Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the

  12. Application Of Fractal Dimension On Atmospheric Corrosion Of Galvanized Iron Roofing Material

    OpenAIRE

    Issa A.K; Abba. M. Aji

    2015-01-01

    Abstract Corrosion rates of galvanized iron roofing sheet In yola north eastern part of Nigeria were assessed and determined by weight loss method and scanner fractal analysis method. Scanning electronic machine SEM was used to transform corrosion coupons to electronic form for image j processing and analysing software The result of corrosion rates for these two methods after six months of the samples exposure in industrial. Coastal market and urban areas in the region are 1.51 1.079 1.051 0....

  13. Corrosion processes of austenitic stainless steels and copper-based materials in gamma-irradiated aqueous environments

    International Nuclear Information System (INIS)

    Glass, R.S.

    1985-09-01

    The US Department of Energy is evaluating a site located at Yucca Mountain in Nye County, Nevada, as a potential high-level nuclear waste repository. The rock at the proposed repository horizon (above the water table) is densely welded, devitrified tuff, and the fluid environment in the repository is expected to be primarily air-steam. A more severe environment would be present in the unlikely case of intrusion of vadose groundwater into the repository site. For this repository location, austenitic stainless steels and copper-based materials are under consideration for waste container fabrication. This study focuses on the effects of gamma irradiation on the electrochemical mechanisms of corrosion for the prospective waste container materials. The radiolytic production of such species as hydrogen peroxide and nitric acid are shown to exert an influence on corrosion mechanisms and kinetics

  14. Report on the studies on the corrosion behaviour of the constructional materials for the gate cooling system

    International Nuclear Information System (INIS)

    Elayathu, N.S.D.; Balachandra, J.

    1974-01-01

    The gate cooling system of the Trombay R-5 reactor, now under construction, is proposed to be a laminated gate designed to operate with 50 % KBO 2 solution within the temperature limits 30 deg C and 50 deg C. With a view to find suitable constructional materials for the gate, the corrosion behaviour of stainless steel 304 L(ASTM 240-69), lead (ASTM B-29), aluminium (as Boral), neoprene, perspex and carbon steel (ASTM A 302 grade B) has been investigated in 50 % KBO 2 solution at 45 deg C. After definite periods of exposure, their coupons were examined metallographically at different magnifications to assess the nature and extent of sub-surface attack. The results show that out of the materials studied, carbon steel, lead and aluminium are more liable to corrosion in the borate solution and hence their use should be avoided. (M.G.B.)

  15. DOE-DARPA High-Performance Corrosion-Resistant Materials (HPCRM), Annual HPCRM Team Meeting & Technical Review

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Brown, B; Bayles, B; Lemieux, T; Choi, J; Ajdelsztajn, L; Dannenberg, J; Lavernia, E; Schoenung, J; Branagan, D; Blue, C; Peter, B; Beardsley, B; Graeve, O; Aprigliano, L; Yang, N; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Boudreau, J

    2007-09-21

    The overall goal is to develop high-performance corrosion-resistant iron-based amorphous-metal coatings for prolonged trouble-free use in very aggressive environments: seawater & hot geothermal brines. The specific technical objectives are: (1) Synthesize Fe-based amorphous-metal coating with corrosion resistance comparable/superior to Ni-based Alloy C-22; (2) Establish processing parameter windows for applying and controlling coating attributes (porosity, density, bonding); (3) Assess possible cost savings through substitution of Fe-based material for more expensive Ni-based Alloy C-22; (4) Demonstrate practical fabrication processes; (5) Produce quality materials and data with complete traceability for nuclear applications; and (6) Develop, validate and calibrate computational models to enable life prediction and process design.

  16. Study on some experimental conditions that affect corrosion of some structural steel materials using in nuclear power plant

    International Nuclear Information System (INIS)

    Hoang Nhuan; Nguyen Thi Kim Dung; Hoang Xuan Thi; Nguyen Thi Thuc Phuong; Ngo Xuan Hung; Nguyen Thanh Chung; Tran Xuan Vinh; Hoang Van Duc; Hoang Thi Tuyen; Nguyen Duc Thang

    2017-01-01

    The corrosion cracking of stainless steels is an important degradation phenomenon not only in nuclear reactors but also in the other industrial factories. In this work, experimental research of mechanical properties and electro-chemical processes to degradation of carbon steel and SS304 was carried out. Hardness values, ultimate tensile strength, yield strength, elongation values and impact energy which are typical for material mechanical properties were measured. When changing heat treatment conditions, the differences of mechanical properties were not really significant. In electro-chemical experiments, the OCP results of C45 steel and 304 Stainless Steel in Cl - environment took initial assessment of corrosion process. The corrosion process of C45 was accelerated over Cl - concentration. In the case of 304 Stainless Steel, Cl - ions did not significantly affect corrosion process, only slowed down the formation of the chromium oxide layer on the SS304 surface. In the last section, experiments were conducted to get a procedure on the determination of 10 B/ 11 B isotope ratio in water samples by isotope dilution – inductively coupled plasma mass spectrometry. (author)

  17. The Influence of Corrosion Attack on Grey Cast Iron Brittle‑Fracture Behaviour and Its Impact on the Material Life Cycle

    Directory of Open Access Journals (Sweden)

    Jiří Švarc

    2017-01-01

    Full Text Available The paper is concerned with brittle‑fracture behaviour of grey cast iron attacked by corrosion and its impact on the life cycle of a spare part made of grey cast iron. In a corrosion chamber, outdoor climatic conditions (temperature and relative air humidity were simulated in which degradation processes, induced by material corrosion, degrading mechanical properties of a material and possibly leading to irreversible damage of a machine component, occur in the material of maintenance vehicles that are out of operation for the period of one year. The corrosion degradation of grey cast iron, which the spare parts constituting functional parts of an engine are made of grey cast iron, is described with regard to brittle‑fracture behaviour of the material. For the description of corrosion impact on grey cast iron, an instrumented impact test was employed. A corrosion degradation effect on grey cast iron was identified based on measured values of total energy, macro plastic deformation limit, initiation force of unstable crack propagation and force exerted on unstable crack arrest. In the first part of the experiment, a corrosion test of the material concerned was simulated in a condensation chamber; in the second part of the experiment, research results are provided for the measured quantities describing the material brittle‑fracture behaviour; this part is supplemented with a table of results and figures showing the changes in the values of the measured quantities in relation to test temperatures. In the discussion part, the influence of corrosion on the values of unstable crack initiation and arrest forces is interpreted. In the conclusion, an overview of the most significant research findings concerning the impact of corrosion on the life cycle of grey cast iron material is provided.

  18. Scoping calculation of nuclides migration in engineering barrier system for effect of volume expansion due to overpack corrosion and intrusion of the buffer material

    International Nuclear Information System (INIS)

    Yoshita, Takashi; Ishihara, Yoshinao; Ishiguro, Katsuhiko; Ohi, Takao; Nakajima, Kunihiko

    1999-11-01

    Corrosion of the carbon steel overpack leads to a volume expansion since the specific gravity of corrosion products is smaller than carbon steel. The buffer material is compressed due to the corrosive swelling, reducing its thickness and porosity. On the other hand, buffer material may be extruded into fractures of the surrounding rock and this may lead to a deterioration of the planned functions of the buffer, including retardation of nuclides migration and colloid filtration. In this study, the sensitivity analyses for the effect of volume expansion and intrusion of the buffer material on nuclide migration in the engineering barrier system are carried out. The sensitivity analyses were performed on the decrease in the thickness of the buffer material in the radial direction caused by the corrosive swelling, and the change in the porosity and dry density of the buffer caused by both compacting due to corrosive swelling and intrusion of buffer material. As results, it was found the maximum release rates of relatively shorter half-life nuclides from the outside of the buffer material decreased for taking into account of a volume expansion due to overpack corrosion. On the other hand, the maximum release rates increased when the intrusion of buffer material was also taking into account. It was, however, the maximum release rates of longer half-life nuclides, such as Cs-137 and Np-237, were insensitive to the change of buffer material thickness, and porosity and dry density of buffer. (author)

  19. Development of Advanced Wear and Corrosion Resistant Systems Through Laser Surface Alloying and Materials Simulations

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Martukanitz and S. Babu

    2007-05-03

    Laser surfacing in the form of cladding, alloying, and modifications are gaining widespread use because of its ability to provide high deposition rates, low thermal distortion, and refined microstructure due to high solidification rates. Because of these advantages, laser surface alloying is considered a prime candidate for producing ultra-hard coatings through the establishment or in situ formation of composite structures. Therefore, a program was conducted by the Applied Research Laboratory, Pennsylvania State University and Oak Ridge National Laboratory to develop the scientific and engineering basis for performing laser-based surface modifications involving the addition of hard particles, such as carbides, borides, and nitrides, within a metallic matrix for improved wear, fatigue, creep, and corrosion resistance. This has involved the development of advanced laser processing and simulation techniques, along with the refinement and application of these techniques for predicting and selecting materials and processing parameters for the creation of new surfaces having improved properties over current coating technologies. This program has also resulted in the formulation of process and material simulation tools capable of examining the potential for the formation and retention of composite coatings and deposits produced using laser processing techniques, as well as positive laboratory demonstrations in producing these coatings. In conjunction with the process simulation techniques, the application of computational thermodynamic and kinetic models to design laser surface alloying materials was demonstrated and resulted in a vast improvement in the formulation of materials used for producing composite coatings. The methodology was used to identify materials and to selectively modify microstructures for increasing hardness of deposits produced by the laser surface alloying process. Computational thermodynamic calculations indicated that it was possible to induce the

  20. Corrosion studies on materials of construction for spent nuclear fuel reprocessing plant equipment

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.; Dayal, R.K.; Gnanamoorthy, J.B.

    1993-01-01

    Corrosion studies on specimens of commercial Type 304L stainless steel (SS), nuclear grade type 304L SS, extra low-carbon nitric acid grade (NAG) Uranus-16 SS, NAG Uranus-65 SS, Ti, Ti-5% Ta, Ti-0.25% Pd, Zircaloy-2, weldments of Ti and of Ti-5% Ta, and surface-modified (thermally oxidised and anodised) Ti were carried out to assess their corrosion resistance in nitric acid medium. The results indicated that Zircaloy-2, Ti-5% Ta, Uranus-16 SS and Uranus-65 SS have excellent corrosion resistance in boiling nitric acid solution. Specimens of Zircaloy-2, Ti-5% Ta and thermally-oxidised Ti showed excellent corrosion resistance also in a simulated uranium-containing reprocessing medium in a concentrated nitric acid solution. SEM and XRD analyses were carried out on the tested specimens to examine the scale morphology and phases present on the surface. (orig.)

  1. Organo-Aluminate Polymeric Materials as Advanced Erosion/Corrosion Resistant Thin Film Coatings

    National Research Council Canada - National Science Library

    Cook, Ronald

    1997-01-01

    ...) and hazardous air pollutants (HAPs). The coating system is based on the development of carboxylato- alumoxane precursors for fabrication of corrosion resistant oxide barrier layers and alumoxane-epoxy based primer coats...

  2. Materials and methods for corrosion control of reinforced and prestressed concrete structures in new construction

    Science.gov (United States)

    2000-08-01

    Salt-induced reinforcing steel corrosion in concrete bridges has undoubtedly become a considerable economic burden to many State and local transportation agencies. Since the iron in the steel has a natural tendency to revert eventually to its most st...

  3. Design of Submarine Pipeline With Respect to Corrosion and Material Selection

    OpenAIRE

    El-Mogi, Hossam

    2016-01-01

    Master's thesis in Offshore technology : subsea technology Pipelines are an essential part of the oil and gas industry as they are the main means of transportation. As the offshore technology advances, subsea pipelines are being operated in more demanding environments. For the pipelines to operate efficiently, they have to be carefully designed. One of the main threats to the integrity of the pipeline is corrosion, which has caused many failures. Corrosion in subsea pipelines has different...

  4. EVIDENCE OF CORROSIVE GAS FORMED BY RADIOLYSIS OF CHLORIDE SALTS IN PLUTONIUM-BEARING MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, K.; Louthan, M.

    2010-02-01

    Corrosion and pitting have been observed in headspace regions of stainless steel containers enclosing plutonium oxide/salt mixtures. These observations are consistent with the formation of a corrosive gas, probably HCl, and transport of that gas to the headspace regions of sealed containers. The NH{sub 4}Cl films found on the walls of the sealed containers is also indicative of the presence of HCl gas. Radiolysis of hydrated alkaline earth salts is the probable source of HCl.

  5. Demonstration and Validation of Materials for Corrosion-Resistant Fencing and Guard Railings in Aggressive Climates

    Science.gov (United States)

    2015-10-01

    environments where metals may approach failure in as little as 5 years. Even metals coated with polyvinyl chloride (PVC) can corrode in se- vere...Surface Corroded Type Comments Standard PVC coated galvanized 0% N/A No visible corrosion . Covered in chloride residues. Fuse bonded PVC coated...galvanized 0% N/A No visible corrosion . Covered in chloride residues. Standard galvanized 100% Oxidation White oxidation of the zinc/AL coating

  6. An electrochemical engineering technique to improve the corrosion resistance of some structural materials in lead-alloy coolants

    International Nuclear Information System (INIS)

    Tacica, M.; Andrei, V.; Rusu, O.; Coaca, E.; Minca, M.; Florea, S.; Oncioiu, G.

    2013-01-01

    The goal of this paper is to present some conclusions resulted from the literature studies referring to the materials potential to be used in Lead Fast Reactors (LFR), and the results obtained in the surface engineering field which can be used in our institute in order to obtain materials with appropriate properties for their use in LFR. In this context, the paper presents some preliminary results obtained in Surface Analysis Laboratory of INR Pitesti and research works in progress referring to: controlled modification of AISI 316 L surface by electrochemical plasma treatment (carburization, nitrocarburizings); electrodeposition of some protective thin-films based on Ni and Al obtained from ionic liquids; development of some procedures related to the activities involved in the behaviour evaluation, in LFR specific conditions, for material samples subjected to treatments by surface engineering techniques using the LEad COrrosion TEsting LOop (LECOTELO) test bench. The superficial structures obtained have been characterized by metallographic microscopy, X-Ray Photoemission Spectroscopy (XPS), Electrochemical Impedance Spectroscopy (EIS); the electrochemical techniques were used to evaluate the corrosion behaviour. The preliminary results have shown that the used electrochemical surface engineering techniques are appropriate in order to improve the mechanical properties and corrosion behaviour of AISI 316 L steel. (authors)

  7. Development of corrosion testing equipment under heat transfer and irradiation conditions to evaluate corrosion resistance of materials used in acid recovery evaporator. Contract research

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Numata, Masami; Kiuchi, Kiyoshi

    2002-01-01

    We have been evaluated the safety for corrosion of various metals applied to acid recovery evaporators by the mock-up tests using small scaled equipment and the reference tests in laboratories with small specimens. These tests have been conducted under-radioactive environment. The environment in practical reprocessing plants has many radioactive species. Therefore, the effect of irradiation on corrosion should be evaluated in detail. In this study, we have developed the corrosion testing equipment, which is employed to simulate environments in the acid recovery evaporators. This report describes the specification of corrosion testing equipment and the results of primary, reference and hot tests. Using the equipment, the corrosion test under heat transfer and irradiation conditions have been carried out for 930 hours in safety. It is expectable that useful corrosion test data in radioactive environment are accumulated with this equipment in future, and help the adequate choice of corrosion test condition in laboratories. (author)

  8. A state of the art on electrochemical noise technique. Assessment of corrosion characteristics and development of remedial technology in nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Jin; Kim, Joung Soo; Kim, Hong Pyo; Lim, Yun Soo; Yi, Yong Sun; Chung, Man Kyo

    2003-02-01

    The studies for the application of electrochemical noise technique were reviewed in terms of principle, analysing method and application examples of this technique. Because 4% of the economic damage of industry is caused by metallic corrosion, it is important to find and protect corrosive materials and location. By corrosion monitoring of industrial facilities such as nuclear power plant using Electrochemical Noise Measurement(ENM), corrosion attack can be detected and furthermore it can be indicated whether the attacked materials is replaced by new one or not. According to development of control and electronic technology, it was easy to apply ENM to the industry and the interest in ENM also increased. As corrosion is produced on a metal under corrosive environment, local anode(oxidation) and cathode(reduction) are formed. Hence, there is potential difference and current flow between the anode and cathode. ENM is monitoring the potential difference and the current flow with time by high impedance load voltmeter and Zero Resistance Ammeter(ZRA), respectively. The potential difference and current flow generated spontaneously without any application of current and potential between electrodes are monitored by electrochemical noise technique, Thereby ENM can be regarded as the most ideal corrosion monitoring method for the industrial facility and nuclear power plant having corrosion damage and difficulty in access of human body. Moreover, it is possible to obtain the spontaneous and reliable results from the metals damaged by ununiform and localized corrosion such as pitting and SCC using ENM while it is difficult to obtain the reliable result using traditional linear polarization and ac-impedance measurement. In many countries, there are extensive works concerned with application of electrochemical noise technique to corrosion monitoring of nuclear power plant and other industrial facilities, whereas there is little work on this field in Korea. Systematic study for

  9. Corrosion/96 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Topics covered by this conference include: cathodic protection in natural waters; cleaning and repassivation of building HVAC systems; worldwide opportunities in flue gas desulfurization; advancements in materials technology for use in oil and gas service; fossil fuel combustion and conversion; technology of corrosion inhibitors; computers in corrosion control--modeling and information processing; recent experiences and advances of austenitic alloys; managing corrosion with plastics; corrosion measurement technology; corrosion inhibitors for concrete; refining industry; advances in corrosion control for rail and tank trailer equipment; CO 2 corrosion--mechanisms and control; microbiologically influenced corrosion; corrosion in nuclear systems; role of corrosion in boiler failures; effects of water reuse on monitoring and control technology in cooling water applications; methods and mechanisms of scale and deposit control; corrosion detection in petroleum production lines; underground corrosion control; environmental cracking--relating laboratory results and field behavior; corrosion control in reinforced concrete structures; corrosion and its control in aerospace and military hardware; injection and process addition facilities; progress reports on the results of reinspection of deaerators inspected or repaired per RP0590 criteria; near 100% volume solids coating technology and application methods; materials performance in high temperature environments containing halides; impact of toxicity studies on use of corrosion/scale inhibitors; mineral scale deposit control in oilfield related operations; corrosion in gas treating; marine corrosion; cold climate corrosion; corrosion in the pulp and paper industry; gaseous chlorine alternatives in cooling water systems; practical applications of ozone in recirculating cooling water systems; and water reuse in industry. Over 400 papers from this conference have been processed separately for inclusion on the data base

  10. Electrochemical characterization of corrosion in materials of grounding systems, simulating conditions of synthetic soils with characteristics of local soils

    Science.gov (United States)

    Salas, Y.; Guerrero, L.; Vera-Monroy, S. P.; Blanco, J.; Jimenez, C.

    2017-12-01

    The integrity of structures buried in earthing becomes relevant when analysing maintenance and replacement costs of these systems, as the deterioration is mainly due to two factors, namely: the failures caused in the electrical systems, which are due to the system. Failure in earthing due to corrosion at the interface cause an alteration in the structure of the component material and generates an undesirable resistivity that cause malfunction in this type of protection systems. Two local soils were chosen that were categorized as sandy loam and clay loam type, whose chemical characteristics were simulated by means of an electrolyte corresponding to the amount of ions present determined by a soil characterization based on the CICE (effective cation exchange coefficient), which allows us to deduce the percentage of chloride and sulphate ions present for the different levels established in the experimental matrix. The interaction of these soils with grounding electrodes is a complex problem involving many factors to consider. In this study, the rates and corrosion currents of the different soils on two types of electrodes, one copper and the other AISI 304 stainless steel, were approximated by electrochemical techniques such as potentiodynamic curves and electrochemical impedance spectra. Considerably higher speeds were determined for copper-type electrodes when compared to those based on steel. However, from the Nyquist diagrams, it was noted that copper electrodes have better electrical performance than steel ones. The soil with the highest ionic activity turned out to be the sandy loam. The clay loam soil presents a tendency to water retention and this may be the reason for the different behaviour with respect to ionic mobility. The diffusion control in the steel seems to alter the ionic mobility because its corrosion rates proved to be very similar regardless of the type of soil chemistry. In general, corrosion rates fell since tenths of a millimetre every year to

  11. Comparative study on structure, corrosion and hardness of Zn-Ni alloy deposition on AISI 347 steel aircraft material

    Energy Technology Data Exchange (ETDEWEB)

    Gnanamuthu, RM. [Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung, Yongin, Gyeonggi 446-701 (Korea, Republic of); Mohan, S., E-mail: sanjnamohan@yahoo.com [Central Electrochemical Research Institute, (CSIR), Karaikudi 630 006, Tamilnadu (India); Saravanan, G. [Central Electrochemical Research Institute, (CSIR), Karaikudi 630 006, Tamilnadu (India); Lee, Chang Woo, E-mail: cwlee@khu.ac.kr [Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Electrodeposition of Zn-Ni alloy on AISI 347 steel as an aircraft material has been carried out from various baths. Black-Right-Pointing-Pointer The effect of pulse duty cycle on thickness, current efficiency and hardness reached maximum values at 40% duty cycle and for 50 Hz frequencies average current density of 4 A dm{sup -2}. Black-Right-Pointing-Pointer The XRF characterizations of 88:12% Zn-Ni alloy provided excellent corrosion resistance. Black-Right-Pointing-Pointer It is found that Zn-Ni alloy on AISI 347 aircraft material has better structure and corrosion resistance by pulse electrodeposits from electrolyte-4. - Abstract: Zn-Ni alloys were electrodeposited on AISI 347 steel aircraft materials from various electrolytes under direct current (DCD) and pulsed electrodepositing (PED) techniques. The effects of pulse duty cycle on thickness, current efficiency and hardness of electrodeposits were studied. Alloy phases of the Zn-Ni were indexed by X-ray diffraction (XRD) techniques. Microstructural morphology, topography and elemental compositions were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray fluorescence spectroscopy (XRF). The corrosion resistance properties of electrodeposited Zn-Ni alloy in 3.5% NaCl aqueous solution obtained by DCD and PED were compared using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) technique. Elemental analysis showed that 88% of Zn and 12% of Ni obtained from electrolyte-4 by PED technique at 40% duty cycle for 50 Hz frequencies having better corrosion resistance than that of deposits obtained from other electrolytes.

  12. Study on Co-free amorphous material cladding using a laser beam to improve the resistance of primary system parts in NPPs to wear/erosion-corrosion

    International Nuclear Information System (INIS)

    Kim, J. S.; Woo, S. S.; Seo, J. H.

    2001-01-01

    A study on Co-free amorphous material, ARMACOR M, cladding using a laser beam has been performed to improve resistance of the primary system main parts on nuclear power plants to wear/erosion-corrosion. The wear/erosion-corrosion properties of ARMACRO M cladded speciemens were characterized in air at room temperature and 300 .deg. C and in air at room temperature, and compared to those of other hardfacing materials, such as Stellite 6, NOREM 02, Deloro 50, TIG-welde or laer cladded. According to the results, ARMACOR M laser-cladded specimen showed to have the highest resistance to wear/erosion-corrosion

  13. Program of assessment of mechanical and corrosion mechanical properties of reactor internals materials due to operation conditions in WWERs

    International Nuclear Information System (INIS)

    Ruscak, M.; Zamboch, M.

    1998-01-01

    Reactor internals are subject to three principle operation influences: neutron and gamma irradiation, mechanical stresses, both static and dynamic, and coolant chemistry. Several cases of damage have been reported in previous years in both boiling and pressure water reactors. They are linked with the term of irradiation assisted stress corrosion cracking as a possible damage mechanism. In WWERs, the principal material used for reactor internals is austenitic titanium stabilized stainless steel 08Kh18N10T, however high strength steels are used as well. To assess the changes of mechanical properties and to determine whether sensitivity to intergranular cracking can be increased by high neutron fluences, the experimental program has been started. The goal is to assure safe operation of the internals as well as life management for all planned operation period. The program consists of tests of material properties, both mechanical and corrosion-mechanical. Detailed neutron fluxes calculation as well as stress and deformation calculations are part of the assessment. Model of change will be proposed in order to plan inspections of the facility. In situ measurements of internals will be used to monitor exact status of structure during operation. Tensile specimens manufactured from both base metal and model weld joint have been irradiated to the total fluences of 3-20 dpa. Changes of mechanical properties are tested by the tensile test, stress corrosion cracking tests are performed in the autoclave with water loop and active loading. Operation temperature, pressure and water chemistry are chosen for the tests. (author)

  14. Corrosion behaviour of container materials for the disposal of high-level waste forms in rock salt formations

    International Nuclear Information System (INIS)

    Smailos, E.; Schwarzkopf, W.; Koester, R.

    1987-05-01

    Extensive laboratory-scale experiments to evaluate the long-term corrosion behaviour of selected materials in brines and first in situ experiments were performed. In the laboratory experiments the materials Ti 99.8-Pd, Hastelloy C4 and hot-rolled low carbon steel as well cast steel, spheroidal cast iron, Si-cast iron and the Ni-Resists type D2 and D4 were investigated. The investigated parameters were: temperature, gamma-radiation and different compositions of salt brines. (orig./PW) [de

  15. In-situ corrosion studies on selected high-level waste packaging materials under simulated disposal conditions in rock salt formations

    International Nuclear Information System (INIS)

    Schwarzkopf, W.; Smailos, E.; Koester, R.

    1988-01-01

    This work reports about in situ corrosion experiments on unalloyed steels, Ti 99,8-Pd, Hastelloy C4, and iron-base alloys, as modular cast iron, Ni-Resist D4 and Si-cast iron, under simulated disposal conditions. The experiments were carried out in the frame of the German/US Brine Migration Test in heated tubed boreholes in the Asse salt mine at T = 150 0 C to 210 0 C, both in the absence and in the presence of a γ-radiation field of 3x10 2 Gy/h (Co-60 source). In addition, the material used to protect the tubing from corrosion (Inconel 600) as well as the backfill material for the annular gap (Al 2 O 3 spheres) were investigated for possible corrosion attack. All materials investigate exhibited high resistance to corrosion under the conditions prevailing in the Brine Migration Test. All material specimens corroded at much lower rates than determined in the previous laboratory-scale tests. All materials and above all the materials with passivating oxide layers such as Ti 99.8-Pd and Hastelloy C4 which may corrode selectively already in the presence of minor amounts of brine had been resistant with respect to any type of local corrosion attack. The γ-radiation of 3x10 2 Gy/h did not exert an influence on the corrosion behaviour of the materials. No corrosion attacks were observed on the Al 2 O 3 spheres. In the case of Inconel 600 traces of sulphur were detected probably resulting from the reaction of Ni with H 2 S to NiS. Measurable general and local corrosion, however, have not been observed. (orig./IHOE) [de

  16. Effects of surface chromium depletion on localized corrosion of alloy 825 as a high-level nuclear waste container material

    International Nuclear Information System (INIS)

    Dunn, D.S.; Sridhar, N.; Cragnolino, G.A.

    1995-01-01

    Effects of the chromium-depleted, mill-finished surface on the localized corrosion resistance of alloy 825 (UNS N08825) were investigated. Tests were conducted in solutions based on the ground water at Yucca mountain, Nevada, but with a higher concentration of chloride. Results indicated that breakdown (E p ) and repassivation (E rp ) potentials for mill-finished surfaces were more active than those for polished surfaces. Potentiodynamic polarization tests indicated pits could be initiated on the chromium-depleted surface at potentials of 220 mV SCE in a solution containing 1,000 ppm Cl - at 95 C. Potentiostatic tests identified a similar pit initiation potential for the mill-finished surface. However, under longterm potentiostatic tests, a higher potential of 300 mV SCE was needed to sustain stable pit growth beyond the chromium-depleted layer. An increase in surface roughness also was observed to decrease localized corrosion resistance of the material

  17. Corrosion of metallic materials by uranium hexafluoride at high temperatures (1963)

    International Nuclear Information System (INIS)

    Langlois, G.

    1963-01-01

    The corrosion of the following metals or alloys by UF 6 : nickel, monel, Inconel, gold, platinum, stainless steel, is studied in the temperature range from 300 to 1000 deg. C. The test method, designed to avoid heating the apparatus containing the corrosive fluid to a high temperature, consists in using threadlike samples heated by the Joule effect, the rest of the apparatus being maintained close to room temperature. This technique makes it possible also to determine continuously the penetration of the corrosion by measuring the electrical resistance of the sample with a double Thomson bridge. A series of rapid comparison tests shows that stainless steel, precious metals and Inconel are attacked far too rapidly to be used above 500 deg. C; only monel and especially nickel appear capable of resisting at high temperatures. The detailed examination of the behaviour of nickel shows that the metallic fluoride is volatilized and that this influences the corrosion rate. It shows also the existence of a temperature zone situated between 550 and 700 deg. C in which occurs A strong intergranular corrosion the cause of which appears to be the presence of impurities in the metal. (author) [fr

  18. Fundamental Studies of the Role of Grain Boundaries on Uniform Corrosion of Advanced Nuclear Reactor Materials

    International Nuclear Information System (INIS)

    Taheri, Mitra; Motta, Arthur; Marquis, Emmanuelle

    2016-01-01

    The main objective of this proposal is to develop fundamental understanding of the role of grain boundaries in stable oxide growth. To understand the process of oxide layer destabilization, it is necessary to observe the early stages of corrosion. During conventional studies in which a sample is exposed and examined after removal from the autoclave, the destabilization process will normally have already taken place, and is only examined post facto. To capture the instants of oxide destabilization, it is necessary to observe it in situ; however, significant questions always arise as to the influence of the corrosion geometry and conditions on the corrosion process. Thus, a combination of post facto examinations and in situ studies is proposed, which also combines state-of-the-art characterization techniques to derive a complete understanding of the destabilization process and the role of grain boundaries.

  19. Fundamental Studies of the Role of Grain Boundaries on Uniform Corrosion of Advanced Nuclear Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Mitra [Drexel Univ., Philadelphia, PA (United States); Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Marquis, Emmanuelle [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-05-20

    The main objective of this proposal is to develop fundamental understanding of the role of grain boundaries in stable oxide growth. To understand the process of oxide layer destabilization, it is necessary to observe the early stages of corrosion. During conventional studies in which a sample is exposed and examined after removal from the autoclave, the destabilization process will normally have already taken place, and is only examined post facto. To capture the instants of oxide destabilization, it is necessary to observe it in situ; however, significant questions always arise as to the influence of the corrosion geometry and conditions on the corrosion process. Thus, a combination of post facto examinations and in situ studies is proposed, which also combines state-of-the-art characterization techniques to derive a complete understanding of the destabilization process and the role of grain boundaries.

  20. Stress Corrosion Evaluation of Various Metallic Materials for the International Space Station Water Recycling System

    Science.gov (United States)

    Torres, P. D.

    2015-01-01

    A stress corrosion evaluation was performed on Inconel 625, Hastelloy C276, titanium commercially pure (TiCP), Ti-6Al-4V, Ti-6Al-4V extra low interstitial, and Cronidur 30 steel as a consequence of a change in formulation of the pretreatment for processing the urine in the International Space Station Environmental Control and Life Support System Urine Processing Assembly from a sulfuric acid-based to a phosphoric acid-based solution. The first five listed were found resistant to stress corrosion in the pretreatment and brine. However, some of the Cronidur 30 specimens experienced reduction in load-carrying ability.

  1. Catastrophes caused by corrosion

    OpenAIRE

    PETROVIC ZORAN C.

    2016-01-01

    For many years, huge attention has been paid to the problem of corrosion damage and destruction of metallic materials. Experience shows that failures due to corrosion problems are very important, and statistics at the world level shows that the damage resulting from the effects of various forms of corrosion is substantial and that, for example, in industrialized countries it reaches 4-5% of national incomes. Significant funds are determined annually for the prevention and control of corrosion...

  2. Impact of phase stability on the corrosion behavior of the austenitic candidate materials for NNWSI [Nevada Nuclear Waste Storage Investigations

    International Nuclear Information System (INIS)

    Bullen, D.B.; Gdowski, G.E.; McCright, R.D.

    1987-10-01

    The Nuclear Waste Management Program at Lawrence Livermore National Laboratory is responsible for the development of the waste package design to meet the Nuclear Regulatory Commission licensing requirements for the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. The metallic container component of the waste package is required to assist in providing substantially complete containment of the waste for a period of up to 1000 years. Long term phase stability of the austenitic candidate materials (304L and 316L stainless steels and alloy 825) over this time period at moderate temperatures (100-250 0 C) can impact the mechanical and corrosion behavior of the metal barrier. A review of the technical literature with respect to phase stability of 304L, 316L and 825 is presented. The impact of martensitic transformations, carbide precipitation and intermediate (σ, chi, and eta) phase formation on the mechanical properties and corrosion behavior of these alloys at repository relevant conditions is discussed. The effect of sensitization on intergranular stress corrosion cracking (IGSCC) of each alloy is also addressed. A summary of the impact of phase stability on the degradation of each alloy in the proposed repository environment is included. 32 refs., 6 figs

  3. Fe and Fe-P Foam for Biodegradable Bone Replacement Material: Morphology, Corrosion Behaviour, and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Monika Hrubovčáková

    2016-01-01

    Full Text Available Iron and iron-phosphorus open-cell foams were manufactured by a replica method based on a powder metallurgical approach to serve as a temporary biodegradable bone replacement material. Iron foams alloyed with phosphorus were prepared with the aim of enhancing the mechanical properties and manipulating the corrosion rate. Two different types of Fe-P foams containing 0.5 wt.% of P were prepared: Fe-P(I foams from a phosphated carbonyl iron powder and Fe-P(II foams from a mixture of carbonyl iron and commercial Fe3P. The microstructure of foams was analyzed using scanning electron microscopy. The mechanical properties and the corrosion behaviour were studied by compression tests and potentiodynamic polarization in Hank’s solution and a physiological saline solution. The results showed that the manufactured foams exhibited an open, interconnected, microstructure similar to that of a cancellous bone. The presence of phosphorus improved the mechanical properties of the foams and decreased the corrosion rate as compared to pure iron foams.

  4. Comparative corrosive characteristics of petroleum diesel and palm biodiesel for automotive materials

    Energy Technology Data Exchange (ETDEWEB)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-10-15

    Corrosive characteristics of biodiesel are important for long term durability of engine parts. The present study aims to compare the corrosion behavior of aluminum, copper and stainless steel in both petroleum diesel and palm biodiesel. Immersion tests in biodiesel (B100) and diesel (B0) were carried out at 80 C for 1200 h. At the end of the test, corrosion characteristic was investigated by weight loss measurements and changes on the exposed metal surface. Surface morphology was examined by optical microscope and scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDS). Fuels were analyzed by using TAN analyzer, FTIR, GCMS and ICP in order to investigate the acid concentration, oxidation level with water content, compositional characteristics and presence of metal species respectively. Results show that the extent of corrosion and change in fuel properties upon exposure to metals are more in biodiesel than that in diesel. Copper and aluminum were susceptible to attack by biodiesel whereas stainless steel was not. (author)

  5. Facility for simulating the corrosion fatigue process of steam generator tube materials

    International Nuclear Information System (INIS)

    Talpa, I.; Rosypal, F.

    1987-01-01

    A system is described for testing corrosion fatigue properties at parameters simulating the real loading of steam generator tubes. The test sample is fitted in an electrohydraulic pulsator controlled with an ADT 4500 control processor. The system of mechanical loading consists of a supply of pressure oil of a rated pressure of 25 MPa and a maximal delivered amount of 63 l/min, a cooling circuit of a maximum output of 180 l/min at a minimal pressure of 0.25 MPa, provided with a high capacity cooling equipment. The water circuit for the system of corrosion loading consists of elements for pressurizing, heating, circulation and measurement of corrosion medium quality. Demineralized water of required chemical composition is treated using a system of ion exchangers. Argon at a pressure of 20 kPa is used as cover gas. At a testing temperature of 340 degC the operating pressure in the water circuit is 16.0 MPa. An auxiliary circuit is used for controlling the quality of the corrosion medium in which pH (8.5 - 9.0), dissolved oxygen (7 - 700 ppb) and conductivity at 25 degC (2 μS/cm) are monitored. Both testing systems may operate autonomously. (J.B.). 2 figs., 1 tab., 16 refs

  6. In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials.

    Science.gov (United States)

    Wang, Henan; Zheng, Yang; Liu, Jinghua; Jiang, Chengbao; Li, Yan

    2017-02-01

    The in vitro biodegradable properties and cytocompatibility of Fe-Ga alloys including Fe 81 Ga 19 , (Fe 81 Ga 19 ) 98 B 2 and (Fe 81 Ga 19 ) 99.5 (TaC) 0.5 , and pure Fe were investigated for biomedical applications. The microstructure of the alloys was characterized using X-ray diffraction spectroscopy and optical microscopy. The results showed that A2 and D0 3 phases were detected for the three types of Fe-Ga alloys, and additional Fe 2 B and TaC phases were found in the (Fe 81 Ga 19 ) 98 B 2 and (Fe 81 Ga 19 ) 99.5 (TaC) 0.5 alloys, respectively. The corrosion rates of the Fe-Ga alloys were higher than that of pure Fe, as demonstrated by both potentiodynamic polarization measurements and immersion tests in simulated body fluid. The alloying element Ga lowered the corrosion potential of the Fe matrix and made it more susceptible to corrosion. Severe pitting corrosion developed on the surface of the Fe 81 Ga 19 alloy after the addition of ternary B or TaC due to the multi-phase microstructures. The MC3T3-E1 cells exhibited good adhesion and proliferation behavior on the surfaces of the Fe-Ga alloys after culture for 4h and 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Corrosion behaviour of metallic and non-metallic materials in various media in the Anhydrite and Gypsum Mine Felsenau/AG

    International Nuclear Information System (INIS)

    Laske, D.; Wiedemann, K.H.

    1983-10-01

    The final underground disposal of radioactive wastes necessitates container materials with a good long-term resistance against corrosion from both external agents and the solidification matrix inside. For low- and medium-level active waste, repositories in anhydrite sites, among others, are under consideration. Sheet and plate samples from 14 metallic and 8 non-metallic materials have been tested for 5 years in a tunnel in the Anhydrite and Gypsum Mine Felsenau/AG for their corrosion resistance in the tunnel atmosphere, anhydrite powder, gypsum powder, gypsum, and cement. From the metallic materials tested, only chromium-nickel steel is corrosion resistant to all the media present. Zinc plated and tin plated iron sheet as well as aluminium and aluminium alloys are corrosion resistant only in the atmosphere of the tunnel, and lead plated iron sheet is resistant also in cement. Aluminium is dissolved in cement. Uncovered iron sheet undergoes severe corrosion. The non-metallic coatings tested (lacquer, stove lacquer, or synthetic resins) partially flake off already after one year's testing and are therefore not appropriate for iron sheet corrosion protection. No influence of the different media has been observed after 5 years on the 8 plastic materials tested (6 without, and 2 with glass fiber reinforcement). (author)

  8. Multi-physics and multi-scale deterioration modelling of reinforced concrete part I: Coupling transport and corrosion at the material scale

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Stang, Henrik

    2015-01-01

    is fully coupled, i.e. information, such as temperature and moisture distribution, phase assemblage, corrosion current density, damage state of concrete cover, etc., are continuously exchanged between the models. Although not explicitly outlined in this paper, such an analysis may be further integrated...... models are sketched to describe (i) transport of heat and matter in porous media as well as phase assemblage in hardened Portland cement, (ii) corrosion of reinforcement, and (iii) material performance including corrosion-induced damages on the meso and macro scale. The presented modelling framework...

  9. In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Henan; Zheng, Yang; Liu, Jinghua; Jiang, Chengbao; Li, Yan, E-mail: liyan@buaa.edu.cn

    2017-02-01

    The in vitro biodegradable properties and cytocompatibility of Fe-Ga alloys including Fe{sub 81}Ga{sub 19}, (Fe{sub 81}Ga{sub 19}){sub 98}B{sub 2} and (Fe{sub 81}Ga{sub 19}){sub 99.5}(TaC){sub 0.5}, and pure Fe were investigated for biomedical applications. The microstructure of the alloys was characterized using X-ray diffraction spectroscopy and optical microscopy. The results showed that A2 and D0{sub 3} phases were detected for the three types of Fe-Ga alloys, and additional Fe{sub 2}B and TaC phases were found in the (Fe{sub 81}Ga{sub 19}){sub 98}B{sub 2} and (Fe{sub 81}Ga{sub 19}){sub 99.5}(TaC){sub 0.5} alloys, respectively. The corrosion rates of the Fe-Ga alloys were higher than that of pure Fe, as demonstrated by both potentiodynamic polarization measurements and immersion tests in simulated body fluid. The alloying element Ga lowered the corrosion potential of the Fe matrix and made it more susceptible to corrosion. Severe pitting corrosion developed on the surface of the Fe{sub 81}Ga{sub 19} alloy after the addition of ternary B or TaC due to the multi-phase microstructures. The MC3T3-E1 cells exhibited good adhesion and proliferation behavior on the surfaces of the Fe-Ga alloys after culture for 4 h and 24 h. - Highlights: • Fe-Ga alloys showed a higher degradation rate than pure Fe. • Fe-Ga alloys exhibited good cytocompatibility for the MC3T3-E1 cells. • The MC3T3-E1 cells were tolerable to the corrosion products of Fe-Ga alloys.

  10. Corrosion Finishing/Coating Systems for DoD Metallic Substrates Based on Non-Chromate Inhibitors and UV Curable, Zero VOC Materials

    Science.gov (United States)

    2010-08-01

    decrease the effective deposition rate of CeCCs by slowing the nucleation process, improving coating quality and corrosion resistance. Investigations on...Release, October 1, 2004. 3. “ Electrodeposition of Cerium Based Coatings for Corrosion Protection of Aluminum Alloys”, J. O. Stoffer, T.J. O’Keefe, S...Chloride Environments”, Materials Letters, 61 (17), 3378 (2007). B. Technical Reports 1. Philip Jones, May 2007, MS Thesis , Impact of Processing

  11. Corrosion/Deterioration of Fuel Tank Materials Wetted in Methanolic Electrolytes

    Science.gov (United States)

    1987-12-15

    R32 DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE All other editions are obsolete *U.S... aiSA A12A A1AS5!S1tit "IiaA Id~A1131 *AWFl 1t1103114W) No us" C C A C A C C A~tt A A CS Sell lA~~~l, 5158-lti A ICC :1L1 1113iC AlMeAtt2~ TIttrljACn...Corrosion Resistance of Metals and Alloys, Second Edition , Reinhold Publishing Corporation, NY, 1963, p. 217. 4. Uhlig, H. H., Coroion.and Corrosion

  12. Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation

    Science.gov (United States)

    Wu, Guosong; Xu, Ruizhen; Feng, Kai; Wu, Shuilin; Wu, Zhengwei; Sun, Guangyong; Zheng, Gang; Li, Guangyao; Chu, Paul K.

    2012-07-01

    Aluminum ion implantation is employed to modify pure Mg as well as AZ31 and AZ91 magnesium alloys and their surface degradation behavior in simulated body fluids is studied. Polarization tests performed in conjunction with scanning electron microscopy (SEM) reveal that the surface corrosion resistance after Al ion implantation is improved appreciably. This enhancement can be attributed to the formation of a gradient surface structure with a gradual transition from an Al-rich oxide layer to Al-rich metal layer. Compared to the high Al-content magnesium alloy (AZ91), a larger reduction in the degradation rate is achieved from pure magnesium and AZ31. Our results reveal that the surface corrosion resistance of Mg alloys with no or low Al content can be improved by Al ion implantation.

  13. Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation

    International Nuclear Information System (INIS)

    Wu Guosong; Xu Ruizhen; Feng Kai; Wu Shuilin; Wu Zhengwei; Sun Guangyong; Zheng Gang; Li Guangyao; Chu, Paul K.

    2012-01-01

    Aluminum ion implantation is employed to modify pure Mg as well as AZ31 and AZ91 magnesium alloys and their surface degradation behavior in simulated body fluids is studied. Polarization tests performed in conjunction with scanning electron microscopy (SEM) reveal that the surface corrosion resistance after Al ion implantation is improved appreciably. This enhancement can be attributed to the formation of a gradient surface structure with a gradual transition from an Al-rich oxide layer to Al-rich metal layer. Compared to the high Al-content magnesium alloy (AZ91), a larger reduction in the degradation rate is achieved from pure magnesium and AZ31. Our results reveal that the surface corrosion resistance of Mg alloys with no or low Al content can be improved by Al ion implantation.

  14. Atmospheric corrosion and runoff processes on copper and zinc as roofing materials

    OpenAIRE

    He, Wenle

    2002-01-01

    An extensive investigation with parallel field andlaboratory exposures has been conducted to elucidateatmospheric corrosion and metal runoff processes on copper andzinc used for roofing applications. Detailed studies have beenperformed to disclose the effect of various parameters on therunoff rate including: surface inclination and orientation,natural patination (age), patina composition, rain duration andvolume, rain pH, and length of dry periods inbetween rainevents. Annual and average corr...

  15. Screening of candidate corrosion resistant materials for coal combustion environments -- Volume 4. Final report, January 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Boss, D.E.

    1997-12-31

    The development of a silicon carbide heat exchanger is a critical step in the development of the Externally-Fired Combined Cycle (EFCC) power system. SiC is the only material that provides the necessary combination of resistance to creep, thermal shock, and oxidation. While the SiC structural materials provide the thermomechanical and thermophysical properties needed for an efficient system, the mechanical properties of the SiC tubes are severely degraded through corrosion by the coal combustion products. To obtain the necessary service life of thousands of hours at temperature, a protective coating is needed that is stable with both the SiC tube and the coal combustion products, resists erosion from the particle laden gas stream, is thermal-shock resistant, adheres to SiC during repeated thermal shocks (start-up, process upsets, shut-down), and allows the EFCC system to be cost competitive. The candidate protective materials identified in a previous effort were screened for their stability to the EFCC combustion environment. Bulk samples of each of the eleven candidate materials were prepared, and exposed to coal slag for 100 hours at 1,370 C under flowing air. After exposure the samples were mounted, polished, and examined via x-ray diffraction, energy dispersive spectroscopy, and scanning electron microscopy. In general, the alumina-based materials behaved well, with comparable corrosion depths in all five samples. Magnesium chromite formed a series of reaction products with the slag, which included an alumina-rich region. These reaction products may act as a diffusion barrier to slow further reaction between the magnesium chromite and the slag and prove to be a protective coating. As for the other materials; calcium titanate failed catastrophically, the CS-50 exhibited extension microstructural and compositional changes, and zirconium titanate, barium zironate, and yttrium chromite all showed evidence of dissolution with the slag.

  16. Erosion and erosion-corrosion

    International Nuclear Information System (INIS)

    Isomoto, Yoshinori

    2008-01-01

    It is very difficult to interpret the technical term of erosion-corrosion' which is sometimes encountered in piping systems of power plants, because of complicated mechanisms and several confusing definitions of erosion-corrosion phenomena. 'FAC (flow accelerated corrosion)' is recently introduced as wall thinning of materials in power plant systems, as a representative of 'erosion-corrosion'. FAC is, however, not necessarily well understood and compared with erosion-corrosion. This paper describes firstly the origin, definition and fundamental understandings of erosion and erosion-corrosion, in order to reconsider and reconfirm the phenomena of erosion, erosion-corrosion and FAC. Next, typical mapping of erosion, corrosion, erosion-corrosion and FAC are introduced in flow velocity and environmental corrosiveness axes. The concept of damage rate in erosion-corrosion is finally discussed, connecting dissolution rate, mass transfer of metal ions in a metal oxide film and film growth. (author)

  17. Localized corrosion of Alloy C22 nuclear waste canister material under limiting conditions

    International Nuclear Information System (INIS)

    Lee, S.G.; Solomon, A.A.

    2006-01-01

    Localized corrosion behavior of Alloy C22 in simulated Yucca Mountain (YM) repository environments was studied at the highest achievable but realistic temperatures under boiling and dripping scenarios. Temperatures measured in concentrated boiling solutions of KCl and NaNO 3 were found to be stable at 140 deg. C, although transient boiling before dryout was observed at temperatures as high as 160 deg. C, as the electrolyte became progressively more concentrated. Experiments that simulated a dripping scenario with simulated J13 well water confirmed the existence of concentrated solutions stable at 142 ± 3 deg. C under controlled drip conditions leading to pit initiation in Alloy C22 after only a few hours. The polarization experiments conducted at 140 deg. C in a solution with 0.5 mol L -1 chloride concentration showed that the critical potential for localized corrosion was 250 mV (versus Ag/AgCl). Potentiostatic tests confirmed that active metal dissolution occurred only in the crevice region at this potential. The crevice corrosion of Alloy C22 required an incubation time to develop a critical crevice solution, and it was triggered by severe local chemistry (enrichment of Cl - and H + ) aided by the high temperature

  18. The effect of borate and phosphate inhibitors on corrosion rate material SS321 and incoloy 800 in chloride containing solution by using potentiodynamic method

    International Nuclear Information System (INIS)

    Febriyanto; Sriyono; Satmoko, Ari

    1998-01-01

    Determination of corrosion rate of steam generator materials (SS 321 and incoloy 800) in chloride containing solution using potentiodynamic method from CMS 100. NaCl 1%, 3% and 5% solution using is used as tested solution. A tested material is grounded by grinding paper on grade 400 600, 800 and 1000, then polished by METADI 1/4 microns paste to get homogeneity. Furthermore, the tested materials is mounted by epoxide resin, so only the surface which contacts to tested solution is open. From the result obtained that borate and phosphate inhibitor can reduce corrosion rate and aggressiveness of chloride ion

  19. Report on materials characterization center workshop on stress corrosion cracking for the Salt Repository Project, December 16-17, 1986, Seattle, Washington: Workshop summary

    International Nuclear Information System (INIS)

    Merz, M.D.; Shannon, D.W.

    1986-09-01

    The Materials Characterization Center (MCC) at Pacific Northwest Laboratory (PNL) conducted a Workshop on Stress Corrosion Cracking for the Salt Repository Project on December 16 and 17, 1986 in Seattle, Washington. The workshop was held to formulate recommendations for addressing stress corrosion cracking (SCC) in a salt repository. It was attended by 24 representatives from major laboratories, universities, and industry. This report presents the recommendations of the workshop, along with the agenda, list of participants, questions and comments, summaries of working groups on low-strength steel and alternate materials, and materials handed out by the speakers

  20. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO and DOE OCRWM Co-Sponsored Advanced Materials Program

    International Nuclear Information System (INIS)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-01-01

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  1. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-09-19

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

  2. Corrosion Characteristics of Welding Zones Welded with 1.25Cr-0.5 Mo Filler Metal to Forged Steel for Piston Crown Material

    International Nuclear Information System (INIS)

    Jeong, Jae-Hyun; Lee, Sung-Yul; Lee, Myeong-Hoon; Moon, Kyung-Man; Baek, Tae-Sil

    2015-01-01

    A heavy oil of low quality has been mainly used in the diesel engine of the merchant ship as the oil price has been significantly jumped for several years. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, 1.25Cr-0.5Mo filler metal was welded with SMAW method in the forged steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% H 2 SO 4 solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. And, the corrosion resistance of the heat affected and weld metal zones was also increased than that of the base metal zone. Furthermore, it appeared that the corrosive products with red color and local corrosion like as a pitting corrosion were more frequently observed on the surface of the base metal zone compared to the heat affected and weld metal zones. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the 1.25Cr-0.5Mo electrode

  3. Corrosion Characteristics of Welding Zones Welded with 1.25Cr-0.5 Mo Filler Metal to Forged Steel for Piston Crown Material

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae-Hyun; Lee, Sung-Yul; Lee, Myeong-Hoon; Moon, Kyung-Man [Korea Maritime University, Dong Sam-Dong,Yong Do-ku, Busan (Korea, Republic of); Baek, Tae-Sil [Pohang College, Pohang (Korea, Republic of)

    2015-04-15

    A heavy oil of low quality has been mainly used in the diesel engine of the merchant ship as the oil price has been significantly jumped for several years. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, 1.25Cr-0.5Mo filler metal was welded with SMAW method in the forged steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% H{sub 2}SO{sub 4} solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. And, the corrosion resistance of the heat affected and weld metal zones was also increased than that of the base metal zone. Furthermore, it appeared that the corrosive products with red color and local corrosion like as a pitting corrosion were more frequently observed on the surface of the base metal zone compared to the heat affected and weld metal zones. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the 1.25Cr-0.5Mo electrode.

  4. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D.; Schubert, Ulrich S.

    2015-11-01

    For renewable energy sources such as solar, wind, and hydroelectric to be effectively used in the grid of the future, flexible and scalable energy-storage solutions are necessary to mitigate output fluctuations. Redox-flow batteries (RFBs) were first built in the 1940s and are considered a promising large-scale energy-storage technology. A limited number of redox-active materials--mainly metal salts, corrosive halogens, and low-molar-mass organic compounds--have been investigated as active materials, and only a few membrane materials, such as Nafion, have been considered for RFBs. However, for systems that are intended for both domestic and large-scale use, safety and cost must be taken into account as well as energy density and capacity, particularly regarding long-term access to metal resources, which places limits on the lithium-ion-based and vanadium-based RFB development. Here we describe an affordable, safe, and scalable battery system, which uses organic polymers as the charge-storage material in combination with inexpensive dialysis membranes, which separate the anode and the cathode by the retention of the non-metallic, active (macro-molecular) species, and an aqueous sodium chloride solution as the electrolyte. This water- and polymer-based RFB has an energy density of 10 watt hours per litre, current densities of up to 100 milliamperes per square centimetre, and stable long-term cycling capability. The polymer-based RFB we present uses an environmentally benign sodium chloride solution and cheap, commercially available filter membranes instead of highly corrosive acid electrolytes and expensive membrane materials.

  5. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials.

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D; Schubert, Ulrich S

    2015-11-05

    For renewable energy sources such as solar, wind, and hydroelectric to be effectively used in the grid of the future, flexible and scalable energy-storage solutions are necessary to mitigate output fluctuations. Redox-flow batteries (RFBs) were first built in the 1940s and are considered a promising large-scale energy-storage technology. A limited number of redox-active materials--mainly metal salts, corrosive halogens, and low-molar-mass organic compounds--have been investigated as active materials, and only a few membrane materials, such as Nafion, have been considered for RFBs. However, for systems that are intended for both domestic and large-scale use, safety and cost must be taken into account as well as energy density and capacity, particularly regarding long-term access to metal resources, which places limits on the lithium-ion-based and vanadium-based RFB development. Here we describe an affordable, safe, and scalable battery system, which uses organic polymers as the charge-storage material in combination with inexpensive dialysis membranes, which separate the anode and the cathode by the retention of the non-metallic, active (macro-molecular) species, and an aqueous sodium chloride solution as the electrolyte. This water- and polymer-based RFB has an energy density of 10 watt hours per litre, current densities of up to 100 milliamperes per square centimetre, and stable long-term cycling capability. The polymer-based RFB we present uses an environmentally benign sodium chloride solution and cheap, commercially available filter membranes instead of highly corrosive acid electrolytes and expensive membrane materials.

  6. The influence of the volume phase concentrations of the base material on the corrosion kinetics of Zr-2.5 Nb

    International Nuclear Information System (INIS)

    Olmedo, Ana M.; Bordoni, Roberto A.; Villegas, Marina; Hermida, Jorge D.

    1999-01-01

    The corrosion kinetics in lithiated heavy water at 350 and 265 C degrees of two unirradiated Zr-2.5 Nb pressure tube materials labelled C and J is presented. Both materials have the same behaviour up to 280 days of the exposure time and follow a para linear kinetic at 350 C degrees. At 265 C degrees, material C shows a larger weight gain and the formation of white oxide nuclei on the surface of the samples after 70 days of exposure. The size and coverage of oxide nuclei increase with the exposure time. X-ray diffraction analysis detected a difference of microstructure between the two materials, a larger volume content of the metastable β-Zr phase was found in C material. The lower β-Zr content of material J leads to a better corrosion behaviour than material C at the lower temperature (265 C degrees). At the higher temperature (350 C degrees), the decomposition Zr-β → ω+β Nb-enriq → α+ω+β Nb-enriq → α+β Nb-enriq → Zr-α + Nb-β induced at the corrosion test temperature occurs at a sufficiently fast rate so that no differences in corrosion behaviour are detected between both materials. (author)

  7. Corrosion control for low-cost reliability

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This conference was held September 19-24, 1993 in Houston, Texas to provide a forum for exchange of state-of-the-art information on corrosion. Topics of interest focus on the following: atmospheric corrosion; chemical process industry corrosion; high temperature corrosion; and corrosion of plant materials. Individual papers have been processed separately for inclusion in the appropriate data bases

  8. Mitigation of caustic stress corrosion cracking of steam generator tube materials by blowdown -a case study

    International Nuclear Information System (INIS)

    Dutta, Anu; Patwegar, I.A.; Chaki, S.K.; Venkat Raj, V.

    2000-01-01

    The vertical U-tube steam generators are among the most important equipment in nuclear power plants as they form the vital link between the reactor and the turbogenerator. Over ∼ 35 years of operating experience of water cooled reactor has demonstrated that steam generator tubes are susceptible to various forms of degradation. This degradation leads to failure and outages of the power plant. A majority of these failures have been attributed to concentrated alkali attacks in the low flow areas such as crevices in the tube to tube sheet joints, baffle plate location and the areas of sludge deposits. Free hydroxides can be produced by improper maintenance of phosphate chemical control in the secondary side of the steam generators and also by the thermal decomposition of impurities present in the condenser cooling water which may leak into the feed water through the condenser tubes. The free hydroxides concentrate in the low flow areas. This buildup of free hydroxide in combination with residual stress leads to caustic stress corrosion cracking. In order to mitigate caustic stress corrosion cracking of Inconel 600 tubes, the trend is to avoid phosphate dosing. Instead All Volatile Treatment (AVT) for secondary water is used backed by full flow condensate polishing. Sodium hydroxide concentration is now being considered as the basis for steam generator blowdown. A methodology has been established for determining the blowdown requirement in order to mitigate caustic stress corrosion cracking in the secondary side of the vertical U-tube natural circulation steam generator. A case study has been carried out for zero solid treatment (AVT coupled with full flow condensate polishing plant) water chemistry. Only continuous blowdown schemes have been studied based on maximum caustic concentration permissible in the secondary side of the steam generator. The methodology established can also be used for deciding concentration of any other impurities

  9. Development of Improved Accelerated Corrosion Qualification Test Methodology for Aerospace Materials

    Science.gov (United States)

    2014-11-01

    performance of magnesium -rich primer for aluminum alloys under salt spray test (ASTM B117) and natural exposure”, Corrosion Science 52 (2010) 1453...Center, FL (midnight 12-13-05 to midnight 12-14-05) 19400 19500 19600 19700 19800 19900 20000 20100 0 5 10 15 20 Cu m ul at iv e W ei gh t L os s...13-05 to midnight 12-14-05) 0 10000 20000 30000 40000 50000 60000 0 2000 4000 6000 8000 10000 Cu m ul at iv e W ei gh t L os s ( µg /c m 2 ) Hours

  10. Corrosion behaviour of selected high-level waste packaging materials under gamma irradiation and in-situ disposal conditions in rock salt

    International Nuclear Information System (INIS)

    Smailos, E.; Schwarzkopf, W.; Koester, R.

    1988-07-01

    Corrosion studies performed until now on a number of materials have shown that unalloyed steels, Hastelloy C4 and Ti 99.8-Pd are the most promising materials for a long-term resistant packaging to be used in high-level waste (HLW) canister disposal in rock salt formations. To characterize their corrosion behaviour in more detail, additional studies have been performed. The influence has been examined which is exerted by the gamma dose rate (1 Gy/h to 100 Gy/h) on the corrosion of three preselected steels and Hastelloy C4 at 90 0 C in a salt brine (Q-brine) rich in MgCl 2 , i.e., conditions relevant to accident scenarios in a repository. In addition, in-situ corrosion experiments have been carried out in the Asse salt mine at elevated temperatures (120 0 C to 210 0 C) in the absence and in the presence of a gamma radiation field of 3 x 10 2 Gy/h, within the framework of the German/US Brine Migration Test. Under the test conditions the gamma radiation did not exert a significant influence on the corrosion of the steels investigated, whereas Hastelloy C4, exposed to dose rates of 10 Gy/h and 100 Gy/h, underwent pitting and crevice corrosion (20 μm/a at the maximum).The low amounts of migrated salt brine (140 ml after 900 days) in the in-situ- experiment did not produce noticeable corrosion of the materials. (orig./RB) [de

  11. Influence of pipe material and surfaces on sulfide related odor and corrosion in sewers.

    Science.gov (United States)

    Nielsen, Asbjørn Haaning; Vollertsen, Jes; Jensen, Henriette Stokbro; Wium-Andersen, Tove; Hvitved-Jacobsen, Thorkild

    2008-09-01

    Hydrogen sulfide oxidation on sewer pipe surfaces was investigated in a pilot scale experimental setup. The experiments were aimed at replicating conditions in a gravity sewer located immediately downstream of a force main where sulfide related concrete corrosion and odor is often observed. During the experiments, hydrogen sulfide gas was injected intermittently into the headspace of partially filled concrete and plastic (PVC and HDPE) sewer pipes in concentrations of approximately 1,000 ppm(v). Between each injection, the hydrogen sulfide concentration was monitored while it decreased because of adsorption and subsequent oxidation on the pipe surfaces. The experiments showed that the rate of hydrogen sulfide oxidation was approximately two orders of magnitude faster on the concrete pipe surfaces than on the plastic pipe surfaces. Removal of the layer of reaction (corrosion) products from the concrete pipes was found to reduce the rate of hydrogen sulfide oxidation significantly. However, the rate of sulfide oxidation was restored to its background level within 10-20 days. A similar treatment had no observable effect on hydrogen sulfide removal in the plastic pipe reactors. The experimental results were used to model hydrogen sulfide oxidation under field conditions. This showed that the gas-phase hydrogen sulfide concentration in concrete sewers would typically amount to a few percent of the equilibrium concentration calculated from Henry's law. In the plastic pipe sewers, significantly higher concentrations were predicted because of the slower adsorption and oxidation kinetics on such surfaces.

  12. Inspection indications, stress corrosion cracks and repair of process piping in nuclear materials production reactors

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; West, S.L.; Nelson, D.Z.

    1991-01-01

    Ultrasonic inspection of Schedule 40 Type 304 stainless steel piping in the process water system of the Savannah River Site reactors has provided indications of discontinuities in less than 10% of the weld heat affected zones. Pipe sections containing significant indications are replaced with Type 304L components. Post removal metallurgical evaluation showed that the indications resulted from stress corrosion cracking in weld heat-affected zones and that the overall weld quality was excellent. The evaluation also revealed weld fusion zone discontinuities such as incomplete penetration, incomplete fusion, inclusions, underfill at weld roots and hot cracks. Service induced extension of these discontinuities was generally not significant although stress corrosion cracking in one weld fusion zone was noted. One set of UT indications was caused by metallurgical discontinuities at the fusion boundary of an extra weld. This extra weld, not apparent on the outer pipe surface, was slightly overlapping and approximately parallel to the weld being inspected. This extra weld was made during a pipe repair, probably associated with initial construction processes. The two nearly parallel welds made accurate assessment of the UT signal difficult. The implications of these observations to the inspection and repair of process water systems of nuclear reactors is discussed

  13. Research Opportunities in Corrosion Science for Long-Term Prediction of Materials Performance: A Report of the DOE Workshop on ''Corrosion Issues of Relevance to the Yucca Mountain Waste Repository''

    International Nuclear Information System (INIS)

    Payer, Joe H.; Scully, John R.

    2003-01-01

    The report summarizes the findings of a U.S. Department of Energy workshop on ''Corrosion Issues of Relevance to the Yucca Mountain Waste Repository''. The workshop was held on July 29-30, 2003 in Bethesda, MD, and was co-sponsored by the Office of Basic Energy Sciences and Office of Civilian Radioactive Waste Management. The workshop focus was corrosion science relevant to long-term prediction of materials performance in hostile environments, with special focus on relevance to the permanent disposal of nuclear waste at the Yucca Mountain Repository. The culmination of the workshop is this report that identifies both generic and Yucca Mountain Project-specific research opportunities in basic and applied topic areas. The research opportunities would be realized well after the U.S. Nuclear Regulatory Commission's initial construction-authorization licensing process. At the workshop, twenty-three invited scientists deliberated on basic and applied science opportunities in corrosion science relevant to long-term prediction of damage accumulation by corrosive processes that affect materials performance.

  14. Research Opportunities in Corrosion Science for Long-Term Prediction of Materials Performance: A Report of the DOE Workshop on “Corrosion Issues of Relevance to the Yucca Mountain Waste Repository”.

    Energy Technology Data Exchange (ETDEWEB)

    Payer, Joe H. [Case Western Reserve Univ., Cleveland, OH (United States); Scully, John R. [Univ. of Virginia, Charlottesville, VA (United States)

    2003-07-29

    The report summarizes the findings of a U.S. Department of Energy workshop on “Corrosion Issues of Relevance to the Yucca Mountain Waste Repository”. The workshop was held on July 29-30, 2003 in Bethesda, MD, and was co-sponsored by the Office of Basic Energy Sciences and Office of Civilian Radioactive Waste Management. The workshop focus was corrosion science relevant to long-term prediction of materials performance in hostile environments, with special focus on relevance to the permanent disposal of nuclear waste at the Yucca Mountain Repository. The culmination of the workshop is this report that identifies both generic and Yucca Mountain Project-specific research opportunities in basic and applied topic areas. The research opportunities would be realized well after the U.S. Nuclear Regulatory Commission’s initial construction-authorization licensing process. At the workshop, twenty-three invited scientists deliberated on basic and applied science opportunities in corrosion science relevant to long-term prediction of damage accumulation by corrosive processes that affect materials performance.

  15. Corrosion of metallic materials by uranium hexafluoride at high temperatures (1963); Corrosion de materiaux metalliques par l'hexafluorure d'uranium a haute temperature (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The corrosion of the following metals or alloys by UF{sub 6}: nickel, monel, Inconel, gold, platinum, stainless steel, is studied in the temperature range from 300 to 1000 deg. C. The test method, designed to avoid heating the apparatus containing the corrosive fluid to a high temperature, consists in using threadlike samples heated by the Joule effect, the rest of the apparatus being maintained close to room temperature. This technique makes it possible also to determine continuously the penetration of the corrosion by measuring the electrical resistance of the sample with a double Thomson bridge. A series of rapid comparison tests shows that stainless steel, precious metals and Inconel are attacked far too rapidly to be used above 500 deg. C; only monel and especially nickel appear capable of resisting at high temperatures. The detailed examination of the behaviour of nickel shows that the metallic fluoride is volatilized and that this influences the corrosion rate. It shows also the existence of a temperature zone situated between 550 and 700 deg. C in which occurs A strong intergranular corrosion the cause of which appears to be the presence of impurities in the metal. (author) [French] La corrosion par l'UF{sub 6} des metaux ou alliages suivants: lickel, monel, inconel, or, platine, acier inoxydable, est etudiee dans le un domaine de temperature compris entre 300 et 1000 deg. C. La methode d'essai, destinee a eviter le chauffage de l'enceinte contenant le fluide corrosif a temperature elevee, consiste a utiliser des eprouvettes filiformes, echauffees par effet Joule, le reste de l'appareillage etant maintenu a une temperature proche de l'ambiance. Cette technique permet en outre de determiner en continu la penetration de la corrosion, par mesure de la resistance electrique de l'eprouvette, au moyen d'un pont double de Thomson. Une serie d'essais comparatifs, assez sommaires, montre que l'acier inoxydable, les metaux precieux et l'inconel sont attaques beaucoup

  16. Corrosion of metallic materials by uranium hexafluoride at high temperatures (1963); Corrosion de materiaux metalliques par l'hexafluorure d'uranium a haute temperature (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The corrosion of the following metals or alloys by UF{sub 6}: nickel, monel, Inconel, gold, platinum, stainless steel, is studied in the temperature range from 300 to 1000 deg. C. The test method, designed to avoid heating the apparatus containing the corrosive fluid to a high temperature, consists in using threadlike samples heated by the Joule effect, the rest of the apparatus being maintained close to room temperature. This technique makes it possible also to determine continuously the penetration of the corrosion by measuring the electrical resistance of the sample with a double Thomson bridge. A series of rapid comparison tests shows that stainless steel, precious metals and Inconel are attacked far too rapidly to be used above 500 deg. C; only monel and especially nickel appear capable of resisting at high temperatures. The detailed examination of the behaviour of nickel shows that the metallic fluoride is volatilized and that this influences the corrosion rate. It shows also the existence of a temperature zone situated between 550 and 700 deg. C in which occurs A strong intergranular corrosion the cause of which appears to be the presence of impurities in the metal. (author) [French] La corrosion par l'UF{sub 6} des metaux ou alliages suivants: lickel, monel, inconel, or, platine, acier inoxydable, est etudiee dans le un domaine de temperature compris entre 300 et 1000 deg. C. La methode d'essai, destinee a eviter le chauffage de l'enceinte contenant le fluide corrosif a temperature elevee, consiste a utiliser des eprouvettes filiformes, echauffees par effet Joule, le reste de l'appareillage etant maintenu a une temperature proche de l'ambiance. Cette technique permet en outre de determiner en continu la penetration de la corrosion, par mesure de la resistance electrique de l'eprouvette, au moyen d'un pont double de Thomson. Une serie d'essais comparatifs, assez sommaires, montre que l'acier inoxydable, les metaux

  17. Corrosion behaviour of material no. 1. 4539 and nickel based alloys in gas waters. Korrosionsverhalten des Werkstoffs 1. 4539 und von Nickelbasis-Legierungen in Gaswaessern

    Energy Technology Data Exchange (ETDEWEB)

    Rolle, D [Didier Saeurebau GmbH, Koenigswinter (Germany); Buehler, H E [Didier-Werke AG, Anlagentechnik, Wiesbaden (Germany); Kalfa, H

    1993-01-01

    Laboratory tests with synthetic gas waters containing the gases ammonia, carbon dioxide, hydrogen sulphide and hydrogen cyanide were carried out in order to examine the influence of medium components on the corrosion of material No. 1.4539 and nickel based alloys Hastelloy C-4, C-22 and C-276. Hydrogen sulfide was identified as the decisive component for corrosion. For stainless steel corrosion rates of about 2 mm.a[sup -1] were already found at 50deg C in a critical pH-range with sulfide concentrations > 2%. As cyanide stimulates corrosion by dissolving sulfide surface layers by complexation of the iron ions, an increased material loss rate per unit area was found in the critical range with increasing cyanide concentration. The much more stable nickel based alloys only revealed considerable weight losses after being exposed in the autoclave at 100deg C. The graduation of the loss rates C-22 > C-4 > C-276 can be explained by the different contents of high grade alloy elements. The testing of nickel based alloys of the Hastelloy type and of material No. 1.4539 and 1.4571 by means of the dynamic tensile test (CERT-method) revealed no risks of stress corrosion cracking in the tested media. (orig.).

  18. Fiftieth Anniversary of the Foundation of Postgraduate Study on Corrosion and Protection of Materials at the Faculty of Technology, University of Zagreb

    Directory of Open Access Journals (Sweden)

    Martinez, S.

    2011-07-01

    Full Text Available The first postgraduate study at the Department for Chemical Technology of the Faculty of Technology (nowadays: Faculty of Chemical Engineering and Technology of the University of Zagreb concerning the field "Corrosion and Protection of Materials" was founded in the academic year of 1960/61 on the initiative of academician Miroslav Karšulin. The study comprised three semesters and finished by defending a master's thesis. During two decades, 19 generations of attendants were registered and 108 of them reached the scientific degree of MSc. In this period, several new postgraduate studies were introduced that were indispensable, but provoked organizational difficulties. Therefore, in 1980 reorganization took place by merging all postgraduate studies into "Engineering Chemistry" with 11 sections. Thus, the postgraduate study "Corrosion and Protection of Materials" transformed into the section "Structural Materials and Corrosion Control". After the establishment of the "Faculty of Chemical Engineering and Technology" from the Department for Chemical Technology of the Faculty of Technology in 1992, the "Chemical Engineering" section of former postgraduate study "Engineering Chemistry" separated as an autonomous study that also enabled receiving the Master's degree in the field of "Corrosion and Protection of Materials" by choice of adequate optional courses. At the beginning of the new millennium, changes of curricula in accordance with the Bologna process of reforms took place at the Faculty of Chemical Engineering and Technology as well as in the entire system of high educationin Croatia. All postgraduate studies leading to MSc degree were eliminated in 2003. Simultaneously, doctoral and specialists postgraduate studies were introduced. Doctoral studies lasting three years lead to PhD degree. Today, the knowledge from the field of corrosion and material protection is mainly included into programs of actual doctoral studies "Engineering Chemistry

  19. The use of an electro-chemical process for corrosion testing of different quality materials no. 1.4306 in nitric acid

    International Nuclear Information System (INIS)

    Simon, R.; Schneider, M.; Leistikow, S.

    1987-01-01

    A typical appearance of corrosion in austenitic steels, which are used in reprocessing plants as container and construction materials, is intercrystalline corrosion at high anodic potentials, grain decomposition and the attack on widened grain boundaries stimulated by corrosion products. For safety reasons, the materials used in the nitric acid Purex process area are subjected to extensive corrosion tests. A particularly suitable process for testing materials for chemically and thermally highly stressed parts of the plant is the standard HUEY test standardised on by ASTM and Euronorm, which, however, is time, cost and labour intensive. The test routine introduced here, anodic polarisation at +1250 mV (nhe) makes it possible to give comparative information on the liability to intercrystalline corrosion of Austenitic steels of similar composition after a much shorter time. The principle consists of an electrochemical simulation of the actual potential causing intercrystalline corrosion of the group of materials. While the results are comparable with those of the HUEY test, the necessary test time is shortened from 5x48 hours to 1 hour. The evaluation of the surface and structure attack, which has occurred is done by observation of the measured electrical, metallographic and gravimetric data. The test routine described here offers an alternative (at least for the purpose of pre-selection) with a value equivalent to a standard HUEY test, but with greatly reduced amounts of time and work. However, it requires electro-chemical pre-examination of the groups of materials of interest in nitric acid to determine the critical anodic potentials, due to the constant effects of which it is possible to shorten the test period. (orig./RB) [de

  20. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings Evaluation of Corrosion Resistance FY05 HPCRM Annual Report No. Rev. 1DOE-DARPA Co-Sponsored Advanced Materials Program

    International Nuclear Information System (INIS)

    Farmer, J C; Haslam, J J; Day, S D

    2007-01-01

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  1. Dictionary corrosion and corrosion control. English-German/German-English. Fachwoerterbuch Korrosion und Korrosionsschutz. Englisch-Deutsch/Deutsch-Englisch

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This dictionary has 13000 entries in both languages. Keywords and extensive accompanying information simplify the choice of word for the user. The following topics are covered: Theoretical principles of corrosion; Corrosion of the metals and alloys most frequently used in engineering. Types of corrosion - (chemical-, electro-chemical, biological corrosion); forms of corrosion (superficial, pitting, selective, intercrystalline and stress corrosion; vibrational corrosion cracking); erosion and cavitation. Methods of corrosion control (material selection, temporary corrosion protection media, paint and plastics coatings, electro-chemical coatings, corrosion prevention by treatment of the corrosive media); Corrosion testing methods.

  2. Corrosion and Tribology of Materials Used in a Novel Reverse Hip Replacement.

    Science.gov (United States)

    Braddon, Linda; Termanini, Zafer; MacDonald, Steven; Parvizi, Jay; Lieberman, Jay; Frankel, Victor; Zuckerman, Joseph

    2017-07-05

    Total hip arthroplasty has been utilized for the past 50 years as an effective treatment for degenerative, inflammatory and traumatic disorders of the hip. The design of these implants has generally followed the anatomy of the hip as a ball and socket joint with the femoral head representing the ball and the acetabulum representing the socket. We describe a novel hip arthroplasty design in which the "ball" is located on the acetabular side and the "socket" is located on the femoral side. The results of extensive biomechanical testing are described and document wear and corrosion characteristics that are at least equivalent to standard designs. These results support clinical assessment as the next step of the evaluation.

  3. Reactor thread-joint metal with corrosion resistant coating material low cycle fatigue

    International Nuclear Information System (INIS)

    Gorynin, V.I.; Kondratyev, S.Yu.

    1991-01-01

    The results of test carried out show that the Ni-P plating which was thermally treated in inert medium, provide the dependence of the reactor equipment studs in the high-concentrated medium of leakage for a period of up to 3000 hours. The Al and aluminized platings of the studs made of steel 38 KhN 3 MFA don't provide their corrosion dependence in the reactor medium. Cr plating provides the dependence during 500 hours. The reported test allows to recommend Ni-P plating to depend the studs in the conditions of the effect of the high-concentrated leakage medium, containing KOH, H 3 BO 3 and NaCl. (author)

  4. Characteristics from Recycled of Zinc Anode used as a Corrosion Preventing Material on Board Ship

    Science.gov (United States)

    Barokah, B.; Semin, S.; Kaligis, D. D.; Huwae, J.; Fanani, M. Z.; Rompas, P. T. D.

    2018-02-01

    The objective of this research is to obtain the values of chemical composition, electrochemical potential and electrochemical efficiency. Methods used were experiment with physical tests conducted in metallurgical laboratory and DNV-RP-B401 cathode protection design DNV (Det Norske Veritas) standard. The results showed that the composition of chemical as Zinc (Zn), Aluminium, Cadmium, Plumbumb, Copper and Indium is suitable of standard. The values of electrochemical potential and electrochemical efficiency were respectively. However it can be concluded that the normal meaning of recycled zinc anode with increasing melting temperature can produce zinc anode better than original zinc anode and can be used as cathode protection on board ships. This research can assist in the management of used zinc anode waste, the supply of zinc anodes for consumers at relatively low prices, and recommendations of using zinc anodes for the prevention of corrosion on board ship.

  5. Experimental and numerical investigation on cladding of corrosion-erosion resistant materials by a high power direct diode laser

    Science.gov (United States)

    Farahmand, Parisa

    In oil and gas industry, soil particles, crude oil, natural gas, particle-laden liquids, and seawater can carry various highly aggressive elements, which accelerate the material degradation of component surfaces by combination of slurry erosion, corrosion, and wear mechanisms. This material degradation results into the loss of mechanical properties such as strength, ductility, and impact strength; leading to detachment, delamination, cracking, and ultimately premature failure of components. Since the failure of high valued equipment needs considerable cost and time to be repaired or replaced, minimizing the tribological failure of equipment under aggressive environment has been gaining increased interest. It is widely recognized that effective management of degradation mechanisms will contribute towards the optimization of maintenance, monitoring, and inspection costs. The hardfacing techniques have been widely used to enhance the resistance of surfaces against degradation mechanisms. Applying a surface coating improves wear and corrosion resistance and ensures reliability and long-term performance of coated parts. A protective layer or barrier on the components avoids the direct mechanical and chemical contacts of tool surfaces with process media and will reduce the material loss and ultimately its failure. Laser cladding as an advanced hardfacing technique has been widely used for industrial applications in order to develop a protective coating with desired material properties. During the laser cladding, coating material is fused into the base material by means of a laser beam in order to rebuild a damaged part's surface or to enhance its surface function. In the hardfacing techniques such as atmospheric plasma spraying (APS), high velocity oxygen-fuel (HVOF), and laser cladding, mixing of coating materials with underneath surface has to be minimized in order to utilize the properties of the coating material most effectively. In this regard, laser cladding offers

  6. Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications

    Science.gov (United States)

    Seals, Roland D.

    2015-08-18

    The present disclosure relates generally to hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications. More specifically, the present disclosure relates to hardface coatings that include a network of titanium monoboride (TiB) needles or whiskers in a matrix, which are formed from titanium (Ti) and titanium diboride (TiB.sub.2) precursors by reactions enabled by the inherent energy provided by the process heat associated with coating deposition and, optionally, coating post-heat treatment. These hardface coatings are pyrophoric, thereby generating further reaction energy internally, and may be applied in a functionally graded manner. The hardface coatings may be deposited in the presence of a number of fluxing agents, beta stabilizers, densification aids, diffusional aids, and multimode particle size distributions to further enhance their performance characteristics.

  7. Monitoring the residual life of atomic power station equipment based on the indices of stress-corrosion strength of constructional materials

    International Nuclear Information System (INIS)

    Stepanov, I.A.

    1994-01-01

    The properties of a constructional material determining life are strength, plasticity, and crack resistance. Loss of properties occurs as the result of corrosion, temperature action, actual and residual stresses, and neutron and gamma-radiation. Corrosion leads to a decrease in thickness, loss of density, changes in the composition and structure of the surface layers, and a reduction in strength, plasticity, and crack resistance of constructional materials. The influence of temperature on the loss of properties of materials is revealed as possible phase and structural transformations of the metal and the surface layers and a reduction in the stress-rupture, plastic, and thermal-fatigue properties. The actual and residual stresses not only strengthen the influence of corrosive media but also directly determine the stress-rupture strength and cyclic life. The influence of neutron and gamma-radiation is based o the change in composition of the corrosive medium (radiolysis), radiation embrittlement of the material, and the change in properties of the surface and oxide layers. The authors discuss the concepts and design of automated monitoring systems for determining the fitness of the components of on atomic power plant

  8. The influence of modified water chemistries on metal oxide films, activity build-up and stress corrosion cracking of structural materials in nuclear power plants

    International Nuclear Information System (INIS)

    Maekelae, K.; Laitinen, T.; Bojinov, M.

    1999-03-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of actuated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for 60 Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (orig.)

  9. The Influence Of Modified Water Chemistries On Metal Oxide Films, Activity Build-Up And Stress Corrosion Cracking Of Structural Materials In Nuclear Power Plants

    International Nuclear Information System (INIS)

    Maekelae, K.; Laitinen, T.; Bojinov, M.

    1998-07-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of activated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for 60 Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (author)

  10. The influence of modified water chemistries on metal oxide films, activity build-up and stress corrosion cracking of structural materials in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Maekelae, K.; Laitinen, T.; Bojinov, M. [VTT Manufacturing Technology, Espoo (Finland)

    1999-03-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of actuated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for {sup 60}Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (orig.) 127 refs.

  11. Electrochemical corrosion studies on copper-base waste package container materials in unirradiated 0.1 N NaNO3 at 95 degrees C

    International Nuclear Information System (INIS)

    Akkaya, M.; Verink, E.D. Jr.; Van Konynenburg, R.A.

    1988-05-01

    Three candidate materials were investigated in this study in terms of their electrochemical corrosion behavior in unirradiated 0.1 N NaNO 3 solutions at 95 degrees C. Anodic polarization experiments were conducted to determine the passive current densities, pitting potentials, and other parameters, together with Cyclic Current Reversal Voltammetry tests to evaluate the stability and protectiveness of the passive oxides formed. X-ray diffraction and Auger Electron Spectroscopy were used for identification of the corrosion products as well as Scanning Electron Microscopy for the surface morphology studies. 2 refs., 22 figs., 2 tabs

  12. Microstructure and bio-corrosion behaviour of Mg-5Zn-0.5Ca -xSr alloys as potential biodegradable implant materials

    Science.gov (United States)

    Yan, Li; Zhou, Jiaxing; Sun, Zhenzhou; Yang, Meng; Ma, Liqun

    2018-04-01

    Magnesium alloys are widely studied as biomedical implants owing to their biodegradability. In this work, novel Mg-5Zn-0.5Ca-xSr (x = 0, 0.14, 0.36, 0.50, 0.70 wt%) alloys were prepared as biomedical materials. The influence of strontium (Sr) addition on the microstructure, corrosion properties and corrosion morphology of the as-cast Mg-5Zn-0.5Ca-xSr alloys is investigated by a variety of techniques such as scanning electron microscopy, x-ray diffraction, and electrochemical measurements. The Sr-free alloy is composed of three phases, namely, α-Mg, CaMg2 and Ca2Mg6Zn3, while the alloys with the Sr addition consist of α-Mg, CaMg2 and Ca2Mg6Zn3 and Mg17Sr2. Corrosion experiments in Hank’s solution show that the addition of a small amount of Sr can improve the corrosion resistance of the Mg-5Zn-0.5Ca alloy. The corrosion products include Mg(OH)2, Zn(OH)2, Ca(OH)2, and HA (Ca5(PO4)3(OH)). Mg-5Zn-0.5Ca-0.36Sr alloy has the minimum weight loss rate (0.68 mm/a), minimal hydrogen evolution (0.08 ml/cm2/d) and minimum corrosion current density (7.4 μA/cm2), indicating that this alloy shows the best corrosion resistance.

  13. Surface effects of corrosive media on hardness, friction, and wear of materials

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.; Ishigaki, H.; Rengstorff, G. W. P.

    1985-01-01

    Hardness, friction, and wear experiments were conducted with magnesium oxide exposed to various corrosive media and also with elemental iron and nickel exposed to water and NaOH. Chlorides such as MgCl2 and sodium containing films were formed on cleaved magnesium oxide surfaces. The MgCl2 films softened the magnesium oxide surfaces and caused high friction and great deformation. Hardness was strongly influenced by the pH value of the HCl-containing solution. The lower the pH, the lower the microhardness. Neither the pH value of nor the immersion time in NaOH containing, NaCl containing, and HNO3 containing solutions influenced the microhardness of magnesium oxide. NaOH formed a protective and low friction film on iron surfaces. The coefficient of friction and the wear for iron were low at concentrations of NaOH higher than 0.01 N. An increase in NaOH concentration resulted in a decrease in the concentration of ferric oxide on the iron surface. It took less NaOH to form a protective, low friction film on nickel than on iron.

  14. Hydrogen embrittlement and hydrogen induced stress corrosion cracking of high alloyed austenitic materials; Wasserstoffversproedung und wasserstoffinduzierte Spannungsrisskorrosion hochlegierter austenitischer Werkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Mummert, K; Uhlemann, M; Engelmann, H J [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany)

    1998-11-01

    The susceptiblity of high alloyed austenitic steels and nickel base alloys to hydrogen-induced cracking is particularly determined by 1. the distribution of hydrogen in the material, and 2. the microstructural deformation behaviour, which last process is determined by the effects of hydrogen with respect to the formation of dislocations and the stacking fault energy. The hydrogen has an influence on the process of slip localization in slip bands, which in turn affects the microstructural deformation behaviour. Slip localization increases with growing Ni contents of the alloys and clearly reduces the ductility of the Ni-base alloy. Although there is a local hydrogen source involved in stress corrosion cracking, emanating from the corrosion process at the cathode, crack growth is observed only in those cases when the hydrogen concentration in a small zone ahead of the crack tip reaches a critical value with respect to the stress conditions. Probability of onset of this process gets lower with growing Ni content of the alloy, due to increasing diffusion velocity of the hydrogen in the austenitic lattice. This is why particularly austenitic steels with low Ni contents are susceptible to transcrystalline stress corrosion cracking. In this case, the microstructural deformation process at the crack tip is also influenced by analogous processes, as could be observed in hydrogen-loaded specimens. (orig./CB) [Deutsch] Die Empfindlichkeit von hochlegierten austentischen Staehlen und Nickelbasislegierungen gegen wasserstoffinduziertes Risswachstum wird im wesentlichen bestimmt durch 1. die Verteilung von Wasserstoff im Werkstoff und 2. das mikrostrukturelle Verformungsverhalten. Das mikrostrukturelle Deformationsverhalten ist wiederum durch den Einfluss von Wasserstoff auf die Versetzungsbildung und die Stapelfehlerenergie charakterisiert. Das mikrostrukturelle Verformungsverhalten wird durch wasserstoffbeeinflusste Gleitlokalisierung in Gleitbaendern bestimmt. Diese nimmt mit

  15. The influence of material variables on corrosion and deuterium uptake of Zr-2.5Nb alloy during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, G.M.; Urbanic, V.F. [Chalk River Technicians Lab., AECL, Ontario (Canada)

    2002-07-01

    Current CANDU 2 reactors use Zr-2.5Nb pressure tubes that are extruded at 1088 K, cold-drawn 27%, and autoclaved at 673 K for 24 h. This results in a metastable, two-phase microstructure consisting of elongated {alpha}-Zr grains surrounded by a network of {beta}-Zr filaments. To develop a mathematical model of corrosion and deuterium ingress in pressure tubes, we have considered the impact of variables including: fast neutron flux, temperature, and the as fabricated microstructure and its evolution during irradiation. Small specimens of Zr-2.5Nb are being exposed under CANDU water chemistry conditions in the Halden Boiling Water Reactor. The experiments involve fast neutron fluxes (E {>=} 1.05 MeV) of 0, 1.7, and 4.5 x 10{sup 17} n x m{sup -2} - s{sup -1}, and temperatures of 523 and 598 K. Specimens have been prepared from pressure tube materials representative of all current CANDU reactors, materials subject to thermal decomposition of the {beta}-Zr phase, and tubes extruded over a range of conditions. Results from the first three years of the Halden test program are summarized. At both 523 and 598 K, tubes made of {beta}-quenched material exhibit lower oxidation rates than those made from non-{beta}-quenched materials. In short-term out-of-flux exposures at 523 K, three non-{beta}-quenched tubes appear to show linear oxidation kinetics. Similar behavior is not observed in tests conducted out-of-flux at 598 K, or in-flux at either temperature. At 598 K, {beta}-quenched tubes exhibit significantly lower deuterium pickup rates than non-{beta}-quenched tubes. When tested at 598 K, thermally aged specimens show declining oxidation and deuterium pickup rates with increasing {beta}-Zr phase decomposition. At 523 K, the impact of thermal aging was less significant. Preliminary results from an 'extrusion variable test' suggest that tubes fabricated according to the current CANDU specification show the best corrosion resistance. (authors)

  16. Corrosion-induced changes in pore-size distributions of fuel-matrix material

    International Nuclear Information System (INIS)

    Krautwasser, P.; Eatherly, W.P.

    1981-01-01

    In order to understand the mechanism of metallic fission-product adsorption and desorption as well as diffusion in graphitic materials, a detailed knowledge of the material microstructure is essential. Different types of grahitic matrix material used or to be used in fuel elements of the German HTR Program were measured at ORNL in cooperation with the Hahn-Meitner-Institut Berlin. Actual measurements of fission product diffusion and adsorption/desorption were performed at HMI Berlin

  17. Corrosion rate of parent and weld materials of F82H and JPCA steels under LBE flow with active oxygen control at 450 and 500 deg. C

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Kamata, Kinya; Ono, Mikinori; Kitano, Teruaki; Hayashi, Kenichi; Oigawa, Hiroyuki

    2008-01-01

    Corrosion behavior of parent and weld materials of F82H and JPCA was studied in the circulating LBE loop under impinging flow. These are candidate materials for Japanese Accelerator Driven System (ADS) beam windows. Maximum temperatures were kept to 450 and 500 deg. C with 100 deg. C constant temperature difference. Main flow velocity was 0.4-0.6 m/s in every case. Oxygen concentration was controlled to 2-4 x 10 -5 mass% although there was one exception. Testing time durations were 500-3000 h. Round bar type specimens were put in the circular tube of the loop. An electron beam weld in the middle of specimens was also studied. Optical microscopy, electron microscopy, X-ray element analyses and X-ray diffraction were used to investigate corrosion in these materials. Consequently corrosion depth and stability of those oxide layers were characterized based on the analyses. For a long-term behavior a linear law is recommended to predict corrosion in the ADS target design

  18. Thermal reliability test of Al-34%Mg-6%Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling

    International Nuclear Information System (INIS)

    Sun, J.Q.; Zhang, R.Y.; Liu, Z.P.; Lu, G.H.

    2007-01-01

    The purpose of this study is to determine the thermal reliability and corrosion of the Al-34%Mg-6%Zn alloy as a latent heat energy storage material with respect to various numbers of thermal cycles. The differential scanning calorimeter (DSC) analysis technique was applied to the alloy after 0, 50, 500 and 1000 melting/solidification cycles in order to measure the melting temperatures and the latent heats of fusion of the alloy. The containment materials were stainless steel (SS304L), carbon steel (steel C20) in the corrosion tests. The DSC results indicated that the change in melting temperature for the alloy was in the range of 3.06-5.3 K, and the latent heat of fusion decreased 10.98% after 1000 thermal cycles. The results show that the investigated Al-34%Mg-6%Zn alloy has a good thermal reliability as a latent heat energy storage material with respect to thermal cycling for thermal energy storage applications in the long term in view of the small changes in the latent heat of fusion and melting temperature. Gravimetric analysis as mass loss (mg/cm 2 ), corrosion rate (mg/day) and a microscopic or metallographic investigation were performed for corrosion tests and showed that SS304L may be considered a more suitable alloy than C20 in long term thermal storage applications

  19. Archaeological analogs and corrosion

    International Nuclear Information System (INIS)

    David, D.

    2008-01-01

    In the framework of the high level and long life radioactive wastes disposal deep underground, the ANDRA built a research program on the material corrosion. In particular they aim to design containers for a very long time storage. Laboratory experiments are in progress and can be completed by the analysis of metallic archaeological objects and their corrosion after hundred years. (A.L.B.)

  20. An experimental estimation of the resistance against a high-temperature gas corrosion of C/C composite materials with protective plasma coating

    International Nuclear Information System (INIS)

    Babin, S.V.; Khripakov, E.V.

    2007-01-01

    Materials with well-defined structure has been proposed as corrosion- and erosion-resistant coating from the carbon-carbon composite. Experiments on heat and erosion resistance of plasma coatings at carbon-carbon composite materials demonstrate availability of multilayer with upper erosion resistant layer on the basis of aluminium oxide, intermediate layer on the basis of boron-containing components with aluminium additions and damping layer of silicon carbide. Multilayer protective coats offer demand service characteristics of details [ru

  1. Corrosion control. 2. ed.

    International Nuclear Information System (INIS)

    Bradford, S.A.

    2001-01-01

    The purpose of this text is to train engineers and technologists not just to understand corrosion but to control it. Materials selection, coatings, chemical inhibitors, cathodic and anodic protection, and equipment design are covered in separate chapters. High-temperature oxidation is discussed in the final two chapters ne on oxidation theory and one on controlling oxidation by alloying and with coatings. This book treats corrosion and high-temperature oxidation separately. Corrosion is divided into three groups: (1) chemical dissolution including uniform attack, (2) electrochemical corrosion from either metallurgical or environmental cells, and (3) stress-assisted corrosion. Corrosion is logically grouped according to mechanisms rather than arbitrarily separated into different types of corrosion as if they were unrelated. For those university students and industry personnel who approach corrosion theory very hesitantly, this text will present the electrochemical reactions responsible for corrosion summed up in only five simple half-cell reactions. When these are combined on a polarization diagram, which is also explained in detail, the electrochemical processes become obvious. For those who want a text stripped bare of electrochemical theory, several noted sections can be omitted without loss of continuity. However, the author has presented the material in such a manner that these sections are not beyond the abilities of any high school graduate who is interested in technology

  2. Shrinkage behaviour and related corrosion performance of low-pH cementitious materials based on OPC or CAC

    Directory of Open Access Journals (Sweden)

    García-Calvo, J. L.

    2016-03-01

    Full Text Available Prior to using low-pH cementitious materials in underground repositories for high level waste, the characteristics determining their long-term durability must be analysed in depth. In this sense, different shrinkage tests have been made on mortar and concrete specimens using low-pH cement formulations based on ordinary portland cement (OPC or calcium aluminate cement (CAC, with high mineral admixtures contents. They showed similar autogenous shrinkage than samples without mineral admixtures but higher drying shrinkage when materials based on OPC with high silica fume contents were considered. Besides, as the use of reinforced concrete could be required in underground repositories, the susceptibility of reinforcement to corrosion when using low-pH cementitious materials based on OPC was analyzed, considering carbon steel and galvanized steel. In the formers corrosion was detected due to the low pore solution pH but any problem was detected when galvanized reinforcement were used.Previo al empleo de materiales con cementos de bajo pH en almacenamientos geológicos profundos (AGP de residuos radiactivos de alta actividad, características relacionadas con su durabilidad a largo plazo deben ser verificadas. Así, su estabilidad volumétrica se ha analizado en morteros y hormigones de bajo pH basados en OPC o CAC, con elevados contenidos de adiciones minerales. Estos presentaron retracciones autógenas similares a las medidas en materiales convencionales, pero retracciones por secado mayores en los basados en OPC y altos contenidos de humo de sílice. Dado que en zonas de los AGP podría emplearse hormigón armado, también se evaluó la susceptibilidad a la corrosión de aceros al carbono y aceros galvanizados en materiales de bajo pH basados en OPC. Se detectó un inicio temprano de corrosión en los primeros debido al bajo pH presente en el fluido de los poros de estos materiales, sin detectarse problemas al emplear aceros galvanizados.

  3. 60NiTi Intermetallic Material Evaluation for Lightweight and Corrosion Resistant Spherical Sliding Bearings for Aerospace Applications

    Science.gov (United States)

    DellaCorte, Christopher; Jefferson, Michael

    2015-01-01

    NASA Glenn Research Center and the Kamatics subsidiary of the Kaman Corporation conducted the experimental evaluation of spherical sliding bearings made with 60NiTi inner races. The goal of the project was to assess the feasibility of manufacturing lightweight, corrosion resistant bearings utilizing 60NiTi for aerospace and industrial applications. NASA produced the bearings in collaboration with Abbott Ball Corporation and Kamatics fabricated bearing assemblies utilizing their standard reinforced polymer liner material. The assembled bearings were tested in oscillatory motion at a load of 4.54kN (10,000 lb), according to the requirements of the plain bearing specification SAE AS81820. Several test bearings were exposed to hydraulic fluid or aircraft deicing fluid prior to and during testing. The results show that the 60NiTi bearings exhibit tribological performance comparable to conventional stainless steel (440C) bearings. Further, exposure of 60NiTi bearings to the contaminant fluids had no apparent performance effect. It is concluded that 60NiTi is a feasible bearing material for aerospace and industrial spherical bearing applications.

  4. Corrosion and anticorrosion. Industrial practice

    International Nuclear Information System (INIS)

    Beranger, G.; Mazille, H.

    2002-01-01

    This book comprises 14 chapters written with the collaboration of about 50 French experts of corrosion. It is complementary to another volume entitled 'corrosion of metals and alloys' and published by the same editor. This volume comprises two parts: part 1 presents the basic notions of corrosion phenomena, the properties of surfaces, the electrochemical properties of corrosion etc.. Part 2 describes the most frequent forms of corrosion encountered in industrial environments and corresponding to specific problems of protection: marine environment, atmospheric corrosion, galvanic corrosion, tribo-corrosion, stress corrosion etc.. The first 8 chapters (part 1) treat of the corrosion problems encountered in different industries and processes: oil and gas production, chemical industry, phosphoric acid industry, PWR-type power plants, corrosion of automobile vehicles, civil engineering and buildings, corrosion of biomaterials, non-destructive testing for the monitoring of corrosion. The other chapters (part 2) deal with anticorrosion and protective coatings and means: choice of materials, coatings and surface treatments, thick organic coatings and enamels, paints, corrosion inhibitors and cathodic protection. (J.S.)

  5. Effect of Exchanging Advancing and Retreating Side Materials on Mechanical Properties and Electrochemical Corrosion Resistance of Dissimilar 6013-T4 and 7003 Aluminum Alloys FSW Joints

    Science.gov (United States)

    Zhao, Zhixia; Liang, Haimei; Zhao, Yong; Yan, Keng

    2018-03-01

    Friction stir welding (FSW) was used to weld dissimilar joints between Al 6013-T4 and Al7003 alloys in this work. The effect of exchanging advancing (AS) and retreating (RS) side material on microstructure, mechanical behaviors and electrochemical corrosion resistance was discussed. Results showed that different joint cross sections were obtained when exchanging AS and RS materials. The material on the AS would be more deformed during the welding process. When the Al6013 placed on the AS, the plastic flow of weld is more sufficient. Whether on the AS or RS, the Al6013-T4 side is the weak region for both tensile specimens and hardness samples. The fracture position corresponds to the minimum hardness position. Also, more strengthening phase can be retained in the joint, and the joint of A6R7 has better corrosion resistance.

  6. Computational dynamics of laser alloyed metallic materials for improved corrosion performance: computational dynamics of laser alloyed metallic materials

    CSIR Research Space (South Africa)

    Fatoba, OS

    2016-04-01

    Full Text Available Laser alloying is a material processing method which utilizes the high power density available from defocused laser beam to melt both metal coatings and a part of the underlying substrate. Since melting occur solitary at the surface, large...

  7. Investigation of corrosion of materials of the irradiation device in the RA reactor; Ispitivanje korozije materijala uredjaja za ozracivanje na reaktoru RA

    Energy Technology Data Exchange (ETDEWEB)

    Zaric, M; Mance, A; Vlajic, M [Institute of Nuclear Sciences Vinca, Beograd (Serbia and Montenegro)

    1963-12-15

    Devices for sample irradiation in the vertical RA reactor channels will be made of aluminium alloys. According to the regulations concerned with introducing materials into the RA reactor core, corrosion characterisation of these materials is an obligation. Corrosion properties of four aluminium alloys were investigated both in contact with stainless steel and without it. First part of this report deals with the corrosion testing of aluminium alloys in water by gravimetric and electrochemical methods. Bi-distilled water at temperatures less than 100 deg C was used. Second part is related to aluminium alloys corrosion in carbon dioxide gas under experimental conditions. The second part of research was initiated by the design of the head of the independent CO{sub 2} loop for samples cooling. [Serbo-Croat] Uredjaji za ozracivanje u vertikalnim kanalima reaktora RA, bice napravljeni od legura aluminjuma. Prema propisima o unosenju materijala u RA reaktor materijali se moraju prethodno ispitati i sa stanovista korozije. Ispitivane su korozione pojave na cetiri aluminjumske legure sa i bez kontakta sa nerdjajucim celikom. Prvi deo ovog rada tretira pitanje korozije legura aluminijuma u vodi gravimetrijskim i elektrohemijskim metodama. Koriscena je bidestilovana voda na temperaturi do 100 deg C. Drugi deo se odnosi na ispitivanje ponasanja legura aluminijuma u gasovitom ugljen dioksidu pod uslovima eksperimenta. Drugi deo istrazivanja izvrsen je za potrebe izgradnje glave petlje nezavisnog kola za hladjenje uzoraka gasovitim CO{sub 2}.

  8. Contribution to the study of metallic materials bio-corrosion phenomena; Contribution a l'etude des phenomenes de biocorrosion des materiaux metalliques

    Energy Technology Data Exchange (ETDEWEB)

    Feron, D

    2004-05-01

    After having recalled the main electrochemical methods used for the study of metallic materials bio-deterioration phenomena, the corrosion of non or low alloy steels in anaerobic conditions is dealt with: the obtained results reveal a strong interaction between the metallic ions and the growth of sulfato reducing bacteria with inhibiting or accelerating ions of this growth. Concerning the corrosion, the chromium and molybdenum additions have a favourable effect on the resistance of low alloy steels. The sulfides impose the electrochemical behaviour of these materials, whereas the role of hydrogenases on the cathodic reaction is still to be specified to explain the observed localized corrosion, including the pure cultures of sulfato-reducing bacteria. The behaviour of stainless steels in seawater can be explained by an enzymatic catalysis of the cathodic reaction. Such a model takes into account the general behaviour of passivable alloys in natural waters in a general way and has allowed to perfect a synthetic seawater which leads to corrosion phenomena by crevice effect on stainless steels similar to those observed in natural seawater. The coupling of the aerobic conditions with the leading part of the enzymes on the cathodic reaction and of the anaerobic conditions with the presence of sulfides (which decrease the resistance of the passive layer) is the most unfavourable situation for the resistance of passivable alloys. These results lead to the concept of electrochemically activated bio-films which could be used in particular in energy production (fuel cells). (O.M.)

  9. Corrosion rate of construction materials in hot phosphoric acid with the contribution of anodic polarization

    DEFF Research Database (Denmark)

    Kouril, M.; Christensen, Erik; Eriksen, S.

    2011-01-01

    The paper is focused on selection of a proper material for construction elements of water electrolysers, which make use of a 85% phosphoric acid as an electrolyte at temperature of 150 8C and which might be loaded with anodic polarization up to 2.5 V versus a saturated Ag/AgCl electrode (SSCE...

  10. Corrosion protection and control using nanomaterials

    CERN Document Server

    Cook, R

    2012-01-01

    This book covers the use of nanomaterials to prevent corrosion. The first section deals with the fundamentals of corrosion prevention using nanomaterials. Part two includes a series of case studies and applications of nanomaterials for corrosion control.$bCorrosion is an expensive and potentially dangerous problem in many industries. The potential application of different nanostructured materials in corrosion protection, prevention and control is a subject of increasing interest. Corrosion protection and control using nanomaterials explores the potential use of nanotechnology in corrosion control. The book is divided into two parts. Part one looks at the fundamentals of corrosion behaviour and the manufacture of nanocrystalline materials. Chapters discuss the impact of nanotechnology in reducing corrosion cost, and investigate the influence of various factors including thermodynamics, kinetics and grain size on the corrosion behaviour of nanocrystalline materials. There are also chapters on electrodeposition ...

  11. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  12. Demonstration and Validation of Stainless Steel Materials for Critical Above Grade Piping in Highly Corrosive Locations

    Science.gov (United States)

    2017-05-01

    materials for corroded fire-suppression water pipelines at the Chimu- Wan tank farms on Okinawa Island, Japan. 1.3 Approach Members of the research... pipelines . As such, detailed designs for supports and seismic analysis were not required. Calculations were performed in accordance with ASME B31.3...The pipeline was assembled using tungsten inert gas (TIG) arc welding. Pipe segments were joined at a stationary location to form longer seg

  13. Nuclear corrosion science and engineering

    CERN Document Server

    2012-01-01

    Understanding corrosion mechanisms, the systems and materials they affect, and the methods necessary for accurately measuring their incidence is of critical importance to the nuclear industry for the safe, economic and competitive running of its plants. This book reviews the fundamentals of nuclear corrosion. Corrosion of nuclear materials, i.e. the interaction between these materials and their environments, is a major issue for plant safety as well as for operation and economic competitiveness. Understanding these corrosion mechanisms, the systems and materials they affect, and the methods to accurately measure their incidence is of critical importance to the nuclear industry. Combining assessment techniques and analytical models into this understanding allows operators to predict the service life of corrosion-affected nuclear plant materials, and to apply the most appropriate maintenance and mitigation options to ensure safe long term operation. This book critically reviews the fundamental corrosion mechani...

  14. Development of experimental apparatus for evaluating corrosion resistance of cladding materials applied for advanced power reactor. 1

    International Nuclear Information System (INIS)

    Inohara, Yasuto; Ioka, Ikuo; Fukaya, Kiyoshi; Tachibana, Katsumi; Suzuki, Tomio; Kiuchi, Kiyoshi

    2001-03-01

    On the development of cladding materials for advanced power reactors, it is important to clarify long performance and to control the compatibility to high temperature water at heat conducting surfaces under heavy irradiation. On the present study, the high temperature water loop with an autoclave was made for examining the corrosion behavior up to the super critical water range and for developing the simulation testing technique under irradiation in the hot cell. The loop is applicable to immersion tests in the temperature and pressure ranges up to 450degC and 25 MPa that are covered the surface temperature range of fuel claddings. One of the characteristics of this apparatus is a pair of sapphire windows of autoclave for in-situ observations, and a phase transition from water to super critical water conditions was clearly verified through these windows. In this apparatus, it is possible to control the temperature, pressure and Dissolved Oxygen (DO) within a fluctuations of few % on three phases, namely, water, steam and super critical water. (author)

  15. Preliminary stress corrosion cracking modeling study of a dissimilar material weld of alloy (INCONEL) 182 with Stainless Steel 316

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Omar F.; Mattar Neto, Miguel, E-mail: ofaly@ipen.br, E-mail: mmattar@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Schvartzman, Monica M.A.M., E-mail: monicas@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Dissimilar welds (DW) are normally used in many components junctions in structural project of PWR (Pressurized Water Reactors) in Nuclear Plants. One had been departed of a DW of a nozzle located at a Reactor Pressure Vessel (RPV) of a PWR reactor, that joins the structural vessel material with an A316 stainless steel safe end. This weld is basically done with Alloy 182 with a weld buttering of Alloy 82. It had been prepared some axial cylindrical specimens retired from the Alloy 182/A316 weld end to be tested in the slow strain rate test machine located at CDTN laboratory. Based in these stress corrosion susceptibility results, it was done a preliminary semi-empirical modeling application to study the failure initiation time evolution of these specimens. The used model is composed by a deterministic part, and a probabilistic part according to the Weibull distribution. It had been constructed a specific Microsoft Excel worksheet to do the model application of input data. The obtained results had been discussed according with literature and also the model application limits. (author)

  16. Vegetable-Oil-Based Hyperbranched Polyester-Styrene Copolymer Containing Silver Nanoparticle as Antimicrobial and Corrosion-Resistant Coating Materials

    Directory of Open Access Journals (Sweden)

    Manawwer Alam

    2013-01-01

    Full Text Available Pongamia oil (PO was converted to Pongamia oil hydroxyl (POH via epoxidation process. The esterification of POH with linolenic acid was carried out to form hyperbranched polyester (HBPE, and further styrenation was performed at the conjugated double bond in the chain of linolenic acid. After styrenation, silver nanoparticle was added in different weight percentages (0.1–0.4 wt%. The structural elucidation of POH, HBPE, and HBPE-St was carried out by FT-IR, 1H-NMR, and 13C-NMR spectroscopic techniques. Physicochemical and physicomechanical analyses were performed by standard method. Thermal behavior of the HBPE-St was analyzed by using thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The coatings of HBPE-St were prepared on mild steel strips. The anticorrosive behavior of HBPE-St resin-based coatings in acid, saline, and tap water was evaluated, and the molecular weight of HBPE-St was determined by gel permeation chromatography (GPC. The antibacterial activities of the HBPE-St copolymers were tested in vitro against bacteria and fungi by disc diffusion method. The HBPE-St copolymers exhibited good antibacterial activities and can be used as antimicrobial and corrosion-resistant coating materials.

  17. Temperature and humidity effects on the corrosion of aluminium-base reactor fuel cladding materials during dry storage

    International Nuclear Information System (INIS)

    Peacock, H.B.; Sindelar, R.L.; Lam, P.S.

    2004-01-01

    The effect of temperature and relative humidity on the high temperature (up to 200 deg. C) corrosion of aluminum cladding alloys was investigated for dry storage of spent nuclear fuels. A dependency on alloy type and temperature was determined for saturated water vapor conditions. Models were developed to allow prediction of cladding behaviour of 1100, 5052, and 6061 aluminum alloys for up to 50+ years at 100% relative humidity. Calculations show that for a closed system, corrosion stops after all moisture and oxygen is used up during corrosion reactions with aluminum alloys. (author)

  18. Refractory Materials for Flame Deflector Protection System Corrosion Control: Refractory Ceramics Literature Survey

    Science.gov (United States)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark; Perusich, Stephen; Whitten, Mary C.; Trejo, David; Zidek, Jason; Sampson, Jeffrey W.; hide

    2009-01-01

    Ceramics can be defmed as a material consisting of hard brittle properties produced from inorganic and nonmetallic minerals made by firing at high temperatures. These materials are compounds between metallic and nonmetallic elements and are either totally ionic, or predominately ionic but having some covalent character. This definition allows for a large range of materials, not all applicable to refractory applications. As this report is focused on potential ceramic materials for high temperature, aggressive exposure applications, the ceramics reviewed as part of this report will focus on refractory ceramics specifically designed and used for these applications. Ceramic materials consist of a wide variety of products. Callister (2000) 1 characterized ceramic materials into six classifications: glasses, clay products, refractories, cements, abrasives, and advanced ceramics. Figure 1 shows this classification system. This review will focus mainly on refractory ceramics and cements as in general, the other classifications are neither applicable nor economical for use in large structures such as the flame trench. Although much work has been done in advanced ceramics over the past decade or so, these materials are likely cost prohibitive and would have to be fabricated off-site, transported to the NASA facilities, and installed, which make these even less feasible. Although the authors reviewed the literature on advanced ceramic refractories 2 center dot 3 center dot 4 center dot 5 center dot 6 center dot 7 center dot 8 center dot 9 center dot 10 center dot 11 center dot 12 after the review it was concluded that these materials should not be ' the focus of this report. A review is in progress on materials and systems for prefabricated refractory ceramic panels, but this review is focusing more on typical refractory materials for prefabricated systems, which could make the system more economically feasible. Refractory ceramics are used for a wide variety of applications

  19. The addition of Si to the Ti-35Nb alloy and its effect on the corrosion resistance, when applied to biomedical materials

    International Nuclear Information System (INIS)

    Tavares, A.M.G.; Souza, S.A.; Batista, W.W.; Macedo, M.C.S.S.

    2014-01-01

    Alloy elements such as niobium and silicon have been added to titanium as an alternative for new materials to be used in orthopedic implants. However, these new materials' behavior, in face of corrosion is still demanding careful investigations because they will be subjected to an aggressive environ, such as the human body. This study, the corrosion resistance of the Ti-35Nb-(0; 0,15; 0,35; 0,55)Si (% in mass) when in physiological medium was assessed by means of polarization curves, open circuit potential and electrochemical impedance spectroscopy. The compositions of the passive films were analyzed by XPS. Outcomes show that the alloys presented good rapid repassivation capacity after film breaking under high potentials. The high values of resistance to polarization- Rp-pinpoint that the formed oxide films are resistive. They work as a protecting barrier against aggressive ions. Data suggest that the studied alloys are promising for orthopedic implant applications. (author)

  20. Corrosion properties of modified PNC1520 austenitic stainless steel in supercritical water as a fuel cladding candidate material for supercritical water reactor

    International Nuclear Information System (INIS)

    Nakazono, Yoshihisa; Iwai, Takeo; Abe, Hiroaki

    2009-01-01

    The supercritical water-cooled reactor (SCWR) has been designed and investigated because of its high thermal efficiency and plant simplification. There are some advantages including the use of a single phase coolant with high enthalpy. Supercritical Water (SCW) has never been used in nuclear power applications. There are numerous potential problems, particularly with materials. As the operating temperature of SCWR will be between 553 K and 893 K with a pressure of 25 MPa, the selection of materials is difficult and important. The PNC1520 austenitic stainless steel has been developed by Japan Atomic Energy Agency (JAEA) as a nuclear fuel cladding material for a Na-cooled fast breeder reactor. Austenitic Fe-base steels were selected for possible use in supercritical water systems because of their corrosion resistance and radiation resistance. The PNC1520 austenitic stainless steel was selected for possible use in supercritical water systems. The corrosion data of PNC1520 in SCW is required but does not exist. The purpose of the present study is to research the corrosion properties for PNC1520 austenitic stainless steel in SCW. The SCW corrosion test was performed for the standard PNC1520 (1520S) and the Ti-additional type of PNC1520 (1520T) by using a SCW autoclave. The 1520S and 1520T are the first trial production materials of SCWR cladding candidate material in our group. Corrosion and compatibility tests on the austenitic 1520S and 1520T steels in supercritical water were performed at 673, 773 and 600degC with exposures up to 1000 h. We have evaluated the amount of weight gain, weight loss and weight of scale after the corrosion test in SCW for 1520S and 1520T austenitic steels. After 1000 h corrosion test performed, the weight gains of both austenitic stainless steels were less than 2 g/m 2 at 400degC and 500degC. But 1520T weight increases more and weight loss than 1520S at 600degC. The SEM observation result of the surface after 1000 h corrosion of an test

  1. Environmental Degradation of Materials: Surface Chemistry Related to Stress Corrosion Cracking

    Science.gov (United States)

    Schwarz, J. A.

    1985-01-01

    Parallel experiments have been performed in order to develop a comprehensive model for stress cracking (SCC) in structural materials. The central objective is to determine the relationship between the activity and selectivity of the microstructure of structural materials to their dissolution kinetics and experimentally measured SCC kinetics. Zinc was chosen as a prototype metal system. The SCC behavior of two oriented single-crystal disks of zinc in a chromic oxide/sodium sulfate solution (Palmerton solution) were determined. It was found that: (1) the dissolution rate is strongly (hkil)-dependent and proportional to the exposure time in the aggressive environment; and (2) a specific slip system is selectively active to dissolution under applied stress and this slip line controls crack initiation and propagation. As a precursor to potential microgrvity experiments, electrophoretic mobility measurements of zinc particles were obtained in solutions of sodium sulfate (0.0033 M) with concentrations of dissolved oxygen from 2 to 8 ppm. The equilibrium distribution of exposed oriented planes as well as their correlation will determine the particle mobility.

  2. Fiftieth Anniversary of the Foundation of Postgraduate Study on Corrosion and Protection of Materials at the Faculty of Technology, University of Zagreb

    OpenAIRE

    Martinez, S.; Stupnišek-Lisac, E.; Esih, I.

    2011-01-01

    The first postgraduate study at the Department for Chemical Technology of the Faculty of Technology (nowadays: Faculty of Chemical Engineering and Technology) of the University of Zagreb concerning the field "Corrosion and Protection of Materials" was founded in the academic year of 1960/61 on the initiative of academician Miroslav Karšulin. The study comprised three semesters and finished by defending a master's thesis. During two decades, 19 generations of attendants were registered and 108...

  3. CORROSION AND SURFACE PROTECTION IN MACHINE MATERIALS FRICTION HAVE DIFFERENT SURFACE PAIRS EXPERIMENTAL INVESTIGATION OF FACTORS

    Directory of Open Access Journals (Sweden)

    Senai YALCINKAYA

    2017-05-01

    Full Text Available Friction force, normal force, linear change. The normal force varies with the loads on the friction object. In order to determine the friction force and the friction coefficient, the friction object and the friction speed are used. The experimental work was carried out in three stages. In the first stage, the effect of normal force on the friction force was studied. In the second step, the friction force of the friction surface area is influenced. The effect of the change of the shear rate in step 3 on the friction force was investigated. At the last stage, the experimental study of the effect of the material selection on the friction force was made and it was seen that the aluminum / brass surface pair had the smallest friction coefficient as a result of the opening. The greatest coefficient of friction is found in the pair of glass / felt objects.

  4. Refractory Materials for Flame Deflector Protection System Corrosion Control: Coatings Systems Literature Survey

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Sampson, Jeffrey W.; Coffman, Brekke E.; Coffman, Brekke E.; Curran, Jerome P.; Kolody, Mark R.; Whitten, Mary; Perisich, Steven; hide

    2009-01-01

    When space vehicles are launched, extreme heat, exhaust, and chemicals are produced and these form a very aggressive exposure environment at the launch complex. The facilities in the launch complex are exposed to this aggressive environment. The vehicle exhaust directly impacts the flame deflectors, making these systems very susceptible to high wear and potential failure. A project was formulated to develop or identify new materials or systems such that the wear and/or damage to the flame deflector system, as a result of the severe environmental exposure conditions during launches, can be mitigated. This report provides a survey of potential protective coatings for the refractory concrete lining on the steel base structure on the flame deflectors at Kennedy Space Center (KSC).

  5. Surface studies: corrosion, hydrogen content and charge transport in materials and devices

    International Nuclear Information System (INIS)

    Jamieson, D.N.

    1999-01-01

    Presented here is a review of recent applications of the Melbourne nuclear microprobe applied to the study of surface phenomena in a variety of materials over the past two years. In addition to these applications, numerous improvements to the Melbourne system were initiated over the same period. These have been mainly directed at improvements in the spatial resolution through the installation of shielding to reduce stray magnetic fields and commissioning of a new event-by-event data acquisition system that can handle high count rates from up to four detectors with full dead time correction. In 1999 an ARC Research Infrastructure and Facilities Program grant has allowed us to perform a major upgrade of the Pelletron 5U accelerator. Major components of this upgrade include: a new ion source in the terminal, replacement of the column corona needles with resistors, replenishment of the SF6 gas supply and installation of a Danfysik analysing magnet power supply. In the near future we will also test some proposals to increase the ion source brightness based on reduction of the gas load on the column from the ion source. Many of the applications of the Melbourne nuclear microprobe over the past two years have employed the classic techniques of Ion Beam Analysis including PIXE and RBS. Pilot studies of involving the mapping of hydrogen in polysilicon solar cells has been done with the technique of elastic recoil detection analysis (ERDA). A number of different measurements such as depth distribution, stoichiometry, trace element distribution or hydrogen content were performed. Finally, we have also continued to study the visible light emitted from the specimen during ion irradiation. This can be collected to form images by ionoluminescense (IL). IL is an emerging technique for use with a nuclear microprobe that offers new insights into the presence of optically active defects in materials

  6. Materials Reliability Program Resistance to Primary Water Stress Corrosion Cracking of Alloys 690, 52, and 152 in Pressurized Water Reactors (MRP-111)

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H. [Framatome ANP, Inc., Lynchburg, VA (United States); Fyfitch, S. [Framatome ANP, Inc., Lynchburg, VA (United States); Scott, P. [Framatome ANP, SAS, Paris (France); Foucault, M. [Framatome ANP, SAS, Le Creusot (France); Kilian, R. [Framatome ANP, GmbH, Erlangen (Germany); Winters, M. [Framatome ANP, GmbH, Erlangen (Germany)

    2004-03-01

    Over the last thirty years, stress corrosion cracking in PWR primary water (PWSCC) has been observed in numerous Alloy 600 component items and associated welds, sometimes after relatively long incubation times. Repairs and replacements have generally utilized wrought Alloy 690 material and its compatible weld metals (Alloy 152 and Alloy 52), which have been shown to be very highly resistant to PWSCC in laboratory experiments and have been free from cracking in operating reactors over periods already up to nearly 15 years. It is nevertheless prudent for the PWR industry to attempt to quantify the longevity of these materials with respect to aging degradation by corrosion in order to provide a sound technical basis for the development of future inspection requirements for repaired or replaced component items. This document first reviews numerous laboratory tests, conducted over the last two decades, that were performed with wrought Alloy 690 and Alloy 52 or Alloy 152 weld materials under various test conditions pertinent to corrosion resistance in PWR environments. The main focus of the present review is on PWSCC, but secondary-side conditions are also briefly considered.

  7. Materials Reliability Program Resistance to Primary Water Stress Corrosion Cracking of Alloys 690, 52, and 152 in Pressurized Water Reactors (MRP-111)

    International Nuclear Information System (INIS)

    Xu, H.; Fyfitch, S.; Scott, P.; Foucault, M.; Kilian, R.; Winters, M.

    2004-01-01

    Over the last thirty years, stress corrosion cracking in PWR primary water (PWSCC) has been observed in numerous Alloy 600 component items and associated welds, sometimes after relatively long incubation times. Repairs and replacements have generally utilized wrought Alloy 690 material and its compatible weld metals (Alloy 152 and Alloy 52), which have been shown to be very highly resistant to PWSCC in laboratory experiments and have been free from cracking in operating reactors over periods already up to nearly 15 years. It is nevertheless prudent for the PWR industry to attempt to quantify the longevity of these materials with respect to aging degradation by corrosion in order to provide a sound technical basis for the development of future inspection requirements for repaired or replaced component items. This document first reviews numerous laboratory tests, conducted over the last two decades, that were performed with wrought Alloy 690 and Alloy 52 or Alloy 152 weld materials under various test conditions pertinent to corrosion resistance in PWR environments. The main focus of the present review is on PWSCC, but secondary-side conditions are also briefly considered

  8. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, D., E-mail: david.chartier@cea.fr [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Muzeau, B. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Stefan, L. [AREVA NC/D& S - France/Technical Department, 1 place Jean Millier 92084 Paris La Défense (France); Sanchez-Canet, J. [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Monguillon, C. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2017-03-15

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  9. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    International Nuclear Information System (INIS)

    Chartier, D.; Muzeau, B.; Stefan, L.; Sanchez-Canet, J.; Monguillon, C.

    2017-01-01

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  10. Electrochemical characterisation speeds up prediction of corrosion behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Schuring, E.W.; Hooijmans, J.W. [ECN Environment and Energy Engineering, Petten (Netherlands)

    2013-04-15

    The contents of this presentation show the following elements: Introduction; Corrosion in real life; Why Electrochemical characterisation of corrosion; Applications (corrosion resistance coatings, corrosion behaviour (brazed) joints); Available electrochemical corrosion techniques; Standards; Conclusions. In the Conclusions the corrosion screening method is summarized: ECN method fast; within 1h -1 week results depending on test method; Fast pre-selection of promising materials/combinations (cost savings); Determining of corrosion initiation; Determination of corrosion mechanisms and propagation; Life time predictions possible; Strong combination with metallographic post-investigation; Ranking materials / constructions for corrosion performance.

  11. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  12. Corrosion evaluation technology

    International Nuclear Information System (INIS)

    Kim, Uh Chul; Han, Jeong Ho; Nho, Kye Ho; Lee, Eun Hee; Kim, Hong Pyo; Hwang, Seong Sik; Lee, Deok Hyun; Hur, Do Haeng; Kim, Kyung Mo.

    1997-09-01

    A multifrequency ACPD system was assembled which can measure very small crack. Stress corrosion cracking test system with SSRT operating high temperature was installed. Stress corrosion cracking test of newly developed alloy 600 and existing alloy 600 was carried out in steam atmosphere of 400 deg C. No crack was observed in both materials within a test period of 2,000 hrs. Corrosion fatigue test system operating at high temperature was installed in which fatigue crack was measured by CDPD. Lead enhanced the SCC of the Alloy 600 in high temperature water, had a tendency to modify a cracking morphology from intergranular to transgranular. Pit initiation preferentially occurred at Ti-rich carbide. Resistance to pit initiation decreased with increasing temperature up to 300 deg C. Test loop for erosion corrosion was designed and fabricated. Thin layer activation technique was very effective in measuring erosion corrosion. Erosion corrosion of a part of secondary side pipe was evaluated by the Check Family Codes of EPRI. Calculated values of pipe thickness by Check Family Codes coincided with the pipe thickness measured by UT with an error of ± 20%. Literature review on turbine failure showed that failure usually occurred in low pressure turbine rotor disc and causes of failure are stress corrosion cracking and corrosion fatigue. (author). 12 refs., 20 tabs., 77 figs

  13. Corrosion of steel structures in sea-bed sediment

    Indian Academy of Sciences (India)

    Unknown

    corrosion mechanism, measurement of metal corrosion rate, corrosion ... cables, steel rigs, pipelines and other marine facilities, is ..... make high strength steel material to crack with stress ... of SBS has yet been very limited, and selection of.

  14. FY 2000 report on the survey on energy conservation technology of large plant using ultra high corrosion resistant materials; 2000 nendo chokotaishokusei zairyo wo mochiita ogata plant no sho energy gijutsu ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of achieving remarkable energy conservation/resource conservation in large plants, the paper carried out an investigational survey of effects obtained in case of applying amorphous super metal which is the newest corrosion resistant material. Amorphous alloys as an ultra high corrosion resistant material are a peculiar material which shows the extremely excellent corrosion resistance even in much strong acid by containing passivated elements with the needed concentration. The corrosion resistant amorphous alloy applied to large plants need the thickness and diameter of more than several millimeters as a bulk material. The subjects are scaling-up of bulk materials and stabilization of characteristics. Even under the tough dew point corrosion environment of the waste power plant, etc., heat recovery from exhaust gas is made possible by heat exchanger applied with ultra high corrosion resistant materials. Effects of the annual heat recovery from the nationwide refuse incinerators and coal thermal power plants are estimated to be approximately 5.2 million kL toe, that is, to be equal to energy conservation of 6 x a million kW class power plant. (NEDO)

  15. Examples illustrating the effects of high-temperature corrosion and protective coatings on the creep-to-rupture behaviour of materials resistant to very high temperatures

    International Nuclear Information System (INIS)

    Sachova, E.; Hougardy, H.P.; Granacher, J.

    1989-01-01

    Assessing the creep stress, it is assumed in general that the sub-surface effects in a specimen correspond to those at the surface. Particularly in very high temperature environments, however, oxidation is an additional effect to be taken into account, and there are other operational stresses to be reckoned with, as e.g. hot gas corrosion of gas turbine blades. The reduction of the effective cross section due to corrosion for instance of the material affected by long-term creep leads to an increase in stresses and thus shortens the period up to rupture. Protective coatings will prevent or at least delay corrosion. The paper reports the performance of various protective coatings. Pt-Al coatings have have been found to remain intact even on specimens with the longest testing periods up to rupture, to an extent that there was no oxidation at the grain boundaries proceeding from the surface to the sub-surface material. The same applies to the plasma-sprayed coatings, although in some cases pores had developed in the coating. The chromium alitizations were used up irregularly over the surface of some specimens tested at 1000deg C. Chromizing layers have been found to be more strongly damaged than the other coatings tested under comparable conditions. (orig./RHM) [de

  16. Growth and characterization of barium complex of 1,3,5-triazinane-2,4,6-trione in gel: a corrosion inhibiting material

    Science.gov (United States)

    Divya, R.; Nair, Lekshmi P.; Bijini, B. R.; Nair, C. M. K.; Babu, K. Rajendra

    2018-05-01

    Good quality prismatic crystals of industrially applicable corrosion inhibiting barium complex of 1,3,5-triazinane-2,4,6-trione have been grown by conventional gel method. The crystal structure, packing, and nature of bonds are revealed in the single crystal X-ray diffraction analysis. The crystal has a three-dimensional polymeric structure having a triclinic crystal system with the space group P-1. The powder X-ray diffraction analysis confirms its crystalline nature. The functional groups present in the crystal are identified by Fourier transform infrared spectroscopy. Elemental analysis confirms the stoichiometry of the elements present in the complex. Thermogravimetric analysis and differential thermal analysis reveal its good thermal stability. The optical properties like band gap, refractive index and extinction coefficient are evaluated from the UV-visible spectral analysis. The singular property of the material, corrosion inhibition efficiency achieved by the adsorption of the sample molecules is determined by the weight loss method.

  17. Seismic load resistance of reinforcing steels in the as delivered condition and after corrosion - relevant material characteristics for performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Moersch, Ing. Joerg [Max Aicher Engineering GmbH, Freilassing (Germany)

    2016-10-15

    This type of accelerated corrosion test was used to study the high number of test samples in due time. The corrosion phenomena obtained in salt spray testing deviate significantly from corrosion phenomena (pitting factor) obtained in practical conditions. Salt spray testing represents practical conditions for the more uniform corrosion as a result of a severe carbonation of the concrete and/or for higher chloride contents at the surface of the rebar. At low corrosion current densities the effect of pit depth on residual mechanical performance might be underestimated. Reinforced concrete (r.c.) buildings in seismic areas shall be designed to guarantee enough ductile resources as for example a sufficient rotational capacity to allow for load re-distribution. The rotational capacity is directly dependent on the ductility of the reinforcing steel which is generally expressed as elongation at maximum load (A+g{sub t}) and the hardening ratio (R{sub m}/R{sub e}). A direct testing of the seismic load resistance of reinforcing steels is not part of the construction product standards. Therefore it was decided by European Commission to introduce this performance requirement in the mandate for the revision of EN 10080:2005. In parallel to the standardization process a research project was carried out to deliver the scientific background.

  18. Electrochemical, Polarization, and Crevice Corrosion Testing of Nitinol 60, A Supplement to the ECLSS Sustaining Materials Compatibility Study

    Science.gov (United States)

    Lee, R. E.

    2016-01-01

    In earlier trials, electrochemical test results were presented for six noble metals evaluated in test solutions representative of waste liquids processed in the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). Subsequently, a seventh metal, Nitinol 60, was added for evaluation and subjected to the same test routines, data analysis, and theoretical methodologies. The previous six test metals included three titanium grades, (commercially pure, 6Al-4V alloy and 6Al-4V low interstitial alloy), two nickel-chromium alloys (Inconel(RegisteredTrademark) 625 and Hastelloy(RegisteredTrademark) C276), and one high-tier stainless steel (Cronidur(RegisteredTrademark) 30). The three titanium alloys gave the best results of all the metals, indicating superior corrosive nobility and galvanic protection properties. For this current effort, the results have clearly shown that Nitinol 60 is almost as noble as titanium, being very corrosion-resistant and galvanically compatible with the other six metals electrochemically and during long-term exposure. is also quite noble as it is very corrosion resistant and galvanically compatible with the other six metals from both an electrochemical perspective and long-term crevice corrosion scenario. This was clearly demonstrated utilizing the same techniques for linear, Tafel and cyclic polarization, and galvanic coupling of the metal candidate as was done for the previous study. The high nobility and low corrosion susceptibility for Nitinol 60 appear to be intermediate to the nickel/chromium alloys and the titanium metals with indications that are more reflective of the titanium metals in terms of general corrosion and pitting behavior.

  19. Corrosion Evaluation and Corrosion Control of Steam Generators

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M.

    2008-06-01

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants

  20. Stress corrosion and corrosion fatigue crack growth monitoring in metals

    International Nuclear Information System (INIS)

    Senadheera, T.; Shipilov, S.A.

    2003-01-01

    Environmentally assisted cracking (including stress corrosion cracking and corrosion fatigue) is one of the major causes for materials failure in a wide variety of industries. It is extremely important to understand the mechanism(s) of environmentally assisted crack propagation in structural materials so as to choose correctly from among the various possibilities-alloying elements, heat treatment of steels, parameters of cathodic protection, and inhibitors-to prevent in-service failures due to stress corrosion cracking and corrosion fatigue. An important step towards understanding the mechanism of environmentally assisted crack propagation is designing a testing machine for crack growth monitoring and that simultaneously provides measurement of electrochemical parameters. In the present paper, a direct current (DC) potential drop method for monitoring crack propagation in metals and a testing machine that uses this method and allows for measuring electrochemical parameters during stress corrosion and corrosion fatigue crack growth are described. (author)

  1. Corrosion Evaluation and Corrosion Control of Steam Generators

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M

    2008-06-15

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants.

  2. Recognition and Analysis of Corrosion Failure Mechanisms

    Directory of Open Access Journals (Sweden)

    Steven Suess

    2006-02-01

    Full Text Available Corrosion has a vast impact on the global and domestic economy, and currently incurs losses of nearly $300 billion annually to the U.S. economy alone. Because of the huge impact of corrosion, it is imperative to have a systematic approach to recognizing and mitigating corrosion problems as soon as possible after they become apparent. A proper failure analysis includes collection of pertinent background data and service history, followed by visual inspection, photographic documentation, material evaluation, data review and conclusion procurement. In analyzing corrosion failures, one must recognize the wide range of common corrosion mechanisms. The features of any corrosion failure give strong clues as to the most likely cause of the corrosion. This article details a proven approach to properly determining the root cause of a failure, and includes pictographic illustrations of the most common corrosion mechanisms, including general corrosion, pitting, galvanic corrosion, dealloying, crevice corrosion, microbiologically-influenced corrosion (MIC, corrosion fatigue, stress corrosion cracking (SCC, intergranular corrosion, fretting, erosion corrosion and hydrogen damage.

  3. FY 1998 annual report on the study on development of corrosion-resistant ceramic materials for garbage incinerators; 1998 nendo gomi shori shisetsuyo taishoku ceramics zairyo no kaihatsu ni kansuru kenkyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Described herein are the FY 1988 results of development of corrosion-resistant ceramic materials for garbage incinerators. Residue released when porcelain stocks are collected is selected as the inexpensive stock for SiO{sub 2}-Al{sub 2}O{sub 3}-based refractory materials. It is incorporated with carbon black and reduced at 1,200 to 1,500 degrees C in a nitrogen atmosphere. Synthesis of the target Si-Al-C-N-O-based compound succeeds in the presence of a solid catalyst, but it is a fine powder, and hence that of the massive compound fails. The commercial ceramic materials and new refractory materials, made on a trial basis, are evaluated for their resistance to corrosion using fry ashes collected from a commercial incinerator. These ashes are higher in melting point, more viscous, holding a larger quantity of attached slag and more corrosive than synthetic ashes. These materials are corroded acceleratedly as temperature increases to 1,200 degrees C or higher, more noted with the ceramic materials than with the refractory materials. Oxidation and melting characteristics of the molten slag affect corrosion of some materials. Use of the graphite-based material shall be limited to a section below the slag surface, where graphite is oxidized to a smaller extent. The MgO-based material is promising. The Al{sub 2}O{sub 3}-Cr{sub 2}O{sub 3}-based material is more promising than any other material developed in this study. Their bending strength before and after the corrosion test is measured at normal temperature to 1,700 degrees C, to investigate their deterioration by high temperature and corrosion. (NEDO)

  4. Influences of Alloying Element and Annealing on the Microstructure and Corrosion Resistance of Steam Generator Tubing Materials of Nuclear Power Plant (I)

    International Nuclear Information System (INIS)

    Kim, Young Sik; Pari, Yong Soo; Kuk, Il Hiun

    1996-01-01

    Influences of alloying elements and annealing heat treatments on Alloy 690 and Alloy 600 for steam generator tubing materials of nuclear power plants were studied. OM, SEM, TEM, and XRD analyses were used to study the microstructural changes of the alloys. Mechanical properties were investigated by means of tension tests and Rockwell hardness tests, and corrosion resistance was evaluated using the anodic polarization tests and the 65% boiling nitric acid immersion tests. Increasing the carbon content of Alloy 690, the hardness and tensile strength were increased, but the elongation and grain size were decreased. However, increasing the annealing temperature, the tensile strength and hardness were decreased, but the elongation and grain size were increased. Increasing the carbon content of Alloy 690, the results of the anodic polarization tests and the nitric acid immersion tests showed that the annealing temperature to reveal a minimum corrosion rate was increased. This behavior seemed to be due to the combination of the solid solution of carbon in the matrix and grain growth with annealing. In this work, the corrosion properties of Alloy 690 were better than that of Alloy 600, and the range of the optimum annealing temperature of Alloy 690 was from 1100 .deg. C to 1150 .deg. C

  5. Effects of a range of machined and ground surface finishes on the simulated reactor helium corrosion of several candidate structural materials

    International Nuclear Information System (INIS)

    Thompson, L.D.

    1981-02-01

    This report discusses the corrosion behavior of several candidate reactor structural alloys in a simulated advanced high-temperature gas-cooled reactor (HTGR) environment over a range of lathe-machined and centerless-ground surface finishes. The helium environment contained 50 Pa H 2 /5 Pa CO/5 Pa CH 4 / 2 O (500 μatm H 2 /50 μatm CO/50 μatm CH 4 / 2 O) at 900 0 C for a total exposure of 3000 h. The test alloys included two vacuum-cast superalloys (IN 100 and IN 713LC); a centrifugally cast austenitic alloy (HK 40); three wrought high-temperature alloys (Alloy 800H, Hastelloy X, and Inconel 617); and a nickel-base oxide-dispersion-strengthened alloy (Inconel MA 754). Surface finish variations did not affect the simulated advanced-HTGR corrosion behavior of these materials. Under these conditions, the availability of reactant gaseous impurities controls the kinetics of the observed gas-metal interactions. Variations in the near-surface activities and mobilities of reactive solute elements, such as chromium, which might be expected to be affected by changes in surface finish, do not seem to greatly influence corrosion in this simulated advanced HTGR environment. 18 figures, 4 tables

  6. Characterisation of the corrosion products of non-irradiated material test reactors fuel elements (MTR-FE)

    Energy Technology Data Exchange (ETDEWEB)

    Mazeina, L.; Curtius, H.; Fachinger, J. [Inst. for Safety Research and Reactor Technology, Research Centre Juelich (Germany)

    2003-07-01

    In a high concentrated Mg-rich brine a non-irradiated MTR-FE corroded. The formed corrosion products consists of an amorphous part and of hydrotalcites, which were identified as Mg-Al-hydrotalcites with chloride anions in the interlayer. (orig.)

  7. Wear and corrosion behaviors of Ti6Al4V alloy biomedical materials by silver plasma immersion ion implantation process

    Energy Technology Data Exchange (ETDEWEB)

    Hongxi, Liu [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Qian, Xu, E-mail: vipliuhx@yahoo.com.cn [Faculty of Adult Education, Kunming University of Science and Technology, Kunming 650051 (China); Xiaowei, Zhang; Chuanqi, Wang [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Baoyin, Tang [State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2012-10-30

    In order to improve the wear resistance and anti-corrosion behaviors of Ti6Al4V (TC4) alloy, polished samples were implanted with silver (Ag) ions by plasma immersion ion implantation (PIII) technique. The phase composition and element concentration-depth distribution in modified layer were characterized by X-ray diffraction (XRD) and Auger electron spectrum (AES). Corrosion resistance, microhardness, friction and wear behaviors of PIII-TC4 alloy changed with the Ag ion implantation dose. XRD analysis reveals that the surface modified layer consists of Ag and a small amount of TiAg phases. AES results show that Ag atomic peak concentration is 9.88%, about 14.4 nm from the surface. The maximum nanohardness and elastic modulus of PIII-TC4 alloy increases by 62.5% and 54.5%, respectively. The lowest friction coefficient reduces from 0.78 to 0.2. The test result of potentiodynamic polarization in 3.5% NaCl saturated solution indicates that the sample of Ag ion dose at 1.0 Multiplication-Sign 10{sup 17} ions/cm{sup 2} has the best corrosion resistance with the lowest corrosion current density and the least porosity.

  8. Studies of Corrosion of Cladding Materials in Simulated BWR-environment Using Impedance Measurements. Part I: Measurements in the Pre-transition Region

    International Nuclear Information System (INIS)

    Forsberg, Stefan; Ahlberg, Elisabet; Andersson, Ulf

    2004-09-01

    The corrosion of three Zircaloy 2 cladding materials, LK2, LK2+ and LK3, have been studied in-situ in an autoclave using electrochemical impedance spectroscopy. Measurements were performed in simulated BWR water at temperatures up to 288 deg C. The impedance spectra were successfully modelled using equivalent circuits. When the oxide grew thicker during the experiments, a change-over from one to two time constants was seen, showing that a layered structure was formed. Oxide thickness, oxide conductivity and effective donor density were evaluated from the impedance data. The calculated oxide thickness at the end of the experiments was consistent with the value obtained from SEM. It was shown that the difference in oxide growth rate between the investigated materials is small in the pre-transition region. The effective donor density, which is a measure of electronic conductivity, was found to be lower for the LK3 material compared to the other two materials

  9. Accelerated cyclic corrosion tests

    Directory of Open Access Journals (Sweden)

    Prošek T.

    2016-06-01

    Full Text Available Accelerated corrosion testing is indispensable for material selection, quality control and both initial and residual life time prediction for bare and painted metallic, polymeric, adhesive and other materials in atmospheric exposure conditions. The best known Neutral Salt Spray (NSS test provides unrealistic conditions and poor correlation to exposures in atmosphere. Modern cyclic accelerated corrosion tests include intermittent salt spray, wet and dry phases and eventually other technical phases. They are able to predict the material performance in service more correctly as documented on several examples. The use of NSS should thus be restricted for quality control.

  10. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials.

    Science.gov (United States)

    Chou, Da-Tren; Hong, Daeho; Saha, Partha; Ferrero, Jordan; Lee, Boeun; Tan, Zongqing; Dong, Zhongyun; Kumta, Prashant N

    2013-11-01

    This study introduces a class of biodegradable Mg-Y-Ca-Zr alloys novel to biological applications and presents evaluations for orthopedic and craniofacial implant applications. Mg-Y-Ca-Zr alloys were processed using conventional melting and casting techniques. The effects of increasing Y content from 1 to 4 wt.% as well as the effects of T4 solution treatment were assessed. Basic material phase characterization was conducted using X-ray diffraction, optical microscopy and scanning electron microscopy. Compressive and tensile tests allowed for the comparison of mechanical properties of the as-cast and T4-treated Mg-Y-Ca-Zr alloys to pure Mg and as-drawn AZ31. Potentiodynamic polarization tests and mass loss immersion tests were used to evaluate the corrosion behavior of the alloys. In vitro cytocompatibility tests on MC3T3-E1 pre-osteoblast cells were also conducted. Finally, alloy pellets were implanted into murine subcutaneous tissue to observe in vivo corrosion as well as local host response through H&E staining. SEM/EDS analysis showed that secondary phase intermetallics rich in yttrium were observed along the grain boundaries, with the T4 solution treatment diffusing the secondary phases into the matrix while increasing the grain size. The alloys demonstrated marked improvement in mechanical properties over pure Mg. Increasing the Y content contributed to improved corrosion resistance, while solution-treated alloys resulted in lower strength and compressive strain compared to as-cast alloys. The Mg-Y-Ca-Zr alloys demonstrated excellent in vitro cytocompatibility and normal in vivo host response. The mechanical, corrosion and biological evaluations performed in this study demonstrated that Mg-Y-Ca-Zr alloys, especially with the 4 wt.% Y content, would perform well as orthopedic and craniofacial implant biomaterials. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Accelerated Stress-Corrosion Testing

    Science.gov (United States)

    1986-01-01

    Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.

  12. Synergistic effect of PANI-ZrO2 composite as antibacterial, anti-corrosion, and phosphate adsorbent material: synthesis, characterization and applications.

    Science.gov (United States)

    Masim, Frances Camille P; Tsai, Cheng-Hsien; Lin, Yi-Feng; Fu, Ming-Lai; Liu, Minghua; Kang, Fei; Wang, Ya-Fen

    2017-11-03

    The increasing number of bacteria-related problems and presence of trace amounts of phosphate in treated wastewater effluents have become a growing concern in environmental research. The use of antibacterial agents and phosphate adsorbents for the treatment of wastewater effluents is of great importance. In this study, the potential applications of a synthesized polyaniline (PANI)-zirconium dioxide (ZrO 2 ) composite as an antibacterial, phosphate adsorbent and anti-corrosion material were systematically investigated. The results of an antibacterial test reveal an effective area of inhibition of 14 and 18 mm for the Escherichia coli and Staphylococcus aureus bacterial strains, respectively. The antibacterial efficiency of the PANI-ZrO 2 composite is twice that of commercial ZrO 2 . In particular, the introduction of PANI increased the specific surface area and roughness of the composite material, which was beneficial to increase the contact area with bacterial and phosphate. The experimental results demonstrated that phosphate adsorption studies using 200 mg P/L phosphate solution showed a significant phosphate removal efficiency of 64.4%, and the maximum adsorption capacity of phosphate on the solid surface of PANI-ZrO 2 is 32.4 mg P/g. Furthermore, PANI-ZrO 2 coated on iron substrate was tested for anti-corrosion studies by a natural salt spray test (7.5% NaCl), which resulted in the formation of no rust. To the best of our knowledge, no works have been reported on the synergistic effects of the PANI-ZrO 2 composite as an antibacterial, anti-corrosion, and phosphate adsorbent material. PANI-ZrO 2 composite is expected to be a promising comprehensive treatment method for water filters in the aquaculture industry and for use in water purification applications.

  13. The effect of prior deformation on stress corrosion cracking growth rates of Alloy 600 materials in a simulated pressurized water reactor primary water

    International Nuclear Information System (INIS)

    Yamazaki, Seiya; Lu Zhanpeng; Ito, Yuzuru; Takeda, Yoichi; Shoji, Tetsuo

    2008-01-01

    The effect of prior deformation on stress corrosion cracking (SCC) growth rates of Alloy 600 materials in a simulated pressurized water reactor primary water environment is studied. The prior deformation was introduced by welding procedure or by cold working. Values of Vickers hardness in the Alloy 600 weld heat-affected zone (HAZ) and in the cold worked (CW) Alloy 600 materials are higher than that in the base metal. The significantly hardened area in the HAZ is within a distance of about 2-3 mm away from the fusion line. Electron backscatter diffraction (EPSD) results show significant amounts of plastic strain in the Alloy 600 HAZ and in the cold worked Alloy 600 materials. Stress corrosion cracking growth rate tests were performed in a simulated pressurized water reactor primary water environment. Extensive intergranular stress corrosion cracking (IGSCC) was found in the Alloy 600 HAZ, 8% and 20% CW Alloy 600 specimens. The crack growth rate in the Alloy 600 HAZ is close to that in the 8% CW base metal, which is significantly lower than that in the 20% CW base metal, but much higher than that in the as-received base metal. Mixed intergranular and transgranular SCC was found in the 40% CW Alloy 600 specimen. The crack growth rate in the 40% CW Alloy 600 was lower than that in the 20% CW Alloy 600. The effect of hardening on crack growth rate can be related to the crack tip mechanics, the sub-microstructure (or subdivision of grain) after cross-rolling, and their interactions with the oxidation kinetics

  14. Corrosion in Electronics

    DEFF Research Database (Denmark)

    Ambat, Rajan; Gudla, Helene Virginie Conseil; Verdingovas, Vadimas

    2017-01-01

    Electronic control units, power modules, and consumer electronics are used today in a wide variety of varying climatic conditions. Varying external climatic conditions of temperature and humidity can cause an uncontrolled local climate inside the device enclosure. Uncontrolled humidity together...... and high density packing combined with the use of several materials, which can undergo electrochemical corrosion in the presence of water film formed due to humidity exposure and bias conditions on the PCBA surface. This article provides a short review of the corrosion reliability issues of electronics due...... to the use of electronics under varying humidity conditions. Important PCBA aspects, which are fundamental to the corrosion cell formation under humid conditions, are discussed. Effect of hygroscopic residues from the process and service and their role in assisting water film build up and corrosion...

  15. Mobile evaporator corrosion test results

    International Nuclear Information System (INIS)

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80 degrees C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either open-quotes satisfactoryclose quotes (2-20 mpy) or open-quotes excellentclose quotes (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion crack