WorldWideScience

Sample records for corrosive gas production

  1. Guidelines for prediction of CO{sub 2} corrosion in oil and gas production systems

    Energy Technology Data Exchange (ETDEWEB)

    Nyborg, Rolf

    2009-09-15

    A group of corrosion experts from different oil companies has prepared guidelines for use of CO{sub 2} corrosion prediction tools. The guidelines are intended for use in design and engineering practice applied by companies operating oil and gas production facilities. This document attempts to set minimum guidelines that should be common to most companies. The document is sufficiently flexible to allow individual companies to adapt the information set forth in this document to their own environment and requirements. A methodology for defining the Iikelihood of corrosion and the impact on CO{sub 2} prediction is developed. The CO{sub 2} prediction is based on existing tools. An overview of available CO{sub 2} corrosion prediction models evaluated by the participants is given. It is the responsibility of the operator to select which model to use. (Author)

  2. Basic aspects of the carbon dioxide corrosion in oil and gas production; Aspectos basicos de la corrosion por dioxido de carbono en la produccion de petroleo y gas

    Energy Technology Data Exchange (ETDEWEB)

    Angulo Macias, J.

    2010-07-01

    Carbon dioxide (CO{sub 2}) is a non-corrosive gas within the driven conditions in the oil and gas industry, but the presence of water converts it, maybe, in the most important component in the corrosive processes in this industry. Corrosion has an important impact inside the oil and gas companies, no only in economics but also in safety, environmental and social aspects. After several decades of investigation of these corrosion processes, there are still several mechanisms not fully understood. (Author) 19 refs.

  3. PIPELINE CORROSION CONTROL IN OIL AND GAS INDUSTRY: A ...

    African Journals Online (AJOL)

    Corrosion in pipelines is one of the major challenges faced by oil and gas industries all over the world. This has made corrosion control or management a major factor to consider before setting up any industry that will transport products via pipelines. In this study the types of corrosion found on system 2A pipeline were; ...

  4. Flue gas corrosion through halogen compounds in fuel gas

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, R

    1987-04-01

    The halogens of chlorine and fluorine greatly influence the corrosion speed of metal materials. If small quantities of chlorinated and/or fluorinated hydrocarbons are present in fuel gas like in landfill gas, they must not result in enhanced corrosion of gas appliances. Data from literature and the initial results of tests run by the author indicate that quantities at about 10 mg/cbm (in terms of chlorine) can be assumed not to cause any noticeable acceleration of corrosion speed.

  5. Coupled modelling of convergence, steel corrosion, gas production and brine flow in a rock salt repository

    International Nuclear Information System (INIS)

    Becker, D.A.; Hirsekorn, R.P.

    2013-01-01

    This poster presents the global simulation of the behaviour of thick-walled steel containers piled up in a borehole in a rock salt repository. The simulation takes into account: the convergence by the creeping of rock salt, the backfill and waste compaction, the porosity dependent flow resistance, the anaerobic corrosion (iron to magnetite transformation, gas production, brine consumption, water consumption and salt precipitation) and pressure development. Mechanical influence of corrosion has not yet been taken into account in the integrated code LOPOS

  6. Materials and corrosion programs sponsored by the Gas Research Institute

    International Nuclear Information System (INIS)

    Flowers, A.

    1980-01-01

    The paper deals briefly with the Gas Research Institute and its research in materials and corrosion. As a not-for-profit organization, the Gas Research Institute plans, finances, and manages applied and basic research and technological development programs associated with gaseous fuels. These programs are in the general areas of production, transportation, storage, utilization and conservation of natural and manufactured gases and related products. Research results, whether experimental or analytical, are evaluated and publicly disseminated. Materials and corrosion research is concentrated in the SNG from Coal and Non-fossil Hydrogen subprograms

  7. Characterisation of corrosion products on pipeline steel under cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Lanarde, Lise [Gaz de France Research and Development Division, 361 avenue du President Wilson, BP33, 93211 Saint Denis La Plaine (France)]|[UPR15 du CNRS, Laboratoire des Interfaces et Systemes Electrochimiques, Universite Pierre et Marie Curie, C.P. 133, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Campaignolle, Xavier; Karcher, Sebastien; Meyer, Michel [Gaz de France Research and Development Division, 361 avenue du President Wilson, BP33, 93211 Saint Denis La Plaine (France); Joiret, Suzanne [UPR15 du CNRS, Laboratoire des Interfaces et Systemes Electrochimiques, Universite Pierre et Marie Curie, C.P. 133, 4 Place Jussieu 75252 Paris Cedex 05 (France)

    2004-07-01

    Onshore gas transmission lines are conjointly protected against external corrosion by cathodic protection (CP) and organic coatings. If both protection systems are simultaneously faulty, the pipe may be subjected to local loss of protection criteria. Consequently, the development of a corrosion due to the ground intrinsic corrosiveness may occur. To guarantee an optimal and safe use of its 31000 km buried gas transmission network, Gaz de France regularly inspects its pipelines. When indications of metal damage are suspected, excavations are realized to carry out a finer diagnosis and, if necessary, to repair. Whenever, corrosions are encountered, although it occurs very scarcely, it is necessary to evaluate its degree of gravity: activity, mechanism, and kinetics. Among corrosion defects, it is indeed essential to differentiate those active, from those older inactive at the time of excavation, since those last ones may possibly have been annihilated, by a PC reinforcement for instance. Eventually, the identification of the corrosion mechanism and its associated rate will provide an assessment of the risks encountered by other sections of the pipeline similar to that excavated. This study investigates to what extent the degree of gravity (activity, kinetics) of a corrosion can be determined by the characterization and identification of its associated corrosion products. Moreover, it will attempt to relate it to the close environment features as well as to the operating conditions of the pipe. The preliminary results presented in this paper consist in a laboratory study of the time evolution of corrosion products formed on the surface of ordinary low carbon steel samples. The specimens have been previously subjected to various polarization conditions in various aqueous media. The selected solutions are characteristic of ground waters. The main parameters considered for the definition of the media were its initial chemical composition, pH and dissolved gas composition

  8. PIPELINE CORROSION CONTROL IN OIL AND GAS INDUSTRY: A ...

    African Journals Online (AJOL)

    user

    protection technique as a method of controlling corrosion in oil and gas pipelines is effective and efficient when compared to ... In the field of crude oil production and associated engineering .... Industrial/Mechanical Systems, Joen Printing and.

  9. New corrosion issues in gas sweetening plants

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G. (CLI International and Asperger Technologies, Houston, TX (United States))

    Gas treating plants are experiencing corrosion problems which impact on efficiency and safety. While general corrosion is not particularly hazardous in the gas processing industry, local corrosion is very dangerous since it has several different mechanisms, all of which have dangerously high rates, and it occurs at locations which are hard to find and hard to predict. A newly discovered, velocity-dependent type of corrosion is reported. It is related to yet-undefined species which cause excessively high corrosion in areas of turbulence. This accelerated corrosion is not due to erosion or cavitation, but to a diffusion-limited reaction accelerated by turbulence. A full-flow test loop was built to evaluate the corrosiveness of gas plant solutions at their normal temperature and flow rates. Test runs were conducted with Co[sub 2]-loaded amine solutions for periods of 12 days. Carbon steel specimens mounted in the test loop were examined and corrosion rates calculated. Chromium alloys were shown to be attacked by corrodents in the low-velocity part of the loop and very aggressively attacked in the high-velocity part. The tests demonstrate the need for rigorous monitoring of corrosion in areas of higher velocity such as piping elbows and other points of turbulence. 5 refs., 2 figs., 3 tabs.

  10. Preliminary study of radionuclide corrosion products in primary cooling water at RSG-GAS

    International Nuclear Information System (INIS)

    Lestari, D.E.; Pudjojanto, M.S.; Subiharto; Budi, S.

    1998-01-01

    Analysis of radionuclides emitting gamma rays at the primary cooling water at RSG-GAS has been carried out. The water coolant samples was performed using a low level background gamma spectrometer unit, including of high resolution of gamma detector HP-Ge Tennelec and Multichannel Analyzer (MCA) ADCAM 100 ORTEC. The result indicated Na-24 and Mn-56 radionuclides that may be as corrosion product and should studied deeply in the future. The expected activity concentration radionuclide for Mn-56 is lower than those written in the Safety Analysis Report (SAR), while for Na-24 is in agreement

  11. Material selection and corrosion control practices in petroleum production

    International Nuclear Information System (INIS)

    Tuttle, R.N.

    1980-01-01

    The intent of this paper is to review briefly the current state of the art and to discuss some of the anticipated future oil and gas drilling and production activities which may challenge the materials selection and corrosion technologies. The current state of art discussions in this paper have been augmented by providing a list of references so that interested engineers may delve into each subject in more detail as desired. The technological areas which appear to require additional input to meet future needs include high strength tubular goods for sour gas service, corrosion resistant high strength alloys, definition of the effects of pressure, temperature, and fluid composition on corrosion behavior, and fatigue properties of various steels in seawater

  12. Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines

    Science.gov (United States)

    Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.

    2012-12-01

    Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.

  13. Monitoring internal corrosion in natural gas pipelines; Monitoracao da corrosao interna em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Ana C.V.; Silva, Djalma R.; Pimenta, Gutemberg S. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil); Barbosa, Andrea F.F. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2003-07-01

    For susceptibilities to the corrosion of the pipelines and equipment made in carbon steel and used by the natural gas, it makes be necessary to identify the acting corrosive agents and monitoring them along time, controlling failures for internal corrosion. Also, of that process it origins the black powder (solid particles) that can not commit the structural integrity of the equipment, but it can also bring the company other implications very serious, like quality of the sold product, as well as stops due to blockages and wastes for erosion of the equipment. The monitoring methodology and control of the corrosion in field consisted of the use of corrosion test equipment, chemical characterization of samples of black powder and liquids and analysis of the operational data of processes and plants. Like this, it was identified for the gas pipeline in analysis the most responsible parameters for the corrosive action of the fluid, establishing a controlling methodology and operational actions to maintain the corrosion rates at safe levels and structural warranty of the same. (author)

  14. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  15. Risk Analysis using Corrosion Rate Parameter on Gas Transmission Pipeline

    Science.gov (United States)

    Sasikirono, B.; Kim, S. J.; Haryadi, G. D.; Huda, A.

    2017-05-01

    In the oil and gas industry, the pipeline is a major component in the transmission and distribution process of oil and gas. Oil and gas distribution process sometimes performed past the pipeline across the various types of environmental conditions. Therefore, in the transmission and distribution process of oil and gas, a pipeline should operate safely so that it does not harm the surrounding environment. Corrosion is still a major cause of failure in some components of the equipment in a production facility. In pipeline systems, corrosion can cause failures in the wall and damage to the pipeline. Therefore it takes care and periodic inspections or checks on the pipeline system. Every production facility in an industry has a level of risk for damage which is a result of the opportunities and consequences of damage caused. The purpose of this research is to analyze the level of risk of 20-inch Natural Gas Transmission Pipeline using Risk-based inspection semi-quantitative based on API 581 associated with the likelihood of failure and the consequences of the failure of a component of the equipment. Then the result is used to determine the next inspection plans. Nine pipeline components were observed, such as a straight pipes inlet, connection tee, and straight pipes outlet. The risk assessment level of the nine pipeline’s components is presented in a risk matrix. The risk level of components is examined at medium risk levels. The failure mechanism that is used in this research is the mechanism of thinning. Based on the results of corrosion rate calculation, remaining pipeline components age can be obtained, so the remaining lifetime of pipeline components are known. The calculation of remaining lifetime obtained and the results vary for each component. Next step is planning the inspection of pipeline components by NDT external methods.

  16. Testing and prediction of erosion-corrosion for corrosion resistant alloys used in the oil and gas production industry

    Science.gov (United States)

    Rincon, Hernan E.

    The corrosion behavior of CRAs has been thoroughly investigated and documented in the public literature by many researchers; however, little work has been done to investigate erosion-corrosion of such alloys. When sand particles are entrained in the flow, the degradation mechanism is different from that observed for sand-free corrosive environment. There is a need in the oil and gas industry to define safe service limits for utilization of such materials. The effects of flow conditions, sand rate, pH and temperature on the erosion-corrosion of CRAs were widely studied. An extensive experimental work was conducted using scratch tests and flow loop tests using several experimental techniques. At high erosivity conditions, a synergistic effect between erosion and corrosion was observed. Under the high sand rate conditions tested, erosivity is severe enough to damage the passive layer protecting the CRA thereby enhancing the corrosion rate. In most cases there is likely a competition between the rates of protective film removal due to mechanical erosion and protective film healing. Synergism occurs for each of the three alloys examined (13Cr and Super13Cr and 22Cr); however, the degree of synergism is quite different for the three alloys and may not be significant for 22Cr for field conditions where erosivities are typically much lower that those occurring in the small bore loop used in this research. Predictions of the corrosion component of erosion-corrosion based on scratch test data compared reasonably well to test results from flow loops for the three CRAs at high erosivity conditions. Second order behavior appears to be an appropriate and useful model for representing the repassivation process of CRAs. A framework for a procedure to predict penetration rates for erosion-corrosion conditions was developed based on the second order model behavior observed for the re-healing process of the passive film of CRAs and on computational fluid dynamics (CFD) simulations

  17. Corrosion/95 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The papers in this conference represent the latest technological advances in corrosion control and prevention. The following subject areas are covered: cathodic protection in natural waters; materials for fossil fuel combustion and conversion systems; modern problems in atmospheric corrosion; innovative ideas for controlling the decaying infrastructure; deposits and their effects on corrosion in industry; volatile high temperature and non aqueous corrosion inhibitors; corrosion of light-weight and precoated metals for automotive application; refining industry corrosion; corrosion in pulp and paper industry; arctic/cold weather corrosion; materials selection for waste incinerators and associated equipment; corrosion measurement technology; environmental cracking of materials; advancing technology in the coating industry; corrosion in gas treating; green inhibition; recent advances in corrosion control of rail equipment; velocity effects and erosion corrosion in oil and gas production; marine corrosion; corrosion of materials in nuclear systems; underground corrosion control; corrosion in potable and industrial water systems in buildings and its impact on environmental compliance; deposit related boiler tube failures; boiler systems monitoring and control; recent developments and experiences in reactive metals; microbiologically influenced corrosion; corrosion and corrosion control for steel reinforced concrete; international symposium on the use of 12 and 13 Cr stainless steels in oil and gas production environments; subsea corrosion /erosion monitoring in production facilities; fiberglass reinforced pipe and tubulars in oilfield service; corrosion control technology in power transmission and distribution; mechanisms and methods of scale and deposit control; closing the loop -- results oriented cooling system monitoring and control; and minimization of aqueous discharge

  18. Corrosion of aluminum and zinc in containment following a LOCA and potential for precipitation of corrosion products in the sump

    International Nuclear Information System (INIS)

    Niyogi, K.K.; Lunt, R.R.; Mackenzie, J.S.

    1982-01-01

    Following a loss-of-coolant accident (LOCA) in a LWR containment, certain materials in the containment come in contact with alkaline emergency cooling and containment spray solutions and may corrode yielding hydrogen gas. The problems associated with the production of hydrogen gas and the control of combustible gas concentration have been extensively explored in recent years. However, the phenomenon of corrosion and its consequences in the long term cooling of the reactor and the containment have drawn very little attention. United Engineers and Constructors Inc. has made an extensive effort to study through literature survey the solubility of the corrosion products from aluminum and zinc in order to assess the potential for precipitation in the containment sump. The analysis presented in this article is based on parameters for a typical large dry reactor containment with caustic/boric acid buffered spray solution. Parameters used in this study may vary from one plant to another. However, they are not expected to affect the overall conclusions

  19. Development of Copper Corrosion Products and Relation between Surface Appearance and Corrosion Rate

    International Nuclear Information System (INIS)

    Lan, Tran Thi Ngoc; Binh, Nguyen Thi Thanh; Tru, Nguyen Nhi; Yoshino, Tsujino; Yasuki, Maeda

    2008-01-01

    Copper was exposed unsheltered and sheltered in four humid tropical sites, representing urban, urban-industrial, urban-marine and rural environments. The corrosion rates and the sequence of corrosion product formation are presented and discussed in relation with climatic and atmospheric pollution parameters. Chemical compositions of corrosion products were found to depend on environments and duration of exposure. In all environments, cuprite was the predominating corrosion product that formed first and continuously increased during the exposure. Among the sulphur-containing corrosion products, posnjakite and brochantite were more frequently found and the first formed earlier. Nantokite was the most common chlorine-containing products for most cases, except the high-chloride environment, where atacamite was detected instead. The corrosion rate of copper was well indicated by the colour of patina. The red-purple colour corresponded to the high corrosion rate and the greenish grey colour corresponded to the low corrosion rate. Corrosion rate of sheltered copper in urban-marine environment increased with the exposure time

  20. Corrosion resistance of ceramic materials in pyrochemical reprocessing atmosphere by using molten salt for spent nuclear oxide fuel. Corrosion research under chlorine gas condition

    International Nuclear Information System (INIS)

    Takeuchi, Masayuki; Hanada, Keiji; Koizumi, Tsutomu; Aose, Shinichi; Kato, Toshihiro

    2002-12-01

    Pyrochemical reprocessing using molten salts (RIAR process) has been recently developed for spent nuclear oxide fuel and discussed in feasibility study. It is required to improve the corrosion resistance of equipments such as electrolyzer because the process is operated in severe corrosion environment. In this study, the corrosion resistance of ceramic materials was discussed through the thermodynamic calculation and corrosion test. The corrosion test was basically carried out in alkali molten salt under chlorine gas condition. And further consideration about the effects of oxygen, carbon and main fission product's chlorides were evaluated in molten salt. The result of thermodynamic calculation shows most of ceramic oxides have good chemical stability on chlorine, oxygen and uranyl chloride, however the standard Gibb's free energies with carbon have negative value. On the other hand, eleven kinds of ceramic materials were examined by corrosion test, then silicon nitride, mullite and cordierite have a good corrosion resistance less than 0.1 mm/y. Cracks were not observed on the materials and flexural strength did not reduce remarkably after 480 hours test in molten salt with Cl 2 -O 2 bubbling. In conclusion, these three ceramic materials are most applicable materials for the pyrochemical reprocessing process with chlorine gas condition. (author)

  1. Review of hot corrosion of thermal barrier coatings of gas turbine

    Directory of Open Access Journals (Sweden)

    LIU Yongbao

    2017-03-01

    Full Text Available The review was done in order to make clear the problem of the hot corrosion of the Thermal Barrier Coatings(TBCsduring gas turbine serving. This paper summarizes the factors resulting from the hot corrosion of TBCs during turbine service and classifies methods for enhancing the corrosive resistance of TBCs. A prospective methodology for improving corrosion resistance is also formulated. The main types of corrosion coating include phase reaction, oxidizing of the bond coating, salt-fog corrosion, CMAS corrosion and fuel impurity corrosion. So far, methods for improving the corrosion resistance of TBCs include developing new coating materials, anticorrosive treatment on the surface of TBCs, modifying the stacking configuration and improving the cleansing functions of the gas turbines. In the future, developing new materials with excellent performance will still be the main direction for boosting the improvement of the hot corrosion resistance of TBCs. Simultaneously, improving the tacking configuration and nanotechnology of TBC coatings are potential approaches for improving corrosion resistance. With the development of a Ceramic Matrix Composite (CMC, the focus of the hot corrosion of TBCs may turn to that of Environmental Barrier Coatings (EBCs.

  2. Characterization of uranium corrosion products involved in the March 13, 1998 fuel manufacturing facility pyrophoric event

    International Nuclear Information System (INIS)

    Totemeier, T.C.

    1999-01-01

    Uranium metal corrosion products from ZPPR fuel plates involved in the March 13, 1998 pyrophoric event in the Fuel Manufacturing Facility at Argonne National Laboratory-West were characterized using thermo-gravimetric analysis, X-ray diffraction, and BET gas sorption techniques. Characterization was performed on corrosion products in several different conditions: immediately after separation from the source metal, after low-temperature passivation, after passivation and extended vault storage, and after burning in the pyrophoric event. The ignition temperatures and hydride fractions of the corrosion product were strongly dependent on corrosion extent. Corrosion products from plates with corrosion extents less than 0.7% did not ignite in TGA testing, while products from plates with corrosion extents greater than 1.2% consistently ignited. Corrosion extent is defined as mass of corrosion products divided by the total mass of uranium. The hydride fraction increased with corrosion extent. There was little change in corrosion product properties after low-temperature passivation or vault storage. The burned products were not reactive and contained no hydride; the principal constituents were UO 2 and U 3 O 7 . The source of the event was a considerable quantity of reactive hydride present in the corrosion products. No specific ignition mechanism could be conclusively identified. The most likely initiator was a static discharge in the corrosion product from the 14th can as it was poured into the consolidation can. The available evidence does not support scenarios in which the powder in the consolidation can slowly self-heated to the ignition point, or in which the powder in the 14th can was improperly passivated

  3. Characterization of uranium corrosion products involved in the March 13, 1998 fuel manufacturing facility pyrophoric event.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T.C.

    1999-04-26

    Uranium metal corrosion products from ZPPR fuel plates involved in the March 13, 1998 pyrophoric event in the Fuel Manufacturing Facility at Argonne National Laboratory-West were characterized using thermo-gravimetric analysis, X-ray diffraction, and BET gas sorption techniques. Characterization was performed on corrosion products in several different conditions: immediately after separation from the source metal, after low-temperature passivation, after passivation and extended vault storage, and after burning in the pyrophoric event. The ignition temperatures and hydride fractions of the corrosion product were strongly dependent on corrosion extent. Corrosion products from plates with corrosion extents less than 0.7% did not ignite in TGA testing, while products from plates with corrosion extents greater than 1.2% consistently ignited. Corrosion extent is defined as mass of corrosion products divided by the total mass of uranium. The hydride fraction increased with corrosion extent. There was little change in corrosion product properties after low-temperature passivation or vault storage. The burned products were not reactive and contained no hydride; the principal constituents were UO{sub 2} and U{sub 3}O{sub 7}. The source of the event was a considerable quantity of reactive hydride present in the corrosion products. No specific ignition mechanism could be conclusively identified. The most likely initiator was a static discharge in the corrosion product from the 14th can as it was poured into the consolidation can. The available evidence does not support scenarios in which the powder in the consolidation can slowly self-heated to the ignition point, or in which the powder in the 14th can was improperly passivated.

  4. Assessment of corrosion in the flue gas cleaning system using on-line monitoring

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vendelbo Nielsen, Lars; Berggreen Petersen, Michael

    2015-01-01

    Amager unit 1 is a 350 MW multifuel suspension-fired plant commissioned in 2009 to fire biomass (straw and wood pellets). Increasing corrosion problems in the flue gas cleaning system were observed in the gas-gas preheater (GAFO), the booster fan and flue gas ducts. Chlorine containing corrosion ...

  5. Biocide and corrosion inhibition use in the oil and gas industry: Effectiveness and potential environmental impacts

    International Nuclear Information System (INIS)

    Brandon, D.M.; Fillo, J.P.; Morris, A.E.; Evans, J.M.

    1995-01-01

    Treatment chemicals are used in all facets of the natural gas industry (NGI) from well development through transmission and storage of natural gas. The multitude of chemicals used, combined with the dozens of chemical manufacturers and/or suppliers has lead to the availability of hundreds of possible chemical products. Because of the widespread use of chemical products and their numerous sources, the NGI needs access to consistent data regarding their effectiveness and potential environmental impacts. The objective of this work was to evaluate the effectiveness and potential environmental impacts of, chemical products used in the NGI. This assessment was initially focused on biocides and corrosion inhibitors and their use in the gas production, storage and transmission facilities, The overall approach was obtain the necessary data on chemical use and effectiveness directly from the oil and gas industry, supplemented with data/information obtained from the published literature. Five case histories of chemical use were documented and evaluated to assess the effectiveness of these chemicals. Potential environmental impacts were addressed by performing a screening environmental assessment on the use of glutaraldehyde, a widely used biocide. Prototype discharge scenarios were formulated and modeled to evaluate potential impacts to groundwater and surface water. The paper describes the basis for the study, provides an overview of chemical use with a focus on biocides and corrosion inhibitors, describes and assesses the specific uses of chemicals, and presents the results of the environmental assessment. It was found that various chemicals can be effective in treating microbiologically influenced corrosion and souring, but that the effectiveness of specific chemicals is dependent on the operational scenario and the site-specific conditions

  6. Use of Polyurethane Coating to Prevent Corrosion in Oil and Gas Pipelines Transfer

    OpenAIRE

    Amir Samimi

    2012-01-01

    Corrosion is one of the major problems in the oil and gas industry is one that automatically allocates huge sums annually. Polyurethane is a thermoses polymer with various applications. Using form this polymer has spread for military applications by Otto Bayer in 1930. In one general look polyurethane is product of Iso Syanate and ploy with each other, So that: Iso + ploy = polyurethane. Spend large cost for application and launching oil and gas transitions, has cleared the necessity protecti...

  7. Engineering considerations for corrosion monitoring of gas gathering pipeline systems

    Energy Technology Data Exchange (ETDEWEB)

    Braga, T.G.; Asperger, R.G.

    1987-01-01

    Proper corrosion monitoring of gas gathering pipelines requires a system review to determine the appropriate monitor locations and types of monitoring techniques. This paper develops and discusses a classification of conditions such as flow regime and gas composition. Also discussed are junction categories which, for corrosion monitoring, need to be considered from two points of view. The first is related to fluid flow in the line and the second is related corrosion inhibitor movement along the pipeline. The appropriate application of the various monitoring techniques such as coupons, hydrogen detectors, electrical resistance probe and linear polarization probes are discussed in relation to flow regime and gas composition. Problems caused by semi-conduction from iron sulfide are considered. Advantages and disadvantages of fluid gathering methods such as pots and flow-through drips are discussed in relation to their reliability as on-line monitoring locations.

  8. Corrosion Prevention And Control In High Pressure Oil And Gas Transmission Pipelines

    International Nuclear Information System (INIS)

    Hafez, M.T.; Radwan, M.H.; Jones, D.G.

    2004-01-01

    At the start of the 1990s there were concerns over the increasing threat of corrosion to the integrity of high-pressure oil and gas transmission pipelines. For example: corrosion was the major cause of reportable incidents in North America (1]. Corrosion was the major cause of pipeline failure in the Gulf of Mexico [2]. Corrosion in a North American onshore oil pipeline had required over $1 billion in repairs(3]. Internal corrosion along the complete length of pipelines had resulted in replacement[4] . However, the worldwide published failure statistics indicate that the incidents of corrosion are not increasing year on year(5-9]. Indeed, CONCA WE[8,9] statistics (for pipelines In Western Europe) show that the failure rate from corrosion (the most likely failure mode with increasing age) has not increased with pipeline age (Figure 1). In fact the statistics for gas pipelines in Europe

  9. Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Brad J.; Peterova, Adela

    2014-01-01

    This paper describes experimental investigations on corrosion-induced deterioration in reinforced cementitious materials and the subsequent development and implementation of a novel conceptual model. Rejnforced mortar specimens of varying water-to-cement ratios were subjected to current-induced c......This paper describes experimental investigations on corrosion-induced deterioration in reinforced cementitious materials and the subsequent development and implementation of a novel conceptual model. Rejnforced mortar specimens of varying water-to-cement ratios were subjected to current......-dependent concentrations of corrosion products averaged through the specimen thickness. Digital image correlation (DIC) was used to measure corrosion-induced deformations including deformations between steel and cementitious matrix as well as formation and propagation of corrosion-induced cracks. Based on experimental...... observations, a conceptual model was developed to describe the penetration of solid corrosion products into capillary pores of the cementitious matrix. Only capillary pores within a corrosion accommodating region (CAR), i.e. in close proximity of the steel reinforcement, were considered accessible...

  10. Corrosion-product inventory: the Bruce-B secondary system

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Price, J.; Brett, M.E.

    1995-01-01

    Corrosion inspection and corrosion-product characterization in water and steam systems are important for component and systems maintenance in nuclear power stations. Corrosion products are produced, released and redeposited at various sites in the secondary system. Depending on the alloys used in the condenser and feedwater heaters, particulate iron oxides and hydroxides can account for about 95-99% of the total corrosion-product transport. Where brass or cupro-nickel alloys are present, copper and zinc contribute significantly to the total transport and deposition. Particulates are transported by the feedwater to the steam generators, where they accumulate and can cause a variety of problems, such as loss of heat transfer capability through deposition on boiler tubes, blockage of flow through boiler-tube support plates and accelerated corrosion in crevices, either in deep sludge piles or at blocked tube supports. The influx of oxidized corrosion products may have a particularly adverse effect on the redox environment of steam generator tubing, thereby increasing the probability of localized corrosion and other degradation mechanisms. In this paper, there is a description of a survey of general corrosion deposits in Bruce-B, Units 5-8, which helps to identify the origin, evolution and inventory of corrosion products along the secondary system of Candu reactors

  11. EUROCORR 2007 - The European corrosion congress - Progress by corrosion control. Book of Abstracts

    International Nuclear Information System (INIS)

    2007-01-01

    This book of abstracts contains lectures, workshops and posters which were held on the European Corrosion Congress 2007 in Freiburg (Germany). The main topics of the sessions and posters are: 1. Corrosion and scale inhibition; 2. Corrosion by hot gases and combustion products; 3. Nuclear corrosion; 4. Environment sensitive fracture; 5. Surface Science; 6. Physico-chemical methods of corrosion testing; 7. Marine corrosion; 8. Microbial corrosion; 9. Corrosion of steel in concrete; 10. Corrosion in oil and gas production; 11. Coatings; 12. Corrosion in the refinery industry; 13. Cathodic protection; 14. Automotive Corrosion; 15. Corrosion of polymer materials. The main topics of the workshops are: 1. High temperature corrosion in the chemical, refinery and petrochemical industries; 2. Bio-Tribocorrosion; 3. Stress corrosion cracking in nuclear power plants; 4. Corrosion monitoring in nuclear systems; 5. Cathodic protection for marine and offshore environments; 6. Self-healing properties of new surface treatments; 7. Bio-Tribocorrosion - Cost 533/Eureka-ENIWEP-Meeting; 8. Drinking water systems; 9. Heat exchangers for seawater cooling

  12. High Temperature Corrosion of Superheater Materials for Power Production through Biomass

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Nielsen, Karsten agersted

    The aim of the present study has been to establish a fundamental knowledge of the corrosion mechanisms acting on materials for use in biomass fired power plants. The knowledge is created based on laboratory exposures on selected materials in well-defined corrosive gas environments. An experimental...... facility has been established wherein the planned exposures are completed. Specimens were exposed in combined synthetic flue gas at temperatures up to 900C. The specimens could be cooled to 300C below the gas temperature. Gas flow and gas mixture can be varied according to the conditions found in a power......) on the corrosion progress has been investigated.In addition the corrosion behaviour of the same materials was investigated after having been exposed under a cover of ash in air in a furnace at temperatures of 525C, 600C and 700C. The ashes utilised are from a straw-fired power plant and a synthetic ash composed...

  13. Corrosion Challenges for the Oil and Gas Industry in the State of Qatar

    Science.gov (United States)

    Johnsen, Roy

    In Qatar oil and gas has been produced from onshore fields in more than 70 years, while the first offshore field delivered its first crude oil in 1965. Due to the atmospheric conditions in Qatar with periodically high humidity, high chloride content, dust/sand combined with the temperature variations, external corrosion is a big treat to the installations and connecting infrastructure. Internal corrosion in tubing, piping and process systems is also a challenge due to high H2S content in the hydrocarbon mixture and exposure to corrosive aquifer water. To avoid corrosion different type of mitigations like application of coating, chemical treatment and material selection are important elements. This presentation will review the experiences with corrosion challenges for oil & gas installations in Qatar including some examples of corrosion failures that have been seen.

  14. Exposure testing of fasteners in preservative treated wood: Gravimetric corrosion rates and corrosion product analyses

    Energy Technology Data Exchange (ETDEWEB)

    Zelinka, Samuel L., E-mail: szelinka@fs.fed.u [USDA Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726 (United States); Sichel, Rebecca J. [College of Engineering, University of Wisconsin, Madison, WI 53706 (United States); Stone, Donald S. [Department of Materials Science and Engineering, College of Engineering, University of Wisconsin, Madison, WI 53706 (United States)

    2010-12-15

    Research highlights: {yields} The composition of the corrosion products was similar for the nail head and shank. {yields} Reduced copper was not detected on any of the fasteners. {yields} Measured corrosion rates were between 1 and 35 {mu}m year{sup -1}. - Abstract: Research was conducted to determine the corrosion rates of metals in preservative treated wood and also understand the mechanism of metal corrosion in treated wood. Steel and hot-dip galvanized steel fasteners were embedded in wood treated with one of six preservative treatments and exposed to 27 {sup o}C at 100% relative humidity for 1 year. The corrosion rate was determined gravimetrically and the corrosion products were analyzed with scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Although the accepted mechanism of corrosion in treated wood involves the reduction of cupric ions from the wood preservative, no reduced copper was found on the corrosion surfaces. The galvanized corrosion products contained sulfates, whereas the steel corrosion products consisted of iron oxides and hydroxides. The possible implications and limitations of this research on fasteners used in building applications are discussed.

  15. Measurement of fuel corrosion products using planar laser-induced fluorescence

    International Nuclear Information System (INIS)

    Wantuck, P.J.; Sappey, A.D.; Butt, D.P.

    1993-01-01

    Characterizing the corrosion behavior of nuclear fuel material in a high-temperature hydrogen environment is critical for ascertaining the operational performance of proposed nuclear thermal propulsion (NTP) concepts. In this paper, we describe an experimental study undertaken to develop and test non-intrusive, laser-based diagnostics for ultimately measuring the distribution of key gas-phase corrosion products expected to evolve during the exposure of NTP fuel to hydrogen. A laser ablation technique is used to produce high temperature, vapor plumes from uranium-free zirconium carbide (ZrC) and niobium carbide (NbC) forms for probing by various optical diagnostics including planar laser-induced fluorescence (PLIF). We discuss the laser ablation technique, results of plume emission measurements, and we describe both the actual and proposed planar LIF schemes for imaging constituents of the ablated ZrC and NbC plumes. Envisioned testing of the laser technique in rf-heated, high temperature gas streams is also discussed

  16. Corrosion/96 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Topics covered by this conference include: cathodic protection in natural waters; cleaning and repassivation of building HVAC systems; worldwide opportunities in flue gas desulfurization; advancements in materials technology for use in oil and gas service; fossil fuel combustion and conversion; technology of corrosion inhibitors; computers in corrosion control--modeling and information processing; recent experiences and advances of austenitic alloys; managing corrosion with plastics; corrosion measurement technology; corrosion inhibitors for concrete; refining industry; advances in corrosion control for rail and tank trailer equipment; CO 2 corrosion--mechanisms and control; microbiologically influenced corrosion; corrosion in nuclear systems; role of corrosion in boiler failures; effects of water reuse on monitoring and control technology in cooling water applications; methods and mechanisms of scale and deposit control; corrosion detection in petroleum production lines; underground corrosion control; environmental cracking--relating laboratory results and field behavior; corrosion control in reinforced concrete structures; corrosion and its control in aerospace and military hardware; injection and process addition facilities; progress reports on the results of reinspection of deaerators inspected or repaired per RP0590 criteria; near 100% volume solids coating technology and application methods; materials performance in high temperature environments containing halides; impact of toxicity studies on use of corrosion/scale inhibitors; mineral scale deposit control in oilfield related operations; corrosion in gas treating; marine corrosion; cold climate corrosion; corrosion in the pulp and paper industry; gaseous chlorine alternatives in cooling water systems; practical applications of ozone in recirculating cooling water systems; and water reuse in industry. Over 400 papers from this conference have been processed separately for inclusion on the data base

  17. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Pahl, R.G.; Frank, S.M.

    1998-01-01

    The oxidation behavior of hydride-bearing uranium metal corrosion products from zero power physics reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2 , Ar-9%O 2 , and Ar-20%O 2 . Ignition of corrosion product samples from two moderately corroded plates was observed between 125 C and 150 C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride. (orig.)

  18. Morphology of the ash corrosion products on the P92 steel

    International Nuclear Information System (INIS)

    Hernas, A.; Imosa, M.

    2004-01-01

    The P92 steel, owing to its high mechanical strength at an elevated temperature, is one of the new steel types intended for the components of modern boilers in the power engineering industry. Currently, attempts are being undertaken to use the P92 steel for the components of boiler units in municipal waste incineration plants. Therefore, it is important that an analysis be made of the P92 steel resistance to the high-temperature chlorine - sulfur corrosion impact, the latter being the main factor which limits durability of boilers in waste incineration plants. The present article presents the investigation of P92 steel corrosion resistance under the conditions of high-temperature chlorine- sulfur corrosion in an atmosphere of flue gas with ashes. The analyses were conducted by means of laboratory tests in an atmosphere containing sulfur and chlorine compounds. The morphology of corrosion products was determined by scanning microscopy and X-ray analysis methods. (author)

  19. Experimental Study of Removing Surface Corrosion Products from Archaeological Iron Objects and Alternating Iron Corrosion Products by Nd:YAG Laser Cleaning System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hye Youn; Cho, Nam Chul [Kongju National University, Daejeon (Korea, Republic of); Lee, Jong Myoung [IMT co. Ltd, Suwon (Korea, Republic of); Yu, Jae Eun [National Research Institute of Cultural Heritage, Daejeon (Korea, Republic of)

    2012-05-15

    The corrosion product of archaeological iron objects is supposed to be removed because it causes re-corrosion. So far it is removed by scapel and sand blaster but they depend on the skill and experience of a conservator and the glass-dust of the sand blaster is harmful to humans. Therefore this study applies a laser cleaning system which is used in various industrial cleaning processes, to remove corrosion product from archaeological iron objects. In addition, this work studies the alternation of corrosion product after laser irradiation, which evaluates the reliability of the laser cleaning system. Optical microscopy, SEM-EDS, XRD, Raman have been used to observe and analyse the surface of the objects. The results show the capacity of laser cleaning some corrosion product, but blackening appears with increasing pulses and laser energy, and some corrosion products, goethite and hematite, are partially altered to magnetite. These problems, blackening and alternation of corrosion product, should be solved by further studies which find the optimal laser irradiation condition and use a wetting agent.

  20. Techniques for the identification of corrosion products

    International Nuclear Information System (INIS)

    Ramanathan, L.V.

    1988-12-01

    This paper presents the different techniques that can be used to identify corrosion/oxidation products through determination of either their composition or their structure, chemical analysis and spectrochemical analysis are commonly used to determine the composition of gross corrosion products. Surface anaLysis techniques such as electron microprobe, AES, ESCA, SIMS, ISS, neutron activation analysis, etc., can be used not only to detect the concentration of the various elements present, but also to obtain the concentration profiles of these elements through the corrosion products. The structure of corrosion products is normally determined with the aid of either X-ray or electron diffraction techniques. This paper describes the basic principles, typical characteristics, limitations and the types of information that can be obtained from each of the techniques along with some typical examples. (author) [pt

  1. Corrosion products in power generating systems

    International Nuclear Information System (INIS)

    Lister, D.H.

    1980-06-01

    The important mechanisms of corrosion and corrosion product movement and fouling in the heat transport systems of thermal electric generating stations are reviewed. Oil- and coal-fired boilers are considered, along with nuclear power systems - both direct and indirect cycle. Thus, the fireside and waterside in conventional plants, and the primary coolant and steam-raising circuits in water-cooled reactors, are discussed. Corrosion products in organic- and liquid-metal-cooled reactors also are shown to cause problems if not controlled, while their beneficial effects on the cooling water side of condensers are described. (auth)

  2. Corrosion behaviour of steels and CRA in sour gas environments

    Energy Technology Data Exchange (ETDEWEB)

    Lara, M. Alvarez de; Lancha, A.M.; Hernandez, F.; Gomez-Briceno, D. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Coca, P. [ELCOGAS, S.A., C.T. GICC Puertollano, Carretera de Calzada de Calatrava a Puertollano, km 27, 13500 Puertollano, Ciudad Real (Spain)

    2004-07-01

    The ELCOGAS power plant in Puertollano (Spain), with 335 MWe (ISO conditions), is an Integrated Gasification Combined Cycle (IGCC) plant built to demonstrate both the technical and economic feasibility of this alternative for clean generation of electricity from coal. IGCC technology is based on a coal gasification process, namely the conversion of coal into combustible gas, which is then subjected to an exhaustive cleaning process. The result is a synthetic gas, virtually free of pollutants that can be burned with a high efficiency in a combined cycle electricity-generating unit. Basically, the ELCOGAS plant consists of three islands jointly designed and integrated into the process: gasification island, air separation island and combined cycle island. In the gasification island, the gas from the gasifier is cleaned (de-dusted and washed) and desulfurized before being sent to the combined cycle island. The washing system consists of a Venturi scrubber with a separator where halogens and alkalis (NH{sub 3}, HCl, HF) are removed from the previously de-dusted gas by means of the wash water. The halogens and alkalis removed are then stripped from the wash water as stripped gas, which is a sour gas. The coal-gas coming from the separator proceeds to sulphur removal in a MDEA system and then, the clean gas (mainly CO, H{sub 2}) is sent to the combined cycle plant. As COS is a significant part of the sulphur containing gases in the coal gas, hydrolysis of the COS to H{sub 2}S takes place before the desulfurization stage, since MDEA is a selective amine for H{sub 2}S. There are many important areas related to materials corrosion within the gas cleaning system. In the ELCOGAS plant carbon steels, austenitic stainless steels and nickel based alloys, such as AISI 316Ti, AISI 904L and Hastelloy C276, are used in the Venturi, the water separator and the strippers. AISI 316Ti is used for the gas piping from the separator to the COS hydrolysis system. Laboratory tests to evaluate

  3. Electrochemical corrosion behavior of gas atomized Al–Ni alloy powders

    International Nuclear Information System (INIS)

    Osório, Wislei R.; Spinelli, José E.; Afonso, Conrado R.M.; Peixoto, Leandro C.; Garcia, Amauri

    2012-01-01

    Highlights: ► Spray-formed Al–Ni alloy powders have cellular microstructures. ► Porosity has no deleterious effect on the electrochemical corrosion behavior. ► Better pitting corrosion resistance is related to a fine powder microstructure. ► A coarse microstructure can be related to better general corrosion resistance. - Abstract: This is a study describing the effects of microstructure features of spray-formed Al–Ni alloy powders on the electrochemical corrosion resistance. Two different spray-formed powders were produced using nitrogen (N 2 ) gas flow (4 and 8 bar were used). Electrochemical impedance spectroscopy (EIS), potentiodynamic anodic polarization techniques and an equivalent circuit analysis were used to evaluate the electrochemical behavior in a dilute 0.05 M NaCl solution at room temperature. It was found that a N 2 gas pressure of 8 bar resulted in a microstructure characterized by a high fraction of small powders and fine cell spacings, having improved pitting potential but higher corrosion current density when compared with the corresponding results of a coarser microstructure array obtained under a lower pressure. A favorable effect in terms of current density and oxide protective film formation was shown to be associated with the coarser microstructure, however, its pitting potential was found to be lower than that of the finer microstructure.

  4. Corrosion-product transport, oxidation state and remedial measures

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Brett, M.E.; Tapping, R.L.

    1998-01-01

    The issues associated with monitoring and controlling corrosion-product transport (CPT) in the balance-of-plant (BOP) and steam generators (SG) of CANDU stations are briefly reviewed. The efforts are focused on minimizing corrosion of carbon steel, which is used extensively in the CANDU primary and secondary systems. Emphasis is placed on the corrosion-product oxidation state as a monitor of water chemistry effectiveness, and as a monitor of system corrosion effects. The discussion is based mostly on the results and observations from Ontario Hydro plants, and their comparisons with PWRs. The effects of low oxygen and elevated hydrazine chemistry are reviewed, as well as the effects of lay-up and various start-up conditions. Progress in monitoring electrochemical potential (ECP) at Ontario Hydro plants and its relationship to the oxidation state of corrosion products is reviewed. Observations on corrosion-product transport on the primary side of steam generators are also discussed. (author)

  5. Regularities of transition of steel corrosion products into aqueous medium

    International Nuclear Information System (INIS)

    Nikitin, V.I.; Gvozd', A.M.; Karpova, T.Ya.

    1981-01-01

    Effect of different factors on a degree of steel corrosion product transition to a water medium has been studied. Ratio of a specific masm qsub(c) of the corrosion products transferring to the water and a specific masm q of all the steel corrosion products produced under the given conditions was used as a criterium characterizing a degree of corrosion product transition from steel surfaces to water. The transition degree to water at a high temperature of different kind steel corrosion products differs relatively few (qsub(c)/q=0.5-0.7) in the water containing oxygen and different salts on increasing temperature, the corrosion process is characterized with continuous decrease of a relative amount of the corrosion products transferring to the medium. On the contrary, in the deaerated water the transition degree of perlite steel corrosion products to water remains constant in a wide temperature range (100-320 deg C). Besides chromium, nickel being a part of austenitic steel composition affects positively decrease of the transition degree of the corrosion products to water as well as q and qsub(c) reduction. The most difference in corrosion characteristics and the transition degree to water is observed when affecting colant steels in the low-temperature zone of the steam generator [ru

  6. Corrosion behavior of API 5L-X80 Pipeline steel for natural gas pipeline

    International Nuclear Information System (INIS)

    Mohd Asyadi Azam Mohd Abid; Imai, Hachiro

    2007-01-01

    Natural energy problem, including the environmental aspects had changes into certain circumstances in recent years and natural gas has been a focus of constant attention from the viewpoint of energy efficiency and pollution free. From that kind of background, pipeline construction for petroleum and natural gas were considerate as energy infrastructure maintenance plan. Based on the clarification of Asian Pipeline Project (1997-2007) centered in Japan, international pipeline is needed as the natural gas is mainly transported from gas field in Russia and Middle East to consumer country such as Japan etc. It used in severe condition such as cold district and sea. In the meantime, pipeline steel is not just received damages by earth crust fluctuation and corrosion, but also suffered from the corrosion caused by anions that were dissolved in sea and groundwater. The diversification of dispersion and consumption structure of natural gas supply acceptance base are seen regarding, that made the needs of the storing are rising and dealt with the quantitative spatial expansion of the demand. By that, corrosion resistance, not only the hardness, tough, weldability, corrosiveness gas environment is extremely required. (author)

  7. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    International Nuclear Information System (INIS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-01-01

    Highlights: • Corrosion behaviors of a PEO coating was investigated after the salt spray test. • Corrosion products have significant effects on corrosion behaviors of the coating. • An electrochemical corrosion model is proposed. - Abstract: The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  8. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Guo, Changhong; Jiang, Guirong [College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004 (China); Shen, Dejiu, E-mail: DejiuShen@163.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-08-15

    Highlights: • Corrosion behaviors of a PEO coating was investigated after the salt spray test. • Corrosion products have significant effects on corrosion behaviors of the coating. • An electrochemical corrosion model is proposed. - Abstract: The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  9. Characterization of Corrosion Products on Carbon Steel Exposed to Natural Weathering and to Accelerated Corrosion Tests

    Directory of Open Access Journals (Sweden)

    Renato Altobelli Antunes

    2014-01-01

    Full Text Available The aim of this work was to compare the corrosion products formed on carbon steel plates submitted to atmospheric corrosion in urban and industrial atmospheres with those formed after accelerated corrosion tests. The corrosion products were characterized by X-ray diffraction, Mössbauer spectroscopy, and Raman spectroscopy. The specimens were exposed to natural weathering in both atmospheres for nine months. The morphologies of the corrosion products were evaluated using scanning electron microscopy. The main product found was lepidocrocite. Goethite and magnetite were also found on the corroded specimens but in lower concentrations. The results showed that the accelerated test based on the ASTM B117 procedure presented poor correlation with the atmospheric corrosion tests whereas an alternated fog/dry cycle combined with UV radiation exposure provided better correlation.

  10. Problems of technology and corrosion in sodium coolant and cover gas

    International Nuclear Information System (INIS)

    Kuenstler, K.; Ullmann, H.

    1977-07-01

    The meeting encloses the following themes: (i) Reactions in the system sodium-steel-cover gas (ii) Corrosion behaviour of structural and cladding materials (iii) Determination of impurities in sodium and cover gas (iv) Technology of sodium and cover gas (v) Testing equipments (vi) Safety problems

  11. Aluminum corrosion product release kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Matt, E-mail: Matthew.Edwards@cnl.ca; Semmler, Jaleh; Guzonas, Dave; Chen, Hui Qun; Toor, Arshad; Hoendermis, Seanna

    2015-07-15

    Highlights: • Release of Al corrosion product was measured in simulated post-LOCA sump solutions. • Increased boron was found to enhance Al release kinetics at similar pH. • Models of Al release as functions of time, temperature, and pH were developed. - Abstract: The kinetics of aluminum corrosion product release was examined in solutions representative of post-LOCA sump water for both pressurized water and pressurized heavy-water reactors. Coupons of AA 6061 T6 were exposed to solutions in the pH 7–11 range at 40, 60, 90 and 130 °C. Solution samples were analyzed by inductively coupled plasma atomic emission spectroscopy, and coupon samples were analyzed by secondary ion mass spectrometry. The results show a distinct “boron effect” on the release kinetics, expected to be caused by an increase in the solubility of the aluminum corrosion products. New models were developed to describe both sets of data as functions of temperature, time, and pH (where applicable)

  12. Behaviour of steel corrosion products under neutral-oxidizing water conditions

    International Nuclear Information System (INIS)

    Martynova, O.I.; Petrova, T.I.; Samojlov, Yu.F.; Kharitonova, N.L.

    1985-01-01

    Results of laboratory experiments on studying the solubility of iron and cobalt corrosion products are given. It is established that oxygen dosage doesn't influence practically on the iron corrosion product solubility but cobalt corrosion product solubility decreases, the presence of hydrogen peroxide in an initial solution leads to increase of the iron corrosion product solubility especially at 125 deg C. It is shown that hydrogen peroxide affects unambiguously the cobalt corrosion product solubility: at hydrogen peroxide concentration of about 400 μg/l at 50-275 deg C temperature their solubility is minimum

  13. Corrosion of API 5L B and X52 in crude oil/water/gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Perdomo, J J; Gonzalez, J J; Viloria, A; De Veer, H; De Abreu, Y

    2000-02-01

    Laboratory and field tests were conducted to evaluate the corrosion behavior of API 5L grade B and X52 steels using Furrial's crude oil in the presence of water and gas containing carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S). The results suggest that the corrosiveness of this crude oil/water/gas mixture is not detrimental to either steel. However, pitting corrosion was observed. The low general corrosion rates measured were attributed to the natural inhibiting properties of the crude oil.

  14. Carbon dioxide corrosion: Modelling and experimental work applied to natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    P, Loldrup Fosboel

    2007-10-15

    CO{sub 2} corrosion is a general problem in the industry and it is expensive. The focus of this study is an oil gas production related problem. CO{sub 2} corrosion is observed in offshore natural gas transportation pipelines. A general overview of the problem is presented in chapter 1. The chemical system consists mainly of CO{sub 2}-Na{sub 2}CO{sub 3}-NaHCO{sub 3}-MEG-H{sub 2}O. Sodium is injected in the pipelines as NaOH in order to pH-stabilize the pipeline to avoid corrosion and MEG is injected in order to prevent gas hydrates. There are a great number of models available in the literature which may predict CO{sub 2} corrosion. These models are not very accurate and assume ideality in the main part of the equation. This thesis deals with aspect of improving the models to account for the non-ideality. A general overview and extension of the theory behind electrochemical corrosion is presented in chapter 2 to 4. The theory deals with the basic thermodynamics of electrolytes in chapter 2, the extension and general description of electrolyte mass transport in chapter 3, and the electrochemical kinetics of corrosion in chapter 4. A literature overview of CO{sub 2} corrosion is shown in chapter 5 and possible extensions of the models are discussed. A list of literature cites is given in chapter 6. The literature review in chapter 5 shows how FeCO{sub 3} plays a main part in the protection of steel. Especially the solubility of FeCO{sub 3} is an important factor. Chapter 7 discusses and validates the thermodynamic properties of FeCO{sub 3}. The study shows that there is a discrepancy in the properties of FeCO{sub 3}. Sets of consistent thermodynamic properties of FeCO{sub 3} are given. A mixed solvent electrolyte model is regressed in chapter 8 for the CO{sub 2}-Na{sub 2}CO{sub 3}-NaHCO{sub 3}-MEG-H{sub 2}O system. Parameters of the extended UNIQUAC model is fitted to literature data of VLE, SLE, heat excess and validated against heat capacity data. The model is also

  15. Influence of temperature on corrosion rate and porosity of corrosion products of carbon steel in anoxic bentonite environment

    International Nuclear Information System (INIS)

    Stoulil, J.; Kaňok, J.; Kouřil, M.; Parschová, H.; Novák, P.

    2013-01-01

    Highlights: •The corrosion rate is not significantly dependent on temperature. •Corrosion products at higher temperatures have different color. •Corrosion products at higher temperatures are more compact. •The change in corrosion products nature is reversible. -- Abstract: The study focuses on the porosity of layers of corrosion products and its impact on corrosion rate of carbon steel in moist bentonite. Measurements were performed in an aggressive Czech type of bentonite – Rokle B75 at temperatures of 90 and 40 °C. Aggressiveness of B75 bentonite consists in low content of chlorides. Presence of chlorides in pore solution allows formation of more protective magnetite. The evaluation was made by electrochemical techniques (red/ox potential, open circuit potential, linear polarization resistance, impedance spectroscopy) and resistometric sensor measurements. The result imply that the higher the temperature the more compact is the layer of corrosion products that slightly decelerates corrosion rate compared to the state at 40 °C. The state of corrosion products at both temperatures is reversible

  16. Influence of temperature on corrosion rate and porosity of corrosion products of carbon steel in anoxic bentonite environment

    Energy Technology Data Exchange (ETDEWEB)

    Stoulil, J., E-mail: jan.stoulil@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague (Czech Republic); Kaňok, J.; Kouřil, M. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague (Czech Republic); Parschová, H. [Department of Power Engineering, Institute of Chemical Technology, Prague (Czech Republic); Novák, P. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague (Czech Republic)

    2013-11-15

    Highlights: •The corrosion rate is not significantly dependent on temperature. •Corrosion products at higher temperatures have different color. •Corrosion products at higher temperatures are more compact. •The change in corrosion products nature is reversible. -- Abstract: The study focuses on the porosity of layers of corrosion products and its impact on corrosion rate of carbon steel in moist bentonite. Measurements were performed in an aggressive Czech type of bentonite – Rokle B75 at temperatures of 90 and 40 °C. Aggressiveness of B75 bentonite consists in low content of chlorides. Presence of chlorides in pore solution allows formation of more protective magnetite. The evaluation was made by electrochemical techniques (red/ox potential, open circuit potential, linear polarization resistance, impedance spectroscopy) and resistometric sensor measurements. The result imply that the higher the temperature the more compact is the layer of corrosion products that slightly decelerates corrosion rate compared to the state at 40 °C. The state of corrosion products at both temperatures is reversible.

  17. Deposition and incorporation of corrosion product to primary coolant suppressing method

    International Nuclear Information System (INIS)

    Tsuzuki, Yasuo; Hasegawa, Naoyoshi; Fujioka, Tsunaaki.

    1992-01-01

    In a PWR type nuclear power plant, the concentration of dissolved nitrogen in primary coolants is increased by controlling the nitrogen partial pressure in a volume controlling tank gas phase portion or addition of water in a primary system water supply tank containing dissolved nitrogen to a primary system. Then ammonium is formed by a reaction with hydrogen dissolved in the primary coolants in the field of radiation rays, to control the concentration of ammonium in the coolants within a range from 0.5 to 3.5 ppm, and operate the power plant. As a result, deposition and incorporation of corrosion products to the structural materials of the primary system equipments during plant operation (pH 6.8 to 8.0) are suppressed. In other words, deposition of particulate corrosion products on the surface of fuel cladding tubes and the inner surface of pipelines in the primary system main equipments is prevented and incorporation of ionic radioactive corrosion products to the oxide membranes on the inner surface of the pipelines of the primary system main equipments is suppressed, to greatly reduce the radiation dose rate of the primary system pipelines. Thus, operator's radiation exposure can be decreased upon shut down of the plant. (N.H.)

  18. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    Science.gov (United States)

    Totemeier, Terry C.; Pahl, Robert G.; Frank, Steven M.

    The oxidation behavior of hydride-bearing uranium metal corrosion products from Zero Power Physics Reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2, Ar-9%O 2, and Ar-20%O 2. Ignition of corrosion product samples from two moderately corroded plates was observed between 125°C and 150°C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride.

  19. Design of dry scroll vacuum pumping system for efficient pumping of corrosive gas at medium vacuum range

    International Nuclear Information System (INIS)

    Banerjee, I.; Chandresh, B.G.; Guha, K.C.; Sarkar, S.

    2015-01-01

    Dry vacuum pumping systems attracts many applications because of its inherent capability of corrosion free pumping. It becomes a common trait of application in Thermo Nuclear Fusion, Semi conductor, Isotope separation industries etc. Thermo nuclear fusion requires a train of specially sealed roots pump backed by suitable capacity dry screw or reciprocating pump. Similarly corrosive fluoride gas pumping requires hermetically sealed specially designed dry scroll vacuum pump. Plant emergency operation however involves train of specially sealed roots pump backed with scroll pump for faster evacuation. In our attempt an indigenously designed scroll pump and associated system are designed to pump corrosive gases in a way to confine the corrosion product within the system. In order to execute the design, a numerical code for low pressure application is developed

  20. Corrosion of API 5L B and X52 in crude oil/water/gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Perdomo, J.J.; Gonzalez, J.J.; Viloria, A.; De Veer, H.; De Abreu, Y.

    2000-02-01

    Laboratory and field tests were conducted to evaluate the corrosion behavior of API 5L grade B and X52 steels using Furrial's crude oil in the presence of water and gas containing carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S). The results suggest that the corrosiveness of this crude oil/water/gas mixture is not detrimental to either steel. However, pitting corrosion was observed. The low general corrosion rates measured were attributed to the natural inhibiting properties of the crude oil.

  1. Study on corrosion products from ear piercing studs

    International Nuclear Information System (INIS)

    Rogero, Sizue O.; Costa, Isolda; Saiki, Mitiko

    2000-01-01

    In this work instrumental neutron activation analysis was applied to analyse elemental composition of commercial gold coated ear piercing substrate and metals present in their corrosion products. The cytotoxic effect was also verified in these corrosion product extracts, probably, due to the lixiviation of Ni present in high quantity in their substrates. The analysis of gold coated ear piercing surfaces by scanning electron microscopy before and after the corrosion test showed coating defects and the occurrence of corrosion process. (author)

  2. Device of capturing for radioactive corrosion products

    International Nuclear Information System (INIS)

    Ohara, Atsushi; Fukushima, Kimichika.

    1984-01-01

    Purpose: To increase the area of contact between the capturing materials for the radioactive corrosion products contained in the coolants and the coolants by producing stirred turbulent flows in the coolant flow channel of LMFBR type reactors. Constitution: Constituent materials for the nuclear fuel elements or the reactor core structures are activated under the neutron irradiation, corroded and transferred into the coolants. While capturing devices made of pure metal nickel are used for the elimination of the corrosion products, since the coolants form laminar flows due to the viscosity thereof near the surface of the capturing materials, the probability that the corrosion products in the coolants flowing through the middle portion of the channel contact the capturing materials is reduced. In this invention, rotating rolls and flow channels in which the balls are rotated are disposed at the upstream of the capturing device to forcively disturb the flow of the liquid sodium, whereby the radioactive corrosion products can effectively be captured. (Kamimura, M.)

  3. Metabolic Capability of a Predominant Halanaerobium sp. in Hydraulically Fractured Gas Wells and Its Implication in Pipeline Corrosion

    Science.gov (United States)

    Liang, Renxing; Davidova, Irene A.; Marks, Christopher R.; Stamps, Blake W.; Harriman, Brian H.; Stevenson, Bradley S.; Duncan, Kathleen E.; Suflita, Joseph M.

    2016-01-01

    Microbial activity associated with produced water from hydraulic fracturing operations can lead to gas souring and corrosion of carbon-steel equipment. We examined the microbial ecology of produced water and the prospective role of the prevalent microorganisms in corrosion in a gas production field in the Barnett Shale. The microbial community was mainly composed of halophilic, sulfidogenic bacteria within the order Halanaerobiales, which reflected the geochemical conditions of highly saline water containing sulfur species (S2O32-, SO42-, and HS-). A predominant, halophilic bacterium (strain DL-01) was subsequently isolated and identified as belonging to the genus Halanaerobium. The isolate could degrade guar gum, a polysaccharide polymer used in fracture fluids, to produce acetate and sulfide in a 10% NaCl medium at 37°C when thiosulfate was available. To mitigate potential deleterious effects of sulfide and acetate, a quaternary ammonium compound was found to be an efficient biocide in inhibiting the growth and metabolic activity of strain DL-01 relative to glutaraldehyde and tetrakis (hydroxymethyl) phosphonium sulfate. Collectively, our findings suggest that predominant halophiles associated with unconventional shale gas extraction could proliferate and produce sulfide and acetate from the metabolism of polysaccharides used in hydraulic fracturing fluids. These metabolic products might be returned to the surface and transported in pipelines to cause pitting corrosion in downstream infrastructure. PMID:27446028

  4. High Temperature Corrosion under Laboratory Conditions Simulating Biomass-Firing: A Comprehensive Characterization of Corrosion Products

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2014-01-01

    characterization of the corrosion products. The corrosion products consisted of three layers: i) the outermost layer consisting of a mixed layer of K2SO4 and FexOy on a partly molten layer of the initial deposit, ii) the middle layer consists of spinel (FeCr2O4) and Fe2O3, and iii) the innermost layer is a sponge......-like Ni3S2 containing layer. At the corrosion front, Cl-rich protrusions were observed. Results indicate that selective corrosion of Fe and Cr by Cl, active oxidation and sulphidation attack of Ni are possible corrosion mechanisms....

  5. Microbiologically Influenced Corrosion (MIC) in the Oil and Gas Industry

    DEFF Research Database (Denmark)

    Skovhus, Torben Lund; Eckert, Rickard

    2015-01-01

    Microbiologically influenced corrosion (MIC) is a serious corrosion threat that impacts the operating integrity and reliability of assets in the oil and gas, maritime, power generation, and other industries. Yet MIC is also commonly misunderstood, leading to ineffective mitigation programs, wasted...... and implement improved mitigation strategies and thereby reduce operating risk. Our experts provide guidance in applying the latest state-of-the-art molecular microbiological methods (MMM) and industry standards to properly diagnose MIC in operating assets and on failed components. With this understanding, MIC...... can be effectively addressed as part of the overall Corrosion Management System (CMS)....

  6. Effect of flue gas composition on deposit induced high temperature corrosion under laboratory conditions mimicking biomass firing. Part II: Exposures in SO2 containing atmospheres

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Kiamehr, Saeed; Montgomery, Melanie

    2017-01-01

    SO2. Scanning electron microscopy (SEM), energy dispersive X-rayspectroscopy (EDS) and X-ray diffraction (XRD) techniques werecomplimentarily applied to characterize the resulting corrosion products. Apartially molten K2SO4-layer formed on KCl coated specimens, and corrosionresulted in localized......In biomass fired power plants, the fast corrosion of superheaters is facilitatedby the presence of corrosive flue gas species, for example, SO2, which arereleased during combustion. To understand the role of the gas species on thecorrosion process, comparative laboratory exposures of deposit (KCl......)-coatedand deposit-free austenitic stainless steel (TP 347H FG) samples to gas mixturescontaining SO2 was carried out, under conditions relevant to biomass-firing.Exposures were conducted isothermally at 560 8C for 72 h, in oxidizingsulphidizing,and oxidizing-sulphidizing-chlorinating gas mixtures containing60 ppmv...

  7. Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn-Al-Mg coatings on steel

    International Nuclear Information System (INIS)

    Volovitch, P.; Vu, T.N.; Allely, C.; Abdel Aal, A.; Ogle, K.

    2011-01-01

    Highlights: → Origins of better corrosion resistance of ZnAlMg coatings than galvanized steel. → Comparative study of corrosion products formed on ZnAlMg, ZnMg and Zn coatings. → Modeling of dissolution and precipitation stages of corrosion. → At early stages Mg stabilizes protective zinc basic salts during dry-wet cycling. → At later stages Al dissolves at high pH forming protective layered double hydroxides. - Abstract: Corrosion products are identified on Zn, ZnMg and ZnAlMg coatings in cyclic corrosion tests with NaCl or Na 2 SO 4 containing atmospheres. For Mg-containing alloys the improved corrosion resistance is achieved by stabilization of protective simonkolleite and zinc hydroxysulfate. At later stages, the formation of layered double hydroxides (LDH) is observed for ZnAlMg. According to thermodynamic modeling, Mg 2+ ions bind the excess of carbonate or sulfate anions preventing the formation of soluble or less-protective products. A preferential dissolution of Zn and Mg at initial stages of corrosion is confirmed by in situ dissolution measurement. The physicochemical properties of different corrosion products are compared.

  8. Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry-Overview and a North Sea case study.

    Science.gov (United States)

    Skovhus, Torben Lund; Eckert, Richard B; Rodrigues, Edgar

    2017-08-20

    Microbiologically influenced corrosion (MIC) is the terminology applied where the actions of microorganisms influence the corrosion process. In literature, terms such as microbial corrosion, biocorrosion, microbially influenced/induced corrosion, and biodegradation are often applied. MIC research in the oil and gas industry has seen a revolution over the past decade, with the introduction of molecular microbiological methods: (MMM) as well as new industry standards and procedures of sampling biofilm and corrosion products from the process system. This review aims to capture the most important trends the oil and gas industry has seen regarding MIC research over the past decade. The paper starts out with an overview of where in the process stream MIC occurs - from the oil reservoir to the consumer. Both biotic and abiotic corrosion mechanisms are explained in the context of managing MIC using a structured corrosion management (CM) approach. The corrosion management approach employs the elements of a management system to ensure that essential corrosion control activities are carried out in an effective, sustainable, well-planned and properly executed manner. The 3-phase corrosion management approach covering of both biotic and abiotic internal corrosion mechanisms consists of 1) corrosion assessment, 2) corrosion mitigation and 3) corrosion monitoring. Each of the three phases are described in detail with links to recent field cases, methods, industry standards and sampling protocols. In order to manage the corrosion threat, operators commonly use models to support decision making. The models use qualitative, semi-quantitative or quantitative measures to help assess the rate of degradation caused by MIC. The paper reviews four existing models for MIC Threat Assessment and describe a new model that links the threat of MIC in the oil processing system located on an offshore platform with a Risk Based Inspection (RBI) approach. A recent field case highlights and explains

  9. EVIDENCE OF CORROSIVE GAS FORMED BY RADIOLYSIS OF CHLORIDE SALTS IN PLUTONIUM-BEARING MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, K.; Louthan, M.

    2010-02-01

    Corrosion and pitting have been observed in headspace regions of stainless steel containers enclosing plutonium oxide/salt mixtures. These observations are consistent with the formation of a corrosive gas, probably HCl, and transport of that gas to the headspace regions of sealed containers. The NH{sub 4}Cl films found on the walls of the sealed containers is also indicative of the presence of HCl gas. Radiolysis of hydrated alkaline earth salts is the probable source of HCl.

  10. Study on influence of native oxide and corrosion products on atmospheric corrosion of pure Al

    International Nuclear Information System (INIS)

    Liu, Yanjie; Wang, Zhenyao; Ke, Wei

    2014-01-01

    Highlights: •Corrosion products layer is only formed in coastal atmosphere. •In coastal atmosphere, rate controlling step is diffusion process. •In rural atmosphere, rate controlling step is charge transfer process. •Pitting area increases greatly in coastal site, but slightly in rural site. -- Abstract: Effects of native oxide and corrosion products on atmospheric corrosion of aluminium in rural and coastal sites were studied by electrochemical impedance spectroscopy (EIS), open-circuit potential (OCP) and scanning electron microscope (SEM) techniques after outdoor exposure. In the rural atmosphere, only the compact, adhesive native oxide layer exists, and the rate controlling step is diffusion process, while in the coastal atmosphere, another loose, inadhesive corrosion products layer exists, and a charge transfer process controls the corrosion process. The pitting area in the coastal atmosphere increases over time more obviously than that in the rural atmosphere

  11. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Serdar, Marijana [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Meral, Cagla [Middle East Technical University, Department of Civil Engineering, Ankara (Turkey); Kunz, Martin [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Bjegovic, Dubravka [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Wenk, Hans-Rudolf [Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 (United States); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-05-15

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM.

  12. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    International Nuclear Information System (INIS)

    Serdar, Marijana; Meral, Cagla; Kunz, Martin; Bjegovic, Dubravka; Wenk, Hans-Rudolf; Monteiro, Paulo J.M.

    2015-01-01

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM

  13. Corrosion-product transport, oxidation state and remedial measures

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Brett, M.E.; Tapping, R.L.

    1998-10-01

    The issues associated with monitoring and controlling corrosion-product transport (CPT) in the balance-of-plant (BOP) and steam generators (SG) of CANDU stations are briefly reviewed. Efforts are focused on minimizing corrosion of carbon steel, which is used extensively in the CANDU primary and secondary systems. Emphasis is placed on the corrosion-product oxidation state as a monitor of water chemistry effectiveness and as a monitor of system corrosion effects. The discussion is based mostly on the results of observations from Ontario Hydro plants, and their comparisons with pressurized-water reactors. The effects of low oxygen and elevated hydrazine chemistry are reviewed, as well as the effects of layup and various startup conditions. Progress in monitoring electrochemical potential (ECP) at Ontario Hydro plants and its relationship to the oxidation state of corrosion products is reviewed. Observations on CPT on the primary side of SGs are also discussed. (author)

  14. Utilization of on-line corrosion monitoring in the flue gas cleaning system

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Nielsen, Lars V.; Petersen, Michael B.

    2015-01-01

    fan. The corrosion rates measured with respect to time were correlated to plant data such as load, temperature, gas composition, water content as well as change in the fuel used. From these results it is clear that many shutdowns/start-ups influence corrosion and therefore cause decreased lifetime...

  15. Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects

    International Nuclear Information System (INIS)

    Chen, G.; Andries, J.; Luo, Z.; Spliethoff, H.

    2003-01-01

    The conventional biomass pyrolysis/gasification process for production of medium heating value gas for industrial or civil applications faces two disadvantages, i.e. low gas productivity and the accompanying corrosion of downstream equipment caused by the high content of tar vapour contained in the gas phase. The objective of this paper is to overcome these disadvantages, and therefore, the effects of the operating parameters on biomass pyrolysis are investigated in a laboratory setup based on the principle of keeping the heating value of the gas almost unchanged. The studied parameters include reaction temperature, residence time of volatile phase in the reactor, physico-chemical pretreatment of biomass particles, heating rate of the external heating furnace and improvement of the heat and mass transfer ability of the pyrolysis reactor. The running temperature of a separate cracking reactor and the geometrical configuration of the pyrolysis reactor are also studied. However, due to time limits, different types of catalysts are not used in this work to determine their positive influences on biomass pyrolysis behaviour. The results indicate that product gas production from biomass pyrolysis is sensitive to the operating parameters mentioned above, and the product gas heating value is high, up to 13-15 MJ/N m 3

  16. Carbon Dioxide Corrosion:

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup

    2008-01-01

    CO2 corrosion is a general problem in the industry and it is expensive. The focus of this study is an oil gas production related problem. CO2 corrosion is observed in offshore natural gas transportation pipelines. A general overview of the problem is presented in chapter 1. The chemical system...... with the basic thermodynamics of electrolytes in chapter 2, the extension and general description of electrolyte mass transport in chapter 3, and the electrochemical kinetics of corrosion in chapter 4. A literature overview of CO2 corrosion is shown in chapter 5 and possible extensions of the models...... and validated against heat capacity data. The model is also fitted to experimental data produced and shown in chapter 8 for SLE in the Na2CO3-NaHCO3-MEG-H2O system. The application of the above model is shown in chapter 9. Here the thermodynamic correction factors are calculated. These show how the diffusion...

  17. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    Science.gov (United States)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  18. The impact of corrosion on oil and gas industry

    International Nuclear Information System (INIS)

    Kermani, M.B.; Harrop, D.

    1995-01-01

    The impact of corrosion on the oil industry has been viewed in terms of its effect on both capital and operational expenditures (CAPEX and OPEX) and health, safety and the environment (HSE). To fight against the high cost and the impact of corrosion within the oil industry, an overview of topical research and engineering activities is presented. This covers corrosion and metallurgy issues related to drilling, production, transportation and refinery activities

  19. High temperature corrosion during biomass firing: improved understanding by depth resolved characterisation of corrosion products

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2015-01-01

    changes within the near surface region (covering both the deposit and the steel surface). Such cross-section analysis was further complemented by plan view investigations (additionally involving X-ray diffraction) combined with removal of the corrosion products. Improved insights into the nature......The high temperature corrosion of an austenitic stainless steel (TP 347H FG), widely utilised as a superheater tube material in Danish power stations, was investigated to verify the corrosion mechanisms related to biomass firing. KCl coated samples were exposed isothermally to 560 degrees C...... of the corrosion products as a function of distance from the deposit surface were revealed through this comprehensive characterisation. Corrosion attack during simulated straw-firing conditions was observed to occur through both active oxidation and sulphidation mechanisms....

  20. Development of corrosion defect assessment program for API X65 gas pipelines

    International Nuclear Information System (INIS)

    Choi, Jae Boong; Kim, Youn Ho; Kim, Young Jin; Goo, Bon Geol; Kim, Yound Pyo; Baek, Jong Hyun; Kim, Woo Sik

    2001-01-01

    Pipelines have the highest capacity and are the safest and the least environmentally disruptive way for gas or oil transmission. Recently, failures due to corrosion defects have become of major concern in maintaining pipeline integrity. A number of solutions have been developed for the assessment of remaining strength of corroded pipelines. However, these solutions are known to be dependent on material properties and pipeline geometries. In this paper, a fitness-for-purpose type limit load solution for corroded gas pipelines made of the X65 steel is proposed. For this purpose, a series of burst tests with various types of corrosion defects are performed. Finite element simulations are carried out to derive an appropriate failure criterion. And then, further, extensive finite element analyses are performed to obtain the FFP type limit load solution for corroded X65 gas pipelines as a function of defect depth, length and pipeline geometry. And also, a window based computer program for the assessment of corrosion defect, which is named as COPAP(COrroded Pipeline Assessment Program) has been developed on the basis of proposed limit load solution

  1. Removal of corrosion products of construction materials in heat carrier

    International Nuclear Information System (INIS)

    1975-01-01

    A review of reported data has been made on the removal of structural material corrosion products into the heat-carrying agent of power reactors. The corrosion rate, and at the same time, removal of corrosion products into the heat-carrying agent (water) decreases with time. Thus, for example, the corrosion rate of carbon steel in boiling water at 250 deg C and O 2 concentration of 0.1 mg/1 after 3000 hr is 0.083 g/m 2 . day; after 9000 hr the corrosion rate has been reduced 2.5 times. Under static conditions the transfer rate of corrosion products into water has been smaller than in the stream and also depends on time. The corrosion rate of carbon steel under nuclear plant operating conditions is almost an order higher over that of steel Kh18N10T

  2. Simulation study on insoluble granular corrosion products deposited in PWR core

    International Nuclear Information System (INIS)

    Yang Xu; Zhou Tao; Ru Xiaolong; Lin Daping; Fang Xiaolu

    2014-01-01

    In the operation of reactor, such as fuel rods, reactor vessel internals etc. will be affected by corrosion erosion of high pressure coolant. It will produce many insoluble corrosion products. The FLUENT software is adopted to simulate insoluble granular corrosion products deposit distribution in the reactor core. The fluid phase uses the standard model to predict the flow field in the channel and forecast turbulence variation in the near-wall region. The insoluble granular corrosion products use DPM (Discrete Phase Model) to track the trajectory of the particles. The discrete phase model in FLUENT follows the Euler-Lagrange approach. The fluid phase is treated as a continuum by solving the Navier-Stokes equations, while the dispersed phase is solved by tracking a large number of particles through the calculated flow field. Through the study found, Corrosion products particles form high concentration area near the symmetry, and the entrance section of the corrosion products particles concentration is higher than export section. Corrosion products particles deposition attached on large area for the entrance of the cladding, this will change the core neutron flux distribution and the thermal conductivity of cladding material, and cause core axial offset anomaly (AOA). Corrosion products particles dot deposit in the outlet of cladding, which can lead to pitting phenomenon in a sheath. Pitting area will cause deterioration of heat transfer, destroy the cladding integrity. In view of the law of corrosion products deposition and corrosion characteristics of components in the reactor core. this paper proposes regular targeted local cleanup and other mitigation measures. (authors)

  3. Studies on dissolution characteristics of simulated corrosion products on pressurized water reactor primary coolant loops. Pt.2: Cobalt simulated corrosion product

    International Nuclear Information System (INIS)

    Li Shan; Zhou Xianyu

    1997-01-01

    The studies on the dissolution characteristics of simulated corrosion product of cobalt on pressurized water reactor primary coolant loops in aqueous solution of citric acid, hydrogen peroxide and citric acid-hydrogen peroxide have been performed. The results show that the portion of the dissolved simulated corrosion product of cobalt in citric acid aqueous solution clearly increases with a rise in citric acid concentration and is ten times above the corresponding value of iron. The portion of the products that dissolve is the largest at pH 3.00 in the pH range of 2.33∼4.50 and at 70 degree C in the range of 60∼80 degree C. It is shown that the portion of the dissolved simulated corrosion product of cobalt in hydrogen peroxide aqueous solution is smaller than the corresponding value in citric acid, and that the portion of the dissolved simulated corrosion product of cobalt in aqueous solution of hydrogen peroxide-citric acid is larger than the corresponding value in single citric acid aqueous solution

  4. A non-destructive test method to monitor corrosion products and corrosion-induced cracking in reinforced cement based materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Peterova, Adela

    2011-01-01

    ) was conducted to describe the impact of water-to-cement ratio and corrosion current density (i.e., corrosion rate) on the reinforcement corrosion process. Focus was placed, in particular on the determination of the corrosion accommodating region (CAR) and time to corrosion-induced cracking. Experimental results...... showed that x-ray attenuation measurements allow determination of the actual concentrations of corrosion products averaged through the specimen thickness. The total mass loss of steel measured by x-ray attenuation was found to be in very good agreement with the calculated mass loss obtained by Faraday......’s law. Furthermore, experimental results demonstrated that the depth of penetration of corrosion products as well as time to corrosion-induced cracking is varying for the different water-to-cement ratios and applied corrosion current densities....

  5. Concrete Cracking Prediction Including the Filling Proportion of Strand Corrosion Products

    Science.gov (United States)

    Wang, Lei; Dai, Lizhao; Zhang, Xuhui; Zhang, Jianren

    2016-01-01

    The filling of strand corrosion products during concrete crack propagation is investigated experimentally in the present paper. The effects of stirrups on the filling of corrosion products and concrete cracking are clarified. A prediction model of crack width is developed incorporating the filling proportion of corrosion products and the twisting shape of the strand. Experimental data on cracking angle, crack width, and corrosion loss obtained from accelerated corrosion tests of concrete beams are presented. The proposed model is verified by experimental data. Results show that the filling extent of corrosion products varies with crack propagation. The rust filling extent increases with the propagating crack until a critical width. Beyond the critical width, the rust-filling extent remains stable. Using stirrups can decrease the critical crack width. Stirrups can restrict crack propagation and reduce the rust filling. The tangent of the cracking angle increases with increasing corrosion loss. The prediction of corrosion-induced crack is sensitive to the rust-filling extent. PMID:28772367

  6. Effect of fluid flow, pH and tobacco extracts concentration as organic inhibitors to corrosion characteristics of AISI 1045 steel in 3.5% NaCl environment containing CO2 gas

    Science.gov (United States)

    Kurniawan, Budi Agung; Pratiwi, Vania Mitha; Ahmadi, Nafi'ul Fikri

    2018-04-01

    Corrosion become major problem in most industries. In the oil and gas company, corrosion occurs because of reaction between steel and chemical species inside crude oil. Crude oil or nature gas provide corrosive species, such as CO2, O2, H2S and so on. Fluid containing CO2 gas causes CO2 corrosion which attack steel as well as other corrosion phenomena. This CO2 corrosion commonly called as sweet environment and produce FeCO3 as corrosion products. Fluid flow factor in pipelines during the oil and gas transportation might increase the rate of corrosion itself. Inhibitor commonly use used as corrosion protection because its simplicity in usage. Nowadays, organic inhibitor become main issue in corrosion protection because of biodegradable, low cost, and environmental friendly. This research tried to use tobacco leaf extract as organic inhibitor to control corrosion in CO2 environment. The electrolyte solution used was 3.5% NaCl at pH 4 and pH 7. Weight loss test results showed that the lowest corrosion rate was reach at 132.5 ppm inhibitor, pH 7 and rotational speed of 150 rpm with corrosion rate of 0.091 mm/y. While at pH 4, the lowest corrosion rate was found at rotational speed of 150 rpm with inhibitor concentration of 265 ppm and corrosion rate of 0.327 mm/y. FTIR results indicate the presence of nicotine functional groups on the steel surface. However, based on corrosion rate, it is believed that corrosion occurs, and FeCO3 was soluble in electrolyte. Tobacco leaf extract inhibitors worked by a physisorption mechanism, where tobacco inhibitors formed thin layer on the steel surface.

  7. Increased bioclogging and corrosion risk by sulfate addition during iodine recovery at a natural gas production plant.

    Science.gov (United States)

    Lim, Choon-Ping; Zhao, Dan; Takase, Yuta; Miyanaga, Kazuhiko; Watanabe, Tomoko; Tomoe, Yasuyoshi; Tanji, Yasunori

    2011-02-01

    Iodine recovery at a natural gas production plant in Japan involved the addition of sulfuric acid for pH adjustment, resulting in an additional about 200 mg/L of sulfate in the waste brine after iodine recovery. Bioclogging occurred at the waste brine injection well, causing a decrease in well injectivity. To examine the factors that contribute to bioclogging, an on-site experiment was conducted by amending 10 L of brine with different conditions and then incubating the brine for 5 months under open air. The control case was exposed to open air but did not receive additional chemicals. When sulfate addition was coupled with low iodine, there was a drastic increase in the total amount of accumulated biomass (and subsequently the risk of bioclogging) that was nearly six times higher than the control. The bioclogging-associated corrosion rate of carbon steel was 84.5 μm/year, which is four times higher than that observed under other conditions. Analysis of the microbial communities by denaturing gradient gel electrophoresis revealed that the additional sulfate established a sulfur cycle and induced the growth of phototrophic bacteria, including cyanobacteria and purple bacteria. In the presence of sulfate and low iodine levels, cyanobacteria and purple bacteria bloomed, and the accumulation of abundant biomass may have created a more conducive environment for anaerobic sulfate-reducing bacteria. It is believed that the higher corrosion rate was caused by a differential aeration cell that was established by the heterogeneous distribution of the biomass that covered the surface of the test coupons.

  8. Membrane-Coated Electrochemical Sensor for Corrosion Monitoring in Natural Gas Pipelines

    Directory of Open Access Journals (Sweden)

    J. Beck

    2017-07-01

    Full Text Available Electrochemical sensors can be used for a wide range of online in- situ process monitoring applications. However, the lack of a consistent electrolyte layer has previously limited electrochemical monitoring in gas and supercritical fluid streams. A solid state sensor is being designed that uses an ion conducting membrane to perform conductivity and corrosion measurements in natural gas pipelines up to 1000 psi. Initial results show that membrane conductivity measurements can be correlated directly to water content down to dew points of 1°C with good linearity. Corrosion monitoring can also be performed using methods such as linear polarization resistance and electrochemical impedance spectroscopy (EIS, though care must be taken in the electrode design to minimize deviation between sensors.

  9. Quantitative assessment of the effect of corrosion product buildup on occupational exposure

    International Nuclear Information System (INIS)

    Divine, J.R.

    1982-10-01

    The program was developed to provide a method for predicting occupational exposures caused by the deposition of radioactive corrosion products outside the core of the primary system of an operating power reactor. This predictive capability will be useful in forecasting total occupational doses during maintenance, inspection, decontamination, waste treatment, and disposal. In developing a reliable predictive model, a better understanding of the parameters important to corrosion product film formation, corrosion product transport, and corrosion product film removal will be developed. This understanding can lead to new concepts in reactor design to minimize the buildup and transport of radioactive corrosion products or to improve methods of operation. To achieve this goal, three objectives were established to provide: (1) criteria for acceptable coolant sampling procedures and sampling equipment that will provide data which will be used in the model development; (2) a quantitative assessment of the effect of corrosion product deposits on occupational exposure; and (3) a model which describes the influence of flow, temperature, coolant chemistry, construction materials, radiation, and other operating parameters on the transport and buildup of corrosion products

  10. Corrosion '98: 53. annual conference and exposition, proceedings

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    This conference was divided into the following sections: Corrosion in Gas Treating; Problems and Solutions in Commercial Building Water Systems; Green Corrosion/Scale Inhibitors; Atmospheric Corrosion; AIRPOL Update/98; Rubber Lining--Answers to Many Problems; Interference Problems; Environmental Assisted Cracking: Fundamental Research and Industrial Applications; Corrosion in Nuclear Systems; New Developments in Scale and Deposit Control; Corrosion and Corrosion Protection in the Transportation Industries; What's All the Noise About--Electrochemical That Is; Refining Industry Corrosion; Corrosion Problems in Military Hardware: Case Histories, Fixes and Lessons Learned; Cathodic Protection Test Methods and Instrumentation for Underground and On-grade Pipelines and Tanks; Recent Developments in Volatile Corrosion Inhibitors; Corrosion in Supercritical Fluids; Microbiologically Influenced Corrosion; Advances in Understanding and Controlling CO 2 Corrosion; Managing Corrosion with Plastics; Material Developments for Use in Exploration and Production Environments; Corrosion in Cold Regions; The Effect of Downsizing and Outsourcing on Cooling System Monitoring and Control Practices; New Developments in Mechanical and Chemical Industrial Cleaning; Mineral Scale Deposit Control in Oilfield Related Operations; Biocides in Cooling Water; Corrosion and Corrosion Control of Reinforced Concrete Structures; Materials Performance for Fossil Energy Conversion Systems; Marine corrosion; Thermal Spray--Coating and Corrosion Control; Flow Effects on Corrosion in Oil and Gas Production; Corrosion Measurement Technologies; Internal Pipeline Monitoring--Corrosion Monitoring, Intelligent Pigging and Leak Detection; Cathodic Protection in Natural Waters; Corrosion in Radioactive Liquid Waste Systems; On-line Hydrogen Permeation Monitoring Equipment and Techniques, State of the Art; Water Reuse and Recovery; Performance of Materials in High Temperature Environments; Advances in Motor

  11. Oxidation kinetics of reaction products formed in uranium metal corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T. C.

    1998-04-22

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O{sub 2} and Ar-20%O{sub 2} were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates.

  12. Oxidation kinetics of reaction products formed in uranium metal corrosion

    International Nuclear Information System (INIS)

    Totemeier, T. C.

    1998-01-01

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O 2 and Ar-20%O 2 were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates

  13. Evaluation of corrosion products formed by sulfidation as inhibitors of the naphthenic corrosion of AISI-316 steel

    Science.gov (United States)

    Sanabria-Cala, J. A.; Montañez, N. D.; Laverde Cataño, D.; Y Peña Ballesteros, D.; Mejía, C. A.

    2017-12-01

    Naphthenic acids present in oil from most regions worldwide currently stand as the main responsible for the naphthenic corrosion problems, affecting the oil-refining industry. The phenomenon of sulfidation, accompanying corrosion processes brought about by naphthenic acids in high-temperature refining plant applications, takes place when the combination of sulfidic acid (H2S) with Fe forms layers of iron sulphide (FeS) on the material surface, layers with the potential to protect the material from attack by other corrosive species like naphthenic acids. This work assessed corrosion products formed by sulfidation as inhibitors of naphthenic corrosion rate in AISI-316 steel exposed to processing conditions of simulated crude oil in a dynamic autoclave. Calculation of the sulfidation and naphthenic corrosion rates were determined by gravimetry. The surfaces of the AISI-316 gravimetric coupons exposed to acid systems; were characterized morphologically by X-Ray Diffraction (XRD) and X-ray Fluorescence by Energy Dispersive Spectroscopy (EDS) combined with Scanning Electron Microscopy (SEM). One of the results obtained was the determination of an inhibiting effect of corrosion products at 250 and 300°C, where lower corrosion rate levels were detected. For the temperature of 350°C, naphthenic corrosion rates increased due to deposition of naphthenic acids on the areas where corrosion products formed by sulfidation have lower homogeneity and stability on the surface, thus accelerating the destruction of AISI-316 steel. The above provides an initial contribution to oil industry in search of new alternatives to corrosion control by the attack of naphthenic acids, from the formation of FeS layers on exposed materials in the processing of heavy crude oils with high sulphur content.

  14. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    Science.gov (United States)

    Bhatt, R. B.; Kamat, H. S.; Ghosal, S. K.; de, P. K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 °C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance to pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constitutent phases, which are responsible for improved resistance to pitting corrosion.

  15. Deposition of corrosion products in-core

    International Nuclear Information System (INIS)

    Burrill, K.A.

    1994-11-01

    Data on corrosion product deposits on fuel sheaths are presented for a variety of operating conditions and water chemistries: boiling and non-boiling water; surface heat flux; pH, dissolved hydrogen concentration. Corrosion product behaviour in-core may be interpreted in terms of the solubility of magnetite and how it changes with water chemistry and temperature. A hypothesis of the deposition and release mechanisms was proposed in the 1970s in which particles deposited onto the sheath and subsequently dissolved in the heated water while being irradiated. Some of the deposition data may be interpreted using a model of these mechanisms. (author). 5 refs., 6 tabs., 8 figs

  16. Influence of the nitrogen gas addition in the Ar shielding gas on the erosion-corrosion of tube-to-tube sheet welds of hyper duplex stainless steel

    International Nuclear Information System (INIS)

    Kim, Hye-Jin; Jeon, Soon-Hyeok; Kim, Soon-Tae; Lee, In-Sung; Park, Yong-Soo

    2014-01-01

    Duplex stainless steels with nearly equal fraction of the ferrite(α) phase and austenite(γ) phase have been increasingly used for various applications such as power plants, desalination facilities due to their high resistance to corrosion, good weldability, and excellent mechanical properties. Hyper duplex stainless steel (HDSS) is defined as the future duplex stainless steel with a pitting resistance equivalent (PRE= wt.%Cr+3.3(wt.%Mo+0.5wt.%W)+30wt.%N) of above 50. However, when HDSS is welded with gas tungsten arc (GTA), incorporation of nitrogen in the Ar shielding gas are very important because the volume fraction of α-phase and γ-phase is changed and harmful secondary phases can be formed in the welded zone. In other words, the balance of corrosion resistance between two phases and reduction of Cr 2 N are the key points of this study. The primary results of this study are as follows. The addition of N 2 to the Ar shielding gas provides phase balance under weld-cooling conditions and increases the transformation temperature of the α-phase to γ-phase, increasing the fraction of γ-phase as well as decreasing the precipitation of Cr2N. In the anodic polarization test, the addition of nitrogen gas in the Ar shielding gas improved values of the electrochemical parameters, compared to the Pure Ar. Also, in the erosion-corrosion test, the HDSS welded with shielding gas containing N 2 decreased the weight loss, compared to HDSS welded with the Ar pure gas. This result showed the resistance of erosion-corrosion was increased due to increasing the fraction of γ-phase and the stability of passive film according to the addition N 2 gas to the Ar shielding gas. As a result, the addition of nitrogen gas to the shielding gas improved the resistance of erosion-corrosion

  17. Influence of the nitrogen gas addition in the Ar shielding gas on the erosion-corrosion of tube-to-tube sheet welds of hyper duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye-Jin; Jeon, Soon-Hyeok; Kim, Soon-Tae; Lee, In-Sung; Park, Yong-Soo [Yonsei University, Seoul (Korea, Republic of)

    2014-03-15

    Duplex stainless steels with nearly equal fraction of the ferrite(α) phase and austenite(γ) phase have been increasingly used for various applications such as power plants, desalination facilities due to their high resistance to corrosion, good weldability, and excellent mechanical properties. Hyper duplex stainless steel (HDSS) is defined as the future duplex stainless steel with a pitting resistance equivalent (PRE= wt.%Cr+3.3(wt.%Mo+0.5wt.%W)+30wt.%N) of above 50. However, when HDSS is welded with gas tungsten arc (GTA), incorporation of nitrogen in the Ar shielding gas are very important because the volume fraction of α-phase and γ-phase is changed and harmful secondary phases can be formed in the welded zone. In other words, the balance of corrosion resistance between two phases and reduction of Cr{sub 2}N are the key points of this study. The primary results of this study are as follows. The addition of N{sub 2} to the Ar shielding gas provides phase balance under weld-cooling conditions and increases the transformation temperature of the α-phase to γ-phase, increasing the fraction of γ-phase as well as decreasing the precipitation of Cr2N. In the anodic polarization test, the addition of nitrogen gas in the Ar shielding gas improved values of the electrochemical parameters, compared to the Pure Ar. Also, in the erosion-corrosion test, the HDSS welded with shielding gas containing N{sub 2} decreased the weight loss, compared to HDSS welded with the Ar pure gas. This result showed the resistance of erosion-corrosion was increased due to increasing the fraction of γ-phase and the stability of passive film according to the addition N{sub 2} gas to the Ar shielding gas. As a result, the addition of nitrogen gas to the shielding gas improved the resistance of erosion-corrosion.

  18. Corrosion in the off-gas system of a radioactive-waste incinerator

    International Nuclear Information System (INIS)

    Jenkins, C.F.; Peters, J.J.

    1987-01-01

    Corrosion in a low-level radioactive-waste incinerator off-gas system at the Department of Energy's Savannah River Plant is discussed. Severe corrosive attack and failure of an alloy 600 part exposed to high-temperature (>1000 0 C) gases was observed. Rapid attack of carbon steel components, and cracking of austenitic stainless steel parts also occurred at locations where lower gas temperatures and periodic condensate exposure occurred. Investigation showed HCl, SO 2 , SO 3 and phosphorus-oxides were present and contributed to the failures. Mechanisms of high-temperature failure include alloy separation and reactions with phosphorus. Coupons placed in the exhaust stream have provided information for selection of future materials of construction for system components. Several nickel- and iron-base alloys, and a stainless steel with an aluminum-diffusion coating were investigated

  19. Corrosion at system chimneys made of CrNi-steels

    Energy Technology Data Exchange (ETDEWEB)

    Pajonk, Gunther [Institute of Materials Testing of Northrhine-Westfalia, D-44285 Dortmund (Germany)

    2004-07-01

    Names like 'chimney' und 'funnel' usually identify flue gas devices made of bricks. Much less known is the fact that chimney elements are still manufactured from alloys. The following article describes the particular demands ruled by legislation on building pro-ducts, just as the consequences resulting from corrosion loads by flue gas condensates. Difficulties caused by manufacturing and construction are primarily discussed. Furthermore a test procedure is introduced that allows to catch and correlate corrosion loads and technical designs systematically to corrosion behaviour and service life of flue gas devices. For the first time a tool for active quality assurance has been given by this test rig allowing to recognize construction errors systematically. This way, manufacturers of system chimneys and flue liners are enabled to optimize their products applications going ahead to the respective requests of the market. (authors)

  20. Corrosion and anticorrosion. Industrial practice

    International Nuclear Information System (INIS)

    Beranger, G.; Mazille, H.

    2002-01-01

    This book comprises 14 chapters written with the collaboration of about 50 French experts of corrosion. It is complementary to another volume entitled 'corrosion of metals and alloys' and published by the same editor. This volume comprises two parts: part 1 presents the basic notions of corrosion phenomena, the properties of surfaces, the electrochemical properties of corrosion etc.. Part 2 describes the most frequent forms of corrosion encountered in industrial environments and corresponding to specific problems of protection: marine environment, atmospheric corrosion, galvanic corrosion, tribo-corrosion, stress corrosion etc.. The first 8 chapters (part 1) treat of the corrosion problems encountered in different industries and processes: oil and gas production, chemical industry, phosphoric acid industry, PWR-type power plants, corrosion of automobile vehicles, civil engineering and buildings, corrosion of biomaterials, non-destructive testing for the monitoring of corrosion. The other chapters (part 2) deal with anticorrosion and protective coatings and means: choice of materials, coatings and surface treatments, thick organic coatings and enamels, paints, corrosion inhibitors and cathodic protection. (J.S.)

  1. Quantifying movements of corrosion products in reinforced concrete using x-ray attenuation measurements

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Michel, Alexander; Stang, Henrik

    2011-01-01

    Corrosion of steel reinforcement, embedded in concrete, may substantially degrade concrete structures due to the expansive nature of corrosion products. Expansion of corrosion products cause tensile stresses to develop and cracks to form in concrete. Extensive research has focused on corrosion...... of corrosion products move into the concrete without generating tensile stresses and cracks in the concrete. Typically, corrosion products are thought to occupy pores, interfacial defects, and/or air voids located near the concrete-steel interface and stresses develop only after filling of these pores. Further....... X-ray attenuation measurements are also capable of detecting cracks. Therefore, this approach provides a direct measurement of the amount and location of reinforcement corrosion products required to induce cracking. Results of a parametric investigation on the impact of water-to-cement ratio (0...

  2. Corrosion products study of alcohol by Mossbauer spectroscopy

    International Nuclear Information System (INIS)

    Velazquez, R.; Gil de Larre, M.

    1995-01-01

    Simulated corrosion essays in alcohol is presented and corrosion products of storage tanks (CAPASA) were analyzed. The analysis by Mossbauer absortion and transmission spectroscopy shows the formation of hematite substratum in the rust of the storage tanks of carburetant and burning alcohol. In the sample of corrosion with strong rum shows the formation of lepidocrocite and with destilled water besides of lepidocrocite, magnetite (Fe3 O4) is detected

  3. Temperature factors effect on occurrence of stress corrosion cracking of main gas pipeline

    Science.gov (United States)

    Nazarova, M. N.; Akhmetov, R. R.; Krainov, S. A.

    2017-10-01

    The purpose of the article is to analyze and compare the data in order to contribute to the formation of an objective opinion on the issue of the growth of stress corrosion defects of the main gas pipeline. According to available data, a histogram of the dependence of defects due to stress corrosion on the distance from the compressor station was constructed, and graphs of the dependence of the accident density due to stress corrosion in the winter and summer were also plotted. Data on activation energy were collected and analyzed in which occurrence of stress corrosion is most likely constructed, a plot of activation energy versus temperature is plotted, and the process of occurrence of stress corrosion by the example of two different grades of steels under the action of different temperatures was analyzed.

  4. Corrosion products of reinforcement in concrete in marine and industrial environments

    International Nuclear Information System (INIS)

    Vera, R.; Villarroel, M.; Carvajal, A.M.; Vera, E.; Ortiz, C.

    2009-01-01

    The corrosion products formed on embedded steel in concrete under simulated marine and industrial conditions and natural marine environment were studied. A 0.50 water/cement ratio concrete was used and 3.5% NaCl and 180 g L -1 of H 2 SO 4 with 70 ppm of chloride ions solutions were used to simulate the synthetic medium. The initial electrochemical variables of the steel and pH, chlorides and sulfates profiles were measured according to the concrete depth. The morphology of the corrosive attack was determined via scanning electron microscopy (SEM), and the composition of the corrosion products was determined using an X-ray analyzer and an X-ray diffractometer (XRD). The protective power of the corrosion products was evaluated through anodic polarization curves in a saturated Ca(OH) 2 solution. The results from XRD and SEM show that all the resulting corrosion products correspond to lepidocrocite, goethite and magnetite mixtures; moreover, akaganeite was also identified under natural and simulated marine environments. Siderite was only detected in samples exposed to a natural marine environment. Concerning the protective nature of the corrosion products, these show lower performance in a simulated industrial environment, where the corrosion rate of the steel is up to 1.48 μm year -1

  5. Corrosion products of reinforcement in concrete in marine and industrial environments

    Energy Technology Data Exchange (ETDEWEB)

    Vera, R. [Instituto de Quimica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Avenida Brasil 2950, Casilla 4059, Valparaiso (Chile)], E-mail: rvera@ucv.cl; Villarroel, M. [Instituto de Quimica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Avenida Brasil 2950, Casilla 4059, Valparaiso (Chile); Carvajal, A.M. [Facultad de Ingenieria, Escuela de Construccion Civil, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, Macul, Santiago (Chile); Vera, E.; Ortiz, C. [Universidad Pedagogica y Tecnologica de Colombia, Avenida Central Norte, Km 2, Tunja (Colombia)

    2009-03-15

    The corrosion products formed on embedded steel in concrete under simulated marine and industrial conditions and natural marine environment were studied. A 0.50 water/cement ratio concrete was used and 3.5% NaCl and 180 g L{sup -1} of H{sub 2}SO{sub 4} with 70 ppm of chloride ions solutions were used to simulate the synthetic medium. The initial electrochemical variables of the steel and pH, chlorides and sulfates profiles were measured according to the concrete depth. The morphology of the corrosive attack was determined via scanning electron microscopy (SEM), and the composition of the corrosion products was determined using an X-ray analyzer and an X-ray diffractometer (XRD). The protective power of the corrosion products was evaluated through anodic polarization curves in a saturated Ca(OH){sub 2} solution. The results from XRD and SEM show that all the resulting corrosion products correspond to lepidocrocite, goethite and magnetite mixtures; moreover, akaganeite was also identified under natural and simulated marine environments. Siderite was only detected in samples exposed to a natural marine environment. Concerning the protective nature of the corrosion products, these show lower performance in a simulated industrial environment, where the corrosion rate of the steel is up to 1.48 {mu}m year{sup -1}.

  6. Effect of high temperature filtration on out-core corrosion product activity

    International Nuclear Information System (INIS)

    Horvath, G.L.; Bogancs, J.

    1983-01-01

    Investigation of the effect of high temperature filtration on corrosion product transport and out-core corrosion product activity has been carried out for VVER-440 plants. In the physico-chemical model applied particulate and dissolved corrosion products were taken into account. We supposed 100% effectivity for the particulate filter. It was found that about 0,5% 160 t/h/ of the main flow would result in an approx.50% reduction of the out-core corrosion product activity. Investigation of the details of the physico-chemical model in Nuclear Power Plant Paks showed a particle deposition rate measured during power transients fairly agreeing with other measurements and data used in the calculations. (author)

  7. Effects of nitrogen in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel welding joint

    Science.gov (United States)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhou, Chao

    2017-05-01

    The effects of nitrogen addition in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel (DSS) welds were studied. N2-supplemented shielding gas facilitated the primary austenite formation, suppressed the Cr2N precipitation in weld root, and increased the microhardnesses of weld metal. Furthermore, N2-supplemented shielding gas increased pitting resistance equivalent number (PREN) of austenite, but which decreased slightly PREN of ferrite. The modified double loop electrochemical potentiokinetic reactivation in 2 M H2SO4 + 1 M HCl was an effective method to study the localized corrosion of the different zones in the DSS welds. The adding 2% N2 to pure Ar shielding gas improved the localized corrosion resistance in the DSS welds, which was due to compensation for nitrogen loss and promoting nitrogen further solution in the austenite phases, suppression of the Cr2N precipitation in the weld root, and increase of primary austenite content with higher PREN than the ferrite and secondary austenite. Secondary austenite are prone to selective corrosion because of lower PREN compared with ferrite and primary austenite. Cr2N precipitation in the pure Ar shielding weld root and heat affected zone caused the pitting corrosion within the ferrite and the intergranular corrosion at the ferrite boundary. In addition, sigma and M23C6 precipitation resulted in the intergranular corrosion at the ferrite boundary.

  8. Quantitative analysis of hydrogen gas formed by aqueous corrosion of metallic uranium

    International Nuclear Information System (INIS)

    Fonnesbeck, J.

    2000-01-01

    Three unirradiated EBR-II blanket fuel samples containing depleted uranium metal were corrosion tested in simulated J-13 well water at 90 C. The corrosion rate of the blanket uranium metal was then determined relative to H 2 formation. Corrosion of one of the samples was interrupted prior to complete oxidation of the uranium metal and the solid corrosion product was analyzed for UO 2 and UH 3

  9. Quantitative analysis of hydrogen gas formed by aqueous corrosion of metallic uranium

    Energy Technology Data Exchange (ETDEWEB)

    Fonnesbeck, J.

    2000-03-20

    Three unirradiated EBR-II blanket fuel samples containing depleted uranium metal were corrosion tested in simulated J-13 well water at 90 C. The corrosion rate of the blanket uranium metal was then determined relative to H{sub 2} formation. Corrosion of one of the samples was interrupted prior to complete oxidation of the uranium metal and the solid corrosion product was analyzed for UO{sub 2} and UH{sub 3}.

  10. Effect of radiation on anaerobic corrosion of iron

    International Nuclear Information System (INIS)

    Smart, N.R.; Rance, A.P.

    2005-01-01

    To ensure the safe encapsulation of spent nuclear fuel elements for geological disposal, SKB of Sweden are considering using the Advanced Cold Process Canister, which consists of an outer copper canister and a cast iron insert. A programme of work has been carried out to investigate a range of corrosion issues associated with the canister, including measurements of gas generation due to the anaerobic corrosion of ferrous materials (carbon steel and cast iron) over a range of conditions. To date, all this work has been conducted in the absence of a radiation field. SKB asked Serco Assurance to carry out a set of experiments designed to investigate the effect of radiation on the corrosion of steel in repository environments. This report describes the experimental programme and presents the results that were obtained. The measurements were carried out in the type of gas cell used previously, in which the change in gas pressure was measured using a liquid-filled manometer. The test cells were placed in a radiation cell and positioned so that the received radiation dose was equivalent to that expected in the repository. Control cells were used to allow for any gas generation caused by radiolytic breakdown of the construction materials and the water. Tests were carried out at two temperatures (30 deg C and 50 deg C), two dose rates (11 Gray/hr and 300 Gray/hr), and in two different artificial groundwaters. A total of four tests were carried out, using carbon steel wires as the test material. The cells were exposed for a period of several months, after which they were dismantled and the corrosion product on one wire from each test cell was analysed using Raman spectroscopy. The report presents the results from the gas generation tests and compares the results obtained under irradiated conditions to results obtained previously in the absence of radiation. Radiation was found to enhance the corrosion rate at both dose rates but the greatest enhancement occurred at the

  11. Corrosion products in the primary circuits of PWRs

    International Nuclear Information System (INIS)

    Darras, R.

    1983-01-01

    The characteristics of PWR primary circuits are recalled, particularly the chemical specifications of the medium and the various materials used (austenitic steel, nickel alloys, cobalt-based alloys and zirconium alloys). The behaviour of these materials as regards general corrosion in nominal and transient conditions is then outlined briefly, special emphasis being laid on the effect of the determining parameters on the quantity of corrosion products formed. The release of the latter into the primary coolant is caused by two main processes: solubilization and erosion. Particular attention was given therefore to the laws governing the solubility of the oxides involved, especially as a function of temperature and pH. Erosion, or release in the form of solid particles, is relatively severe during transient events. As these corrosion products are then carried through all circuits, they cause deposits to form in favourable places on the walls as a result either of precipitation of soluble species or of sedimentation followed by consolidation of suspended particles. The presence of corrosion products in the primary circuits creates a particular impact since they become radioactive as they pass through the core and especially when they remain in it in the form of deposits; as a result, the products are capable of contaminating the entire system. Finally, although long-term reliability is obviously an essential condition for materials developed, attention must also be given to problems associated with a build-up of corrosion products in the cooling circuits and efforts made to minimize them. To that end, a number of precautions are recommended, and various remedies can be applied: selecting materials which are not readily activated, keeping structures clean, purifying fluids properly, restricting solubilization and precipitation, and perhaps, periodic decontamination. (author)

  12. Studying the causes for corrosive destruction of water conduits

    Energy Technology Data Exchange (ETDEWEB)

    Azamatova, F I; Kulinichev, G P; Porubov, I S

    1979-01-01

    Pipes from different oil and gas production administrations were selected for X-ray and metallographic studies of the cause of corrosive destruction. The chemical composition and mechanical properties of the pipe material are presented in tables. The phase composition of the corrosion products was studied by X-rays. The complex structure of the layer made up of the corrosion products was taken into consideration. The studies were conducted in an X-ray diffraction chamber. The obtained results are presented in a table. The metallographic studies showed that a significant corrosive damage of the materials of water conduits occurs as a result of the development of local corrosion processes, caused by the substantive heterogeneity of the structure of the metal, related to the nonuniform distribution of the pearlite because of carbon liquidation.

  13. IN DRIFT CORROSION PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Jolley

    1999-12-02

    As directed by a written development plan (CRWMS M&O 1999a), a conceptual model for steel and corrosion products in the engineered barrier system (EBS) is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). This document provides the conceptual framework for the in-drift corrosion products sub-model to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. However, the concepts discussed within this report may also apply to some near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts.

  14. A mini-catalogue of metal corrosion products studied by Raman microscopy

    International Nuclear Information System (INIS)

    Bouchard, M.; Smith, D.C.

    2000-01-01

    Full text.The extensive development of physical methods of analysis since the beginning of this century has revolutionised the classical observation techniques most frequently used by the archaeologist. Raman Microscopy (RM) appears to be one of the most promising tools due to the many advantages that it offers: e.g. non-destructive, in situ, micro-analysis. RM is being applied to many archaeological fields as well as to industrial or environmental sectors. In relation with parallel studies made on the identification of corrosion products on archaeological materials, and according to the principal condition for the RM characterisation of an unknown product being the comparison of its Raman spectrum with known standard spectra, the essential aim of this study is to build a mini-catalogue of standard corrosion products susceptible to be found on metallic objects; these could be from archaeological as well as from modern contexts. However, it is noted that the identification of a corrosion product may suggest either an urgent intervention from the restoration team (in the case of active corrosion products), or a stabilisation of the corrosion layer if this is considered to be a protective layer. All the standard samples are natural minerals coming from the Museum National d'Histoire Naturelle in Paris (France) and correspond to the corrosion products most frequently found on metals such copper, zinc, lead or tin. These samples have been analyzed by RM and also confirmed by powder x-ray diffraction analysis. This catalogue, including more than 30 standard species corresponding to the most common metal corrosion products, is very useful for the different studies in progress in collaboration with different archaeological metal restoration teams. The near future will probably see a mobile Raman Microprobe (MRM) equipped with many different mini-catalogues on the site of a corroded mettalic bridge, a corroded canalisation or under the sea to rapidly identify the different

  15. Effect of Elemental Sulfur and Sulfide on the Corrosion Behavior of Cr-Mo Low Alloy Steel for Tubing and Tubular Components in Oil and Gas Industry.

    Science.gov (United States)

    Khaksar, Ladan; Shirokoff, John

    2017-04-20

    The chemical degradation of alloy components in sulfur-containing environments is a major concern in oil and gas production. This paper discusses the effect of elemental sulfur and its simplest anion, sulfide, on the corrosion of Cr-Mo alloy steel at pH 2 and 5 during 10, 20 and 30 h immersion in two different solutions. 4130 Cr-Mo alloy steel is widely used as tubing and tubular components in sour services. According to the previous research in aqueous conditions, contact of solid sulfur with alloy steel can initiate catastrophic corrosion problems. The corrosion behavior was monitored by the potentiodynamic polarization technique during the experiments. Energy dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) have been applied to characterize the corrosion product layers after each experiment. The results show that under the same experimental conditions, the corrosion resistance of Cr-Mo alloy in the presence of elemental sulfur is significantly lower than its resistance in the presence of sulfide ions.

  16. The effect of zinc addition on PWR corrosion product deposition on zircaloy-4

    International Nuclear Information System (INIS)

    Walters, W.S.; Page, J.D.; Gaffka, A.P.; Kingsbury, A.F.; Foster, J.; Anderson, A.; Wickenden, D.; Henshaw, J.; Zmitko, M.; Masarik, V.; Svarc, V.

    2002-01-01

    During the period 1995 to 2001 a programme of loop irradiation tests have been performed to confirm the effectiveness of zinc additions on PWR circuit chemistry and corrosion. The programme included two loop irradiation experiments, and subsequent PIE; the experiments were a baseline test (no added zinc) and a test with added zinc (10 ppb). This paper addresses the findings regarding corrosion product deposition and activation on irradiated Zircaloy-4 surfaces. The findings are relevant to overall corrosion of the reactor primary circuit, the use of zinc as a corrosion inhibitor, and activation and transport of corrosion products. The irradiation experience provides information on the equilibration of the loop chemistry, with deliberate injection of zinc. The PIE used novel and innovative techniques (described below) to obtain samples of the oxide from the irradiated Zircaloy. The results of the PIE, under normal chemistry and zinc chemistry, indicate the effect of zinc on the deposition and activation of corrosion products on Zircaloy. It was found that corrosion product deposition on Zircaloy is enhanced by the addition of zinc (but corrosion product deposition on other materials was reduced in the presence of zinc). Chemical analysis and radioisotope gamma counting results are presented, to interpret the findings. A computer model has also been used to simulate the corrosion product deposition and activation, to assist in the interpretation of the results. (authors)

  17. TEM characterization of corrosion products formed on a SS-15ZR alloy

    International Nuclear Information System (INIS)

    Luo, J. S.; Abraham, D. P.

    2000-01-01

    The corrosion products formed on a stainless steel-15Zr (SS-15Zr) alloy have been characterized by transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDS). Examination of alloy particles that were immersed in 90 C deionized water for two years revealed that different corrosion products were formed on the stainless steel and intermetallic phases. Two corrosion products were identified on an austenite particle: trevorite (NiFe 2 O 4 ) in the layer close to the metal and maghemite (Fe 2 O 3 ) in the outer layer. The corrosion layer formed on the intermetallic was uniform, adherent, and amorphous. The EDS analysis indicated that the layer was enriched in zirconium when compared with the intermetallic composition. High-resolution TEM images of the intermetallic-corrosion layer interface show an interlocking metal-oxide interface which may explain the relatively strong adherence of the corrosion layer to the intermetallic surface. These results will be used to evaluate corrosion mechanisms and predict long-term corrosion behavior of the alloy waste form

  18. Corrosion in the Flue Gas Cleaning System of a Biomass-Fired Power Plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Olesen, R. E.; Gensmann, P.

    2017-01-01

    After only a few years operation, corrosiondamage was observed in the flue gas cleaning system of abiomass power plant. The corrosion was on the lower partof the gas/gas heat exchanger fabricated from A242weathering steel, where UNS S31600 bolts were used toattach sealing strips to the rotor. Thick...... iron oxides (up to5 mm) had formed on the weathering steel, and theseoxides also contained chlorine and sulfur. In this area of theheat exchanger, weathering steel has not had the optimalwet/dry cycles required to achieve a protective oxide. Dueto the thick growing oxide on the rotor, the UNS S31600......bolts were under stress and this together with the presenceof accumulated chlorine between the sealing strips andbolts resulted in stress corrosion cracking and rupture. Inaddition, Zn-K-Cl deposits were agglomerated in the ductafter the DeNOx unit. Zn was also a constituent of corrosionproducts...

  19. Nuclear reactor structural material forming less radioactive corrosion product

    International Nuclear Information System (INIS)

    Nakazawa, Hiroshi.

    1988-01-01

    Purpose: To provide nuclear reactor structural materials forming less radioactive corrosion products. Constitution: Ni-based alloys such as inconel alloy 718, 600 or inconel alloy 750 and 690 having excellent corrosion resistance and mechanical property even in coolants at high temperature and high pressure have generally been used as nuclear reactor structural materials. However, even such materials yield corrosion products being attacked by coolants circulating in the nuclear reactor, which produce by neutron irradiation radioactive corrosion products, that are deposited in primary circuit pipeways to constitute exposure sources. The present invention dissolves dissolves this problems by providing less activating nuclear reactor structural materials. That is, taking notice on the fact that Ni-58 contained generally by 68 % in Ni changes into Co-58 under irradiation of neutron thereby causing activation, the surface of nuclear reactor structural materials is applied with Ni plating by using Ni with a reduced content of Ni-58 isotopes. Accordingly, increase in the radiation level of the nuclear reactor structural materials can be inhibited. (K.M.)

  20. Corrosion in systems for storage and transportation of petroleum products and biofuels identification, monitoring and solutions

    CERN Document Server

    Groysman, Alec

    2014-01-01

    This book treats corrosion as it occurs and affects processes in real-world situations, and thus points the way to practical solutions. Topics described include the conditions in which petroleum products are corrosive to metals; corrosion mechanisms of petroleum products; which parts of storage tanks containing crude oils and petroleum products undergo corrosion; dependence of corrosion in tanks on type of petroleum products; aggressiveness of petroleum products to polymeric material; how microorganisms take part in corrosion of tanks and pipes containing petroleum products; which corrosion monitoring methods are used in systems for storage and transportation of petroleum products; what corrosion control measures should be chosen; how to choose coatings for inner and outer surfaces of tanks containing petroleum products; and how different additives (oxygenates, aromatic solvents) to petroleum products and biofuels influence metallic and polymeric materials. The book is of interest to corrosion engineers, mat...

  1. Factors affecting the corrosion of SiC layer by fission product palladium

    International Nuclear Information System (INIS)

    Dewita, E.

    2000-01-01

    HTR is one of the advanced nuclear reactors which has inherent safety system, graphite moderated and helium gas cooled. In general, these reactors are designed with the TRISO coated particle consist of four coating layers that are porous pyrolytic carbon (PyC). inner dense PyC (IPyC), silicon carbide (SiC), and outer dense PyC (OPyC). Among the four coating layers, the SiC plays an important role beside in retaining metallic fission products, it also provides mechanical strength to fuel particle. However, results of post irradiation examination indicate that fission product palladium can react with and corrode SiC layer, This assessment is conducted to get the comprehension about resistance of SiC layer on irradiation effects, especially in order to increase the fuel bum-up. The result of this shows that the corrosion of SiC layer by fission product palladium is beside depend on the material characteristics of SiC, and also there are other factors that affect on the SiC layer corrosion. Fuel enrichment, bum-up, and irradiation time effect on the palladium flux in fuel kernel. While, the fuel density, vapour pressure of palladium (the degree depend on the irradiation temperature and kernel composition) effect on palladium migration in fuel particle. (author)

  2. An X-ray diffraction study of corrosion products from low carbon steel

    International Nuclear Information System (INIS)

    Morales, A. L.

    2003-01-01

    It was found in earlier work a decrease in the corrosion rate from low carbon steel when it was subjected to the action of a combined pollutant concentration (SO 4 ''2-=10''-4 M+Cl=1.5x 10''-3 M). It was also found that large magnetic content of the rust was related to higher corrosion rates. In the present study corrosion products are further analyzed by means of X-ray diffraction to account for composition changes during the corrosion process. it is found that lepidocrocite and goethite are the dominant components for the short-term corrosion in all batches considered while for log-term corrosion lepidocrite and goethite dominates if the corrosion rates is low and magnetite dominates if the corrosion rate is high. The mechanism for decreasing the corrosion rate is related to the inhibition of magnetite production at this particular concentration. (Author) 15 refs

  3. The anaerobic corrosion of carbon steel in concrete

    International Nuclear Information System (INIS)

    Naish, C.C.; Balkwill, P.H.; O'Brien, T.M.; Taylor, K.J.; Marsh, G.P.

    1990-11-01

    The report describes the work of a two year programme investigating the anaerobic corrosion of carbon steel embedded in a range of candidate repository cements and concretes at laboratory temperatures. The factors investigated in the study were the rate of the anaerobic corrosion reaction, the effect of hydrogen overpressure on the reaction rate and the form of the corrosion product. Both electrochemical and sample weight loss corrosion rate measurements were used. The cements and concretes used were prepared both with and without small additions of chloride (2% by weight of mix water). The results indicate that the corrosion rate is low, < 1 μm/year, the effect of hydrogen overpressure is not significant over the range of pressures investigated, 1-100 atmospheres, and that the corrosion product is dependent on the cement used to cast the samples. Magnetite was identified in the case of blast furnace slag replacement cements but for pulverised fuel ash and ordinary Portland cements no corrosion product was evident either from X-ray diffraction or laser Raman measurements. Further work is presently underway to investigate the effects of elevated temperatures and chloride levels on the anaerobic corrosion reaction and the rate of hydrogen gas production. (author)

  4. Chemical and mechanical control of corrosion product transport

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O; Blum, R [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark); Daucik, K [I/S Skaerbaekvaerket, Faelleskemikerne, Fredericia (Denmark)

    1996-12-01

    The corrosion products formed in the condensate and feedwater system of once-through boilers are precipitated and deposited inside the evaporator tubes mainly in the burner zone at the highest heat flux. Depositions lead to increased oxidation rate and increased metal temperature of the evaporator tubes, hereby decreasing tube lifetime. This effect is more important in the new high efficiency USC boilers due to increased feedwater temperature and hence higher thermal load on the evaporator tubes. The only way to reduce the load on the evaporator tubes is to minimise corrosion product transport to the boiler. Two general methods for minimising corrosion product transport to the boiler have been evaluated through measurement campaigns for Fe in the water/steam cycle in supercritical boilers within the ELSAM area. One method is to reduce corrosion in the low temperature condensate system by changing conditioning mode from alkaline volatile treatment (AVT) to oxygenated treatment (OT). The other method is to filtrate part of the condensate with a mechanical filter at the deaerator. The results show, that both methods are effective at minimising Fe-transport to the boiler, but changing to OT has the highest effect and should always be used, whenever high purity condensate is maintained. Whether mechanical filtration also is required, depends on the boiler, specifically the load on the evaporator. A simplified calculation model for lifetime evaluation of evaporator tubes has been developed. This model has been used for evaluating the effect of corrosion product transport to the boiler on evaporator tube lifetime. Conventional supercritical boilers generally can achieve sufficient lifetime by AVT and even better by OT, whereas all measures to reduce Fe-content of feedwater, including OT and mechanical filtration, should be taken, to ensure sufficient lifetime for the new boilers with advanced steam data - 290 bar/580 deg. C and above. (au)

  5. Microbial exopolysaccharides: Effect on corrosion and partial chemical characterization

    Digital Repository Service at National Institute of Oceanography (India)

    Majumdar, I; DeSouza, F.P.; Bhosle, N.B.

    gas chromatograph MICROBIAL EXOPOLYSACCHARIDES 543 Fig. I. Changes in the biofilm organic carbon (a) and EPS (b) associated with corrosion products and corrosion rate (c) of mild steel. Fig. 2. Linear correlation coeffiient (r) between EPS and organic... carbon (a), corrosion rate and organic carbon (b). and corrosion rate and EPS (c). (Chrompack model CP-9002) equipped with a fused silica capillary column coated with CP Sil-88 (25 m, i.d. = 0.32 mm) and flame ionization detector (FID) was used...

  6. Surface area and chemical reactivity characteristics of uranium metal corrosion products

    International Nuclear Information System (INIS)

    Totemeier, T. C.

    1998-01-01

    The results of an initial characterization of hydride-containing corrosion products from uranium metal Zero Power Physics Reactor (ZPPR) fuel plates are presented. Sorption analyses using the BET method with a Kr adsorbate were performed to measure the specific areas of corrosion product samples. The specific surface areas of the corrosion products varied from 0.66 to 1.01 m 2 /g. The reactivity of the products in Ar-9%O 2 and Ar-20%O 2 were measured at temperatures between 35 C and 150 C using a thermo-gravimetric analyzer. Ignition of the products occurred at temperatures of 150 C and above. The oxidation rates below ignition were comparable to rates observed for uranium metal

  7. Bioaccumulation and food chain transfer of corrosion products from radioactive stainless steel

    International Nuclear Information System (INIS)

    Young, J.S.

    1986-07-01

    Two sets of experiments were conducted to determine if corrosion products from radioactive Type 347 stainless steel could be biologically transferred from sediment through a marine food chain, and whether corrosion products dissolved in seawater could be bioaccumulated and then eliminated. Corrosion products containing 60 Co and 63 Ni from the radioactive stainless steel were introduced into marine sediments. Infaunal polychaete worms exposed to these sediments bioaccumulated the radionuclides. The feeding of these worms to shrimp and fish resulted in a trophic transfer of the radioactive products across a one-step food chain. The magnitude of the transfers are described in terms of transfer factors. Dissolved corrosion products as measured by the radionuclides were also bioaccumulated by shrimp and fish concentrating more than fish. Concentration factors were calculated

  8. The corrosion behaviour of carbon steel in Portland cement

    International Nuclear Information System (INIS)

    Grauer, R.

    1988-01-01

    The production of hydrogen can cause problems in a repository for low- and intermediate-level waste. Since gas production is mainly due to the corrosion of carbon steel, it is important to have as reliable data as possible on the corrosion rate of steel in anaerobic cement. A review of the literature shows that the corrosion current densities lie in the range 0.01 to 0.1 μA/cm 2 (corresponding to corrosion rates between 0.1 and 1.2 μm/a). This implies hydrogen production rates between 0.022 and 0.22 mol/(m 2 .a). Corrosion rates of this order of magnitude are technically irrelevant, with the result that there is very little interest in determining them accurately. Furthermore, their determination entails problems of measurement technique. Given the current situation, it would appear somewhat risky to accept the lower value for hydrogen production as proven. Proposals are made for experiments which would reduce this element of uncertainty. (author) 10 figs., 35 refs

  9. Corrosion behaviour of unalloyed steel in Portland cement

    International Nuclear Information System (INIS)

    Grauer, R.

    1988-04-01

    The production of hydrogen can cause problems in a repository for low and intermediate level waste. Since the production of gas is mainly due to the corrosion of unalloyed steel, it is important to have as reliable data as possible for the corrosion rate in anaerobic cement. A review of the literature shows that the corrosion current densities are in the range of 0.01 to 0.1 μA/cm 2 (corresponding to corrosion rates between 0.1 and 1.2 μm/a). This implies hydrogen production rates between 0.022 and 0.22 mol/(m 2 a). Corrosion rates of the abovementioned order of magnitude are technically irrelevant, so that there is little interest in determining them accurately. Furthermore, their determination entails problems of measurement technique. In the present situation it would therefore appear risky to accept the lower value as proven. Experiments are proposed to reduce the present uncertainty. (author) 35 refs., 10 figs

  10. Corrosion behaviour of unalloyed steel in Portland cement

    International Nuclear Information System (INIS)

    Grauer, R.

    1988-01-01

    The production of hydrogen can cause problems in a repository for low and intermediate level waste. Since the production of gas is mainly due to the corrosion of unalloyed steel, it is important to have as reliable data as possible for the corrosion rate in anaerobic cement. A review of the literature shows that the corrosion current densities are in the range of 0.01 to 0.1 μA/cm 2 (corresponding to corrosion rates between 0.1 and 1.2 μm/a). This implies hydrogen production rates between 0.022 and 0.22 mol/(m 2 xa). Corrosion rates of the abovementioned order of magnitude are technically irrelevant, so that there is little interest in determining them accurately. Furthermore, their determination entails problems of measurement technique. In the present situation it would therefore appear risky to accept the lower value as proven. Experiments are proposed to reduce the present uncertainty. (author) 35 refs., 10 figs

  11. Pipeline corrosion prevention by pH stabilization or corrosion inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Nyborg, Rolf [Institute for Energy Technology, Oslo (Norway)

    2009-07-01

    In many offshore oil and gas projects the pipeline costs are a considerable part of the investment and can become prohibitively high if the corrosivity of the fluid necessitates the use of corrosion resistant alloys instead of carbon steel. Development of more robust and reliable methods for internal corrosion control can increase the application range of carbon steel and therefore have a large economic impact. Corrosion control of carbon steel pipelines has traditionally often been managed by the use of corrosion inhibitors. The pH stabilization technique has been successfully used for corrosion control of several large wet gas pipelines in the last years. This method has advantages over film forming corrosion inhibitors when no or little formation water is produced. The use of corrosion inhibitors in multiphase pipelines implies several challenges which are not fully accounted for in traditional corrosion inhibitor testing procedures. Specialized test procedures have been developed to take account for the presence of emulsions dispersions and sand and clay particles in corrosion inhibitor testing. (author)

  12. Effect of pulsed gas tungsten arc welding on corrosion behavior of Ti-6Al-4V titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, M. [Department of Mechanical Engineering, Maamallan Institute of Technology, Anna University, Sriperumpudur 602 105 (India)], E-mail: manianmb@rediffmail.com; Jayabalan, V. [Department of Manufacturing Engineering, Anna University, Guindy, Chennai 600 025 (India)], E-mail: jbalan@annauniv.edu; Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002 (India)], E-mail: visvabalu@yahoo.com

    2008-07-01

    Due to the excellent combination of properties such as elevated strength-to-weight ratio, high toughness and excellent resistance to corrosion, make titanium alloys attractive for many industrial applications. Advantages of pulsed current welding frequently reported in literature include refinement of fusion zone grain size, etc. Hence, in this investigation an attempt has been made to study the effect of pulsed current Gas Tungsten Arc (GTA) welding parameters on corrosion behavior of Ti-6Al-4V titanium alloy. Pulsed current gas tungsten arc welding was used to fabricate the joints. To optimize the number of experiments to be performed, central composite design was used. The investigation revealed increase in corrosion resistance with increase in peak current and pulse frequency up to an optimum value of the same and decrease in corrosion resistance beyond that optimum point. An increase in corrosion resistance with grain refinement was also detected.

  13. Effect of pulsed gas tungsten arc welding on corrosion behavior of Ti-6Al-4V titanium alloy

    International Nuclear Information System (INIS)

    Balasubramanian, M.; Jayabalan, V.; Balasubramanian, V.

    2008-01-01

    Due to the excellent combination of properties such as elevated strength-to-weight ratio, high toughness and excellent resistance to corrosion, make titanium alloys attractive for many industrial applications. Advantages of pulsed current welding frequently reported in literature include refinement of fusion zone grain size, etc. Hence, in this investigation an attempt has been made to study the effect of pulsed current Gas Tungsten Arc (GTA) welding parameters on corrosion behavior of Ti-6Al-4V titanium alloy. Pulsed current gas tungsten arc welding was used to fabricate the joints. To optimize the number of experiments to be performed, central composite design was used. The investigation revealed increase in corrosion resistance with increase in peak current and pulse frequency up to an optimum value of the same and decrease in corrosion resistance beyond that optimum point. An increase in corrosion resistance with grain refinement was also detected

  14. Corrosion behavior of corrosion resistant alloys in stimulation acids

    Energy Technology Data Exchange (ETDEWEB)

    Cheldi, Tiziana [ENI E and P Division, 20097 San Donato Milanese Milano (Italy); Piccolo, Eugenio Lo; Scoppio, Lucrezia [Centro Sviluppo Materiali, via Castel Romano 100, 00128 Rome (Italy)

    2004-07-01

    In the oil and gas industry, selection of CRAs for downhole tubulars is generally based on resistance to corrosive species in the production environment containing CO{sub 2}, H{sub 2}S, chloride and in some case elemental sulphur. However, there are non-production environments to which these materials must also be resistant for either short term or prolonged duration; these environments include stimulation acids, brine and completion fluids. This paper reports the main results of a laboratory study performed to evaluate the corrosion and stress corrosion behaviour to the acidizing treatments of the most used CRAs for production tubing and casing. Laboratory tests were performed to simulate both 'active' and 'spent' acids operative phases, selecting various environmental conditions. The selected steel pipes were a low alloyed steel, martensitic, super-martensitic, duplex 22 Cr, superduplex 25 Cr and super-austenitic stainless steels (25 Cr 35 Ni). Results obtained in the 'active' acid environments over the temperature range of 100-140 deg. C, showed that the blend acids with HCl at high concentration and HCl + HF represented too much severe conditions, where preventing high general corrosion and heavy localised corrosion by inhibition package becomes very difficult, especially for duplex steel pipe, where, in some case, the specimens were completely dissolved into the solution. On the contrary, all steels pipes were successfully protected by inhibitor when organic acid solution (HCOOH + CH{sub 3}COOH) were used. Furthermore, different effectiveness on corrosion protection was showed by the tested inhibitors packages: e.g. in the 90% HCl at 12% + 10 CH{sub 3}COOH acid blend. In 'spent' acid environments, all steel pipes showed to be less susceptible to the localised and general corrosion attack. Moreover, no Sulphide Stress Corrosion Cracking (SSC) was observed. Only one super-austenitic stainless steel U-bend specimen showed

  15. Wet-gas transport in the Mediterranean Sea. Selection of a combined kinetic hydrate/corrosion inhibitor system

    Energy Technology Data Exchange (ETDEWEB)

    Zettlitzer, M. [RWE Dea AG, Wietze (Germany); Rozengard, N.; Koeckritz, V. [Technical Univ. Freiberg (Germany); Malt, E. [RWE Dea AG (Egypt)

    2007-09-13

    Raw gas will be collected on a platform in the centre of the field. Due to volume and weight constraints, condensing fluids will not be separated from the gas on the platform so that the raw gas will be transported in three-phase mode (gas, water, and condensate) via a 33 km long pipeline to a gas treatment plant. Under the calculated pipeline pressure of about 100 barg, hydrate formation is - according to the outcome of thermodynamic simulations - to be expected at temperatures of 19 C and below while the pipeline may cool down to about 15 C in winter conditions. Due to logistical, environmental and economic reasons, RWE Dea decided to inhibit hydrate formation with kinetic hydrate inhibitors (KHI). As the gas also contains carbon dioxide, certain corrosivity was forecasted and addition of a corrosion inhibitor turned out to be necessary. Laboratory tests were carried out to confirm the feasibility of the concept and to define the required dosage of KHI. Service companies were contacted and several kinetic hydrate and corrosion inhibitors were screened. Experiments with the different chemicals were performed at the University of Freiberg in a high-pressure cell at the pipeline pressure of 100 barg. Hydrate formation was detected by continuous pressure registration during temperature changes and by observation through a glass window. In order to preselect the chemicals, first tests were performed with pure methane. These tests also served for calibration of the equipment with literature data and especially as an indication for the minimum chemical concentration required. A second test series was performed with synthetic gas in a composition close to that of the field gas under consideration in order to verify the results obtained with methane. Finally, the optimum kinetic hydrate inhibitor was identified as well as the required dosage concentration. Compatibility of KHI and corrosion inhibitor was experimentally proven. A further set of kinetic inhibitor tests with

  16. Comparison of Corrosion Behavior of Low-Alloy Steel Containing Copper and Antimony with 409L Stainless Steel for a Flue Gas Desulfurization System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun-Ah; Shin, Su-Bin; Kim, Jung-Gu [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-07-15

    The corrosion behavior of low alloy steel containing Cu, Sb and 409L stainless steel was investigated for application in the low-temperature section of a flue gas desulfurization (FGD) system. The electrochemical properties were evaluated by potentiodynamic polarization testing and electrochemical impedance spectroscopy (EIS) in 16.9 vol% H{sub 2}SO{sub 4} + 0.35 vol% HCl at 60 ℃. The inclusions in these steels ere identified by electron probe microanalyzer (EPMA). The corrosion products of the steels were analyzed using scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The corrosion rate of the low alloy steel containing Cu, Sb was about 100 times lower than that of 409L stainless steel. For stainless steel without passivation, active corrosion behavior was shown. In contrast, in the low alloy steel, the Cu, Sb compounds accumulated on the surface improved the corrosion resistance by suppressing the anodic dissolution reaction.

  17. Surface area and chemical reactivity characteristics of uranium metal corrosion products.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T. C.

    1998-02-17

    The results of an initial characterization of hydride-containing corrosion products from uranium metal Zero Power Physics Reactor (ZPPR) fuel plates are presented. Sorption analyses using the BET method with a Kr adsorbate were performed to measure the specific areas of corrosion product samples. The specific surface areas of the corrosion products varied from 0.66 to 1.01 m{sup 2}/g. The reactivity of the products in Ar-9%O{sub 2} and Ar-20%O{sub 2} were measured at temperatures between 35 C and 150 C using a thermo-gravimetric analyzer. Ignition of the products occurred at temperatures of 150 C and above. The oxidation rates below ignition were comparable to rates observed for uranium metal.

  18. Generating pipeline networks for corrosion assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, J. [Cimarron Engineering Ltd., Calgary, AB (Canada)

    2008-07-01

    Production characteristics and gas-fluid compositions of fluids must be known in order to assess pipelines for internal corrosion risk. In this study, a gathering system pipeline network was built in order to determine corrosion risk for gathering system pipelines. Connections were established between feeder and collector lines in order measure upstream production and the weighted average of the upstream composition of each pipeline in the system. A Norsok M-506 carbon dioxide (CO{sub 2}) corrosion rate model was used to calculate corrosion rates. A spreadsheet was then used to tabulate the obtained data. The analysis used straight lines drawn between the 'from' and 'to' legal sub-division (LSD) endpoints in order to represent pipelines on an Alberta township system (ATS) and identify connections between pipelines. Well connections were established based on matching surface hole location and 'from' LSDs. Well production, composition, pressure, and temperature data were sourced and recorded as well attributes. XSL hierarchical computations were used to determine the production and composition properties of the commingled inflows. It was concluded that the corrosion assessment process can identify locations within the pipeline network where potential deadlegs branched off from flowing pipelines. 4 refs., 2 tabs., 2 figs.

  19. Calculated model of radioactive fission and corrosion product accumulation and distribution in a fast reactor sodium coolant circuit

    International Nuclear Information System (INIS)

    Kizin, V.D.; Konyashov, V.V.

    1987-01-01

    A simple calculation procedure of radioactive products accumulation and distribution in a primary circuit has been developed on the basis of experimental investigations at the BOR-60 reactor. Common knowledge on the impurity products transfer at the liquid-solid and liquid-gas phase boundary is taken. Use is made of the typical in reactor physics relationships for the description of the products transition to the equipment surfaces, of fission products release, metal corrosion and others. Satisfactory agreement of the calculation data with the experimental ones has been obtained. (orig.)

  20. GCR dismantling: corrosion of vessel internals during decay storage

    International Nuclear Information System (INIS)

    Gras, J.M.

    1991-06-01

    Gas-cooled reactor decommissioning confronts EDF with the problem of the corrosion resistance of vessel internals over a decay storage period fixed at 50 years. The layer of magnetite previously formed in the C0 2 should protect structural steelwork from atmospheric corrosion. In any case, estimated steel corrosion after 50 years may be put at below or equal to 0.1 mm and the corresponding swelling induced by corrosion products at 0.2 mm. There should be no risk of hydrogen embrittlement or stress corrosion cracking of threaded fasteners. Corrosion tests aimed at providing further insight into the effects of the magnetite layer and a program for the surveillance of post-decommissioning structural corrosion should nevertheless be envisaged

  1. Advances in the application of molecular microbiological methods in the oil and gas industry and links to microbiologically influenced corrosion

    DEFF Research Database (Denmark)

    Eckert, Rickard; Skovhus, Torben Lund

    2018-01-01

    While the oil and gas industry has witnessed increased applications of molecular microbiological methods (MMMs) for diagnosing and managing microbiologically influenced corrosion (MIC) in the past decade, the process for establishing clear links between microbiological conditions and corrosion...... mechanisms is still emerging. Different MMMs provide various types of information about microbial diversity, abundance, activity and function, all of which are quite different from the culture-based results that are familiar to oil and gas industry corrosion professionals. In addition, a multidisciplinary...

  2. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

    International Nuclear Information System (INIS)

    Harrison, G.S.; Fountain, M.J.

    1988-01-01

    Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 μg/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

  3. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, G S; Fountain, M J [Operational Engineering Division (Northern Area), Central Electricity Generating Board, Manchester (United Kingdom)

    1988-07-01

    Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 {mu}g/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

  4. DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION

    Energy Technology Data Exchange (ETDEWEB)

    Bill W. Bogan; Brigid M. Lamb; John J. Kilbane II

    2004-10-30

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing indicated that the growth, and the metal corrosion caused by pure cultures of sulfate reducing bacteria were inhibited by hexane extracts of some pepper plants. This quarter tests were performed to determine if chemical compounds other than pepper extracts could inhibit the growth of corrosion-associated microbes and to determine if pepper extracts and other compounds can inhibit corrosion when mature biofilms are present. Several chemical compounds were shown to be capable of inhibiting the growth of corrosion-associated microorganisms, and all of these compounds limited the amount of corrosion caused by mature biofilms to a similar extent. It is difficult to control corrosion caused by mature biofilms, but any compound that disrupts the metabolism of any of the major microbial groups present in corrosion-associated biofilms shows promise in limiting the amount/rate of corrosion.

  5. Analysis of corrosion product transport in PWR primary system under non-convective condition

    International Nuclear Information System (INIS)

    Han, Byoung Sub

    1992-02-01

    The increase of occupational radiation exposure (ORE) due to the increase of the operational period at existing nuclear power plant and also the publication of the new version of ICRP recommendation (ICRP publication No. 60) for radiological protection require much more strict reduction of radiation buildup in the nuclear power plant. The major sources of the radiation, i.e. the radioactive corrosion-products, are generated by the neutron activation of the corrosion products at the reactor core, and then the radioactive corrosion products are transported to the outside of the core, and accumulated near the steam generator side at PWR. Major radioactive corrosion-products of interest in PWR are Cr 51 ,: Mn 54 ,: Co 58 ,: Fe 59 and Co 60 . Among them Co 58 and Co 60 are known to contribute approximately more than 70% of the total ORE. Thus our main concerns are focused on predicting the transport and deposition of the Co radionuclides and suggesting the optimizing method which can minimize and control the ORE of the nuclear power plant. It is well known that Co-source is most effectively controlled by pH-solubility radiation control, and also some complex computer codes such as CORA and PACTOLE have been developed and revised to predict the corrosion product behavior. However these codes still imply some intrisic problems in simulating the real behavior of corrosion products in the reactor because of 1) the lack of important experimental data, coefficients and parameters of the transport and reactions under actual high temperature and pressure conditions, 2) no general theoretical modelling which can describe such many different mechanisms involved in the corrosion product movements, 3) the newly developed and measured behavior of the corrosion product transport mechanism. Since no sufficient and detailed information is available from the above-mentioned codes (also due to propriority problems), we concentrate on developing a new computer code, CP-TRAN (Corrosion

  6. Effect of flow on corrosion in catenary risers and its corrosion inhibitor performance

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pedro Altoe; Magalhaes, Alvaro Augusto Oliveira; Silva, Jussara de Mello [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Kang, Cheolho; More, Parimal P. [Det Norske Veritas (DNV), Oslo (Norway)

    2009-07-01

    In oil and gas production, multiphase flow is often encountered and a range of different flow patterns can be experienced in pipelines. The flow regime transition and flow characteristics can be changed with the change of pipeline topography, which affects the corrosion and the performance of corrosion inhibitor in these multiphase pipelines. This paper outlines on the effect of inclination on the flow characteristics and their subsequent effect on corrosion rates. Also, this paper presents on the performance of three candidate corrosion inhibitors under severe slugging conditions at low water cut. For the simulation of offshore flow lines and risers, the experiments were carried out in a 44 m long, 10 cm diameter, three different pipeline inclinations of 0, 3 and 45 degrees. Light condensate oil with a viscosity of 2.5 cP at room temperature was used and water cut was 20%. The results indicated that the baseline corrosion rate in 45 degrees showed higher than other inclinations. Each corrosion inhibitor showed a different inhibitor performance. (author)

  7. Gas evolution behavior of aluminum in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs.

  8. Gas evolution behavior of aluminum in mortar

    International Nuclear Information System (INIS)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs

  9. High temperature corrosion under conditions simulating biomass firing: depth-resolved phase identification

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2014-01-01

    ) were coated with KCl and is o-thermally exposed at 560 o C for 168 h under a flue gas corresponding to straw firing. Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and X-ray Diffraction (XRD) characterization techniques were employed for comprehensive characterization......Both cross-sectional and plan view, ‘top-down’ characterization methods were employed , for a depth-resolved characterization of corrosion products resulting from high temperature corrosion under laboratory conditions simulating biomass firing. Samples of an austenitic stainless steel (TP 347H FG...... of the corrosion product. Results from this comprehensive characterization revealed more details on the morphology and composition of the corrosion product....

  10. Gas formation in ILW and HLW repositories, evaluation and modelling of the production rates and consequences on the safety of the repository

    International Nuclear Information System (INIS)

    Besnus, F.

    1990-01-01

    This paper summarizes the main gas formation mechanisms in deep radioactive waste repositories. Production rates and overall gas volumes were estimated and showed predominance of hydrogen production by anoxic corrosion and radiolysis for French wastes. Gas evolution in the near field has been modeled. First results issued from a sensitivity analysis showed desaturation of the storage cavities for a wide range of parameter values

  11. Application of electromagnetic fields to improve the removal rate of radioactive corrosion products

    International Nuclear Information System (INIS)

    Kong, Tae Young; Lee, Kun Jai; Song, Min Chul

    2004-01-01

    To comply with increasingly strict regulations for protection against radiation exposure, many nuclear power plants have been working ceaselessly to reduce and control both the radiation sources within power plants and the radiation exposure experienced by operational and maintenance personnel. Many research studies have shown that deposits of irradiated corrosion products on the surfaces of coolant systems are the main cause of occupational radiation exposure in nuclear power plants. These corrosion product deposits on the fuel-clad surface are also known to be main factors in the onset of Axial Offset Anomaly (AOA). Hence, there is a great deal of ongoing research on water chemistry and corrosion processes. In this study, a magnetic filter with permanent magnets was devised to remove the corrosion products in the coolant stream by taking advantage of the magnetic properties of the corrosion particles. Experiments using permanent magnets to filter the corrosion products demonstrated a removal efficiency of over 90% for particles above 5 μm. This finding led to the construction of an electromagnetic device that causes the metallic particulates to flocculate into larger aggregates of about 5 μm in diameter by using a novel application of electromagnetic flocculation on radioactive corrosion products

  12. Capturing device for radioactive corrosion products

    International Nuclear Information System (INIS)

    Ono, Kiyoshi.

    1987-01-01

    Purpose: To render the flow channel area uniform for each of coolants over the entire capturing device and reduce the corrosion of capturing materials due to coolants. Constitution: Most of radioactivity caused by radioactive corrosion products are due to Mn-54 radioactive nuclides and it has been known that the nuclides are readily deposited to the surface of nickel material in sodium at high temperature. It is difficult in a conventional capturing device constituted by winding a nickel plate fabricated with protrusions in a multiple-coaxial configuration, that the flow channel area is reduced in a portion of the flow channel and it is difficult to make the flow of the coolants uniform. In view of the above, by winding a nickel plate having a plurality of protrusions at the surface formed integrally by way of an electrolytic process into a multiple-coaxial or spiral shape, those having high resistance to the coolant corrosion can be obtained. (Takahashi, M.)

  13. Application of Moessbauer spectroscopy on corrosion products of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Dekan, J., E-mail: julius.dekan@stuba.sk; Lipka, J.; Slugen, V. [Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, SUT (Slovakia)

    2013-04-15

    Steam generator (SG) is generally one of the most important components at all nuclear power plants (NPP) with close impact to safe and long-term operation. Material degradation and corrosion/erosion processes are serious risks for long-term reliable operation. Steam generators of four VVER-440 units at nuclear power plants V-1 and V-2 in Jaslovske Bohunice (Slovakia) were gradually changed by new original 'Bohunice' design in period 1994-1998, in order to improve corrosion resistance of SGs. Corrosion processes before and after these design and material changes in Bohunice secondary circuit were studied using Moessbauer spectroscopy during last 25 years. Innovations in the feed water pipeline design as well as material composition improvements were evaluated positively. Moessbauer spectroscopy studies of phase composition of corrosion products were performed on real specimens scrapped from water pipelines or in form of filters deposits. Newest results in our long-term corrosion study confirm good operational experiences and suitable chemical regimes (reduction environment) which results mostly in creation of magnetite (on the level 70 % or higher) and small portions of hematite, goethite or hydrooxides. Regular observation of corrosion/erosion processes is essential for keeping NPP operation on high safety level. The output from performed material analyses influences the optimisation of operating chemical regimes and it can be used in optimisation of regimes at decontamination and passivation of pipelines or secondary circuit components. It can be concluded that a longer passivation time leads more to magnetite fraction in the corrosion products composition.

  14. Research and development on is process components for hydrogen production. (2) Corrosion resistance of glass lining in high temperature sulfuric acid

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Iwatsuki, Jin; Kubo, Shinji; Terada, Atsuhiko; Onuki, Kaoru

    2009-01-01

    Japan Atomic Energy Agency has been conducting a research and development on hydrogen production system using High Temperature Gas-Cooled Reactor. As a part of this effort, thermochemical water-splitting cycle featuring iodine- and sulfur-compounds (IS process) is under development considering its potential of large-scale economical hydrogen production. The IS process constitutes very severe environments on the materials of construction because of the corrosive nature of process chemicals, especially of the high temperature acidic solution of sulfuric acid and hydriodic acid dissolving iodine. Therefore, selection of the corrosion-resistant materials and development of the components has been studied as a crucial subject of the process development. This paper discusses corrosion resistance of commercially available glass-lining material in high temperature sulfuric acid. Corrosion resistance of a soda glass used for glass-lining was examined by immersion tests. The experiments were performed in 47-90wt% sulfuric acids at temperatures of up to 400degC and for the maximum immersion time of 100 hours using an autoclave designed for the concerned tests. In every condition tested, no indication of localized corrosion such as defect formation or pitting corrosion was observed. Also, the corrosion rates decreased with the progress of immersion, and were low enough (≅0.1 mm/year) after 60-90 hours of immersion probably due to formation of a silica rich surface. (author)

  15. Properties of Douglas Point Generating Station heat transport corrosion products

    International Nuclear Information System (INIS)

    Montford, B.; Rummery, T.E.

    1975-09-01

    Chemical, radiochemical and structural properties of circulating and fixed corrosion products from the Douglas Point Generating Station are documented. Interaction of Monel-400 and carbon steel corrosion products is described, and the mechanisms of Monel-400 surface deposit release, and activity buildup in the coolant system, are briefly discussed. Efficiencies of filters and ion-exchangers for the removal of released radionuclides are given. (author)

  16. Electrochemical Noise Sensors for Detection of Localized and General Corrosion of Natural Gas Transmission Pipelines. Final Report for the Period July 2001-October 2002

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, Sophie J.; Covino, Jr., Bernard S.; Russell, James H.; Holcomb, Gordon R.; Cramer, Stephen D.; Ziomek-Moroz, Margaret

    2002-12-01

    The U.S. Department of Energy, National Energy Technology Laboratory funded a Natural Gas Infrastructure Reliability program directed at increasing and enhancing research and development activities in topics such as remote leak detection, pipe inspection, and repair technologies and materials. The Albany Research Center (ARC), U.S. Department of Energy was funded to study the use of electrochemical noise sensors for detection of localized and general corrosion of natural gas transmission pipelines. As part of this, ARC entered into a collaborative effort with the corrosion sensor industry to demonstrate the capabilities of commercially available remote corrosion sensors for use with the Nation's Gas Transmission Pipeline Infrastructure needs. The goal of the research was to develop an emerging corrosion sensor technology into a monitor for the type and degree of corrosion occurring at key locations in gas transmission pipelines.

  17. Corrosion behaviour of high temperature alloys in the cooling gas of high temperature reactors

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.

    1989-01-01

    The reactive impurities in the primary cooling helium of advanced high temperature gas cooled reactors (HTGR) can cause oxidation, carburization or decarburization of the heat exchanging metallic components. By studies of the fundamental aspects of the corrosion mechanisms it became possible to define operating conditions under which the metallic construction materials show, from the viewpoint of technical application, acceptable corrosion behaviour. By extensive test programmes with exposure times of up to 30,000 hours, a data base has been obtained which allows a reliable extrapolation of the corrosion effects up to the envisaged service lives of the heat exchanging components. (author). 6 refs, 7 figs

  18. Technical investigation of a pyrophoric event involving corrosion products from HEU ZPPR fuel plates

    International Nuclear Information System (INIS)

    Totemeier, T. C.

    2000-01-01

    A pyrophoric event recently occurred which involved corrosion products collected from highly-enriched uranium (HEU) fuel plates used in the Zero Power Physics Reactor (ZPPR). This paper summarizes the event and its background, and presents the results of an investigation into its source and mechanism. The investigation focused on characterization of corrosion product samples similar to those involved in the event using thermo-gravimetric analysis (TGA). Burning curve TGA tests were performed to measure the ignition temperature and hydride fractions of corrosion products in several different conditions to assess the effects of passivation treatment and long-term storage on chemical reactivity. The hydride fraction and ignition temperature of the corrosion products were found to be strongly dependent on the corrosion extent of the source metal. The results indicate that the energy source for the event was a considerable quantity of uranium hydride present in the corrosion products, but the specific ignition mechanism could not be identified

  19. Corrosion mechanisms of containment glasses for fission products

    International Nuclear Information System (INIS)

    Nogues, J.L.

    1984-01-01

    After a review of nuclear energy production and waste vitrification principles, the aqueous corrosion mechanisms of the containment glasses and the various parameters affecting the corrosion are studied: effects of glass composition, temperature, lixiviation agent pH, lixiviation duration and mode. Conventional mass loss measurement and solution analyses are coupled to sophisticated surface analysis techniques. The hydrolyzed layer formation and the solubility limits are discussed. 87 figs., 30 tabs., 144 refs

  20. Some in-reactor loop experiments on corrosion product transport and water chemistry

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.; Allison, G.M.

    1978-01-01

    A study of the transport of activated corrosion products in the heat transport circuit of pressurized water-cooled nuclear reactors using an in-reactor loop showed that the concentration of particulate and dissolved corrosion products in the high-temperature water depends on such chemical parameters as pH and dissolved hydrogen concentration. Transients in these parameters, as well as in temperature, generally increase the concentration of suspended corrosion products. The maximum concentration of particles observed is much reduced when high-flow, high-temperature filtration is used. Filtration also reduces the steady-state concentration of particles. Dissolved corrosion products are mainly responsible for activity accumulation on surfaces. The data obtained from this study were used to estimate the rate constants for some of the transfer processes involved in the contamination of the primary heat transport circuit in water-cooled nuclear power reactors

  1. Mitigation of corrosion product ingress into SG's

    International Nuclear Information System (INIS)

    Han, S.H.

    1988-01-01

    Design and operation experiences to mitigate corrosion product ingress into SGs in Korea nuclear power plants are briefly reviewed. Maintaining the feedwater pH above 9.6 with morpholine seems to contribute significantly to reduction of iron transport to SGs. Measured iron transport rates were 4.8 g/hr/100 MWe at pH 9.8 and 2.8 g/hr/100 MWe at 9.3, respectively. Removal of corrosion products through SG blowdown is very limited. Its removal efficiency at the higher pH plant was in the neighborhood of 10 %. In one of the Korea Nuclear Units, a large amount of sludge piles were found in the middle of tube bundles especially on the cold leg side. Damaged tubes were identified by the multi-frequency eddy current tests and plugged later during the refueling period. Intermittent blowdown-rate increase was tried to enhance ionic impurity removal through SG blowdown. Even though it was not effective against Na, removal other impurity was improved, resulting in prolonged condensate polisher operation periods by 1 - 2 days. Two-bed polisher design, a cation bed followed by a mixed bed, was chosen for future PWR plants to enhance corrosion product filtering capability of the polishers. Condensate pump discharge polishing and divided hot well polishing methods are currently in consideration. (Nogami, K.)

  2. Characterization of corrosion products formed on steels in the first months of atmospheric exposure

    OpenAIRE

    Antunes Renato Altobelli; Costa Isolda; Faria Dalva Lúcia Araújo de

    2003-01-01

    The corrosion products of carbon steel and weathering steel exposed to three different types of atmospheres, at times ranging from one to three months, have been identified. The steels were exposed in an industrial site, an urban site (São Paulo City, Brazil), and a humid site. The effect of the steel type on the corrosion products formed in the early stages of atmospheric corrosion has been evaluated. The corrosion products formed at the various exposure locations were characterized by Raman...

  3. Integral diagnostic in the failure causes of external corrosion of a natural gas transport pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Mendoza, J.L.; Saucedo-Robles, L.C.; Rodriguez-Clemente, H. [PEMEX Gas y Petroquimica Basica, Subdireccion de Ductos; Marina Nacional 329, Edificio B-1, Piso 8, Col. Huasteca, D.F., CP 11311 (Mexico); Gonzalez-Nunez, M.A. [Instituto de Investigaciones Electricas, Reforma 113, Col. Palmira, Cuernavaca, Morelos, CP 62490 (Mexico); Zavala-Olivares, G.; Hernandez-Gayosso, M.J. [Instituto Mexicano del Petroleo, Direccion de Exploracion y Produccion, Eje Central Lazaro Cardenas Norte 152, Col. San Bartolo Atepehuacan, D.F., CP 07730 (Mexico)

    2011-08-15

    The objective of this study consisted in investigating the possible causes which give rise to the presence of low wall pipe thicknesses on a 16'' natural gas transport pipeline, even though during the last 12-year period cathodic protection (CP) potentials were kept in the protection range at which external corrosion should not occur. Results from in-line inspection from a 16'' natural gas transport pipeline showed 46 indications with more than 80% wall thickness lost due to external corrosion in the second segment of the pipeline. Direct inspection at the indication locations, review of the CP system performance, pipeline maintenance programs and studies, allowed to make an integral diagnostic where it was found out that the main cause of external corrosion was an inappropriate coating application since the pipeline construction, this situation has originated the increase of CP shielding effects through time. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Hydrogen generation from aluminium corrosion in reactor containment spray solutions

    International Nuclear Information System (INIS)

    Frid, W.; Karlberg, G.; Sundvall, S.B.

    1982-01-01

    The aluminium corrosion experiments in reactor containment spray solutions, under the conditions expected to prevail during LOCA in BWR and PWR, were performed in order to investigate relationships between temperature, pH and hydrogen production rates. In order to simulate the conditions in a BWR containment realistic ratios between aluminium surface and water volume and between aluminium surface and oxygen volume were used. Three different aluminium alloys were exposed to spray solutions: AA 1050, AA 5052 and AA 6082. The corrosion rates were measured for BWR solutions (deaerated and aerated) with pH 5 and 9 at 50, 100 and 150 0 C. The pressure was constantly 0.8 MPa. The hydrogen production rate was measured by means of gas chromatography. In deionized BWR water the corrosion rates did not exceed about 0.05 mm/year in all cases, i.e. were practically independent of temperature and pH. Hydrogen concentrations were less than 0.1 vol.% in cooled dry gas. Corrosion rates and hydrogen production in PWR alkaline solution measured at pH 9.7 and 150 0 C were very high. AA 5052 alloy was the best material

  5. Rhenium Uptake as Analogue 96Tc by Steel Corrosion Products

    International Nuclear Information System (INIS)

    K.M. Krupka; C.F. Brown; H. Todd Schaef; S. M. Heald; M. M. Valenta; B. W. Arey

    2006-01-01

    Static batch experiments were used to examine the sorption of dissolved perrhenate [Re(VII)], as a surrogate for pertechnetate [Tc(VII)], on corrosion products of A-516 carbon steel coupons contacted with synthetic groundwater or dilute water. After 109 days of contact time, the concentration of dissolved Re(VII) in the synthetic groundwater matrix decreased by approximately 26%; the dilute water matrix experienced a 99% decrease in dissolved Re(VII) over the same time period. Bulk x-ray diffraction (XRD) results for the corroded steel coupons showed that the corrosion products consisted primarily of maghemite, lepidocrocite, and goethite. Analyses of the coupons by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) indicated that Re was present with the morphologically complex assemblages of Fe oxide/hydroxide corrosion products for samples spiked with the highest dissolved Re(VII) concentration (1.0 mmol/L) used for these experiments. Analyses of corroded steel coupons contacted with solutions containing 1.0 mmol/L Re(VII) by synchrotron-based methods confirmed the presence of Re sorbed with the corrosion product on the steel coupons. Analyses showed that the Re sorbed on these corroded coupons was in the +7 oxidation state, suggesting that the Re(VII) uptake mechanism did not involve reduction of Re to a lower oxidation state, such as +4. The results of our studies using Re(VII) as an analogue for 99 Tc(VII) suggest that 99 Tc(VII) would also be sorbed with steel corrosion products and that the inventory of 99 Tc(VII) released from breached waste packages would be lower than what is now conservatively estimated

  6. Characterization of the corrosion products formed on mild steel in acidic medium with N-octadecylpyridinium bromide as corrosion inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Nava, N., E-mail: tnava@imp.mx; Likhanova, N. V. [Direccion de Investigacion y Posgrado, Instituto Mexicano del Petroleo (Mexico); Olivares-Xometl, O. [Benemerita Universidad Autonoma de Puebla, Facultad de Ingenieria Quimica (Mexico); Flores, E. A. [Direccion de Investigacion y Posgrado, Instituto Mexicano del Petroleo (Mexico); Lijanova, I. V. [CIITEC, Instituto Politecnico Nacional (Mexico)

    2011-11-15

    The characterization of the corrosion products formed on mild steel SAE 1018 after 2 months exposure in aqueous sulfuric acid with and without corrosion inhibitor N-octadecylpyridinium bromide has been carried out by means of transmission {sup 57}Fe Moessbauer spectroscopy and X-ray powder diffraction (XRD). The major constituent of the rust formed in this environment without corrosion inhibitor is goethite ({alpha}-FeOOH). The samples with N-octadecylpyridinium bromide contain rozenite and large amounts of melanterite in the corrosion layers.

  7. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Smart, N.R. [AEA Technology plc, Culham Science Centre (United Kingdom); Blackwood, D.J. [National Univ. of Singapore (Singapore); Werme, L. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2001-07-01

    In Sweden, high level radioactive waste will be disposed of in a canister with a copper outer and a cast iron or carbon steel inner. If the iron insert comes into contact with anoxic geological water, anaerobic corrosion leading to the generation of hydrogen will occur. This paper presents a study of the anaerobic corrosion of carbon steel and cast iron in artificial Swedish granitic groundwaters. Electrochemical methods and gas collection techniques were used to assess the mechanisms and rates of corrosion and the associated hydrogen gas production over a range of conditions. The corrosion rate is high initially but is anodically limited by the slow formation of a duplex magnetite film. The effects of key environmental parameters such as temperature and ionic strength on the anaerobic corrosion rate are discussed.

  8. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters

    International Nuclear Information System (INIS)

    Smart, N.R.; Blackwood, D.J.; Werme, L.

    2001-07-01

    In Sweden, high level radioactive waste will be disposed of in a canister with a copper outer and a cast iron or carbon steel inner. If the iron insert comes into contact with anoxic geological water, anaerobic corrosion leading to the generation of hydrogen will occur. This paper presents a study of the anaerobic corrosion of carbon steel and cast iron in artificial Swedish granitic groundwaters. Electrochemical methods and gas collection techniques were used to assess the mechanisms and rates of corrosion and the associated hydrogen gas production over a range of conditions. The corrosion rate is high initially but is anodically limited by the slow formation of a duplex magnetite film. The effects of key environmental parameters such as temperature and ionic strength on the anaerobic corrosion rate are discussed

  9. Simulations of corrosion product transfer with the OSCAR V1.2 code

    International Nuclear Information System (INIS)

    Dacquait, F.; Francescatto, J.; Broutin, F.; Genin, J.B.; Benier, G.; Girard, M.; You, D.; Ranchoux, G.; Bonnefon, J.; Bachet, M.; Riot, G.

    2012-09-01

    Activated Corrosion Products (ACPs) generate a radiation field in PWRs, which is the major contributor to the dose absorbed by nuclear power plant staff working during shutdown operations and maintenance. Therefore, a thorough understanding of the mechanisms that control the corrosion product transfer is of the highest importance. Since the 1970's, the R and D strategy in France has been based on experiments in test loops representative of PWR conditions, on in-situ gamma spectrometry measurements of the PWR primary system contamination and on simulation code development. The simulation of corrosion product transfers in PWR primary circuits is a major challenge since it involves many physical and chemical phenomena including: corrosion, dissolution, precipitation, erosion, deposition, convection, activation... In addition to the intrinsic difficulty of multi-physics modelling, the primary systems present severe operating conditions (300 deg. C, 150 bar, neutron flux, fluid velocity up to 15 m.s -1 and very low corrosion product concentrations). The purpose of the OSCAR code, developed by the CEA in cooperation with EDF and AREVA NP, is to predict the PWR primary system contamination by corrosion and fission products. The OSCAR code is considered to be not only a tool for numerical simulations and predictions (operational practices improvements and new-built PWRs design) but also one that might combine and organise all new knowledge useful to progress on contamination. The OSCAR code for Products of Corrosion, OSCAR PC, allows researchers to analyse the corrosion product behaviour and to calculate the ACP volume and surface activities of the primary and auxiliary systems. In the new version, OSCAR PC V1.2, the corrosion product transfer in the particulate form is enhanced and a new feature is the possibility to simulate cold shutdowns. In order to validate this version, the contamination transfer has been simulated in 5 French PWRs with different operating and

  10. Atmospheric corrosion of uranium-carbon alloys

    International Nuclear Information System (INIS)

    Rousset, P.; Accary, A.

    1965-01-01

    The authors study the corrosion of uranium-carbon alloys having compositions close to that of the mono-carbide; they show that the extent of the observed corrosion effects increases with the water vapour content of the surrounding gas and they conclude that the atmospheric corrosion of these alloys is due essentially to the humidity of the air, the effect of the oxygen being very slight at room temperature. They show that the optimum conditions for preserving U-C alloys are either a vacuum or a perfectly dry argon atmosphere. The authors have also established that the type of corrosion involved is a corrosion which 'cracks under stress' and is transgranular (it can also be intergranular in the case of sub-stoichiometric alloys). They propose, finally, two hypotheses for explaining this mechanism, one of which is illustrated by the existence, at the fissure interface, of corrosion products which can play the role of 'corners' in the mono-carbide grains. (authors) [fr

  11. Behavior of copper corrosion products in water loops of heat-exchange units

    International Nuclear Information System (INIS)

    Zarembo, V.I.; Kritskii, V.G.; Slobodov, A.A.; Puchkov, L.V.

    1989-01-01

    This communication is dedicated to an examination of copper corrosion products (CP) in the conditions of real aqueous-chemical regime (ACR) parameters. The deposition of these CP in steam-generating zones (up to 85% of their total amount) stimulate local types of corrosion. The solubility in Cu CP (Cu 2 O, CuO, Cu(OH) 2 )-water (H 2 O)-gas (H 2 , O 2 )-conditioning additives (HCl, KOH) systems was determined by computer modeling according to the minimum Gibbs energy criterion on the basis of selected and matched thermodynamic constants for various chemical forms of copper under standard conditions. As a result of the authors' calculations they obtained the solubilities in water of CuO, Cu 2 O and Cu(OH) 2 when changing the dosage of active gases from 0 to 10 -2 mole/kg of water, of acid or equal to that of saturated vapor of pure water. Thus, they were able to monitor the behavior of copper CP in conditions modeling those of real ACR in operating heat exchange units, including in conditions deviating from the standard

  12. On iron radionuclide interactions and in situ measurement of iron corrosion products

    International Nuclear Information System (INIS)

    Puranen, A.; Jonsson, M.; Cui, D.; Scheidegger, A.M.; Wersin, P.; Spahiu, K.

    2005-01-01

    Full text of publication follows: In performance assessments of hard rock repositories, it is conservatively assumed that waste canisters are breached and that the spent fuel will get into contact with groundwater after 1000 years. When the canister eventually fails to protect HLW from groundwater, dissolved radionuclides from HLW will react with iron canister materials. The reactivity will depend on the conditions in solution and at the iron-water interface. To improve our understanding on the redox chemistry at near field conditions, batch experiments are conducted by contacting polished iron foils with a synthetic groundwater solution containing 10 mM NaCl, 2 mM NaHCO 3 and 5 ppm Se(IV), Se(VI), Tc(VII) and U(VI) in a glove box filled with Ar + 0.03% CO 2 gas mixture. The reaction rates are measured by analysing Se, Tc and U concentrations by ICP-MS. Iron corrosion products formed during the reaction(s) is monitored in-situ by a Layer Raman spectrometer through an optical window. The corrosion potential of the iron foil as well as the Eh and pH values of the bulk solution are recorded continuously during the experiment. The reacted iron foil is embedded with EPOXY resin, and the cross section will be analysed by SEM-EDS and XAS. The preliminary experimental results shows that with the formation of iron green rust FeII 4 FeIII 2 (OH) 12 CO 3 on iron foil, the rates of redox reactions between iron and the negatively charged radionuclides species are increased. The observation is explained by the fact that radionuclide anionic species can be first adsorbed then reduced on the positively charged outer surface of iron green rust. The positive charge is a result of the electrical balance of the negative charges of carbonate contained between the layered iron hydroxides in the green rust. Reduced forms of radionuclides are identified in the iron corrosion products. The results suggest that the formation of iron green rust as a corrosion product on the surface of iron

  13. Corrosion products in the coolant circuits of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Darras, R.

    1984-01-01

    The characteristics of corrosion products formed in the primary and secondary circuits of pressurized light water nuclear power plants are first briefly recalled. The problem set by the pollution of coolants and metallic surfaces is then examined. Finally, the measures of precaution to take and the possible solutions to minimize the disturbing effects of this pollution by corrosion products are presented [fr

  14. Fireside Corrosion Behaviors of Super304H and HR3C in Coal Ash/Gas Environment with Different SO2 Contents at 650 °C

    Science.gov (United States)

    Lu, Jintao; Yang, Zhen; Li, Yan; Huang, Jinyang; Zhou, Yongli; Zhao, Xinbao; Yuan, Yong

    2018-05-01

    The corrosion behaviors of Super304H and HR3C used for USC boiler applications were investigated in simulated coal ash/gas environments with 0.1 and 1.5% of SO2 at 650 °C for 500 h. The results indicated that the increase in SO2 accelerated the corrosion rate and the spalling tendency of the corrosion layer in both tested alloys. Fe2O3, Cr2O3 and FeCr2O4 main peaks were revealed by XRD on Super304H, but on HR3C only the Cr2O3 peak showed a high intensity. The SO2 content did not affect the corrosion product composition of any of the alloys, but accelerated the inner sulfidation and the spallation on Super304H. No obvious internal sulfidation was observed on HR3C in either SO2 content. Based on the experimental results, the alloy corrosion mechanism and the influence of sulfur content on the corrosion process were discussed.

  15. The Moessbauer spectroscopy in the characterization of atmospheric corrosion products

    International Nuclear Information System (INIS)

    Hernandez Torres, D.; Leiva Ronda, P.; Gomez, J.; Ronda, M.

    1996-01-01

    A study of corrosion products on mild steel formed after 1 and 5 years exposure in two industrial coastal weathering stations in the Bay from Matanzas City, Cuba, has been carried out. Structural analysis was conducted using mainly transmission Moessbauer Spectroscopy and the X-ray diffraction as complementary technique. The main phases found in the specimen exposed to high chloride containing environment were: lepidocrocite (γ- FeOOH), goethite (α- FeOOH) and magnetite concentration was the lowest, the phases found were γ- FeOOH and α- FeOOH, and the phase transformation proposed was γ- FeOOh -> α- Fe-OOH. In this station were found also amorphous corrosion products. There amorphous phases could be responsible for the lowest levels of corrosion on steel in this station

  16. Development of tubings 3 percent of CR with higher CO{sub 2} corrosion resistance for exploration and production of oil and gas; Desenvolvimento de 'tubings' 3 % cromo com maior resistencia a corrosao por CO{sub 2} para exploracao e producao de petroleo e gas

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ricardo Nolasco de; Loureiro, Flavio Guerra; Ferreira, Marcelo Almeida Cunha [V e M do Brasil, Belo Horizonte, MG (Brazil); Coelho, Sonia Maria [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil). Div. de Quimica; Baptista, Ilson Palmieri [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2008-07-01

    On of the most important issues of petroleum and gas industries is the corrosion of equipment for exploitation and production, due to its implications in the depreciation and operational costs, besides environmental, health and safety concerns. The CO{sub 2} corrosion is one of the main causes of failures in oil wells and one of available technological alternatives to its control is the increase in the steel chromium content. This work presents the development of tubings with chromium contents close to 3 %, for application in CO{sub 2} containing wells. The chemical analysis was designed in order to maximize chromium in solid solution meeting, at the same time, the mechanical properties of a API L 80. The evaluation of corrosion resistance was done through static and dynamic tests with p CO{sub 2} of 1b ar, pH of 4,0 and 5,0 and temperatures of 25, 50 and 70 deg C. In general, the steel with 3 % of chromium showed uniform corrosion approximately 3 times lower, besides crevice corrosion, pitting and polarization resistance were superior than that form reference steel, API L 80 type 1. The good results coming from laboratory incentives even more the run field tests, which started recently in Campos Basin PETROBRAS wells. (author)

  17. Evaluation of corrosion attack of chimney liners

    Directory of Open Access Journals (Sweden)

    Blahetová M.

    2016-06-01

    Full Text Available The case study of chimney liner corrosion addresses three specific cases of damage of chimney systems from of stainless steels. These systems were used for flue of gas arising from the combustion of brown coal in small automatic boilers, which are used for heating. Detailed analyzes implied that the cause of devastating corrosion of the steel AISI 316 and 304 steel (CSN 17349, 17241 was particularly high content of halides (chlorides and fluorides, which caused a severe pitting corrosion, which led up to the perforation of the liner material. Simultaneous reduction of the thickness of the used sheets was due to by the general corrosion, which was caused by the sulfur in the solid fuel. The condensation then led to acid environment and therefore the corrosion below the dew point of the sulfuric acid has occurred. All is documented by metallographic analysis and microanalysis of the corrosion products.

  18. Study on Increasing High Temperature pH(t) to Reduce Iron Corrosion Products

    International Nuclear Information System (INIS)

    Shin, Dong Man; Hur, Nam Yong; Kim, Waang Bae

    2011-01-01

    The transportation and deposition of iron corrosion products are important elements that affect both the steam generator (SG) integrity and secondary system in pressurized water reactor (PWR) nuclear power plants. Most of iron corrosion products are generated on carbon steel materials due to flow accelerated corrosion (FAC). The several parameters like water chemistry, temperature, hydrodynamic, and steel composition affect FAC. It is well established that the at-temperature pH of the deaerated water system has a first order effect on the FAC rate of carbon steels through nuclear industry researches. In order to reduce transportation and deposition of iron corrosion products, increasing pH(t) tests were applied on secondary system of A, B units. Increasing pH(t) successfully reduced flow accelerated corrosion. The effect of increasing pH(t) to inhibit FAC was identified through the experiment and pH(t) evaluation in this paper

  19. Activation of the IFMIF Lithium Loop Corrosion Products

    Energy Technology Data Exchange (ETDEWEB)

    Cambi, G [Department of Physics, Bologna University, Via Irnerio 46, 40126 Bologna (Italy); Cepraga, D G [ENEA FIS-MET, Via Don Fiammelli 2, 40128 Bologna (Italy); Frisoni, M [Athena s.a.s., Via del Battiferro 3, 40129 Bologna (Italy); Pinna, T [Associazione EURATOM- ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati (RM), (Italy)

    2006-07-01

    The assessment of the activation of steel corrosion products generated in one year of IFMIF lithium loop operation due to the interaction between lithium and Stainless Steel SS-304 has been performed. This paper is mainly focused on the neutron activation and it describes the approach used for and present the results obtained. A preliminary estimate of the accelerator deuteron beam contribute to the activation is also presented. The study was accomplished through the following phases: 1) neutron spectrum calculation in the lithium target via MCNP-4C2 with McEnea neutron source model based on the measurements of neutron emission spectra produced in Li(d,n) reactions for a thick lithium target performed at the '' Cyclotron and Radioisotope Center (CYRIC) '', Tohoku University, Japan; 2) inventories calculations and decay gamma sources production via ANITA-IEAF activation code package; the calculations were performed by considering a lithium mix composition containing lithium impurities and corrosion products referred to 200 wppm of Steel SS-304 corresponding to a corrosion rate of 0.2 {mu}m/y and a SS-304 wetted surface of 572 m{sup 2} ; an irradiation scenario reproducing the integrated (in eleven months of operation) neutron flux responsible for the activation of the circulating corrosion products facing the deuteron beam was considered; 3) decay gamma transport analysis for dose rate evaluations via both VITENEA-IEF/SCALENEA-1 and MCNP-4C2 systems for the Longest Pipe of the Lithium loop. The following conclusions can be drawn by the results analysis: {center_dot} dose rates at 50 cm from the Longest Pipe are 198 {mu}Sv/h and 85{mu}Sv/h at 1 day and 1 week from the plant shutdown, respectively {center_dot} considering the average 20 mSv/a regulatory limit in Europe for '' Radiation Worker '' and the four-week period of annual maintenance activities in Li loop, the zone around the piping, exceeding 125 mSv/h, has to be declared '' Restricted Access Area '' {center

  20. Activation of the IFMIF Lithium Loop Corrosion Products

    International Nuclear Information System (INIS)

    Cambi, G.; Cepraga, D.G.; Frisoni, M.; Pinna, T.

    2006-01-01

    The assessment of the activation of steel corrosion products generated in one year of IFMIF lithium loop operation due to the interaction between lithium and Stainless Steel SS-304 has been performed. This paper is mainly focused on the neutron activation and it describes the approach used for and present the results obtained. A preliminary estimate of the accelerator deuteron beam contribute to the activation is also presented. The study was accomplished through the following phases: 1) neutron spectrum calculation in the lithium target via MCNP-4C2 with McEnea neutron source model based on the measurements of neutron emission spectra produced in Li(d,n) reactions for a thick lithium target performed at the '' Cyclotron and Radioisotope Center (CYRIC) '', Tohoku University, Japan; 2) inventories calculations and decay gamma sources production via ANITA-IEAF activation code package; the calculations were performed by considering a lithium mix composition containing lithium impurities and corrosion products referred to 200 wppm of Steel SS-304 corresponding to a corrosion rate of 0.2 μm/y and a SS-304 wetted surface of 572 m 2 ; an irradiation scenario reproducing the integrated (in eleven months of operation) neutron flux responsible for the activation of the circulating corrosion products facing the deuteron beam was considered; 3) decay gamma transport analysis for dose rate evaluations via both VITENEA-IEF/SCALENEA-1 and MCNP-4C2 systems for the Longest Pipe of the Lithium loop. The following conclusions can be drawn by the results analysis: · dose rates at 50 cm from the Longest Pipe are 198 μSv/h and 85μSv/h at 1 day and 1 week from the plant shutdown, respectively · considering the average 20 mSv/a regulatory limit in Europe for '' Radiation Worker '' and the four-week period of annual maintenance activities in Li loop, the zone around the piping, exceeding 125 mSv/h, has to be declared '' Restricted Access Area '' · the worker radiation protection

  1. 75 FR 55745 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results...

    Science.gov (United States)

    2010-09-14

    ... Products covered by this order are certain corrosion-resistant carbon steel flat products from Korea. These... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... review of the countervailing duty (CVD) order on corrosion-resistant carbon steel flat products (CORE...

  2. The Corrosion control in the Bolivia-Brazil Gas Pipeline; O controle da corrosao no Gasoduto Bolivia-Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Jorge Fernando Pereira [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    This paper presents the techniques and procedures adopted for the corrosion control of the Bolivia-Brazil Gas Pipeline. In buried pipes, the corrosion process may occur on the external surface in contact with the surrounding soil as well on the internal surface in contact with the conveyed fluid, being necessary the simultaneous mitigation of the both processes. (author)

  3. Spectral Analysis of CO2 Corrosion Product Scales on 13Cr Tubing Steel

    International Nuclear Information System (INIS)

    Guan-fa, Lin; Zhen-quan, Bai; Yao-rong, Feng; Xun-yuan, Xu

    2008-01-01

    CO 2 corrosion product scales formed on 13 Cr tubing steel in autoclave and in the simulated corrosion environment of oil field are investigated in the paper. The surface and cross-section profiles of the scales were observed by scanning electron microscopy (SEM), the chemical compositions of the scales were analyzed using energy dispersion analyzer of X-ray (EDAX), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to confirm the corrosion mechanism of the 13 Cr steel in the simulated CO 2 corrosion environment. The results show that the corrosion scales are formed by the way of fashion corrosion, consist mainly of four elements, i.e. Fe, Cr, C and O, and with a double-layer structure, in which the surface layer is constituted of bulky and incompact crystals of FeCO 3 , and the inner layer is composed of compact fine FeCO 3 crystals and amorphous Cr(OH) 3 . Because of the characteristics of compactness and ionic permeating selectivity of the inner layer of the corrosion product scales, 13 Cr steel is more resistant in CO 2 corrosion environment

  4. Resistance of WE43 and ZRE1 Magnesium Alloys to Gas Corrosion

    Directory of Open Access Journals (Sweden)

    Przeliorz R.

    2017-06-01

    Full Text Available In spite of the fact that in most applications, magnesium alloys are intended for operation in environments with room temperature, these alloys are subject to elevated temperature and oxidizing atmosphere in various stages of preparation (casting, welding, thermal treatment. At present, the studies focus on development of alloys with magnesium matrix, intended for plastic forming. The paper presents results of studies on oxidation rate of WE43 and ZRE1 magnesium foundry alloys in dry and humidified atmosphere of N2+1%O2. Measurements of the oxidation rate were carried out using a Setaram thermobalance in the temperature range of 350-480°C. Corrosion products were analyzed by SEM-SEI, BSE and EDS. It was found that the oxide layer on the WE43 alloy has a very good resistance to oxidation. The high protective properties of the layer should be attributed to the presence of yttrium in this alloy. On the other hand, a porous, two-layer scale with a low adhesion to the substrate forms on the ZRE1 alloy. The increase in the sample mass in dry gas is lower than that in humidified gas.

  5. Corrosion/94 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The approximately 500 papers from this conference are divided into the following sections: Rail transit systems--stray current corrosion problems and control; Total quality in the coatings industry; Deterioration mechanisms of alloys at high temperatures--prevention and remediation; Research needs and new developments in oxygen scavengers; Computers in corrosion control--knowledge based system; Corrosion and corrosivity sensors; Corrosion and corrosion control of steel reinforced concrete structures; Microbiologically influenced corrosion; Practical applications in mitigating CO 2 corrosion; Mineral scale deposit control in oilfield-related operations; Corrosion of materials in nuclear systems; Testing nonmetallics for life prediction; Refinery industry corrosion; Underground corrosion control; Mechanisms and applications of deposit and scale control additives; Corrosion in power transmission and distribution systems; Corrosion inhibitor testing and field application in oil and gas systems; Decontamination technology; Ozone in cooling water applications, testing, and mechanisms; Corrosion of water and sewage treatment, collection, and distribution systems; Environmental cracking of materials; Metallurgy of oil and gas field equipment; Corrosion measurement technology; Duplex stainless steels in the chemical process industries; Corrosion in the pulp and paper industry; Advances in cooling water treatment; Marine corrosion; Performance of materials in environments applicable to fossil energy systems; Environmental degradation of and methods of protection for military and aerospace materials; Rail equipment corrosion; Cathodic protection in natural waters; Characterization of air pollution control system environments; and Deposit-related problems in industrial boilers. Papers have been processed separately for inclusion on the data base

  6. Investigations of the diverse corrosion products on steel in a hydrogen sulfide environment

    International Nuclear Information System (INIS)

    Bai, Pengpeng; Zheng, Shuqi; Zhao, Hui; Ding, Yu; Wu, Jian; Chen, Changfeng

    2014-01-01

    Highlights: • Diverse corrosion products on steel are investigated in H 2 S environment. • The sequence of the main corrosion products is mackinawite + cubic FeS → troilite. • The large single beam-shaped troilite has a growth pattern along the c axis. • The flower-like troilite develops from beam- or hexagonal wire-shaped grains. • The corresponding crystal structure and morphology of the products are provided. - Abstract: The corrosion products of carbon steel in aqueous H 2 S environment are investigated. The products, which include mackinawite, cubic FeS, troilite, and pyrite, are characterized through their shapes, chemical compositions and crystal structures. Mackinawite appears with a flake shape. Cubic FeS has a perfect/truncated octahedral shape, and pyrite is framboid-shaped. Flower-shaped troilite is developed from beam- or hexagonal wire-shaped grains by electrostatic interactions along a certain lattice plane. The large single beam-shaped troilite has a growth pattern along the c axis. The corresponding crystal structure and micro-morphology of the corrosion products are provided, and the three-dimensional models of them are generated

  7. Characterization of corrosion products of Zn and Zn–Mg–Al coated steel in a marine atmosphere

    International Nuclear Information System (INIS)

    Diler, E.; Rouvellou, B.; Rioual, S.; Lescop, B.; Nguyen Vien, G.; Thierry, D.

    2014-01-01

    Highlights: • The corrosion behaviour of Zn–Mg–Al alloy in marine environment is characterized. • Zn–Mg–Al alloy shows a better corrosion resistance than Zn. • Strong enhancement of NaZn 4 Cl(OH) 6 SO 4 ·6H 2 O in the corrosion products is observed. • Al 3+ and Mg 2+ induced quenching effects in corrosion activity are described. - Abstract: The corrosion behaviour of pure zinc and zinc–magnesium–aluminium alloy (ZMA) has been studied during 6 months of exposure in marine environment (Brest, France). The composition of corrosion products is analysed using infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). An improved corrosion resistance of ZMA is observed. This improvement is found to be connected to Mg 2+ and Al 3+ induced quenching of corrosion activity and to the enhancement of NaZn 4 Cl(OH) 6 SO 4 ·6H 2 O in the formed corrosion product

  8. Design considerations of fission and corrosion product in primary system of MONJU

    International Nuclear Information System (INIS)

    Yanagisawa, T.; Akagane, K.; Yamamoto, K.; Kawashima, K.

    1976-01-01

    General influence of fission and corrosion products in primary system on MONJU plant design is reviewed. Various research and development works are now in progress to decrease the generation rate, to remove the products more effectively and to develop the methods of evaluation the behaviour of radioactive products. The inventory and distribution of fission and corrosion products in the primary circuit of MONJU are given. The radiation levels on the primary components are estimated to be several roentgens per hour. (author)

  9. High-Temperature Corrosion Behavior of Alloy 617 in Helium Environment of Very High Temperature Gas Reactor

    International Nuclear Information System (INIS)

    Lee, Gyeong-Geun; Jung, Sujin; Kim, Daejong; Jeong, Yong-Whan; Kim, Dong-Jin

    2012-01-01

    Alloy 617 is a Ni-base superalloy and a candidate material for the intermediate heat exchanger (IHX) of a very high temperature gas reactor (VHTR) which is one of the next generation nuclear reactors under development. The high operating temperature of VHTR enables various applications such as mass production of hydrogen with high energy efficiency. Alloy 617 has good creep resistance and phase stability at high temperatures in an air environment. However, it was reported that the mechanical properties decreased at a high temperature in an impure helium environment. In this study, high-temperature corrosion tests were carried out at 850°C-950°C in a helium environment containing the impurity gases H_2, CO, and CH_4, in order to examine the corrosion behavior of Alloy 617. Until 250 h, Alloy 617 specimens showed a parabolic oxidation behavior at all temperatures. The activation energy for oxidation in helium environment was 154 kJ/mol. The SEM and EDS results elucidated a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbides. The thickness and depths of degraded layers also showed a parabolic relationship with time. A normal grain growth was observed in the Cr-rich surface oxide layer. When corrosion tests were conducted in a pure helium environment, the oxidation was suppressed drastically. It was elucidated that minor impurity gases in the helium would have detrimental effects on the high temperature corrosion behavior of Alloy 617 for the VHTR application.

  10. Bio-films and processes of bio-corrosion and bio-deterioration in oil-and gas-processing industry

    Energy Technology Data Exchange (ETDEWEB)

    Kholodenko, V.P.; Irkhina, I.A.; Chugunov, V.A.; Rodin, V.B.; Zhigletsova, S.K.; Yermolenko, Z.M.; Rudavin, V.V. [State Research Center for Applied Microbiology, Obolensk, Moscow region (Russian Federation)

    2004-07-01

    As a rule, oil- and gas-processing equipment and pipelines are attacked by different microorganisms. Their vital ability determines processes of bio-deterioration and bio-corrosion that lead often to technological accidents and severe environmental contamination. Bio-films presenting a complex association of different microorganisms and their metabolites are responsible for most of damages. In this context, to study the role bio-films may play in processes of bio-damages and in efficacy of protective measures is important. We have developed method of culturing bio-films on the surface of metal coupons by using a natural microbial association isolated from oil-processing sites. Simple and informative methods of determining microbiological parameters of bio-films required to study bio-corrosion processes are also developed. In addition, a method of electron microscopic analysis of bio-films and pitting corrosion is offered. Using these methods, we conducted model experiments to determine the dynamics of corrosion processes depending on qualitative and quantitative composition of bio-films, aeration conditions and duration of the experiment. A harmful effect of soil bacteria and micro-mycetes on different pipeline coatings was also investigated. Experiments were conducted within 3-6 months and revealed degrading action of microorganisms. This was confirmed by axial tension testing of coatings. All these approaches will be used for further development of measures to protect gas- and oil-processing equipment and pipelines against bio-corrosion and bio-damages (first of all biocides). (authors)

  11. Mechanical properties of layers of corrosion products at steel / concrete interface

    International Nuclear Information System (INIS)

    Dehoux, Anita

    2012-01-01

    To take account of the development of corrosion products layers in residual lifetime calculations of reinforced concrete structures requires a good knowledge of the mechanical properties of these products. Our study aims to determine the mechanical properties of layers of corrosion products. The approach consists of an identification of the microstructure properties complemented by homogenization calculations to calculate a mesoscopic behavior in linear elasticity of layers of corrosion products. The study includes a series of experimental campaigns at the microscopic scale. Vickers micro indentation tests analyzed by a Gaussian mixture model approach allowed the acquisition of hardness and elastic moduli at the microscale. An identification of the microstructure products is performed by Raman microspectrometry. The microstructure's characterization brings valuable information for homogenization calculations. The first approach has consisted of calculations of random media homogenization by self-consistent and generalized self-consistent schemes. In the second approach, effective modulus calculations were performed using numerical microstructures resulting from 2D images taken with an optical microscope. The corpus is composed of samples of different ages and origins, their microstructures were compared. (author) [fr

  12. Automated-process gas-chromatograph system for use in accelerated corrosion testing of HTGR core-support posts

    International Nuclear Information System (INIS)

    Harper, R.E.; Herndon, P.G.

    1982-01-01

    An automated-process gas chromatograph is the heart of a gaseous-impurities-analysis system developed for the Oak Ridge National Laboratory Core Support Performance Test, at which graphite core-support posts for high-temperature gas-cooled fission reactors are being subjected to accelerated corrosion tests under tightly controlled conditions of atmosphere and temperature. Realistic estimation of in-core corrosion rates is critically dependent upon the accurate measurement of low concentrations of CO, CO 2 , CH 4 , H 2 , and O 2 in the predominantly helium atmosphere. In addition, the capital and labor investment associated with each test puts a premium upon the reliability of the analytical system, as excessive downtime or failure to obtain accurate data would result in unacceptable costs and schedule delays. After an extensive survey of available measurement techniques, gas chromatography was chosen for reasons of accuracy, flexibility, good-performance record, and cost

  13. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    KAUST Repository

    Serdar, Marijana

    2015-05-01

    © 2015 Elsevier Ltd All rights reserved. The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide-hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel.

  14. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    KAUST Repository

    Serdar, Marijana; Meral, Cagla; Kunz, Martin; Bjegovic, Dubravka; Wenk, Hans-Rudolf; Monteiro, Paulo J.M.

    2015-01-01

    © 2015 Elsevier Ltd All rights reserved. The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide-hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel.

  15. Bio-testing integral toxicity of corrosion inhibitors, biocides and oil hydrocarbons in oil-and gas-processing industry

    Energy Technology Data Exchange (ETDEWEB)

    Chugunov, V.A.; Kholodenko, V.P.; Irkhina, I.A.; Fomchenkov, V.M.; Novikov, I.A. [State Research Center for Applied Microbiology, Obolensk, Moscow (Russian Federation)

    2004-07-01

    In recent years bioassays have been widely used for assessing levels of contamination of the environment. This is due to the fact that test-organisms provide a general response to toxicants present in samples. Based on microorganisms as test objects, it is possible to develop cheap, sensitive and rapid assays to identify environmental xenobiotics and toxicants. The objective of the research was to develop different microbiological assays for assessing integral toxicity of water environments polluted with corrosion inhibitors, biocides and hydrocarbons in oil- and gas-processing industry. Bio-luminescent, electro-orientational, osmo-optic and microorganism reducing activity assays were used for express evaluation of integral toxicity. They are found to determine promptly integral toxicity of water environments containing various pollutants (oil, oil products, corrosion inhibitors, biocides). Results conclude that the assays may be used for analyzing integral toxicity of water polluted with hydrocarbons, as well as for monitoring of water changes as a result of biodegradation of pollutants by microorganisms and their associations. Using a kit of different assays, it is also possible to evaluate ecological safety of biocides, corrosion inhibitors, and their compositions. Bioassays used as a kit are more effective than each assay individually, allowing one to get complete characterization of a reaction of bacterial test organisms to different environments. (authors)

  16. High temperature corrosion of advanced ceramic materials for hot gas filters. Topical report for part 1 of high temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Spear, K.E.; Crossland, C.E.; Shelleman, D.L.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering

    1997-12-11

    This program consists of two separate research areas. Part 1, for which this report is written, studied the high temperature corrosion of advanced ceramic hot gas filters, while Part 2 studied the long-term durability of ceramic heat exchangers to coal combustion environments. The objectives of Part 1 were to select two candidate ceramic filter materials for flow-through hot corrosion studies and subsequent corrosion and mechanical properties characterization. In addition, a thermodynamic database was developed so that thermochemical modeling studies could be performed to simulate operating conditions of laboratory reactors and existing coal combustion power plants, and to predict the reactions of new filter materials with coal combustion environments. The latter would make it possible to gain insight into problems that could develop during actual operation of filters in coal combustion power plants so that potential problems could be addressed before they arise.

  17. Chemical Industry Corrosion Management: A Comprehensive Information System (ASSET 2). Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John, Randy C. [Shell Global Solutions, Houston, TX (United States); Young, Arthur L. [Humberside Solutions, Toronto, ON (Canada); Pelton, Arthur D. [CRCT, Ecole Polytechnique de Montreal, Quebec (Canada); Thompson, William T. [Royal Military College of Canada, Kingston, ON (Canada); Wright, Ian G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2008-10-10

    The research sponsored by this project has greatly expanded the ASSET corrosion prediction software system to produce a world-class technology to assess and predict engineering corrosion of metals and alloys corroding by exposure to hot gases. The effort included corrosion data compilation from numerous industrial sources and data generation at Shell Oak Ridge National Laboratory and several other companies for selected conditions. These data were organized into groupings representing various combinations of commercially available alloys and corrosion by various mechanisms after acceptance via a critical screening process to ensure the data were for alloys and conditions, which were adequately well defined, and of sufficient repeatability. ASSET is the largest and most capable, publicly-available technology in the field of corrosion assessment and prediction for alloys corroding by high temperature processes in chemical plants, hydrogen production, energy conversion processes, petroleum refining, power generation, fuels production and pulp/paper processes. The problems addressed by ASSET are: determination of the likely dominant corrosion mechanism based upon information available to the chemical engineers designing and/or operating various processes and prediction of engineering metal losses and lifetimes of commercial alloys used to build structural components. These assessments consider exposure conditions (metal temperatures, gas compositions and pressures), alloy compositions and exposure times. Results of the assessments are determination of the likely dominant corrosion mechanism and prediction of the loss of metal/alloy thickness as a function of time, temperature, gas composition and gas pressure. The uses of these corrosion mechanism assessments and metal loss predictions are that the degradation of processing equipment can be managed for the first time in a way which supports efforts to reduce energy consumption, ensure structural integrity of equipment

  18. Phase Analysis of Corrosion Products from Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lipka, J.; Slugen, V.; Toth, I.; Hascik, J.; Lehota, M.

    2002-01-01

    The variability of the properties and the composition of the corrosion products of the stainless CrNi and mild steels in dependence on the conditions (temperature, acidity, etc.) is of such a range that, in practice, it is impossible to determine the properties of the corrosion products for an actual case from the theoretical data only. Since the decontamination processes for the materials of the water-cooled reactor (VVER-440) secondary circuits are in a process of development, it is necessary to draw the needed information by the measurement and analysis of the real specimens. The corrosion layer was separated by scraping the rust off the surface and the powder samples were studied by transmission Moessbauer spectroscopy. It should be noted that the gamma spectroscopic measurements give no evidence of the presence of low-energy gamma radiation emitted from the samples. The scrapped specimen powder was homogenised (using the 50 μm sieve) and fixed into the special holder. The 57 Co in Rh matrix was used as the radioactive Moessbauer source. Measured spectra were fitted using program NORMOS SITE. According to the results obtained from Moessbauer spectra, it is possible to establish that the main component of secondary circuit's corrosion products is magnetite Fe 3 O 4 . Next components are hematite α-Fe 2 O 3 and hydroxide akagenite β-FeOOH, which is characterised by a significant paramagnetic doublet in the middle of the spectra. The sextets corresponding to base materials (martensite and austenite steels) were identified in all measured spectra.

  19. Sulphide production and corrosion in seawaters during exposure to FAME diesel.

    Science.gov (United States)

    Lee, Jason S; Ray, Richard I; Little, Brenda J; Duncan, Kathleen E; Oldham, Athenia L; Davidova, Irene A; Suflita, Joseph M

    2012-01-01

    Experiments were designed to evaluate the corrosion-related consequences of storing/transporting fatty acid methyl ester (FAME) alternative diesel fuel in contact with natural seawater. Coastal Key West, FL (KW), and Persian Gulf (PG) seawaters, representing an oligotrophic and a more organic- and inorganic mineral-rich environment, respectively, were used in 60 day incubations with unprotected carbon steel. The original microflora of the two seawaters were similar with respect to major taxonomic groups but with markedly different species. After exposure to FAME diesel, the microflora of the waters changed substantially, with Clostridiales (Firmicutes) becoming dominant in both. Despite low numbers of sulphate-reducing bacteria in the original waters and after FAME diesel exposure, sulphide levels and corrosion increased markedly due to microbial sulphide production. Corrosion morphology was in the form of isolated pits surrounded by an intact, passive surface with the deepest pits associated with the fuel/seawater interface in the KW exposure. In the presence of FAME diesel, the highest corrosion rates measured by linear polarization occurred in the KW exposure correlating with significantly higher concentrations of sulphur and chlorine (presumed sulphide and chloride, respectively) in the corrosion products.

  20. Magnesium microelectrode corrosion product transport modelling in relation to chloride induced pitting

    International Nuclear Information System (INIS)

    Burrows, R.; Cook, A.; Stevens, N.P.C.

    2012-09-01

    The high magnesium alloy Magnox is used as a fuel clad for the UK gas cooled, graphite moderated reactors of the same name. The fuel is metallic uranium (typically natural enrichment), so a low neutron absorption cross-section clad is required. Following discharge from reactor, spent fuel is stored in water, which acts as an effective heat transfer medium and biological shield. The chemistry of these ponds is carefully controlled to ensure that the Magnox clad remains in a passive state. This is primarily through the maintenance of a high pH and very low anion concentration. Of particular concern is the presence of chloride ions as even very low levels may allow localised corrosion to initiate. Although extensive work has been undertaken historically considering the behaviour of Magnox clad and the acceptable storage envelopes, the challenges of ageing plant and aspirations for accelerated decommissioning give value to further understanding of the corrosion mechanisms of this material. Recently, electrochemical techniques have been employed to characterise performance in a variety of chemistries and microelectrodes have been produced which have shown characteristics of salt film corrosion at moderate chloride concentrations under polarisation. A characteristic of the electrochemical response observed during the mass transport limited (potential independent) salt film regime has been periodic transients which correspond to emission of microscopic hydrogen bubbles from the microelectrode cavity. A simple finite element multi-physics model has been employed to assist in understanding the dominant processes of corrosion product transport away from a magnesium electrode surface which is dissolving under a salt film and this shows that characteristic transients observed in electrochemical tests may be simulated with reasonable agreement by consideration of convection from laminar flow around hydrogen micro-bubbles in the pit cavity combined with aqueous diffusion in the

  1. Investigation of the Degradation Mechanisms of Particulate Reinforced Epoxy Coatings and Zinc-Rich Coatings Under an Erosion and Corrosion Environment for Oil and Gas Industry Applications

    Science.gov (United States)

    Wang, Dailin

    During oil and gas production and transportation, the presence of an oil-sand slurry, together with the presence of CO2, H2S, oxygen, and seawater, create an erosive/abrasive and corrosive environment for the interior surfaces of undersea pipelines transporting oil and gas from offshore platforms. Erosion/wear and corrosion are often synergic processes leading to a much greater material loss of pipeline cross-section than that caused by each individual process alone. Both organic coatings and metallic sacrificial coatings have been widely employed to provide protection to the pipeline steels against corrosion through barrier protection and cathodic protection, and these protection mechanisms have been well studied. However, coating performance under the synergic processes of erosion/wear and corrosion have been much less researched and coating degradation mechanisms when erosion/wear and corrosion are both going on has not been well elucidated. In the work presented in this dissertation, steel panels coated with filler reinforced epoxy coatings and carbon nanotubes (CNTs) reinforced zinc-rich coatings have been evaluated under erosion/wear followed by an exposure to a corrosive environment. Electrochemical tests and material characterization methods have been applied to study the degradation mechanisms of the coatings during the tests and coating degradation mechanisms have been proposed. While organic coatings with a lower amount of filler particles provided better protection in a corrosive environment alone and in solid particle impingement erosion testing alone, organic coatings with a higher amount of filler particles showed better performance during wear testing alone. A higher amount of filler particles was also beneficial in providing protection against wear and corrosion environment, and erosion and corrosion environment. Coating thickness played a significant role in the barrier properties of the coatings under both erosion and corrosion tests. When the

  2. In situ Raman identification of corrosion products on galvanized steel sheets

    International Nuclear Information System (INIS)

    Bernard, M.C.; Hugot le Goff, A.; Massinon, D.; Phillips, N.; Thierry, D.

    1992-01-01

    In situ Raman spectroscopy was used to identify corrosion products on zinc immersed in chloride solutions. In aerated 0,03 M NaCl solution, zinc carbonate was identified as the main corrosion product. Even with higher chloride concentrations, for which zinc hydroxychloride was also detected, the carbon dioxide concentration is likely to be the rate controlling factor of the corrosion process. In a confinement experiment, Raman analysis revealed that the upper face of the sample was covered with zinc carbonate, whereas hydroxychlorides were identified on the confined face. This result confirmed the hypothesis of a differential aeration mechanism responsible for the formation of zinc hydroxychloride. This is in good agreement with Raman spectroscopy results obtained in the case of painted galvanized steel

  3. The effects of corrosion product colloids on actinide transport

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1991-11-01

    This report assesses the possible effects of colloidal corrosion products on the transport of actinides from the near field of radioactive waste repositories. The desorption of plutonium and americium from colloidal corrosion products of iron and zirconium was studied under conditions simulating a transition from near-field to far-field environmental conditions. Desorption of actinides occurred slowly from the colloids under far-field conditions. Measurements of particle stability showed all the colloids to be unstable in the near field. Stability increased under far-field conditions or as a result of the evolution of the near field. Migration of colloids from the near field is unlikely except in the presence of organic materials. (Author)

  4. Corrosion of copper in distilled water without molecular oxygen and the detection of produced hydrogen

    International Nuclear Information System (INIS)

    Hultquist, G.; Graham, M.J.; Kodra, O.; Moisa, S.; Liu, R.; Bexell, U.; Smialek, J.L.

    2013-01-01

    This paper reports on hydrogen pressures measured during the longterm immersion (∼19 000 hours) of copper in oxygen-free distilled water. Hydrogen gas evolution is from copper corrosion and similar pressures (in the mbar range) are measured for copper contained in either a 316 stainless steel or titanium system. Copper corrosion products have been examined ex-situ by SEM and characterized by Xray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). XPS strongly indicates a corrosion product containing both hydroxide and oxide. SIMS shows that oxygen is mainly present in the outer 0.3 μm surface region and that hydrogen penetrates to depths in the substrate well below the corrosion product

  5. Corrosion and corrosion control

    International Nuclear Information System (INIS)

    Khanna, A.S.; Totlani, M.K.

    1995-01-01

    Corrosion has always been associated with structures, plants, installations and equipment exposed to aggressive environments. It effects economy, safety and product reliability. Monitoring of component corrosion has thus become an essential requirement for the plant health and safety. Protection methods such as appropriate coatings, cathodic protection and use of inhibitors have become essential design parameters. High temperature corrosion, especially hot corrosion, is still a difficult concept to accommodate in corrosion allowance; there is a lack of harmonized system of performance testing of materials at high temperatures. In order to discuss and deliberate on these aspects, National Association for Corrosion Engineers International organised a National Conference on Corrosion and its Control in Bombay during November 28-30, 1995. This volume contains papers presented at the symposium. Paper relevant to INIS is indexed separately. refs., figs., tabs

  6. High-Temperature Corrosion of AlCrSiN Film in Ar-1%SO2 Gas

    Directory of Open Access Journals (Sweden)

    Poonam Yadav

    2017-03-01

    Full Text Available AlCrSiN film with a composition of 29.1Al-17.1Cr-2.1Si-51.7N in at. % was deposited on a steel substrate by cathodic arc ion plating at a thickness of 1.8 μm. It consisted of nanocrystalline hcp-AlN and fcc-CrN, where a small amount of Si was dissolved. Corrosion tests were carried out at 800 °C for 5–200 h in Ar-1%SO2 gas. The major corrosion reaction was oxidation owing to the high oxygen affinity of Al and Cr in the film. The formed oxide scale consisted primarily of (Al,Cr2O3, within which Fe, Si, and S were dissolved. Even after corrosion for 200 h, the thickness of the scale was about 0.7–1.2 μm, indicating that the film had good corrosion resistance in the SO2-containing atmosphere.

  7. Analysis of corrosion products of carbon steel in wet bentonite

    International Nuclear Information System (INIS)

    Osada, Kazuo; Nagano, Tetsushi; Nakayama, Shinichi; Muraoka, Susumu

    1992-02-01

    As a part of evaluation of the long-term durability for the overpack containers for high-level radioactive waste, we have conducted corrosion tests for carbon steel in wet bentonite, a candidate buffer material. The corrosion rates were evaluated by weight difference of carbon steel and corrosion products were analyzed by Fourier transform infrared spectroscopy (FT-IR) and colorimetry. At 40degC, the corrosion rate of carbon steel in wet bentonite was smaller than that in pure water. At 95degC, however, the corrosion rate in wet bentonite was much higher than that in pure water. This high corrosion rate in wet bentonite at 95degC was considered to result from evaporation of moisture in bentonite in contact with the metal. This evaporation led to dryness and then to shrinkage of the bentonite, which generated ununiform contact of the metal with bentonite. Probably, this ununiform contact promoted the local corrosion. The locally corroded parts of specimen in wet bentonite at 95degC were analyzed by Fourier transform infrared microspectroscopy (micro-FT-IR), and lepidocrocite γ-FeO(OH) was found as well as goethite α-FeO(OH). In wet bentonite at 95degC, hematite α-Fe 2 O 3 was identified by means of colorimetry. (author)

  8. ASSET, An Information System for Alloy Corrosion in High Temperature Gases

    International Nuclear Information System (INIS)

    R. C. John; A. D. Pelton; A. L. Young; W. T. Thompson; I. G. Wright

    2001-01-01

    A large database for corrosion data and a corrosion prediction information system for metals and alloys corroding in high-temperature gases have been created. Corrosion data for about 75 commercial alloys, 4600 corrosion data measurements, and six million exposure hours have been compiled into an information system, ASSET. ASSET allows prediction of sound metal thickness losses for metals and alloys corroding by several common corrosion mechanisms at high-temperatures as functions of gas composition, temperature, time, and alloy. This paper presents examples of predicted metal losses of alloys corroding in standard conditions for several corrosion mechanisms expected in high-temperature gases. ASSET also provides a comprehensive capability to analyze the thermochemical interactions between alloys, corrosion products and exposure conditions. Some of the uses of the data compilation and the corrosion prediction feature are illustrated for oxidizing, sulfidizing, sulfidizing/oxidizing , and carburizing conditions

  9. The corrosion products in the coolant circuits of pressurized water nuclear power plants

    International Nuclear Information System (INIS)

    Darras, R.

    1983-01-01

    The characteristics of the corrosion products formed in the primary and secondary coolant circuits of light-water pressurized reactors are reviewed. The problem induced by the pollution of coolants and metallic surface are examined. Then, the recommendations to follow to minimize the disturbing effects of this pollution by the corrosion products are indicated [fr

  10. High temperature corrosion in straw-fired power plants: Influence of steam/metal temperature on corrosion rates for TP347H

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Biede, O; Larsen, OH

    2002-01-01

    The corrosion in straw-fired boilers has been investigated at various straw-fired power plants in Denmark. Water/air-cooled probes, a test superheater and test sections removed from the actual superheater have been utilised to characterise corrosion and corrosion rates. This paper describes...... the corrosion rates measured for the TP347H type steel. The corrosion morphology at high temperature consists of grain boundary attack and selective attack of chromium. The corrosion rate increases with calculated metal temperature (based on steam temperature), however there is great variation within....... The difference in the results could be traced back to a lower flue gas temperature on one side of the boiler. Although metal temperature is the most important parameter with respect to corrosion rate, flue gas temperature also plays an important role. Efforts to quantify the effect of flue gas temperature...

  11. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    Energy Technology Data Exchange (ETDEWEB)

    García-Rentería, M.A., E-mail: crazyfim@gmail.com [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); López-Morelos, V.H., E-mail: vhlopez@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); García-Hernández, R., E-mail: rgarcia@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); Dzib-Pérez, L., E-mail: luirdzib@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); García-Ochoa, E.M., E-mail: emgarcia@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); González-Sánchez, J., E-mail: jagonzal@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico)

    2014-12-01

    Highlights: • Electromagnetic interaction in welding improved localised corrosion resistance. • Electromagnetic interaction in welding enhanced γ/δ phase balance of DuplexSS. • Welding under Electromagnetic interaction repress formation and growth of detrimental phases. • Welds made with gas protection (2% O{sub 2} + 98% Ar) have better microstructural evolution during welding. - Abstract: The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O{sub 2} (M1) and 97% Ar + 3% N{sub 2} (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  12. High temperature corrosion of superheater materials for power production through biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gotthjaelp, K.; Broendsted, P. [Forskningscenter Risoe (Denmark); Jansen, P. [FORCE Institute (Denmark); Montgomery, M.; Nielsen, K.; Maahn, E. [Technical Univ. of Denmark, Corrosion and Surface Techn. Inst. of Manufacturing Engineering (Denmark)

    1996-08-01

    The aim of the present study has been to establish a fundamental knowledge of the corrosion mechanisms acting on materials for use in biomass fired power plants. The knowledge is created based on laboratory exposures of selected materials in well-defined corrosive gas environments. The experiments using this facility includes corrosion studies of two types of high temperature resistant steels, Sanvik 8LR30 (18Cr 10Ni Ti) and Sanicro 28 (27Cr 31Ni 4Mo), investigated at 600 deg. C in time intervals up to 300 hours. The influence of HCl (200 ppm) and of SO{sub 2} (300 ppm) on the corrosion progress has been investigated. In addition the corrosion behaviour of the same materials was investigated after having been exposed under a cover of ash in air in a furnace at temperatures of 525 deg. C, 600 deg. C, and 700 deg. C. The ashes utilised are from a straw fired power plant and a synthetic ash composed of potassium chloride (KCl) and potassium sulphate (K{sub 2}SO{sub 4}). Different analysis techniques to characterise the composition of the ash coatings have been investigated in order to judge the reliability and accuracy of the SEM-EDX method. The results are considered as an important step towards a better understanding of the high temperature corrosion under the conditions found in biomass fired power plants. One of the problems to solve in a suggested subsequent project is to combine the effect of the aggressive gases (SO{sub 2} and HCl) and the active ash coatings on high temperature corrosion of materials. (EG) 20 refs.

  13. Impact of production and release of gas in a L/ILW repository. A summary of the work performed within the Nagra programme

    International Nuclear Information System (INIS)

    Zuidema, P.; Hoglund, L.O.

    1988-01-01

    In a repository for low- and intermediate-level radioactive wastes, gases will be formed due to corrosion of metals, microbial degradation of organic materials and radiolytic decomposition of water and organic materials. The predominant source of gas is calculated to be anaerobic corrosion of metals, particularly iron. Gas pressure will build up in the near-field until it is released through the system of engineered barriers into the geosphere at a rate equivalent to the production rate. Excessive gas pressures may damage the engineered barriers if no precautions are taken. Radionuclide transport both through the host rock and near-field may be influenced by such gas releases. Water will be displaced and local hydrology will be altered. The significance of these alterations are site-specific; theoretical studies as well as field investigations are underway to clarify the role of the different processes involved

  14. EVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION

    Energy Technology Data Exchange (ETDEWEB)

    Bill W. Bogan; Wendy R. Sullivan; Kristine M. H. Cruz; Kristine L. Lowe; John J. Kilbane II

    2004-04-30

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing of pepper extracts resulted in preliminary data indicating that some pepper extracts inhibit the growth of some corrosion-associated microorganisms. This quarter additional tests were performed to more specifically investigate the ability of three pepper extracts to inhibit the growth, and to influence the metal corrosion caused by two microbial species: Desulfovibrio vulgaris, and Comomonas denitrificans. All three pepper extracts rapidly killed Desulfovibrio vulgaris, but did not appear to inhibit Comomonas denitrificans. While corrosion rates were at control levels in experiments with Desulfovibrio vulgaris that received pepper extract, corrosion rates were increased in the presence of Comomonas denitrificans plus pepper extract. Further testing with a wider range of pure bacterial cultures, and more importantly, with mixed bacterial cultures should be performed to determine the potential effectiveness of pepper extracts to inhibit MIC.

  15. Internal Corrosion Direct Assessment Detection of Water (WP #205)

    Science.gov (United States)

    2010-12-12

    Internal corrosion of natural gas pipelines is the result of interaction between the inside pipe wall and impurities in the product being transported. Such interactions can lead to an overall loss of material thereby thinning the pipe wall and thus r...

  16. Experimental Study of Hydroxy Gas (HHO) Production with Variation in Current, Voltage and Electrolyte Concentration

    Science.gov (United States)

    Alam, Noor; Pandey, K. M.

    2017-08-01

    In this paper, work has been carried out experimentally for the investigation of the effects of variation incurrent, voltage, temperature, chemical concentration and reaction time on the amount of hydroxy gas produced. Further effects on the overall electrolysis efficiency of advance alkaline water is also studied. The hydroxy gas (HHO) has been produced experimentally by the electrolysis of alkaline water with parallel plate electrode of 316L-grade stainless steel. The electrode has been selected on the basis of corrosion resistance and inertness with respect to electrolyte (KOH). The process used for the production of HHO is conventional as compared to the other production processes because of reduced energy consumption, less maintenance and low setup cost. From the experimental results, it has been observed that with increase in voltage, temperature and electrolyte concentration of alkaline solution, the production of hydroxy gas has increased about 30 to 40% with reduction in electrical energy consumption.

  17. Improved PFB operations: 400-hour turbine test results. [coal combustion products and hot corrosion in gas turbines

    Science.gov (United States)

    Rollbuhler, R. J.; Benford, S. M.; Zellars, G. R.

    1980-01-01

    A pressurized fluidized bed (PFB) coal-burning reactor was used to provide hot effluent gases for operation of a small gas turbine. Preliminary tests determined the optimum operating conditions that would result in minimum bed particle carryover in the combustion gases. Solids were removed from the gases before they could be transported into the test turbine by use of a modified two stage cyclone separator. Design changes and refined operation procedures resulted in a significant decrease in particle carryover, from 2800 to 93 ppm (1.5 to 0.05 grains/std cu ft), with minimal drop in gas temperature and pressure. The achievement of stable burn conditions and low solids loadings made possible a 400 hr test of small superalloy rotor, 15 cm (6 in.) in diameter, operating in the effluent. Blades removed and examined metallographically after 200 hr exhibited accelerated oxidation over most of the blade surface, with subsurface alumina penetration to 20 micron m. After 400 hours, average erosion loss was about 25 micron m (1 mil). Sulfide particles, indicating hot corrosion, were present in depletion zones, and their presence corresponded in general to the areas of adherent solids deposit. Sulfidation appears to be a materials problem equal in importance to erosion.

  18. Mössbauer effect study of corrosion products from a Brazilian oil refinery

    Science.gov (United States)

    da Costa, M. I.; Kunrath, J. I.; Moro, J. T.; da Cunha, J. B. M.; Englert, G.; Comparsi, L. U.; Muller, I. L.

    1993-04-01

    Corrosion of an oil refining plant in southern Brazil is controlled by placing metallic coupons in strategic places of the unit. The amount of the corrosion products formed after two months of exposure of the coupons is then obtained by weight loss measurements. To have a better insight of these products an analysis by Conversion Electron and transmission Mössbauer spectroscopies was done on some of the coupons. This paper reports some of the findings.

  19. The formation, composition and structure of corrosion products in CANDU nuclear power reactors

    International Nuclear Information System (INIS)

    Rummery, T.E.

    1978-01-01

    To gain a better understanding of the formation and transport of corrosion products in CANDU-PHW power reactors, and the role played by these products in the generation and subsequent fixation of radioactive species, we have examined in detail several surfaces removed from the Douglas Point Generating Station (Douglas Point, Ontario). Results are given for the surface of the primary-side of a Monel-400 boiler tube, and surfaces of carbon steel piping at the inlet and outlet of the boiler. The experimental techniques that were used included sequential acid stripping, X-ray diffractometry, scanning electron microscopy and energy dispersive X-ray spectrometry. The corrosion products on the Monel-400 were mainly nickel, copper, nickel oxide and nickel-deficient nickel ferrite and varied in composition and quantity as a function of both distance from the boiler inlet, and depth in the corrosion layer. The radioactive cobalt ( 60 Co) content was localized in 'streaks' deposited in the straight sections of the boiler tube, but distributed uniformly over the whole surface in the downstream bend section. The material covering the carbon steel surface comprised three phases: magnetite, aluminosilicate particles at the outermost surface, and a mixed cation spinel phase uniformly distributed over the surface at the corrosion film-water interface. The formation, composition and structure of the corrosion products are discussed. (author)

  20. 78 FR 55241 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2013-09-10

    ... merchandise covered by this Order \\2\\ is certain corrosion- resistant carbon steel flat products from Korea... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... the countervailing duty (CVD) order on corrosion-resistant carbon steel flat products (CORE) from the...

  1. Modeling of corrosion product migration in the secondary circuit of nuclear power plants with WWER-1200

    Science.gov (United States)

    Kritskii, V. G.; Berezina, I. G.; Gavrilov, A. V.; Motkova, E. A.; Zelenina, E. V.; Prokhorov, N. A.; Gorbatenko, S. P.; Tsitser, A. A.

    2016-04-01

    Models of corrosion and mass transfer of corrosion products in the pipes of the condensate-feeding and steam paths of the secondary circuit of NPPs with WWER-1200 are presented. The mass transfer and distribution of corrosion products over the currents of the working medium of the secondary circuit were calculated using the physicochemical model of mass transfer of corrosion products in which the secondary circuit is regarded as a cyclic system consisting of a number of interrelated elements. The circuit was divided into calculated regions in which the change in the parameters (flow rate, temperature, and pressure) was traced and the rates of corrosion and corrosion products entrainment, high-temperature pH, and iron concentration were calculated. The models were verified according to the results of chemical analyses at Kalinin NPP and iron corrosion product concentrations in the feed water at different NPPs depending on pH at 25°C (pH25) for service times τ ≥ 5000 h. The calculated pH values at a coolant temperature t (pH t ) in the secondary circuit of NPPs with WWER-1200 were presented. The calculation of the distribution of pH t and ethanolamine and ammonia concentrations over the condensate feed (CFC) and steam circuits is given. The models are designed for developing the calculation codes. The project solutions of ATOMPROEKT satisfy the safety and reliability requirements for power plants with WWER-1200. The calculated corrosion and corrosion product mass transfer parameters showed that the model allows the designer to choose between the increase of the correcting reagent concentration, the use of steel with higher chromium contents, and intermittent washing of the steam generator from sediments as the best solution for definite regions of the circuit.

  2. Atmospheric corrosion of uranium-carbon alloys; Corrosion atmospherique des alliages uranium-carbone

    Energy Technology Data Exchange (ETDEWEB)

    Rousset, P; Accary, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The authors study the corrosion of uranium-carbon alloys having compositions close to that of the mono-carbide; they show that the extent of the observed corrosion effects increases with the water vapour content of the surrounding gas and they conclude that the atmospheric corrosion of these alloys is due essentially to the humidity of the air, the effect of the oxygen being very slight at room temperature. They show that the optimum conditions for preserving U-C alloys are either a vacuum or a perfectly dry argon atmosphere. The authors have also established that the type of corrosion involved is a corrosion which 'cracks under stress' and is transgranular (it can also be intergranular in the case of sub-stoichiometric alloys). They propose, finally, two hypotheses for explaining this mechanism, one of which is illustrated by the existence, at the fissure interface, of corrosion products which can play the role of 'corners' in the mono-carbide grains. (authors) [French] Les auteurs etudient la corrosion des alliages uranium-carbone de composition voisine du monocarbure; ils montrent que l'importance des effets de la corrosion observee augmente avec la teneur en vapeur d'eau du milieu gazeux ambiant et concluent que la corrosion atmospherique de ces alliages est due essentiellement a l'humidite de l'air, l'action de l'oxygene de l'air etant tres faible a la temperature ambiante. Ils indiquent que les conditions optimales de conservation des alliages U-C sont le vide ou une atmosphere d'argon parfaitement desseches. D'autre part, les auteurs etablissent que le type de corrosion mis en jeu est une corrosion 'fissurante sous contrainte', transgranulaire (pouvant egalement etre intergranulaire dans le cas d'alliages sous-stoechiometriques). Ils proposent enfin deux hypotheses pour rendre compte de ce mecanisme, dont l'une est illustree par la mise en evidence, a l'interface des fissures, de produits de corrosion pouvant jouer le role de 'coins' dans les grains de

  3. Aspects of high temperature corrosion of boiler tubes

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, M.; Bendick, W. [Salzgitter-Mannesmann-Forschung GmbH, Duisburg (Germany)

    2008-07-01

    The development of new boiler steels for power generation has to consider significant creep strength as well as oxidation and corrosion resistance. High temperature corrosion of boiler materials concerns steam oxidation as well as fireside corrosion of parts, in contact with the flue gas. It will be shown that depending on the quality of the fuel, especially chlorine and sulphur are responsible for most of the fireside corrosion problems. Corrosion mechanisms will be presented for flue gas induced corrosion (HCl) and deposit induced corrosion (chlorides and sulfates). Especially for the 700 C technology, deposit induced corrosion issues have to be considered and the mechanisms of corrosion by molten sulfates 'Hot Corrosion' will be explained. Finally, an overview will be given on the selection of suitable materials in order to minimise corrosion relates failures. (orig.)

  4. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    Science.gov (United States)

    García-Rentería, M. A.; López-Morelos, V. H.; García-Hernández, R.; Dzib-Pérez, L.; García-Ochoa, E. M.; González-Sánchez, J.

    2014-12-01

    The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O2 (M1) and 97% Ar + 3% N2 (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  5. 78 FR 19210 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2013-03-29

    .... Scope of the Order Products covered by this order are certain corrosion-resistant carbon steel flat... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... countervailing duty (CVD) order on corrosion-resistant carbon steel flat products from the Republic of Korea for...

  6. Experimental and modelling investigations of the biogeochemistry of gas production from low and intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Small, Joe; Nykyri, Mikko; Helin, Mika; Hovi, Ulla; Sarlin, Tuija; Itaevaara, Merja

    2008-01-01

    The degradation of organic wastes and the corrosion of metallic wastes and steel containers in low and intermediate level radioactive waste (LLW/ILW) repositories are important processes that affect repository geochemistry and the speciation and transport of radionuclides. Gas is generated in association with these degradation processes and this has the potential to overpressure the repository, which can promote transport of groundwater and gas, and consequently radionuclide transport. Microbial activity plays an important role in organic degradation, corrosion and gas generation through the mediation of reduction-oxidation reactions. A large-scale gas generation experiment has been established at the LLW/ILW repository, Olkiluoto, Finland to examine gas generation from LLW in waste drums disposed of in the operational VLJ Repository (VLJ is a Finnish acronym which translates to 'reactor operating waste'). The experiment has monitored, for a period of 9 a, the rate and composition of gas generated, and the aqueous geochemistry and microbe populations present at various locations within the experiment. There is considerable heterogeneity within the experiment, such that pH is observed to vary from pH 5.5 to pH 10 between organic-rich waste and water associated with concrete. The heterogeneity results in competing anaerobic processes occurring together in the experiment but within different niches. Microbial activity initially dominant in organic waste has after 7 a reduced the alkalinity of the concrete influenced regions. The experiment has been modelled using a biogeochemical reaction-transport code (GRM) using a blind testing approach. Using independent data, the model was able to reproduce, within a factor of two, the rate of gas production. In addition, the model represented the main anaerobic microbial processes leading to methanogenesis and the observed spatial and temporal variations in aqueous and gaseous species. In order to model the experiment, its

  7. Corrosion products, activity transport and deposition in boiling water reactor recirculation systems

    International Nuclear Information System (INIS)

    Alder, H.P.; Buckley, D.; Grauer, R.; Wiedemann, K.H.

    1992-01-01

    The deposition of activated corrosion products in the recirculation loops of Boiling Water Reactors produces increased radiation levels which lead to a corresponding increase in personnel radiation dose during shut down and maintenance. The major part of this dose rate is due to cobalt-60. Based on a comprehensive literature study concerning this theme, it has been attempted to identify the individual stages of the activity build-up and to classify their importance. The following areas are discussed in detail: The origins of the corrosion products and of cobalt-59 in the reactor feedwaters; the consolidation of the cobalt in the fuel pins deposits (activation); the release and transport of cobalt-60; the build-up of cobalt-60 in the corrosion products in the recirculation loops. Existing models of the build-up of circuit radioactivity are discussed and the operating experiences from selected reactors are summarized. 90 refs, figs and tabs

  8. 77 FR 31877 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five...

    Science.gov (United States)

    2012-05-30

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-350 and 731-TA-616 and 618 (Third Review)] Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five-Year Reviews... corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion...

  9. 78 FR 16832 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Revocation...

    Science.gov (United States)

    2013-03-19

    ...] Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Revocation of... ``ITC'') that revocation of the antidumping duty (``AD'') orders on corrosion-resistant carbon steel... (``Sunset'') Review, 77 FR 85 (January 3, 2012). \\2\\ See Corrosion-Resistant Carbon Steel Flat Products From...

  10. Evaluation of hydrogen production from CO2 corrosion of steel drums in SFR, Part 2

    International Nuclear Information System (INIS)

    Dugstad, A.; Videm, K.

    1987-06-01

    An experimental program has been carried out for the investigation of the hydrogen formation due to corrosion of steel by water containing CO 2 produced by microbiologic decomposition of paper in waste drums. The hydrogen production will be limited by a limited rate of CO 2 production, as CO 2 is consumed by corrosive reactions producing carbonate containing corrosion products. Experiments indicated that also iron oxide and hydroxides were formed together with FeCO 3 at low CO 2 partial pressures but at a rate which leads to a rather slow increase in hydrogen production. Hydrogen evaluation has been overestimated in previous reports on this subject. (authors)

  11. The Moessbauer spectroscopy in the characterization of atmospheric corrosion products; La espectroscopia Moessbauer en la caracterizacion de productos de corrosion atmosferica

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Torres, D; Leiva Ronda, P [Centro de Estudios Aplicados al Desarrollo Nuclear (CEADEN), La Habana (Cuba); Gomez, J; Ronda, M [Centro de Investigaciones del Petroleo, La Habana (Cuba)

    1996-07-01

    A study of corrosion products on mild steel formed after 1 and 5 years exposure in two industrial coastal weathering stations in the Bay from Matanzas City, Cuba, has been carried out. Structural analysis was conducted using mainly transmission Moessbauer Spectroscopy and the X-ray diffraction as complementary technique. The main phases found in the specimen exposed to high chloride containing environment were: lepidocrocite ({gamma}- FeOOH), goethite ({alpha}- FeOOH) and magnetite concentration was the lowest, the phases found were {gamma}- FeOOH and {alpha}- FeOOH, and the phase transformation proposed was {gamma}- FeOOh -> {alpha}- Fe-OOH. In this station were found also amorphous corrosion products. There amorphous phases could be responsible for the lowest levels of corrosion on steel in this station.

  12. Corrosion assessment of refractory materials for high temperature waste vitrification

    International Nuclear Information System (INIS)

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.

    1995-01-01

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosion coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials

  13. Effects of Cr, Mo, and W on Na2SO4 induced high temperature corrosion of Ni

    International Nuclear Information System (INIS)

    Reising, R.F.

    1975-01-01

    Operating gas turbine engines are susceptible to a phenomenon called hot corrosion. Hot corrosion is generally attributed to the interaction of nickel-base turbine blade alloys with ingested sodium sulfate. Two mechanism were presented previously to account for the surface and grain boundary corrosion of nickel metal. The effects of chromium, molybdenum, or tungsten, or their corrosion products on the corrosion of nickel metal were studied. The corrosion products considered are the oxides and sodium-oxygen compounds. The corrosion products of molybdenum and tungsten enhance the sodium sulfate-induced corrosion of nickel to the same degree as the metals themselves while those of chromium do not. The enhanced corrosion caused by sodium molybdate or tungstate suggests that more than a simple acid-base phenomenon is involved. The formation of a triable, porous film caused by the presence of nickel molybdate or tungstate is proposed as the mechanism responsible for this enhancement. This mechanism is consistent with that proposed by Lashka and Glezer who associated the intensified oxidation of molybdenum-containing nickel alloys with a sub-layer oxide scale containing nickel molybdate. (U.S.)

  14. Effects of amalgam corrosion products on human cells

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, P R; Cogen, R B; Taubman, S B [Departments of Periodontics and Pathology, University of Connecticut Health Center, Farmington, Connecticut, U.S.A.

    1976-01-01

    Using three independent criteria, we have found that 10/sup -4/,10/sup -6/M concentrations of ions presumably liberated from the corrosion of dental amalgam produce injurious effects on either human gingival fibroblasts or HeLa cells when the cells are grown in culture. Release of /sup 51/Cr and uptake of trypan blue dye were seen with 10/sup -5/M Hg/sup + +/ and Ag/sup +/. Inhibition of amino acid incorporation into protein-like material was seen with eluates of amalgam and with ionic solutions of most metals comprising dental amalgam. Stannous ion showed little if any cytotoxic potential. These results suggest that corrosion products of amalgam are capable of causing cellular injury or destruction.

  15. Coupling between corrosion and biphasic transport in porous media: Application to the evolution of a radioactive wastes disposal; Couplage entre corrosion et comportement diphasique dans un milieu poreux: Application a l'evolution d'un stockage des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Dridi, W

    2005-04-15

    In the actual concepts of geological disposal, high level radioactive wastes are packed in metallic containers surrounded by a partially or totally saturated clay media. In contact with the interstitial water, anoxic corrosion of this container will start producing hydrogen. In the scope of safety assessment, the present study deals with two main topics: prediction of the long-term corrosion of carbon steel with respect to clay water content and evaluation of the risk of damage of the clay barrier related to gas production. Elementary processes controlling the kinetics of corrosion are limited to oxide growth and mass transfer through the porosity of this film. Thanks to a macroscopic description of theses processes, followed by an interfacial kinetic law, a mechanistic modeling of the anoxic corrosion in partially saturated porous media is proposed. This approach is validated when confronted to the long-term corrosion tests performed in saturated clay. Both modeling and laboratory experiments have confirmed that kinetics of anoxic corrosion in partially saturated clay is mainly controlled by the surrounding relative humidity as in the case of aerated or atmospheric corrosion. In the gas generation topic, some numerical simulations are performed concerning the oedometric and triaxial test dealing with gas migration in saturated clay. Finally, long-term calculations are conducted concerning hydro-mechanical impact of corrosion in deep geological repositories. Due to a more realistic prediction of the long-term corrosion, the risks of gas overpressures, local desaturation and mechanical damage are reduced. (author)

  16. A Study on the Effects of the Use of Gas or Water Atomized AISI 316L Steel Powder on the Corrosion Resistance of Laser Deposited Material

    Science.gov (United States)

    Tobar, M. J.; Amado, J. M.; Montero, J.; Yáñez, A.

    Water atomized and gas atomized powders are commonly used in 3D laser manufacturing. Both types of AISI 316L stainless steel powders are available which differ in their manganese content. This is due to specific procedures related to the two different atomization process. The amount of manganese in the laser processed part might have important implications in its corrosion resistance. It could lead to the formation of manganese sulfides (MnS) which are known to be initiation sites for pitting corrosion. In this work, corrosion performance of laser deposited 316L steel using gas and atomized powders is compared by means of potentiodynamic polarization tests in 0.35%wt. NaCL solution. Worse performance of the gas atomized samples is observed as with respect to the water atomized ones in terms of polarization resistance, corrosion rate and pitting susceptibility.

  17. Summary of INCO corrosion tests in power plant flue gas scrubbing processes

    International Nuclear Information System (INIS)

    Hoxie, E.C.; Tuffnell, G.W.

    1976-01-01

    Corrosion tests in a number of flue-gas desulfurization units have shown that carbon steel, low alloy steels, and Type 304L stainless steel are inadequate in the wet portions of the scrubbers. Type 316L stainless steel is sometimes subject to localized corrosive attack in scrubber environments with certain combinations of pH and chloride content. A corollary is that corrosion of Type 316L stainless steel might be controlled by control of scrubbing media pH and chloride content. Although an attempt was made to correlate the pitting and crevice corrosion obtained on the Type 316 stainless steel test samples with chloride and pH measurements, relatively wide scatter in the data indicated only a modest correlation. This is attributed to variations in local conditions, especially beneath deposits, that differ from the liquor samples obtained for analysis, to processing upsets, to temperature differences, and to some extent to inaccuracies in measurement of pH and chloride levels. The data do show, however, that molybdenum as an alloying element in stainless steels and high nickel alloys was very beneficial in conferring resistance to localized attack in scrubber environments. High nickel alloys containing appreciable amounts of molybdenum such as Hastelloy alloy C-276 and Inconel alloy 625 can be used for critical components. Chloride stress corrosion cracking (SCC) of austenitic stainless steels has generally not been a problem in FGD scrubbers, apparently because operating temperatures are comparatively low. An exception is reheater tubing where some failures have occurred because of elevated temperatures in conjunction with condensate that forms during shut-down periods or carryover of chloride laden mist from the scrubber. This problem can be overcome by proper alloy selection or maintaining dry conditions

  18. Web-based continuous internal corrosion monitoring of a sweet natural gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Cauchi, Sam; Vorozcovs, Andrew [Fiber Optic Systems Technology Inc. (FOX-TEK), Bedford, Nova Scotia (Canada)

    2009-07-01

    Inspection of pipelines susceptible to internal corrosion is a key ingredient in maintaining their reliable throughput. While conventional inspection consisting of in line inspection, radiography and ultrasound remain the mainstay of most integrity programs, challenging circumstances in some cases make the availability of such data inadequate, cost prohibitive, and at times entirely unavailable. These scenarios include aggressive internal corrosion, expensive excavation conditions, low or stagnant flow, and non-piggable pipeline segments. While some gas pipelines in these circumstances are considered relatively low risk and low consequence, due to the significant reclamation costs and cleanup time associated with liquid pipelines, those areas identified as being high-risk are often high-consequence and thus require a specialized inspection solution. For areas deemed to be at high-risk, or areas of low-risk with high consequence, Electrical Field Mapping (EFM) has provided a practical solution to safe operation without introducing expensive and potentially dangerous dig programs. Historically, however, this inspection approach has required manual data acquisition as part of a scheduled EFM site visit schedule. Due to the tedious nature of this data acquisition approach, the remoteness of some pipeline inspection sites and the complexity of data analysis, it has been difficult to closely monitor the most critical assets on a continuous basis. The manual component of this approach also often eliminates EFM as a practical solution due to lack of properly trained personnel. In this paper, we will discuss a new approach to data acquisition where data is acquired, transmitted, analyzed, and displayed completely automatically and remotely with virtually no human overhead or recurring operating costs. An overview of the PinPoint monitoring setup covering 180 degrees of pipe circumference is described. This advanced EFM system allows operators to observe, essentially in real

  19. Positive aspects issued from bio corrosion studies: from hydrogen production to biofuel cells

    International Nuclear Information System (INIS)

    Silva Munoz, L. de

    2007-12-01

    Microbially influenced corrosion or bio corrosion is a problem that generates heavy global economic losses (several billion euros per year). In spite of the progress made on the understanding of the underlying mechanisms, the complexity of the phenomenon has prevented finding definitive solutions to the problem and continues to inspire many research works. The participation in bio corrosion of catalytic mechanisms induced by weak acids was studied in this work. Another objective of the thesis has been to take advantage from catalytic phenomena found in bio corrosion research to apply them in other areas: energy production with biofuel cells or electrochemical hydrogen production in mild conditions. This work has shown that the presence of weak acids and amino acids inside bio-films could play a major role in steel bio corrosion accelerating the phenomenon through the catalysis of the water reduction reaction. The reversibility of this mechanism, discerned and proved here, could explain the corrosion increase when hydrogen is removed (bacterial consumption, agitation...). In addition, phosphates allow the production of hydrogen by electrolysis in mild pH conditions (pH 4.0 - 8.0) with an equal or better performance than those found in alkaline electrolysis. Finally, industrial materials like stainless steel and titanium could be used in the fabrication of enzymatic electrodes for biosensors or microsystems. The use of the glucose oxidase/glucose system in an aqueous fuel cell with a stainless steel cathode, allows the improvement of the cell performance thanks to the production of hydrogen peroxide that is easily reduced. Moreover, the use of materials with micro-structured surfaces like sandblasted steels deserve to be studied in detail to exploit the remarkable reactivity they present compared to smooth electrodes. (author)

  20. Positive aspects issued from bio-corrosion studies: from hydrogen production to biofuel cells

    International Nuclear Information System (INIS)

    De Silva Munoz, Leonardo

    2007-01-01

    Microbially influenced corrosion or bio-corrosion is a problem that generates heavy global economic losses (several billion euros per year). In spite of the progress made on the understanding of the underlying mechanisms, the complexity of the phenomenon has prevented finding definitive solutions to the problem and continues to inspire many research works. The participation in bio-corrosion of catalytic mechanisms induced by weak acids was studied in this work. Another objective of the thesis has been to take advantage from catalytic phenomena found in bio corrosion research to apply them in other areas: energy production with biofuel cells or electrochemical hydrogen production in mild conditions. This work has shown that the presence of weak acids and amino acids inside bio films could play a major role in steel bio-corrosion accelerating the phenomenon through the catalysis of the water reduction reaction. The reversibility of this mechanism, discerned and proved here, could explain the corrosion increase when hydrogen is removed (bacterial consumption, agitation...). In addition, phosphates allow the production of hydrogen by electrolysis in mild ph conditions (pH 4.0 - 8.0) with an equal or better performance than those found in alkaline electrolysis. Finally, industrial materials like stainless steel and titanium could be used in the fabrication of enzymatic electrodes for biosensors or microsystems. The use of the glucose oxidase / glucose system in an aqueous fuel cell with a stainless steel cathode, allows the improvement of the cell performance thanks to the production of hydrogen peroxide that is easily reduced. Moreover, the use of materials with micro-structured surfaces like sandblasted steels deserve to be studied in detail to exploit the remarkable reactivity they present compared to smooth electrodes. (author) [fr

  1. Advanced fuels for gas turbines: Fuel system corrosion, hot path deposit formation and emissions

    International Nuclear Information System (INIS)

    Seljak, Tine; Širok, Brane; Katrašnik, Tomaž

    2016-01-01

    Highlights: • Technical feasibility analysis of alternative fuels requires a holistic approach. • Fuel, combustion, corrosion and component functionality are strongly related. • Used approach defines design constraints for microturbines using alternative fuels. - Abstract: To further expand the knowledge base on the use of innovative fuels in the micro gas turbines, this paper provides insight into interrelation between specific fuel properties and their impact on combustion and emission formation phenomena in micro gas turbines for stationary power generation as well as their impact on material corrosion and deposit formation. The objective of this study is to identify potential issues that can be related to specific fuel properties and to propose counter measures for achieving stable, durable, efficient and low emission operation of the micro gas turbine while utilizing advanced/innovative fuels. This is done by coupling combustion and emission formation analyses to analyses of material degradation and degradation of component functionality while interpreting them through fuel-specific properties. To ensure sufficiently broad range of fuel properties to demonstrate the applicability of the method, two different fuels with significantly different properties are analysed, i.e. tire pyrolysis oil and liquefied wood. It is shown that extent of required micro gas turbine adaptations strongly correlates with deviations of the fuel properties from those of the baseline fuel. Through the study, these adaptations are supported by in-depth analyses of impacts of fuel properties on different components, parameters and subsystems and their quantification. This holistic approach is further used to propose methodologies and innovative approaches for constraining a design space of micro gas turbine to successfully utilize wide spectra of alternative/innovative fuels.

  2. Coupling between corrosion and biphasic transport in porous media: Application to the evolution of a radioactive wastes disposal

    International Nuclear Information System (INIS)

    Dridi, W.

    2005-04-01

    In the actual concepts of geological disposal, high level radioactive wastes are packed in metallic containers surrounded by a partially or totally saturated clay media. In contact with the interstitial water, anoxic corrosion of this container will start producing hydrogen. In the scope of safety assessment, the present study deals with two main topics: prediction of the long-term corrosion of carbon steel with respect to clay water content and evaluation of the risk of damage of the clay barrier related to gas production. Elementary processes controlling the kinetics of corrosion are limited to oxide growth and mass transfer through the porosity of this film. Thanks to a macroscopic description of theses processes, followed by an interfacial kinetic law, a mechanistic modeling of the anoxic corrosion in partially saturated porous media is proposed. This approach is validated when confronted to the long-term corrosion tests performed in saturated clay. Both modeling and laboratory experiments have confirmed that kinetics of anoxic corrosion in partially saturated clay is mainly controlled by the surrounding relative humidity as in the case of aerated or atmospheric corrosion. In the gas generation topic, some numerical simulations are performed concerning the oedometric and triaxial test dealing with gas migration in saturated clay. Finally, long-term calculations are conducted concerning hydro-mechanical impact of corrosion in deep geological repositories. Due to a more realistic prediction of the long-term corrosion, the risks of gas overpressures, local desaturation and mechanical damage are reduced. (author)

  3. Tank vent processing system having a corrosion preventive device

    International Nuclear Information System (INIS)

    Ouchi, Shoichi; Sato, Hirofumi

    1987-01-01

    Purpose: To prevent corrosion of a tank vent processing device by injecting an oxygen gas. Constitution: Oxygen gas and phosphorous at high temperature are poured into a tank vent processing device and amorphous oxide layers optimum to the prevention of external corrosion are formed to the inner surface of the device. Since the corrosion preventive device using the oxygen gas injection can be constituted as a relatively simple device, it is more economical than constituting a relatively large tank vent processing device with corrosion resistant stainless steels. (Kamimura, M.)

  4. Effects of gaseous nitriding AISI4140 alloy steel on corrosion and hardness properties

    Science.gov (United States)

    Tamil Moli, L.; Wahab, N.; Gopinathan, M.; Karmegam, K.; Maniyarasi, M.

    2016-10-01

    Corrosion is one of the major problems in the industry especially on machinery since it weakens the structure of the machinery part and causes the mechanical failure. This will stop the production and increase the maintenance cost. In this study, the corrosion behaviour of gas nitriding on a screw press machine shaft made from AISI 4140 steel was investigated. Pitting corrosion was identified as a major cause of the shaft failure and this study was conducted to improve the corrosion resistance on the AISI 4140 alloy steel shaft by gas nitriding as a surface hardening treatment. Gas nitriding was performed with composition of 15% ammonia and 85% nitrogen at temperatures of 525 °C, 550 °C and 575 °C and with the soaking time of 30, 45 and 60 minutes, respectively. The samples were prepared as rectangular sized of 30mm x 12mm x 3mm for immersion testing. The results showed that corrosion rate of untreated samples was 77% higher compared to the nitrided samples. It was also found that hardness of the nitrided samples was higher than untreated sample. All in all, it can be concluded that gaseous nitriding can significantly improve the surface hardness and the corrosion resistance of the shaft made of AISI 4140 alloy steel, hence reduces the pitting that is the root cause of failure.

  5. The external beam facility used to characterize corrosion products in metallic statuettes

    International Nuclear Information System (INIS)

    Rizzutto, M.A.; Tabacniks, M.H.; Added, N.; Barbosa, M.D.L.; Curado, J.F.; Santos, W.A.; Lima, S.C.; Melo, H.G.; Neiva, A.C.

    2005-01-01

    To open new possibilities in nuclear applied physics research, mainly for the analysis of art objects in air, an external beam facility was installed at LAMFI (Laboratorio de Analise de Materiais por Feixes Ionicos) of University of Sao Paulo. PIXE measurements were made using an XR-100CR (Si-PIN) X-ray detector pointed to the sample mounted after an approximate 11 mm air path, hence with effective beam energy of 0.9 MeV. This setup was used to characterize the corrosion products of two ethnological metallic statuettes from the African collection of the Museum of Archaeology and Etnology. PIXE analysis of the corrosion free base of one statuette showed that Cu and Zn are the main components of the alloy, while Pb is present in smaller amount. The analysis of some corrosion products showed a Zn:Cu relationship higher than that of the base, evidencing selective corrosion. The main components of the other statuette were Cu and Pb, while S and Zn were found in smaller amounts

  6. Copper corrosion experiments under anoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, Kaija [VTT Technical Research Centre of Finland, Espoo (Finland)

    2013-06-15

    This report gives results from the corrosion experiments with copper under anoxic conditions. The objective was to study whether hydrogen-evolving corrosion reaction could occur. Copper foil samples were exposed in deaerated deionized water in Erlenmeyer flasks in the glove box with inert atmosphere. Four corrosion experiments (Cu1, Cu2, Cu3 and Cu4) were started, as well as a reference test standing in air. Cu1 and Cu2 had gas tight seals, whereas Cu3 and Cu4 had palladium foils as hydrogen permeable enclosure. The test vessels were stored during the experiments in a closed stainless steel vessel to protect them from the trace oxygen of the gas atmosphere and light. After the reaction time of three and a half years, there were no visible changes in the copper surfaces in any of the tests in the glove box, in contrast the Cu surfaces looked shiny and unaltered. The Cu3 test was terminated after the reaction time of 746 days. The analysis of the Pd-membrane showed the presence of H2 in the test system. If the measured amount of 7.2{center_dot}10{sup 5} mol H{sub 2} was the result of formation of Cu{sub 2}O this would correspond to a 200 nm thick corrosion layer. This was not in agreement with the measured layer thickness with SIMS, which was 6{+-}1 nm. A clear weight loss observed for the Cu3 test vessel throughout the test period suggests the evaporation of water through the epoxy sealing to the closed steel vessel. If this occurred, the anaerobic corrosion of steel surface in humid oxygen-free atmosphere could be a source of hydrogen. A similar weight loss was not observed for the parallel test (Cu4). The reference test standing in air showed visible development of corrosion products.

  7. Correlation between designed wall thickness of gas pipelines and external and internal corrosion processes; Adequacao de espessura de parede projetada em funcao de processos de corrosao externa e interna em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Jose Antonio da Cunha Ponciano [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE). Programa de Engenharia Metalurgica

    2004-07-01

    Corrosion control on gas pipelines plays an important role on the assessment of pipeline integrity and reliability. In many countries a great extension of buried pipelines is used on transport and distribution systems. This extension will be certainly increased in a near future due to the increasing consumption of natural gas. Inadequate corrosion control can drive to pipeline failures, bringing up the possibility of accidents in populated or environmental protected areas, bringing together severe economical, legal and environmental consequences. Corrosion is frequently considered as a natural and inevitable phenomenon. Based upon this assumption, some recommendations are included on design standards of gas pipelines in order to compensate its detrimental effect. The aim of this work is to present a review of the correlation between external corrosion process and the guidelines established during the project phase of gas pipelines. It is intended to contribute for a better understanding of the impacts of corrosion on integrity, reliability and readiness of gas transport and distribution systems. Some aspects regarding external corrosion of pipelines extracted from technical papers will be summarised. Information provided will be compared to design criterion prescribed by the NBR 12712 Standard. (author)

  8. Corrosion products, activity transport and deposition in boiling water reactor recirculation systems

    International Nuclear Information System (INIS)

    Alder, H.P.; Buckley, D.; Grauer, R.; Wiedemann, K.H.

    1989-09-01

    The deposition of activated corrosion products in the recirculation loops of Boiling Water Reactors produces increased radiation levels which lead to a corresponding increase in personnel radiation dose during shut down and maintenance. The major part of this dose rate is due to cobalt-60. The following areas are discussed in detail: - the origins of the corrosion products and of cobalt-59 in the reactor feedwaters, - the consolidation of the cobalt in the fuel pin deposits (activation), - the release and transport of cobalt-60, - the build-up of cobalt-60 in the corrosion products in the recirculation loops. Existing models of the build-up of circuit radioactivity are discussed and the operating experiences from selected reactors are summarised. Corrosion chemistry aspects of the cobalt build-up in the primary circuit have already been studied on a broad basis and are continuing to be researched in a number of centers. The crystal chemistry of chromium-nickel steel corrosion products poses a number of yet unanswered questions. There are major loopholes associated with the understanding of activation processes of cobalt deposited on the fuel pins and in the mass transfer of cobalt-60. For these processes, the most important influence stems from factors associated with colloid chemistry. Accumulation of data from different BWRs contributes little to the understanding of the activity build-up. However, there are examples that the problem of activity build-up can be kept under control. Although many details for a quantitative understanding are still missing, the most important correlations are visible. The activity build-up in the BWR recirculation systems cannot be kept low by a single measure. Rather a whole series of measures is necessary, which influences not only cobalt-60 deposition but also plant and operation costs. (author) 26 figs., 13 tabs., 90 refs

  9. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, S., E-mail: sfeliu@cenim.csic.es; Llorente, I.

    2015-08-30

    Highlights: • Surface chemistry of the corrosion product layers on magnesium alloys. • Influence of the type of alloy on the carbonate surface enrichment. • Relation between surface composition and protection properties. - Abstract: This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS.

  10. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability

    International Nuclear Information System (INIS)

    Feliu, S.; Llorente, I.

    2015-01-01

    Highlights: • Surface chemistry of the corrosion product layers on magnesium alloys. • Influence of the type of alloy on the carbonate surface enrichment. • Relation between surface composition and protection properties. - Abstract: This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS

  11. Modelling and numerical simulation of the corrosion product transport in the pressurised water reactor primary circuit

    International Nuclear Information System (INIS)

    Marchetto, C.

    2002-05-01

    During operation of pressurised water reactor, corrosion of the primary circuit alloys leads to the release of metallic species such as iron, nickel and cobalt in the primary fluid. These corrosion products are implicated in different transport phenomena and are activated in the reactor core where they are submitted to neutron flux. The radioactive corrosion products are afterwards present in the out of flux parts of primary circuit where they generate a radiation field. The first part of this study deals with the modelling of the corrosion: product transport phenomena. In particular, considering the current state of the art, corrosion and release mechanisms are described empirically, which allows to take into account the material surface properties. New mass balance equations describing the corrosion product behaviour are thus obtained. The numerical resolution of these equations is implemented in the second part of this work. In order to obtain large time steps, we choose an implicit time scheme. The associated system is linearized from the Newton method and is solved by a preconditioned GMRES method. Moreover, a time step auto-adaptive management based on Newton iterations is performed. Consequently, an efficient resolution has been implemented, allowing to describe not only the quasi-steady evolutions but also the fast transients. In a last step, numerical simulations are carried out in order to validate the new corrosion product transport modelling and to illustrate the capabilities of this modelling. Notably, the numerical results obtained indicate that the code allows to restore the on-site observations underlining the influence of material surface properties on reactor contamination. (author)

  12. Corrosion products behaviour under VVER primary coolant conditions

    International Nuclear Information System (INIS)

    Grygar, T.; Zmitko, M.

    2002-01-01

    The aim of this work was to collect data on thermodynamic stability of Cr, Fe, and Ni oxides, mechanisms of hydrothermal corrosion of stainless steels and to compare the real observation with the theory. We found that the electrochemical potential and pH in PWR and VVER are close to the thermodynamic boundary between two fields of stable spinel type oxides. The ways of degradation of the passivating layers due to changes in water chemistry were considered and PWR and VVER systems were found to be potentially endangered by reductive attack. In certain VVER systems the characteristics of the passivating layer on steels and also concentration of soluble corrosion products seem to be in contradiction with the theoretical expectations. (author)

  13. ENVIRONMENTALLY BENIGN MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II; William Bogan

    2004-01-31

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. The technical approach for this quarter included the fractionation of extracts prepared from several varieties of pepper plants, and using several solvents, by high performance liquid chromatography (HPLC). A preliminary determination of antimicrobial activities of the new extracts and fractions using a growth inhibition assay, and evaluation of the extracts ability to inhibit biofilm formation was also performed. The analysis of multiple extracts of pepper plants and fractions of extracts of pepper plants obtained by HPLC illustrated that these extracts and fractions are extremely complex mixtures of chemicals. Gas chromatography-mass spectrometry was used to identify the chemical constituents of these extracts and fractions to the greatest degree possible. Analysis of the chemical composition of various extracts of pepper plants has illustrated the complexity of the chemical mixtures present, and while additional work will be performed to further characterize the extracts to identify bioactive compounds the focus of efforts should now shift to an evaluation of the ability of extracts to inhibit corrosion in mixed culture biofilms, and in pure cultures of bacterial types which are known or believed to be important in corrosion.

  14. Effluents of toxic and corrosion-active components at coke-oven gas combustion

    International Nuclear Information System (INIS)

    Mikhajlov, G.S.; Afanas'ev, Yu.O.; Plotnikov, V.A.; Iskhakov, Kh.A.; Tikhov, S.D.; Gaus, A.I.; Nagibin, P.D.

    1996-01-01

    Various modes of coke-coal gas combustion are studied and dependence of concentration of nitrogen sulfur oxides and carbon monoxides originating in smoke gases on the air excess delivered to the combustion chamber is determined. The lowest summary releases of hazardous substances are achieved by the excess air coefficients α > 1.2 relative to modes of coke-coal gas combustion with smoke gases recirculation. The quantity of sulfur does not depend on the mode of fuel combustion and is determined by the total sulfur content in the fuel. To prevent the corrosion of low-temperature heat exchange surfaces it is necessary to heat up the feed-water up to the temperature exceeding the temperature of the coal gases dew point by 10-15 deg C. 10 refs

  15. Characterization of corrosion products from Nd-Fe-B magnets used in dental prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Saiki, Mitiko; Rogero, Sizue O.; Costa, Isolda; Dantas, Elisabeth; Oliveira, Mara C.L. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2002-07-01

    A special group of magnets composed mainly by Nd-Fe-B has been widely used in dental applications as retentive devices for overdentures, due to their strong force and compactness. Dental materials should present high corrosion resistance and be innocuous to human tissues, however, Nd-Fe-B magnets are highly susceptible to corrosion. This work presents results obtained in the elemental analysis of Nd-Fe-B magnets and their corrosion products. The corrosion products were analyzed in the extracts of culture medium where the magnets had been immersed for 10 days at 37 deg C. Elements B, Co, Fe, La, Nd, Dy, Pr, Sm, Ho, Yb and Lu were found in the magnet and the analysis of extract indicated that Co, Fe and Nd are released from the magnet to the extract. Toxicity was also investigated in this extract using the neutral red uptake cytotoxicity assay. Acknowledgements: To FAPESP and CNPq for financial support. (author)

  16. Characterization of corrosion products from Nd-Fe-B magnets used in dental prostheses

    International Nuclear Information System (INIS)

    Saiki, Mitiko; Rogero, Sizue O.; Costa, Isolda; Dantas, Elisabeth; Oliveira, Mara C.L.

    2002-01-01

    A special group of magnets composed mainly by Nd-Fe-B has been widely used in dental applications as retentive devices for overdentures, due to their strong force and compactness. Dental materials should present high corrosion resistance and be innocuous to human tissues, however, Nd-Fe-B magnets are highly susceptible to corrosion. This work presents results obtained in the elemental analysis of Nd-Fe-B magnets and their corrosion products. The corrosion products were analyzed in the extracts of culture medium where the magnets had been immersed for 10 days at 37 deg C. Elements B, Co, Fe, La, Nd, Dy, Pr, Sm, Ho, Yb and Lu were found in the magnet and the analysis of extract indicated that Co, Fe and Nd are released from the magnet to the extract. Toxicity was also investigated in this extract using the neutral red uptake cytotoxicity assay. Acknowledgements: To FAPESP and CNPq for financial support. (author)

  17. 49 CFR 193.2631 - Internal corrosion control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Internal corrosion control. 193.2631 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2631 Internal corrosion control. Each component that is subject to internal corrosive attack must be protected from internal corrosion by— (a...

  18. Estimation of elastic modulus of reinforcement corrosion products using inverse analysis of digital image correlation measurements for input in corrosion-induced cracking model

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Michel, Alexander; Thybo, Anna Emilie A.

    2012-01-01

    A combined experimental and numerical approach for estimating the elastic modulus of reinforcement corrosion products is presented. Deformations between steel and mortar were measured using digital image correlation during accelerated corrosion testing at 100 μA/cm2 (~1.16 mm/year). Measured defo...

  19. DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION

    Energy Technology Data Exchange (ETDEWEB)

    Bill W. Bogan; Brigid M. Lamb; Gemma Husmillo; Kristine Lowe; J. Robert Paterek; John J. Kilbane II

    2004-12-01

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Various chemicals that inhibit the growth and/or the metabolism of corrosion-associated microbes such as sulfate reducing bacteria, denitrifying bacteria, and methanogenic bacteria were evaluated to determine their ability to inhibit corrosion in experiments utilizing pure and mixed bacterial cultures, and planktonic cultures as well as mature biofilms. Planktonic cultures are easier to inhibit than mature biofilms but several compounds were shown to be effective in decreasing the amount of metal corrosion. Of the compounds tested hexane extracts of Capsicum pepper plants and molybdate were the most effective inhibitors of sulfate reducing bacteria, bismuth nitrate was the most effective inhibitor of nitrate reducing bacteria, and 4-((pyridine-2-yl)methylamino)benzoic acid (PMBA) was the most effective inhibitor of methanogenic bacteria. All of these compounds were demonstrated to minimize corrosion due to MIC, at least in some circumstances. The results obtained in this project are consistent with the hypothesis that any compound that disrupts the metabolism of any of the major microbial groups present in corrosion-associated biofilms shows promise in limiting the amount/rate of corrosion. This approach of controlling MIC by controlling the metabolism of biofilms is more environmentally benign than the current approach involving the use of potent biocides, and warrants further investigation.

  20. Corrosive Space Gas Restores Artwork, Promises Myriad Applications

    Science.gov (United States)

    2007-01-01

    Atomic oxygen's unique characteristic of oxidizing primarily hydrogen, carbon, and hydrocarbon polymers at surface levels has been applied in the restoration of artwork, detection of document forgeries, and removal of bacterial contaminants from surgical implants. The Electro-Physics Branch at Glenn Research Center built on corrosion studies of long-duration coatings for use in space, and applied atomic oxygen's selectivity to instances where elements need to be removed from a surface. Atomic oxygen is able to remove organic compounds high in carbon (mostly soot) from fire-damaged artworks without causing a shift in the paint color. First successfully tested on oil paintings, the team then applied the restoration technique to acrylics, watercolors, and ink. The successful art restoration process was well-publicized, and soon a multinational, nonprofit professional organization dedicated to the art of forensic analysis of documents had successfully applied this process in the field of forgery detection. The gas has biomedical applications as well-Atomic Oxygen technology can be used to decontaminate orthopedic surgical hip and knee implants prior to surgery, and additional collaborative research between the Cleveland Clinic Foundation and the Glenn team shows that this gas's roughening of surfaces improves cell adhesion, which is important for the development of new drugs.

  1. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Internal corrosion control: Monitoring. 192.477... Control § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported, coupons... internal corrosion. Each coupon or other means of monitoring internal corrosion must be checked two times...

  2. Analysis of corrosion products of carbon steel in wet bentonite

    International Nuclear Information System (INIS)

    Osada, K.; Nagano, T.; Kozai, N.; Nakashima, S.; Nakayama, S.; Muraoka, S.

    1991-01-01

    The following conclusions were obtained; (1) At 40degC, the average corrosion rate of SS41 carbon steel in wet bentonite was 0.025 mm/y. This is smaller than the value of 0.042 mm/y obtained in pure water at 40degC. However, at 95degC, the corrosion rate of SS41 carbon steel in wet bentonite was 0.27 mm/y, which is much larger than that in pure water at 95degC. (2) At 95degC, γ-FeO(OH) (lepidocrocite) was formed only in wet bentonite, and it was absent in pure water. Evaporation of moisture resulted in the formation of partial covering of bentonite, which promoted local corrosion. Consequently, γ-FeO(OH) was considered to be formed. (3) In wet bentonite at 95degC, α-Fe 2 O 3 (hematite) can be identified by means of colorimetry. The color of corrosion products is orangish, indicating the contribution of α-Fe 2 O 3 in iron hydroxides. (author)

  3. Evaluation of Nitrate and Nitrite Reduction Kinetics Related to Liquid-Air-Interface Corrosion

    International Nuclear Information System (INIS)

    Li, Xiaoji; Gui, F.; Cong, Hongbo; Brossia, C.S.; Frankel, G.S.

    2014-01-01

    Liquid-air interface (LAI) corrosion has been a concern for causing leaks in the carbon steel tanks used for holding high-level radioactive liquid waste. To assist in understanding the mechanism of LAI corrosion, the kinetics of nitrate and nitrite reduction reactions were investigated electrochemically. Cyclic voltammetry and cathodic polarization measurements indicated that the nitrite reduction reaction exhibited faster kinetics than the nitrate reduction reaction at higher cathodic overpotential. However, the primary reduction reaction at the open circuit potential under aerated conditions was the oxygen reduction reaction. The reduction of residual oxygen was also the dominant cathodic reaction at open circuit potential in deaerated conditions. Moreover, the kinetics of oxygen reduction on steel electrodes were significantly influenced by the sample immersion conditions (partial vs. full) for aerated liquid nuclear waste simulants, but not for deaerated conditions. Lastly, the gaseous products formed during LAI corrosion were analyzed using the gas detector tube method and gas chromatography-mass spectrometry and found to contain NH 3 , NO 2 and NO. However, the results suggested that these products were caused by the local acidification generated by the hydrolysis of cations after LAI corrosion underwent extensive propagation, instead of being directly reduced in alkaline conditions. Thus, the results in this work showed that the kinetics of nitrate and nitrite reduction could not generate a salt concentration cell in the meniscus region to cause LAI corrosion

  4. Revealing Nanoscale Passivation and Corrosion Mechanisms of Reactive Battery Materials in Gas Environments.

    Science.gov (United States)

    Li, Yuzhang; Li, Yanbin; Sun, Yongming; Butz, Benjamin; Yan, Kai; Koh, Ai Leen; Zhao, Jie; Pei, Allen; Cui, Yi

    2017-08-09

    Lithium (Li) metal is a high-capacity anode material (3860 mAh g -1 ) that can enable high-energy batteries for electric vehicles and grid-storage applications. However, Li metal is highly reactive and repeatedly consumed when exposed to liquid electrolyte (during battery operation) or the ambient environment (throughout battery manufacturing). Studying these corrosion reactions on the nanoscale is especially difficult due to the high chemical reactivity of both Li metal and its surface corrosion films. Here, we directly generate pure Li metal inside an environmental transmission electron microscope (TEM), revealing the nanoscale passivation and corrosion process of Li metal in oxygen (O 2 ), nitrogen (N 2 ), and water vapor (H 2 O). We find that while dry O 2 and N 2 (99.9999 vol %) form uniform passivation layers on Li, trace water vapor (∼1 mol %) disrupts this passivation and forms a porous film on Li metal that allows gas to penetrate and continuously react with Li. To exploit the self-passivating behavior of Li in dry conditions, we introduce a simple dry-N 2 pretreatment of Li metal to form a protective layer of Li nitride prior to battery assembly. The fast ionic conductivity and stable interface of Li nitride results in improved battery performance with dendrite-free cycling and low voltage hysteresis. Our work reveals the detailed process of Li metal passivation/corrosion and demonstrates how this mechanistic insight can guide engineering solutions for Li metal batteries.

  5. Assessment of Stress Corrosion Cracking Resistance of Activated Tungsten Inert Gas-Welded Duplex Stainless Steel Joints

    Science.gov (United States)

    Alwin, B.; Lakshminarayanan, A. K.; Vasudevan, M.; Vasantharaja, P.

    2017-12-01

    The stress corrosion cracking behavior of duplex stainless steel (DSS) weld joint largely depends on the ferrite-austenite phase microstructure balance. This phase balance is decided by the welding process used, heat input, welding conditions and the weld metal chemistry. In this investigation, the influence of activated tungsten inert gas (ATIG) and tungsten inert gas (TIG) welding processes on the stress corrosion cracking (SCC) resistance of DSS joints was evaluated and compared. Boiling magnesium chloride (45 wt.%) environment maintained at 155 °C was used. The microstructure and ferrite content of different weld zones are correlated with the outcome of sustained load, SCC test. Irrespective of the welding processes used, SCC resistance of weld joints was inferior to that of the base metal. However, ATIG weld joint exhibited superior resistance to SCC than the TIG weld joint. The crack initiation and final failure were in the weld metal for the ATIG weld joint; they were in the heat-affected zone for the TIG weld joint.

  6. Complementary Methods for the Characterization of Corrosion Products on a Plant-Exposed Superheater Tube

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Nießen, Frank; Villa, Matteo

    2017-01-01

    In this work, complex corrosion products on a superheater tube exposed to biomass firing were characterized by the complementary use of energy-dispersive synchrotron diffraction, electron microscopy, and energy-dispersive X-ray spectroscopy. Non-destructive synchrotron diffraction in transmission......-rich austenite phase to selective removal of Fe and Cr from the alloy, via a KCl-induced corrosion mechanism. Compositional variations were related to diffraction results and revealed a qualitative influence of the spinel cation concentration on the observed diffraction lines.......In this work, complex corrosion products on a superheater tube exposed to biomass firing were characterized by the complementary use of energy-dispersive synchrotron diffraction, electron microscopy, and energy-dispersive X-ray spectroscopy. Non-destructive synchrotron diffraction in transmission...... geometry measuring with a small gauge volume from the sample surface through the corrosion product allowed depth-resolved phase identification and revealed the presence of (Fe,Cr)2O3 and FeCr2O4. This was supplemented by microstructural and elemental analysis correlating the additional presence of a Ni...

  7. Corrosion-product filtration in PWRs: Topical report

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.; Buckley, L.P.

    1988-04-01

    As part of a programme on the optimization of pressurized water reactor (PWR) secondary side water treatment, laboratory-scale studies on filtration of the feedwater using materials having chemically active adsorbing surfaces were carried out. Graphite, zirconia and titania were identified, from a review of existing literature, as suitable filtration media, the last two because of their ion-exchange capability. The efficiency of filters packed with granular graphite for filtration of simulated feed train corrosion products and the pressure drop across the filters were determined as functions of filter dimensions and operating parameters at room temperature. A rough sizing of a full-flow feedwater filter using granular graphite was done on the basis of observations from the room temperature tests. Further studies are suggested at low concentrations of the corrosion product and at high temperature typical of steam generator feedwater after the high pressure heaters to derive realistic design parameters for a filter for installation in the PWR secondary circuit. Zirconia was produced in the form of spherical particles using a sol-gel process. The zirconia behaved as an anion exchanger at low pH and as a cation exchanger at high pH. Its suitability for purification of water at high temperature should be determined by futher studies. 30 refs., 16 figs., 8 tabs

  8. Corrosion Behavior of Metal Active Gas Welded Joints of a High-Strength Steel for Automotive Application

    Science.gov (United States)

    Garcia, Mainã Portella; Mantovani, Gerson Luiz; Vasant Kumar, R.; Antunes, Renato Altobelli

    2017-10-01

    In this work, the corrosion behavior of metal active gas-welded joints of a high-strength steel with tensile yield strength of 900 MPa was investigated. The welded joints were obtained using two different heat inputs. The corrosion behavior has been studied in a 3.5 wt.% NaCl aqueous solution using electrochemical impedance spectroscopy and potentiodynamic polarization tests. Optical microscopy images, scanning electron microscopy and transmission electron microscopy with energy-dispersive x-ray revealed different microstructural features in the heat-affected zone (HAZ) and the weld metal (WM). Before and after the corrosion process, the sample was evaluated by confocal laser scanning microscopy to measure the depth difference between HAZ and WM. The results showed that the heat input did not play an important role on corrosion behavior of HSLA steel. The anodic and cathodic areas of the welded joints could be associated with depth differences. The HAZ was found to be the anodic area, while the WM was cathodic with respect to the HAZ. The corrosion behavior was related to the amount and orientation nature of carbides in the HAZ. The microstructure of the HAZ consisted of martensite and bainite, whereas acicular ferrite was observed in the weld metal.

  9. 77 FR 27438 - Certain Corrosion-Resistant Carbon Steel Flat Products From Korea: Final Results of Expedited...

    Science.gov (United States)

    2012-05-10

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Certain Corrosion-Resistant... order on certain corrosion-resistant carbon steel flat products (``CORE'') from the Republic of Korea.... Scope of the Order The merchandise covered by the order includes flat-rolled carbon steel products, of...

  10. Corrosion of carbon steel in the [P_1_4_6_6_6][Br] ionic liquid: The effects of γ-radiation and cover gas

    International Nuclear Information System (INIS)

    Morco, Ryan P.; Musa, Ahmed Y.; Momeni, Mojtaba; Wren, J.C.

    2016-01-01

    Highlights: • Carbon steel corrosion in non-aqueous ionic liquid ([P_1_4_6_6_6] [Br]) electrolyte. • Gamma-irradiation results to less corrosion, forming protective oxides. • Substantial corrosion is seen in the absence of gamma-radiation. • A corrosion mechanism is proposed for the observed results. - Abstract: The corrosion of carbon steel in the ionic liquid (IL) [P_1_4_6_6_6] [Br] was studied with the IL in contact with an inert (Ar) or oxidizing (air) cover gas in the presence and absence of γ-radiation. Significant corrosion was observed for the tests performed in the absence of γ-radiation while a protective oxide layer is formed in the presence of γ-radiation. The corrosion is attributed to the presence of impurity H_2O and O_2 dissolved in the IL, and a corrosion mechanism is proposed.

  11. Corrosion of carbon steel in contact with bentonite

    International Nuclear Information System (INIS)

    Dobrev, D.; Vokal, A.; Bruha, P.

    2010-01-01

    Document available in extended abstract form only. Carbon steel canisters were chosen in a number of disposal concepts as reference material for disposal canisters. The corrosion rates of carbon steels in water solution both in aerobic and anaerobic conditions are well known, but only scarce data are available for corrosion behaviour of carbon steels in contact with bentonite. A special apparatus, which enables to measure corrosion rate of carbon steels under conditions simulating conditions in a repository, namely in contact with bentonite under high pressure and elevated temperatures was therefore prepared to study: - Corrosion rate of carbon steels in direct contact with bentonite in comparison with corrosion rate of carbon steels in synthetic bentonite pore water. - Influence of corrosion products on bentonite. The apparatus is composed of corrosion chamber containing a carbon steel disc in direct contact with compacted bentonite. Synthetic granitic water is above compacted bentonite under high pressure (50 - 100 bar) to simulate hydrostatic pressure in a repository. The experiments can be carried out under various temperatures. Bentonites used for experiments were Na-type of bentonite Volclay KWK 80 - 20 and Ca-Mg Czech bentonite from deposit Rokle. Before adding water into corrosion system the corrosion chamber was purged by nitrogen gas. The saturation of bentonite and corrosion rate were monitored by measuring consumption of water, pressure increase caused by swelling pressure of bentonite and by generation of hydrogen. Corrosion rate was also determined after corrosion experiments from weight loss of samples. The results of experiments show that the corrosion behaviour of carbon steels in contact with bentonite is very different from corrosion of carbon steels in water simulating bentonite pore water solution. The corrosion rates of carbon steel in contact with bentonite reached after 30 days of corrosion the values approaching 40 mm/yr contrary to values

  12. Solubility of corrosion products of plain steel in oxygen-containing water solutions at high parameters

    International Nuclear Information System (INIS)

    Martynova, O.I.; Samojlov, Yu.F.; Petrova, T.I.; Kharitonova, N.L.

    1983-01-01

    Technique for calculation of solubility of iron corrosion products in oxygen-containing aqueous solutions in the 298-573 K temperature range is presented. Solubility of corrosion products of plain steel in deeply-desalinizated water in the presence of oxygen for the such range of the temperatures is experimentally determined. Rather good convergence between calculated and experimental data is noted

  13. Standard guide for determining corrosivity of crude oils

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide presents some generally accepted laboratory methodologies that are used for determining the corrosivity of crude oil. 1.2 This guide does not cover detailed calculations and methods, but rather a range of approaches that have found application in evaluating the corrosivity of crude oil. 1.3 Only those methodologies that have found wide acceptance in crude oil corrosivity evaluation are considered in this guide. 1.4 This guide does not address the change in oil/water ratio caused by accumulation of water at low points in a pipeline system. 1.5 This guide is intended to assist in the selection of methodologies that can be used for determining the corrosivity of crude oil under conditions in which water is present in the liquid state (typically up to 100°C). These conditions normally occur during oil and gas production, storage, and transportation in the pipelines. 1.6 This guide does not cover the evaluation of corrosivity of crude oil at higher temperatures (typically above 300°C) that oc...

  14. Excellent enhancement of corrosion properties of Fe–9Al–30Mn–1.8C alloy in 3.5% NaCl and 10% HCl aqueous solutions using gas nitriding treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-Chang; Lin, Chih-Lung; Chao, Chuen-Guang; Liu, Tzeng-Feng, E-mail: Lewischen815@gmail.com

    2015-06-05

    Highlights: • The FeAlMnC alloy was gas-nitrided to simultaneously achieve the aging effect. • Anti-corrosion components AlN, Fe{sub 3}N and Fe{sub 4}N were identified by using GIXRD method. • The present nitrided alloy showed a great improvement in corrosion resistance. • The nitrided sample showed an excellent coherence between nitrided layer and matrix. • The nitrided and then stretched sample maintained satisfactory corrosion behavior. - Abstract: The as-quenched Fe–9.0Al–30Mn–1.8C (in wt.%) alloy gas nitrided at 550 °C for 4 h show excellent corrosion resistance investigated in 3.5% NaCl and 10% HCl solutions. Owing to the high corrosion resistance components, the gas-nitrided layer consists mainly of AlN with a slight amount of Fe{sub 3}N and Fe{sub 4}N identified by grazing incidence X-ray diffraction technique. Therefore, the pitting potential and corrosion potential of the nitrided sample are +1860 mV and +30 mV, respectively. Surprisingly, it is worthy to be pointed out that the nitrided and then tensile-tested alloy reveals very shallow in fracture depth and the excellent lattice coherence is shown between the nitrided layer and the substrate. Moreover, due to the extremely high nitrogen concentration (about 17–18 wt.%) at stretched surface, the corrosion resistance of present gas-nitrided and then tensile-tested alloy is superior to those optimally gas-nitrided or plasma-nitrided high-strength alloy steels, as well as martensitic stainless steels. The nitrided and then stretched alloy still retains a satisfactory corrosion resistance (E{sub pit} = +890 mV; E{sub corr} = +10 mV). Furthermore, only nanoscale-size pits were observed on the corroded surface after being immersed in 10% HCl for 24 h.

  15. Drying characteristics of thorium fuel corrosion products

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.-E. E-mail: rzl@inel.gov

    2004-07-01

    The open literature and accessible US Department of Energy-sponsored reports were reviewed for the dehydration and rehydration characteristics of potential corrosion products from thorium metal and thorium oxide nuclear fuels. Mixed oxides were not specifically examined unless data were given for performance of mixed thorium-uranium fuels. Thorium metal generally corrodes to thorium oxide. Physisorbed water is readily removed by heating to approximately 200 deg. C. Complete removal of chemisorbed water requires heating above 1000 deg. C. Thorium oxide adsorbs water well in excess of the amount needed to cover the oxide surface by chemisorption. The adsorption of water appears to be a surface phenomenon; it does not lead to bulk conversion of the solid oxide to the hydroxide. Adsorptive capacity depends on both the specific surface area and the porosity of the thorium oxide. Heat treatment by calcination or sintering reduces the adsorption capacity substantially from the thorium oxide produced by metal corrosion.

  16. Impact of β- radiolysis and transient products on irradiation-enhanced corrosion of zirconium alloys

    International Nuclear Information System (INIS)

    Lemaignan, C.

    1992-01-01

    An analysis has been undertaken of the various cases of local enhancement of the corrosion rate of zirconium alloys under irradiation. It is observed that in most cases a strong emission of energetic β - is present leading to a local energy desorption rate higher than the core average. This suggests that the local transient radiolytic oxidising species produced in the coolant by the β - particles could contribute to corrosion enhancement, by increasing the local corrosion potential. This process is applicable to the local enhanced corrosion found in front of stainless steels structural parts, due to the contribution of Mn, in front of Pt inserts and Cu-rich cruds. It explains also the irradiation corrosion enhancement of Cu-rich Zr alloys. Enhanced corrosion around neutron absorbing material is explained similarly by pair production from conversion of high energy capture photons in the cladding, leading to energetic electrons. The same process was found to be active with other highly ionising species like α in Ni-rich alloys and fission products in homogeneous reactors. This mechanism, applicable for an explanation of localised irradiation-enhanced corrosion, is proposed to be extended to the reactor core, where the general enhancement of Zr-alloy corrosion under irradiation would be due to the general radiolysis. It suggests that care should be taken to avoid any source of β - emission or other ionising species in the reactor core that could give an increase of energy deposition rate for radiolysis. Also the corrosion testing conditions for the materials to be used in reactors have to be relevant to the radiolytic environments found in the reactor cores. (orig.)

  17. Investigation of two-phase flow phenomena associated with corrosion in an SF/HLW repository in Opalinus Clay, Switzerland

    International Nuclear Information System (INIS)

    Senger, R.; Marschall, P.; Finsterle, S.

    2008-01-01

    Gas generation from corrosion of the waste canisters and gas accumulation in the backfilled emplacement tunnels is a key issue in the assessment of long-term radiological safety of the proposed repository for spent fuel and high-level waste (SF/HLW) sited in the Opalinus Clay formation of Northern Switzerland. Previous modeling studies indicated a significant pressure buildup in the backfilled emplacement tunnels for those sensitivity runs, where corrosion rates were high and the permeability of the Opalinus Clay was very low. As an extension to those studies, a refined process model of the canister corrosion phenomena has been developed, which accounts not only for the gas generation but also for the water consumption associated with the chemical reaction of corrosion of steel under anaerobic conditions. The simulations with the new process model indicate, that with increasing corrosion rates and decreasing host-rock permeability, pressure buildup increased, as expected. However, the simulations taking into account water consumption show that the pressure buildup is reduced compared to the simulation considering only gas generation. The pressure reduction is enhanced for lower permeability of the Opalinus Clay and for higher corrosion rates, which correspond to higher gas generations rates and higher water consumption rates. Moreover, the simulated two-phase flow patterns in the engineered barrier system (EBS) and surrounding Opalinus Clay show important differences at late time of the gas production phase as the generated gas continues to migrate outward into the surrounding host rock. For the case without water consumption, the water flow indicates overall downward flow due to a change in the overall density of the gas-fluid mixture from that based on the initially prescribed hydrostatic pressure gradient. For the case with water consumption, water flow converges toward the waste canister at a rate corresponding to the water consumption rate associated with the

  18. Guar Gum Stimulates Biogenic Sulfide Production at Elevated Pressures: Implications for Shale Gas Extraction

    Science.gov (United States)

    Nixon, Sophie L.; Walker, Leanne; Streets, Matthew D. T.; Eden, Bob; Boothman, Christopher; Taylor, Kevin G.; Lloyd, Jonathan R.

    2017-01-01

    Biogenic sulfide production is a common problem in the oil industry, and can lead to costly hydrocarbon processing and corrosion of extraction infrastructure. The same phenomenon has recently been identified in shale gas extraction by hydraulic fracturing, and organic additives in fracturing fluid have been hypothesized to stimulate this process. Constraining the relative effects of the numerous organic additives on microbial metabolism in situ is, however, extremely challenging. Using a bespoke bioreactor system we sought to assess the potential for guar gum, the most commonly used gelling agent in fracturing fluids, to stimulate biogenic sulfide production by sulfate-reducing microorganisms at elevated pressure. Two pressurized bioreactors were fed with either sulfate-amended freshwater medium, or low-sulfate natural surface water, in addition to guar gum (0.05 w/v%) and an inoculum of sulfate-reducing bacteria for a period of 77 days. Sulfide production was observed in both bioreactors, even when the sulfate concentration was low. Analysis of 16S rRNA gene sequences indicate that heterotrophic bacteria closely associated with the genera Brevundimonas and Acinetobacter became enriched early in the bioreactor experiments, followed by an increase in relative abundance of 16S rRNA genes associated with sulfate-reducing bacteria (Desulfosporosinus and Desulfobacteraceae) at later time points. Results demonstrate that guar gum can stimulate acid- and sulfide-producing microorganisms at elevated pressure, and may have implications for the potential role in microbially induced corrosion during hydraulic fracturing operations. Key differences between experimental and in situ conditions are discussed, as well as additional sources of carbon and energy for biogenic sulfide production during shale gas extraction. Our laboratory approach can be tailored to better simulate deep subsurface conditions in order to probe the role of other fracturing fluid additives and downhole

  19. Guar Gum Stimulates Biogenic Sulfide Production at Elevated Pressures: Implications for Shale Gas Extraction.

    Science.gov (United States)

    Nixon, Sophie L; Walker, Leanne; Streets, Matthew D T; Eden, Bob; Boothman, Christopher; Taylor, Kevin G; Lloyd, Jonathan R

    2017-01-01

    Biogenic sulfide production is a common problem in the oil industry, and can lead to costly hydrocarbon processing and corrosion of extraction infrastructure. The same phenomenon has recently been identified in shale gas extraction by hydraulic fracturing, and organic additives in fracturing fluid have been hypothesized to stimulate this process. Constraining the relative effects of the numerous organic additives on microbial metabolism in situ is, however, extremely challenging. Using a bespoke bioreactor system we sought to assess the potential for guar gum, the most commonly used gelling agent in fracturing fluids, to stimulate biogenic sulfide production by sulfate-reducing microorganisms at elevated pressure. Two pressurized bioreactors were fed with either sulfate-amended freshwater medium, or low-sulfate natural surface water, in addition to guar gum (0.05 w/v%) and an inoculum of sulfate-reducing bacteria for a period of 77 days. Sulfide production was observed in both bioreactors, even when the sulfate concentration was low. Analysis of 16S rRNA gene sequences indicate that heterotrophic bacteria closely associated with the genera Brevundimonas and Acinetobacter became enriched early in the bioreactor experiments, followed by an increase in relative abundance of 16S rRNA genes associated with sulfate-reducing bacteria ( Desulfosporosinus and Desulfobacteraceae) at later time points. Results demonstrate that guar gum can stimulate acid- and sulfide-producing microorganisms at elevated pressure, and may have implications for the potential role in microbially induced corrosion during hydraulic fracturing operations. Key differences between experimental and in situ conditions are discussed, as well as additional sources of carbon and energy for biogenic sulfide production during shale gas extraction. Our laboratory approach can be tailored to better simulate deep subsurface conditions in order to probe the role of other fracturing fluid additives and downhole

  20. Fire-Side Corrosion: A Case Study of Failed Tubes of a Fossil Fuel Boiler

    Directory of Open Access Journals (Sweden)

    Majid Asnavandi

    2017-01-01

    Full Text Available The failures of superheater and reheater boiler tubes operating in a power plant utilizing natural gas or mazut as a fuel have been analysed and the fire-side corrosion has been suggested as the main reason for the failure in boiler tubes. The tubes have been provided by a fossil fuel power plant in Iran and optical and electron microscopy investigations have been performed on the tubes as well as the corrosion products on their surfaces. The results showed that the thickness of the failed tubes is not uniform which suggests that fire-side corrosion has happened on the tubes. Fire-side corrosion is caused by the reaction of combustion products with oxide layers on the tube surface resulting in metal loss and consequently tubes fracture. However, the tubes corrosion behaviour did not follow the conventional models of the fire-side corrosion. Given that, using the corrosion monitoring techniques for these boiler tubes seems essential. As a result, the thickness of the boiler tubes in different parts of the boiler has been recorded and critical points are selected accordingly. Such critical points are selected for installation of corrosion monitoring probes.

  1. Modeling pore corrosion in normally open gold- plated copper connectors.

    Energy Technology Data Exchange (ETDEWEB)

    Battaile, Corbett Chandler; Moffat, Harry K.; Sun, Amy Cha-Tien; Enos, David George; Serna, Lysle M.; Sorensen, Neil Robert

    2008-09-01

    The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict both the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.

  2. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability

    Science.gov (United States)

    Feliu, S.; Llorente, I.

    2015-08-01

    This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS.

  3. THE ROLE OF SHIELDING GAS ON MECHANICAL, METALLURGICAL AND CORROSION PROPERTIES OF CORTEN STEEL WELDED JOINTS OF RAILWAY COACHES USING GMAW

    Directory of Open Access Journals (Sweden)

    Byju John

    2016-12-01

    Full Text Available This analysis lays emphasis on finding a suitable combination of shielding gas for welding underframe members such as sole bar of Railway Coaches made of corten steel; for improved mechanical, metallurgical and corrosion properties of welds using copper coated solid MIG/MAG welding filler wire size 1.2 mm conforming to AWS/SFA 5.18 ER 70 S in Semi-automatic GMAW process. Solid filler wire is preferred by welders due to less fumes, practically no slag and easy manipulation of welding torch with smooth wire flow during corrosion repair attention, when compared to Flux cored wire. Three joints using Gas metal arc welding (GMAW with shielding gases viz., Pure CO2, (80% Ar – 20% CO2 and (90% Ar – 10% CO2 were made from test pieces cut from Sole bar material of Railway Coach. Study of Mechanical properties such as tensile strength, hardness and toughness revealed that welded joint made using shielding gas (80% Ar – 20% CO2 has better Mechanical properties compared to the other two shielding gases and comparable to that of Parent metal. Type of Shielding gas used has influence on the chemical composition and macro & micro structures. The Tafel extrapolation study of freshly ground samples in 3.5% NaCl solution revealed that the welded joint made using shielding gas (80% Ar – 20% CO2 has also better corrosion resistance which is comparable to the Parent metal as well as similar commercial steels.

  4. Corrosion by sulfate-reducing bacteria in a HP gas line under a detached weld cladding; Korrosion durch sulfatreduzierende Bakterien an einer Hochdruckgasleitung unter abgeloester Schweissnahtnachumhuellung

    Energy Technology Data Exchange (ETDEWEB)

    Bette, Ulrich [Technische Akademie Wuppertal (Germany)

    2011-07-01

    Intelligent pig measurements detected several points of corrosion in a HP gas pipeline in northern Germany. Corrosion occurred in a pipe section buried in clay soil, under detached weld claddings. It was not detected in regular measurements and additional intensive measurements. When the pipes were dug up, sulfate-reducing bacteria were found as the cause of corrosion. Due to the location of the corrosion processes, cathodic protection was impossible, and IFO measurements were ineffective in the low-ohmic soil.

  5. Correlation between corrosion resistance properties and thermal cycles experienced by gas tungsten arc welding and laser beam welding Alloy 690 butt weldments

    International Nuclear Information System (INIS)

    Lee, H T; Wu, J L

    2009-01-01

    This study investigates the correlation between the thermal cycles experienced by Alloy 690 weldments fabricated using gas tungsten arc welding (GTAW) and laser beam welding (LBW) processes, and their corresponding corrosion resistance properties. The corrosion resistance of the weldments is evaluated using a U-bend stress corrosion test in which the specimens are immersed in a boiling, acid solution for 240 h. The experimental results reveal that the LBW inputs significantly less heat to the weldment than the GTAW, and therefore yields a far faster cooling rate. Moreover, the corrosion tests show that in the GTAW specimen, intergranular corrosion (IGC) occurs in both the fusion zone (FZ) and the heat affected zone (HAZ). By contrast, the LBW specimen shows no obvious signs of IGC.

  6. Electrochemical corrosion studies on a selected carbon steel for application in nuclear waste disposal containers: Influence of radiolytic products on corrosion in brines

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Smailos, E.

    1994-07-01

    In previous corrosion studies, carbon steels were identified as promising materials for the manufacturing of long-lived high-level waste containers that could act as a radionuclide barrier in a rock-salt repository. In the present work, the influence of some important oxidizing radiolytic products generated in gamma irradiated brines on the electrochemical corrosion behaviour of the preselected fine-grained steel TStE 355 was studied. The steel was examined by potentiodynamic and potentiostatic polarization methods at 90 C in a disposal relevant NaCl-rich brine containing radiolytic products such as H 2 O 2 , ClO - , ClO 3 - and ClO 4 - at concentrations between 10 -4 and 10 -2 M/l. The significance of the radiolytic products to steel corrosion depends on their concentration at the metal-brine interface, which in turn, depends on many factors such as the dose rate, the amount of water present in the disposal area, the escape of gases (e.g. H 2 )

  7. Acoustic monitoring techniques for corrosion degradation in cemented waste canisters

    International Nuclear Information System (INIS)

    Naish, C.C.; Buttle, D.; Wallace-Sims, R.; O'Brien, T.M.

    1991-01-01

    This report describes work to investigate acoustic emission as a non-intrusive monitor of corrosion and degradation of cemented wasteforms where the waste is a potentially reactive metal. The acoustic data collected shows good correlation with the corrosion rate as measured by hydrogen gas evolution rates and the electrochemically measured corrosion rates post cement hardening. The technique has been shown to be sensitive in detecting stress caused by expansive corrosion product within the cemented wasteform. The attenuation of the acoustic signal by the wasteform reduced the signal received by the monitoring equipment by a factor of 10 over a distance of approximately 150-400 mm, dependent on the water level in the cement. Full size packages were successfully monitored. It is concluded that the technique offers good potential for monitoring cemented containers of the more reactive metals, for example Magnox and aluminium. (author)

  8. The Effect of Shielding N{sub 2} gas on The Pitting Corrosion of Seal-welded Super Austenitic Stainless Steel by Autogenous Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Tae; Kim, Young Sik [Andong National University, Andong (Korea, Republic of); Chang, Hyun Young [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of)

    2017-04-15

    Many research efforts on the effect of nitrogen on the corrosion resistance of stainless steels have been reported, but little research has been conducted on the effect of nitrogen for the weldment of stainless steels by the seal-weld method. Therefore, this work focused on the determining the corrosion resistance of tube/tube sheet mock-up specimen for sea water condensers, and elucidating the effect of shielding nitrogen gas on its resistance. The pitting corrosion of autogenously welded specimen propagated preferentially along the dendritic structure. Regardless of the percent of shielding nitrogen gas, the analyzed nitrogen contents were very much lower than that of the bulk specimen. This can be arisen because the nitrogen in shielding gas may partly dissolve into the weldment, but simultaneously during the welding process, nitrogen in the alloy may escape into the atmosphere. However, the pitting resistance equivalent number (PREN) of the interdendrite area was higher than that of the dendrite arm, regardless of the shielding gas percent; and the PREN of the interdendrite area was higher than that of the base metal; the PREN of the dendrite arm was lower than that of the base metal because of the formation of (Cr, Mo) rich phases by welding.

  9. Modeling of Corrosion-induced Concrete Damage

    DEFF Research Database (Denmark)

    Thybo, Anna Emilie A.; Michel, Alexander; Stang, Henrik

    2013-01-01

    In the present paper a finite element model is introduced to simulate corrosion-induced damage in concrete. The model takes into account the penetration of corrosion products into the concrete as well as non-uniform formation of corrosion products around the reinforcement. To ac-count for the non...... of corrosion products affects both the time-to cover cracking and the crack width at the concrete surface.......In the present paper a finite element model is introduced to simulate corrosion-induced damage in concrete. The model takes into account the penetration of corrosion products into the concrete as well as non-uniform formation of corrosion products around the reinforcement. To ac-count for the non......-uniform formation of corrosion products at the concrete/reinforcement interface, a deterministic approach is used. The model gives good estimates of both deformations in the con-crete/reinforcement interface and crack width when compared to experimental data. Further, it is shown that non-uniform deposition...

  10. Waterwall corrosion evaluation in coal-fired boilers using electrochemical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K.; Lee, C.; Seeley, R.; Harding, S.; Heap, M.; Cox, W.

    2000-07-01

    Until recently, waterwall corrosion in North American coal-fired boilers was uncommon and relatively mild. However, the introduction of combustion modifications to reduce in-furnace NOx formation has led to notable increases in the frequency and severity of waterwall wastage. Reaction Engineering International (REI) has worked with the Department of Energy and EPRI to improve predictive capabilities and provide solutions for furnace wall wastage for a wide range of coal-fired furnaces. To date, this work has emphasized computational simulations. More recently, REI in partnership with Corrosion Management has begun complementary efforts to improve their services by evaluating technologies capable of determining the location/rate of high water wall wastage resulting from corrosion. After an evaluation of commercially available options, electrochemical noise (EN) technology has been chosen for continued development. This approach has been successfully applied to corrosion-related problems involving acid dewpoint corrosion in flue gas ductwork, FGD systems, cooling water systems, oil and gas production, and acid cleaning (Cox et al, 1999). This paper presents the results of preliminary testing of an EN probe in a high temperature environment typical of the lower furnace of a cyclone-fired boiler operating under staged conditions. The relationship between electrochemical responses and (1) stoichiometry and (2) local hydrogen sulfide concentration is investigated and the qualitative and quantitative usefulness of the approach for on-line risk management is considered.

  11. 75 FR 18153 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2010-04-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time Limit for Preliminary Results of... countervailing duty order on corrosion-resistant carbon steel flat products (CORE) from Korea. See Countervailing...

  12. 77 FR 16810 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2012-03-22

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limit for Preliminary Results of... Register the countervailing duty order on corrosion-resistant carbon steel flat products (CORE) from Korea...

  13. 76 FR 20954 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-04-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limit for Preliminary Results of... Register the countervailing duty order on corrosion-resistant carbon steel flat products (CORE) from Korea...

  14. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  15. The vulnerability of oil collection pipelines to corrosion under conditions of stratified oil-water emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Marichev, F N; Chernobay, L A; Teterina, O P; Yarmizin, V G

    1980-01-01

    Problems with oil industry equipment and pipeline corrosion have recently highlighted the problems of increased water content in oil and the presence of biogenic hydrogen sulphide in petroleum matter. These findings underscore the importance of taking these problems into consideration when formulating long-term production plans. A study of pipeline corrosion and its causes, as well as other factors, has permitted researchers to correlate hydrodynamic parameters for gas-fluid transportability and structural contour flows. The water phase simultaneously carries corrosion-active ions of dissolved hydrogen sulphide and material which interact to corrode metal in the lower sections of pipelines. In order to determine the susceptibility of pipelines to corrosion, it is necessary to establish the presence of stratified fluids in oil and water as well as the gas-fluid flow. Analysis has shown that those sections with stratified emulsion could be identified and that it is necessary to disclose the pipeline's ability to withstand such conditions. The proper selection of transport parameters permits the technological protection of the oil collection pipelines. Partially as a result of the increased flow speed guaranteeing an emulsion flow regime for the gas-water-oil flow, it was found that the operational service-life of pipelines could be prolonged by a reduction of corrosion in oil collection pipelines.

  16. Analysis of corrosion-product transport using nondestructive XRF and MS techniques

    International Nuclear Information System (INIS)

    Sawicka, B.D.; Sawicki, J.A.

    1998-01-01

    This paper describes the application of X-ray fluorescence (XRF) and Moessbauer spectroscopy (MS) techniques to monitor corrosion-product transport (CPT) in water circuits of nuclear reactors. The combination of XRF and MS techniques was applied in studies of CPT crud filters from both primary- and secondary-side water circuits (i.e., radioactive and nonradioactive specimens) of CANDU reactors. The XRF-MS method allows nondestructive analysis of species collected on filters and provides more complete information about corrosion products than commonly used digestive methods of chemical analysis. Recent analyses of CPT specimens from the Darlington Nuclear Generating Station (NGS) primary side and the Bruce B NGS feedwater system are shown as examples. Some characteristics of primary and secondary water circuits are discussed using these new data. (author)

  17. Corrosion of copper by chlorine trifluoride

    International Nuclear Information System (INIS)

    Vincent, L.

    1966-01-01

    The research described called for a considerable amount of preliminary development of the test methods and equipment in order that the various measurements and observations could be carried out without contaminating either the samples or this highly reactive gas. The chlorine trifluoride was highly purified before use, its purity being checked by gas-phase chromatography, micro-sublimation and infrared spectrography. The tests were carried out on copper samples of various purities, in particular a 99.999 per cent copper in the form of mono-crystals. They involved kinetic measurements and the characterization of corrosion products under different temperature and pressure conditions. The kinetics showed reactions of the same order of magnitude as those obtained with elementary fluorine. At atmospheric pressure there occurs formation of cupric fluoride and cuprous chloride. The presence of this latter product shows that it is not possible to consider ClF 3 simply as a fluorinating agent. At low pressures an unknown product has been characterized. There are strong grounds for believing that it is the unstable cuprous fluoride which it has not yet been possible to isolate. A germination phenomenon has been shown to exist indicating an analogy between the initial phases of fluorination and those of oxidation. Important effects resulting from the dissociation of the copper fluorides and the solubility of chlorine in this metal have been demonstrated. Finally, tests have shown the considerable influence of the purity of the gas phase and of the nature of the reaction vessel walls on the rates of corrosion which can in certain cases be increased by a factor of several powers of ten. (author) [fr

  18. A Moessbauer and Electrochemical Characterization of the Corrosion Products Formed from Marine and Marine-Antartic Environments

    Energy Technology Data Exchange (ETDEWEB)

    Ohanian, M.; Caraballo, R.; Dalchiele, E. A.; Quagliata, E. [Instituto de Ingenieria Quimica, Facultad de Ingenieria (Uruguay)

    2003-06-15

    Corrosion products formed on low alloy steel under two marine environments are characterised. Both environments are classified as C4 according to the ISO 9223 Standard. The corrosion products are identified and their relative proportion is determined by Moessbauer spectroscopy (transmission geometry). Free potentials of corrosion are measured to evaluate the activity of their surfaces. Structural characterisation by XRD were performed on selected samples. It is concluded that the principal phases are goethite, lepidocrocite, ferrihidrite and maghemite. The relative amount of each of them changes with time and with the atmospheric dynamics of each environment.

  19. A Moessbauer and Electrochemical Characterization of the Corrosion Products Formed from Marine and Marine-Antartic Environments

    International Nuclear Information System (INIS)

    Ohanian, M.; Caraballo, R.; Dalchiele, E. A.; Quagliata, E.

    2003-01-01

    Corrosion products formed on low alloy steel under two marine environments are characterised. Both environments are classified as C4 according to the ISO 9223 Standard. The corrosion products are identified and their relative proportion is determined by Moessbauer spectroscopy (transmission geometry). Free potentials of corrosion are measured to evaluate the activity of their surfaces. Structural characterisation by XRD were performed on selected samples. It is concluded that the principal phases are goethite, lepidocrocite, ferrihidrite and maghemite. The relative amount of each of them changes with time and with the atmospheric dynamics of each environment.

  20. 49 CFR 192.475 - Internal corrosion control: General.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Internal corrosion control: General. 192.475... Control § 192.475 Internal corrosion control: General. (a) Corrosive gas may not be transported by... taken to minimize internal corrosion. (b) Whenever any pipe is removed from a pipeline for any reason...

  1. Simulation of corrosion product activity in pressurized water reactors under flow rate transients

    International Nuclear Information System (INIS)

    Mirza, Anwar M.; Mirza, Nasir M.; Mir, Imran

    1998-01-01

    Simulation of coolant activation due to corrosion products and impurities in a typical pressurized water reactor has been done under flow rate transients. Employing time dependent production and losses of corrosion products in the primary coolant path an approach has been developed to calculate the coolant specific activity. Results for 24 Na, 56 Mn, 59 Fe, 60 Co and 99Mo show that the specific activity in primary loop approaches equilibrium value under normal operating conditions fairly rapidly. Predominant corrosion product activity is due to Mn-56. Parametric studies at full power for various ramp decreases in flow rate show initial decline in the activity and then a gradual rise to relatively higher saturation values. The minimum value and the time taken to reach the minima are strong functions of the slope of linear decrease in flow rate. In the second part flow rate coastdown was allowed to occur at different flow half-times. The reactor scram was initiated at 90% of the normal flow rate. The results show that the specific activity decreases and the rate of decrease depends on pump half time and the reactor scram conditions

  2. 77 FR 25405 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2012-04-30

    ... antidumping duty order on corrosion-resistant carbon steel flat products from the Republic of Korea, covering... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limit for the Preliminary Results of...

  3. 76 FR 21332 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-04-15

    ... antidumping duty order on corrosion-resistant carbon steel flat products from the Republic of Korea, covering... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limits for the Preliminary Results of...

  4. 75 FR 25841 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2010-05-10

    ... antidumping duty order on corrosion-resistant carbon steel flat products from the Republic of Korea, covering... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limits for the Preliminary Results of...

  5. Superheater fireside corrosion mechanisms in MSWI plants: Lab-scale study and on-site results

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, J.M.; Chaucherie, X.; Nicol, F. [Veolia Environnement R and D, Zone Portuaire de Limay, 291 Avenue Dreyfous Ducas, Limay 78520 (France); Diop, I. [Veolia Environnement R and D, Zone Portuaire de Limay, 291 Avenue Dreyfous Ducas, Limay 78520 (France); Institut Jean Lamour, departement Chimie et physique des solides et des surfaces, UMR 7198 CNRS - Universite Henri Poincare Nancy 1, Vandoeuvre-Les-Nancy (France); Rapin, C.; Vilasi, M. [Institut Jean Lamour, departement Chimie et physique des solides et des surfaces, UMR 7198 CNRS - Universite Henri Poincare Nancy 1, Vandoeuvre-Les-Nancy (France)

    2011-06-15

    Combustion of municipal waste generates highly corrosive gases (HCl, SO{sub 2}, NaCl, KCl, and heavy metals chlorides) and ashes containing alkaline chlorides and sulfates. Currently, corrosion phenomena are particularly observed on superheater's tubes. Corrosion rates depend mainly on installation design, operating conditions i.e., gas and steam temperature and velocity of the flue gas containing ashes. This paper presents the results obtained using an innovative laboratory-scale corrosion unit, which simulates MSWI (Municipal Solid Waste Incineration) boilers conditions characterized by a temperature gradient at the metal tube in the presence of corrosive gases and ashes. The presented corrosion tests were realized on carbon steel at fixed metal temperature (400 C). The influence of the flue gas temperature, synthetic ashes composition, and flue gas flow pattern were investigated. After corrosion test, cross sections of tube samples were characterized to evaluate thickness loss and estimate corrosion rate while the elements present in corrosion layers were analyzed. Corrosion tests were carried out twice in order to validate the accuracy and reproducibility of results. First results highlight the key role of molten phase related to the ash composition and flue gas temperature as well as the deposit morphology, related to the flue gas flow pattern, on the mechanisms and corrosion rates. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Corrosion in the oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Brondel, D [Sedco Forex, Montrouge (France); Edwards, R [Schlumberger Well Services, Columbus, OH (United States); Hayman, A [Etudes et Productions Schlumberger, Clamart (France); Hill, D [Schlumberger Dowell, Tulsa, OK (United States); Mehta, S [Schlumberger Dowell, St. Austell (United Kingdom); Semerad, T [Mobil Oil Indonesia, Inc., Sumatra (Indonesia)

    1994-04-01

    Corrosion costs the oil industry billions of dollars a year, a fact that makes the role of the corrosion engineer an increasingly important one. Attention is paid to how corrosion affects every aspect of exploration and production, from offshore rigs to casing. Also the role of corrosion agents such as drilling and production fluids is reviewed. Methods of control and techniques to monitor corrosion are discussed, along with an explanation of the chemical causes of corrosion. 21 figs., 32 refs.

  7. Importance of temperature, pH, and boric acid concentration on rates of hydrogen production from galvanized steel corrosion

    International Nuclear Information System (INIS)

    Loyola, V.M.

    1982-01-01

    One of the known sources of hydrogen gas within a nuclear plant containment building during a LOCA is the high temperature corrosion of galvanized steel yielding hydrogen gas. The importance of this source of hydrogen will vary depending on the severity of the accident. In an accident which resulted in core degradation, for example, the major source of hydrogen would probably be the metal-water reaction of the zircaloy cladding, and the corrosion of galvanized steel would then become a relatively minor source of hydrogen. However, in an accident in which core degradation is avoided or limited to minor damage, the corrosion of galvanized steel, and presumably of other materials as well, would then become a major contributor to the buildup of hydrogen within containment. The purpose of this paper is to present the overall effects of temperature, pH, and boric acid concentration on the rate of hydrogen generation over a broad range of each parameter

  8. Strontium concentrations in corrosion products from residential drinking water distribution systems.

    Science.gov (United States)

    Gerke, Tammie L; Little, Brenda J; Luxton, Todd P; Scheckel, Kirk G; Maynard, J Barry

    2013-05-21

    The United States Environmental Protection Agency (US EPA) will require some U.S. drinking water distribution systems (DWDS) to monitor nonradioactive strontium (Sr(2+)) in drinking water in 2013. Iron corrosion products from four DWDS were examined to assess the potential for Sr(2+) binding and release. Average Sr(2+) concentrations in the outermost layer of the corrosion products ranged from 3 to 54 mg kg(-1) and the Sr(2+) drinking water concentrations were all ≤0.3 mg L(-1). Micro-X-ray adsorption near edge structure spectroscopy and linear combination fitting determined that Sr(2+) was principally associated with CaCO3. Sr(2+) was also detected as a surface complex associated with α-FeOOH. Iron particulates deposited on a filter inside a home had an average Sr(2+) concentration of 40.3 mg kg(-1) and the associated drinking water at a tap was 210 μg L(-1). The data suggest that elevated Sr(2+) concentrations may be associated with iron corrosion products that, if disturbed, could increase Sr(2+) concentrations above the 0.3 μg L(-1) US EPA reporting threshold. Disassociation of very small particulates could result in drinking water Sr(2+) concentrations that exceed the US EPA health reference limit (4.20 mg kg(-1) body weight).

  9. Modelling of gas generation in deep geological repositories after closure

    International Nuclear Information System (INIS)

    Poller, A.; Mayer, G.; Darcis M; Smith, P.

    2016-12-01

    In deep geological repositories for radioactive waste, significant quantities of gases will be generated in the long term as a result of various processes, notably the anaerobic corrosion of metals and the degradation of organic materials. Therefore, the impact of gas production on post-closure safety of the repositories needs to be assessed as part of a safety case. The present report provides a comprehensive description of the quantitative modelling of gas generation and associated water consumption during the post-closure phase of deep geological repositories in Opalinus Clay based on current scientific knowledge and on current preliminary repository designs. This includes a presentation of the modelling basis, namely the conceptual and mathematical models, the input data used, the computer tools developed, the relevant uncertainties and principal programme / design options, as well as the derivation, analysis and discussion of specific assessment cases. The modelling is carried out separately for the two main sources of gas, which are the emplaced waste including the disposal containers; and the construction materials. The contribution of construction materials to gas generation rates in emplacement tunnels for spent fuel (SF) and vitrified high-level waste (HLW) is significant during several thousand years after closure. In the long term, however, the corrosion of the disposal canisters, which are in the reference case assumed to be fabricated of carbon steel, accounts for the vast majority of the total gas produced in these tunnels. The contribution of construction materials in emplacement caverns for long lived intermediate-level waste (ILW) and low- and intermediate-level waste (L/ILW) to gas generation is generally small. In ILW emplacement caverns, gas generation is generally dominated by hydrogen generation from the corrosion of cast iron Mosaik-II waste containers for PWR internals and from the corrosion of aluminium in operational waste from the

  10. Modelling of gas generation in deep geological repositories after closure

    Energy Technology Data Exchange (ETDEWEB)

    Poller, A. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Mayer, G.; Darcis M [AF-Consult Switzerland Ltd, Baden-Dättwil, (Switzerland); Smith, P. [Safety Assessment Management Ltd, Henley-On-Thames, Oxfordshire (United Kingdom)

    2016-12-15

    In deep geological repositories for radioactive waste, significant quantities of gases will be generated in the long term as a result of various processes, notably the anaerobic corrosion of metals and the degradation of organic materials. Therefore, the impact of gas production on post-closure safety of the repositories needs to be assessed as part of a safety case. The present report provides a comprehensive description of the quantitative modelling of gas generation and associated water consumption during the post-closure phase of deep geological repositories in Opalinus Clay based on current scientific knowledge and on current preliminary repository designs. This includes a presentation of the modelling basis, namely the conceptual and mathematical models, the input data used, the computer tools developed, the relevant uncertainties and principal programme / design options, as well as the derivation, analysis and discussion of specific assessment cases. The modelling is carried out separately for the two main sources of gas, which are the emplaced waste including the disposal containers; and the construction materials. The contribution of construction materials to gas generation rates in emplacement tunnels for spent fuel (SF) and vitrified high-level waste (HLW) is significant during several thousand years after closure. In the long term, however, the corrosion of the disposal canisters, which are in the reference case assumed to be fabricated of carbon steel, accounts for the vast majority of the total gas produced in these tunnels. The contribution of construction materials in emplacement caverns for long lived intermediate-level waste (ILW) and low- and intermediate-level waste (L/ILW) to gas generation is generally small. In ILW emplacement caverns, gas generation is generally dominated by hydrogen generation from the corrosion of cast iron Mosaik-II waste containers for PWR internals and from the corrosion of aluminium in operational waste from the

  11. Corrosion behavior of the aluminum under the simulated environmental condition of low-level waste. Part 1. Effect of dry storage on the corrosion behavior of pre-filmed specimen

    International Nuclear Information System (INIS)

    Fujiwara, Kazutoshi; Tani, Junichi; Tanaka, Yukihisa

    2016-01-01

    Aluminum alloy remains in the Low-level Radioactive Waste (LLW) generated at nuclear facilities. It is well known that aluminum reactors to the alkaline component of cement, or water, generating hydrogen gas. For the saft management of radioactive waste disposal facilities, it is necessary to evaluate the corrosion behavior of aluminum and the hydrogen generation behavior in consideration with transition of the burial environment. In the present study, the corrosion behaviors of aluminum in the alkaline solutions at 15degC were evaluated. Pure aluminium was used as specimen. The test solutions used in this study were water in equilibrium with the cement paste grain produced from ordinary portland cement (OPC). The temperature and pH of solutions were 15degC and 11.5-12.5, respectively. In order to make a corrosion product on the surface, the specimens were immersed in the solution for about 3000 hours as pretreatment. The corrosion behaviors of pre-filmed specimen were evaluated after drying. The test results shows that the maximum in a corrosion rate appeared in early stages and it decrease to less than 1x10 -3 mm/y. The maximum did not appear when the corrosion products were formed in the OPC grain as conditions similar to actual environment. (author)

  12. Evaluation of materials' corrosion and chemistry issues for advanced gas cooled reactor steam generators using full scale plant simulations

    International Nuclear Information System (INIS)

    Woolsey, I.S.; Rudge, A.J.; Vincent, D.J.

    1998-01-01

    Advanced Gas Cooled Reactors (AGRS) employ once-through steam Generators of unique design to provide steam at approximately 530 degrees C and 155 bar to steam turbines of similar design to those of fossil plants. The steam generators are highly compact, and have either a serpentine or helical tube geometry. The tubes are heated on the outside by hot C0 2 gas, and steam is generated on the inside of the tubes. Each individual steam generator tube consists of a carbon steel feed and primary economiser section, a 9%Cr steel secondary economiser, evaporator and primary superheater, and a Type 316L austenitic stainless steel secondary superheater, all within a single tube pass. The multi-material nature of the individual tube passes, the need to maintain specific thermohydraulic conditions within the different material sections, and the difficulties of steam generator inspection and repair, have required extensive corrosion-chemistry test programmes to ensure waterside corrosion does not present a challenge to their integrity. A major part of these programmes has been the use of a full scale steam generator test facility capable of simulating all aspects of the waterside conditions which exist in the plant. This facility has been used to address a wide variety of possible plant drainage/degradation processes. These include; single- and two-phase flow accelerated corrosion of carbon steel, superheat margins requirements and the stress-corrosion behaviour of the austenitic superheaters, on-load corrosion of the evaporator materials, and iron transport and oxide deposition behaviour. The paper outlines a number of these, and indicates how they have been of value in helping to maintain reliable operation of the plant. (author)

  13. High-Temperature Corrosion of T92 Steel in N{sub 2}/H{sub 2}O/H{sub 2}S-Mixed Gas

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yuke; Kim, Min Jung; Park, Soon Yong; Abro, M. Ali; Yadav, Poonam; Lee, Dong Bok [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-06-15

    The ASTM T92 steel was corroded at 600 ℃ and 800 ℃ at 1 atm of N{sub 2}/3.1%H{sub 2}O/2.42%H{sub 2}S-mixed gas. The formed scales were thick and fragile. They consisted primarily of the outer FeS scale and the inner (FeS, FeCr{sub 2}S{sub 4})-mixed scale containing a small amount of the Cr{sub 2}O{sub 3} scale. This indicated that corrosion occurred mainly via sulfidation rather than oxidation due to the H{sub 2}S gas. Since FeS was present throughout the whole scale, T92 steel was non-protective, displaying high corrosion rates.

  14. Assessment of sulphur and H2S corrosion by use of simultaneous ER, galvanic and optical measurements

    DEFF Research Database (Denmark)

    Hemmingsen, Tor; Hilbert, Lisbeth Rischel; Nielsen, Lars Vendelbo

    2003-01-01

    Sulphur and H2S corrosion on carbon steel is relevant in a range of industrial applications, including oil and gas production, district heating systems, and geothermal energy production. Bacterial activity may participate in the sulphur cycle and contribute to H2S production. As a part...

  15. Effect of Wall Shear Stress on Corrosion Inhibitor Film Performance

    Science.gov (United States)

    Canto Maya, Christian M.

    In oil and gas production, internal corrosion of pipelines causes the highest incidence of recurring failures. Ensuring the integrity of ageing pipeline infrastructure is an increasingly important requirement. One of the most widely applied methods to reduce internal corrosion rates is the continuous injection of chemicals in very small quantities, called corrosion inhibitors. These chemical substances form thin films at the pipeline internal surface that reduce the magnitude of the cathodic and/or anodic reactions. However, the efficacy of such corrosion inhibitor films can be reduced by different factors such as multiphase flow, due to enhanced shear stress and mass transfer effects, loss of inhibitor due to adsorption on other interfaces such as solid particles, bubbles and droplets entrained by the bulk phase, and due to chemical interaction with other incompatible substances present in the stream. The first part of the present project investigated the electrochemical behavior of two organic corrosion inhibitors (a TOFA/DETA imidazolinium, and an alkylbenzyl dimethyl ammonium chloride), with and without an inorganic salt (sodium thiosulfate), and the resulting enhancement. The second part of the work explored the performance of corrosion inhibitor under multiphase (gas/liquid, solid/liquid) flow. The effect of gas/liquid multiphase flow was investigated using small and large scale apparatus. The small scale tests were conducted using a glass cell and a submersed jet impingement attachment with three different hydrodynamic patterns (water jet, CO 2 bubbles impact, and water vapor cavitation). The large scale experiments were conducted applying different flow loops (hilly terrain and standing slug systems). Measurements of weight loss, linear polarization resistance (LPR), and adsorption mass (using an electrochemical quartz crystal microbalance, EQCM) were used to quantify the effect of wall shear stress on the performance and integrity of corrosion inhibitor

  16. Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekar, Aruliah; Ting, Yen-Peng [National Univ. of Singapore (Singapore). Dept. of Chemical and Biomolecular Engineering; Anandkumar, Balakrishnan [Sourashtra Coll., Madurai (India). Dept. of Biotechnology; Maruthamuthu, Sundaram [Central Electrochemical Research Inst., Karaikudi (India). Biocorrosion Group; Rahman, Pattanathu K.S.M. [Teesside Univ., Tees Valley (United Kingdom). Chemical and Bioprocess Engineering Group

    2010-01-15

    Microbiologically influenced corrosion is a problem commonly encountered in facilities in the oil and gas industries. The present study describes bacterial enumeration and identification in diesel and naphtha pipelines located in the northwest and southwest region in India, using traditional cultivation technique and 16S rDNA gene sequencing. Phylogenetic analysis of 16S rRNA sequences of the isolates was carried out, and the samples obtained from the diesel and naphtha-transporting pipelines showed the occurrence of 11 bacterial species namely Serratia marcescens ACE2, Bacillus subtilis AR12, Bacillus cereus ACE4, Pseudomonas aeruginosa AI1, Klebsiella oxytoca ACP, Pseudomonas stutzeri AP2, Bacillus litoralis AN1, Bacillus sp., Bacillus pumilus AR2, Bacillus carboniphilus AR3, and Bacillus megaterium AR4. Sulfate-reducing bacteria were not detected in samples from both pipelines. The dominant bacterial species identified in the petroleum pipeline samples were B. cereus and S. marcescens in the diesel and naphtha pipelines, respectively. Therefore, several types of bacteria may be involved in biocorrosion arising from natural biofilms that develop in industrial facilities. In addition, localized (pitting) corrosion of the pipeline steel in the presence of the consortia was observed by scanning electron microscopy analysis. The potential role of each species in biofilm formation and steel corrosion is discussed. (orig.)

  17. Mass transfer of corrosion products in high temperature, high pressure water circuits

    International Nuclear Information System (INIS)

    Rodd, J.T.; Nicholson, F.D.

    1976-01-01

    The CWL-3 loop is used to study the mass transfer of corrosion products in water at 270 0 C for pressures up to 6.9 MPa. Two parallel Zircaloy-2 test sections are heated directly by a low voltage a.c. electrical current to give a heat flux up to 500 W cm -2 and a heat rating up to 1500 W cm -1 . Coolant flow rates can be varied up to 0.4 kg cm -2 s -1 with or without boiling. A tracer technique has been developed to monitor continuously the deposition of corrosion products in the test sections during operation of the loop. Magnetite deposits 2.6 nm thick can be readily detected. (author)

  18. NDT method in determining the rate of corrosion applicable to risk based inspection

    International Nuclear Information System (INIS)

    Mohamed Hairul Hasmoni; Mohamad Pauzi Ismail; Ab Razak Hamzah

    2004-01-01

    Corrosion is a major problem in oil and gas industries, refineries and chemical process plants as the equipment is often exposed to corrosive environments or elevated temperature. Important equipment need to operate safely and reliably to avoid injuries to personnel and the public, and to prevent loss time and cost incurred due to loss of production and shutdown. The paper assess the approach in evaluating the technique of non-destructive testing (NDT) using Ultrasonic Testing (UT) in determining the rate of corrosion and remaining life of equipment applicable to Risk Based Inspection (RBI). Methods in determining the corrosion rate are presented using analytical method. Examples and data from MINT chiller water pipeline are presented to illustrate the application of these methods. (Author)

  19. Catalysis of copper corrosion products on chlorine decay and HAA formation in simulated distribution systems.

    Science.gov (United States)

    Zhang, Hong; Andrews, Susan A

    2012-05-15

    This study investigated the effect of copper corrosion products, including Cu(II), Cu(2)O, CuO and Cu(2)(OH)(2)CO(3), on chlorine degradation, HAA formation, and HAA speciation under controlled experimental conditions. Chlorine decay and HAA formation were significantly enhanced in the presence of copper with the extent of copper catalysis being affected by the solution pH and the concentration of copper corrosion products. Accelerated chlorine decay and increased HAA formation were observed at pH 8.6 in the presence of 1.0 mg/L Cu(II) compared with that observed at pH 6.6 and pH 7.6. Further investigation of chlorine decay in the presence of both Suwannee River NOM and Cu(II) indicated that an increased reactivity of NOM with dissolved and/or solid surface-associated Cu(II), rather than chlorine auto-decomposition, was a primary reason for the observed rapid chlorine decay. Copper corrosion solids [Cu(2)O, CuO, Cu(2)(OH)(2)CO(3)] exhibited catalytic effects on both chlorine decay and HAA formation. Contrary to the results observed when in the absence of copper corrosion products, DCAA formation was consistently predominant over other HAA species in the presence of copper corrosion products, especially at neutral and high pH. This study improves the understanding for water utilities and households regarding chlorine residuals and HAA concentrations in distribution systems, in particular once the water reaches domestic plumbing where copper is widely used. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Radioactive corrosion products in circuit of fast reactor loop with dissociating coolant

    International Nuclear Information System (INIS)

    Dolgov, V.M.; Katanaev, A.O.

    1982-01-01

    The results of experimental investigation into depositions of radionuclides of corrosion origin on the surfaces of a reactor-in-pile loop facility with a dissociating coolant are presented. It is stated that the ratio of radionuclides in fixed depositions linearly decreases with decrease of the coolant temperature at the core-condenser section. The element composition of non-fixed compositions quantitatively and qualitatively differs from the composition of structural material, and it is more vividly displayed for the core-condenser section. The main mechanism of circuit contamination with radioactive corrosion products is substantiated: material corrosion in the zones of coolant phase transfer, their remove by the coolant in the core, deposition, activation and wash-out by the coolant from the core surfaces

  1. Investigations on Microstructure and Corrosion behavior of Superalloy 686 weldments by Electrochemical Corrosion Technique

    Science.gov (United States)

    Arulmurugan, B.; Manikandan, M.

    2018-02-01

    In the present study, microstructure and the corrosion behavior of Nickel based superalloy 686 and its weld joints has been investigated by synthetic sea water environment. The weldments were fabricated by Gas Tungsten Arc Welding (GTAW) and Pulsed Current Gas Tungsten Arc Welding (PCGTAW) techniques with autogenous mode and three different filler wires (ERNiCrMo-4, ERNiCrMo-10 and ERNiCrMo-14). Microstructure and Scanning electron microscope examination was carried out to evaluate the structural changes in the fusion zones of different weldments. Energy Dispersive X-ray Spectroscopy (EDS) analysis was carried out to evaluate the microsegregation of alloying elements in the different weld joints. Potentiodynamic polarization study was experimented on the base metal and weld joints in the synthetic sea water environment to evaluate the corrosion rate. Tafel’s interpolation technique was used to obtain the corrosion rate. The microstructure examination revealed that the fine equiaxed dendrites were observed in the pulsed current mode. EDS analysis shows the absence of microsegregation in the current pulsing technique. The corrosion rates of weldments are compared with the base metal. The results show that the fine microstructure with the absence of microsegregation in the PCGTA weldments shows improved corrosion resistance compared to the GTAW. Autogenous PCGTAW shows higher corrosion resistance irrespective of all weldments employed in the present study.

  2. WVNS Tank Farm Process Support: Experimental evaluation of an inert gas (nitrogen) to mitigate external corrosion of high-level waste storage tanks

    International Nuclear Information System (INIS)

    Elmore, M.R.

    1996-02-01

    Corrosion of the carbon steel waste storage tanks at West Valley Nuclear Services continues to be of concern, especially as the planned duration of waste storage time increases and sludge washing operations are conducted. The external surfaces of Tanks 8D-1 and 8D-2 have been exposed for more than 10 years to water that has intruded into the tank vaults. Visual inspection of the external tank surfaces using a remote video camera has shown indications of heavy corrosion in localized areas on the tank walls. Tests on mild steel specimens under simulated tank vault conditions showed that corrosion is related to the availability of oxygen for the corrosion reactions; consequently, removing oxygen as one of the reactants should effectively eliminate corrosion. In terms of the waste tanks, excluding oxygen from the annular vault space, such as by continuous flushing with an inert gas, should substantially decrease corrosion of the external surfaces of the mild steel tanks (100% exclusion of oxygen is probably not practicable). Laboratory corrosion testing was conducted at Pacific Northwest National Laboratory to give a preliminary assessment of the ability of nitrogen-inerting to reduce steel corrosion. This report summarizes test results obtained after 18-month corrosion tests comparing open-quotes nitrogen-inertedclose quotes corrosion with open-quotes air-equilibratedclose quotes corrosion under simulated tank vault conditions

  3. An evaluation of corrosion resistant alloys by field corrosion test in Japanese refuse incineration plants

    International Nuclear Information System (INIS)

    Kawahara, Yuuzou; Nakamura, Masanori; Shibuya, Eiichi; Yukawa, Kenichi

    1995-01-01

    As the first step for development of the corrosion resistant superheater tube materials of 500 C, 100 ata used in high efficient waste-to-energy plants, field corrosion tests of six conventional alloys were carried out at metal temperatures of 450 C and 550 C for 700 and 3,000 hours in four typical Japanese waste incineration plants. The test results indicate that austenitic alloys containing approximately 80 wt% [Cr+Ni] show excellent corrosion resistance. When the corrosive environment is severe, intergranular corrosion of 40∼200 microm depth occurs in stainless steel and high alloyed materials. It is confirmed quantitatively that corrosion behavior is influenced by environmental corrosion factors such as Cl concentration and thickness of deposits on tube surface, metal temperature, and flue gas temperature. The excellent corrosion resistance of high [Cr+Ni+Mo] alloys such as Alloy 625 is explained by the stability of its protective oxide, such that the time dependence of corrosion nearly obeys the parabolic rate law

  4. Effects of environmental factor on gas evolution behavior from Al in simulating mortar environments

    International Nuclear Information System (INIS)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka

    1998-01-01

    Dry Low-Level Radioactive Wastes (LLW) which mean incombustible solid LLW generated from nuclear power stations are scheduled to be packed in steel drums followed by solidification with mortar. The solidified dry LLW is then to be disposed to shallow under-ground at Rokkasho LLW Disposal Center. Dry LLW includes some amphoteric metals among which aluminum is the most corrosive with gas evolution in high alkaline media such as mortar. The evolved gas may accelerate the leaching of solidified dry LLW with mortar. Despite the planned removal of aluminum from dry LLW, small inclusion of aluminum is unavoidable. The present study focuses on the effect of environmental factors such as pH and temperature on gas evolution behavior caused by aluminum corrosion. Large effects of pH and temperature on corrosion rate of aluminum and gas evolution were recognized. Principal corrosion product of aluminum was calcium aluminate compound when it was immersed in simulated mortar environments. It is demonstrated that 1.5 mol hydrogen gas evolves with the corrosion of 1 mol aluminum in environments of 12 < pH < 13 at temperatures below 60degC. (author)

  5. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Science.gov (United States)

    Huang, B. S.; Yin, W. F.; Sang, D. H.; Jiang, Z. Y.

    2012-10-01

    The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 °C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr5S8 phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  6. Iron Drinking Water Pipe Corrosion Products: Concentrators of Toxic Metals

    Science.gov (United States)

    2013-01-01

    health risk. In addition Pb corrosion products may be sinks for other metals such as chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn). These...Vanadium K-Edge X-ray Absorption Near-Edge Structure Interpretation: Application to the Speciation of Vanadium in Oxide Phases from Steel Slag ’, Journal

  7. Corrosion Product Measurements to ensure integrity of the Steam Generators in Beznau NPP

    International Nuclear Information System (INIS)

    Mailand, Irene; Franz, Patrick; Venz, Hartmut

    2012-09-01

    The Nuclear Power Plant Beznau comprises two identical 380 MWe PWR units with two loops each, commissioned in 1969 and 1971. Westinghouse was responsible for the primary part of the plant and BBC/ABB for the secondary circuit. The original materials used in the secondary systems were made of several copper-based alloys, such as for the Condensers, the Low Pressure Pre-heaters and the Moisture Separator Re-heater. The original Steam Generator Tubes were made of Inconel 600 MA. Regarding its age, the NPP Beznau has to be qualified as an old plant. However, in fact particularly in the last 20 years the plant has undergone an extensive modernisation programme in which about 1.5 billion Swiss Francs have been invested. Important measures were the replacements of the Steam Generators with tubes comprising Inconel 690 TT which was realized at unit 1 in 1993 and at unit 2 in 1999. Copper was completely banished from the secondary system and replaced by stainless and chromium steel. The Condensers were fitted with titanium tubes. The secondary water chemistry had to be changed by these replacements and moved step by step from Low-AVT with a pH of about 9.3 to High-AVT with a pH of 9.8 to 9.9, currently. To ensure the integrity of the new Steam Generators as well as of the whole Secondary System a corrosion product programme was introduced at the end of the Nineties. Several investigations which are performed periodically are represented by analyses of corrosion products, measurements of sludge mass and composition in the Steam Generators, Hide-Out-Return- and mass balance measurements of corrosion products in the whole circuit. Objectives of these investigations are assessments of the efficiency of the water chemistry and trend considerations regarding to the transport of corrosion products and pollutants into the Steam Generator, as well as of the potential danger of deposits and stored or absorbed pollutants. The main target of all measures is to avoid any chemical

  8. Corrosion characterisation of laser beam and tungsten inert gas weldment of nickel base alloys: Micro-cell technique

    International Nuclear Information System (INIS)

    Abraham, Geogy J.; Kain, V.; Dey, G.K.; Raja, V.S.

    2015-01-01

    Highlights: • Grain matrix showed better corrosion resistance than grain boundary. • Microcell studies showed distinct corrosion behaviour of individual regions of weldment. • TIG welding resulted in increased stable anodic current density on weld fusion zone. • LB welding resulted in high stable anodic current density for heat affected zone. - Abstract: The electrochemical studies using micro-cell technique gave new understanding of electrochemical behaviour of nickel base alloys in solution annealed and welded conditions. The welding simulated regions depicted varied micro structural features. In case of tungsten inert gas (TIG) weldments, the weld fusion zone (WFZ) showed least corrosion resistance among all other regions. For laser beam (LB) weldments it was the heat-affected zone (HAZ) that showed comparatively high stable anodic current density. The high heat input of TIG welding resulted in slower heat dissipation hence increased carbide precipitation and segregation in WFZ resulting in high stable anodic current density

  9. The Influence of Pseudomonas fluorescens on Corrosion Products of Archaeological Tin-Bronze Analogues

    Science.gov (United States)

    Ghiara, G.; Grande, C.; Ferrando, S.; Piccardo, P.

    2018-01-01

    In this study, tin-bronze analogues of archaeological objects were investigated in the presence of an aerobic Pseudomonas fluorescens strain in a solution, containing chlorides, sulfates, carbonates and nitrates according to a previous archaeological characterization. Classical fixation protocols were employed in order to verify the attachment capacity of such bacteria. In addition, classical metallurgical analytical techniques were used to detect the effect of bacteria on the formation of uncommon corrosion products in such an environment. Results indicate quite a good attachment capacity of the bacteria to the metallic surface and the formation of the uncommon corrosion products sulfates and sulfides is probably connected to the bacterial metabolism.

  10. Inhibitor effect on corrosion of titanium alloys in muriatic solutions of titanium-magnesium production

    International Nuclear Information System (INIS)

    Dobrunov, Yu.V.; Volynskij, V.V.; Kolobov, G.A.; Kuznetsov, S.I.

    1977-01-01

    Corrosion tests of titanium alloys VTI-0, OT4, VT5-1 and steel Kh18N1OT in 10% and 18% HCl with additions of carnallite at 40 deg C have been carried out. It has been established that titanium alloys in 10% and 18% HCl containing 5 and 10% carnallite are sufficiently corrosion resistant in the presence of 0.1-1% FeCl or HNO 3 and can be used for manufacturing the equipment of recirculation gas scrubbers. Steel Kh18N10T is unstable in all the media tested. It is subjected to intensive pitting. Specimens of steel Kh18N10T have also revealed edge cracking

  11. Evaluation of CRUDTRAN code to predict transport of corrosion products and radioactivity in the PWR primary coolant system

    International Nuclear Information System (INIS)

    Lee, C.B.

    2002-01-01

    CRUDTRAN code is to predict transport of the corrosion products and their radio-activated nuclides such as cobalt-58 and cobalt-60 in the PWR primary coolant system. In CRUDTRAN code the PWR primary circuit is divided into three principal sections such as the core, the coolant and the steam generator. The main driving force for corrosion product transport in the PWR primary coolant comes from coolant temperature change throughout the system and a subsequent change in corrosion product solubility. As the coolant temperature changes around the PWR primary circuit, saturation status of the corrosion products in the coolant also changes such that under-saturation in steam generator and super-saturation in the core. CRUDTRAN code was evaluated by comparison with the results of the in-reactor loop tests simulating the PWR primary coolant system and PWR plant data. It showed that CRUDTRAN could predict variations of cobalt-58 and cobalt-60 radioactivity with time, plant cycle and coolant chemistry in the PWR plant. (author)

  12. 76 FR 55004 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary...

    Science.gov (United States)

    2011-09-06

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Certain Corrosion-Resistant...) is conducting the seventeenth administrative review of the antidumping order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea \\1\\ (Korea). This review covers eight...

  13. Effect of Rare Earth on Corrosion Products and Impedance Behavior of AZ91 Magnesium Alloy Under Dry-wet Cycles

    Directory of Open Access Journals (Sweden)

    ZHAO Xi

    2017-04-01

    Full Text Available The effect of mischmetal of lanthanum and cerium on the composition and structure of the corrosion products on the surface of AZ91 Mg alloy in deicing salt solution under dry-wet cycles was investigated by scanning electron microscopy (SEM, X-ray diffraction (XRD and energy dispersive spectrometer (EDS. The results show that the corrosion products of AZ91 Mg alloy without mischmetal addition (La,Ce are mainly composed of Mg(OH2, MgO, CaCO3 and Mg6Al2CO3(OH16·4H2O; and (La,CeAlO3 can be found in the products of AZ91 with mischmetal addition, meanwhile dense layer occurs in the corrosion products. Electrochemical impedance spectroscopy (EIS measurements show that the charge transfer resistance of AZ91 alloy with mischmetal addition tested in the same dry-wet cycles is much higher than that of AZ91 alloy, the addition of mischmetal helps to reduce the dispersing effect of impedance spectroscopy, indicating that the corrosion resistance of AZ91 Mg alloy and the stability of corrosion product films can be improved by mischmetal of La and Ce.

  14. Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem

    Science.gov (United States)

    Garrelfs, Julia

    2014-01-01

    About a century ago, researchers first recognized a connection between the activity of environmental microorganisms and cases of anaerobic iron corrosion. Since then, such microbially influenced corrosion (MIC) has gained prominence and its technical and economic implications are now widely recognized. Under anoxic conditions (e.g., in oil and gas pipelines), sulfate-reducing bacteria (SRB) are commonly considered the main culprits of MIC. This perception largely stems from three recurrent observations. First, anoxic sulfate-rich environments (e.g., anoxic seawater) are particularly corrosive. Second, SRB and their characteristic corrosion product iron sulfide are ubiquitously associated with anaerobic corrosion damage, and third, no other physiological group produces comparably severe corrosion damage in laboratory-grown pure cultures. However, there remain many open questions as to the underlying mechanisms and their relative contributions to corrosion. On the one hand, SRB damage iron constructions indirectly through a corrosive chemical agent, hydrogen sulfide, formed by the organisms as a dissimilatory product from sulfate reduction with organic compounds or hydrogen (“chemical microbially influenced corrosion”; CMIC). On the other hand, certain SRB can also attack iron via withdrawal of electrons (“electrical microbially influenced corrosion”; EMIC), viz., directly by metabolic coupling. Corrosion of iron by SRB is typically associated with the formation of iron sulfides (FeS) which, paradoxically, may reduce corrosion in some cases while they increase it in others. This brief review traces the historical twists in the perception of SRB-induced corrosion, considering the presently most plausible explanations as well as possible early misconceptions in the understanding of severe corrosion in anoxic, sulfate-rich environments. PMID:24317078

  15. The effect of corrosion product colloids on actinide transport

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1992-01-01

    The near field of the proposed UK repository for ILW/LLW will contain containers of conditioned waste in contact with a cementious backfill. It will contain significant quantities of iron and steel, Magnox and Zircaloy. Colloids deriving from their corrosion products may possess significant sorption capacity for radioelements. If the colloids are mobile in the groundwater flow, they could act as a significant vector for activity transport into the far field. The desorption of plutonium and americium from colloidal corrosion products of iron and zirconium has been studied under chemical conditions representing the transition from the near field to the far field. Desorption R d values of ≥ 5 x 10 6 ml g -1 were measured for both actinides on these oxides and hydroxides when actinide sorption took place under the near-field conditions and desorption took place under the far-field conditions. Desorption of the actinides occurred slowly from the colloids under far-field conditions when the colloids had low loadings of actinide and more quickly at high loadings of actinide. Desorbed actinide was lost to the walls of the experimental vessel. (author)

  16. Solubility of corrosion products in high temperature water

    International Nuclear Information System (INIS)

    Srinivasan, M.P.; Narasimhan, S.V.

    1995-01-01

    A short review of solubility of corrosion products at high temperature in either neutral or alkaline water as encountered in BWR, PHWR and PWR primary coolant reactor circuits is presented in this report. Based on the available literature, various experimental techniques involved in the study of the solubility, theory for fitting the solubility data to the thermodynamic model and discussion of the published results with a scope for future work have been brought out. (author). 17 refs., 7 figs

  17. DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION

    Energy Technology Data Exchange (ETDEWEB)

    Kristine L. Lowe; Bill W. Bogan; Wendy R. Sullivan; Kristine Mila H. Cruz; Brigid M. Lamb; John J. Kilbane II

    2004-07-30

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing indicated that the growth, and the metal corrosion caused by pure cultures of sulfate reducing bacteria were inhibited by hexane extracts of some pepper plants. This quarter tests were performed with mixed bacterial cultures obtained from natural gas pipelines. Treatment with the pepper extracts affected the growth and metabolic activity of the microbial consortia. Specifically, the growth and metabolism of sulfate reducing bacteria was inhibited. The demonstration that pepper extracts can inhibit the growth and metabolism of sulfate reducing bacteria in mixed cultures is a significant observation validating a key hypothesis of the project. Future tests to determine the effects of pepper extracts on mature/established biofilms will be performed next.

  18. 77 FR 54891 - Certain Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Preliminary...

    Science.gov (United States)

    2012-09-06

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Certain Corrosion-Resistant...) is conducting the 18th administrative review of the antidumping order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea \\1\\ (Korea). This review covers seven...

  19. Real Time Implementation of Incremental Fuzzy Logic Controller for Gas Pipeline Corrosion Control

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Jayapalan

    2014-01-01

    Full Text Available A robust virtual instrumentation based fuzzy incremental corrosion controller is presented to protect metallic gas pipelines. Controller output depends on error and change in error of the controlled variable. For corrosion control purpose pipe to soil potential is considered as process variable. The proposed fuzzy incremental controller is designed using a very simple control rule base and the most natural and unbiased membership functions. The proposed scheme is tested for a wide range of pipe to soil potential control. Performance comparison between the conventional proportional integral type and proposed fuzzy incremental controller is made in terms of several performance criteria such as peak overshoot, settling time, and rise time. Result shows that the proposed controller outperforms its conventional counterpart in each case. Designed controller can be taken in automode without waiting for initial polarization to stabilize. Initial startup curve of proportional integral controller and fuzzy incremental controller is reported. This controller can be used to protect any metallic structures such as pipelines, tanks, concrete structures, ship, and offshore structures.

  20. Corrosion of Selected Materials in Boiling Sulfuric Acid for the Nuclear Power Industries

    International Nuclear Information System (INIS)

    Kim, Dong Jin; Lee, Han Hee; Kwon, Hyuk Chul; Kim, Hong Pyo; Hwang, Seong Sik

    2007-01-01

    Iodine sulfur (IS) process is one of the promising processes for a hydrogen production by using a high temperature heat generated by a very high temperature gas cooled reactor(VHTR) in the nuclear power industries. Even though the IS process is very efficient for a hydrogen production and it is not accompanied by a carbon dioxide evolution, the highly corrosive environment of the process limits its application in the industry. Corrosion tests of selected materials were performed in sulfuric acid to select appropriate materials compatible with the IS process. The materials used in this work were Fe-Cr alloys, Fe-Ni-Cr alloys, Fe-Si alloys, Ni base alloys, Ta, Ti, Zr, SiC, Fe-Si, etc. The test environments were 50 wt% sulfuric acid at 120 .deg. C and 98 wt% at 320 .deg. C. Corrosion rates were measured by using a weight change after an immersion. The surface morphologies and cross sectional areas of the corroded materials were examined by using SEM equipped with EDS. Corrosion behaviors of the materials were discussed in terms of the chemical composition of the materials, a weight loss, the corrosion morphology, the precipitates in the microstructure and the surface layer composition

  1. The effect of sulfide on the aerobic corrosion of carbon steel in near-neutral pH saline solutions

    International Nuclear Information System (INIS)

    Sherar, B.W.A.; Keech, P.G.; Shoesmith, D.W.

    2013-01-01

    Highlights: ► The corrosion rate is low when steel is exposed to anaerobic conditions (pH = 8.9). ► An anaerobic to aerobic corrosion with sulfide switch increases the corrosion rate. ► Aerobic exposure induces the formation of goethite-covered tubercles. ► Continual sulfide exposure leads to the slow conversion of goethite to mackinawite. - Abstract: Severe corrosion damage may occur when gas transmission pipelines are exposed, at disbonded coating locations, to trapped waters containing sulfide followed by secondary exposure to air. Aerobic corrosion with sulfide was investigated in a long-term corrosion experiment in which corrosion was monitored by measurement of the corrosion potential and polarization resistance obtained from linear polarization resistance measurements. The properties and composition of the corrosion product deposits formed were determined using scanning electron microscopy, energy dispersive X-ray analysis, and Raman spectroscopy. A switch from aerobic to aerobic-with-sulfide corrosion doubles the relative corrosion rate.

  2. Scenarios for remote gas production

    International Nuclear Information System (INIS)

    Tangen, Grethe; Molnvik, Mona J.

    2009-01-01

    The amount of natural gas resources accessible via proven production technology and existing infrastructure is declining. Therefore, smaller and less accessible gas fields are considered for commercial exploitation. The research project Enabling production of remote gas builds knowledge and technology aiming at developing competitive remote gas production based on floating LNG and chemical gas conversion. In this project, scenarios are used as basis for directing research related to topics that affect the overall design and operation of such plants. Selected research areas are safety, environment, power supply, operability and control. The paper summarises the scenario building process as a common effort among research institutes and industry. Further, it documents four scenarios for production of remote gas and outlines how the scenarios are applied to establish research strategies and adequate plans in a multidisciplinary project. To ensure relevance of the scenarios, it is important to adapt the building process to the current problem and the scenarios should be developed with extensive participation of key personnel.

  3. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.; Ennis, P.J.

    1988-08-01

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  4. High temperature corrosion in the thermochemical hydrogen production from nuclear heat

    International Nuclear Information System (INIS)

    Coen-Porisini, F.; Imarisio, G.

    1976-01-01

    In the production of hydrogen by water decomposition utilizing nuclear heat, a multistep process has to be employed. Water and the intermediate chemical products reach in chemical cycles giving hydrogen and oxygen with regeneration of the primary products used. Three cycles are examined, characterized by the presence of halide compounds and particularly hydracids at temperatures up to 800 0 C. Corrosion tests were carried out in hydrobromic acid, hydrochloric acid, ferric chloride solutions, and hydriodic acid

  5. Siderite as a Corrosion Product on Archaeological Iron from a Waterlogged Environment

    DEFF Research Database (Denmark)

    Matthiesen, H.; Hilbert, Lisbeth Rischel; Gregory, D.J.

    2003-01-01

    This paper discusses the occurrence of siderite (FeCO3) on iron artifacts excavated from the waterlogged peat and gyttja sediment of the Danish Iron Age site Nydam Mose. Siderite was identified by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron...... microscopy with energy-dispersive spectrometry (SEM-EDS), which showed only minor contents of other minerals in the corrosion scales. The implications of the formation of siderite as a corrosion product are discussed in terms of its possible passivating properties and thermodynamic stability in situ...

  6. XPS response in the corrosion products analysis for copper exposed at clean air environment

    International Nuclear Information System (INIS)

    Mariaca, L.; Morcillo, M.; Feliu Jr, S.; Gonzalez, J.A.

    1998-01-01

    In this work is presented the obtained response for superficial analysis technique by X-ray photoelectron spectroscopy (XPS or ESCA), to determine the corrosion products formed during the copper exposure at environment without pollutants (clean air) at 50, 70 and 90 % of relative humidity at 35 Centigrade. One of the copper corrosion products most knew is Cu 2 O. This oxide is formed instantly to be exposed the copper at air. However in function of the exposure time and the relative humidity at it is exposed, the Cu 2 O oxide is transformed at Cu O and Cu(OH) 2 (Author)

  7. Influence of alkali metal oxides and alkaline earth metal oxides on the mitigation of stress corrosion cracking in CANDU fuel sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, J.; Ferrier, G.A.; Farahani, M.; Chan, P.K.; Corcoran, E.C., E-mail: Joseph.Metzler@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2015-07-01

    This work investigates strategies to mitigate stress corrosion cracking (SCC) in Zircaloy-4 sheathing materials. The CANLUB coatings currently used in CANDU reactors contain both alkali metal and alkaline earth metal impurities, which can exist as oxides (e.g., Na{sub 2}O and CaO). It is believed that when the corrosive fission product iodine reacts with these oxides, the iodine can be sequestered through the formation of an iodide (e.g.,NaI and CaI{sub 2}). The subsequent O{sub 2} release may repair cracks in the protective ZrO{sub 2} layer on the sheathing, shielding the Zircaloy-4 sheathing from further corrosive fission product attack. For this investigation, O{sub 2} gas, Na{sub 2}O, and CaO were separately introduced into an environment wherein slotted Zircaloy-4 rings endure mechanical stresses in iodine vapour at high temperatures. Controlled additions of O{sub 2} gas created a slight reduction in the corrosive attack on Zircaloy-4 sheathing, while the inclusion of Na{sub 2}O and CaO lead to greater reductions. (author)

  8. Corrosion of metal iron in contact with anoxic clay at 90 °C: Characterization of the corrosion products after two years of interaction

    International Nuclear Information System (INIS)

    Schlegel, Michel L.; Bataillon, Christian; Brucker, Florence; Blanc, Cécile; Prêt, Dimitri; Foy, Eddy; Chorro, Matthieu

    2014-01-01

    Highlights: • Generalized, heterogeneous corrosion is observed. • The corrosion interface is made of several layers with distinct mineralogy. • Magnetite, chukanovite, Fe-phyllosilicate, ankerite are identified from metal to clay. • The estimated corrosion damage (15 μm in two years) supports surface passivation. • The corrosion products contain only half of oxidized Fe. - Abstract: Chemical and mineralogical properties of solids formed upon free corrosion of two iron probes (one massive iron rod, and one model overpack made by two pipes covering the ends of a glass rod) in saturated clay rock (Callovo-Oxfordian formation, East of Paris Basin, France) at 90 °C over two years were investigated by microscopic and spectroscopic techniques (X-ray tomography, scanning electron microscopy coupled with energy-dispersive X-ray analysis, Raman microspectroscopy, micro-X-ray diffraction, and micro-X-ray Absorption Fine Structure spectroscopy). The corrosion rate of the massive rod was monitored in situ by electrochemical impedance spectrometry, and found to decrease from about 90 μm/year during the first month of reaction, to less than 1 μm/year after two years. X-ray tomography revealed the presence of several fractures suggesting the presence of preferential flow and diffusion pathways along the iron samples. Microscopic observations revealed similar corrosion interfaces for both samples. Corrosion heterogeneously affected the interface, with damaged thickness from ∼0 to 80 μm. In extensively damaged areas, an inner discontinuous layer of magnetite in contact with metal, an intermediate chukanovite (Fe 2 CO 3 (OH) 2 ) layer (only when magnetite is present, and only for the overpack), and an outer layer of poorly ordered Fe phyllosilicate were observed. In areas with little damage, only the Fe-silicate solids are observed. The clay transformation layer is predominantly made of ankerite ((Fe,Ca,Mg)CO 3 ) forming a massive unit near the trace of the original

  9. Effect of Microstructure on Stress Corrosion Cracking Behaviour of High Nitrogen Stainless Steel Gas Tungsten Arc Welds

    Science.gov (United States)

    Mohammed, Raffi; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    Present work is aimed to improve stress corrosion cracking resistance of high nitrogen steel and its welds. An attempt to weld high nitrogen steel of 5 mm thick plate using gas tungsten arc welding (GTAW) with three high strength age hardenable fillers i.e., 11-10 PH filler, PH 13- 8Mo and maraging grade of MDN 250 filler is made. Welds were characterized by optical microscopy and scanning electron microscopy. Vickers hardness testing of the welds was carried out to study the mechanical behaviour of welds. Potentio-dynamic polarization studies were done to determine pitting corrosion resistance in aerated 3.5% NaCl solution. Stress corrosion cracking (SCC) testing was carried out using constant load type machine with applied stress of 50% yield strength and in 45% MgCl2 solution boiling at 155°C. The results of the present investigation established that improvement in resistance to stress corrosion cracking was observed for PH 13- 8Mo GTA welds when compared to 11-10 PH and MDN 250 GTA welds. However, All GTA welds failed in the weld interface region. This may be attributed to relatively lower pitting potential in weld interface which acts as active site and the initiation source of pitting.

  10. Full-signature real-time corrosion detection of underground casing pipes

    NARCIS (Netherlands)

    Yin, Jiming; Lu, Mi; Pineda de Gyvez, J.

    2000-01-01

    Corrosion monitoring and early detection of pits and wall thinning for casing pipes are considerably important to gas and petroleum industries since the frequently occurring corrosion at the internal or external parts of those steel casing pipes used in underground gas storage or oil fields causes

  11. A thermodynamic approach on vapor-condensation of corrosive salts from flue gas on boiler tubes in waste incinerators

    International Nuclear Information System (INIS)

    Otsuka, Nobuo

    2008-01-01

    Thermodynamic equilibrium calculation was conducted to understand the effects of tube wall temperature, flue gas temperature, and waste chemistry on the type and amount of vapor-condensed 'corrosive' salts from flue gas on superheater and waterwall tubes in waste incinerators. The amount of vapor-condensed compounds from flue gases at 650-950 deg. C on tube walls at 350-850 deg. C was calculated, upon combustion of 100 g waste with 1.6 stoichiometry (in terms of the air-fuel ratio). Flue gas temperature, rather than tube wall temperature, influenced the deposit chemistry of boiler tubes significantly. Chlorine, sulfur, sodium, potassium, and calcium contents in waste affected it as well

  12. Acoustic wave (AW) based moisture sensor for use with corrosive gases

    Science.gov (United States)

    Pfeifer, K.B.; Frye, G.C.; Schneider, T.W.

    1996-11-05

    Moisture corrosive gas stream is measured as a function of the difference in resonant frequencies between two acoustic wave (AW) devices, each with a film which accepts at least one of the components of the gas stream. One AW is located in the gas stream while the other is located outside the gas stream but in the same thermal environment. In one embodiment, the film is a hydrophilic material such as SiO{sub 2}. In another embodiment, the SiO{sub 2} is covered with another film which is impermeable to the corrosive gas, such that the AW device in the gas stream measures only the water vapor. In yet another embodiment, the film comprises polyethylene oxide which is hydrophobic and measures only the partial pressure of the corrosive gas. Other embodiments allow for compensation of drift in the system. 8 figs.

  13. High temperature chlorosilane corrosion of iron and AISI 316L stainless steel

    Science.gov (United States)

    Aller, Joshua Loren

    Chlorosilane gas streams are used at high temperatures (>500°C) throughout the semiconductor, polycrystalline silicon, and fumed silica industries, primarily as a way to refine, deposit, and produce silicon and silicon containing materials. The presence of both chlorine and silicon in chlorosilane species creates unique corrosion environments due to the ability of many metals to form both metal-chlorides and metal-silicides, and it is further complicated by the fact that many metal-chlorides are volatile at high-temperatures while metal-silicides are generally stable. To withstand the uniquely corrosive environments, expensive alloys are often utilized, which increases the cost of final products. This work focuses on the corrosion behavior of iron, the primary component of low-cost alloys, and AISI 316L, a common low-cost stainless steel, in environments representative of industrial processes. The experiments were conducted using a customized high temperature chlorosilane corrosion system that exposed samples to an atmospheric pressure, high temperature, chlorosilane environment with variable input amounts of hydrogen, silicon tetrachloride, and hydrogen chloride plus the option of embedding samples in silicon during the exposure. Pre and post exposure sample analysis including scanning electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, and gravimetric analysis showed the surface corrosion products varied depending on the time, temperature, and environment that the samples were exposed to. Most commonly, a volatile chloride product formed first, followed by a stratified metal silicide layer. The chlorine and silicon activities in the corrosion environment were changed independently and were found to significantly alter the corrosion behavior; a phenomenon supported by computational thermodynamic equilibrium simulations. It was found that in comparable environments, the stainless steel corroded significantly less than the pure iron. This

  14. The corrosion behavior of iron and aluminum under waste disposal conditions

    International Nuclear Information System (INIS)

    Fujisawa, R.; Cho, T.; Sugahara, K.; Takizawa, Y.; Hironaga, M.

    1997-01-01

    The generation of hydrogen gas from metallic waste in corrosive disposal environment is an important issue for the safety analysis of low-level radioactive waste disposal facilities in Japan. In particular iron and aluminum are the possibly important elements regarding the gas generation. However, the corrosion behavior of these metals has not been sufficiently investigated under the highly alkaline non-oxidizing disposal conditions yet. The authors studied the corrosion behavior of iron and aluminum under simulated disposal environments. The quantity of hydrogen gas generated from iron was measured in a closed cell under highly alkaline non-oxidizing conditions. The observed corrosion rate of iron in the initial period of immersion was 4 nm/year at 15 C, 20 nm/year at 30 C, and 200 nm/year at 45 C. The activation energy was found to be 100 kJ/mol from Arrhenius plotting of the above corrosion rates. The corrosion behavior of aluminum was studied under an environment simulating conditions in which aluminum was solidified with mortar. In the initial period aluminum corroded rapidly with a corrosion rate of 20 mm/year. However, the corrosion rate decreased with time, and after 1,000 hours the rate reached 0.001 to 0.01 mm/year. Thus the authors obtained data on hydrogen gas generation from iron and aluminum under the disposal environment relevant to the safety analysis of low-level radioactive disposal facilities in Japan

  15. Corrosion product balances for the Ringhals PWR plants based on extensive fuel crud and water chemistry measurements

    International Nuclear Information System (INIS)

    Lundgren, K.; Wikmark, G.; Bengtsson, B.

    2010-01-01

    The corrosion product balance in a PWR plant is of great importance for the fuel performance as well as for the radiation field buildup. This balance is of special concern in connection to steam generator replacement (SGR) and power uprate projects. The Ringhals PWRs are all of Westinghouse design. Two of the plants have performed Steam Generator Replacement (SGR) to I-690 SG tubes and such a replacement is being planned in the third and last unit in 2011. Two of the units are in different phases of power uprate projects. The plants are all on 10-14-months cycles operating with medium to high fuel duty. Water chemistry is controlled by a pH300 in the range ∼7.2 to 7.4 from beginning of cycle to end of cycle (BOC-EOC) in the units with new SGs while kept at a coordinated pH of 7.2 in the one still using I-600. The maximum Li content has recently been increased to about 4.5 to 5 ppm in all units. In order to be able to improve the assessment of corrosion product balances in the plants, comprehensive fuel crud measurements were performed in 2007. Improved integrated reactor water sampling techniques have also been introduced in order to make accurate mass balances possible. The corrosion products covered in the study are the main constituents, Ni, Fe and Cr in the primary circuit Inconel and stainless steel, together with Co. The activated corrosion products, Co-58, Co-60, Cr-51, Fe-59 and Mn-54, are all mainly produced through neutron irradiation of the covered corrosion products. The main results of the corrosion product balances are presented. Observed differences between the plants, indicating significant impact of pH control and SG tube materials, are presented and discussed. The importance of accurate sampling techniques is especially addressed in this paper. (author)

  16. Release of corrosion products from construction materials containing cobalt. Pt.2: Inconel X750

    International Nuclear Information System (INIS)

    Falk, I.

    1978-02-01

    This report describes experimental work aimed at determining the release rate for corrosion products from 18Cr8Ni steel and Inconel X750 in BWR environments. For test purposes these environments were simulated in a high pressure loop, where irradiated samples of the materials were exposed for 720 hours. The amounts of released products were determined using gamma spectrometric analysis. The results show that the release from Inconel X750 is higher than that from 18Cr8Ni steel. The release calculated from Co58 measurements is 7 times higher and from Co60 measurements it is 1.5 times higher. Both the filtered and the deposited fractions of the released corrosion products exhibit the same relative concentrations of Co58 and Co60. (author)

  17. On LMFBR corrosion. Part II: Consideration of the in-reactor fuel-cladding system

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Pickering, S.; Walker, C.T.; Whitlow, W.H.

    1976-05-01

    The scientific and technological aspects of LMFBR cladding corrosion are discussed in detail. Emphasis is placed on the influence of the irradiation environment and the effect of fuel and filler-gas impurities on the corrosion process. These studies are complemented by a concise review of out-of-pile simulation experiments that endeavour to clarify the role of the aggressive fission products cesium, tellurium and iodine. The principal models for cladding corrosion are presented and critically assessed. Areas of uncertainty are exposed and some pertinent experiments are suggested. Consideration is also given to some new observations regarding the role of stress in fuel-cladding reactions and the formation of ferrite in the corrosion zone of the cladding during irradiation. Finally, two technological solutions to the problem of cladding corrosion are proposed. These are based on the use of an oxygen buffer in the fuel and the application of a protective coating to the inner surface of the cladding

  18. 75 FR 55769 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Science.gov (United States)

    2010-09-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Certain Corrosion-Resistant...) is conducting the sixteenth administrative review of the antidumping order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea (Korea).\\1\\ This review covers eight...

  19. 77 FR 14501 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Science.gov (United States)

    2012-03-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Certain Corrosion-Resistant... the preliminary results of the antidumping duty administrative review for certain corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea (Korea).\\1\\ This review covers eight...

  20. Fire-Side Corrosion: A Case Study of Failed Tubes of a Fossil Fuel Boiler

    OpenAIRE

    Asnavandi, Majid; Kahram, Mohaddeseh; Rezaei, Milad; Rezakhani, Davar

    2017-01-01

    The failures of superheater and reheater boiler tubes operating in a power plant utilizing natural gas or mazut as a fuel have been analysed and the fire-side corrosion has been suggested as the main reason for the failure in boiler tubes. The tubes have been provided by a fossil fuel power plant in Iran and optical and electron microscopy investigations have been performed on the tubes as well as the corrosion products on their surfaces. The results showed that the thickness of the failed tu...

  1. Study of the corrosion products in the primary system of PWR plants as the source of radiation fields build-up

    International Nuclear Information System (INIS)

    Brabant, R. van; Regge, P. de.

    1982-01-01

    In the first part the behaviour of the corrosion products in the primary system of PWR plants is depicted on the basis of a literature review of the field. Water chemistry, corrosion processes and activation of corrosion products are the main topics. In the second part the results of the characterization of corrosion particles in the primary coolant circuit of the Doel 1 and 2 reactors are described, during steady state operation and transient phases. In the third part the possibilities for radiation control at nuclear power plants are outlined. The filtration possibilities for the reactor coolant are explored in detail. (author)

  2. Analysis of Gamma Dose Rate Caused by Corrosion Products inside the Containment Building of Yonngwang Nuclear Power Plant Unit 3 During Shutdown Period

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Wi Ho; Kim, Jae Cheon; Kim, Soon Young; Kim, Jong Kyung [Hanyang Univ., Seoul (Korea, Republic of)

    2005-07-01

    Occupational radiation exposure(ORE) of nuclear power plant(NPP) workers mainly occurs during the shutdown period. Major radioactive sources are the corrosion products released from the reactor coolant system(RCS). The corrosion products consist of circulating crud and deposited crud. Major radioactive corrosion products, {sup 58}Co and {sup 60}Co, are known to contribute approximately more than 70% of the total ORE. In this study, the corrosion products regarding cobalt were evaluated during the shutdown period, and gamma dose rates caused by them were calculated at the main working area inside the containment building of the Yonggwang NPP Unit 3.

  3. Kinetics of corrosion products release from nickel-base alloys corroding in primary water conditions. A new modeling of release

    International Nuclear Information System (INIS)

    Carrette, F.; Guinard, L.; Pieraggi, B.

    2002-01-01

    The radioactivity in the primary circuit arises mainly from the activation of corrosion products in the core of pressurised water reactors; corrosion products dissolve from the oxide scales developed on steam generator tubes of alloy 690. The controlling and modelling of this process require a detailed knowledge of the microstructure and chemical composition of oxide scales as well as the kinetics of their corrosion and dissolution. Alloy 690 was studied as tubes and sheets, with three various surface states (as-received, cold-worked, electropolished). Corrosion tests were performed at 325 C and 155 bar in primary water conditions (B/Li - 1000/2 ppm, [H 2 ] 30 cm 3 .kg -1 TPN, [O 2 ] < 5 ppb); test durations ranged between 24 and 2160 hours. Corrosion tests in the TITANE loop provided mainly corrosion and oxidation kinetics, and tests in the BOREAL loop yielded release kinetics. This study revealed asymptotic type kinetics. Characterisation of the oxide scales grown in representative conditions of the primary circuit was performed by several techniques (SEM, TEM, SIMS, XPS, GIXRD). These analyses revealed the essential role of the fine grained cold-worked scale present on as-received and cold-worked materials. This scale controls the corrosion and release phenomena. The kinetic study and the characterisation of the oxide scales contributed to the modelling of the corrosion/release process. A growth/dissolution model was proposed for corrosion product scales grown in non-saturated dynamic fluid. This model provided the temporal evolution of oxide scales and release kinetics for different species (Fe, Ni, Cr). The model was validated for several surface states and several alloys. (authors)

  4. Gas production strategy of underground coal gasification based on multiple gas sources.

    Science.gov (United States)

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  5. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.S., E-mail: yinwenfeng2010@163.com [College of Materials Science and Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China); Yin, W.F. [College of Mechatronic Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China); Sang, D.H. [Sheng Li Construction Group International Engineering Department, Shandong, Dongying, 257000 (China); Jiang, Z.Y. [College of Materials Science and Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer The corrosion of a carbon-manganese steel and a stainless steel in sulfur and/or naphthenic acid media was investigated. Black-Right-Pointing-Pointer The corrosion rate of the carbon-manganese steel increased with the increase of the acid value and sulfur content. Black-Right-Pointing-Pointer The critical values of the concentration of sulfur and acid for corrosion rate of the stainless steel were ascertained respectively. Black-Right-Pointing-Pointer The stainless steel is superior to the carbon-manganese steel in corrosion resistance because of the presence of stable Cr{sub 5}S{sub 8} phases. - Abstract: The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 Degree-Sign C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr{sub 5}S{sub 8} phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  6. 78 FR 55057 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2013-09-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon... Department) is conducting an administrative review of the antidumping duty order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea (Korea), covering the period [[Page 55058...

  7. 78 FR 16247 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea; Final Results of...

    Science.gov (United States)

    2013-03-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon... preliminary results of the administrative review of the antidumping duty order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea (Korea).\\1\\ This review covers seven manufacturers...

  8. 76 FR 4291 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Partial Rescission of...

    Science.gov (United States)

    2011-01-25

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... Commerce (the Department) initiated an administrative review of the countervailing duty order on corrosion- resistant carbon steel flat products from the Republic of Korea covering the period January 1, 2009, through...

  9. Major activated corrosion products cobalt, silver and antimony in the primary coolant of PWR power plants

    International Nuclear Information System (INIS)

    Xu Mingxia

    2012-01-01

    The production of the major activated corrosion products such as cobalt, silver and antimony in the primary coolant of PWR power plants and the impacts on the increase of the dose rates caused by these corrosion products during the shutdown are described in the paper. Investigating the corrosion product behavior during the operation and shutdown periods aims at detecting the appearance of these radiological pollutants in the early time and searching relevant solutions that may enable eventually to decrease the dose rate. The solutions may include: Replacing critical material in the primary system's equipment and components, which contact with primary coolant circuit to possibly limit the source term, Elaborating strictly the specific chemical and shutdown procedure to optimize the purification capacity and to minimize the over-contaminations; Improving purification techniques according to the real operation circumstance, and limiting the impacts of these pollutants. It is obvious in the real practices that implementing appropriate solution will be benefit to decrease or limit the pollutants species like cobalt, silver and antimony. (author)

  10. Corrosion protection by organic coatings in gas and oil industry

    International Nuclear Information System (INIS)

    Hussain, A.

    2008-01-01

    The drive to improve performance of coatings as protection against corrosion for automotive, aerospace and oil and gas industries is a never-ending story. Surface preparation is the most important single factor when a substrate surface e.g. steel is to be protected with a coating. This implies an extremely accurate and reliable characterisation of the substrate-surface prior to coating process and the investigation of polymeric coating materials. In order to have a durable adhesive bonding between the polymeric coating materials and the substrate i.e. to ensure prolonged life time and fewer maintenance intervals of coated products, a pre-treatment of the substrate is required in many cases. Sand blasting, corona /plasma pre.treatment of the substrate and the use of coupling agents like organo silanes are well accepted recent methods. Advanced surface analytical techniques like ESCA and TOFSIMS are proving to be extremely helpful in the chemical characterisation of the substrate surface. Contamination e.g. fat residues, tensides etc. on the substrate is one of the most serious enemies of adhesive bonding and the above mentioned techniques are playing a vital role in combating the enemy. Modern thermal analytical methods have made tremendous contribution to the development and quality control of high-performance polymeric coatings. MDSC, DMA and DETA are proving to be very useful tools for the characterisation of high-performance coating materials. An in-depth understanding of the structure-property relationship of these materials, predominantly epoxy and polyurethane coating systems, is a pre-requisite for their successful application and subsequent Quality Control. (author)

  11. Enhanced corrosion resistance of stainless steel type 316 in sulphuric acid solution using eco-friendly waste product

    Science.gov (United States)

    Sanni, O.; Popoola, A. P. I.; Fayomi, O. S. I.

    2018-06-01

    Literature has shown that different organic compounds are effective corrosion inhibitors for metal in acidic environments. Such compounds usually contain oxygen, nitrogen or sulphur and function through adsorption on the metal surface, thereby creating a barrier for corrosion attack. Unfortunately, these organic compounds are toxic, scarce and expensive. Therefore, plants, natural product and natural oils have been posed as cheap, environmentally acceptable, abundant, readily available and effective molecules having low environmental impact. The corrosion resistance of austenitic stainless steel Type 316 in the presence of eco-friendly waste product was studied using weight loss and potentiodynamic polarization techniques in 0.5 M H2SO4. The corrosion rate and corrosion potential of the steel was significantly altered by the studied inhibitor. Results show that increase in concentration of the inhibitor hinders the formation of the passive film. Experimental observation shows that its pitting potential depends on the concentration of the inhibitor in the acid solution due to adsorption of anions at the metal film interface. The presence of egg shell powder had a strong influence on the corrosion resistance of stainless steel Type 316 with highest inhibition efficiency of 94.74% from weight loss analysis, this is as a result of electrochemical action and inhibition of the steel by the ionized molecules of the inhibiting compound which influenced the mechanism of the redox reactions responsible for corrosion and surface deterioration. Inhibitor adsorption fits the Langmuir isotherm model. The two methods employed for the corrosion assessment were in good agreement.

  12. Modelling the behaviour of corrosion products in the primary heat transfer circuits of pressurised water reactors

    International Nuclear Information System (INIS)

    Rodliffe, R.S.; Polley, M.V.; Thornton, E.W.

    1985-05-01

    The redistribution of corrosion products from the primary circuit surfaces of a water reactor can result in increased flow resistance, poorer heat transfer performance, fuel failure and radioactive contamination of circuit surfaces. The environment is generally sufficiently well controlled to ensure that the first three effects are not limiting. The last effect is of particular importance since radioactive corrosion products are major contributors to shutdown fields and since it is necessary to ensure that the radiation exposure of personnel is as low as reasonably achievable. This review focusses attention on the principles which must form the basis for any mechanistic model describing the formation, transport and deposition of radioactive corrosion products. It is relevant to all water reactors in which the primary heat transfer medium is predominantly single-phase water and in which steam is generated in a secondary circuit, i.e. including CANDU pressurised heavy water reactors, Sovient VVERs, etc. (author)

  13. X-ray diffraction phase analysis of crystalline copper corrosion products after treatment in different chloride solutions

    International Nuclear Information System (INIS)

    Chmielova, M.; Seidlerova, J.; Weiss, Z.

    2003-01-01

    The corrosion products Cu 2 (OH) 3 Cl, Cu 2 O, and CuCl 2 were identified on the surface of copper plates after their four days treating in three different sodium chloride, sodium/magnesium, and sodium/calcium chloride solutions using X-ray diffraction powder analysis. However, the quantitative proportions of individual corrosion products differ and depend on the type of chloride solution used. Treating of copper plates only in the sodium chloride solution produced the mixture of corrosion products where Cu 2 O is prevailing over the Cu 2 (OH) 3 Cl and CuCl 2 was not identified. The sample developed after treating of the cooper surface in the sodium/magnesium chloride solution contains Cu 2 (OH) 3 Cl and CuCl 2 prevailing over the Cu 2 O, while the sample developed after treatment of copper in sodium/calcium chloride solution contains Cu 2 (OH) 3 Cl prevailing over CuCl 2 and Cu 2 O was not identified

  14. Gas reserves, discoveries and production

    International Nuclear Information System (INIS)

    Saniere, A.

    2006-01-01

    Between 2000 and 2004, new discoveries, located mostly in the Asia/Pacific region, permitted a 71% produced reserve replacement rate. The Middle East and the offshore sector represent a growing proportion of world gas production Non-conventional gas resources are substantial but are not exploited to any significant extent, except in the United States, where they account for 30% of U.S. gas production. (author)

  15. Activity of corrosion products in pool type reactors with ascending flow in the core

    International Nuclear Information System (INIS)

    Andrade e Silva, Graciete S. de; Queiroz Bogado Leite, Sergio de

    1995-01-01

    A model for the activity of corrosion products in the water of a pool type reactor with ascending flow is presented. The problem is described by a set of coupled differential equations relating the radioisotope concentrations in the core and pool circuits and taking into account two types of radioactive sources: i) those from radioactive species formed in the fuel cladding, control elements, reflector, etc, and afterwards released to the primary stream by corrosion (named reactor sources) and ii) those formed from non radioactive isotopes entering the primary stream by corrosion of the circuit components and being activated when passing through the core (named circuit sources). (author). 6 refs, 3 figs, 4 tabs

  16. Semiquantitative analysis of corrosion products in iron channel by the X-ray diffraction technique

    International Nuclear Information System (INIS)

    Bueno, C.R.E.; Varela, J.A.

    1995-01-01

    The corrosion in the us very important in the slag line region, but in others regions over and above this line there is a corrosion process still important. We have made a detailed mapping of phases present in seven different regions in the iron channel in three distinct positions. After the phases identifications, it was made a deconvolution of the diffractograms using Gaussian functions. The analysis of the relative intensity of each phase gave an idea for a semi-quantitative analysis and we have proposed a mechanism of the refractory corrosion. It was observed that the calcium oxide migrates by diffusion to different regions originating low melting point products like pseudo-wolastonite, anorthite and guelenite. (author)

  17. Improving by postoxidation of corrosion resistance of plasma nitrocarburized AISI 316 stainless steels

    Science.gov (United States)

    Yenilmez, A.; Karakan, M.; Çelik, İ.

    2017-01-01

    Austenitic stainless steels are widely used in several industries such as chemistry, food, health and space due to their perfect corrosion resistance. However, in addition to corrosion resistance, the mechanic and tribological features such as wear resistance and friction are required to be good in the production and engineering of this type of machines, equipment and mechanic parts. In this study, ferritic (FNC) and austenitic (ANC) nitrocarburizing were applied on AISI 316 stainless steel specimens with perfect corrosion resistance in the plasma environment at the definite time (4 h) and constant gas mixture atmosphere. In order to recover corrosion resistance which was deteriorated after nitrocarburizing again, plasma postoxidation process (45 min) was applied. After the duplex treatment, the specimens' structural analyses with XRD and SEM methods, corrosion analysis with polarization method and surface hardness with microhardness method were examined. At the end of the studies, AISI 316 surface hardness of stainless steel increased with nitrocarburizing process, but the corrosion resistance was deteriorated with FNC (570 °C) and ANC (670 °C) nitrocarburizing. With the following of the postoxidation treatment, it was detected that the corrosion resistance became better and it approached its value before the process.

  18. Mitigating the Risk of Stress Corrosion of Austenitic Stainless Steels in Advanced Gas Cooled Reactor Boilers

    International Nuclear Information System (INIS)

    Bull, A.; Owen, J.; Quirk, G.; G, Lewis; Rudge, A.; Woolsey, I.S.

    2012-09-01

    Advanced Gas-Cooled Reactors (AGRs) operated in the UK by EDF Energy have once-through boilers, which deliver superheated steam at high temperature (∼500 deg. C) and pressure (∼150 bar) to the HP turbine. The boilers have either a serpentine or helical geometry for the tubing of the main heat transfer sections of the boiler and each individual tube is fabricated from mild steel, 9%Cr1%Mo and Type 316 austenitic stainless steel tubing. Type 316 austenitic stainless steel is used for the secondary (final) superheater and steam tailpipe sections of the boiler, which, during normal operation, should operate under dry, superheated steam conditions. This is achieved by maintaining a specified margin of superheat at the upper transition joint (UTJ) between the 9%Cr1%Mo primary superheater and the Type 316 secondary superheater sections of the boiler. Operating in this mode should eliminate the possibility of stress corrosion cracking of the Type 316 tube material on-load. In recent years, however, AGRs have suffered a variety of operational problems with their boilers that have made it difficult to maintain the specified superheat margin at the UTJ. In the case of helical boilers, the combined effects of carbon deposition on the gas side and oxide deposition on the waterside of the tubing have resulted in an increasing number of austenitic tubes operating with less than the specified superheat margin at the UTJ and hence the possibility of wetting the austenitic section of the boiler. Some units with serpentine boilers have suffered creep-fatigue damage of the high temperature sections of the boiler, which currently necessitates capping the steam outlet temperature to prevent further damage. The reduction in steam outlet temperature has meant that there is an increased risk of operation with less than the specified superheat margin at the UTJ and hence stress corrosion cracking of the austenitic sections of the boiler. In order to establish the risk of stress

  19. 78 FR 59652 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Science.gov (United States)

    2013-09-27

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Certain Corrosion-Resistant... corrosion-resistant carbon steel flat products (``CORE'') from the Republic of Korea (``Korea''), pursuant... administrative review of the antidumping duty order on CORE from Korea covering the period of review (``POR'') of...

  20. 76 FR 77775 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-12-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... results of the administrative review of the countervailing duty order on corrosion-resistant carbon steel flat products from the Republic of Korea covering the period January 1, 2009, through December 31, 2009...

  1. 78 FR 59651 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Science.gov (United States)

    2013-09-27

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Certain Corrosion-Resistant... duty order on certain corrosion-resistant carbon steel flat products (``CORE'') from the Republic of... covering the period of review (``POR'') of August 1, 2006 through July 31, 2007, with respect to the...

  2. Gas Production Strategy of Underground Coal Gasification Based on Multiple Gas Sources

    Directory of Open Access Journals (Sweden)

    Duan Tianhong

    2014-01-01

    Full Text Available To lower stability requirement of gas production in UCG (underground coal gasification, create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  3. Union Gas and Ontario gas production

    International Nuclear Information System (INIS)

    Cameron, C.

    2001-01-01

    A step-by-step review of the tie-in process of new production wells into the Union Gas System is described. Requirements of the producer and those of Union Gas are explained. Also described are the choices available to the producer to sell his gas. He can sell either to Union Gas directly at an agreed upon price, or the producer has the option to have what is called an M13 contract which allows him to sell his gas at Dawn, where it can be stored within parameters of the contract, and sold to any buyer at Dawn at a negotiated rate. This arrangement, while entailing a much greater administrative load than direct sale to Union Gas, nevertheless, allows the producer to take advantage of market fluctuations. A third option provided by Union Gas is to make available to the producer storage space greater than the provisions of the M13 contract at current market rate, thereby opening up the opportunity to the producer to capture additional value in later winter months (when gas is in greater demand)

  4. Thermal spray coating for corrosion under insulation (CUI) prevention

    Science.gov (United States)

    Fuad, Mohd Fazril Irfan Ahmad; Razak, Khalil Abdul; Alias, Nur Hashimah; Othman, Nur Hidayati; Lah, Nik Khairul Irfan Nik Ab

    2017-12-01

    Corrosion under insulation (CUI) is one of the predominant issues affecting process of Oil and Gas and Petrochemical industries. CUI refers to external corrosion, but it is difficult to be detected as the insulation cover masks the corrosion problem. One of the options to prevent CUI is by utilizing the protective coating systems. Thermal spray coating (TSC) is an advanced coating system and it shows promising performance in harsh environment, which could be used to prevent CUI. However, the application of TSC is not attractive due to the high initial cost. This work evaluates the potential of TSC based on corrosion performance using linear polarization resistance (LPR) method and salt spray test (SST). Prior to the evaluation, the mechanical performance of TSC was first investigated using adhesion test and bend test. Microstructure characterization of the coating was investigated using Scanning Electron Microscope (SEM). The LPR test results showed that low corrosion rate of 0.05 mm/years was obtained for TSC in compared to the bare steel especially at high temperature of 80 °C, where usually normal coating would fail. For the salt spray test, there was no sign of corrosion products especially at the center (fully coated region) was observed. From SEM images, no corrosion defects were observed after 336 hours of continuous exposure to salt fog test. This indicates that TSC protected the steel satisfactorily by acting as a barrier from a corrosive environment. In conclusion, TSC can be a possible solution to minimize the CUI in a long term. Further research should be done on corrosion performance and life cycle cost by comparing TSC with other conventional coating technology.

  5. Effect of corrosion product layer on SCC susceptibility of copper containing type 304 stainless steel in 1 M H2SO4

    International Nuclear Information System (INIS)

    Asawa, M.; Devasenapathi, A.; Fujisawa, M.

    2004-01-01

    The effect of surface corrosion product layer on the stress corrosion cracking (SCC) susceptibility of type 304 stainless steel with Cu was studied in 1 kmol/m 3 (1 M) sulfuric acid at 353 K temperature. Studies based on the intermittent removal of surface corrosion product layer indicated that the surface film governs the SCC behavior of the alloy by accelerating both the crack initiation and propagation stages. The electrochemical impedance and polarization studies showed the surface layer to be promoting SCC initiation by lowering the uniform corrosion rate and the propagation by shifting the surface corrosion potential to a more noble direction. The elemental analysis of the corrosion product both by the energy dispersive X-ray (EDX) spectroscopy and by X-ray diffraction (XRD) analysis along with the thermodynamic calculations showed the layer to be constituted mainly of metallic copper (Cu) and the mono-hydrated iron sulfate which acts as cathode promoting SCC

  6. Expanding Canadian natural gas production will strengthen growth of LP-gas industry

    International Nuclear Information System (INIS)

    Hawkins, D.J.

    1994-01-01

    In 1992, over 86% of Canadian propane and 70% of Canadian butane production originated in gas plants. Propane and butane production not recovered at gas plants is recovered in other processing facilities, primarily refineries and heavy oil upgraders. As a result, supplies of both products are largely tied to natural gas production, and the outlook for natural gas therefore provides the basis for any discussion on the outlook for gas processing and NGL industry infrastructure. The paper discusses gas processing, economies of scale, NGL supply, expected declines, industry structure and infrastructure, the two major centers of the Canadian NGL industry, new shippers, and required pipeline expansion

  7. Small sodium-to-gas leak behavior in relation to LMFBR leak detection system design

    International Nuclear Information System (INIS)

    Hopenfeld, J.; Taylor, G.R.; James, L.A.

    1976-01-01

    Various aspects of sodium-to-gas leaks which must be considered in the design of leak detection systems for LMFBR's are discussed. Attention is focused primarily on small, weeping type leaks. Corrosion rates of steels in fused sodium hydroxide and corrosion damage observed at the site of small leaks lead to the conclusion that the sodium-gas reaction products could attack the primary hot leg piping at rates up to 0.08 mils per hour. Based on theoretical considerations of the corrosion mechanism and on visual observations of pipe topography following small sodium leak tests, it is concluded that pipe damage will be manifested by the formation of small detectable leaks prior to the appearance of larger leaks. The case for uniform pipe corrosion along the pipe circumference or along a vertical section of the pipe is also examined. Using a theoretical model for the gravity flow of sodium and reaction products along the pipe surface and a mass transport controlled corrosion process, it is shown that below sodium leak rates of about 30 g/hr for the primary piping corrosion damage will not extend beyond one radius distance from the leak site. A method of estimating the time delay between the initiation of such leaks and the development of a larger leak due to increased pipe stresses resulting from corrosion is presented

  8. The mechanisms underlying corrosion product formation and deposition in nuclear power plant circuits through the action of galvanic and thermal electromotive forces

    International Nuclear Information System (INIS)

    Brusakov, V.P.; Sedov, V.M.; Khitrov, Yu.A.; Brusov, K.N.; Razmashkin, N.V.; Versin, V.V.; Rybalchenko, I.L.

    1983-01-01

    From a theoretical standpoint, the processes of formation of corrosion products in nuclear power plant circuits, deposition of corrosion products on the circuit surfaces, formation of an equilibrium concentration of corrosion products in the coolant, and distribution of radionuclides resulting from corrosion in different parts of the circuit are considered. It is shown that the main driving forces for the mass-transfer processes in the circuits are the thermal and galvanic electromotive forces (EMF) of the microcouples. On the basis of the theoretical concepts developed the authors have obtained analytical dependences for calculating the individual stages of the process of corrosion product transfer in the circuits. The mechanisms underlying the processes which occur as a result of thermal and galvanic EMFs are considered, together with the factors influencing these processes. The results of verification of the dependences by computational methods are given and they are compared with operational data from nuclear and conventional thermal power plants and with experimental data. (author)

  9. Corrosion of high temperature alloys in the primary circuit helium of high temperature gas cooled reactors. Pt. 2

    International Nuclear Information System (INIS)

    Quadakkers, W.J.

    1985-01-01

    The reactive impurities H 2 O, CO, H 2 and CH 4 which are present in the primary coolant helium of high temperature gas-cooled reactors can cause scale formation, internal oxidation and carburization or decarburization of the high temperature structural alloys. In Part 1 of this contribution a theoretical model was presented, which allows the explanation and prediction of the observed corrosion effects. The model is based on a classical stability diagram for chromium, modified to account for deviations from equilibrium conditions caused by kinetic factors. In this paper it is shown how a stability diagram for a commercial alloy can be constructed and how this can be used to correlate the corrosion results with the main experimental parameters, temperature, gas and alloy composition. Using the theoretical model and the presented experimental results, conditions are derived under which a protective chromia based surface scale will be formed which prevents a rapid transfer of carbon between alloy and gas atmosphere. It is shown that this protective surface oxide can only be formed if the carbon monoxide pressure in the gas exceeds a critical value. Psub(CO), which depends on temperature and alloy composition. Additions of methane only have a limited effect provided that the methane/water ratio is not near to, or greater than, a critical value of around 100/1. The influence of minor alloying additions of strong oxide forming elements, commonly present in high temperature alloys, on the protective properties of the chromia surface scales and the kinetics of carbon transfer is illustrated. (orig.) [de

  10. Electrochemical Characterisation of Filiform Corrosion on Aluminium Rolled Products

    NARCIS (Netherlands)

    Huisert, M.

    2001-01-01

    When aluminium is protected by an organic coating a special form of corrosion can occur underneath the organic coating; filiform corrosion. This form of corrosion manifests itself as threadlike filaments under the coating, it causes local delamination of the coating and the coating cannot protect

  11. Corrosion resistance of materials of construction for high temperature sulfuric acid service in thermochemical IS process. Alloy 800, Alloy 600, SUSXM15J1 and SiC

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Onuki, Kaoru; Shimizu, Saburo; Yamaguchi, Akihisa

    2006-01-01

    Exposure tests of candidate materials were carried out up to 1000 hr in the sulfuric acid environments of thermochemical hydrogen production IS process, focusing on the corrosion of welded portion and of crevice area. In the gas phase sulfuric acid decomposition condition at 850degC, welded samples of Alloy 800 and of Alloy 600 showed the same good corrosion resistance as the base materials. In the boiling condition of 95 wt% sulfuric acid solution, test sample of SiC showed the same good corrosion resistance. Also negligible corrosion was observed in crevice corrosion. (author)

  12. Alternative Fuels Data Center: Conventional Natural Gas Production

    Science.gov (United States)

    Conventional Natural Gas Production to someone by E-mail Share Alternative Fuels Data Center : Conventional Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Conventional Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production

  13. Study of the formation and transport of corrosion products in PWR primary circuit simulators

    International Nuclear Information System (INIS)

    Noe, M.; Frejaville, G.; Camp, J.J.

    1983-01-01

    The formation, migration and deposition of corrosion products in PWR primary circuits are studied in out-of-reactor loops. The aim of these studies is to limit the build-up of the radiation fields impinging on out-of-flux walls and to reduce the danger of rapid corrosion of fuel cans, taking into account the tougher conditions imposed on current trends in the operation of such industrial plants. Four simulator loops and their respective possibilities and research methods are described. (author)

  14. Oxide induced corrosion on the welded stainless steels SS 2352 and 2353

    International Nuclear Information System (INIS)

    Stroem, S.; Li Huiqin.

    1991-01-01

    The pitting corrosion properties have been investigated in welded and unwelded condition by polarization tests in sodium chloride solutions. The two steels were TIG welded without adding welding material and as shielding on the bottom side argon gas containing 2, 26 or 99 ppm oxygen was used. In some tests low breakthrough potentials were received, without discovering any pitting corrosion in the specimen surfaces. The unwelded SS 2352 steel had a critical (lowest) pitting temperature (CPT) of 5 degrees C in the more concentrated solution. For the same steel with weld pitting corrosion was obtained at 5 degrees C, which was the lowest temperature for the tests. Thus the CPT value was lower than 5 degrees C, but by looking at the pitting corrosion potentials the following conclusion could be drawn: Welding with higher oxygen content in the shielding gas implied lower pitting corrosion resistance. For the SS 2353 steel the CPT values were 25 and 27.5 degrees C for material without weld, in contact with the more concentrated and the more dilute solution respectively. Welded material was all through more sensitive to pitting corrosion, and the CPT values were 15-17.5, 15 and 5-10 degrees C for welded areas which had been gas shielded with argon containing 2, 26 and 99 ppm oxygen respectively. The result thus showed that welding with shielding gas containing maximum about 30 ppm oxygen does not substantially affect the pitting corrosion properties. Post treatment of the welding areas increased the pitting corrosion resistance. Acid pickling implied the highest pitting corrosion resistance with 15 degrees C as CPT value for the 2353 steel in the more concentrated solution. Steel brushing implied an obvious increase to the pitting corrosion resistance compared to untreated weld areas and the same statement could be done for sand blasted surfaces. (10 refs., 16 tabs., 11 figs.)

  15. Desulfurized gas production from vertical kiln pyrolysis

    Science.gov (United States)

    Harris, Harry A.; Jones, Jr., John B.

    1978-05-30

    A gas, formed as a product of a pyrolysis of oil shale, is passed through hot, retorted shale (containing at least partially decomposed calcium or magnesium carbonate) to essentially eliminate sulfur contaminants in the gas. Specifically, a single chambered pyrolysis vessel, having a pyrolysis zone and a retorted shale gas into the bottom of the retorted shale zone and cleaned product gas is withdrawn as hot product gas near the top of such zone.

  16. Corrosion behavior of electrodeposited Co-Fe alloys in aerated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chansena, A. [Research Unit on Corrosion, College of Data Storage Innovation, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Sutthiruangwong, S., E-mail: sutha.su@kmitl.ac.th [Department of Chemistry, Faculty of Science, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Research Unit on Corrosion, College of Data Storage Innovation, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)

    2017-05-01

    Co-Fe alloy is an important component for reader-writer in hard disk drive. The surface of the alloy is exposed to the environment both in gas phase and in liquid phase during manufacturing process. The study of corrosion behavior of Co-Fe alloys can provide useful fundamental data for reader-writer production planning especially when corrosion becomes a major problem. The corrosion study of electrodeposited Co-Fe alloys from cyclic galvanodynamic polarization was performed using potentiodynamic polarization technique. The composition of electrodeposited Co-Fe alloys was determined by X-ray fluorescence spectrometry. The patterns from X-ray diffractometer showed that the crystal structure of electrodeposited Co-Fe alloys was body-centered cubic. A vibrating sample magnetometer was used for magnetic measurements. The saturation magnetization (M{sub s}) was increased and the intrinsic coercivity (H{sub ci}) was decreased with increasing Fe content. The corrosion rate study was performed in aerated deionized water and aerated acidic solutions at pH 3, 4 and 5. The corrosion rate diagram for Co-Fe alloys was constructed. It was found that the corrosion rate of Co-Fe alloys was increased with increasing Fe content in both aerated deionized water and aerated acidic solutions. In aerated pH 3 solution, the Co-Fe alloy containing 78.8% Fe showed the highest corrosion rate of 7.7 mm yr{sup −1} with the highest M{sub s} of 32.0 A m{sup 2} kg{sup −1}. The corrosion rate of the alloy with 23.8% Fe was at 1.1 mm yr{sup −1} with M{sub s} of 1.2 A m{sup 2} kg{sup −1}. In aerated deionized water, the alloy with the highest Fe content of 78.5% still showed the highest corrosion rate of 0.0059 mm yr{sup −1} while the alloy with the lowest Fe content of 20.4% gave the lowest corrosion rate of 0.0045 mm yr{sup −1}. - Highlights: • The aeration during corrosion measurement simulates reader-writer head production environment. • The corrosion rate diagram for Co-Fe alloys

  17. Corrosion Characteristics and Kinetics of Zircaloys and Aluminium Alloys

    International Nuclear Information System (INIS)

    Sugondo; Chaidir, A

    1998-01-01

    Corrosion rate characterization of cladding materials has been done by dynamic method. The materials are zircaloy-2,zircaloy-4,AIMg2,and AIMgSi.The zircaloy alloys are characterized in the electrolytes of boric ion,iodide ion,lithium ion and cesium ion with a pH variation.The aluminum alloys are characterized in the cooling water of RSG-GAS reactor in different temperatures and Ph values .The results, show that corrosion product of iodine on zircaloy is not passivated, meanwhile the corrosion product of cesium undergoes passivation. However, the deposited substance in the surface of the specimens as indicated using WDX-SEM shows the same deposition rate.it is concluded therefore that iodine is diffused into the materials without getting resistance from the deposited substances on the surface. The effect of pH to corrosion rate of iodine on the zircaloy fluctuates meanwhile the cesium has the minimum corrosion rate at pH 7.5 At the concentration of 0.1 gram/1,cesium ion is more reactive than iodine but at higher concentration the reactivity becomes competitive . Furthermore , the interaction between zircaloy and boric ion at concentration of 300 ppm and lithium ion at 10 ppm shows an outstanding corrosion rate, i.e. 0.1 mpy. if both substances are mixed then the corrosion rate decreases drastically in the order of 10 -2 mpy.The reason of such a decrease may be due to the formation of complexes of boron lithium on the electrode surface. The arrhenius activation energies for such reaction have been found to be 37629.322 joule/mole 0 K for Al Mg 2 and 41609.822 joule /mole 0 K for AIMgSi ,respectively. This underlies the argument that AI Mg 2 is more reactive than AI Mg Si besides , AI Mg 2 is more reactive under acid condition meanwhile AI Mg Si more reactive under basic condition. Both alloys over come the minimum corrosion rate at the pH in between 4.7 to 7.5 and the level of the corrosion rate in the pH interval was outstanding

  18. Fighting corrosion in India

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, K S; Rangaswamy, N S

    1979-03-01

    A survey covers the cost of corrosion in India; methods of preventing corrosion in industrial plants; some case histories, including the prevention of corrosion in pipes through which fuels are pumped to storage and the stress-corrosion cracking of evaporators in fertilizer plants; estimates of the increase in demand in 1979-89 for anticorrosion products and processes developed by the Central Electrochemical Research Institute (CECRI) at Karaikudi, India; industries that may face corrosion problems requiring assistance from CECRI, including the light and heavy engineering structural, and transport industries and the chemical industry; and some areas identified for major efforts, including the establishment of a Corrosion Advisory Board with regional centers and the expansion of the Tropical Corrosion Testing Station at Mandapam Camp, Tamil Nadu.

  19. Development of experimental method to simulate the corrosion products in the primary system of nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Sang Hyun; Kim, In Sup; Jang, Chang Heui

    2005-01-01

    Corrosion products are recognized as one of the major sources of occupational radiation exposure for nuclear power plant workers. Numerous studies have been conducted on the primary water chemistry to reduce the amount of crud in the primary circuit to avoid the radioactivity build-up in the plant. However, experiments with crud are restricted in laboratory because the crud is highly radioactive material. The objective of this study is to develop the simulating method of corrosion product in nuclear power plant

  20. Corrosion of well casings in compressed air energy storage environments

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, R.P.; Stottlemyre, J.A.

    1980-10-01

    The goal of this study was to determine corrosive effects of compressed air energy storage (CAES) environments on several well casing materials to aid in material selections. A literature search on corrosion behavior of well casing material in similar environments revealed that corrosion rates of 0.20 to 0.25 mm/y might be expected. This information was employed in designing the laboratory study. Unstressed electrically isolate samples of various carbon steels were autoclaved at varying humidities, temperatures, and exposure durations to simulate anticipated environments in the well bore during CAES operation. All compressed air tests were run at 12.1 MPa. Temperatures varied from 323/sup 0/K to 573/sup 0/K, and humidity varied from 100% to completely dry air. The effects of salts in the humidified air were also studied. Results indicated that typical well casings of carbon steel as used in oil, gas, and water production wells adequately withstand the anticipated CAES reservoir environment. An acceptable corrosion rate arrived at by these laboratory simulations was between 0.0015 and 0.15 mm/y. Corrosion was caused by metal oxidation that formed a protective scale of iron oxide. Higher temperatures, humidity rates, or salinity content of the humid air increased corrosion. Corrosion also increased on a metal coupon in contact with a sandstone sample, possibly due to crevice corrosion. For each of these factors either singularly or collectively, the increased corrosion rates were still acceptable with the maximum measured at 0.15 mm/y. When coupons were reused in an identical test, the corrosion rates increased beyond the anticipated values that had been determined by extrapolation from one-time runs. Fine cracking of the protective scale probably occurred due to thermal variations, resulting in increased corrosion rates and a greater potential for particulates, which could plug the reservoir.

  1. Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry - Overview and a North Sea case study

    DEFF Research Database (Denmark)

    Skovhus, Torben Lund; Eckert, Richard B; Rodrigues, Edgar

    2017-01-01

    the oil and gas industry has seen regarding MIC research over the past decade. The paper starts out with an overview of where in the process stream MIC occurs - from the oil reservoir to the consumer. Both biotic and abiotic corrosion mechanisms are explained in the context of managing MIC using...... to manage the corrosion threat, operators commonly use models to support decision making. The models use qualitative, semi-quantitative or quantitative measures to help assess the rate of degradation caused by MIC. The paper reviews four existing models for MIC Threat Assessment and describe a new model...

  2. The development of an adsorbent for corrosion products in high-temperature water

    International Nuclear Information System (INIS)

    Kim, Yong Ik; Sung, Ki Woung; Kim, Kwang Rag; Kim, Yu Hwan; Koo, Jae Hyoo

    1996-08-01

    In order to use as adsorbent for removal of the soluble corrosion products, mainly Co 60 under PWR reactor coolant conditions (300 deg C, 160 kg/cm 2 ), stable ZrO 2 adsorbent was prepared using sol-gel process from zirconyl nitrate, AlO adsorbent was prepared by hydrolysis of aluminum isopropoxide, and titanium tetraisopropoxide, respectively. The prepared adsorbents were calcined at various temperature and analyzed by physical properties and the Co 2+ adsorption capacity. And it was shown that the Co 2+ adsorption capacity of the TiO 2 -Al 2 O 3 adsorbents were found to have larger than that of ZrO 2 and Al 2 O 3 adsorbents in high-temperature water. ZrO 2 , Al 2 O 3 and TiO 2 -Al 2 O 3 adsorbents were found to be suitable high-temperature adsorbents for the removal of dissolved corrosion products, mainly Co in PWR reactor coolant conditions. 15 tabs., 51 figs., 55 refs. (Author)

  3. Fission and corrosion products behavior in primary circuits of LMFBR's

    International Nuclear Information System (INIS)

    Feuerstein, H.; Thorley, A.W.

    1987-08-01

    Most of the 20 presented papers report items belonging to more than one session. The equipment results of primary circuits of LMFBR's relative to corrosion and fission products, release and chemistry of fuel, measurement techniques and analytical procedures of sodium sampling, difficulties with radionuclides and particles, reactor experiences with EBR-II, FFTF, BR10, BOR60, BN350, BN600, JOYO, and KNK-II, DFR, PFR, RAPSODIE, PHENIX, and SUPERPHENIX, and at least the verification of codes for calculation models of radioactive products accumulation and distribution are described. All 20 papers presented at the meeting are separately indexed in the database. (DG)

  4. 76 FR 69703 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of Extension of...

    Science.gov (United States)

    2011-11-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon... administrative review of the antidumping duty order on corrosion-resistant carbon steel flat products from Korea, covering the period August 1, 2009, to July 31, 2010. See Initiation of Antidumping and Countervailing Duty...

  5. 75 FR 77615 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of Extension of...

    Science.gov (United States)

    2010-12-13

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon... administrative review of the antidumping duty order on corrosion-resistant carbon steel flat products from Korea, covering the period August 1, 2008, to July 31, 2009. See Initiation of Antidumping and Countervailing Duty...

  6. The Behavior of Corrosion Products in Sampling Systems under Boiling Water Reactor Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, Hans-Peter

    1977-08-15

    A high pressure loop has been used to simulate sampling systems employed under BWR conditions. The reliability of the sampling method was studied in a series of six test runs. A variety of parameters that are thought to influence the reliability of the sampling was investigated. These included piping geometry, water oxygen content, flow, temperature and temperature gradients. Amongst other things the results indicate that the loss by deposition of iron containing corrosion products does not exceed 50 %; this figure is only influenced to a minor extent by the above mentioned parameters. The major part of the corrosion products thus deposited is found along the first few meters of the piping and cooler coil. A moderate prolongation of a pipe which is already relatively long should thus be incapable of producing a major influence on the sampling error

  7. High temperature corrosion of silicon carbide and silicon nitride in the presence of chloride compound

    International Nuclear Information System (INIS)

    McNallan, M.

    1993-01-01

    Silicon carbide and silicon nitride are resistant to oxidation because a protective silicon dioxide films on their surfaces in most oxidizing environments. Chloride compounds can attack the surface in two ways: 1) chlorine can attack the silicon directly to form a volatile silicon chloride compound or 2) alkali compounds combined with the chlorine can be transported to the surface where they flux the silica layer by forming stable alkali silicates. Alkali halides have enough vapor pressure that a sufficient quantity of alkali species to cause accelerated corrosion can be transported to the ceramic surface without the formation of a chloride deposit. When silicon carbide is attacked simultaneously by chlorine and oxygen, the corrosion products include both volatile and condensed spices. Silicon nitride is much more resistance to this type of attack than silicon carbide. Silicon based ceramics are exposed to oxidizing gases in the presence of alkali chloride vapors, the rate of corrosion is controlled primarily by the driving force for the formation of alkali silicate, which can be quantified as the activity of the alkali oxide in equilibrium with the corrosive gas mixture. In a gas mixture containing a fixed partial pressure of KCl, the rate of corrosion is accelerated by increasing the concentration of water vapor and inhibited by increasing the concentration of HCl. Similar results have been obtained for mixtures containing other alkalis and halogens. (Orig./A.B.)

  8. Fluoroplastic materials for pressure tubes in flue gas heat exchangers under corrosive conditions of flue gas desulfurisation plants; Fluorkunststoffe fuer Druckrohre in Rauchgaswaermetauschern unter korrosiven Bedingungen fuer die Rauchgasentschwefelung

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalk-Gaudig, Gabriele [Dyneon GmbH, Burgkirchen (Germany); Broda, Siegfried [Heatec Co., Ltd., Chonburi (Thailand); Adamczyk, Frank; Kreilos, Klaus [Babcock Borsig Service GmbH, Oberhausen (Germany). Bereich Waermenutzung

    2010-07-01

    Since the 1980s, power plants have been required to have flue gas desulphurising plants. For the cooling of flue gases to below the acid dew point and subsequent reheating, corrosion-resistant gas-gas heat exchanger systems had already been developed at this time by what is now Babcock Borsig Service GmbH (BBS). The best results were achieved using 100 % plastic piping as a vital component. In addition to the development of the plastic heat exchangers and the differences in design relative to alternative models, the various types of fluoroplastics will be discussed, and in particular the difference between PFA and PTFE. (orig.)

  9. Microbial Corrosion of API 5L X-70 Carbon Steel by ATCC 7757 and Consortium of Sulfate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Arman Abdullah

    2014-01-01

    Full Text Available Various cases of accidents involving microbiology influenced corrosion (MIC were reported by the oil and gas industry. Sulfate reducing bacteria (SRB have always been linked to MIC mechanisms as one of the major causes of localized corrosion problems. In this study, SRB colonies were isolated from the soil in suspected areas near the natural gas transmission pipeline in Malaysia. The effects of ATCC 7757 and consortium of isolated SRB upon corrosion on API 5L X-70 carbon steel coupon were investigated using a weight loss method, an open circuit potential method (OCP, and a potentiodynamic polarization curves method in anaerobic conditions. Scanning electron microscopy (SEM and energy dispersive X-ray spectroscopy (EDS were then used to determine the corrosion morphology in verifying the SRB activity and corrosion products formation. Results from the study show that the corrosion rate (CR of weight loss method for the isolated SRB is recorded as 0.2017 mm/yr compared to 0.2530 mm/yr for ATCC 7757. The Tafel plot recorded the corrosion rate of 0.3290 mm/yr for Sg. Ular SRB and 0.2500 mm/yr for Desulfovibrio vulgaris. The results showed that the consortia of isolated SRB were of comparable effects and features with the single ATCC 7757 strain.

  10. A Review of Field Corrosion Control and Monitoring Techniques of ...

    African Journals Online (AJOL)

    OLUWASOGO

    corrosion attack and eventual failure of pipelines within oil and gas industry has been classified ... pipelines' commissioning which include design, material selection, protective ..... analyses after certain period to obtain corrosion information.

  11. Studies on microstructure, mechanical and pitting corrosion behaviour of similar and dissimilar stainless steel gas tungsten arc welds

    Science.gov (United States)

    Mohammed, Raffi; Dilkush; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    In the present study, an attempt has been made to weld dissimilar alloys of 5mm thick plates i.e., austenitic stainless steel (316L) and duplex stainless steel (2205) and compared with that of similar welds. Welds are made with conventional gas tungsten arc welding (GTAW) process with two different filler wires namely i.e., 309L and 2209. Welds were characterized using optical microscopy to observe the microstructural changes and correlate with mechanical properties using hardness, tensile and impact testing. Potentio-dynamic polarization studies were carried out to observe the pitting corrosion behaviour in different regions of the welds. Results of the present study established that change in filler wire composition resulted in microstructural variation in all the welds with different morphology of ferrite and austenite. Welds made with 2209 filler showed plate like widmanstatten austenite (WA) nucleated at grain boundaries. Compared to similar stainless steel welds inferior mechanical properties was observed in dissimilar stainless steel welds. Pitting corrosion resistance is observed to be low for dissimilar stainless steel welds when compared to similar stainless steel welds. Overall study showed that similar duplex stainless steel welds having favorable microstructure and resulted in better mechanical properties and corrosion resistance. Relatively dissimilar stainless steel welds made with 309L filler obtained optimum combination of mechanical properties and pitting corrosion resistance when compared to 2209 filler and is recommended for industrial practice.

  12. Radon gas in oil and natural gas production facilities

    International Nuclear Information System (INIS)

    Chandler, W.P.

    1994-01-01

    Radon gas is a naturally occurring radionuclide that can be found in some oil and natural gas production facilities, either as a contaminant in a natural gas stream or derived from Radium dissolved in formation waters. The gas itself is not normally a health hazard, but it's decay products, which can be concentrated by plate-out or deposition as a scale in process equipment, can be a health hazard for maintenance personnel. To evaluate possible health hazards, it is necessary to monitor for naturally occurring radioactive materials (NORM) in the gas stream and in the formation water. If Radon and/or Radium is found, a monitoring programme should be initiated to comply with National or State requirements. In some instances, it has been found necessary to dispose of silt and scale materials as low level radioactive waste. 8 refs

  13. Corrosion behavior of a positive graphite electrode in vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liu Huijun; Xu Qian; Yan Chuanwei; Qiao Yonglian

    2011-01-01

    Graphical abstract: The overpotential for gas evolution on positive graphite electrode decreases due to the functional groups of COOH and C=O introduced on the surface of graphite electrode during corrosion process, which can self-catalyze the oxidation of carbon atoms therefore, accelerates corrosion process. Highlights: → Initial potential for gas evolution is higher than 1.60 V vs SCE. → Factors affecting the graphite corrosion are investigated. → Functional groups of COOH and C=O introduced during corrosion process. → The groups can self-catalyze the oxidation of carbon atoms. - Abstract: The graphite plate is easily suffered from corosion because of CO 2 evolution when it acts as the positive electrode for vanadium redox flow battery. The aim is to obtain the initial potential for gas evolution on a positive graphite electrode in 2 mol dm -3 H 2 SO 4 + 2 mol dm -3 VOSO 4 solution. The effects of polarization potential, operating temperature and polarization time on extent of graphite corrosion are investigated by potentiodynamic and potentiostatic techniques. The surface characteristics of graphite electrode before and after corrosion are examined by scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. The results show that the gas begins to evolve on the graphite electrode when the anodic polarization potential is higher than 1.60 V vs saturated calomel electrode at 20 deg. C. The CO 2 evolution on the graphite electrode can lead to intergranular corrosion of the graphite when the polarization potential reaches 1.75 V. In addition, the functional groups of COOH and C=O introduced on the surface of graphite electrode during corrosion can catalyze the formation of CO 2 , therefore, accelerates the corrosion rate of graphite electrode.

  14. Corrosion evaluation of multi-pass welded nickel–aluminum bronze alloy in 3.5% sodium chloride solution: A restorative application of gas tungsten arc welding process

    International Nuclear Information System (INIS)

    Sabbaghzadeh, Behnam; Parvizi, Reza; Davoodi, Ali; Moayed, Mohammad Hadi

    2014-01-01

    Highlights: • Corrosion of GTA welded nickel–aluminum bronze (C95800) was studied. • Drastic microstructural changes occurred during the welding operations. • The β′ and α phases acts as anode and cathode, correspondingly, in weld region. • A few nanoamperes couple current was measured in ZRA test as galvanic corrosion. • Corrosion resistance of weld parts could not be weakened in marine environments. - Abstract: In this research, the corrosion behavior of a gas tungsten arc welded nickel–aluminum bronze (NAB) alloy is investigated by DC and AC electrochemical techniques in 3.5% sodium chloride solution. Regarding the electrochemical impedance spectroscopy and potentiodynamic results, uniform corrosion resistance of instantly immersed weld and base samples are almost analogous and increased (more in weld region) during the immersion times. Moreover, zero resistant ammeter results demonstrated that the few nanoampere galvanic currents are attributed to microstructural and morphological differences between these two regions. Therefore, the welding procedure could not deteriorate the general corrosion resistance of the restored damaged NAB parts operating in marine environments

  15. Corrosion investigations at Masnedoe combined heat and power plant. Part VI

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, M. [Danmarks Tekniske Univ., Dept. for Manufacturing Engineering, Kgs Lyngby (Denmark); Karlsson, A. [ENERGI E2, Power Company, Copenhagen (Denmark); Hede Larsen, O. [Elsam - Fynsvaerket, Fredericia (Denmark)

    2001-02-01

    In Denmark, straw and other types of biomass are used for generating energy in power plats. Straw is considered a carbon dioxide neutral fuel and is therefore environmentally acceptable. Masnedoe CHP Plant is a straw-fired power plant on Sjaelland, Denmark. Corrosion tests were undertaken at Masnedoe CHP Plant by building a test superheater loop and subject it to higher steam temperatures than those of the actual plant. In addition a test section welded into superheater was investigated. The conclusions from the project are as follows: 1. The corrosion rates of the steels investigated are very close to one another and differences are small. 2. For the lower steam of 450 deg. C, a parabolic kinetic of oxide growth is not seen but more a paralinear corrosion rate for TP347H and a linear corrosion rate for the 12% Cr steel. 3. At temperatures above approx. 520 deg. C metal temperature for the austenitic steels, grain boundary attack is seen as a precursor for corrosion within the metal grains. For HCM12, attack of individual metal grains is also seen. The corrosion attack leads to depletion of chromium and manganese from the surface of the alloy. It is at these temperatures general corrosion changes to grain boundary corrosion attack. 4. Over one of the test superheater loops, varying corrosion rates could be measured that could not be explained by the change in steam temperature. This was related to the flue gas direction giving a higher surface metal temperature, however, there may be other factors giving localised high heat flux and therefore a higher metal temperature. The corrosion rate was lower this year (1999-2000) than the previous year and this is attributed to the lower flue gas temperatures or other factors such as a change in fuel or combustion characteristics. It must be noted that where the flue gas temperature is assumed to be highest similar corrosion rates are observed for both 1998-1999 and 1999-2000. There is much evidence to indicate that after

  16. Monitoring reinforcement corrosion and corrosion-induced cracking using non-destructive x-ray attenuation measurements

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Geiker, Mette Rica

    2011-01-01

    To test the applicability of the x-ray attenuation method to monitor the movement of corrosion products as well as the formation and propagation of cracks in cementitious materials reinforced mortar samples were prepared and tested under accelerated corrosion conditions. It is evident from the ex...... of the corrosion products averaged through the specimen thickness. The total mass loss of steel, obtained by the x-ray attenuation method, was found to be in very good agreement with the mass loss obtained by gravimetric method as well as Faraday's law....

  17. Identification of controlling factors for the initiation of corrosion of fresh concrete sewers.

    Science.gov (United States)

    Jiang, Guangming; Sun, Xiaoyan; Keller, Jurg; Bond, Philip L

    2015-09-01

    The development of concrete corrosion in new sewer pipes undergoes an initiation process before reaching an active corrosion stage. This initiation period is assumed to last several months to years but the key factors affecting the process, and its duration, are not well understood. This study is therefore focused on this initial stage of the corrosion process and the effect of key environmental factors. Such knowledge is important for the effective management of corrosion in new sewers, as every year of life extension of such systems has a very high financial benefit. This long-term (4.5 year) study has been conducted in purpose-built corrosion chambers that closely simulated the sewer environment, but with control of three key environmental factors being hydrogen sulfide (H2S) gas phase concentration, relative humidity and air temperature. Fresh concrete coupons, cut from an industry-standard sewer pipe, were exposed to the corrosive conditions in the chambers, both in the gas phase and partially submerged in wastewater. A total of 36 exposure conditions were investigated to determine the controlling factors by regular retrieval of concrete coupons for detailed analysis of surface pH, sulfur compounds (elemental sulfur and sulfate) and concrete mass loss. Corrosion initiation times were thus determined for different exposure conditions. It was found that the corrosion initiation time of both gas-phase and partially-submerged coupons was positively correlated with the gas phase H2S concentration, but only at levels of 10 ppm or below, indicating that sulfide oxidation rate rather than the H2S concentration was the limiting factor during the initiation stage. Relative humidity also played a role for the corrosion initiation of the gas-phase coupons. However, the partially-submerged coupons were not affected by humidity as these coupons were in direct contact with the sewage and hence did have sufficient moisture to enable the microbial processes to proceed. The

  18. Corrosion of Pipeline and Wellbore Steel by Liquid CO2 Containing Trace Amounts of Water and SO2

    Science.gov (United States)

    McGrail, P.; Schaef, H. T.; Owen, A. T.

    2009-12-01

    Carbon dioxide capture and storage in deep saline formations is currently considered the most attractive option to reduce greenhouse gas emissions with continued use of fossil fuels for energy production. Transporting captured CO2 and injection into suitable formations for storage will necessarily involve pipeline systems and wellbores constructed of carbon steels. Industry standards currently require nearly complete dehydration of liquid CO2 to reduce corrosion in the pipeline transport system. However, it may be possible to establish a corrosion threshold based on H2O content in the CO2 that could allow for minor amounts of H2O to remain in the liquid CO2 and thereby eliminate a costly dehydration step. Similarly, trace amounts of sulfur and nitrogen compounds common in flue gas streams are currently removed through expensive desulfurization and catalytic reduction processes. Provided these contaminants could be safely and permanently transported and stored in the geologic reservoir, retrofits of existing fossil-fuel plants could address comprehensive emissions reductions, including CO2 at perhaps nearly the same capital and operating cost. Because CO2-SO2 mixtures have never been commercially transported or injected, both experimental and theoretical work is needed to understand corrosion mechanisms of various steels in these gas mixtures containing varying amounts of water. Experiments were conducted with common tool steel (AISI-01) and pipeline steel (X65) immersed in liquid CO2 at room temperature containing ~1% SO2 and varying amounts of H2O (0 to 2500 ppmw). A threshold concentration of H2O in the liquid CO2-SO2 mixture was established based on the absence of visible surface corrosion. For example, experiments exposing steel to liquid CO2-SO2 containing ~300 ppmw H2O showed a delay in onset of visible corrosion products and minimal surface corrosion was visible after five days of testing. However increasing the water content to 760 ppmw produced extensive

  19. Sulphur recirculation for reduced boiler corrosion; Minskad pannkorrosion med svavelrecirkulation

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sven; Karlsson, Martin (Goetaverken Miljoe AB, Goeteborg (Sweden)); Blomqvist, Evalena; Baefver, Linda; Claesson, Frida; Davidsson, Kent (SP Sveriges Tekniska Forskningsinstitut, Boraas (Sweden)); Froitzheim, Jan; Pettersson, Jesper; Steenari, Britt-Marie (Chalmers Tekniska Hoegskola, Oorganisk miljoekemi, Goeteborg (Sweden))

    2010-03-15

    decreased by one third and the particle concentrations was decreased by half. In the sulphur recirculation exposure, the corrosion rate decreased for all tested materials (16Mo3, Sanicro 28 and Inconel 625) compared to the reference exposure. For the low-alloyed 16Mo3, the corrosion rate was reduced by more than 60%. The corrosion rate was rather low for the high-alloyed steels, even in the reference exposure. The corrosion morphology of the samples exposed in the sulphur recirculation exposure was different compared to the samples exposed in the reference exposure. Sulphur recirculation prevented the formation of transition metal chlorides at the metal/oxide interface, formation of chromate and reduced the presence of zinc in the corrosion products. When sulfur recirculation was applied to the process, the dioxin concentration (I-TEQ) of the flue gas was reduced by approximately a quarter (PCDFs were reduced by a factor of two but PCDD levels did not change significantly). Meanwhile the chlorobenzenes (PCBz) were reduced by half. A slight reduction of the dioxin levels (PCDD and PCDF) in the fly ash was found, which together with the reduced amounts of fly ash leads to less dioxins being landfilled

  20. Study of the Corrosion Resistance of Austenitic Stainless Steels during Conversion of Waste to Biofuel

    Science.gov (United States)

    Cabrini, Marina; Lorenzi, Sergio; Pastore, Tommaso; Pellegrini, Simone; Burattini, Mauro; Miglio, Roberta

    2017-01-01

    The paper deals with the corrosion behavior of stainless steels as candidate materials for biofuel production plants by liquefaction process of the sorted organic fraction of municipal solid waste. Corrosion tests were carried out on AISI 316L and AISI 304L stainless steels at 250 °C in a batch reactor during conversion of raw material to bio-oil (biofuel precursor), by exposing specimens either to water/oil phase or humid gas phase. General corrosion rate was measured by weight loss tests. The susceptibility to stress corrosion cracking was evaluated by means of U-bend specimens and slow stress rate tests at 10−6 or 10−5 s−1 strain rate. After tests, scanning electron microscope analysis was carried out to detect cracks and localized attacks. The results are discussed in relation with exposure conditions. They show very low corrosion rates strictly dependent upon time and temperature. No stress corrosion cracking was observed on U-bend specimens, under constant loading. Small cracks confined in the necking cone of specimens prove that stress corrosion cracking only occurred during slow strain rate tests at stresses exceeding the yield strength. PMID:28772682

  1. Failure prediction for Crack-in-Corrosion defects in natural gas transmission pipelines

    International Nuclear Information System (INIS)

    Bedairi, B.; Cronin, D.; Hosseini, A.; Plumtree, A.

    2012-01-01

    Cracks occurring coincidentally with corrosion (Crack-in-Corrosion or CIC), represent a new hybrid defect in pipelines that are not directly addressed in the current codes or assessment methods. To understand the failure response of these defects, the finite element method using an elastic–plastic fracture mechanics approach was applied to predict the failure pressures of comparable crack, corrosion and CIC defects in 508 mm diameter pipe with 5.7 mm wall thickness. Failure pressure predictions were made based on measured tensile, Charpy impact and J testing data, and validated using experimental rupture tests. Plastic collapse was predicted for corrosion and crack defects using the critical strength based on the material tensile strength, whereas fracture was predicted using the measured J 0.2 value. The model predictions were found to be conservative for the CIC defects (17.4% on average), 12.4% conservative for crack-only defects, and 3.2% conservative for corrosion defects compared to the experimental tests, demonstrating the applicability of the material-based failure criteria. For the defects considered in this study, all were predicted to fail by plastic collapse. The finite element method provided less conservative predictions than existing corrosion or crack-based analytical methods. Highlights: ► Cracks occurring coincidentally with corrosion represent a new hybrid defect in pipelines. ► Existing methods for prediction corrosion and crack defect failure pressures are conservative. ► The FE method can provide improved prediction of rupture pressure using actual material properties. ► Failure was predicted using FE with a critical stress for plastic collapse and J value for fracture. ► FE failure pressure predictions for crack in corrosion defects were 17% conservative on average.

  2. TRU drum corrosion task team report

    Energy Technology Data Exchange (ETDEWEB)

    Kooda, K.E.; Lavery, C.A.; Zeek, D.P.

    1996-05-01

    During routine inspections in March 1996, transuranic (TRU) waste drums stored at the Radioactive Waste Management Complex (RWMC) were found with pinholes and leaking fluid. These drums were overpacked, and further inspection discovered over 200 drums with similar corrosion. A task team was assigned to investigate the problem with four specific objectives: to identify any other drums in RWMC TRU storage with pinhole corrosion; to evaluate the adequacy of the RWMC inspection process; to determine the precise mechanism(s) generating the pinhole drum corrosion; and to assess the implications of this event for WIPP certifiability of waste drums. The task team investigations analyzed the source of the pinholes to be Hcl-induced localized pitting corrosion. Hcl formation is directly related to the polychlorinated hydrocarbon volatile organic compounds (VOCs) in the waste. Most of the drums showing pinhole corrosion are from Content Code-003 (CC-003) because they contain the highest amounts of polychlorinated VOCs as determined by headspace gas analysis. CC-001 drums represent the only other content code with a significant number of pinhole corrosion drums because their headspace gas VOC content, although significantly less than CC-003, is far greater than that of the other content codes. The exact mechanisms of Hcl formation could not be determined, but radiolytic and reductive dechlorination and direct reduction of halocarbons were analyzed as the likely operable reactions. The team considered the entire range of feasible options, ranked and prioritized the alternatives, and recommended the optimal solution that maximizes protection of worker and public safety while minimizing impacts on RWMC and TRU program operations.

  3. TRU drum corrosion task team report

    International Nuclear Information System (INIS)

    Kooda, K.E.; Lavery, C.A.; Zeek, D.P.

    1996-05-01

    During routine inspections in March 1996, transuranic (TRU) waste drums stored at the Radioactive Waste Management Complex (RWMC) were found with pinholes and leaking fluid. These drums were overpacked, and further inspection discovered over 200 drums with similar corrosion. A task team was assigned to investigate the problem with four specific objectives: to identify any other drums in RWMC TRU storage with pinhole corrosion; to evaluate the adequacy of the RWMC inspection process; to determine the precise mechanism(s) generating the pinhole drum corrosion; and to assess the implications of this event for WIPP certifiability of waste drums. The task team investigations analyzed the source of the pinholes to be Hcl-induced localized pitting corrosion. Hcl formation is directly related to the polychlorinated hydrocarbon volatile organic compounds (VOCs) in the waste. Most of the drums showing pinhole corrosion are from Content Code-003 (CC-003) because they contain the highest amounts of polychlorinated VOCs as determined by headspace gas analysis. CC-001 drums represent the only other content code with a significant number of pinhole corrosion drums because their headspace gas VOC content, although significantly less than CC-003, is far greater than that of the other content codes. The exact mechanisms of Hcl formation could not be determined, but radiolytic and reductive dechlorination and direct reduction of halocarbons were analyzed as the likely operable reactions. The team considered the entire range of feasible options, ranked and prioritized the alternatives, and recommended the optimal solution that maximizes protection of worker and public safety while minimizing impacts on RWMC and TRU program operations

  4. Fighting corrosion in air pollution control systems

    International Nuclear Information System (INIS)

    Rittenhouse, R.C.

    1991-01-01

    This paper reports that materials is the name of the game for corrosion prevention in air pollution control equipment. Whether the system is already in place, a retrofit, are specified for a new power pant, preventing corrosion is critical, because such deterioration easily undermines reliability. Hence, materials can heavily influence power plant compliance to the 1990 Clean Air Act amendments. Flue gas desulfurization (FGD) systems, perhaps the most vulnerable area to corrosion, are expected to be the method of choice for sulfur removal in many power plants in the near term. Components of these systems have various degrees of susceptibility to corrosion and related problems

  5. The growing rate and the type of corrosion products of aluminium alloy AA 5052 in deionized water at temperature up to 3000C

    International Nuclear Information System (INIS)

    Ferreira, E.G.

    1980-01-01

    The process of corrosion concerning the aluminum alloy AA5052 in deionized water at temperatures of 40 0 C, 80 0 C, 90 0 C, 140 0 C, 200 0 C and 280 0 C is studied. The following methods are used: periodic weighting of the test samples; analysis by neutronic activation of the corrosion products dissolved in water; thermogravimetric and thermodiferential analysis; analysis through X-ray diffraction and from metalografic observations of the crystals produced in the corrosion process; an optical microscope using polarized and normal light and a scanning electronic microscope. The activation energies are calculated for the corrosion film formation, and for the dissolution of the corrosion products in the deionized water. (ARHC) [pt

  6. Hydrogen sulfide corrosion of weld regions in API X52 steel; Corrosion por acido sulfhidrico de las regiones de soldadura en acero API X52

    Energy Technology Data Exchange (ETDEWEB)

    Arenas-Martinez, L.F [Universidad Autonoma de Coahuila, Coahuila (Mexico)]. E-mail: fernando.arenas@uadec.edu.mx; Garcia-Cerecero, G. [Corporacion Mexicana de Investigacion en Materiales S.A. de C.V., Saltillo, Coahuila (Mexico)

    2012-10-15

    The corrosion behavior of gas metal arc welding (GMAW) regions has been studied using potentiodynamic polarization and polarization resistance (LPR) techniques. Experiments were conducted in hydrogen sulfide (H{sub 2}S)-containing brine and in H{sub 2}S-free brine. Welds were made on API 5L X52 steel. Due to differences in their microstructure, chemical composition and residual stress level, weld regions exhibited different responses under H{sub 2}S corrosion. Base metal exhibited the highest corrosion rate (CR) and the most cathodic corrosion potential. [Spanish] Se estudio el comportamiento ante la corrosion de las regiones de soldadura de un cordon realizado por arco metalico con gas (GMAW) sobre un acero grado API X52 mediante las tecnicas de polarizacion potencio dinamica y resistencia a la polarizacion (LPR). Los experimentos se realizaron utilizando salmuera con 300 ppm de acido sulfhidrico (H{sub 2}S) y salmuera libre de H{sub 2}S como electrolitos. Debido a las diferencias en su microestructura, composicion quimica y el nivel de esfuerzos residuales, las regiones de soldadura mostraron diferentes respuestas a la corrosion por H{sub 2}S. El metal base exhibio la velocidad de corrosion (VC) mas alta y el potencial de corrosion mas catodico.

  7. Electrochemical corrosion measurements on noble electrodeposits

    DEFF Research Database (Denmark)

    Christoffersen, Lasse; Maahn, Ernst Emanuel

    1998-01-01

    Novel electrodeposits are compared with hard chrome and electroless Ni-P with respect to production, corrosion resistance and hardness.......Novel electrodeposits are compared with hard chrome and electroless Ni-P with respect to production, corrosion resistance and hardness....

  8. Oil and gas exploration and production

    International Nuclear Information System (INIS)

    Babusiaux, D.; Favennec, J.P.; Bauquis, P.R.; Bret-Rouzaut, N.; Guirauden, D.

    2004-01-01

    The steps that lead to the production of oil and gas are diverse, complex and costly. They are diverse, because the detection of oil and gas involves input from many specialties, ranging from geology to reservoir engineering. They are complex, as shown by the development of the job of the petroleum architect, who coordinates all the operations. They are costly, as the investments for exploration and production represent more than half of all investments in the oil and gas sector. Moreover, exploration is a risky activity, both from the technical and financial viewpoint: only one well in five produces marketable oil. Meanwhile, the areas for exploration and production are spread throughout the world. This book provides a complete overview of the stakes and challenges involved in oil and gas exploration and production. Following a historical review and a survey of the markets, the technical phases are covered, as are the evaluation of reserves, the estimation of investments and costs, the decision-making and control processes, and the accounting, legal and contractual environment for these activities. The book concludes with a discussion of the role of safety, and of environmental and ethical issues. This work, which is designed for readers concerned with the various aspects of the oil and gas upstream sector, is accessible to all. Contents: 1. Petroleum: a strategic product. 2. Oil and gas exploration and production. 3. Hydrocarbon reserves. 4. Investments and costs. 5. Legal, fiscal and contractual framework. 6. Decision-making on exploration and production. 7. Information, accounting and competition analysis. 8. Health, safety, the environment, ethics. Bibliography. Glossary. Index

  9. Use of a free-jet expansion, molecular beam mass spectrometer to understand processes involving volatile corrosion products

    International Nuclear Information System (INIS)

    Jacobson, N.S.

    1997-01-01

    Many high-temperature corrosion processes generate volatile products in addition to condensed phase products. Examples of these volatile products are chlorides, oxychlorides, and certain oxides and hydroxyl species. One of the best techniques to identify high temperature vapor molecules is mass spectrometry. Most mass spectrometers operate in high vacuum and are generally used to examine processes ocurring at greatly reduced pressures. However, a free-jet expansion, molecular beam mass spectrometer system allows direct sampling of volatile corrosion products. This instrument is described. Several examples from our studies on chlorination/oxidation of metals and ceramics are discussed. In addition, reactions of Cr 2 O 3 , SiO 2 , and Al 2 O 3 with water vapor, which produce volatile hydroxyl species are discussed. (orig.)

  10. Preliminary report on the economics of gas production from natural gas hydrates

    International Nuclear Information System (INIS)

    Walsh, M.; Wilson, S.; Patil, S.; Moridis, G.; Boswell, R.; Koh, C.; Sloan, D.

    2008-01-01

    Gas hydrates are solid crystalline compounds in which gas molecules reside inside cages that are formed by hydrogen-bonded water molecules in a crystal lattice. At particularly low temperatures and high pressures, a guest molecule will combine with water to form gas hydrates. Gas hydrates are found in two different settings in which the temperature and pressure conditions are suitable for their existence, notably in Arctic permafrost regions and below the seafloor. Because of the size of this possible future resource, if any of the gas in hydrates can be proven to be economically recoverable, then production from gas hydrates could become an important portion of the world's energy portfolio as demand for natural gas increases along with the technology to compress and distribute natural gas to distant markets. This paper presented a compilation of economic research that was conducted on the resource potential of gas hydrates. The paper reported a preliminary estimate of the price of natural gas that may lead to economically-viable production from North American Arctic region hydrates. The paper also discussed the implications of a recent study on the production of class 3 marine hydrate deposits from the Gulf of Mexico. The state of the art technologies and methods in hydrate reservoir modeling and hydrate reservoir production and petrophysical testing were also discussed. It was concluded that the somewhat optimistic results presented in this report should be interpreted with caution, however, the economically-viable gas production from hydrates was not an unreasonable scenario. 23 refs., 2 tabs., 10 figs

  11. A computer code PACTOLE to predict activation and transport of corrosion products in a PWR

    International Nuclear Information System (INIS)

    Beslu, P.; Frejaville, G.; Lalet, A.

    1978-01-01

    Theoretical studies on activation and transport of corrosion products in a PWR primary circuit have been concentrated, at CEA on the development of a computer code : PACTOLE. This code takes into account the major phenomena which govern corrosion products transport: 1. Ion solubility is obtained by usual thermodynamics laws in function of water chemistry: pH at operating temperature is calculated by the code. 2. Release rates of base metals, dissolution rates of deposits, precipitation rates of soluble products are derived from solubility variations. 3. Deposition of solid particles is treated by a model taking into account particle size, brownian and turbulent diffusion and inertial effect. Erosion of deposits is accounted for by a semi-empirical model. After a review of calculational models, an application of PACTOLE is presented in view of analyzing the distribution of in core. (author)

  12. Method of separation of fission and corrosion products and of corresponding isotopes from liquid waste

    International Nuclear Information System (INIS)

    Prochazka, H.; Stamberg, K.; Jilek, R.; Hulak, P.; Katzer, J.

    1976-01-01

    A method of separating fission and corrosion products and corresponding stable isotopes from liquid waste is described. Mycelia of fungi are used as sorbents for retaining these products on their surface and within their pores. Methods of activation or regeneration of the sorbent are outlined. 11 claims

  13. Natural gas product and strategic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Layne, A.W.; Duda, J.R.; Zammerilli, A.M.

    1993-12-31

    Product and strategic analysis at the Department of Energy (DOE)/Morgantown Energy Technology Center (METC) crosscuts all sectors of the natural gas industry. This includes the supply, transportation, and end-use sectors of the natural-gas market. Projects in the Natural Gas Resource and Extraction supply program have been integrated into a new product focus. Product development facilitates commercialization and technology transfer through DOE/industry cost-shared research, development, and demonstration (RD&D). Four products under the Resource and Extraction program include Resource and Reserves; Low Permeability Formations; Drilling, Completion, and Stimulation: and Natural Gas Upgrading. Engineering process analyses have been performed for the Slant Hole Completion Test project. These analyses focused on evaluation of horizontal-well recovery potential and applications of slant-hole technology. Figures 2 and 3 depict slant-well in situ stress conditions and hydraulic fracture configurations. Figure 4 presents Paludal Formation coal-gas production curves used to optimize the hydraulic fracture design for the slant well. Economic analyses have utilized data generated from vertical test wells to evaluate the profitability of horizontal technology for low-permeability formations in Yuma County, Colorado, and Maverick County, Texas.

  14. Smeared crack modelling approach for corrosion-induced concrete damage

    DEFF Research Database (Denmark)

    Thybo, Anna Emilie Anusha; Michel, Alexander; Stang, Henrik

    2017-01-01

    In this paper a smeared crack modelling approach is used to simulate corrosion-induced damage in reinforced concrete. The presented modelling approach utilizes a thermal analogy to mimic the expansive nature of solid corrosion products, while taking into account the penetration of corrosion...... products into the surrounding concrete, non-uniform precipitation of corrosion products, and creep. To demonstrate the applicability of the presented modelling approach, numerical predictions in terms of corrosion-induced deformations as well as formation and propagation of micro- and macrocracks were......-induced damage phenomena in reinforced concrete. Moreover, good agreements were also found between experimental and numerical data for corrosion-induced deformations along the circumference of the reinforcement....

  15. Corrosion of copper by chlorine trifluoride; Corrosion du cuivre par le trifluorure de chlore

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-07-01

    The research described called for a considerable amount of preliminary development of the test methods and equipment in order that the various measurements and observations could be carried out without contaminating either the samples or this highly reactive gas. The chlorine trifluoride was highly purified before use, its purity being checked by gas-phase chromatography, micro-sublimation and infrared spectrography. The tests were carried out on copper samples of various purities, in particular a 99.999 per cent copper in the form of mono-crystals. They involved kinetic measurements and the characterization of corrosion products under different temperature and pressure conditions. The kinetics showed reactions of the same order of magnitude as those obtained with elementary fluorine. At atmospheric pressure there occurs formation of cupric fluoride and cuprous chloride. The presence of this latter product shows that it is not possible to consider ClF{sub 3} simply as a fluorinating agent. At low pressures an unknown product has been characterized. There are strong grounds for believing that it is the unstable cuprous fluoride which it has not yet been possible to isolate. A germination phenomenon has been shown to exist indicating an analogy between the initial phases of fluorination and those of oxidation. Important effects resulting from the dissociation of the copper fluorides and the solubility of chlorine in this metal have been demonstrated. Finally, tests have shown the considerable influence of the purity of the gas phase and of the nature of the reaction vessel walls on the rates of corrosion which can in certain cases be increased by a factor of several powers of ten. (author) [French] Le travail a comporte une importante mise au point des appareillages et methodes d'essai, en vue de pouvoir effectuer differentes mesures et observations sans contaminer les echantillons, ni polluer ce gaz hautement reactif. Une purification poussee du trifluorure de

  16. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  17. Electrochemical properties of corrosion products formed on Zn-Mg, Zn-Al and Zn-Al-Mg coatings in model atmospheric conditions

    Czech Academy of Sciences Publication Activity Database

    Stoulil, J.; Prošek, T.; Nazarov, A.; Oswald, Jiří; Kříž, P.; Thierry, D.

    2015-01-01

    Roč. 66, č. 8 (2015), s. 777-782 ISSN 0947-5117 Institutional support: RVO:68378271 Keywords : corrosion products * electrochemical properties * zinc coating Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.450, year: 2015

  18. Corrosion of high Ni-Cr alloys and Type 304L stainless steel in HNO3-HF

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.; McLaughlin, B.D.

    1980-04-01

    Nineteen alloys were evaluated as possible materials of construction for steam heating coils, the dissolver vessel, and the off-gas system of proposed facilities to process thorium and uranium fuels. Commercially available alloys were found that are satisfactory for all applications. With thorium fuel, which requires HNO 3 -HF for dissolution, the best alloy for service at 130 0 C when complexing agents for fluoride are used is Inconel 690; with no complexing agents at 130 0 C, Inconel 671 is best. At 95 0 C, six other alloys tested would be adequate: Haynes 25, Ferralium, Inconel 625, Type 304L stainless steel, Incoloy 825, and Haynes 20 (in order of decreasing preference); based on composition, six untested alloys would also be adequate. The ions most effective in reducing fluoride corrosion were the complexing agents Zr 4+ and Th 4+ ; Al 3+ was less effective. With uranium fuel, modestly priced Type 304L stainless steel is adequate. Corrosion will be most severe in HNO 3 -HF used occasionally for flushing and in solutions of HNO 3 and corrosion products (ferric and dichromate ions). HF corrosion can be minimized by complexing the fluoride ion and by passivation of the steel with strong nitric acid. Corrosion caused by corrosion products can be minimized by operating at lower temperatures

  19. The development of an adsorbent for corrosion products in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Ik; Sung, Ki Woung; Kim, Kwang Rag; Kim, Yu Hwan; Koo, Jae Hyoo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-08-01

    In order to use as adsorbent for removal of the soluble corrosion products, mainly Co{sup 60} under PWR reactor coolant conditions (300 deg C, 160 kg/cm{sup 2}), stable ZrO{sub 2} adsorbent was prepared using sol-gel process from zirconyl nitrate, AlO adsorbent was prepared by hydrolysis of aluminum isopropoxide, and titanium tetraisopropoxide, respectively. The prepared adsorbents were calcined at various temperature and analyzed by physical properties and the Co{sup 2+} adsorption capacity. And it was shown that the Co{sup 2+} adsorption capacity of the TiO{sub 2}-Al{sub 2}O{sub 3} adsorbents were found to have larger than that of ZrO{sub 2} and Al{sub 2}O{sub 3} adsorbents in high-temperature water. ZrO{sub 2}, Al{sub 2}O{sub 3} and TiO{sub 2}-Al{sub 2}O{sub 3} adsorbents were found to be suitable high-temperature adsorbents for the removal of dissolved corrosion products, mainly Co in PWR reactor coolant conditions. 15 tabs., 51 figs., 55 refs. (Author).

  20. Monitoring Microbially Influenced Corrosion

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    and diffusional effects and unreliable corrosion rates, when biofilm and ferrous sulphide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 by electrochemical techniques. Weight loss coupons and ER are recommended as necessary basic monitoring techniques......Abstract Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria (SRB). The applicability and reliability of a number of corrosion monitoring techniques for monitoring MIC has been evaluated in experiments....... EIS might be used for detection of MIC as the appearance of very large capacitances can be attributed to the combined ferrous sulphide and biofilm formation. Capacitance correlates directly with sulphide concentration in sterile sulphide media. Keywords: Corrosion monitoring, carbon steel, MIC, SRB...

  1. SRB seawater corrosion project

    Science.gov (United States)

    Bozack, M. J.

    1991-01-01

    The corrosion behavior of 2219 aluminum when exposed to seawater was characterized. Controlled corrosion experiments at three different temperatures (30, 60 and 100 C) and two different environments (seawater and 3.5 percent salt solution) were designed to elucidate the initial stages in the corrosion process. It was found that 2219 aluminum is an active catalytic surface for growth of Al2O3, NaCl, and MgO. Formation of Al2O3 is favored at lower temperatures, while MgO is favored at higher temperatures. Visible corrosion products are formed within 30 minutes after seawater exposure. Corrosion characteristics in 3.5 percent salt solution are different than corrosion in seawater. Techniques utilized were: (1) scanning electron microscopy, (2) energy dispersive x-ray spectroscopy, and (3) Auger electron spectroscopy.

  2. 16 CFR 1209.5 - Test procedures for corrosiveness.

    Science.gov (United States)

    2010-01-01

    ... to eliminate air pockets from forming next to the metal coupons. (5) Do not cover the crystallizing... bristle brush or equivalent to remove loose corrosion products. Remove the remaining corrosion products... Evaluating Corrosion Test Specimens,” published by American Society for Testing and Materials, 1916 Race...

  3. Colorimetric visualization of tin corrosion: A method for early stage corrosion detection on printed circuit boards

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-01-01

    A majority of printed circuit board surfaces are covered with tin, therefore tin corrosion under humid conditions and movement of tin ions under the influence of an electric field plays an important role in the corrosion failure development. Tracking tin corrosion products spread on the printed c...

  4. Effect of PWHT on Microstructure, Mechanical and Corrosion Behaviour of Gas Tungsten Arc Welds of IN718 Superalloys

    Science.gov (United States)

    Dilkush; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work aims to improve corrosion resistance and mechanical behavior of the welds with suitable post weld heat treatment i.e. direct aging and solutionizing treatments (980STA, 1080STA). Gas tungsten arc welding (GTAW) has been performed on Inconel 718 (IN718) nickel based super alloy plates with 3mm thickness. The structural –property relationship of the post weld heat treated samples is judged by correlating the microstructural changes with observed mechanical behavior and pitting corrosion resistance of the welds As-recevied, direct aging (DA), 980STA,1080STA were studied. Welds were characterized for microstructure changes with scanning electron microscopy (SEM) and optical microscopy (OM).Vickers micro- hardness tester was used to measure the hardness of the weldments. Potential-dynamic polarization testing was carried out to study the pitting corrosion resistance in 3.5%NaCl (Sodium chloride) solution at 30°C.Results of the present study established that post weld heat treatments resulted in promoting the element segregation diffusion and resolve them from brittle laves particles in the matrix. Increased precipitation of strengthening phases lead to a significant increase in fusion zone hardness of 1080STA post weld heat treated condition compared to as welded, direct aged, 980STA conditions. Due to significant changes in the microstructural behavior of 1080STA condition resulted in superior pitting corrosion resistance than 980STA, direct aged and as- recevied conditions of IN718 GTA welds

  5. Effect of nanograin-boundary networks generation on corrosion of carburized martensitic stainless steel.

    Science.gov (United States)

    Boonruang, Chatdanai; Thong-On, Atcharawadi; Kidkhunthod, Pinit

    2018-02-02

    Martensitic stainless steel parts used in carbonaceous atmosphere at high temperature are subject to corrosion which results in a large amount of lost energy and high repair and maintenance costs. This work therefore proposes a model for surface development and corrosion mechanism as a solution to reduce corrosion costs. The morphology, phase, and corrosion behavior of steel are investigated using GIXRD, XANES, and EIS. The results show formation of nanograin-boundary networks in the protective layer of martensitic stainless steel. This Cr 2 O 3 -Cr 7 C 3 nanograin mixture on the FeCr 2 O 4 layer causes ion transport which is the main reason for the corrosion reaction during carburizing of the steel. The results reveal the rate determining steps in the corrosion mechanism during carburizing of steel. These steps are the diffusion of uncharged active gases in the stagnant-gas layer over the steel surface followed by the conversion of C into C 4- and O into O 2- at the gas-oxide interface simultaneously with the migration of Cr 3+ from the metal-oxide interface to the gas-oxide interface. It is proposed that previous research on Al 2 O 3 coatings may be the solution to producing effective coatings that overcome the corrosion challenges discussed in this work.

  6. Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques.

    Science.gov (United States)

    Patra, Amlan Kumar; Yu, Zhongtang

    2013-07-01

    Headspace gas composition and bicarbonate concentrations in media can affect methane production and other characteristics of rumen fermentation in in vitro gas production systems, but these 2 important factors have not been evaluated systematically. In this study, these 2 factors were investigated with respect to gas and methane production, in vitro digestibility of feed substrate, and volatile fatty acid (VFA) profile using in vitro gas production techniques. Three headspace gas compositions (N2+ CO2+ H2 in the ratio of 90:5:5, CO2, and N2) with 2 substrate types (alfalfa hay only, and alfalfa hay and a concentrate mixture in a 50:50 ratio) in a 3×2 factorial design (experiment 1) and 3 headspace compositions (N2, N2 + CO2 in a 50:50 ratio, and CO2) with 3 bicarbonate concentrations (80, 100, and 120 mM) in a 3×3 factorial design (experiment 2) were evaluated. In experiment 1, total gas production (TGP) and net gas production (NGP) was the lowest for CO2, followed by N2, and then the gas mixture. Methane concentration in headspace gas after fermentation was greater for CO2 than for N2 and the gas mixture, whereas total methane production (TMP) and net methane production (NMP) were the greatest for CO2, followed by the gas mixture, and then N2. Headspace composition did not affect in vitro digestibility or the VFA profile, except molar percentages of propionate, which were greater for CO2 and N2 than for the gas mixture. Methane concentration in headspace gas, TGP, and NGP were affected by the interaction of headspace gas composition and substrate type. In experiment 2, increasing concentrations of CO2 in the headspace decreased TGP and NGP quadratically, but increased the concentrations of methane, NMP, and in vitro fiber digestibility linearly, and TMP quadratically. Fiber digestibility, TGP, and NGP increased linearly with increasing bicarbonate concentrations in the medium. Concentrations of methane and NMP were unaffected by bicarbonate concentration, but

  7. Specific corrosion product on interior surface of a bronze wine vessel with loop-handle and its growth mechanism, Shang Dynasty, China

    International Nuclear Information System (INIS)

    Li Yang; Bao Zhirong; Wu Taotao; Jiang, Junchun; Chen Guantao; Pan Chunxu

    2012-01-01

    In this paper, a kind of specific stalactitic product was found on the interior surface of a covered bronze wine vessel with loop-handle (Chinese name is you), which was fabricated in Shang Dynasty (1700 B.C.–1100 B.C.) and now is collected in Xiaogan Museum, Hubei province of China. The microstructures of the product were characterized systematically by using optical microscopy, scanning electron microscope, transmission electron microscope, X-ray diffraction, and Raman microscopy. The experimental results revealed that the product belonged to a kind of malachite with high purity and high crystallinity. The growth of the product was considered to be a possible reason that the vessel was overly airtight within a museum display cabinet besides a lid of the vessel, which made the excess of H 2 O and CO 2 gas concentrations inside the vessel during long-term storage. This corrosion product is very harmful to bronze cultural relics, because of a large amount of copper consumption from the matrix which will reduce its life. The growth mechanism of the specific stalactitic product and the suggestions for preservation of the similar bronze relics in museum were proposed. - Highlights: ► The stalactitic product was the high purity and good crystallinity malachite. ► Its growth was related to the excess of H 2 O and CO 2 gas concentrations in museum. ► It is harmful to the bronzes, because copper will be consumed from the matrix. ► The suggestions for preservation of the similar bronzes in museum were proposed.

  8. Test Production of Anti-Corrosive Paint in Laboratory Scale

    International Nuclear Information System (INIS)

    Thein Thein Win, Daw; Khin Aye Tint, Daw; Wai Min Than, Daw

    2003-02-01

    The main purpose of this project is to produce the anti-corrosive paint in laboratory scale. In these experiments, local raw materials, natural resin (shellac), pine oil, turpentine and ethyl alcohol wer applied basically. Laboratory trials were undrtaken to determine the suitablity of raw materials ane their composition for anti-corrosive paint manufacture.The results obtained show that the anti-corrosive paint from experiment No.(30) is suitable for steel plate and this is also considered commercially economics

  9. Assessing corrosion in oil refining and petrochemical processing

    Directory of Open Access Journals (Sweden)

    Randy C. John

    2004-03-01

    Full Text Available This paper summarizes the development of an information system used to manage corrosion of metals and alloys by high temperature gases found in many different oil refining, petrochemical, power generation, and chemical processes. The database currently represents about 7.9 million h of exposure time for about 5,500 tests with 89 commercial alloys for a temperature range of 200 - 1,200°C. The system manages corrosion data from well-defined exposures and determines corrosion product stabilities. New models used in the analysis of thermochemical data for the Fe-Ni-Cr-Co-C-O-S-N-H system are being compiled. All known phases based upon combinations of the elements have been analyzed to allow complete assessments of corrosion product stabilities. Use of these data allows prediction of stable corrosion products and hence identification of the possible dominant corrosion mechanisms. The system has the potential to be used in corrosion research, alloy development, failure analysis, lifetime prediction, and process operations evaluations. The corrosion mechanisms emphasized are oxidation, sulfidation, sulfidation/oxidation, and carburization.

  10. The Role of SiO2 Gas in the Operation of Anti-Corrosion Coating Produced by PVD

    Directory of Open Access Journals (Sweden)

    Meysam Zarchi

    2015-09-01

    Full Text Available This study examined theSiO2 gas present in the coatings used in corrosion industry.These layers have been created by physical vapor deposition (PVD, with an appropriate performance. Sublimation of SiO2is used to protect PVD aluminum flakes from water corrosionand to generate highly porous SiO2 flakes with holes in the nanometer range. SiOx/Al/SiOx sandwiches were made as well as Ag loaded porous SiO2 as antimicrobial filler.

  11. Steamgenerators corrosion monitoring and chemical cleanings

    International Nuclear Information System (INIS)

    Otchenashev, G.

    2001-01-01

    One of the most important secondary side water chemistry objectives is optimization of chemistry conditions to reduce materials corrosion and their products transport into steam generators. Corrosion products (mainly iron and copper oxides) can form deposits on the SG's tubes and essentially decrease their operating resource. The transport of corrosion products by the constant flowrate of feed and blowdown water depends only on their content in these streams. All the internal surfaces (walls, collectors, tubes) were covered with the tough deposit firmly connected with the surface. Corrosion under this deposit was not detected. In some places sludge unconnected with the surface was detected. The lower tubes are located the more unconnected sludge was detected. On SG bottom near the hatch the sludge thickness was about 3 cm. (R.P.)

  12. Chapter 23: Corrosion of Metals in Wood Products

    Science.gov (United States)

    Samuel L. Zelinka

    2014-01-01

    The corrosion of metals in contact with wood has been studied for over 80 years, and in most situations wood is not corrosive [1]. Recently, however, the durability of fasteners in preservative--treated wood has become a concern. Changes in legislation and certification in the United States, the European Union, and Australasia have restricted the use of chromated...

  13. Technology and products of gas companies; Gas gaisha no Technology and Products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-10

    This paper presents the latest technology and products of gas companies. `Newly developed gas table for one-push automatic fish broiling` of Tokyo Gas Co. `Catalytic technology for decomposing dioxin generated by incinerator to make it harmless` of Osaka Gas Co. `Newly developed strong and kindly shower head` of Tokyo Gas Co. By laying fish on a sensor in a grill and appropriately setting upper and lower heating levers, user can skillfully broil fish only by pushing an ignition button. A temperature sensor attached to the center of a grill catches a change in surface temperature of fish, and automatically sets an appropriate broiling time according to the kind and volume of fish. A finish buzzer and automatic extinction mechanism are prepared. The technology decomposes dioxin in exhaust gas of incinerators to make it harmless. The catalyst is prepared by dispersing noble metal or oxide of several angstroms into activated carbon fibers. The shower head can switch hot water power by a control handle

  14. Phase analysis of corrosion products of carbon steel in sea water

    International Nuclear Information System (INIS)

    Garcia R, J.; Yee M, H.; Maldonado M, H.; Nunez, L.; Reguera, E.

    1998-01-01

    Nowadays carbon steel continues being the most widely used metallic material in marine and coastal buildings. The economic losses, due to corrosion processes, of those countries with important industrial and social activities in coastal regions are highly significant. In this sense the evaluation of the corrosion process of carbon steel and other materials in seawater or in coastal zones is a primary task for protection methods or to predict the hfe of an specific installation. In this communication we present the phases analysis, using XRD and Moessbauer techniques, of corrosion products of a carbon steel (CT3, equivalent to AISI C1020) exposed in two natural corrosion stations in the Caribbean sea (Cuba). The exposition time run from days to 36 months and the evaluated rust are characteristic of samples totally immersed in seawater, from the splash zone and form coastal zones at different distance from the shoreline. Quantitative phase analysis shown presence of magnetite (Fe 3 O 4 ), maghemite (y-Fe 2 O 3 ), akaganeite (B-FeOOH), lepidocrocite (y-FeOOH) and goethite (a-FeOOH) as iron bearing phases, and CaCO 3 (Calcite and aragonite), these last ones mainly in the immersed samples. Quantitative phase analysis by XRD was implemented as a linear combination of the patterns characteristic of all the detected phases and an appropriate model for the background. The quantitative results were used in kinetic models to understand the phase transformation between the iron oxides and oxy hydroxides in the studied conditions. The XRD qualitative and quantitative results were corroborated by Moessbauer spectroscopy in the temperature range of 20 to 300 K. (Author)

  15. Dictionary corrosion and corrosion control

    International Nuclear Information System (INIS)

    1985-01-01

    This dictionary has 13000 entries in both languages. Keywords and extensive accompanying information simplify the choice of word for the user. The following topics are covered: Theoretical principles of corrosion; Corrosion of the metals and alloys most frequently used in engineering. Types of corrosion - (chemical-, electro-chemical, biological corrosion); forms of corrosion (superficial, pitting, selective, intercrystalline and stress corrosion; vibrational corrosion cracking); erosion and cavitation. Methods of corrosion control (material selection, temporary corrosion protection media, paint and plastics coatings, electro-chemical coatings, corrosion prevention by treatment of the corrosive media); Corrosion testing methods. (orig./HP) [de

  16. Corrosion performance of iron aluminides in fossil energy environments

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. [Argonne National Lab., IL (United States). Energy Technology Div.

    1997-12-01

    Corrosion of metallic structural materials in complex gas environments of coal gasification and combustion is a potential problem. The corrosion process is dictated by concentrations of two key constituents: sulfur as H{sub 2}S or SO{sub 2} and chlorine as HCl. This paper presents a comprehensive review of the current status of the corrosion performance of alumina scales that are thermally grown on Fe-base alloys, including iron aluminides, in multicomponent gas environments of typical coal-conversion systems. Mechanisms of scale development/breakdown, performance envelopes for long-term usage of these materials, approaches to modifying the surfaces of engineering alloys by cladding or coating them with intermetallics, and in-service experience with these materials are emphasized. The results are compared with the performance of chromia-forming alloys in similar environments. The paper also discusses the available information on corrosion performance of alloys whose surfaces were enriched with Al by the electrospark deposition process or by weld overlay techniques.

  17. Screening of soil corrosivity by field testing: Results and design of an electrochemical soil corrosion probe

    DEFF Research Database (Denmark)

    Nielsen, Lars vendelbo; Bruun, Niels Kåre

    1996-01-01

    The corrosivity of different types of soil have been assessed by exposing carbon-steel plates at 50 different locations in Denmark for an extended period of time. The investigations included weight loss measurements and analysis of the chemical compositions of the corrosion products formed...... on the plates during exposure. An electrochemical soil corrosion probe has been designed and manufactured allowing for simultaneous measurements of several qauntities to predict corrosion. The probe consists of individual sections capable of measuring redox-potential, corrosion potential, soil resistivity...

  18. Marine atmospheric corrosion of carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Morcillo, M.; Alcantara, J.; Diaz, I.; Chico, B.; Simancas, J.; Fuente, D. de la

    2015-07-01

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products formed; (c) corrosion mechanisms of carbon steel in marine atmospheres; (d) exfoliation of rust layers formed in highly aggressive marine atmospheres; (e) long-term corrosion rate prediction; and (f) behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camarinas, Galicia) in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Mossbauer spectroscopy and SEM/μRaman spectroscopy. (Author)

  19. Steel corrosion products solubility under conditions simulating various water chemistry parameters in power plants

    International Nuclear Information System (INIS)

    Slobodov, A.A.; Kritskij, V.G.; Zarembo, V.I.; Puchkov, L.V.

    1988-01-01

    To simulate construction material corrosion product mass transfer model in power plant circuits calculation of iron oxide and hydroxide solubility, depending on water chemistry parameters: temperature, pH-value, content of dissolved in water hydrogen and oxygen, is carried out

  20. Shale gas production: potential versus actual greenhouse gas emissions

    OpenAIRE

    O'Sullivan, Francis Martin; Paltsev, Sergey

    2012-01-01

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during 2010. Data from each of the approximately 4000 horizontal shale gas wells brought online that year are used to show that about 900 Gg CH[subscript 4] of potential fugitive emissions were generated by these operations, or 228 Mg CH[subscript 4] per well—a figure inappropriately ...

  1. Iodine stress corrosion cracking (SCC) of unirradiated Zircaloy-4 tubing by means of internal gas pressurization, (1)

    International Nuclear Information System (INIS)

    Onchi, Takeo; Inoue, Tadashi

    1982-01-01

    The internal gas pressurization tests were conducted at 360 0 C, to examine the influence of iodine concentration on the iodine stress corrosion cracking (SCC) susceptibility of Zircaloy-4 tubing of 17 x 17 type PWR design. The iodine contents studied were ranging of 0.06 to 6 mg/cm 2 , corresponding to 30 from 0.3 mg/cm 3 . Applied hoop stress vs. time-to-failure relationships were obtained in argon gas with iodine, as well as without iodine, from the tests of maximum holding times up to 72 hrs. The relationships obtained were insensitive to iodine contents. The applied stress lowering in iodine atmosphere approached a threshold stress below which SCC failure did not occur within the holding time, but not in argon gas alone. The threshold stresses were approximately 25.5 kg/mm 2 (250 Mpa), independent on iodine concentrations. Based on fracture mechanics approach and fractographic analysis, an interpretation was made of those applied stress and time-to-failure relationships. (author)

  2. Application of natural antimicrobial compounds for reservoir souring and MIC prevention in offshore oil and gas production systems

    DEFF Research Database (Denmark)

    Thomsen, Mette Hedegaard; Skovhus, Torben Lund; Mashietti, Marco

    Offshore oil production facilities are subjectable to internal corrosion, potentially leading to human and environmental risk and significant economic losses. Microbiologically influenced corrosion (MIC) and reservoir souring - sulphide production by sulfate reducing microorganisms in the reservo...

  3. Thermodynamics and the transport of corrosion products in PWR primary circuits

    International Nuclear Information System (INIS)

    Turner, D.J.

    1992-01-01

    It is argued that practically useful models for the activation, transport and deposition of corrosion products in PWR primary circuits can only be produced on the basis of an improved understanding of the chemical processes which control them. In particular, if a model is to make reliable predictions it is essential that its thermodynamic basis be sound. This is not the case with most current models which employ the erroneous concept of a corrosion product 'solubility'. In addition to the misuse of this term, other complications are discussed. These include the need to take account of the consequences of Gibbs' phase rule and the fact that, for mixed spinels, neither the concept of a thermodynamic solubility nor of a solubility product is valid. There is no reason to believe that measured apparent solubilities of nickel ferrites or spinel mixtures containing cobalt can give any direct guidance on the direction of transport of Ni or Co in PWR primary circuits. This is more likely to be determined by the distribution of stable and unstable ferrites and chromites than by any temperature coefficient of apparent solubility. Most of the transport of Ni and Co into and out of the core probably occurs as a consequence of either chemical or mechanical transients. Most important is likely to be the oxidative destruction and subsequent re-precipitation of chromites which occurs as a consequence of the oxygenated conditions employed during plant shutdown. (author)

  4. The effect of Co-firing with Straw and Coal on High Temperature Corrosion

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Frandsen, Flemming; Larsen, OH

    2001-01-01

    As a part of ELSAMS development programme into alternative energy sources, various concepts of straw-firing have been investigated. This paper concerns co-firing of straw with coal to reduce the corrosion rate observed in straw-fired power plants. Co-firing with coal reduces the amount of potassium......: a) the exposure of metal rings on water/air cooled probes, and b) the exposure of a range of materials built into the existing superheaters. A range of austenitic and ferritic steels was exposed in the steam temperature region of 520-580°C. The flue gas temperature ranged from 925-1100°C....... The corrosion products for the various steel types were investigated using light optical and scanning electron microscopy. Corrosion mechanisms for the austenitic and ferritic steels are presented. These are discussed in relation to temperature and deposit composition. Co-firing with coal has removed potassium...

  5. Exposure testing of fasteners in preservative treated wood : gravimetric corrosion rates and corrosion product analyses

    Science.gov (United States)

    Samuel L. Zelinka; Rebecca J. Sichel; Donald S. Stone

    2010-01-01

    Research was conducted to determine the corrosion rates of metals in preservative treated wood and also understand the mechanism of metal corrosion in treated wood. Steel and hot-dip galvanized steel fasteners were embedded in wood treated with one of six preservative treatments and exposed to 27oC at 100% relative humidity for 1 year. The...

  6. PRODUCTION OF POROUS POWDER MATERIALS OF SPHERICAL POWDERS OF CORROSION-RESISTANT STEEL

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevskij

    2012-01-01

    Full Text Available Production of porous powder materials from spherical powders of corrosion-resistant steel 12Х18н10Т with formation at low pressures 120–140 mpa in the mold with the subsequent activated sintering became possible due to increase of duration of process of spattering and formation of condensate particles (Si–C or (Mo–Si on surface.

  7. Mini-review: The Morphology, Mineralogy and Microbiology of Accumulated Iron Corrosion Products

    Science.gov (United States)

    2014-03-11

    including the morphology, mineralogy , microbiology and the mecha- nisms for formation. Use of descriptive terms to denote specific iron corrosion product...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 11-03-2014 Journal Article Mini-review: the morphology, mineralogy and microbiology of...oxides/ hydroxides with a preponderance of α-FeOOH (goethite) and accumulation of metals. Bacteria, particularly iron-oxidizing and sulfatereducing

  8. Method of inhibiting concentration of radioactive corrosion products in cooling water or nuclear power plants

    International Nuclear Information System (INIS)

    Takabayashi, Jun-ichi; Hishida, Mamoru; Ishikura, Takeshi.

    1979-01-01

    Purpose: To suppress the increase in the concentration of the radioactive corrosion products in cooling water, which increase is accompanied by the transference of the corrosion products activated and accumulated in the core due to dissolution and exfoliation into the core water, and inhibit the flowing of said products out of the core and the diffusion thereof into the cooling system, thereby to prevent the accumulation of said products in the cooling system and prevent radioactive contaminations. Method: In a nuclear power plant of a BWR type light water reactor, when the temperature of the pile water is t 0 C, hydrogen is injected in cooling water in a period of time from immediately before starting of the drive stopping operation of the nuclear power plant to immediately after the termination of restarting operation, whereby the concentration of hydrogen in the reactor water through said period is maintained at a value more than 2exp (0.013 t) cm 3 N.T.P./kg H 2 O. (Aizawa, K.)

  9. Studies on the impact, detection, and control of microbiology influenced corrosion related to pitting failures in the Russian oil and gas industry. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    Ehst, D.

    2006-09-30

    The objectives of the Project are: (1) to design effective anti-corrosion preparations (biocides, inhibitors, penetrants and their combinations) for gas- and oil-exploration industries; (2) to study a possibility of development of environmentally beneficial ('green') biocides and inhibitors of the new generation; (3) to develop chemical and microbiological methods of monitoring of sites at risk of corrosion; and (4) to evaluate potentialities in terms of technology, raw materials and material and technical basis to set up a production of effective anti-corrosion preparations of new generation in Russia. During the four years of the project 228 compounds and formulations were synthesized and studied in respect to their corrosion inhibiting activity. A series of compounds which were according to the Bubble tests more efficient (by a factor of 10-100) than the reference inhibitor SXT-1102, some possessing the similar activity or slightly better activity than new inhibitor ??-1154? (company ONDEO/Nalco). Two synthetic routes for the synthesis of mercaptopyrimidines as perspective corrosion inhibitors were developed. Mercaptopyrimidine derivatives can be obtained in one or two steps from cheap and easily available precursors. The cost for their synthesis is not high and can be further reduced after the optimization of the production processes. A new approach for lignin utilization was proposed. Water-soluble derivative of lignin can by transformed to corrosion protective layer by its electropolymerization on a steel surface. Varying lignosulfonates from different sources, as well as conditions of electrooxidation we proved, that drop in current at high anodic potentials is due to electropolymerization of lignin derivative at steel electrode surface. The electropolymerization potential can be sufficiently decreased by an increase in ionic strength of the growing solution. The lignosulfonate electropolymerization led to the considerable corrosion protection

  10. Influence of Chloride Ion and Temperature on the Corrosion Behavior of Ni-Fe-Cr Alloy 028

    Science.gov (United States)

    Zhang, L. N.; Dong, J. X.; Szpunar, J. A.; Zhang, M. C.; Basu, R.

    Recently, the working condition of tubing systems used in oil and natural gas industries are severer than before with the increasing exploitation of acidic gas fields. The corrosion problems induced from the corrosive environment with chloride ion medium and high temperature have been much more concerned. The presence of chloride ion can accelerate the dissolution of metals. The corrosion performance is also sensitive to the operating temperature. Classic localized corrosions such as the pitting or the crevice type due to environmental temperature and chloride ion.

  11. Identification of microorganisms associated with corrosion of offshore oil production systems

    Science.gov (United States)

    Sørensen, Ketil; Grigoryan, Aleksandr; Holmkvist, Lars; Skovhus, Torben; Thomsen, Uffe; Lundgaard, Thomas

    2010-05-01

    Microbiologically influenced corrosion (MIC) poses a major challenge to oil producers and distributors. The annual cost associated with MIC-related pipeline failures and general maintenance and surveillance of installations amounts to several billion dollar in the oil production sector alone. Hence, large efforts are undertaken by some producers to control and monitor microbial growth in pipelines and other installations, and extensive surveillance programs are carried out in order to detect and quantify potential MIC-promoting microorganisms. Traditionally, efforts to mitigate and survey microbial growth in oil production systems have focused on sulfate-reducing Bacteria (SRB), and microorganisms have usually been enumerated by the culture-dependent MPN (most probable number) -technique. Culture-independent molecular tools yielding much more detailed information about the microbial communities have now been implemented as a reliable tool for routine surveillance of oil production systems in the North Sea. This has resulted in new and hitherto unattainable information regarding the distribution of different microorganisms in hot reservoirs and associated oil production systems. This presentation will provide a review of recent insights regarding thermophilic microbial communities and their implication for steel corrosion in offshore oil production systems. Data collected from solids and biofilms in different corroded pipelines and tubes indicate that in addition to SRB, other groups such as methanogens and sulfate-reducing Archaea (SRA) are also involved in MIC. In the hot parts of the system where the temperature approaches 80 ⁰C, SRA closely related to Archaeoglobus fulgidus outnumber SRB by several orders of magnitude. Methanogens affiliated with the genus Methanothermococcus were shown to completely dominate the microbial community at the metal surface in a sample of highly corroded piping. Thus, the microbial communities associated with MIC appear to be more

  12. Preliminary report on the commercial viability of gas production from natural gas hydrates

    Science.gov (United States)

    Walsh, M.R.; Hancock, S.H.; Wilson, S.J.; Patil, S.L.; Moridis, G.J.; Boswell, R.; Collett, T.S.; Koh, C.A.; Sloan, E.D.

    2009-01-01

    Economic studies on simulated gas hydrate reservoirs have been compiled to estimate the price of natural gas that may lead to economically viable production from the most promising gas hydrate accumulations. As a first estimate, $CDN2005 12/Mscf is the lowest gas price that would allow economically viable production from gas hydrates in the absence of associated free gas, while an underlying gas deposit will reduce the viability price estimate to $CDN2005 7.50/Mscf. Results from a recent analysis of the simulated production of natural gas from marine hydrate deposits are also considered in this report; on an IROR basis, it is $US2008 3.50-4.00/Mscf more expensive to produce marine hydrates than conventional marine gas assuming the existence of sufficiently large marine hydrate accumulations. While these prices represent the best available estimates, the economic evaluation of a specific project is highly dependent on the producibility of the target zone, the amount of gas in place, the associated geologic and depositional environment, existing pipeline infrastructure, and local tariffs and taxes. ?? 2009 Elsevier B.V.

  13. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement

    Science.gov (United States)

    Monnot, Martin; Nogueira, Ricardo P.; Roche, Virginie; Berthomé, Grégory; Chauveau, Eric; Estevez, Rafael; Mantel, Marc

    2017-02-01

    Thanks to their high corrosion resistance, super martensitic stainless steels are commonly used in the oil and gas industry, particularly in sour environments. Some grades are however susceptible to undergo hydrogen and mechanically-assisted corrosion processes in the presence of H2S, depending on the pH. The martensitic stainless steel EN 1.4418 grade exhibits a clear protective passive behavior with no sulfide stress corrosion cracking when exposed to sour environments of pH ≥ 4, but undergoes a steep decrease in its corrosion resistance at lower pH conditions. The present paper investigated this abrupt loss of corrosion resistance with electrochemical measurements as well as different physicochemical characterization techniques. Results indicated that below pH 4.0 the metal surface is covered by a thick (ca 40 μm) porous and defect-full sulfide-rich corrosion products layer shown to be straightforwardly related to the onset of hydrogen and sulfide mechanically-assisted corrosion phenomena.

  14. The anaerobic corrosion of carbon steel in concrete

    International Nuclear Information System (INIS)

    Naish, C.C.; Balkwill, P.H.; O'Brien, T.M.; Taylor, K.J.; Marsh, G.P.

    1990-11-01

    The report describes the work of a two year programme investigating the anaerobic corrosion of carbon steel embedded in a range of candidate repository cements and concretes at laboratory ambient temperatures. The factors investigated in the study were the rate of the anaerobic corrosion reaction, the effect of hydrogen overpressure on the reaction rate and the form of the corrosion product. Both electrochemical and sample weight loss corrosion rate measurements were used. The cements and concretes used were prepared both with and without small additions of chloride (2% by weight of mix water). The results indicate that the corrosion rate is low, <1 μm/year, the effect of hydrogen overpressure is not significant over the range of pressures investigated, 1-100 atmospheres, and that the corrosion product is dependent on the cement used to cast the samples. Magnetite was identified in the case of blast furnace slag replacement cements but for pulverised fuel ash and ordinary Portland cements no corrosion product was evident either from X-ray diffraction or laser Raman measurements. (Author)

  15. Effect of Plasma Nitriding Process Conditions on Corrosion Resistance of 440B Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Łępicka Magdalena

    2014-09-01

    Full Text Available Martensitic stainless steels are used in a large number of various industrial applications, e.g. molds for plastic injections and glass moldings, automotive components, cutting tools, surgical and dental instruments. The improvement of their tribological and corrosion properties is a problem of high interest especially in medical applications, where patient safety becomes a priority. The paper covers findings from plasma nitrided AISI 440B (PN-EN or DIN X90CrMoV18 stainless steel corrosion resistance studies. Conventionally heat treated and plasma nitrided in N2:H2 reaction gas mixture (50:50, 65:35 and 80:20, respectively in two different temperature ranges (380 or 450°C specimens groups were examined. Microscopic observations and electrochemical corrosion tests were performed using a variety of analytical techniques. As obtained findings show, plasma nitriding of AISI 440B stainless steel, regardless of the process temperature, results in reduction of corrosion current density. Nevertheless, applying thermo-chemical process which requires exceeding temperature of about 400°C is not recommended due to increased risk of steel sensitization to intergranular and stress corrosion. According to the results, material ion nitrided in 450°C underwent leaching corrosion processes, which led to significant disproportion in chemical composition of the corroded and corrosion-free areas. The authors suggest further research into corrosion process of plasma nitrided materials and its degradation products.

  16. Corrosion in artificial saliva of a Ni-Cr-based dental alloy joined by TIG welding and conventional brazing.

    Science.gov (United States)

    Matos, Irma C; Bastos, Ivan N; Diniz, Marília G; de Miranda, Mauro S

    2015-08-01

    Fixed prosthesis and partial dental prosthesis frameworks are usually made from welded Ni-Cr-based alloys. These structures can corrode in saliva and have to be investigated to establish their safety. The purpose of this study was to evaluate the corrosion behavior of joints joined by tungsten inert gas (TIG) welding and conventional brazing in specimens made of commercial Ni-Cr alloy in Fusayama artificial saliva at 37°C (pH 2.5 and 5.5). Eighteen Ni-Cr base metal specimens were cast and welded by brazing or tungsten inert gas methods. The specimens were divided into 3 groups (base metal, 2 welded specimens), and the composition and microstructure were qualitatively evaluated. The results of potential corrosion and corrosion current density were analyzed with a 1-way analysis of variance and the Tukey test for pairwise comparisons (α=.05). Base metal and tungsten inert gas welded material showed equivalent results in electrochemical corrosion tests, while the air-torched specimens exhibited low corrosion resistance. The performance was worst at pH 2.5. These results suggest that tungsten inert gas is a suitable welding process for use in dentistry, because the final microstructure does not reduce the corrosion resistance in artificial saliva at 37°C, even in a corrosion-testing medium that facilitates galvanic corrosion processes. Moreover, the corrosion current density of brazed Ni-Cr alloy joints was significantly higher (P<.001) than the base metal and tungsten inert gas welded joints. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. The influence of the internal microbiome on the materials used for construction of the transmission natural gas pipelines in the Lodz Province

    Science.gov (United States)

    Staniszewska, Agnieszka; Jastrzębska, Magdalena; Ziemiński, Krzysztof

    2017-10-01

    This paper presents investigation results of the influence of gas microbes on the biocorrosion rate of the materials used for gas pipelines construction in the Lodz Province. Samples of two types of carbon steel and cast iron were stored in the laboratory pipeline model reflecting the real conditions of working natural gas pipelines were. In the next step the influence of cathodic protection with parameters recommended for protection of underground structures was tested. Analyses of biological corrosion products generated on the test surface were carried out using a scanning electron microscope with an X-ray analyzer. The level of ATP was measured to confirm presence of the adsorbed microorganisms on the observed structures. Corrosion rates were determined by gravimetric methods. In the course of the study it was revealed that the rate of biocorrosion of steel is lower than that for cast iron. Our results also proved that the weight corrosion rate depends on the number of adhered microorganisms. In addition, it has been found that application of the carbon steel cathodic protection decreases its weight corrosion rate. The information obtained will help to increase the knowledge on the rate of biological corrosion causing losses/pits inside gas pipline.

  18. X-ray diffraction study of slags forming during corrosion resistant steel production

    International Nuclear Information System (INIS)

    Slavov, V.I.; Zadorozhnaya, V.N.; Shurygina, A.V.

    1990-01-01

    Using X-ray diffraction analysis slags, forming during corrosion-resistant 12Kh18N10T grade steel production by two flowsheets, are studied. Standard two-slag technology of steel production does not provide efficient disintegration of chromospinelides in slags, gives high steel contamination with respect to nonmetallic impurities, coarse structure and, as a consequence, presence of macrodefects on rolled products surface. One-slag steel melting technology with titanium alloying of the steel at vacuum causes fast removal of chromospinelides at the beginning of reduction period, promotes titanium absorption by the steel, refines nonmetallic inclusions, provides more fine structure and steel plasticity, removes surface defects

  19. Price impact on Russian gas production and export

    International Nuclear Information System (INIS)

    Kononov, Y.D.

    2003-01-01

    The paper examines the prospects for Russian gas output and export under different price development. Growth of gas production and transportation costs, following an increase of gas export and production, is estimated. An attempt is made to determine the relation of efficient (from the point of view of gas companies) gas export volumes to prices on external energy markets. The paper presents a quantitative estimate of the possible impact of domestic gas price policy on gas output in Western Siberia. (author)

  20. Initiation and developmental stages of steel corrosion in wet H2S environments

    International Nuclear Information System (INIS)

    Bai, Pengpeng; Zhao, Hui; Zheng, Shuqi; Chen, Changfeng

    2015-01-01

    Highlights: • The initiation and development stages of steel corrosion in wet H 2 S environment were investigated. • Preferential dissolution at the grain boundaries of steel allowed corrosion products to form and accumulate. • The shapes and crystal types of corrosion products at various steel layers differed. • With increasing duration time, the S 2− peak with a binding energy of 161.2 eV gradually decreased. • A model of the formation process of corrosion product films was proposed. - Abstract: The initiation and various developmental stages of steel corrosion in H 2 S environments were investigated using atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Results revealed that grain boundaries corrode at the initiation stage and that corrosion products initially form on both sides of the grain boundary and then accumulate. Corrosion products grew at the interface between the steel and corrosion product layer at the developmental stage. XPS analyses showed the composition and valence states of the corrosion products, and a model of the formation process of corrosion product films was proposed

  1. FEM Modelling of the Evolution of Corrosion Cracks in Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Corrosion cracks are caused by the increasing volume of corrosion products during the corrosion of the reinforcement. After corrosion initiation the rust products from the corroded reinforcement will initially fill the porous zone near the reinforcement and the result in an expansion of the concr......Corrosion cracks are caused by the increasing volume of corrosion products during the corrosion of the reinforcement. After corrosion initiation the rust products from the corroded reinforcement will initially fill the porous zone near the reinforcement and the result in an expansion...... of the concrete near the reinforcement. Tensile stresses are then initiated in the concrete. With increasing corrosion, the tensile stresses will at a certain time reach a critical value and cracks will be developed. The increase of the crack with after formation of the initial crack is the subject of this paper...

  2. EVALUATION OF CORROSION COST OF CRUDE OIL PROCESSING INDUSTRY

    Directory of Open Access Journals (Sweden)

    ADESANYA A.O.

    2012-08-01

    Full Text Available Crude oil production industry as the hub of Nigeria Economy is not immune to the global financial meltdown being experienced world over which have resulted in a continual fall of oil price. This has necessitated the need to reduce cost of production. One of the major costs of production is corrosion cost, hence, its evaluation. This research work outlined the basic principles of corrosion prevention, monitoring and inspection and attempted to describe ways in which these measures may be adopted in the context of oil production. A wide range of facilities are used in crude oil production making it difficult to evaluate precisely the extent of corrosion and its cost implication. In this study, cost of corrosion per barrel was determined and the annualized value of corrosion cost was also determined using the principles of engineering economy and results analyzed using descriptive statistics. The results showed that among the corrosion prevention methods identified, the use of chemical treatment gave the highest cost contribution (81% of the total cost of prevention while coating added 19%. Cleaning pigging and cathodic protection gave no cost. The contribution of corrosion maintenance methods are 60% for repairs and 40% for replacement. Also among the corrosion monitoring and inspection identified, NDT gave the highest cost contribution of 41% of the total cost, followed by coating survey (34%. Cathodic protection survey and crude analysis gives the lowest cost contribution of 19% and 6% respectively. Corrosion control cost per barrel was found to be 77 cent/barrel. The significance of this cost was not much due to high price of crude oil in the international market. But the effect of corrosion in crude oil processing takes its toll on crude oil production (i.e. deferment.

  3. Management of Microbiologically Influenced Corrosion in Risk-Based Inspection Analysis

    DEFF Research Database (Denmark)

    Skovhus, Torben Lund; Andersen, Erlend S.; Hillier, Elisabeth

    2018-01-01

    Operating offshore oil and gas production facilities is often associated with high risk. To manage the risk, operators commonly use aids to support decision making in the establishment of a maintenance and inspection strategy. Risk-based inspection (RBI) analysis is widely used in the offshore...... industry as a means to justify the inspection strategy adopted. The RBI analysis is a decision-making technique that enables asset managers to identify the risk related to failure of their most critical systems and components, with an effect on safety, environmental, and business-related issues. Risk...... influenced corrosion (MIC) is a degradation mechanism that has received increased attention from corrosion engineers and asset operators in the past decades. In this paper, the most recent models that have been developed to assess the impact of MIC on asset integrity will be presented and discussed. From...

  4. China's natural gas: Resources, production and its impacts

    International Nuclear Information System (INIS)

    Wang, Jianliang; Feng, Lianyong; Zhao, Lin; Snowden, Simon

    2013-01-01

    In order to achieve energy consumption targets, and subsequently reduce carbon emissions, China is working on energy strategies and policies aimed at actively increasing the consumption of natural gas—the lowest carbon energy of the fossil fuels, and to enhance the proportion of gas in total primary energy consumption. To do this, it is a necessary prerequisite that China must have access to adequate gas resources and production to meet demand. This paper shows that the availability of domestic gas resources are overestimated by China's authorities due to differences in classification and definitions of gas resources/reserves between China and those accepted internationally. Based on official gas resource figures, China's gas production remains low with respect to the projected demand, and will only be 164.6 bcm in 2020, far lower than the 375 bcm of forecast demand. The gap between gas production and demand will reach 210.4 bcm by 2020. Existing plans for the importation of gas and the development of unconventional gas will not close this gap in the next 10 years, and this situation will therefore present a severe challenge to China's gas security, achievement of targets in improving energy consumption structure and reducing carbon emissions. - Highlights: ► We show that available gas resources are overestimated by China's authorities. ► We forecast China's future gas production under different resource scenarios. ► This paper shows that China's gas production will not meet the soaring demand. ► The gap between supply and demand will continue to increase rapidly in future. ► China's gas security will meet a severe challenge because of this increasing gap

  5. Effect of water chemistry on corrosion of stainless steel and deposition of corrosion products in high temperature pressurised water

    International Nuclear Information System (INIS)

    Morrison, Jonathan; Cooper, Christopher; Ponton, Clive; Connolly, Brian; Banks, Andrew

    2012-09-01

    In any water-cooled nuclear reactor, the corrosion of the structural materials in contact with the coolant and the deposition of the resulting oxidised species has long been an operational concern within the power generation industry. Corrosion of the structural materials at all points in the reactor leads to low concentrations of oxidised metal species in the coolant water. The oxidised metal species can subsequently be deposited out as CRUD deposits at various points around the reactor's primary and secondary loops. The deposition of soluble oxidised material at any location in the reactor cooling system is undesirable due to several effects; deposits have a porous structure, capable of incorporating radiologically active material (forming out of core radiation fields) and concentrating aggressively corrosive chemicals, which exacerbate environmental degradation of structural and fuel-cladding materials. Deposits on heat transfer surfaces also limit efficiency of the system as a whole. The work in this programme is an attempt to determine and understand the fundamental corrosion and deposition behaviour under controlled, simulated reactor conditions. The rates of corrosion of structural materials within pressurised water reactors are heavily dependent on the condition of the exposed surface. The effect of mechanical grinding and of electropolishing on the corrosion rate and structure of the resultant oxide film formed on grade 316L stainless steel exposed to high purity water, modified to pH 9.5 and 10.5 at temperatures between 200 and 300 deg. C and pressures of up to 100 bar will be investigated. The corrosion of stainless steel in water via electrochemical oxidation leads to the formation of surface iron, nickel and chromium based spinels. Low concentrations of these spinels can be found dissolved in the coolant water. The solubility of magnetite, stainless steels' major corrosion product, in high purity water will be studied at pH 9.5 to 10.5 at

  6. Probabilistic modelling of gas generation in nuclear waste repositories under consideration of new studies performed at the WIPP

    International Nuclear Information System (INIS)

    Niemeyer, M.; Wilhelm, S.; Poppei, J.

    2012-01-01

    Document available in extended abstract form only. The inventory of a nuclear waste repository includes significant amounts of metal and organic matter. Under the prevailing conditions in a repository in a salt formation in contact with water, these materials tend to react and transform under significant gas production. This increases the pressure and potentially leads to an enhanced transport of radio nuclides. Therefore, these phenomena need to be understood and characterized in detail for the assessment of the safety of the repository A modelling code, GASGEN, developed by AF-Consult Switzerland Ltd to predict the evolution of gas production by microbial processes and anaerobic corrosion of metal, was applied at two locations of repositories in salt rock in Germany. Therein, the microbial decomposition of organic waste components is modelled by the sub-processes of denitrification, reduction of sulphates, fermentation and methano-genesis. The models differentiate between highly degradable cellulose and materials of lesser degradability, such as polymers. Gas production through anaerobic corrosion of metal is mainly due to the iron content of the waste. In addition, the precipitation of carbonate from alkaline materials in the inventory (e.g. cement) is considered. The inventories of contained waste, which determine the amount of gas that can be produced, are subject to uncertainties. The rates of the various reactions also depend on numerous factors and are therefore variable. In order to cover this variability, gas production is modelled probabilistically. In this way the behaviour of the gas generation can be estimated together with its bandwidth Figure 1. In addition to the produced amounts of gas, the model calculations also consider the potential of acidification of the fluid enclosed in the repository chambers and the effect of a changing pH-level on the rate of corrosion. Based on results, the effect of a pH-dependent corrosion rate is illustrated and the

  7. Specific corrosion product on interior surface of a bronze wine vessel with loop-handle and its growth mechanism, Shang Dynasty, China

    Energy Technology Data Exchange (ETDEWEB)

    Li Yang; Bao Zhirong; Wu Taotao [School of Physics and Technology, Center for Electron Microscopy and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072 (China); Jiang, Junchun [Xiaogan Museum, Xiaogan 432000 (China); Chen Guantao [Center for Archaeometry, Wuhan University, Wuhan 430072 (China); Pan Chunxu, E-mail: cxpan@whu.edu.cn [School of Physics and Technology, Center for Electron Microscopy and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072 (China); Center for Archaeometry, Wuhan University, Wuhan 430072 (China)

    2012-06-15

    In this paper, a kind of specific stalactitic product was found on the interior surface of a covered bronze wine vessel with loop-handle (Chinese name is you), which was fabricated in Shang Dynasty (1700 B.C.-1100 B.C.) and now is collected in Xiaogan Museum, Hubei province of China. The microstructures of the product were characterized systematically by using optical microscopy, scanning electron microscope, transmission electron microscope, X-ray diffraction, and Raman microscopy. The experimental results revealed that the product belonged to a kind of malachite with high purity and high crystallinity. The growth of the product was considered to be a possible reason that the vessel was overly airtight within a museum display cabinet besides a lid of the vessel, which made the excess of H{sub 2}O and CO{sub 2} gas concentrations inside the vessel during long-term storage. This corrosion product is very harmful to bronze cultural relics, because of a large amount of copper consumption from the matrix which will reduce its life. The growth mechanism of the specific stalactitic product and the suggestions for preservation of the similar bronze relics in museum were proposed. - Highlights: Black-Right-Pointing-Pointer The stalactitic product was the high purity and good crystallinity malachite. Black-Right-Pointing-Pointer Its growth was related to the excess of H{sub 2}O and CO{sub 2} gas concentrations in museum. Black-Right-Pointing-Pointer It is harmful to the bronzes, because copper will be consumed from the matrix. Black-Right-Pointing-Pointer The suggestions for preservation of the similar bronzes in museum were proposed.

  8. Corrosion in waste incineration facilities; Korrosion i avfallsfoerbraenningsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Staalenheim, Annika; Henderson, Pamela

    2004-11-01

    Waste is a heterogeneous fuel, often with high levels of chlorine, alkali and heavy metals. This leads to much more severe corrosion problems than combustion of fossil fuels. The corrosion rates of the materials used can be extremely high. Materials used for heat transferring parts are usually carbon steel or low alloyed steel. These are significantly cheaper than other steels. Austenitic stainless steel is also used, but is often avoided due to its sensitivity to stress corrosion cracking. More advanced materials, such as nickel base alloys, can be used in extremely aggressive environments. Since these materials are expensive and do not always have sufficient mechanical properties, they are often used as coatings on carbon steel tubes or as composite tubes. A new method, which shows good results at the first tests in plants, is electroplating with nickel. Plastic materials can be used in low temperature parts if the temperature does not exceed 150 deg C. A glass fibre inforced material is probably the best choice. The parts of the furnace that are most prone to corrosion are waterwalls where the refractory coating is lost, has not been applied to a sufficient height in the boiler or is not used at all. Failures of superheaters often occur in areas near soot blowers or on the tubes exposed to the highest flue gas temperatures. Few cases of low temperature corrosion are reported in the literature, possibly because these problems are unusual or because low temperature corrosion rarely causes costly and dramatic failures. Waterwall tubes should be made of carbon steel, because of the price and to minimise the risk for stress corrosion cracking. Usually the tubes must be covered with a more corrosion resistant material to withstand the environment in the boiler. Metal coatings can be used in less demanding environments. Refractory is probably the best protection for waterwalls from severe erosion. Surfaces in extremely corrosive areas, e.g. the fuel feed area, should

  9. European energy security: The future of Norwegian natural gas production

    International Nuclear Information System (INIS)

    Soederbergh, Bengt; Jakobsson, Kristofer; Aleklett, Kjell

    2009-01-01

    The European Union (EU) is expected to meet its future growing demand for natural gas by increased imports. In 2006, Norway had a 21% share of EU gas imports. The Norwegian government has communicated that Norwegian gas production will increase by 25-40% from today's level of about 99 billion cubic meters (bcm)/year. This article shows that only a 20-25% growth of Norwegian gas production is possible due to production from currently existing recoverable reserves and contingent resources. A high and a low production forecast for Norwegian gas production is presented. Norwegian gas production exported by pipeline peaks between 2015 and 2016, with minimum peak production in 2015 at 118 bcm/year and maximum peak production at 127 bcm/year in 2016. By 2030 the pipeline export levels are 94-78 bcm. Total Norwegian gas production peaks between 2015 and 2020, with peak production at 124-135 bcm/year. By 2030 the production is 96-115 bcm/year. The results show that there is a limited potential for increased gas exports from Norway to the EU and that Norwegian gas production is declining by 2030 in all scenarios. Annual Norwegian pipeline gas exports to the EU, by 2030, may even be 20 bcm lower than today's level.

  10. Corrosion control in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Steele, D.F.

    1986-01-01

    This article looks in detail at tribology-related hazards of corrosion in irradiated fuel reprocessing plants and tries to identify and minimize problems which could contribute to disaster. First, the corrosion process is explained. Then the corrosion aspects at each of four stages in reprocessing are examined, with particular reference to oxide fuel reprocessing. The four stages are fuel receipt and storage, fuel breakdown and dissolution, solvent extraction and product concentration and waste management. Results from laboratory and plant corrosion trails are used at the plant design stage to prevent corrosion problems arising. Operational procedures which minimize corrosion if it cannot be prevented at the design stage, are used. (UK)

  11. Research on corrosion aspects of the advanced cold process canister

    International Nuclear Information System (INIS)

    Blackwood, D.J.; Hoch, A.R.; Naish, C.C.; Rance, A.

    1994-01-01

    The Advanced Cold Process Canister (ACPC) is a waste canister being developed jointly by SKB and TVO for the disposal of spent nuclear fuel. It comprises an outer copper canister, with a carbon steel canister inside. A concern regarding the use of the ACPC is that, in the unlikely event that the outer copper canister is penetrated, the anaerobic corrosion of the carbon steel container may result in the formation of hydrogen gas bubbles. These bubbles could disrupt the backfill, and thus increase water flow through the near field and the flux of radionuclides to the host geology. A number of factors that influence the rate at which hydrogen evolves as a result of the anaerobic corrosion of carbon steel in artificial granitic groundwaters have been investigated. A previously observed, time-dependent decline in the hydrogen evolution rate has been confirmed as being due to the production of magnetite film. Once the magnetite film is about 0.7-1.0 μm thick, the rate of hydrogen evolution reaches a steady state value. The pH and the ionic strength of the groundwater were both found to influence the long-term hydrogen evolution rate. The results of the experimental programme were used to update a model of the corrosion behaviour and hydrogen production from the Advanced Cold Process Canister. 36 figs, 5 tabs, 13 refs

  12. Standard test method for determining whether gas-leak-detector fluid solutions can cause stress corrosion cracking of brass alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers an accelerated test method for evaluating the tendency of gas leak detection fluids (LDFs) to cause stress corrosion cracking (SCC) of brass components in compressed gas service. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use.

  13. Influence of silver on the anodic corrosion and gas evolution of Pb-Sb-As-Se alloys as positive grids in lead acid batteries

    International Nuclear Information System (INIS)

    Tizpar, A.; Ghasemi, Z.

    2006-01-01

    The influence of silver addition in the range 0.01-0.09 wt.% on the anodic corrosion and gas evolution of Pb-Sb-As-Se alloy in 1.28 sp.gr. H 2 SO 4 solution at 25 deg. C was studied using linear sweep voltammetry, cyclic voltammetry, weight loss measurements and scanning electron microscopy. The results drawn from different techniques are comparable. The effect of different concentration of silver on the corrosion behavior of Pb-Sb-As-Se was investigated. The experimental results show that the silver added to Pb-Sb-As-Se alloy inhibits the growth of anodic corrosion layer. A decrease in the oxygen evolution overpotential and an increase in the hydrogen evolution overpotential with the addition of Ag were also observed during the experiments. Cyclic voltammetric measurements provided information on the effect of Ag on the oxidation of PbSO 4 to PbO 2

  14. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Science.gov (United States)

    2010-10-01

    ...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2629 External... external corrosive attack must be protected from external corrosion by— (1) Material that has been designed...

  15. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review

    OpenAIRE

    Dwivedi, D.; Lepkova, K.; Becker, T.

    2017-01-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The rev...

  16. Laboratory Study of High Temperature Corrosion in Straw-fired Power Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel

    1997-01-01

    The components contributing to corrosion, HCl(g)SO2(g), KCl and K2SO4 were studied in the laboratory for Sandvik 8LR30 and Sanicro 28. The influence of HCl and SO2 was investigated at 600C material temperature and 600/800C flue gas temperature at time intervals up to 300 hours. The influence of ash...... deposits in air was examined at 525C-700C. Finally exposures were undertaken combining the aforementioned aggressive gas environment with the ash deposits. Thus the corrosion potential of individual components were evaluated and also whether they had a synergistic, antagonistic or additive effect on one...... another to influence the overall corrosion rate....

  17. Characterisation of the corrosion products of non-irradiated material test reactors fuel elements (MTR-FE)

    Energy Technology Data Exchange (ETDEWEB)

    Mazeina, L.; Curtius, H.; Fachinger, J. [Inst. for Safety Research and Reactor Technology, Research Centre Juelich (Germany)

    2003-07-01

    In a high concentrated Mg-rich brine a non-irradiated MTR-FE corroded. The formed corrosion products consists of an amorphous part and of hydrotalcites, which were identified as Mg-Al-hydrotalcites with chloride anions in the interlayer. (orig.)

  18. GASCAP: Wellhead Gas Productive Capacity Model documentation, June 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The Wellhead Gas Productive Capacity Model (GASCAP) has been developed by EIA to provide a historical analysis of the monthly productive capacity of natural gas at the wellhead and a projection of monthly capacity for 2 years into the future. The impact of drilling, oil and gas price assumptions, and demand on gas productive capacity are examined. Both gas-well gas and oil-well gas are included. Oil-well gas productive capacity is estimated separately and then combined with the gas-well gas productive capacity. This documentation report provides a general overview of the GASCAP Model, describes the underlying data base, provides technical descriptions of the component models, diagrams the system and subsystem flow, describes the equations, and provides definitions and sources of all variables used in the system. This documentation report is provided to enable users of EIA projections generated by GASCAP to understand the underlying procedures used and to replicate the models and solutions. This report should be of particular interest to those in the Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas

  19. Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits

    Science.gov (United States)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswel, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.B.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.A.

    2011-01-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas-hydrate (GH) petroleum system; to discuss advances, requirements, and suggested practices in GH prospecting and GH deposit characterization; and to review the associated technical, economic, and environmental challenges and uncertainties, which include the following: accurate assessment of producible fractions of the GH resource; development of methods for identifying suitable production targets; sampling of hydrate-bearing sediments (HBS) and sample analysis; analysis and interpretation of geophysical surveys of GH reservoirs; well-testing methods; interpretation of well-testing results; geomechanical and reservoir/well stability concerns; well design, operation, and installation; field operations and extending production beyond sand-dominated GH reservoirs; monitoring production and geomechanical stability; laboratory investigations; fundamental knowledge of hydrate behavior; the economics of commercial gas production from hydrates; and associated environmental concerns. ?? 2011 Society of Petroleum Engineers.

  20. Corrosion product deposition on fuel element surfaces of a boiling water reactor

    International Nuclear Information System (INIS)

    Orlov, A.

    2011-01-01

    Over the last decade the problem of corrosion products deposition on light water reactor fuel elements has been extensively investigated in relation to the possibility of failures caused by them. The goal of the present study is to understand in a quantitative way the formation of such kind of deposits and to analytically understand the mechanism of formation and deposition with help of the quasi-steady state concentrations of a number of 3d metals in reactor water. Recent investigations on the complex corrosion product deposits on a Boiling Water Reactor (BWR) fuel cladding have shown that the observed layer locally presents unexpected magnetic properties. The buildup of magnetic corrosion product deposits (crud) on the fuel cladding of the BWR, Kernkraftwerk Leibstadt (KKL) Switzerland has hampered the Eddy-current based measurements of ZrO 2 layer thickness. The magnetic behavior of this layer and its axial variation on BWR fuel cladding is of interest with respect to non-destructive cladding characterization. Consequently, a cladding from a BWR was cut at elevations of 810 mm, where the layer was observed to be magnetic, and of 1810 mm where it was less magnetic. The samples were subsequently analyzed using electron probe microanalysis (EPMA), magnetic analysis and X-ray techniques (μXRF, μXRD and μXAFS). Both EPMA and μXRF have shown that the observed corrosion deposit layer which is situated on the Zircaloy corrosion layer consists mostly of 3-d elements’ oxides (Fe, Zn, Ni and Mn). The distribution of these elements within the investigated layer is rather complex and not homogeneous. The main components identified by 2D μXRD mapping inside the layer were hematite and spinel phases with the common formula (M x Fe y )[M (1-x) Fe (2-y) ]O 4 , where M = Zn, Ni, Mn. With μXRD it was clearly shown that the cell parameter of analyzed spinel is different from the one of the pure endmembers (ZnFe 2 O 4 , NiFe 2 O 4 and MnFe 2 O 4 ) proving the existence of