WorldWideScience

Sample records for corrosion-resistant iron-aluminide feal

  1. Development of weldable, corrosion-resistant iron-aluminide (FeAl) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    A boron-microalloyed FeAl alloy (Fe-36Al-0.2Mo-0.05Zr-0.13C, at.%, with 100-400 appm B) with improved weldability and mechanical properties was developed in FY 1994. A new scale-up and industry technology development phase for this work began in FY 1995, pursuing two parallel paths. One path was developing monolithic FeAl component and application technology, and the other was developing coating/cladding technology for alloy steels, stainless steels and other Fe-Cr-Ni alloys. In FY 1995, it was found that cast FeAl alloys had good strength at 700-750{degrees}C, and some (2.5%) ductility in air at room-temperature. Hot-extruded FeAl with refined grain size was found to have ductility and to also have good impact-toughness at room-temperature. Further, it was discovered that powder-metallurgy (P/M) FeAl, consolidated by direct hot-extrusion at 950-1000{degrees}C to have an ultra fine-grained microstructure, had the highest ductility, strength and impact-toughness ever seen in such intermetallic alloys.

  2. Corrosion resistant iron aluminides exhibiting improved mechanical properties and corrosion resistance

    Science.gov (United States)

    Liu, Chain T.; McKamey, Claudette G.; Tortorelli, Peter F.; David, Stan A.

    1994-01-01

    The specification discloses a corrosion-resistant intermetallic alloy comprising, in atomic percent, an FeAl iron aluminide containing from about 30 to about 40% aluminum alloyed with from about 0.01 to 0.4% zirconium and from 0.01 to about 0.8% boron. The alloy exhibits considerably improved room temperature ductility for enhanced usefulness in structural applications. The high temperature strength and fabricability is improved by alloying with molybdenum, carbon, chromium and vanadium.

  3. Development of weldable, corrosion-resistant iron-aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    Corrosion-resistant, weldable FeAl alloys have been developed with improved high-temperature strength industrial applications. Previous processing difficulties with these alloys led to their evaluation as weld-overlay claddings on conventional structural steels to take advantage of their good properties now. Simplified and better processing methods for monolithic FeAl components are also currently being developed so that components for industrial testing can be made. Other avenues for producing FeAl coatings are currently being explored. Neutron scattering experiments residual stress distributions in the FeAl weld-overlay cladding began in FY 1993 and continued this year.

  4. A study on the formation of iron aluminide (FeAl) from elemental powders

    Energy Technology Data Exchange (ETDEWEB)

    Sina, H.; Corneliusson, J.; Turba, K.; Iyengar, S.

    2015-07-05

    Highlights: • Fe–40 at.% Al discs with coarse iron powder showed precombustion and combustion peaks. • Loose powder mixtures and discs with fine iron powder showed only combustion peaks. • Slower heating rate and fine aluminum particles promote precombustion. • The major product formed during both the reactions was Fe{sub 2}Al{sub 5}. • Heating the samples to 1000 °C yielded a stable FeAl phase as the final product. - Abstract: The formation of iron aluminide (FeAl) during the heating of Fe–40 at.% Al powder mixture has been studied using a differential scanning calorimeter. The effect of particle size of the reactants, compaction of the powder mixtures as well as the heating rate on combustion behavior has been investigated. On heating compacted discs containing relatively coarser iron powder, DSC data show two consecutive exothermic peaks corresponding to precombustion and combustion reactions. The product formed during both these reactions is Fe{sub 2}Al{sub 5} and there is a volume expansion in the sample. The precombustion reaction could be improved by a slower heating rate as well as a better surface coverage of iron particles using relatively finer aluminum powder. The combustion reaction was observed to be weaker after a strong precombustion stage. Heating the samples to 1000 °C resulted in the formation of a single and stable FeAl phase through the diffusional reaction between Fe{sub 2}Al{sub 5} and residual iron. DSC results for compacted discs containing relatively finer iron powder and for the non-compacted samples showed a single combustion exotherm during heating, with Fe{sub 2}Al{sub 5} as the product and traces of FeAl. X-ray diffraction and EDS data confirmed the formation of FeAl as the final product after heating these samples to 1000 °C.

  5. Tape casting as a fabrication process for iron aluminide (FeAl) thin sheets

    Energy Technology Data Exchange (ETDEWEB)

    Mistler, R.E. [Richard E. Mistler Inc., Morrisville, PA (United States); Sikka, V.K. [ORNL, PO Box 2008, Oak Ridge, TN 37831 (United States); Scorey, C.R.; McKernan, J.E. [Ametek Inc., 21 Toelles Road, Wallingford, CT 06492 (United States); Hajaligol, M.R. [Research and Development Center, Philip Morris USA, PO Box 26581, Richmond, VA 23261 (United States)

    1998-12-31

    The conversion of iron aluminide powder into a slurry followed by tape casting into a green sheet was investigated. Casting parameters affecting green sheet properties were studied. Application of thermo-mechanical processing including sintering, cold rolling, annealing and heat treating resulted in sheets with a fine-grain structure at essentially 100% of theoretical density. The various microstructures developed throughout the process are described, along with tensile property measurements on the fully dense product. Differences in property with sheets made by other processes are explained, and it is demonstrated that tape casting is a viable method of making thin gauge sheets of iron aluminide with a wide range of compositions. (orig.) 9 refs.

  6. A thermomechanical process to make iron aluminide (FeAl) sheet

    Energy Technology Data Exchange (ETDEWEB)

    Hajaligol, M.R.; Deevi, S.C. [Philip Morris Research Center, Richmond, VA (United States); Sikka, V.K. [Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37387 (United States); Scorey, C.R. [Ametek Specialty Metals Division, Wallingford, CT 06492 (United States)

    1998-12-31

    An innovative combination of roll compaction, and thermomechanical processing allowed manufacture of FeAl alloy intermetallic sheets with 24 wt.% Al content. Green sheets of FeAl were obtained by roll compaction of water atomized FeAl powder with a polymeric binder. Roll compacted green sheets were de-bindered and partially sintered prior to cold rolling through tungsten carbide rolls. Cold rolling decreased the thickness, reduced the level of porosity and work-hardened the sheets. Several intermediate annealings at or above 1100 C were found to be necessary to relieve the work hardening stresses prior to rolling the sheets to a final thickness of 0.20 mm. The annealing temperatures were chosen to be at or above 1100 C to allow concurrent sintering of FeAl necessary for the densification of FeAl sheets. Thermomechanical processing of cold rolled sheets allowed commercial manufacture of FeAl intermetallic sheets without the necessity of hot rolling of a cast FeAl ingot. Fully dense sheets possess fine grain microstructure with an average grain size of 20 {mu}m. The electrical resistivities of FeAl sheets can be varied from 140 to 155 {mu}{Omega} cm{sup -1}, and the high resistivities make them ideally suited for resistive heating applications. Mechanical properties of FeAl sheets are comparable to the properties of hot extruded FeAl alloys. (orig.) 26 refs.

  7. Evaluation of iron aluminide weld overlays for erosion - corrosion resistant boiler tube coatings in low NO{sub x} boilers

    Energy Technology Data Exchange (ETDEWEB)

    DuPont, J.N.; Banovic, S.W.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States)

    1996-08-01

    Low NOx burners are being installed in many fossil fired power plants in order to comply with new Clean Air Regulations. Due to the operating characteristics of these burners, boiler tube sulfidation corrosion is often enhanced and premature tube failures can occur. Failures due to oxidation and solid particle erosion are also a concern. A program was initiated in early 1996 to evaluate the use of iron aluminide weld overlays for erosion/corrosion protection of boiler tubes in Low NOx boilers. Composite iron/aluminum wires will be used with the Gas Metal Arc Welding (GMAW) process to prepare overlays on boiler tubes steels with aluminum contents from 8 to 16wt%. The weldability of the composite wires will be evaluated as a function of chemical composition and welding parameters. The effect of overlay composition on corrosion (oxidation and sulfidation) and solid particle erosion will also be evaluated. The laboratory studies will be complemented by field exposures of both iron aluminide weld overlays and co-extruded tubing under actual boiler conditions.

  8. Development of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, S.; Sikka, V.K.; Andleigh, V.K. [and others

    1995-06-01

    The primary reason for the poor room-temperature ductility of Fe{sub 3}Al-based alloys is generally accepted to be environmental embrittlement due to hydrogen produced by the reaction of aluminum with water vapor present in the test atmosphere. In the as-cast condition, another possible reason for the low room-temperature ductility is the large grain size (0.5 to 3 mm) of the cast material. While recent studies on iron aluminides in the wrought condition have led to higher room-temperature ductility and increased high-temperature strength, limited studies have been conducted on iron aluminides in the as-cast condition. The purpose of this study was to induce grain refinement of the as-cast alloy through alloying additions to the melt and study the effect on room-temperature ductility as measured by the strain corresponding to the maximum stress obtained in a three-point bend test. A base charge of Fe-28% Al-5% Cr alloy was used; as in previous studies this ternary alloy exhibited the highest tensile ductility of several alloys tested. Iron aluminide alloys are being considered for many structural uses, especially for applications where their excellent corrosion resistance is needed. Several alloy compositions developed at ORNL have been licensed to commercial vendors for development of scale-up procedures. With the licensees and other vendors, several applications for iron aluminides are being pursued.

  9. High temperature mechanical properties of iron aluminides

    Directory of Open Access Journals (Sweden)

    Morris, D. G.

    2001-04-01

    Full Text Available Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the material, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered.

    Durante los últimos años se ha prestado mucha atención a la familia de intermetálicos Fe-Al, puesto que estos constituyen un considerable potencial como materiales de ingeniería en aplicaciones a temperaturas intermedias o altas, sobre todo en casos donde se necesita alta resistencia a la oxidación o corrosión. A pesar del considerable esfuerzo desarrollado para obtener aleaciones con mejores propiedades, su resistencia mecánica a alta temperatura no es muy elevada. Se discutirán los aspectos que contribuyen a la baja resistencia mecánica a temperatura elevada en función de la estructura de dislocaciones y los mecanismos de anclaje que operan en este intermetálico. Se considerarán, también, maneras alternativas para mejorar la resistencia a temperatura elevada mediante la modificación de la microestructura y la incorporación de partículas de segunda fase.

  10. Aqueous Corrosion Behavior of Iron aluminide Intermetallics

    Science.gov (United States)

    Sharma, Garima; Singh, P. R.; Sharma, R. K.; Gaonkar, K. B.; Ramanujan, R. V.

    2007-12-01

    Iron aluminide intermetallics based on DO3 ordered structure are being developed for use as structural materials and cladding material for conventional engineering alloys. Aqueous corrosion behavior of iron aluminides has been studied extensively by electrochemical techniques. Studies were carried out on pure Fe (99.9%), Fe-28Al (at.%), Fe-28Al-3Cr (at.%), and AISI SS 304 so as to compare and contrast their behavior in same experimental condition. Polarization behavior under different pH conditions was examined to evaluate their performance in acidic, basic, and neutral solutions. Pitting behavior was also studied in solution containing Cl-1 ions. The stability of the passive film formed was studied by current time transients and potential decay profiles. The presence of 3 at.% Cr in iron aluminides was found to improve the aqueous corrosion resistance and makes it comparable to AISI SS 304.

  11. Corrosion performance of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1993-03-01

    Iron aluminides are being developed for use as structural materials and/or cladding alloys in fossil energy systems. Extensive development has been in progress on Fe{sub 3}Al-based alloys to improve the engineering ductility of these alloys. This paper describes results from the ongoing program to evaluate the corrosion performance of these alloys. The experimental program at Argonne National Laboratory involvesthermogravimetric analyses of alloys exposed to environments that simulate coal gasification and fluidized-bed combustion. Experiments were conducted at 650--1000{degrees}C in simulated oxygen/sulfur gas mixtures. In addition, oxidation/sulfidation behavior of several alumina-forming Fe-Al and Fe-Cr-Ni-Al alloys was determined for comparison with the corrosion rates obtained on iron aluminides. Other aspects of the program are corrosion evaluation of the aluminides in the presence of HC1-containing gases and in the presence of slag from a slogging gasifier. Results are used to establish threshold Al levels in the alloys for development of protective alumina scales. Thermal cycling tests are used to examine the spalling resistance of the scales.

  12. Corrosion performance of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1993-03-01

    Iron aluminides are being developed for use as structural materials and/or cladding alloys in fossil energy systems. Extensive development has been in progress on Fe[sub 3]Al-based alloys to improve the engineering ductility of these alloys. This paper describes results from the ongoing program to evaluate the corrosion performance of these alloys. The experimental program at Argonne National Laboratory involvesthermogravimetric analyses of alloys exposed to environments that simulate coal gasification and fluidized-bed combustion. Experiments were conducted at 650--1000[degrees]C in simulated oxygen/sulfur gas mixtures. In addition, oxidation/sulfidation behavior of several alumina-forming Fe-Al and Fe-Cr-Ni-Al alloys was determined for comparison with the corrosion rates obtained on iron aluminides. Other aspects of the program are corrosion evaluation of the aluminides in the presence of HC1-containing gases and in the presence of slag from a slogging gasifier. Results are used to establish threshold Al levels in the alloys for development of protective alumina scales. Thermal cycling tests are used to examine the spalling resistance of the scales.

  13. High-temperature corrosion of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. [Argonne National Lab., IL (United States); Cho, W.D. [Utah Univ., Salt Lake City, UT (United States)

    1994-04-01

    Iron aluminides are being developed for use as structural materials and/or cladding alloys in fossil energy systems. Extensive development has been in progress on Fe{sub 3}Al-based alloys to improve their engineering ductility. This paper describes results from an ongoing program to evaluate the corrosion performance of these alloys. The experimental program at Argonne involves thermogravimetric analyses of alloys exposed to environments that simulate coal gasification and coal combustion. Corrosion experiments were conducted to determine the effect of gas flow rate and different levels of HCl at a gas temperature of 650 C on three heats of aluminide material, namely, FA 61, FA 129, and FAX. In addition, specimens of Type 316 stainless steel with an overlay alloying of iron aluminide were prepared by electrospark deposition and tested for their corrosion resistance. Detailed microstructural evaluations of tested specimens were performed. Results are used to assess the corrosion resistance of various iron aluminides for service in fossil energy systems that utilize coal as a feedstock.

  14. Corrosion performance of iron aluminides in single- and multioxidant environments.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1998-06-22

    Iron aluminide intermetallics are being developed for use as structural materials and/or as cladding for conventional engineering alloys. In addition to their strength advantages, these materials exhibit excellent resistance to corrosion in single- and multioxidant environments at elevated temperatures through the formation of slow-growing, adherent alumina scales. Even though these intermetallics develop protective oxide scales in single-oxidant environments, the simultaneous presence of several reactants in the environment (typical of practical systems) can lead to development of oxide scales that are nonprotective and that undergo breakaway corrosion, or to nonoxide scales that are detrimental to the performance of the underlying alloy. This paper describes the corrosion performance of Fe-Al intermetallics in environments that contain sulfur, carbon, chlorine, and oxygen and that are typical of fossil energy systems. Emphasis is on mechanisms of scale development and breakdown, performance envelopes for long-term usage of these materials, and approaches to modifying the surfaces of engineering alloys by cladding or coating them with intermetallics to improve their corrosion resistance.

  15. Corrosion resistance of FeAl intermetallic phase based alloy in water solution of NaCl

    Directory of Open Access Journals (Sweden)

    J. Cebulski

    2008-03-01

    Full Text Available Purpose: Recognizing of corrosion mechanisms in liquid mediums can lead to obtain corrosion-proof material e.g. by applying passivation phenomenon. In this paper attention was paid to determine the corrosion resistance of Fe40Al intermetallic phase based alloy in corrosive medium of liquid NaCl. Research of material susceptibility to surface activation in the pipeline of corrosion processes are conducted.Design/methodology/approach: In the corrosion research electrolyser, potentiostat „Solartron 1285” and computer with „CorrWare 2” software were used. Results of the research were worked out with „CorrView” software. The potentials values were determined in relation to normal hydrogen electrode (NEW. The recording of potential/density of current - time curve was conducted for 300 s. Polarization of samples were conducted in range of potential from 300 mV lower than stationary to Ecor + 1500 mV. Potential change rate amounted 10 mV/min every time.Findings: The results of research conducted in 3% NaCl solution, the best electrochemical corrosion resistance were showed by samples after annealing during 72 hours. It was confirmed by the lowest value of corrosion current density, low value of passive current density, pitting corrosion resistance much higher than in other samples.Practical implications: The last feature is the reason to conduct the research for this group of materials as corrosion resistance materials. Especially FeAl intermetallic phase based alloys are objects of research in Poland and all world during last years.Originality/value: The goal of this work was to determine the influence of passivation in water solutions of H2SO4 and HNO3 on corrosion resistance of Fe40Al intermetallic phase based alloy in 3% NaCl solutions.

  16. Microstructure and corrosion resistance of Fe-Al intermetallic coating on 45 steel synthesized by double glow plasma surface alloying technology

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiao-lin; YAO Zheng-jun; GU Xue-dong; CONG Wei; ZHANG Ping-ze

    2009-01-01

    A binary Fe-Al alloyed layer was synthesized on 45 steel by means of double glow plasma surface alloying technique. The corrosion-resisting layer prepared is composed of a sedimentary layer and a diffusion layer, with a total thickness of about 180 μm. The aluminum content of the alloyed layer shows gradual change from surface to the inside of substrate. The ideal profile is beneficial to the metallurgical bonding of the surface alloying layer with substrate materials. The microstructure of both layers consists of the Fe-Al intermetallic compound, which is FeAl with B2 structure in the sedimentary layer and Fe3Al with incompletely ordered DO3 structure in the diffusion layer. The protective film exhibits high micro-hardness. In comparison with the substrate of 45 steel, the corrosion resistance of the aluminized sample is much higher in 2.0% Na2S and 0.05 mol/L Na2SO4 + 0.5 mol/L NaCl mixed solutions.

  17. Precipitation-strengthening effects in iron-aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; McKamey, C.G.; Goodwin, G.M. [Oak Ridge National Laboratory, TN (United States)] [and others

    1995-05-01

    The purpose of this work is to produce precipitation to improve both high-temperature strength and room-temperature ductibility in FeAl-type(B2 phase) iron-aluminides. Previous work has focused on primarily wrought products, but stable precipitates can also refine the grain size and affect the properties of as-cast and/or welded material as well. New work began in FY 1994 on the properties of these weldable, strong FeAl alloys in the as-cast condition. Because the end product of this project is components for industry testing, simpler and better (cheaper, near-net-shape) processing methods must be developed for industrial applications of FeAl alloys.

  18. Characterization of the alumina film with cerium doped on the iron-aluminide diffusion coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Q., E-mail: zhanqin1983@163.com; Yang, H.G.; Zhao, W.W.; Yuan, X.M.; Hu, Y.

    2013-11-15

    An iron-aluminide layer with a thin alumina film on the top as a composite tritium permeation barrier (TPB) coating was characterized under different oxidation conditions. The TPB coating was prepared initially on a China Low Activation Ferritic-Martensitic (CLAM) steel by a pack cementation aluminizing process and then an alumina film was formed on the surface of this iron-aluminide diffusion layer by an oxidizing process. To modify the properties of the FeAl/Al{sub 2}O{sub 3} composite TPB coatings, the rare earth element (cerium) was introduced as a dopant while oxidizing. Characterization showed that a continuous oxide scale with a thickness of about 300–400 nm was formed on the FeAl diffusion layer. The film was mainly composed of Al{sub 2}O{sub 3} doped with a little CeO{sub 2}. In addition, the concentration of α-Al{sub 2}O{sub 3} increased with elevated temperature while oxidizing. The phase transformation behavior of alumina scale on the surface of an iron-aluminide layer was studied in this paper.

  19. Evaluation of the intrinsic and extrinsic fracture behavior of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Kang, B.S.; Yao, Qizhou; Cooper, B.R. [West Virginia Univ., Morgantown, WV (United States)

    1996-08-01

    Comparative creep crack growth tests of FA-186 and FA-187 iron aluminides under either dry oxygen or air environment showed that both alloys are susceptible to room temperature hydrogen embrittlement. Test results also revealed that FA-187 is intrinsically a more brittle material than FA-186. Atomistic computational modeling is being undertaken to find the preferred geometries, structures and formation energies of iron vacancies and vacancy pairs (Fe-Fe) in FeAl and Fe{sub 3}Al. An indication of vacancy clustering in Fe{sub 3}Al, with consequences for dislocation behavior, may be important for understanding the role of dislocation assisted diffusion in the hydrogen embrittlement mechanism.

  20. High-temperature oxidation/sulfidation resistance of iron-aluminide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.; Wright, I.G.; Goodwin, G.M.; Howell, M.

    1996-04-01

    Iron aluminides containing > 20-25 at. % Al have oxidation and sulfidation resistance at temperatures well above those at which these alloys have adequate mechanical strength. Accordingly, these alloys may find application as coatings or claddings on more conventional higher-strength materials which are generally less corrosion-resistant at high temperatures. To this end, iron-aluminide coatings were prepared by gas tungsten arc and gas metal arc weld-overlay techniques. Specimens were cut from weld deposits and exposed to a highly aggressive oxidizing-sulfidizing (H2S-H2-H2O-Ar) environment at 800 C. All the weld overlayers showed good corrosion behavior under isothermal conditions, including a gas metal arc-produced deposit with only 21 at. % Al. Rapid degradation in corrosion resistance was observed under thermal cycling conditions when the initally grown scales spalled and the rate of reaction was then not controlled by formation of slowly growing Al oxide. Higher starting Al concentrations (> {approximately} 25 at. %) are needed to assure overall oxidation-sulfidation resistance of the weld overlays, but hydrogen cracking susceptibility must be minimized in order to physically separate the corrosive species from the reactive substrate material.

  1. Weld overlay cladding with iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, G.M. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    The hot and cold cracking tendencies of some early iron aluminide alloy compositions have limited their use in applications where good weldability is required. Using hot crack testing techniques invented at ORNL, and experimental determinations of preheat and postweld heat treatment needed to avoid cold cracking, we have developed iron aluminide filler metal compositions which can be successfully used to weld overlay clad various substrate materials, including 9Cr-1Mo steel, 2-1/4Cr-1Mo steel, and 300-series austenitic stainless steels. Dilution must be carefully controlled to avoid crack-sensitive deposit compositions. The technique used to produce the current filler metal compositions is aspiration-casting, i.e. drawing the liquid from the melt into glass rods. Future development efforts will involve fabrication of composite wires of similar compositions to permit mechanized gas tungsten arc (GTA) and/or gas metal arc (GMA) welding.

  2. Sliding wear resistance of iron aluminides

    Indian Academy of Sciences (India)

    Garima Sharma; M Sundararaman; N Prabhu; G L Goswami

    2003-04-01

    Room temperature dry sliding wear behaviour of iron aluminides containing 28% aluminium and various amounts of chromium has been investigated using pin on disk wear tester. The aluminides were heat treated to have ordered 3 structure. It was found that wear rate of the aluminides increased with the increase of applied normal load and sliding speed. Wear resistance of the aluminides increased with increase in chromium content. SEM observation of the worn surface showed that the microcutting and microploughing were the dominant sliding wear mechanisms.

  3. Mechanisms of defect complex formation and environmental-assisted fracture behavior of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B.R.; Muratov, L.S.; Kang, B.S.J.; Li, K.Z. [West Virginia Univ., Morgantown, WV (United States)

    1997-12-01

    Iron aluminide has excellent corrosion resistance in high-temperature oxidizing-sulfidizing environments; however, there are problems at room and medium temperature with hydrogen embrittlement as related to exposure to moisture. In this research, a coordinated computational modeling/experimental study of mechanisms related to environmental-assisted fracture behavior of selected iron aluminides is being undertaken. The modeling and the experimental work will connect at the level of coordinated understanding of the mechanisms for hydrogen penetration and for loss of strength and susceptibility to fracture. The focus of the modeling component at this point is on the challenging question of accurately predicting the iron vacancy formation energy in Fe{sub 3}A{ell} and the subsequent tendency, if present, for vacancy clustering. The authors have successfully performed, on an ab initio basis, the first calculation of the vacancy formation energy in Fe{sub 3}A{ell}. These calculations include lattice relaxation effects which are quite large. This has significant implications for vacancy clustering effects with consequences to be explored for hydrogen diffusion. The experimental work at this stage has focused on the relationship of the choice and concentration of additives to the improvement of resistance to hydrogen embrittlement and hence to the fracture behavior. For this reason, comparative crack growth tests of FA-186, FA-187, and FA-189 iron aluminides (all with basic composition of Fe-28A{ell}-5Cr, at % with micro-alloying additives of Zr, C or B) under, air, oxygen, or water environment have been performed. These tests showed that the alloys are susceptible to room temperature hydrogen embrittlement in both B2 and DO{sub 3} conditions. Test results indicated that FA-187, and FA-189 are intrinsically more brittle than FA-186.

  4. Effects of titanium and zirconium on iron aluminide weldments

    Energy Technology Data Exchange (ETDEWEB)

    Burt, R.P.; Edwards, G.R. [Colorado School of Mines, Golden, CO (United States); David, S.A. [Oak Ridge National Lab., TN (United States)

    1996-08-01

    Iron aluminides form a coarse fusion zone microstructure when gas-tungsten arc welded. This microstructure is susceptible to hydrogen cracking when water vapor is present in the welding environment. Because fusion zone microstructural refinement can reduce the hydrogen cracking susceptibility, titanium was used to inoculate the weld pool in iron aluminide alloy FA-129. Although the fusion zone microstructure was significantly refined by this method, the fracture stress was found to decrease with titanium additions. This decrease is attributed to an increase in inclusions at the grain boundaries.

  5. Effects of surface condition on aqueous corrosion and environmental embrittlement of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, R.L.; Buchanan, R.A. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-08-01

    Effects of retained high-temperature surface oxides, produced during thermomechanical processing and/or heat treatment, on the aqueous-corrosion and environmental-embrittlement characteristics of Fe{sub 3}Al-based iron aluminides (FA-84, FA-129 and FAL-Mo), a FeAl-based iron aluminide (FA-385), and a disordered low-aluminum Fe-Al alloy (FAPY) were evaluated. All tests were conducted at room temperature in a mild acid-chloride solution. In cyclic-anodic-polarization testing for aqueous-corrosion behavior, the surface conditions examined were: as-received (i.e., with the retained high-temperature oxides), mechanically cleaned and chemically cleaned. For all materials, the polarization tests showed the critical pitting potentials to be significantly lower in the as-received condition than in the mechanically-cleaned and chemically-cleaned conditions. These results indicate detrimental effects of the retained high-temperature oxides in terms of increased susceptibilities to localized corrosion. In 200-hour U-bend stress-corrosion-cracking tests for environmental-embrittlement behavior, conducted at open-circuit corrosion potentials and at a hydrogen-charging potential of {minus}1500 mV (SHE), the above materials (except FA-385) were examined with retained oxides and with mechanically cleaned surfaces. At the open-circuit corrosion potentials, none of the materials in either surface condition underwent cracking. At the hydrogen-charging potential, none of the materials with retained oxides underwent cracking, but FA-84, FA-129 and FAL-Mo in the mechanically cleaned condition did undergo cracking. These results suggest beneficial effects of the retained high-temperature oxides in terms of increased resistance to environmental hydrogen embrittlement.

  6. Effects of titanium and zirconium on iron aluminide weldments

    Energy Technology Data Exchange (ETDEWEB)

    Mulac, B.L.; Edwards, G.R. [Colorado School of Mines, Golden, CO (United States). Center for Welding, Joining, and Coatings Research; Burt, R.P. [Alumax Technical Center, Golden, CO (United States); David, S.A. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    When gas-tungsten arc welded, iron aluminides form a coarse fusion zone microstructure which is susceptible to hydrogen embrittlement. Titanium inoculation effectively refined the fusion zone microstructure in iron aluminide weldments, but the inoculated weldments had a reduced fracture strength despite the presence of a finer microstructure. The weldments fractured by transgranular cleavage which nucleated at cracked second phase particles. With titanium inoculation, second phase particles in the fusion zone changed shape and also became more concentrated at the grain boundaries, which increased the particle spacing in the fusion zone. The observed decrease in fracture strength with titanium inoculation was attributed to increased spacing of second phase particles in the fusion zone. Current research has focused on the weldability of zirconium- and carbon-alloyed iron aluminides. Preliminary work performed at Oak Ridge National Laboratory has shown that zirconium and carbon additions affect the weldability of the alloy as well as the mechanical properties and fracture behavior of the weldments. A sigmajig hot cracking test apparatus has been constructed and tested at Colorado School of Mines. Preliminary characterization of hot cracking of three zirconium- and carbon-alloyed iron aluminides, each containing a different total concentration of zirconium at a constant zirconium/carbon ratio of ten, is in progress. Future testing will include low zirconium alloys at zirconium/carbon ratios of five and one, as well as high zirconium alloys (1.5 to 2.0 atomic percent) at zirconium/carbon ratios of ten to forty.

  7. Iron aluminide alloy container for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, Roddie Reagan (Knoxville, TN); Singh, Prabhakar (Export, PA); Sikka, Vinod Kumar (Oak Ridge, TN)

    2000-01-01

    A container for fuel cells is made from an iron aluminide alloy. The container alloy preferably includes from about 13 to about 22 weight percent Al, from about 2 to about 8 weight percent Cr, from about 0.1 to about 4 weight percent M selected from Zr and Hf, from about 0.005 to about 0.5 weight percent B or from about 0.001 to about 1 weight percent C, and the balance Fe and incidental impurities. The iron aluminide container alloy is extremely resistant to corrosion and metal loss when exposed to dual reducing and oxidizing atmospheres at elevated temperatures. The alloy is particularly useful for containment vessels for solid oxide fuel cells, as a replacement for stainless steel alloys which are currently used.

  8. Effects of 1000 C oxide surfaces on room temperature aqueous corrosion and environmental embrittlement of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, R.A.; Perrin, R.L. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering

    1997-12-01

    Results of electrochemical aqueous-corrosion studies at room temperature indicate that retained in-service-type high-temperature surface oxides (1000 C in air for 24 hours) on FA-129, FAL and FAL-Mo iron aluminides cause major reductions in pitting corrosion resistance in a mild acid-chloride solution designed to simulate aggressive atmospheric corrosion. Removal of the oxides by mechanical grinding restores the corrosion resistance. In a more aggressive sodium tetrathionate solution, designed to simulate an aqueous environment contaminated by sulfur-bearing combustion products, only active corrosion occurs for both the 1000 C oxide and mechanically cleaned surfaces at FAL. Results of slow-strain-rate stress-corrosion-cracking tests on FA-129, FAL and FAL-Mo at free-corrosion and hydrogen-charging potentials in the mild acid chloride solution indicate somewhat higher ductilities (on the order of 50%) for the 1000 C oxides retard the penetration of hydrogen into the metal substrates and, consequently, are beneficial in terms of improving resistance to environmental embrittlement. In the aggressive sodium tetrathionate solution, no differences are observed in the ductilities produced by the 1000 C oxide and mechanically cleaned surfaces for FAL.

  9. Corrosion Resistance of Ceramic Coating on Steel Substrate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fe/Al2O3 ceramic coating was made by spraying and sol-gel. The corrosion resistance between Fe/Al2O3 ceramic coating and steel 45# was studied. By microscope and X-ray diffraction, the binding and the composition of the interface were also analyzed. The results showed that Fe/Al2O3 ceramic coating had dense structure, less porosity and better binding with the substrate which was effective to prevent erosive liquor immersing into the inside of ceramic coating. Some substances that distributed homogeneously in Fe/Al2O3 ceramic coating,such as α-Al2O3, FeAlO3 and Fe3Al, could improve the corrosion resistance of this material.

  10. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    Energy Technology Data Exchange (ETDEWEB)

    Asit Biswas Andrew J. Sherman

    2006-09-25

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  11. Development of Improved Iron-Aluminide Filter Tubes and Elements

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Sutton, T.G.; Miller, C.J.; Tortorelli, P.F.

    2008-01-14

    The purpose of this Cooperative Research and Development Agreement (CRADA) was to explore and develop advanced manufacturing techniques to fabricate sintered iron-aluminide intermetallic porous bodies used for gas filtration so as to reduce production costs while maintaining or improving performance in advanced coal gasification and combustion systems. The use of a power turbine fired with coal-derived synthesis gas requires some form of gas cleaning in order to protect turbine and downstream components from degradation by erosion, corrosion, and/or deposition. Hot-gas filtration is one form of cleaning that offers the ability to remove particles from the gases produced by gasification processes without having to substantially cool and, possibly, reheat them before their introduction into the turbine. This technology depends critically on materials durability and reliability, which have been the subject of study for a number of years.

  12. Effect of oxygen partial pressure on oxidation performance of iron-aluminide layers on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hong-guang; Zhan, Qin; Zhao, Wei-wei; Yuan, Xiao-ming [China Institute of Atomic Energy, Beijing (China). Dept. of Reactor Engineering Research and Design

    2009-07-01

    Tritium permeation barriers (TPB) are required in fusion technology in order to reduce the tritium permeation rate through the structural materials such as type 316 stainless steel. Iron-aluminide layers with alumina on top have been selected as the reference materials for TPB. Aluminide were prepared on the 316L (00Cr17Ni14Mo2) stainless steel by a specific aluminizing process and its oxidation behaviors have been studied in CIAE. This paper is focused on the effect of oxygen partial pressure on the characterization of the surface alumina films. Alumina films were formed on the Fe-Al coatings under the oxygen partial pressure below 200Pa, which is mainly composed of Al{sub 2}O{sub 3} with the thickness upto 300nm, and a little CeO{sub 2} and Cr{sub 2}O{sub 3}. It shows the formation of alumina films because of the selective oxidation of the aluminide on the top surface. (orig.)

  13. Corrosion performance of iron aluminides in fossil energy environments

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. [Argonne National Lab., IL (United States). Energy Technology Div.

    1997-12-01

    Corrosion of metallic structural materials in complex gas environments of coal gasification and combustion is a potential problem. The corrosion process is dictated by concentrations of two key constituents: sulfur as H{sub 2}S or SO{sub 2} and chlorine as HCl. This paper presents a comprehensive review of the current status of the corrosion performance of alumina scales that are thermally grown on Fe-base alloys, including iron aluminides, in multicomponent gas environments of typical coal-conversion systems. Mechanisms of scale development/breakdown, performance envelopes for long-term usage of these materials, approaches to modifying the surfaces of engineering alloys by cladding or coating them with intermetallics, and in-service experience with these materials are emphasized. The results are compared with the performance of chromia-forming alloys in similar environments. The paper also discusses the available information on corrosion performance of alloys whose surfaces were enriched with Al by the electrospark deposition process or by weld overlay techniques.

  14. Al2O3 Scale Development on Iron Aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Feng; Thaidigsmann, Katja; Ager, Joel; Hou, Peggy Y.

    2005-11-10

    The structure and phase of the Al{sub 2}O{sub 3} scale that forms on an Fe{sub 3}Al-based alloy (Fe-28Al-5Cr) (at %) was investigated by transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). Oxidation was performed at 900 C and 1000 C for up to 190 min. TEM revealed that single-layer scales were formed after short oxidation times. Electron diffraction was used to show that the scales are composed of nanoscale crystallites of the {theta}, {gamma}, and {alpha} phases of alumina. Band-like structure was observed extending along three 120{sup o}-separated directions within the surface plane. Textured {theta} and {gamma} grains were the main components of the bands, while mixed {alpha} and transient phases were found between the bands. Extended oxidation produced a double-layered scale structure, with a continuous {alpha} layer at the scale/alloy interface, and a {gamma}/{theta} layer at the gas surface. The mechanism for the formation of Al{sub 2}O{sub 3} scales on iron aluminide alloys is discussed and compared to that for nickel aluminide alloys.

  15. Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof

    Science.gov (United States)

    Sikka, Vinod K.

    1992-01-01

    A process is disclosed for improving the room temperature ductility and strength of iron aluminide intermetallic alloys. The process involves thermomechanically working an iron aluminide alloy by means which produce an elongated grain structure. The worked alloy is then heated at a temperature in the range of about 650.degree. C. to about 800.degree. C. to produce a B2-type crystal structure. The alloy is rapidly cooled in a moisture free atmosphere to retain the B2-type crystal structure at room temperature, thus providing an alloy having improved room temperature ductility and strength.

  16. Corrosion-resistant metal surfaces

    Science.gov (United States)

    Sugama, Toshifumi [Wading River, NY

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  17. Microstructural and mechanical property characterization of ingot metallurgy ODS iron aluminide

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Howell, C.R. [Oak Ridge National Lab., TN (United States); Hall, F.; Valykeo, J. [Hoskins Mfg. Co., Hamburg, MI (United States)

    1997-12-01

    This paper deals with a novel, lower cost method of producing a oxide dispersion strengthened (ODS) iron-aluminide alloy. A large 250-kg batch of ODS iron-aluminide alloy designated as FAS was produced by Hoskins Manufacturing Company (Hoskins) [Hamburg, Michigan] using the new process. Plate and bar stock of the ODS alloy were the two major products received. Each of the products was characterized for its microstructure, including grain size and uniformity of oxide dispersion. Tensile tests were completed from room temperature to 1100 C. Only 100-h creep tests were completed at 800 and 1000 C. The results of these tests are compared with the commercial ODS alloy designated as MA-956. An assessment of these data is used to develop future plans for additional work and identifying applications.

  18. Method of manufacturing iron aluminide by thermomechanical processing of elemental powders

    Energy Technology Data Exchange (ETDEWEB)

    Deevi, S.C.; Lilly, A.C. Jr.; Sikka, V.K.; Hajaligol, M.R.

    2000-03-07

    A powder metallurgical process is dislosed for preparing iron aluminide useful as electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 20 to 32% Al, and optional additions such as {<=}1% Cr, {>=}05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element, {<=}2% Ti, {<=}2% Mo, {<=}1% Zr, {<=}1% C, {<=}0.1% B, {<=}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1 % rare earth metal, {<=}1% oxygen, and/or {<=}3% Cu. The process includes forming a mixture of aluminum powder and iron powder, shaping the mixture into an article such as by cold rolling the mixture into a sheet, and sintering the article at a temperature sufficient to react the iron and aluminum powders and form iron aluminide. The sintering can be followed by hot or cold rolling to reduce porosity created during the sintering step and optional annealing steps in a vacuum or inert atmosphere.

  19. Method of manufacturing iron aluminide by thermomechanical processing of elemental powders

    Energy Technology Data Exchange (ETDEWEB)

    Deevi, Seetharama C. (Midlothian, VA); Lilly, Jr., A. Clifton (Chesterfield, VA); Sikka, Vinod K. (Oak Ridge, TN); Hajaligol, Mohammed R. (Richmond, VA)

    2000-01-01

    A powder metallurgical process of preparing iron aluminide useful as electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 20 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1 % rare earth metal, .ltoreq.1% oxygen, and/or .ltoreq.3% Cu. The process includes forming a mixture of aluminum powder and iron powder, shaping the mixture into an article such as by cold rolling the mixture into a sheet, and sintering the article at a temperature sufficient to react the iron and aluminum powders and form iron aluminide. The sintering can be followed by hot or cold rolling to reduce porosity created during the sintering step and optional annealing steps in a vacuum or inert atmosphere.

  20. Corrosion-resistant uranium

    Science.gov (United States)

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  1. Corrosion resistant PEM fuel cell

    Science.gov (United States)

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  2. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  3. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties

    Directory of Open Access Journals (Sweden)

    Jerome Vernieres

    2014-11-01

    Full Text Available Soft magnetic alloys at the nanoscale level have long generated a vivid interest as candidate materials for technological and biomedical purposes. Consequently, controlling the structure of bimetallic nanoparticles in order to optimize their magnetic properties, such as high magnetization and low coercivity, can significantly boost their potential for related applications. However, traditional synthesis methods stumble upon the long standing challenge of developing true nanoalloys with effective control over morphology and stability against oxidation. Herein, we report on a single-step approach to the gas phase synthesis of soft magnetic bimetallic iron aluminide nanoparticles, using a versatile co-sputter inert gas condensation technique. This method allowed for precise morphological control of the particles; they consisted of an alloy iron aluminide crystalline core (DO3 phase and an alumina shell, which reduced inter-particle interactions and also prevented further oxidation and segregation of the bimetallic core. Remarkably, the as-deposited alloy nanoparticles show interesting soft magnetic properties, in that they combine a high saturation magnetization (170 emu/g and low coercivity (less than 20 Oe at room temperature. Additional functionality is tenable by modifying the surface of the particles with a polymer, to ensure their good colloidal dispersion in aqueous environments.

  4. Effect of hydrogen on the mechanical behaviour of carbon-alloyed Fe3Al-based iron aluminides

    Indian Academy of Sciences (India)

    M Sen; R Balasubramaniam

    2002-06-01

    The effect of hydrogen on the mechanical behaviour of two carbon-alloyed iron aluminides was studied. Weakening of some carbide–metal interfaces in the presence of hydrogen was indicated. The effect of cathodic hydrogen charging on the microstructure has also been addressed.

  5. Development of improved and corrosion-resistant surfaces for fossil power system components

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Santella, M.L.; Goodwin, G.M.

    1996-06-01

    The purpose of this task is to develop the corrosion-resistant surfaces on a variety of fossil power system components. The Fe-Al alloys ranging in aluminum from 16 to 36 @ % are of interest. The surfaces of Fe-Al alloys can be produced by weld overlay. However, because of their limited room-temperature ductility, the production of weld wire for these compositions is not commercially feasible. The alloying element dilution during weld overlay also makes depositing exact surface composition rather difficult.

  6. Corrosion-resistant coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, D.M.; Martin, R.L. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    SiC-based heat exchangers have been identified as the prime candidate material for use as heat exchangers in advanced combined cycle power plants. Unfortunately, hot corrosion of the SiC-based materials created by alkali metal salts present in the combustion gases dictates the need for corrosion-resistant coatings. The well-documented corrosion resistance of CS-50 combined with its low (and tailorable) coefficient of thermal expansion and low modulus makes CS-50 an ideal candidate for this application. Coatings produced by gelcasting and traditional particulate processing have been evaluated.

  7. Corrosion resistant metallic bipolar plate

    Science.gov (United States)

    Brady, Michael P.; Schneibel, Joachim H.; Pint, Bruce A.; Maziasz, Philip J.

    2007-05-01

    A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

  8. CORROSION RESISTANT JACKETED METAL BODY

    Science.gov (United States)

    Brugmann, E.W.

    1958-08-26

    Reactor faul elements of the elongated cylindrical type which are jacketed in a corrosion resistant material are described. Each feel element is comprised of a plurality of jacketed cylinders of fissionable material in end to end abutting relationship, the jackets being welded together at their adjoining ends to retain the individual segments together and seat the interior of the jackets.

  9. Surface modification for corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1993-06-01

    The raw gas environments that arise from coal gasification have chemical compositions that are low in pO{sub 2} and moderate-to-high in pS{sub 2}. Metallic materials for service in such an environment undergo predominantly sulfidation attack at temperatures of 400 to 700{degree}C. Modification of alloy compositions in bulk can alter the scaling processes and lead to improvements in corrosion resistance, but the benefits can only be attained at temperatures much higher than the service temperatures of the components. Modification of surfaces of structural components by several of the coating techniques examined in this study showed substantial benefit in corrosion resistance when tested in simulated coal gasification environments. The paper presents several examples of surface modification and their corrosion performance.

  10. Corrosion-resistant metallic coatings

    OpenAIRE

    F. Presuel-Moreno; M.A. Jakab; N. Tailleart; Goldman, M.; J. R. Scully

    2008-01-01

    We describe recent computational and experimental studies on the corrosion properties of metallic coatings that can be tailored (tuned) to deliver up to three corrosion-inhibiting functions to an underlying substrate. Attributes are tuned by a selection of alloy compositions and nanostructures, ideally in alloy systems that offer flexibility of choice to optimize the corrosion-resisting properties. An amorphous Al-based coating is tuned for corrosion protection by on-demand release of ionic i...

  11. CORROSION RESISTANT CERAMIC COATING FOR X80 PIPELINE STEEL BY LOW-TEMPERATURE PACK ALUMINIZING AND OXIDATION TREATMENT

    OpenAIRE

    HUANG MIN; FU QIAN-GANG; WANG YU; ZHONG WEN-WU

    2013-01-01

    In this paper, we discuss the formation of ceramic coatings by a combined processing of low-temperature pack aluminizing and oxidation treatment on the surface of X80 pipeline steel substrates in order to improve the corrosion resistance ability of X80 pipeline steel. First, Fe-Al coating consisting of FeAl3 and Fe2Al5 was prepared by a low-temperature pack aluminizing at 803 K which was fulfilled by adding zinc in the pack powder. Pre-treatment of X80 pipeline steel was carried out through s...

  12. The influence of processing on microstructure and properties of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Wright, R.N.; Wright, J.K.; Anderson, M.T. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

    1997-12-01

    Oxide dispersion strengthened (ODS) iron aluminide alloys based on Fe3Al have been formed by reaction synthesis from elemental powders followed by hot extrusion. The resulting alloys have approximately 2.5% by volume Al{sub 2}O{sub 3} particles dispersed throughout the material. A proper combination of extrusion temperature, extrusion ratio, and post-consolidation heat treatment results in a secondary recrystallized microstructure with grain sizes greater than 25mm. ODS material with 5% Cr addition exhibits approximately an order of magnitude increase in time to failure at 650 C compared to a similar alloy without the oxide dispersion. Addition of Nb and Mo along with Cr results in decreased minimum creep rates, however, the time to rupture is greatly reduced due to fracture at low strains initiated at large Nb particles that were not put into solution. The activation energy for creep in the 5% Cr ODS material is on the order of 210 kJ/mole and the power law creep exponent is 9--9.5. Transmission electron microscopy examination of the substructure of deformed samples indicates some formation of low angle dislocation boundaries, however, most of the dislocations are pinned at particles. The TEM observations and the value of the creep exponent are indicative of dislocation breakaway from particles as the rate controlling deformation mechanism. The TEM results indicate that particles smaller than about 100nm and larger than about 500 nm do not contribute significantly to dislocation pinning.

  13. Iron aluminide weld overlay coatings for boiler tube protection in coal-fired low NOx boilers

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.N.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

    1997-12-01

    Iron aluminide weld overlay coatings are currently being considered for enhanced sulfidation resistance in coal-fired low NO{sub x} boilers. The use of these materials is currently limited due to hydrogen cracking susceptibility, which generally increases with an increase in aluminum concentration of the deposit. The overall objective of this program is to attain an optimum aluminum content with good weldability and improved sulfidation resistance with respect to conventional materials presently in use. Research has been initiated using Gas Tungsten Arc Welding (GTAW) in order to achieve this end. Under different sets of GTAW parameters (wire feed speed, current), both single and multiple pass overlays were produced. Characterization of all weldments was conducted using light optical microscopy, scanning electron microscopy, and electron probe microanalysis. Resultant deposits exhibited a wide range of aluminum contents (5--43 wt%). It was found that the GTAW overlays with aluminum contents above {approximately}10 wt% resulted in cracked coatings. Preliminary corrosion experiments of 5 to 10 wt% Al cast alloys in relatively simple H{sub 2}/H{sub 2}S gas mixtures exhibited corrosion rates lower than 304 stainless steel.

  14. Effect of cerium addition on microstructures of carbon-alloyed iron aluminides

    Indian Academy of Sciences (India)

    S Sriram; R Balasubramaniam; M N Mungole; S Bharagava; R G Baligidad

    2005-10-01

    The effect of Ce addition on the microstructure of carbon-alloyed Fe3Al-based intermetallic has been studied. Three different alloys of composition, Fe–18.5Al–3.6C, Fe–20.0Al–2.0C and Fe–19.2Al–3.3C–0.07Ce (in at%), were prepared by electroslag remelting process. Their microstructures were characterized using optical and scanning electron microscopies. Stereological methods were utilized to understand the observed microstructures. All the alloys exhibited a typical two-phase microstructure consisting of Fe3AlC carbides in an iron aluminide matrix. In the alloy without Ce addition, large bulky carbides were equally distributed throughout the matrix with many smaller precipitates interspersed in between. In the alloy with Ce addition, the carbide grain sizes were finer and uniformly distributed throughout the matrix. The effect of Ce addition on the carbide morphology has been explained based on the known effect of Ce in modifying carbide morphology in cast irons.

  15. Corrosion-resistant sulfur concretes

    Science.gov (United States)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1983-04-01

    Sulfur concretes have been developed by the Bureau of Mines as construction materials with physical and mechanical properties that suit them for use in acid and salt corrosive environments where conventional concretes fail. Mixture design methods were established for preparing sulfur concretes using different types of aggregates and recently developed mixed-modified sulfur cements. Bench-scale testing of the sulfur concretes has shown their potential value. Corrosion resistance, strength, and durability of sulfur concrete are superior to those of conventional materials. Field in situ evaluation tests of the sulfur concretes as replacement for conventional concrete materials are in progress in corrosive areas of 24 commercial chemical, fertilizer, and metallurgical plants.

  16. Corrosion-resistant metallic coatings

    Directory of Open Access Journals (Sweden)

    F. Presuel-Moreno

    2008-10-01

    Full Text Available We describe recent computational and experimental studies on the corrosion properties of metallic coatings that can be tailored (tuned to deliver up to three corrosion-inhibiting functions to an underlying substrate. Attributes are tuned by a selection of alloy compositions and nanostructures, ideally in alloy systems that offer flexibility of choice to optimize the corrosion-resisting properties. An amorphous Al-based coating is tuned for corrosion protection by on-demand release of ionic inhibitors to protect defects in the coating, by formation of an optimized barrier to local corrosion in Cl− containing environments, as well as by sacrificial cathodic prevention. Further progress in this field could lead to the design of the next generation of adaptive or tunable coatings that inhibit corrosion of underlying substrates.

  17. Formation of Al2O3/FeAl coatings on a 9Cr-1Mo steel, and corrosion evaluation in flowing Pb-17Li loop

    Science.gov (United States)

    Majumdar, Sanjib; Paul, Bhaskar; Chakraborty, Poulami; Kishor, Jugal; Kain, Vivekanand; Dey, Gautam Kumar

    2017-04-01

    Iron aluminide coating layers were formed on a ferritic martensitic grade 9Cr-1Mo (P 91) steel using pack aluminizing process. The formation of different aluminide compositions such as orthorhombic-Fe2Al5, B2-FeAl and A2-Fe(Al) on the pack chemistry and heat treatment conditions have been established. About 4-6 μm thick Al2O3 scale was formed on the FeAl phase by controlled heat treatment. The corrosion tests were conducted using both the FeAl and Al2O3/FeAl coated specimens in an electro-magnetic pump driven Pb-17Li Loop at 500 °C for 5000 h maintaining a flow velocity of 1.5 m/s. The detailed characterization studies using scanning electron microscopy, back-scattered electron imaging and energy dispersive spectrometry revealed no deterioration of the coating layers after the corrosion tests. Self-healing oxides were formed at the cracks generated in the aluminide layers during thermal cycling and protected the base alloy (steel) from any kind of elemental dissolution or microstructural degradation.

  18. Influence of Cumulative Plastic Deformation on Microstructure of the Fe-Al Intermetallic Phase Base Alloy

    Directory of Open Access Journals (Sweden)

    Bednarczyk I.

    2014-10-01

    Full Text Available This article is part of the research on the microstructural phenomena that take place during hot deformation of intermetallic phase-based alloy. The research aims at design an effective thermo - mechanical processing technology for the investigated intermetallic alloy. The iron aluminides FeAl have been among the most widely studied intermetallics because their low cost, low density, good wear resistance, easy of fabrication and resistance to oxidation and corrosion. There advantages create wide prospects for their industrial applications for components of machines working at a high temperature and in corrosive environment. The problem restricting their application is their low plasticity and their brittle cracking susceptibility, hampers their development as construction materials. Consequently, the research of intermetallic-phase-based alloys focuses on improvement their plasticity by hot working proceses. The study addresses the influence of deformation parameters on the structure of an Fe-38% at. Al alloy with Zr, B Mo and C microadditions, using multi – axis deformation simulator. The influence of deformation parameters on microstructure and substructure was determined. It was revealed that application of cumulative plastic deformation method causes intensive reduction of grain size in FeAl phase base alloy.

  19. Corrosion resistant storage container for radioactive material

    Science.gov (United States)

    Schweitzer, Donald G.; Davis, Mary S.

    1990-01-01

    A corrosion resistant long-term storage container for isolating radioactive waste material in a repository. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between judxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  20. Evaluation of Iron Aluminide Coatings for Oxidation Protection in Water Vapor Environment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Tennessee Technological University; Wang, Y. Q. [Tennessee Technological University; Pint, Bruce A [ORNL

    2007-01-01

    Long-term (> 10,000h) oxidation behavior of aluminide coatings made by chemical vapor deposition (CVD) or pack cementation on representative ferritic (Fe-9Cr-1Mo) and austenitic (type 304L stainless steel) are being studied in air + 10% water vapor in the temperature range of 650-800 C. Unlike the uncoated alloys, which are severely attacked in this environment, the CVD aluminide coatings have not failed after 16,000h at 700 C or 10,000h at 800 C. The pack aluminide coatings also show good oxidation protection after testing for {approx}5,000h at 700 C. In addition, initial efforts have been made to fabricate coatings at lower aluminizing temperatures and the current results suggest that FeAl coatings can be synthesized at temperatures as low as 700 C.

  1. In-depth study of the mechanical properties for Fe{sub 3}Al based iron aluminide fabricated using the wire-arc additive manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen; Pan, Zengxi, E-mail: zengxi@uow.edu.au; Cuiuri, Dominic; Dong, Bosheng; Li, Huijun

    2016-07-04

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate iron aluminide alloy in-situ, through separate feeding of pure Fe and Al wires into a molten pool that is generated by the gas tungsten arc welding (GTAW) process. This paper investigates the morphologies, chemical compositions and mechanical properties of the as-fabricated 30 at% Al iron aluminide wall components, and how these properties vary at different locations within the buildup wall. The tensile properties are also measured in different loading orientations; as epitaxial growth of large columnar grains is observed in the microstructures. Fe{sub 3}Al is the only phase detected in the middle buildup section of the wall structure, which constitutes the majority of the deposited material. The bottom section of the structure contains a dilution affected region where some acicular Fe{sub 3}AlC{sub 0.5} precipitates can be observed, induced by carbon from the steel substrate that was used for fabrication. The microhardness and chemical composition indicate relatively homogeneous material properties throughout the buildup wall. However, the tensile properties are very different in the longitudinal direction and normal directions, due to epitaxial growth of large columnar grains. In general, the results have demonstrated that the WAAM process is capable of producing full density in-situ-alloyed iron aluminide components with tensile properties that are comparable to powder metallurgy methods.

  2. EFFECT OF MAGNETRON-SPUTTERED Al FILM ON LOW-TEMPERATURE PACK-ALUMINIZING COATING FOR OIL CASING STEEL N80

    OpenAIRE

    MIN HUANG; YU WANG; MENG-XIAN ZHANG; YAN-QIU HUO; PENG-JIN GAO

    2014-01-01

    Low-temperature aluminizing coating was prepared onto the surface of oil casing steel N80 with a magnetron-sputtered Al film to improve its corrosion resistance. Results show that magnetron-sputtered Al film is able to form gradient aluminide coating, composed of iron aluminide FeAl3, Fe2Al5 and Fe3Al with different contents of aluminum. Both the density and continuity of iron aluminide layer for oil casing steel N80 with magnetron-sputtered Al film can be improved. Under the same corrosion c...

  3. DIMENSIONALLY STABLE, CORROSION RESISTANT NUCLEAR FUEL

    Science.gov (United States)

    Kittel, J.H.

    1963-10-31

    A method of making a uranium alloy of improved corrosion resistance and dimensional stability is described. The alloy contains from 0-9 weight per cent of an additive of zirconium and niobium in the proportions by weight of 5 to 1 1/ 2. The alloy is cold rolled, heated to two different temperatures, air-cooled, heated to a third temperature, and quenched in water. (AEC)

  4. Pitting corrosion resistant austenite stainless steel

    Science.gov (United States)

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  5. Corrosion resistance of high-performance materials titanium, tantalum, zirconium

    CERN Document Server

    2012-01-01

    Corrosion resistance is the property of a material to resist corrosion attack in a particular aggressive environment. Although titanium, tantalum and zirconium are not noble metals, they are the best choice whenever high corrosion resistance is required. The exceptionally good corrosion resistance of these high–performance metals and their alloys results from the formation of a very stable, dense, highly adherent, and self–healing protective oxide film on the metal surface. This naturally occurring oxide layer prevents chemical attack of the underlying metal surface. This behavior also means, however, that high corrosion resistance can be expected only under neutral or oxidizing conditions. Under reducing conditions, a lower resistance must be reckoned with. Only very few inorganic and organic substances are able to attack titanium, tantalum or zirconium at ambient temperature. As the extraordinary corrosion resistance is coupled with an excellent formability and weldability these materials are very valua...

  6. Corrosion-Resistant High-Entropy Alloys: A Review

    Directory of Open Access Journals (Sweden)

    Yunzhu Shi

    2017-02-01

    Full Text Available Corrosion destroys more than three percent of the world’s gross domestic product. Therefore, the design of highly corrosion-resistant materials is urgently needed. By breaking the classical alloy-design philosophy, high-entropy alloys (HEAs possess unique microstructures, which are solid solutions with random arrangements of multiple elements. The particular locally-disordered chemical environment is expected to lead to unique corrosion-resistant properties. In this review, the studies of the corrosion-resistant HEAs during the last decade are summarized. The corrosion-resistant properties of HEAs in various aqueous environments and the corrosion behavior of HEA coatings are presented. The effects of environments, alloying elements, and processing methods on the corrosion resistance are analyzed in detail. Furthermore, the possible directions of future work regarding the corrosion behavior of HEAs are suggested.

  7. Corrosion resistance improvement of titanium base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Popa, Mihai V.; Vasilescu, Ecaterina; Drob, Paula; Vasilescu, Cora; Drob, Silviu I., E-mail: ec_vasilescu@yahoo.co [Institute of Physical Chemistry ' Ilie Murgulescu' , Bucharest (Romania); Mareci, Daniel [Technical University ' Gh. Asachi' , Iasi (Romania); Rosca, Julia C. Mirza [Las Palmas de Gran Canaria University, Tafira (Spain). Mechanical Engineering Dept.

    2010-07-01

    The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy. (author)

  8. Corrosion resistance improvement of titanium base alloys

    Directory of Open Access Journals (Sweden)

    Mihai V. Popa

    2010-01-01

    Full Text Available The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.

  9. Coal Ash Corrosion Resistant Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2003-08-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a reasonably high alkali content, thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was well within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that the aggressive alkali-iron-trisulfate constituent was present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. This report provides the results of the evaluation of Test Section C, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. The analysis of Test Section C followed much the same protocol that was employed in the assessment of Test Section A. Again, the focus was on determining and documenting the relative corrosion rates of the candidate materials. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials for both Test Sections A and C

  10. ODS iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Wright, I.G.; Pint, B.A.; Ohriner, E.K.; Tortorelli, P.F. [Oak Ridge National Lab., TN (United States)

    1996-08-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200{degrees}C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The program has two main thrusts: (a) alloy processing, which involves mechanical alloying and thermomechanical processing to achieve the desired size and distribution of the oxide dispersoid, and (b) optimization of the oxidation behavior to provide increased service life compared to ODS-FeCrAl alloys intended for the same applications. Control of the grain size and shape in the final alloy is very dependent on the homogeneity of the alloy powder, in terms of the size and distribution of the dispersed oxide particles, and on the level of strain and temperature applied in the recrystallization step. Studies of the effects of these variables are being made using mechanically-alloyed powder from two sources: a commercial powder metallurgy alloy vendor and an in-house, controlled environment high-energy mill. The effects of milling parameters on the microstructure and composition of the powder and consolidated alloy are described. Comparison of the oxidation kinetics of ODS-Fe{sub 3}Al alloys with commercial ODS-FeCrAl alloys in air at 1000-1300{degrees}C indicated that the best Fe{sub 3}Al-based alloys oxidized isothermally at the same rate as the ODS-FeCrAl alloys but, under thermal cycling conditions, the oxidation rate of ODS-Fe{sub 3}Al was faster. The main difference was that the ODS-Fe{sub 3}Al experienced significantly more scale spallation above 1000{degrees}C. The differences in oxidation behavior were translated into expected lifetimes which indicated that, for an alloy section thickness of 2.5 mm, the scale spallation of ODS-Fe{sub 3}Al leads to an expected service lifetime similar to that for the INCO alloy MA956 at 1100 to 1300{degrees}C.

  11. ODS iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; Ohriner, E.K.

    1996-06-01

    Interest in advanced cycles that involve indirectly-fired gas turbines, in which coal- or gas-fired high-temperature heat exchangers are used to heat a working fluid in a closed system, has led to investigation of materials for heat exchangers capable of operation at temperatures of the order of 1200 to 1300{degrees}C. The candidate materials are ceramics and, possibly, oxide dispersion-strengthened (ODS) alloys. An ODS FeCrAl alloy was found to meet the strength requirements for such an application, in which the working fluid at 0.9 MPa was to be heated from 800 to 1100{degrees}C over a tube length of 4 m. The oxidation life of ODS FeCrAl alloys is determined by their ability to form or reform a protective alumina scale, and can be related to the time for the aluminum content of the alloy to be depleted to some minimum level. As a result, the service life is a function of the available aluminum content of the alloys and the minimum aluminum level at which breakaway oxidation occurs, hence there is a limit on the minimum cross section which can be safely employed at temperatures above 1200{degrees}C. Because of their significantly higher aluminum content ({ge}28 atom %/{ge}16 wt. percent compared to {approx}9 atom %15 wt. percent), alloys based on Fe{sub 3}Al afford a potentially larger reservoir of aluminum to sustain oxidation resistance at higher temperatures and, therefore, offer a possible improvement over the currently-available ODS FeCrAl alloys, providing they can be strengthened in a similar manner.

  12. Development of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, G.M. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    Alloys based on the intermetallic compound Fe{sub 3}Al exhibit many attractive properties, particularly excellent resistance to high temperature oxidation. Their use in commercial applications has been limited, however, by the limited workability of wrought material and the susceptibility of weldments to both hot and cold cracking. Prior efforts have systematically evaluated the effect of alloy composition on hot cracking. By the use of the Sigmajig test, we have found that hot cracking can essentially be eliminated by the addition of carbon and the control of maximum levels of niobium, zirconium, and other alloying elements. Cold cracking, however, remains an issue, and recent efforts have been aimed at minimizing its occurrence, concurrent with development of welding filler metals, processes, and procedures aimed at commercial applications.

  13. ODS iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Wright, I.G.; McKamey, C.G.; Pint, B.A.

    1995-06-01

    There has been a recent increase of interest in advanced cycles that involve indirectly-fired gas turbines, in which coal- or gas-fired high-temperature heat exchangers are used to heat a working fluid in a closed system. In a program conducted as part of the European COST-501 Concerted Action Project, available alloys based on FeCrAl-Y{sub 2}O{sub 3} were evaluated for use in the main heat exchanger in a similar closed-cycle gas turbine application. One of the currently available ODS FeCrAl alloys was found to meet the strength requirements for this application, in which the working fluid at 0.9 MPa (131 psi) flowing at 5,889 kg/hr (12,955 lb/hr) was to be heated from 800 to 1100{degrees}C (1472 to 2012{degrees}F) over a tube length of 4 m (13 ft).

  14. Development of Iron Aluminides

    Science.gov (United States)

    1987-05-01

    in the case of the slow-cool aging, Figure 162a , and transgranular with the additional isothermal aging, Figure 162b. A 208 possible reason for the...change in fracture mode can be deduced from Figure 162a , which also shows some cracking of the large perovekite particles at grain boundaries indicating

  15. Coal Ash Corrosion Resistant Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  16. Corrosion resistance of monolayer hexagonal boron nitride on copper

    Science.gov (United States)

    Mahvash, F.; Eissa, S.; Bordjiba, T.; Tavares, A. C.; Szkopek, T.; Siaj, M.

    2017-02-01

    Hexagonal boron nitride (hBN) is a layered material with high thermal and chemical stability ideal for ultrathin corrosion resistant coatings. Here, we report the corrosion resistance of Cu with hBN grown by chemical vapor deposition (CVD). Cyclic voltammetry measurements reveal that hBN layers inhibit Cu corrosion and oxygen reduction. We find that CVD grown hBN reduces the Cu corrosion rate by one order of magnitude compared to bare Cu, suggesting that this ultrathin layer can be employed as an atomically thin corrosion-inhibition coating.

  17. Improved Corrosion Resistance of Pulse Plated Nickel through Crystallisation Control

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Watanabe, Tohru; Andersen, Jens Enevold Thaulov

    1995-01-01

    When electrodeposition of nickel is used for corrosion protection of steel two aspects are important. The porosity of the coating and the resistance against corrosion provided by the coating itself. Using simple pulsed current (PC) plating, the size of the deposited crystals can be significantly...... smaller, thereby reducing porosity correspondingly. This usually also leads to improved hardness of the coating. Introducing pulse reversal (PR) plating, the most active crystals are continuously dissolved during the anodic pulse, providing a coating with improved subsequent corrosion resistance in almost...... any corrosive environment. This correlation between film texture and corrosion resistance will be discussed....

  18. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel.

    Science.gov (United States)

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-12-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer.

  19. Improved Corrosion Resistance of Pulse Plated Nickel through Crystallisation Control

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Watanabe, Tohru; Andersen, Jens Enevold Thaulov

    1995-01-01

    When electrodeposition of nickel is used for corrosion protection of steel two aspects are important. The porosity of the coating and the resistance against corrosion provided by the coating itself. Using simple pulsed current (PC) plating, the size of the deposited crystals can be significantly...... smaller, thereby reducing porosity correspondingly. This usually also leads to improved hardness of the coating. Introducing pulse reversal (PR) plating, the most active crystals are continuously dissolved during the anodic pulse, providing a coating with improved subsequent corrosion resistance in almost...... any corrosive environment. This correlation between film texture and corrosion resistance will be discussed....

  20. The corrosion resistance of zinc-nickel composite coatings

    OpenAIRE

    Panek, J; Bierska-Piech; M. Karolus

    2011-01-01

    Purpose: The aim of this work was to estimate the corrosion resistance of composite Zn+Ni and (Ni-Zn+Ni)/Zn coatings by salt spray test, electrochemical methods and grazing incidence X-ray diffraction (GIXD) method.Design/methodology/approach: The corrosion resistance properties of zinc-nickel coatings in 5% NaCl solution were investigated by salt spray test in 5% NaCl solution and electrochemical methods. Using Stern method the corrosion potential - Ecorr, corrosion current density - icorr,...

  1. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    Science.gov (United States)

    Carter, J David [Bolingbrook, IL; Mawdsley, Jennifer R [Woodridge, IL; Niyogi, Suhas [Woodridge, IL; Wang, Xiaoping [Naperville, IL; Cruse, Terry [Lisle, IL; Santos, Lilia [Lombard, IL

    2010-04-20

    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  2. 49 CFR 179.201-5 - Postweld heat treatment and corrosion resistance.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment and corrosion resistance....201-5 Postweld heat treatment and corrosion resistance. (a) Tanks and attachments welded directly... tested to demonstrate that they possess the corrosion resistance specified in § 179.200-7(d), Footnote...

  3. 78 FR 15376 - Determinations: Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea

    Science.gov (United States)

    2013-03-11

    ... COMMISSION Determinations: Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea On the basis... Korea and the antidumping duty orders on corrosion-resistant carbon steel flat products from Germany and... Corrosion-Resistant Carbon Steel Flat Products from Germany and Korea: Investigation Nos. 701-TA-350 and...

  4. Surface Corrosion Resistance in Turning of Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2015-01-01

    Full Text Available This work addresses the issues associated with implant surface modification. We propose a method to form the oxide film on implant surfaces by dry turning to generate heat and injecting oxygen-rich gas at the turning-tool flank. The morphology, roughness, composition, and thickness of the oxide films in an oxygen-rich atmosphere were characterized using scanning electron microscopy, optical profiling, and Auger electron spectroscopy. Electrochemical methods were used to study the corrosion resistance of the modified surfaces. The corrosion resistance trends, analyzed relative to the oxide film thickness, indicate that the oxide film thickness is the major factor affecting the corrosion resistance of titanium alloys in a simulated body fluid (SBF. Turning in an oxygen-rich atmosphere can form a thick oxide film on the implant surface. The thickness of surface oxide films processed at an oxygen concentration of 80% was improved to 4.6 times that of films processed at an oxygen concentration of 21%; the free corrosion potential shifted positively by 0.357 V, which significantly improved the corrosion resistance of titanium alloys in the SBF. Therefore, the proposed method may (partially replace the subsequent surface oxidation. This method is significant for biomedical development because it shortens the process flow, improves the efficiency, and lowers the cost.

  5. Corrosion Resistance of Cordierite-Modified Light MMCs

    Science.gov (United States)

    Szewczyk-Nykiel, A.; Długosz, P.; Darłak, P.; Hebda, M.

    2017-05-01

    Composites are one of the fastest developing materials. Research is particularly intensive in case of light metal alloys due to i.a. economic and environmental aspects. One of the innovative solutions is production of the metal matrix composites (MMC) by adding the cordierite ceramics obtained from fly ashes to magnesium alloys. In addition to obtaining new-generation materials with improved mechanical properties, also the waste is utilized which has a significant environmental and economic importance. In order to select the suitable operating conditions for such alloys, their corrosion resistance must be determined. This paper presents the results of corrosion resistance tests of AM60 magnesium alloy matrix composites reinforced with cordierite ceramics. The following issues were examined: (1) impact of the volume fraction of cordierite ceramics, 2 or 4 wt.%; (2) impact of surface roughness (two variants of surface treatment); and (3) impact of heat treatment on corrosion resistance of obtained composites. The results were compared with data recorded for the base AM60 alloy (which surface treatment was identical as of the composites). Moreover, the XRD and microanalysis of the chemical compositions by EDS method were applied to determine phases occurring in the investigated composites. Furthermore, the XRD was also performed in order to identify the corrosion products on the surface of the material. The test results indicate that the alloy reinforced with 2 wt.% addition of cordierite ceramics had the best corrosion resistance. It was also presented that surface and heat treatment affect the obtained results.

  6. Corrosion Resistant Steels for Structural Applications in Aircraft

    Science.gov (United States)

    2007-11-02

    Nitriding Trials ........................................................................................203 LIST OF TABLES Table 1 Property...25% min. transverse KIC 50 ksi√in min. Fatigue Similar to 300M Cleanliness AMS 2300, ASTM E45 SCC Superior to 300M Corrosion Resistance Better...those that have a high deformation resistance associated with very hard and thermal resistant multi-layer PVD titanium aluminum nitride coatings

  7. High-temperature corrosion resistance of ceramics and ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.

    1996-06-01

    Ceramics and ceramic composites offer the potential to operate fossil energy systems at the higher temperatures necessary for improved energy efficiency and better environmental control. However, because many fossil fuel-derived processes contain sulfur, chlorine, and carbon, as well as oxygen, degradation from high-temperature corrosion and environmental effects arising from reactions of solids with gases and condensable products is a common life-determining factor in operating systems. Ceramic-based products are not immune to such degradation; adequate corrosion resistance must be assured to exploit the technical and economic potential of such materials. This is normally accomplished by using stable, sound oxides that exist in their bulk form, that naturally grow as surface layers upon exposure to an oxidizing environment, or that are deposited as a coating on a susceptible material. It is therefore important to examine the critical issues with respect to more environmental stability of ceramics that have the potential to be corrosion resistant in particular fossil environments. Key aspects include not only chemical compatibility, but the influence of the environment on the mechanical behavior of the ceramic materials. In addition, for coatings, the mechanical reliability of the ceramic is a key issue in that an otherwise corrosion-resistant surface layer must remain sound and adherent in order to provide protection to the underlying substrate. The purpose of this work is to support the development of advanced ceramics and ceramic composites for applications in fossil environments by examining critical issues related to high-temperature corrosion resistance. More specifically, the overall objective of this task is to examine the chemical compatibility and reliability of potentially corrosion-resistant ceramics being developed as protective overcoats and/or structural materials as parts of other work elements funded by the AR&TD Program.

  8. Influence of Trace Alloying Elements on Corrosive Resistance of Cast Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    DUAN Han-qiao; YAN Xiang; WEI Bo-kang; LIN Han-tong

    2005-01-01

    The influences of trace alloying elements niobium, vanadium and zirconium on the corrosive resistance of 18-8 type cast stainless steel have been studied in deta() orthogonal design experiments. The results show that zirconium is mainly in the form of compound inclusions, which is unfavorable to promote the corrosive resistance of the cast stainless steel. It can alleviate the disadvantageous influence of carbon addition on corrosive resistance when some elements such as vanadium and niobium exist in the steel, and niobium has a remarkable influence on the intergranular corrosive resistance but unobvious on the pitting corrosion, and vanadium has a slightly favorable influence on the corrosive resistance of the steel.

  9. Evaluation of the corrosion resistance of latex modified concrete (LMC)

    Energy Technology Data Exchange (ETDEWEB)

    Okba, S.H.; El-Dieb, A.S.; Reda, M.M. [Ain Shams Univ., Cairo (Egypt). Dept. of Structural Engineering

    1997-06-01

    In recent years, various reinforced concrete structures worldwide have suffered rapid deterioration. Therefore, durability of concrete structures especially those exposed to aggressive environments is of great concern. Many deterioration causes and factors have been investigated. Corrosion of steel reinforcement was found to be one of the major deterioration problems. Penetration of chloride ions is one of the main causes which induces corrosion. The objective of this study is to evaluate the corrosion resistance of latex modified concrete (LMC) compared to conventional concrete using an accelerated corrosion cell. The corrosion cell proved to be a good and simple method to evaluate the durability of concretes especially with respect to chloride ion penetration, and the protection of reinforcement against corrosion. The LMC proved to be superior in its corrosion resistance compared to conventional concrete, which recommends its use in structures exposed to severe aggressive environments.

  10. Enhancement of Corrosion Resistance of Zinc Coatings Using Green Additives

    Science.gov (United States)

    Punith Kumar, M. K.; Srivastava, Chandan

    2014-10-01

    In the present work, morphology, microstructure, and electrochemical behavior of Zn coatings containing non-toxic additives have been investigated. Zn coatings were electrodeposited over mild steel substrates using Zn sulphate baths containing four different organic additives: sodium gluconate, dextrose, dextrin, and saccharin. All these additives are "green" and can be derived from food contents. Morphological and structural characterization using electron microscopy, x-ray diffraction, and texture co-efficient analysis revealed an appreciable alteration in the morphology and texture of the deposit depending on the type of additive used in the Zn plating bath. All the Zn coatings, however, were nano-crystalline irrespective of the type of additive used. Polarization and electrochemical impedance spectroscopic analysis, used to investigate the effect of the change in microstructure and morphology on corrosion resistance behavior, illustrated an improved corrosion resistance for Zn deposits obtained from plating bath containing additives as compared to the pure Zn coatings.

  11. Corrosion Resistance of Zinc Coatings With Aluminium Additive

    Directory of Open Access Journals (Sweden)

    Votava Jiří

    2014-08-01

    Full Text Available This paper is focused on evaluation of anticorrosion protection of inorganic metal coatings such as hot-dipped zinc and zinc-galvanized coatings. The thickness and weight of coatings were tested. Further, the evaluation of ductile characteristics in compliance with the norm ČSN EN ISO 20482 was processed. Based on the scratch tests, there was evaluated undercorrosion in the area of artificially made cut. Corrosion resistance was evaluated in compliance with the norm ČSN EN ISO 9227 (salt-spray test. Based on the results of the anticorrosion test, there can be stated corrosion resistance of each individual protective coating. Tests were processed under laboratory conditions and may vary from tests processed under conditions of normal atmosphere.

  12. Aluminum Composites With Small Nanoparticles Additions: Corrosion Resistance

    OpenAIRE

    Agureev, L.E.; Kostikov, V.I.; Eremeeva, Zh.V.; Barmin, A.A.; Savushkina, S.V.; Ivanov, B.S.

    2016-01-01

    International audience; Research of corrosion resistance of the aluminum powder composites containing microadditives (0.01 – 0.15% is executed about.) zirconium oxide nanoparticles. Extreme dependence of speed of corrosion of aluminum composites in 10-% solutions of sulfuric and nitric acid from the maintenance of nanoadditives is shown. It has been shown the dynamics of mass loss of aluminum composites with nanoparticles of ZrO2 during corrosion tests in acids solutions. The lowest corrosion...

  13. Corrosion resistant coatings suitable for elevated temperature application

    Science.gov (United States)

    Chan, Kwai S [San Antonio, TX; Cheruvu, Narayana Sastry [San Antonio, TX; Liang, Wuwei [Austin, TX

    2012-07-31

    The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.

  14. Electrodeposition and Corrosion Resistance of Ni-Graphene Composite Coatings

    Science.gov (United States)

    Szeptycka, Benigna; Gajewska-Midzialek, Anna; Babul, Tomasz

    2016-08-01

    The research on the graphene application for the electrodeposition of nickel composite coatings was conducted. The study assessed an important role of graphene in an increased corrosion resistance of these coatings. Watts-type nickel plating bath with low concentration of nickel ions, organic addition agents, and graphene as dispersed particles were used for deposition of the composite coatings nickel-graphene. The results of investigations of composite coatings nickel-graphene deposited from the bath containing 0.33, 0.5, and 1 g/dm3 graphene and one surface-active substance were shown. The contents of particles in coatings, the surface morphology, the cross-sectional structures of the coated samples, and their thickness and the internal stresses were studied. Voltammetric method was used for examination of the corrosion resistance of samples of composite coatings in 0.5 M NaCl. The obtained results suggest that the content of incorporated graphene particles increases with an increasing amount of graphene in plating bath. The application of organic compounds was advantageous because it caused compressive stresses in the deposited coatings. All of the nickel-graphene composite layers had better corrosion resistance than the nickel coating.

  15. Corrosion resistance of 15Mo3 in steam boiler pipe surfaced with Inconel 625 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Aracic, S.; Samardzic, I.; Krumes, D. [Mechanical Engineering Faculty, Trg Ivane Brlic Mazuranic 18, HR-35000 Slavonski Brod (Croatia)

    2004-07-01

    This paper presents accelerated laboratory corrosion resistant investigation results made on steam boiler 15Mo3 steel pipes surfaced with alloy Inconel 625. Surfacing of 15Mo3 pipes was made due to pipes corrosion resistance increase in exploitation conditions which are present in fire box of trash burning plant. Corrosion resistance investigations were made in fire box simulated atmosphere and in salt spray chamber. (authors)

  16. Improvement on Corrosion Resistance of Zirconia-Graphite Material for Powder Line of SEN

    Institute of Scientific and Technical Information of China (English)

    LI Hongxia; YANG Bin; YANG Jinsong; LIU Guoqi

    2003-01-01

    The influence of anti-oxidation additions and microstructure characters off used zirconia raw materials on the corrosion resistance of ZrO2-C were studied. The results show that BN addition can enhance the corrosion resistance of ZrO2-C due to the prevention of graphite oxidation,and zirconia raw material with good crystallization and densification will give better corrosion resistance by restrain the reaction between slag and zirconia.

  17. Corrosion resistance of Fe-based amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Botta, W.J., E-mail: wjbotta@ufscar.br [LEPMI, UMR5279 CNRS, Grenoble INP, Université de Savoie, Université Joseph Fourier, 1130, Rue de la piscine, BP 75, 38402 Saint Martin d’Hères (France); Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Berger, J.E.; Kiminami, C.S. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Roche, V.; Nogueira, R.P. [LEPMI, UMR5279 CNRS, Grenoble INP, Université de Savoie, Université Joseph Fourier, 1130, Rue de la piscine, BP 75, 38402 Saint Martin d’Hères (France); Bolfarini, C. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil)

    2014-02-15

    Highlights: ► We report corrosion properties of Fe-based amorphous alloys in different media. ► The Cr-containing alloys had corrosion resistance close to that of Pt in all media. ► The wide range of electrochemical stability is relevant in many industrial domains. -- Abstract: Fe-based amorphous alloys can be designed to present an attractive combination of properties with high corrosion resistance and high mechanical strength. Such properties are clearly adequate for their technological use as coatings, for example, in steel pipes. In this work, we studied the corrosion properties of amorphous ribbons of the following Fe-based compositions: Fe{sub 66}B{sub 30}Nb{sub 4}, [(Fe{sub 0.6}Co{sub 0.4}){sub 0.75}B{sub 0.2}Si{sub 0.05}]{sub 96}Nb{sub 4}, [(Fe{sub 0.7}Co{sub 0.3}){sub 0.75}B{sub 0.2}Si{sub 0.05}]{sub 96}Nb{sub 4}, Fe{sub 56}Cr{sub 23}Ni{sub 5.7}B{sub 16}, Fe{sub 53}Cr{sub 22}Ni{sub 5.6}B{sub 19} and Fe{sub 50}Cr{sub 22}Ni{sub 5.4}B{sub 23}. The ribbons were obtained by rapid solidification using the melt-spinning process, and were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and optical (OM) and scanning electron microscopy (SEM). The corrosion properties were evaluated by corrosion potential survey and potentiodynamic polarization. The Cr containing alloys, that is the FeCrNiB type of alloys, showed the best corrosion resistance properties with the formation of a stable passive film that ensured a very large passivation plateau.

  18. Studies on broad spectrum corrosion resistant oxide coatings

    Indian Academy of Sciences (India)

    Someswar Datta

    2001-12-01

    The corrosion resistant oxide coatings, developed and applied by the conventional vitreous enamelling techniques, showed superior resistance to a range of mineral acids at various strengths and temperatures, alkaline solutions, boiling water and chrome plating solutions. These coatings possess considerable abrasion and impact resistance as well as high thermal shock resistance. The properties of the coating system have been studied in detail and found to be strongly dependent on composition and processing parameters. These coatings have been characterized by X-ray diffraction analysis and SEM studies. Some of the coating materials have been found to be biocompatible.

  19. CORROSION RESISTANCE OF WATER-THINNABLE PAINT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2013-12-01

    Full Text Available Anticorrosion protection on the basis of water-thinnable paint systems belongs among one of ecological ways of protection of metal parts. The aim of the experiment was to test corrosion resistance of water-thinnable systems Eternal antikor speciál V9503 and Colorlak aquarex V2115 in the salt spray environment according to the norm ČSN ISO 9227. Ductility of used paint systems in complience with the norm ČSN EN ISO 1520 will be also tested, it is a test according to Erichsen. At the end of the experiment measurement, the corrosion speed depending on paint coating thickness was analyzed.

  20. Corrosion resistance of kolsterised austenitic 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Abudaia, F. B., E-mail: fabudaia@yahoo.com; Khalil, E. O., E-mail: ekhalil9@yahoo.com; Esehiri, A. F., E-mail: Hope-eseheri@hotmail.co.uk; Daw, K. E., E-mail: Khawladaw@yahoo.com [University of Tripoli Department of Materials and Metallurgical Eng, Tripoli-Libya P.O.Box13589 (Libya)

    2015-03-30

    Austenitic stainless suffers from low wear resistance in applications where rubbing against other surfaces is encountered. This drawback can be overcome by surface treatment such as coating by hard materials. Other treatments such as carburization at relatively low temperature become applicable recently to improve hardness and wear resistance. Carburization heat treatment would only be justified if the corrosion resistance is unaffected. In this work samples of 304 stainless steels treated by colossal supersaturation case carburizing (known as Kolsterising) carried out by Bodycote Company was examined for pitting corrosion resistance at room temperature and at 50 °C. Comparison with results obtained for untreated samples in similar testing conditions show that there is no deterioration in the pitting resistance due to the Kolsterising heat treatment. X ray diffraction patterns obtained for Kolsterising sample showed that peaks correspond to the austenite phase has shifted to lower 2θ values compared with those of the untreated sample. The shift is an indication for expansion of austenite unit cells caused by saturation with diffusing carbon atoms. The XRD of Kolsterising samples also revealed additional peaks appeared in the patterns due to formation of carbides in the kolsterised layer. Examination of these additional peaks showed that these peaks are attributed to a type of carbide known as Hagg carbide Fe{sub 2}C{sub 5}. The absence of carbides that contain chromium means that no Cr depletion occurred in the layer and the corrosion properties are maintained. Surface hardness measurements showed large increase after Kolsterising heat treatment.

  1. Corrosion resistance of kolsterised austenitic 304 stainless steel

    Science.gov (United States)

    Abudaia, F. B.; Khalil, E. O.; Esehiri, A. F.; Daw, K. E.

    2015-03-01

    Austenitic stainless suffers from low wear resistance in applications where rubbing against other surfaces is encountered. This drawback can be overcome by surface treatment such as coating by hard materials. Other treatments such as carburization at relatively low temperature become applicable recently to improve hardness and wear resistance. Carburization heat treatment would only be justified if the corrosion resistance is unaffected. In this work samples of 304 stainless steels treated by colossal supersaturation case carburizing (known as Kolsterising) carried out by Bodycote Company was examined for pitting corrosion resistance at room temperature and at 50 °C. Comparison with results obtained for untreated samples in similar testing conditions show that there is no deterioration in the pitting resistance due to the Kolsterising heat treatment. X ray diffraction patterns obtained for Kolsterising sample showed that peaks correspond to the austenite phase has shifted to lower 2θ values compared with those of the untreated sample. The shift is an indication for expansion of austenite unit cells caused by saturation with diffusing carbon atoms. The XRD of Kolsterising samples also revealed additional peaks appeared in the patterns due to formation of carbides in the kolsterised layer. Examination of these additional peaks showed that these peaks are attributed to a type of carbide known as Hagg carbide Fe2C5. The absence of carbides that contain chromium means that no Cr depletion occurred in the layer and the corrosion properties are maintained. Surface hardness measurements showed large increase after Kolsterising heat treatment.

  2. High Velocity Oxidation and Hot Corrosion Resistance of Some ODS Alloys

    Science.gov (United States)

    Lowell, C. E.; Deadmore, D. L.

    1977-01-01

    Several oxide dispersion strengthened (ODS) alloys were tested for cyclic, high velocity, oxidation, and hot corrosion resistance. These results were compared to the resistance of an advanced, NiCrAl coated superalloy. An ODS FeCrAl were identified as having sufficient oxidation and hot corrosion resistance to allow potential use in an aircraft gas turbine without coating.

  3. A high-specific-strength and corrosion-resistant magnesium alloy

    Science.gov (United States)

    Xu, Wanqiang; Birbilis, Nick; Sha, Gang; Wang, Yu; Daniels, John E.; Xiao, Yang; Ferry, Michael

    2015-12-01

    Ultra-lightweight alloys with high strength, ductility and corrosion resistance are desirable for applications in the automotive, aerospace, defence, biomedical, sporting and electronic goods sectors. Ductility and corrosion resistance are generally inversely correlated with strength, making it difficult to optimize all three simultaneously. Here we design an ultralow density (1.4 g cm-3) Mg-Li-based alloy that is strong, ductile, and more corrosion resistant than Mg-based alloys reported so far. The alloy is Li-rich and a solute nanostructure within a body-centred cubic matrix is achieved by a series of extrusion, heat-treatment and rolling processes. Corrosion resistance from the environment is believed to occur by a uniform lithium carbonate film in which surface coverage is much greater than in traditional hexagonal close-packed Mg-based alloys, explaining the superior corrosion resistance of the alloy.

  4. Corrosion resistance properties of sintered duplex stainless steel

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2006-09-01

    Full Text Available Purpose: of this paper was to examine the corrosion resistance of duplex stainless steels using electrochemical methods in 1M NaCl solution. The influence of powder mixes preparation and cooling cycle after sintering on corrosion properties was evaluated.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the studies behind the preparation of mixes, Schaeffler’s diagram was taken into consideration. Prepared mixes have been compacted at 800 MPa and sintered in a vacuum furnace with argon backfilling at 1260°C for 1 h. After sintering two different cooling cycles were applied: rapid cooling with an average cooling rate of 245 °C/min and slow cooling of 5 °C/min in argon atmosphere. Produced duplex stainless steels have been studied by scanning and optical microscopy and EDS chemical analysis of microstructure components. Corrosion properties have been studied through electrochemical methods in 1M NaCl water solutionFindings: According to achieved results, it was affirmed that applied sintering method as well as powder mixes preparation allows for manufacturing the sintered duplex steels with good corrosion properties which depends on austenite/ferrite ratio in the microstructure and elements partitioning between phases. Corrosion resistance of sintered stainless steels is strictly connected with the density and the pore morphology present in the microstructure too. The highest resistance to pitting corrosion in 1M NaCl solution was achieved for composition with approximate balance of ferrite and austenite in the microstructure.Research limitations/implications: According to the powders characteristic, the applied fast cooling rate seems to be a good compromise for corrosion properties and microstructures, nevertheless further tests should be carried out in

  5. 75 FR 55745 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results...

    Science.gov (United States)

    2010-09-14

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea (Korea) for the period of... preliminary results of the instant administrative review. See Corrosion-Resistant Carbon Steel Flat Products...

  6. 77 FR 24221 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission...

    Science.gov (United States)

    2012-04-23

    ... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission... countervailing duty order on corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion- resistant carbon steel flat products from Germany and Korea would be likely to lead...

  7. 77 FR 58512 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2012-09-21

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... conducting an administrative review of the countervailing duty (CVD) order on corrosion-resistant carbon... Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Notice of Extension of...

  8. 77 FR 72827 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Final...

    Science.gov (United States)

    2012-12-06

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic... on certain corrosion- resistant carbon steel flat products (``CORE'') from Germany and the Republic... Reviews'' section of this notice. \\1\\ Corrosion-Resistant Carbon Steel Flat Products From Germany and the...

  9. 77 FR 44213 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea...

    Science.gov (United States)

    2012-07-27

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic... certain corrosion-resistant carbon steel flat products (``CORE'') from Germany and the Republic of Korea..., Director, Office 3, on ``Sunset Reviews of the Antidumping Duty Orders on Corrosion-Resistant Carbon Steel...

  10. 78 FR 55057 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2013-09-09

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea... antidumping duty order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea.... See Corrosion-Resistant Carbon Steel Flat Products from Germany and the Republic of Korea: Revocation...

  11. 76 FR 54209 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2011-08-31

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... conducting an administrative review of the countervailing duty (CVD) order on corrosion-resistant carbon... CORE from Korea with regard to Dongbu and POSCO. See Corrosion-Resistant Carbon Steel Flat Products...

  12. 78 FR 16832 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Revocation...

    Science.gov (United States)

    2013-03-19

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic... corrosion-resistant carbon steel flat products (``CORE'') from Germany and the Republic of Korea (``Korea...-Year (``Sunset'') Review, 77 FR 85 (January 3, 2012). \\2\\ See Corrosion-Resistant Carbon Steel Flat...

  13. 77 FR 301 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea: Institution of Five-Year...

    Science.gov (United States)

    2012-01-04

    ... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea: Institution of Five-Year Reviews Concerning the Countervailing Duty Order on Corrosion-Resistant Carbon Steel Flat Products From Korea and the Antidumping Duty Orders on Corrosion-Resistant Carbon Steel Flat Products From Germany and...

  14. 78 FR 16247 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea; Final Results of...

    Science.gov (United States)

    2013-03-14

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... antidumping duty order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea... section entitled ``Final Results of Review.'' \\1\\ See Certain Corrosion-Resistant Carbon Steel Flat...

  15. 76 FR 3613 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2011-01-20

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... review of the countervailing duty (CVD) order on corrosion-resistant carbon steel flat products (CORE..., 2008. See Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Preliminary...

  16. 78 FR 19210 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2013-03-29

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...) has completed its administrative review of the countervailing duty (CVD) order on corrosion-resistant...\\ See Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results of...

  17. 76 FR 77775 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-12-14

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea... countervailing duty order on corrosion-resistant carbon steel flat products from the Republic of Korea covering the period January 1, 2009, through December 31, 2009. See Corrosion-Resistant Carbon Steel Flat...

  18. 77 FR 13093 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2012-03-05

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... administrative review of the countervailing duty (``CVD'') order on corrosion-resistant carbon steel flat... Review'' below. \\1\\ See Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea...

  19. 77 FR 31877 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five...

    Science.gov (United States)

    2012-05-30

    ... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five... duty order on corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion- resistant carbon steel flat products from Germany and Korea would be likely to lead to...

  20. KSC lubricant testing program. [lubrication characteristics and corrosion resistance

    Science.gov (United States)

    Lockhart, B. J.; Bryan, C. J.

    1973-01-01

    A program was conducted to evaluate the performance of various lubricants in use and considered for use at Kennedy Space Center (KSC). The overall objectives of the program were to: (1) determine the lubrication characteristics and relative corrosion resistance of lubricants in use and proposed for use at KSC; (2) identify materials which may be equivalent to or better than KELF-90 and Krytox 240 AC greases; and (3) identify or develop an improved lubricating oil suitable for use in liquid oxygen (LOX) pumps at KSC. It was concluded that: (1) earth gel thickened greases are very poor corrosion preventive materials in the KSC environment; (2) Halocarbon 25-5S and Braycote 656 were suitable substiutes for KELF-90 and Krytox 240 AC respectively; and (3) none of the oils evaluated possessed the necessary inertness, lubricity, and corrosion prevention characteristics for the KSC LOX pumping systems in their present configuration.

  1. CORROSION RESISTANCE OF ALUMINUM CANS IN CONTACT WITH BEER

    Directory of Open Access Journals (Sweden)

    Luiza Esteves

    2015-07-01

    Full Text Available Aluminum cans with an organic coating are used in Brazil as packaging for carbonated beverages (soft drinks, beer, which act as electrolyte solutions. These electrolytes, in contact with the inner metal can, initiate a corrosion process of aluminum. The presence of metallic ions can change the flavor of the beverage, compromising the product quality. This work aims to evaluate the corrosion resistance of aluminum in beer environment using the technique of Electrochemical Impedance Spectroscopy (EIS. The Scanning Electron Microscopy (SEM and the Energy Dispersive Spectroscopy (EDS were used to evaluate the metal surface. Two batches with different coating thickness were analyzed for the same date of manufacture. The electrolyte resistance and the aluminum charge transfer resistance in beer varied depending on the batch analyzed.

  2. Improvement in corrosion resistance of magnesium coating with cerium treatment

    Institute of Scientific and Technical Information of China (English)

    Samia Ben Hassen; Latifa Bousselmi; Patricc Bercot; El Mustafa Rezrazi; Ezzeddine Triki

    2009-01-01

    Corrosion protection afforded by a magnesium coating treated in cerium salt solution on steel substrate was investigated using open circuit potential, polarization curves, and electrochemical impedance spectroscopy (EIS) in 0.005 M sodium chloride solution (NaCl). The morphology of the surface was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The cerium treated coating was obtained by immersion in CeCl3 solution. The results showed that the corrosion resistance of the treated magnesium coating was improved. The corrosion potential of the treated coating was found to be nobler than that of the untreated magnesium coating and the corrosion current decreased significantly. Impedance results showed that the cerium treatment increased corrosion protection. The improvement of anti-corrosion properties was ataibuted to the formation of cerium oxides and hydroxides that gave to a physical barrier effect.

  3. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Angel Sanjurjo

    2004-05-01

    Heat-exchangers, filters, turbines, and other components in integrated coal gasification combined cycle system must withstand demanding conditions of high temperatures and pressure differentials. Under the highly sulfiding conditions of the high temperature coal gas, the performance of components degrade significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. A review of the literature indicates that the corrosion reaction is the competition between oxidation and sulfidation reactions. The Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers.

  4. Towards Long-Term Corrosion Resistance in FE Service Environments

    Energy Technology Data Exchange (ETDEWEB)

    G. R. Holcomb and P. Wang

    2010-10-01

    The push for carbon capture and sequestration for fossil fuel energy production has materials performance challenges in terms of high temperature oxidation and corrosion resistance. Such challenges will be illustrated with examples from several current technologies that are close to being realized. These include cases where existing technologies are being modified—for example fireside corrosion resulting from increased corrosivity of flue gas in coal boilers refit for oxy-fuel combustion, or steam corrosion resulting from increased temperatures in advanced ultra supercritical steam boilers. New technology concepts also push the high temperature corrosion and oxidation limits—for example the effects of multiple oxidants during the use of high CO2 and water flue gas used as turbine working fluids.

  5. Selection of Corrosion Resistant Materials for Nuclear Waste Repositories

    Energy Technology Data Exchange (ETDEWEB)

    R.B. Rebak

    2006-08-28

    Several countries are considering geological repositories to dispose of nuclear waste. The environment of most of the currently considered repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories, alloys such as carbon steel, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking.

  6. Selection of Corrosion Resistant Materials for Nuclear Waste Repositories

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B

    2006-06-01

    Several countries are considering geological repositories to dispose of nuclear waste. The environment of most of the currently considered repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories alloys such as carbon steel, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking.

  7. Corrosion-resistant nickel-base alloys for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.W.; Hulsizer, W.R.

    1976-08-01

    Laboratory corrosion screening procedures used during the past ten years in developing nickel-base superalloys for gas turbine applications are described. Hot salt corrosion tests have included crucible and salt shower exposures. Reproducible techniques were established and alloy composition effects defined, leading to development of M313, IN-587, a IN-792. Correlations have been made with corrosion results in burner rigs, and engine experience confirming anticipated behavior is now becoming available. During this work a number of limitations of these accelerated laboratory tests were uncovered; these are discussed. Finally, brief descriptions of the states of development of alloy MA 755E (an oxide dispersion-strengthened superalloy) and IN-939 (a cast 23 percent chromium superalloy) are outlined as examples of advanced corrosion resistant, high strength materials of the future.

  8. A liquid aluminum corrosion resistance surface on steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wang Deqing; Shi Ziyuan; Zou Longjiang

    2003-05-31

    The process of hot dipping pure aluminum on a steel substrate followed by oxidation was studied to form a surface layer of aluminum oxide resistant to the corrosion of aluminum melt. The thickness of the pure aluminum layer on the steel substrate is reduced with the increase in temperature and time in initial aluminizing, and the thickness of the aluminum layer does not increase with time at given temperature when identical temperature and complete wetting occur between liquid aluminum and the substrate surface. The thickness of the Fe-Al intermetallic layer on the steel base is increased with increasing bath temperature and time. Based on the experimental data and the mathematics model developed by the study, a maximum exists in the thickness of the Fe-Al intermetallic at certain dipping temperature. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis reveals that the top portion of the steel substrate is composed of a thin layer of {alpha}-Al{sub 2}O{sub 3}, followed by a thinner layer of FeAl{sub 3}, and then a much thicker one of Fe{sub 2}Al{sub 5} on the steel base side. In addition, there is a carbon enrichment zone in diffusion front. The aluminum oxide surface formed on the steel substrate is in perfect condition after corrosion test in liquid aluminum at 750 deg. C for 240 h, showing extremely good resistance to aluminum melt corrosion.

  9. Effect of silicate pretreatment, post-sealing and additives on corrosion resistance of phosphated galvanized steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Sodium silicate (water glass) pretreatment before phosphating, silicate post-sealing after phosphating and adding silicate to a traditional phosphating solution were respectively carried out to obtain the improved phosphate coatings with high corrosion resistance and coverage on hot-dip galvanized(HDG) steel. The corrosion resistance, morphology and chemical composition of the coatings were investigated using neutral salt spray(NSS) tests, scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). The results show that pretreatment HDG steel with silicate solutions, phosphate coatings with finer crystals and higher coverage are formed and the corrosion resistance is enhanced. Adding silicate to a traditional phosphating solution, the surface morphology of the coatings is nearly unchanged. The corrosion resistance of the coatings is mainly dependent on phosphating time.Phosphating for a longer time (such as 5 min), the corrosion resistance, increasing with concentration of silicate, is improved significantly. Post-sealing the phosphated HDG steel with silicate solutions, the pores among the zinc phosphate crystals are sealed with the films containing Si, P, O and Zn and the continuous composite coatings are formed. The corrosion resistance of the composite coatings, related to the pH value, contents of hydrated gel of silica and Si2O52- and post-sealing time, is increased markedly. The improved coatings with optimal corrosion resistance are obtained for phosphating 5 min and post-sealing with 5 g/L silicate solution for 10 min.

  10. Mechanical properties and electronic structures of Fe-Al intermetallic

    Science.gov (United States)

    Liu, YaHui; Chong, XiaoYu; Jiang, YeHua; Zhou, Rong; Feng, Jing

    2017-02-01

    Using the first-principles calculations, the elastic properties, anisotropy properties, electronic structures, Debye temperature and stability of Fe-Al (Fe3Al, FeAl, FeAl2, Fe2Al5 and FeAl3) binary compounds were calculated. The formation enthalpy and cohesive energy of these Fe-Al compounds are negative, and show they are thermodynamically stable structures. Fe2Al5 has the lowest formation enthalpy, which shows the Fe2Al5 is the most stable of Fe-Al binary compounds. These Fe-Al compounds display disparate anisotropy due to the calculated different shape of the 3D curved surface of the Young's modulus and anisotropic index. Fe3Al has the biggest bulk modulus with the value 233.2 GPa. FeAl has the biggest Yong's modulus and shear modulus with the value 296.2 GPa and 119.8 GPa, respectively. The partial density of states, total density of states and electron density distribution maps of the binary Fe-Al binary compounds are analyzed. The bonding characteristics of these Fe-Al binary compounds are mainly combination by covalent bond and metallic bonds. Meanwhile, also exist anti-bond effect. Moreover, the Debye temperatures and sound velocity of these Fe-Al compounds are explored.

  11. Corrosion resistance of porous NiTi biomedical alloy in simulated body fluids

    Science.gov (United States)

    Stergioudi, F.; Vogiatzis, C. A.; Pavlidou, E.; Skolianos, S.; Michailidis, N.

    2016-09-01

    The corrosion performance of two porous NiTi in physiological and Hank’s solutions was investigated by potentiodynamic polarization, cyclic polarization and impedance spectroscopy. Electric models simulating the corrosion mechanism at early stages of immersion were proposed, accounting for both microstructural observations and electrochemical results. Results indicate that both porous samples were susceptible to localized corrosion. The porosity increase (from 7% to 18%) resulted in larger and wider pore openings, thus favoring the corrosion resistance of 18% porous NiTi. Strengthening of corrosion resistance was observed in Hank’s solution. The pore morphology and micro-galvanic corrosion phenomena were determining factors affecting the corrosion resistance.

  12. Durable Corrosion Resistance of Copper Due to Multi-Layer Graphene

    Directory of Open Access Journals (Sweden)

    Abhishek Tiwari

    2017-09-01

    Full Text Available Ultra-thin graphene coating has been reported to provide considerable resistance against corrosion during short-term exposures, however, there is great variability in the corrosion resistance due to graphene coating in different studies. It may be possible to overcome the problem of hampered corrosion protection ability of graphene that is caused due to defective single layer graphene by applying multilayer graphene. Systematic electrochemical characterization showed that the multilayer graphene coating developed in the study provided significant corrosion resistance in a chloride solution and the corrosion resistance was sustained for long durations (~400 h, which is attributed to the multilayer graphene.

  13. Effect of temperature on structure and corrosion resistance for electroless NiWP coating

    Indian Academy of Sciences (India)

    M Q YU; Q QIAO; F YOU; C L LI; Y ZHAO; Z Z XIAO; H L LUO; Z F XU; KAZUHIRO MATSUGI; J K YU

    2016-04-01

    The effect of plating temperatures between 60 and 90$^{\\circ}$C on structure and corrosion resistance for electroless NiWP coatings on AZ91D magnesium alloy substrate was investigated. Results show that temperature has a significant influence on the surface morphology and corrosion resistance of the NiWP alloy coating. An increase in temperature will lead to an increase in coating thickness and form a more uniform and dense NiWP coatings. Moreover, cracks were observed by SEM in coating surface and interface at the plating temperature of 90$^{\\circ}$C. Coating corrosion resistance is highly dependent on temperature according to polarization curves. The optimum temperature isfound to be 80$^{\\circ}$C and the possible reasons of corrosion resistance for NiWP coating have been discussed.

  14. Effects of lanthanum addition on corrosion resistance of hot-dipped galvalume coating

    Institute of Scientific and Technical Information of China (English)

    YANG Dong; CHEN Jianshe; HAN Qing; LIU Kuiren

    2009-01-01

    Effects of La addition on corrosion resistance of hot-dipped galvalume coating steel wire were investigated. The corrosion resistance of Zn-Al-Si-La alloy coatings containing 0, 0.02wt.%, 0.05wt.%, 0.1wt.% and 0.2wt.% La were evaluated by various tests such as copper-accelerated acetic acid salt spray testing (CASS), immersion test in 3.5% NaCl solution, electrochemical tests including weak polarization curves and electrochemical impedance spectroscopy (EIS) tests, scanning electron microscope (SEM) test and X-ray diffraction (XRD) test. It was found that the corrosion resistance of galvalume coating could be improved by adding proper amounts of La. Meanwhile, the mechanism of the improvement of corrosion resistance by La addition was discussed.

  15. Structure and Corrosion Resistance of Microarc Oxidation Coatings on AZ91D Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    Cui Shihai; Han Jianmin; Li Weijing; Li Ronghua; Zhu Xiaowen; Wang Jinhua

    2004-01-01

    Magnesium alloys are widely used as shells of 3C (computer, mobile phone and consumer electronics) equipments for its impressive mechanical and physical properties, such as low density, good resistance to electromagnetic radiation, suitable for high pressure diecasting and easily recycling, etc. But poor corrosion resistance confines its extensively application. In this paper, protective coatings was successfully prepared on AZ91D magnesium alloys by micro-arc oxidation (MAO) and painting process. Microstructures and phases of MAO coatings were invesgated with scanning electron microscope (SEM) and X-Ray diffractometer. Mechanical properties of MAO coating, such as adhesive force and corrosion resistance, were also tested. Results showed that MAO coatings were a good base for painting process. MAO coatings with paint have good adhesive properties to base metal and excellent corrosion resistance. Micro-arc oxidation with painting process is a good kind of surface treatment to improve the corrosion resistance of mobile phone shell made of AZ91D magnesium alloys.

  16. White primer permits a corrosion-resistant coating of minimum weight

    Science.gov (United States)

    Albrecht, R. H.; Jensen, D. P.; Schnake, P.

    1966-01-01

    White primer for coating 2219 aluminum alloy supplies a base for a top coating of enamel. A formulation of pigments and vehicle results in a primer with high corrosion resistance and minimum film thickness.

  17. Improvement of Microhardness and Corrosion Resistance of Stainless Steel by Nanocomposite Coating

    OpenAIRE

    Hiba Husam Ismail; Kareem Neamah Sallomi; Hamid S. Mahdi

    2014-01-01

    Stainless steel (AISI 304) has good electrical and thermal conductivities, good corrosion resistance at ambient temperature, apart from these it is cheap and abundantly available; but has good mechanical properties such as hardness. To improve the hardness and corrosion resistance of stainless steel its surface can be modified by developing nanocomposite coatings applied on its surface. The main objective of this paper is to study effect of electroco-deposition method on microhardness and cor...

  18. Corrosion Resistance of Galvanized Steel in the Environment of a Bioreactor

    OpenAIRE

    Šustr Michal; Dostál Petr; Začal Jaroslav

    2016-01-01

    The article deals with monitoring the corrosion resistibility of welded materials in the anaerobic fermenter (bioreactor). The main goal of this research is to assess the change of hardness after degradation. The change of hardness occurs in the corrosion environment and it correlates with the corrosion resistibility of material. The purpose of this experiment is to recognize the possibilities of using the CMT welded materials in the defined environment. As an innovative technology the acoust...

  19. STUDY ON CORROSION RESISTANCE OF REBAR IN HYBRID GRINDING FLY ASH-LIME SILICATE CONCRETE

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The corrosion resistance of rebar in fly ash-lime sili cate concrete as well as its marco properties and pore distribution is investiga ted.The results show that the fly ash is activated, the compressive strength of the silicate concrete is strengthened and its pore structure is modified after f ly ash and lime being hybrid ground.Also the corrosion resistance of rebar in the silicate concrete is improved.

  20. Surface modification to improve fireside corrosion resistance of Fe-Cr ferritic steels

    Science.gov (United States)

    Park, Jong-Hee; Natesan, Krishnamurti; Rink, David L.

    2010-03-16

    An article of manufacture and a method for providing an Fe--Cr ferritic steel article of manufacture having a surface layer modification for corrosion resistance. Fe--Cr ferritic steels can be modified to enhance their corrosion resistance to liquid coal ash and other chemical environments, which have chlorides or sulfates containing active species. The steel is modified to form an aluminide/silicide passivating layer to reduce such corrosion.

  1. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Angel Sanjurjo

    2004-05-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. A review of the literature indicated that the Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers. We selected diffusion coatings of Cr and Al, and surface coatings of Si and Ti for the preliminary testing. These coatings will be applied using the fluidized bed chemical vapor deposition technique developed at SRI which is rapid and relatively inexpensive. We have procured coupons of typical alloys used in a gasifier. These coupons will be coated with Cr, Al, Si, and Ti. The samples will be tested in a bench-scale reactor using simulated coal gas compositions. In addition, we will be sending coated samples for insertion in the gas stream of the coal gasifier.

  2. Corrosion resistance of zinc-magnesium coated steel

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, N.C. [Ford Motor Company Ltd., Dunton Engineering Centre, Room GB15/GM-D01, Laindon, Basildon, Essex SS15 6EE (United Kingdom) and School of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)]. E-mail: niamh.hosking@gmail.com; Stroem, M.A. [Volvo Car Corporation, Building VCPC, Maildrop PV 1B, Volvo Jacobs vag, Goeteborg SE-405 31 (Sweden); Shipway, P.H. [School of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Rudd, C.D. [School of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2007-09-15

    A significant body of work exists in the literature concerning the corrosion behaviour of zinc-magnesium coated steel (ZMG), describing its enhanced corrosion resistance when compared to conventional zinc-coated steel. This paper begins with a review of the literature and identifies key themes in the reported mechanisms for the attractive properties of this material. This is followed by an experimental programme where ZMG was subjected to an automotive laboratory corrosion test using acidified NaCl solution. A 3-fold increase in time to red rust compared to conventional zinc coatings was measured. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy were used to characterize the corrosion products formed. The corrosion products detected on ZMG included simonkolleite (Zn{sub 5}Cl{sub 2}(OH){sub 8} . H{sub 2}O), possibly modified by magnesium uptake, magnesium hydroxide (Mg(OH){sub 2}) and a hydroxy carbonate species. It is proposed that the oxygen reduction activity at the (zinc) cathodes is reduced by precipitation of alkali-resistant Mg(OH){sub 2}, which is gradually converted to more soluble hydroxy carbonates by uptake of atmospheric carbon dioxide. This lowers the surface pH sufficiently to allow thermodynamically for general precipitation of insoluble simonkolleite over the corroding surface thereby retarding the overall corrosion reactions, leaving only small traces of magnesium corrosion products behind. Such a mechanism is consistent with the experimental findings reported in the literature.

  3. Is cell viability always directly related to corrosion resistance of stainless steels?

    Science.gov (United States)

    Salahinejad, E; Ghaffari, M; Vashaee, D; Tayebi, L

    2016-05-01

    It has been frequently reported that cell viability on stainless steels is improved by increasing their corrosion resistance. The question that arises is whether human cell viability is always directly related to corrosion resistance in these biostable alloys. In this work, the microstructure and in vitro corrosion behavior of a new class of medical-grade stainless steels were correlated with adult human mesenchymal stem cell viability. The samples were produced by a powder metallurgy route, consisting of mechanical alloying and liquid-phase sintering with a sintering aid of a eutectic Mn-Si alloy at 1050 °C for 30 and 60 min, leading to nanostructures. In accordance with transmission electron microscopic studies, the additive particles for the sintering time of 30 min were not completely melted. Electrochemical impedance spectroscopic experiments suggested the higher corrosion resistance for the sample sintered for 60 min; however, a better cell viability on the surface of the less corrosion-resistant sample was unexpectedly found. This behavior is explained by considering the higher ion release rate of the Mn-Si additive material, as preferred sites to corrosion attack based on scanning electron microscopic observations, which is advantageous to the cells in vitro. In conclusion, cell viability is not always directly related to corrosion resistance in stainless steels. Typically, the introduction of biodegradable and biocompatible phases to biostable alloys, which are conventionally anticipated to be corrosion-resistant, can be advantageous to human cell responses similar to biodegradable metals.

  4. Improving by postoxidation of corrosion resistance of plasma nitrocarburized AISI 316 stainless steels

    Science.gov (United States)

    Yenilmez, A.; Karakan, M.; Çelik, İ.

    2017-01-01

    Austenitic stainless steels are widely used in several industries such as chemistry, food, health and space due to their perfect corrosion resistance. However, in addition to corrosion resistance, the mechanic and tribological features such as wear resistance and friction are required to be good in the production and engineering of this type of machines, equipment and mechanic parts. In this study, ferritic (FNC) and austenitic (ANC) nitrocarburizing were applied on AISI 316 stainless steel specimens with perfect corrosion resistance in the plasma environment at the definite time (4 h) and constant gas mixture atmosphere. In order to recover corrosion resistance which was deteriorated after nitrocarburizing again, plasma postoxidation process (45 min) was applied. After the duplex treatment, the specimens' structural analyses with XRD and SEM methods, corrosion analysis with polarization method and surface hardness with microhardness method were examined. At the end of the studies, AISI 316 surface hardness of stainless steel increased with nitrocarburizing process, but the corrosion resistance was deteriorated with FNC (570 °C) and ANC (670 °C) nitrocarburizing. With the following of the postoxidation treatment, it was detected that the corrosion resistance became better and it approached its value before the process.

  5. Improvement of corrosion resistance of magnesium metal by rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Toshihide [Department of Production Systems Engineering, Toyohashi University of Technology, Toyohashi 441-8580 (Japan)], E-mail: takenaka@pse.tut.ac.jp; Ono, Takami; Narazaki, Yuji; Naka, Yusuke; Kawakami, Masahiro [Department of Production Systems Engineering, Toyohashi University of Technology, Toyohashi 441-8580 (Japan)

    2007-11-20

    Mg metal containing rare earth metals (REs) can be electrowon directly by molten salt electrolysis. The clarification of the optimum RE content in Mg is necessary to fix the electrolytic conditions in the direct electrowinning of Mg with RE. From this point of view, effect of RE addition in Mg metal on its corrosion property was studied in detail in this study. The specimen was prepared by adding La, Nd, or Ce in melted Mg metal, and its corrosion resistance was examined by an immersion test in 3 mass%-NaCl solution at room temperature. The corrosion resistance of Mg was improved greatly by adding a small amount of RE, whereas the excess addition of RE deteriorated the corrosion resistance. The optimum RE content was about 0.5 mass%. In this study, the corrosion property of Mg with an artificial surface oxide layer was also studied to clarify the effect of surface oxide. The corrosion resistance of Mg was particularly strengthened by conversion coating in a solution including La(NO{sub 3}){sub 3}, Nd(NO{sub 3}){sub 3}, or Ce(NO{sub 3}){sub 3}, with Mg(NO{sub 3}){sub 2}. This result suggests that the surface oxide film consisting of both Mg and RE gives ideal corrosion resistance to Mg metal. Mg metal with conversion coating including RE should also be of use as a corrosion-resistant material.

  6. Forging of FeAl intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Flores, O.; Juarez, J.; Campillo, B.; Martinez, L. [UNAM, Cuernavaca (Mexico). Lab. de Cuernavaca; Schneibel, J.H. [Oak Ridge National Lab., TN (United States)

    1994-09-01

    Much activity has been concentrated on the development of intermetallic compounds with the aim of improving tensile ductility, fracture toughness and high notch sensitivity in order to develop an attractive combination of properties for high and low temperature applications. This paper reports experience in processing and forging of FeAl intermetallic of B2 type. During the experiments two different temperatures were employed, and the specimens were forged after annealing in air, 10{sup {minus}2} torr vacuum and argon. From the results it was learned that annealing FeAl in argon atmosphere prior to forging resulted in better deformation behavior than for the other two environments. For the higher forging temperature used in the experiments (700C), the as-cast microstructure becomes partially recrystallized.

  7. Mechanical properties and electronic structures of Fe-Al intermetallic

    Energy Technology Data Exchange (ETDEWEB)

    Liu, YaHui; Chong, XiaoYu; Jiang, YeHua, E-mail: jiangyehua@kmust.edu.cn; Zhou, Rong; Feng, Jing, E-mail: jingfeng@kmust.edu.cn

    2017-02-01

    Using the first-principles calculations, the elastic properties, anisotropy properties, electronic structures, Debye temperature and stability of Fe-Al (Fe{sub 3}Al, FeAl, FeAl{sub 2}, Fe{sub 2}Al{sub 5} and FeAl{sub 3}) binary compounds were calculated. The formation enthalpy and cohesive energy of these Fe-Al compounds are negative, and show they are thermodynamically stable structures. Fe{sub 2}Al{sub 5} has the lowest formation enthalpy, which shows the Fe{sub 2}Al{sub 5} is the most stable of Fe-Al binary compounds. These Fe-Al compounds display disparate anisotropy due to the calculated different shape of the 3D curved surface of the Young’s modulus and anisotropic index. Fe{sub 3}Al has the biggest bulk modulus with the value 233.2 GPa. FeAl has the biggest Yong’s modulus and shear modulus with the value 296.2 GPa and 119.8 GPa, respectively. The partial density of states, total density of states and electron density distribution maps of the binary Fe-Al binary compounds are analyzed. The bonding characteristics of these Fe-Al binary compounds are mainly combination by covalent bond and metallic bonds. Meanwhile, also exist anti-bond effect. Moreover, the Debye temperatures and sound velocity of these Fe-Al compounds are explored.

  8. Is cell viability always directly related to corrosion resistance of stainless steels?

    Energy Technology Data Exchange (ETDEWEB)

    Salahinejad, E., E-mail: salahinejad@kntu.ac.ir [Faculty of Materials Science and Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Ghaffari, M. [Bruker AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711 (United States); Vashaee, D. [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Tayebi, L. [Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53201 (United States); Department of Engineering Science, University of Oxford, Oxford OX1 3PJ (United Kingdom)

    2016-05-01

    It has been frequently reported that cell viability on stainless steels is improved by increasing their corrosion resistance. The question that arises is whether human cell viability is always directly related to corrosion resistance in these biostable alloys. In this work, the microstructure and in vitro corrosion behavior of a new class of medical-grade stainless steels were correlated with adult human mesenchymal stem cell viability. The samples were produced by a powder metallurgy route, consisting of mechanical alloying and liquid-phase sintering with a sintering aid of a eutectic Mn–Si alloy at 1050 °C for 30 and 60 min, leading to nanostructures. In accordance with transmission electron microscopic studies, the additive particles for the sintering time of 30 min were not completely melted. Electrochemical impedance spectroscopic experiments suggested the higher corrosion resistance for the sample sintered for 60 min; however, a better cell viability on the surface of the less corrosion-resistant sample was unexpectedly found. This behavior is explained by considering the higher ion release rate of the Mn–Si additive material, as preferred sites to corrosion attack based on scanning electron microscopic observations, which is advantageous to the cells in vitro. In conclusion, cell viability is not always directly related to corrosion resistance in stainless steels. Typically, the introduction of biodegradable and biocompatible phases to biostable alloys, which are conventionally anticipated to be corrosion-resistant, can be advantageous to human cell responses similar to biodegradable metals. - Highlights: • Cell viability vs. corrosion resistance for medical-grade stainless steels • The stainless steel samples were prepared by powder metallurgy. • Unpenetrated additive played a critical role in the correlation.

  9. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xing-Wu, E-mail: qiuxingwu@126.com [School of Material Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Department of Materials Engineering, Sichuan College of Architectural Technology, Deyang 618000 (China); Zhang, Yun-Peng; He, Li [School of Material Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Liu, Chun-ge [Department of Transportation and Municipal Engineering, Sichuan College of Architectural Technology, Deyang 618000 (China)

    2013-02-05

    Highlights: Black-Right-Pointing-Pointer We use a new method (laser cladding) to prepare high-entropy alloy. Black-Right-Pointing-Pointer We gained small microstructure under rapid solidification condition. Black-Right-Pointing-Pointer We studied corrosion resistance of AlCrFeCuCo high-entropy alloy in two different liquids. - Abstract: The AlCrFeCuCo high-entropy alloys were prepared by the laser cladding method. The microstructure and corrosion resistance property of AlCrFeCuCo high-entropy alloy were researched by scanning electron microscopy, X-ray diffraction and electrochemical workstation. The results show that, under the rapid solidification small microstructure gained, the morphology of AlCrFeCuCo high entropy alloy is simple, the phase mainly compose of FCC and BCC; elements segregated in the alloys; the alloy shows excellent corrosion resistance, along with the increase of the scanning speed, alloy corrosion resistance performance shows a enhancement in the first and then weakened trend. The corrosion resistance performance of AlCrFeCuCo high-entropy alloys in 1 mol/L NaCl solution is better than in 0.5 mol/L H{sub 2}SO{sub 4} solution.

  10. Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints

    Directory of Open Access Journals (Sweden)

    G. Rambabu

    2015-12-01

    Full Text Available The aluminium alloy AA2219 (Al–Cu–Mg alloy is widely used in the fabrication of lightweight structures with high strength-to-weight ratio and good corrosion resistance. Welding is main fabrication method of AA2219 alloy for manufacturing various engineering components. Friction stir welding (FSW is a recently developed solid state welding process to overcome the problems encountered in fusion welding. This process uses a non-consumable tool to generate frictional heat on the abutting surfaces. The welding parameters, such as tool pin profile, rotational speed, welding speed and axial force, play major role in determining the microstructure and corrosion resistance of welded joint. The main objective of this work is to develop a mathematical model to predict the corrosion resistance of friction stir welded AA2219 aluminium alloy by incorporating FSW process parameters. In this work a central composite design with four factors and five levels has been used to minimize the experimental conditions. Dynamic polarization testing was carried out to determine critical pitting potential in millivolt, which is a criteria for measuring corrosion resistance and the data was used in model. Further the response surface method (RSM was used to develop the model. The developed mathematical model was optimized using the simulated annealing algorithm optimizing technique to maximize the corrosion resistance of the friction stir welded AA2219 aluminium alloy joints.

  11. Status of coal ash corrosion resistant materials test program

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, D.K.; Meisenhelter, D.K.; Sikka, V.K.

    1999-07-01

    In November of 1998, Babcock and Wilcox (B and W) began development of a system to permit testing of several advanced tube materials at metal temperatures typical of advanced supercritical steam conditions of 1100 F and higher in a boiler exhibiting coal ash corrosive conditions. The U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B and W, and First Energy's Ohio Edison jointly fund the project. CONSOL Energy Company is also participating as an advisor. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. The coal-ash corrosion resistant materials test program will provide full scale, in-situ testing of recently developed boiler superheater and reheater tube materials. These newer materials may be capable of operating at higher steam temperatures while resisting external/fire-side corrosion. For high sulfur coal applications, this is a key issue for advanced cycle pulverized coal-fired plants. Fireside corrosion is also a critical issue for many existing plants. Previous testing of high temperature materials in the United States has been based primarily on using laboratory test coupons. The test coupons did not operate at conditions representative of a high sulfur coal-fired boiler. Testing outside of the United States has been with low sulfur coal or natural gas firing and has not addressed corrosion issues. This test program takes place in an actual operating boiler and is expected to confirm the performance of these materials with high sulfur coal. The system consists of three identical sections, each containing multiple pieces of twelve different materials. They are cooled by reheater steam, and are located just above the furnace exit in Ohio Edison's Niles Unit No.1, a 110 MWe unit firing high sulfur Ohio coal. After one year of operation, the first section will be removed for thorough metallurgical evaluation. The second and third sections will operate for

  12. The corrosion resistance of Nitinol alloy in simulated physiological solutions

    Energy Technology Data Exchange (ETDEWEB)

    Milosev, Ingrid, E-mail: ingrid.milosev@ijs.si [Jozef Stefan Institute, Department of Physical and Organic Chemistry, Jamova 39, SI-1000, Ljubljana (Slovenia); Valdoltra Orthopaedic Hospital, Jadranska c. 31, SI-6280 Ankaran (Slovenia); Kapun, Barbara [Jozef Stefan Institute, Department of Physical and Organic Chemistry, Jamova 39, SI-1000, Ljubljana (Slovenia)

    2012-07-01

    The corrosion behaviour of Nitinol alloy containing nearly equi-atomic composition of nickel and titanium and its constituent metals (nickel and titanium) was investigated in simulated Hanks physiological solution (pH value 7.5) and pH modified simulated Hanks physiological solution (pH values 4.5 and 6.5) and by electrochemical method of anodic potentiodynamic polarization at 37 Degree-Sign C. In this chloride-rich medium the corrosion stability of Nitinol is limited by the susceptibility to localized corrosion and is in that sense more similar to nickel than to titanium. The corrosion stability of Nitinol is strongly dependent on the surface preparation-grinding, polishing or chemical etching. Whereas a ground surface is not resistant to localized corrosion, polished and chemically etched surfaces are resistant to this type of corrosion attack. The reasons for this behaviour were investigated through metallurgical, topographical and chemical properties of the surface as a function of surface preparation. For that purpose, scanning electron microscopy combined with chemical analysis, confocal microscopy and X-ray photoelectron spectroscopy were used. The surface roughness decreased in the following order: chemically etched > ground > polished surface. Besides differences in topography, distinct differences in the chemical composition of the outermost surface are observed. Ground, rough surfaces comprised mainly titanium oxides and small amounts of nickel metal. Chemically etched and, especially, polished surfaces are composed of a mixture of titanium, nickel and titanium oxides, as studied by angle resolved X-ray photoelectron spectroscopy. These results emphasize the importance of detailed investigation of the metal surface since small differences in surface preparation may induce large differences in corrosion stability of material when exposed to corrosive environments. - Highlights: Black-Right-Pointing-Pointer The corrosion resistance of Nitinol is dependent

  13. Corrosion-Resistant Container for Molten-Material Processing

    Science.gov (United States)

    Stern, Theodore G.; McNaul, Eric

    2010-01-01

    In a carbothermal process, gaseous methane is passed over molten regolith, which is heated past its melting point to a temperature in excess of 1,625 C. At this temperature, materials in contact with the molten regolith (or regolith simulant) corrode and lose their structural properties. As a result, fabricating a crucible to hold the molten material and providing a method of contact heating have been problematic. Alternative containment approaches use a large crucible and limit the heat zone of the material being processed, which is inefficient because of volume and mass constraints. Alternative heating approaches use non-contact heating, such as by laser or concentrated solar energy, which can be inefficient in transferring heat and thus require higher power heat sources to accomplish processing. The innovation is a combination of materials, with a substrate material having high structural strength and stiffness and high-temperature capability, and a coating material with a high corrosion resistance and high-temperature capability. The material developed is a molybdenum substrate with an iridium coating. Creating the containment crucible or heater jacket using this material combination requires only that the molybdenum, which is easily processed by conventional methods such as milling, electric discharge machining, or forming and brazing, be fabricated into an appropriate shape, and that the iridium coating be applied to any surfaces that may come in contact with the corrosive molten material. In one engineering application, the molybdenum was fashioned into a container for a heat pipe. Since only the end of the heat pipe is used to heat the regolith, the container has a narrowing end with a nipple in which the heat pipe is snugly fit, and the external area of this nipple, which contacts the regolith to transfer heat into it, is coated with iridium. At the time of this reporting, no single material has been found that can perform the functions of this combination

  14. Study of boron effect on FeAl alloys with an ordered B2 structure; Etude de l'effet du bore sur les alliages FeAl ordonnes de structure B2

    Energy Technology Data Exchange (ETDEWEB)

    Gay-Brun, A.S

    1998-06-01

    FeAl alloys with an ordered B2 structure have good corrosion resistance and mechanical properties at high temperature. Nevertheless, their use is limited by the intergranular embrittlement at ambient temperature. It has already been shown that a doping by low amounts of boron can solve the problem of intergranular embrittlement. The aim of this work is to better understand the boron effect on the FeAl alloys. It has been confirmed that the boron doping change the mode of rupture of the FeAl alloys with a B2 structure; their strain on breaking point is increased. The limit of solubility of boron in Fe-40Al has been estimated between 400 and 800 ppm at 500 degrees Celsius. Above this limit, Fe{sub 2}B precipitates. The intergranular segregation of boron has been observed by Auger electron spectroscopy for all the FeAl alloys. The intergranular amount of boron is low (below 12%). In the range of boron solubility, the intergranular concentration of boron increases with its voluminal amount. From this result, boron segregation has been described by different models of equilibrium segregation; thus has been shown that it exists a strong repulsion energy between the segregated boron atoms. On the other hand, no equilibrium segregation model can describe the independence to temperature of the boron segregation and its very fast kinetics: these two characteristics have certainly to be explained by a segregation mechanism under equilibrium. The existence of a segregation mechanism under equilibrium has been confirmed by the observation of the acceleration of the vacancies elimination kinetics by boron. The interaction between the boron atoms and the thermal vacancies which migrates to grain boundaries lead to the formation of complexes. The importance of the boron effect is not limited to its role to grain boundaries. Indeed, has been observed a strong decrease of the long order distance in the alloys doped with boron. The structure of the dislocations created by the

  15. Corrosion Mechanism of Corrosion-Resistant Steel Developed for Bottom Plate of Cargo Oil Tanks

    Institute of Scientific and Technical Information of China (English)

    Feilong SUN; Xiaogang LI; Fan ZHANG; Xuequn CHENG; Cheng ZHOU; Nianchun WU; Yuqun YIN

    2013-01-01

    A new type of corrosion-resistant steel consisting of ferrite and bainite phases was developed for cargo oil tanks of crude oil tankers.The corrosion rate of this new steel was 0.22 mm/a,which was equivalent to ca.1/5 of the criterion (≤ 1 mm/a) for corrosion-resistant steels.The composition and element distribution of the corrosion products were investigated by micro-Raman spectrometry and energy dispersive spectrometer.The results demonstrated that the corrosion product was composed of α-FeOOH,Fe3O4 and a continuous Cu enrichment layer.This kind of corrosion product was protective to the steel matrix and accounted for the enhancement of the corrosion resistance of the new developed steel.

  16. Wear resistance and corrosion resistance of VCp particle reinforced stainless steel composites

    Institute of Scientific and Technical Information of China (English)

    YAO Xiu-rong; HAN Jie-cai; ZUO Hong-bo; LIU Zhao-jing; LI Feng-zhen; REN Shan-zhi

    2005-01-01

    The VCp reinforced stainless steel composite was produced by in-situ reaction casting. The composite was tested for its wear resistance under the wet abrasive condition and corrosion resistance, compared with the wear-resistant white iron and stainless steel. The results show that the wear resistance of the composite is slightly inferior to that of the white iron, but much better than that of the stainless steel under the wet grinding abrasive condition. The corrosion resistance of the composite is much better than that of the white iron in the acid medium,and a little worse than that of the stainless steel. Thus the composite exhibits superior properties of wear resistance and corrosion resistance.

  17. Evaluation of the corrosion resistance of plasma nitrided austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mareci, Daniel; Bolat, Georgiana [Technical Univ. Iasi (Romania). Faculty of Chemical Engineering and Environmental Protection; Strugaru, Sorin Iacob; Munteanu, Corneliu [Technical Univ. Iasi (Romania). Faculty of Mechanical Engineering; Souto, Ricardo M. [Univ. of La Laguna, Tenerife (Spain). Dept. of Chemistry

    2015-03-15

    Plasma nitriding at 500 C for 14 h was applied to austenitic 304 stainless steel for surface hardening. The effect of surface treatment on the corrosion resistance of the material was investigated in naturally-aerated 0.5 M NaCl solution for 30 days using linear potentiodynamic polarization and electrochemical impedance spectroscopy methods. Both as-cast and plasma nitrided stainless steel samples underwent spontaneous passivation, though the nitrided sample exhibited more positive zero current potential, higher breakdown potential, and lower anodic current densities than the as-cast material. Impedance spectra were interpreted in terms of a duplex passive film, corrosion resistance mainly arising from a thin inner compact layer, whereas the outer layer was more porous and less sealing. Capacitive behaviour and high corrosion resistance were observed in the low and medium frequency ranges for the nitrided samples.

  18. High Corrosion-Resistance Double-Layer Ni-P Coating on Steels

    Institute of Scientific and Technical Information of China (English)

    JIANG Hai; LIU Xian-li; JIANG Zhang-hao; LI Guang-yu; LIAN Jian-she; GU Chang-dong

    2004-01-01

    Double-layer Ni-P alloy coating with a thickness about 20 μm and different Ni-P layers was prepared by electroless deposition and its corrosion resistance was studied. The microstructure and corrosion-resistance of the coatings were analyzed by SEM, XRD, electrochemical polarization measurements and salt spray tests. The salt spray tests showed that the double-layer coating exhibits better corrosion resistance. The time of the emergence of the first red rust spot on the coating surface can reach 384 hours, and the gray rusts were firstly emergered during the salt spray tests. The electrochemical analysis revealed that the difference in the corrosion potential between the double layers plays a very important role in protecting the substrate from rusting.

  19. Corrosion resistance of the welded AISI 316L after various surface treatments

    Directory of Open Access Journals (Sweden)

    Tatiana Liptáková

    2014-01-01

    Full Text Available The main aim of this work is to monitor the surface treatment impact on the corrosion resistance of the welded stainless steel AISI 316L to local corrosion forms. The excellent corrosion resistance of austenitic stainless steel is caused by the existence of stable, thin and well adhering passive layer which quality is strongly influenced by welding. Therefore surface treatment of stainless steel is very important with regard to its local corrosion susceptibility Surfaces of welded stainless steel were treated by various mechanical methods (grinding, garnet blasting. Surface properties were studied by SEM, corrosion resistance was evaluated after exposition tests in chlorides environment using weight and metalographic analysis. The experimental outcomes confirmed that the mechanical finishing has a significant effect on the corrosion behavior of welded stainless steel AISI 316L.

  20. Mechanical and corrosion resistant properties of martensitic stainless steel plasma nitrocarburized with rare earths addition

    Institute of Scientific and Technical Information of China (English)

    LIU Ruiliang; QIAO Yingjie; YAN Mufu; FU Yudong

    2012-01-01

    In order to improve surface hardness and corrosion resistant property of 17-4PH martensitic stainless steel,the steel was plasma nitrocarburized at 560 ℃ for 2-24 h in a gas mixture of nitrogen,hydrogen and ethanol with rare earths (RE) addition.The experimental results showed that the modified layer was characterized by a compound layer containing two distinct zones (i.e.out ‘dark zone’ and inner ‘white zone’).The inner ‘white zone’ was almost a precipitation free zone and had high hardness as well as good corrosion resistance.Anodic polarization test results showed that the specimens plasma nitrocarburized with RE addition had good corrosion resistance resulted mainly from their higher corrosion potentials,lower corrosion current densities and larger passive regions as compared with those of the untreated one.

  1. Environmental Cracking of Corrosion Resistant Alloys in the Chemical Process Industry - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B

    2006-12-04

    A large variety of corrosion resistant alloys are used regularly in the chemical process industry (CPI). The most common family of alloys include the iron (Fe)-based stainless steels, nickel (Ni) alloys and titanium (Ti) alloys. There also other corrosion resistant alloys but their family of alloys is not as large as for the three groups mentioned above. All ranges of corrosive environments can be found in the CPI, from caustic solutions to hot acidic environments, from highly reducing to highly oxidizing. Stainless steels are ubiquitous since numerous types of stainless steels exist, each type tailored for specific applications. In general, stainless steels suffer stress corrosion cracking (SCC) in hot chloride environments while high Ni alloys are practically immune to this type of attack. High nickel alloys are also resistant to caustic cracking. Ti alloys find application in highly oxidizing solutions. Solutions containing fluoride ions, especially acid, seem to be aggressive to almost all corrosion resistant alloys.

  2. 2D Heterostructure coatings of hBN-MoS2 layers for corrosion resistance

    Science.gov (United States)

    Vandana, Sajith; Kochat, Vidya; Lee, Jonghoon; Varshney, Vikas; Yazdi, Sadegh; Shen, Jianfeng; Kosolwattana, Suppanat; Vinod, Soumya; Vajtai, Robert; Roy, Ajit K.; Sekhar Tiwary, Chandra; Ajayan, P. M.

    2017-02-01

    Heterostructures of atomically thin 2D materials could have improved physical, mechanical and chemical properties as compared to its individual components. Here we report, the effect of heterostructure coatings of hBN and MoS2 on the corrosion behavior as compared to coatings employing the individual 2D layer compositions. The poor corrosion resistance of MoS2 (widely used as wear resistant coating) can be improved by incorporating hBN sheets. Depending on the atomic stacking of the 2D sheets, we can further engineer the corrosion resistance properties of these coatings. A detailed spectroscopy and microscopy analysis has been used to characterize the different combinations of layered coatings. Detailed DFT based calculation reveals that the effect on the electrical properties due to atomic stacking is one of the major reasons for the improvement seen in corrosion resistance.

  3. Development of microarc oxidation process to improve corrosion resistance on AZ91HP magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rong-fa; SHAN Da-yong; HAN En-hou; GUO Shi-bo

    2006-01-01

    A new anodizing process,which does not contain chromate but can improve the corrosion resistance of magnesium alloys significantly,was developed using a microarc power supply. Surface morphology was observed and the coating was compact and ceramic-like. In addition,the corrosion resistance of samples before and after anodization by the new process and a method in US Patent 5470664 was compared by potentiodymaic polarization curves,electrochemical impedance spectroscopy (EIS) and salt spray test. The results show that the anodization can improve the corrosion resistance of magnesium alloy. The samples obtained by the new process and the method mentioned in the US Patent 5470664 achieve 9 and 7 rates after 336 h salt spray test,respectively.

  4. Effect of Chemical Composition on Structure and Corrosion Resistance of Ni-Mn-Cu Cast Iron

    Directory of Open Access Journals (Sweden)

    Medyński D.

    2016-09-01

    Full Text Available In the paper, a relationship between chemical composition of Ni-Mn-Cu cast iron and its structure, hardness and corrosion resistance is determined. The examinations showed a decrease of thermodynamic stability of austenite together with decreasing nickel equivalent value, in cast iron solidifying according to both the stable and the metastable systems. As a result of increasing degree of austenite transformation, the created martensite caused a significant hardness increase, accompanied by small decline of corrosion resistance. It was found at the same time that solidification way of the alloy and its matrix structure affect corrosion resistance to a much smaller extent than the nickel equivalent value, in particular concentration of elements with high electrochemical potential.

  5. Electrodeposition of high corrosion resistance Cu/Ni-P coating on AZ91D magnesium alloy

    Science.gov (United States)

    Zhang, Shan; Cao, Fahe; Chang, Linrong; Zheng, JunJun; Zhang, Zhao; Zhang, Jianqing; Cao, Chunan

    2011-08-01

    High corrosion resistance Cu/Ni-P coatings were electrodeposited on AZ91D magnesium alloy via suitable pretreatments, such as one-step acid pickling-activation, once zinc immersion and environment-friendly electroplated copper as the protective under-layer, which made Ni-P deposit on AZ91D Mg alloy in acid plating baths successfully. The pH value and current density for Ni-P electrodeposition were optimized to obtain high corrosion resistance. With increasing the phosphorous content of the Ni-P coatings, the deposits were found to gradually transform to amorphous structure and the corrosion resistance increased synchronously. The anticorrosion ability of AZ91D Mg alloy was greatly improved by the amorphous Ni-P deposits, which was investigated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The corrosion current density ( Icorr) of the coated Mg alloy substrate is about two orders of magnitude less than that of the uncoated.

  6. Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cui Xiufang [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li Qingfen [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Li Ying; Wang Fuhui [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Jin Guo [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)], E-mail: jg97721@yahoo.com.cn; Ding Minghui [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2008-12-30

    In this paper, a new innoxious and pollution-free chemical protective coating for magnesium alloys, phytic acid conversion coating, was prepared. The conversion coatings are found to have high cover ratio and no cracks are found by atomic force microscopes (AFM) and scanning electron microscopy (SEM). The main elements of the conversion coatings are Mg, Al, O, P and C by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The chemical state of the elements in the coatings was also investigated by Fourier transform infrared spectroscopy (FTIR). AES depth profile analysis suggests that the thickness of the conversion coating is about 340 nm. The corrosion resistance of the coatings was evaluated by polarization curves. The results indicate that the corrosion resistance for the conversion coated AZ91D magnesium alloys in 3.5% NaCl solution increases markedly. The mechanisms of corrosion resistance and coatings formation are also discussed.

  7. Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy

    Science.gov (United States)

    Cui, Xiufang; Li, Qingfen; Li, Ying; Wang, Fuhui; Jin, Guo; Ding, Minghui

    2008-12-01

    In this paper, a new innoxious and pollution-free chemical protective coating for magnesium alloys, phytic acid conversion coating, was prepared. The conversion coatings are found to have high cover ratio and no cracks are found by atomic force microscopes (AFM) and scanning electron microscopy (SEM). The main elements of the conversion coatings are Mg, Al, O, P and C by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The chemical state of the elements in the coatings was also investigated by Fourier transform infrared spectroscopy (FTIR). AES depth profile analysis suggests that the thickness of the conversion coating is about 340 nm. The corrosion resistance of the coatings was evaluated by polarization curves. The results indicate that the corrosion resistance for the conversion coated AZ91D magnesium alloys in 3.5% NaCl solution increases markedly. The mechanisms of corrosion resistance and coatings formation are also discussed.

  8. The corrosion resistance and neutron-absorbing properties of coatings based on amorphous alloys

    Science.gov (United States)

    Sevryukov, O. N.; Polyansky, A. A.

    2016-04-01

    The object of the present study was the corrosion-resistant amorphizing alloys with an increased content of boron for cladding the surface of metals, rapidly quenched alloys without boron for protective coatings on a high-boron cladding layer, as well as steel samples with a protective coating with a high content of boron and without boron. The aim of the work is to investigate the corrosion resistance of a coating in water at the temperature of 40 °C in conditions of an open access of oxygen for 1000 h, as well as the features of the microstructure of clad samples before and after the corrosion tests. New data on the corrosion resistance of Cr18Ni10Ti steel samples with a protective layer from a rapidly quenched alloy Ni-19Cr-10Si (in wt.%) on a high-boron coating have been obtained.

  9. Effect of High Temperature Aging on the Corrosion Resistance of Iron Based Amorphous Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Day, S D; Haslam, J J; Farmer, J C; Rebak, R B

    2007-08-10

    Iron-based amorphous alloys can be more resistant to corrosion than polycrystalline materials of similar compositions. However, when the amorphous alloys are exposed to high temperatures they may recrystallize (or devitrify) thus losing their resistance to corrosion. Four different types of amorphous alloys melt spun ribbon specimens were exposed to several temperatures for short periods of time. The resulting corrosion resistance was evaluated in seawater at 90 C and compared with the as-prepared ribbons. Results show that the amorphous alloys can be exposed to 600 C for 1-hr. without losing the corrosion resistance; however, when the ribbons were exposed at 800 C for 1-hr. their localized corrosion resistance decreased significantly.

  10. Improving Corrosion Resistance of Q235 Steel by Ni-Cr Alloyed Layer

    Institute of Scientific and Technical Information of China (English)

    HUANG Jun; ZHANG Pingze; WU Hongyan; BI Qiang

    2012-01-01

    Ni-Cr alloyed layer was formed on surface of Q235 steel by double glow plasma surface metallurgy to improve the corrosion resistance of substrate.The composition and microstructure of alloyed layer was analyzed by SEM and XRD.Potentiodynamic polarization and electrochemical impedance spectroscopy was applied to evaluate the corrosion resistance of the alloyed layer.The results showed working pressure had a great effect on structure of Ni-Cr alloyed layer,and the dense and smooth alloyed layer was prepared at 50 Pa working pressure.Compared with substrate,Ni-Cr alloyed layer exhibited higher corrosion potential,lower corrosion current density and larger charge transfer resistance,which indicated that Ni-Cr alloyed layer significantly modified the corrosion resistance of Q235 steel.

  11. Comparison of surface fractal dimensions of chromizing coating and P110 steel for corrosion resistance estimation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Naiming, E-mail: lnmlz33@163.com [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Guo, Junwen [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Xie, Faqin [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Zou, Jiaojuan; Tian, Wei [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Yao, Xiaofei [School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710032 (China); Zhang, Hongyan; Tang, Bin [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2014-08-30

    Highlights: • Continuous chromizing coating was synthesized on P110 steel by pack cementation. • The chromizing coating showed better corrosion resistance. • Comparison of surface fractal dimensions can estimate corrosion resistance. - Abstract: In the field of corrosion research, mass gain/loss, electrochemical tests and comparing the surface elemental distributions, phase constitutions as well as surface morphologies before and after corrosion are extensively applied to investigate the corrosion behavior or estimate the corrosion resistance of materials that operated in various environments. Most of the above methods are problem oriented, complex and longer-period time-consuming. However from an object oriented point of view, the corroded surfaces of materials often have self-similar characterization: fractal property which can be employed to efficiently achieve damaged surface analysis. The present work describes a strategy of comparison of the surface fractal dimensions for corrosion resistance estimation: chromizing coating was synthesized on P110 steel surface to improve its performance via pack cementation. Scanning electron microscope (SEM) was used to investigate the surface morphologies of the original and corroded samples. Surface fractal dimensions of the detected samples were calculated by binary images related to SEM images of surface morphologies with box counting algorithm method. The results showed that both surface morphologies and surface fractal dimensions of P110 steel varied greatly before and after corrosion test, but the chromizing coating changed slightly. The chromizing coating indicated better corrosion resistance than P110 steel. Comparison of surface fractal dimensions of original and corroded samples can rapidly and exactly realize the estimation of corrosion resistance.

  12. Prediction of microsegregation and pitting corrosion resistance of austenitic stainless steel welds by modelling

    Energy Technology Data Exchange (ETDEWEB)

    Vilpas, M. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1999-07-01

    The present study focuses on the ability of several computer models to accurately predict the solidification, microsegregation and pitting corrosion resistance of austenitic stainless steel weld metals. Emphasis was given to modelling the effect of welding speed on solute redistribution and ultimately to the prediction of weld pitting corrosion resistance. Calculations were experimentally verified by applying autogenous GTA- and laser processes over the welding speed range of 0.1 to 5 m/min for several austenitic stainless steel grades. Analytical and computer aided models were applied and linked together for modelling the solidification behaviour of welds. The combined use of macroscopic and microscopic modelling is a unique feature of this work. This procedure made it possible to demonstrate the effect of weld pool shape and the resulting solidification parameters on microsegregation and pitting corrosion resistance. Microscopic models were also used separately to study the role of welding speed and solidification mode in the development of microsegregation and pitting corrosion resistance. These investigations demonstrate that the macroscopic model can be implemented to predict solidification parameters that agree well with experimentally measured values. The linked macro-micro modelling was also able to accurately predict segregation profiles and CPT-temperatures obtained from experiments. The macro-micro simulations clearly showed the major roles of weld composition and welding speed in determining segregation and pitting corrosion resistance while the effect of weld shape variations remained negligible. The microscopic dendrite tip and interdendritic models were applied to welds with good agreement with measured segregation profiles. Simulations predicted that weld inhomogeneity can be substantially decreased with increasing welding speed resulting in a corresponding improvement in the weld pitting corrosion resistance. In the case of primary austenitic

  13. Assessment of corrosion resistance of Nd–Fe–B magnets by silanization for orthodontic applications

    Energy Technology Data Exchange (ETDEWEB)

    Fabiano, F., E-mail: ffabiano@unime.it [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy); Department of Experimental, Specialized Medical-Surgical and Odontostomatological Sciences, Messina (Italy); Celegato, F. [INRIM Electromagnetism Division, Torino (Italy); Giordano, A. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy); Borsellino, C. [Department of Civil Engineering, Computing, Construction, Environmental and Applied Mathematics, Messina (Italy); Bonaccorsi, L.; Calabrese, L. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy); Tiberto, P. [INRIM Electromagnetism Division, Torino (Italy); Cordasco, G.; Matarese, G. [Department of Experimental, Specialized Medical-Surgical and Odontostomatological Sciences, Messina (Italy); Fabiano, V. [Department of Civil Engineering, Computing, Construction, Environmental and Applied Mathematics, Messina (Italy); Department of Experimental, Specialized Medical-Surgical and Odontostomatological Sciences, Messina (Italy); Azzerboni, B. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy)

    2014-02-15

    Nd–Fe–B permanent magnets are characterised by excellent magnetic properties. However, being extremely vulnerable to the attack of both climate and corrosive environments, their applications are limited. This paper describes how, at different thicknesses of N-propyl-trimetoxy-silane, the coating affects the magnetic force of nickel plated magnets. We also investigate if the corrosion resistance of silanized Nd–Fe–B magnets increases in mildly corrosive environments by immersing them in a synthetic saliva solution. It was found that the silanization treatment does not affect the strength of the magnetic force and provide an enhancement of the corrosion resistance of the substrate.

  14. Progress in Research on Vanadate-Based Coatings on Corrosion Resistance

    Institute of Scientific and Technical Information of China (English)

    Zou Zhongli; Li Ning; Li Deyu

    2007-01-01

    Vanadate, usually used as the corrosion resistant inhibitor for the paint systems, is one of the substances that have been proposed as alternative to toxic chromate for the corrosion protection. In this paper, the possibility of vanadate passivating from its chemical properties was introduced firstly. Then, the progress and examples in research on vanadate conversion coatings on the corrosion resistance were summarized. And the substrates discussed here contained aluminum alloys, magnesium alloys and so on. Finally, the research tendency of vanadate-based coatings was discussed.

  15. Enhanced Corrosion Resistance of a Transient Liquid Phase Bonded Nickel-Based Superalloy

    Science.gov (United States)

    Adebajo, O. J.; Ojo, O. A.

    2017-01-01

    Electrochemical analysis of corrosion performance of a transient liquid phase (TLP) bonded nickel-based superalloy was performed. The TLP bonding process resulted in significant reduction in corrosion resistance due to the formation of non-equilibrium solidification reaction micro-constituents within the joint region. The corrosion resistance degradation is completely eliminated through a new application of composite interlayer that had been previously considered unusable for joining single-crystal superalloys. The effectiveness of the new approach becomes more pronounced as the severity of environment increases.

  16. Effect of electrodeposition temperature on grain orientation and corrosion resistance of nanocrystalline pure nickel

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang

    2016-08-01

    The nanocrystalline pure nickels with different grain orientations were fabricated by direct current electrodeposition process. The grain size slightly decreased with the increasing of electrodeposition solution temperature. However, grain orientation was affected significantly. Comparing with samples obtained at 50 °C and 80 °C, sample obtained at 20 °C had the strongest (111) orientation plane which increased electrochemical corrosion resistance of this sample. At the same time, the lowest (111) orientation plane deteriorated electrochemical corrosion resistance of sample obtained at 50 °C.

  17. Plastic deformation effect of the corrosion resistance in case of austenitic stainless steel

    Science.gov (United States)

    Haraszti, F.; Kovacs, T.

    2017-02-01

    The corrosion forms are different in case of the austenitic steel than in case of carbon steels. Corrosion is very dangerous process, because that corrosion form is the intergranular corrosion. The austenitic stainless steel shows high corrosion resistance level. It knows that plastic deformation and the heat treating decrease it’s resistance. The corrosion form in case of this steel is very special and the corrosion tests are difficult. We tested the selected steel about its corrosion behaviour after high rate deformation. We wanted to find a relationship between the corrosion resistance decreasing and the rate of the plastic deformation. We wanted to show this behaviour from mechanical and electrical changing.

  18. Effect of Rare Earths on Corrosion Resisting Properties of Carbon-Manganese Clean Steels

    Institute of Scientific and Technical Information of China (English)

    郭锋; 林勤; 孙学义

    2004-01-01

    Electrochemistry experiments were made on carbon-manganese clean steel with rare earths Ce and La respectively to observe corrosion parameters such as corrosion current icorr, and characteristic potential of pitting Eb. The results indicate that the rare earths have effect on corrosion resisting properties of carbon-manganese clean steel, and the optimum contents of La is about 0.011% (mass fraction) and Ce about 0.014% (mass fraction) respectively. The change of corrosion resistance is related to the action of rare earths on microstructure and effect on surface state of samples in the process of polarization.

  19. Testing the permeability and corrosion resistance of micro-mechanically interlocked joints

    DEFF Research Database (Denmark)

    Byskov-Nielsen, Jeppe; Holm, Allan Hjarbæk; Højsholt, Rune;

    2011-01-01

    Micro-mechanical interlocking (MMI) can be applied to create new and interesting composite materials. We have employed laser structuring to achieve MMI between stainless steel and plastic with extremely high joint strength. However, the water permeability and corrosion resistance of the joint must...... is conducted. The permeability seems to be consistent with the Hagen–Poiseuille equation independent of the laser structuring technique and is orders of magnitudes larger than the diffusion rate through the plastic. Two different types of corrosion tests have been undertaken, and we show that care must...... be taken in order not to degrade the corrosion resistance of the sample to an unacceptable level....

  20. Protection of NdFeB magnets by corrosion resistance phytic acid conversion film

    Science.gov (United States)

    Nan, Haiyang; Zhu, Liqun; Liu, Huicong; Li, Weiping

    2015-11-01

    Phytic acid conversion film was prepared on NdFeB magnets by dipping the NdFeB into phytic acid solution. The morphology, composition, structure and corrosion resistance of the film were systematically investigated. The results showed that the phytic acid film was effective in improving the corrosion resistance of NdFeB magnets. XRD, TEM and FT-IR analyses revealed that the film was amorphous and had a strong peak of phosphate radical (PO43-). The formation mechanism of the film was also explored by XPS and the potential of zero charge (Epzc) measurement at the solution-metal interface.

  1. Assessment of corrosion resistance of Nd-Fe-B magnets by silanization for orthodontic applications

    Science.gov (United States)

    Fabiano, F.; Celegato, F.; Giordano, A.; Borsellino, C.; Bonaccorsi, L.; Calabrese, L.; Tiberto, P.; Cordasco, G.; Matarese, G.; Fabiano, V.; Azzerboni, B.

    2014-02-01

    Nd-Fe-B permanent magnets are characterised by excellent magnetic properties. However, being extremely vulnerable to the attack of both climate and corrosive environments, their applications are limited. This paper describes how, at different thicknesses of N-propyl-trimetoxy-silane, the coating affects the magnetic force of nickel plated magnets. We also investigate if the corrosion resistance of silanized Nd-Fe-B magnets increases in mildly corrosive environments by immersing them in a synthetic saliva solution. It was found that the silanization treatment does not affect the strength of the magnetic force and provide an enhancement of the corrosion resistance of the substrate.

  2. Corrosion resistance of amorphous and crystalline Pd40Ni40P20 alloys in aqueous solutions

    DEFF Research Database (Denmark)

    Wu, Y.F.; Chiang, Wen-Chi; Chu, J.;

    2006-01-01

    The corrosion behaviors of amorphous and crystalline Pd40Ni40P20 alloys in various aqueous solutions are reported in this paper. The corrosion resistance of crystalline (annealed) Pd40Ni40P20 is better than that of amorphous Pd40Ni40P20 in various corrosive solutions, due to crystalline Pd40Ni40P20...... and mainly consists of inert Pd5P2, NI3P, Ni2Pd2P and noble Pd phases. These inert and noble properties result in a higher corrosion resistance in crystalline Pd40Ni40P20....

  3. Effect of rare earths on corrosion resistance of Cu-30Ni alloys in simulated seawater

    Institute of Scientific and Technical Information of China (English)

    毛向阳; 方峰; 蒋建清; 谈荣生

    2009-01-01

    Cu-30Ni-xRE(x=0-0.213 wt.%) alloy was prepared by adding rare earths(RE) in melted Cu-30Ni alloy using metal mould casting method.The effects of RE on corrosion resistance of the alloy in simulated seawater were investigated using optical microscope,scanning electronic microscope with energy-dispersive spectrometer and electrochemical measurement system.The results showed that the corrosion resistance of Cu-30Ni alloy was greatly improved by adding proper amount of RE,whereas excess addition of RE worsened ...

  4. Phosphating process of AZ31 magnesium alloy and corrosion resistance of coatings

    Institute of Scientific and Technical Information of China (English)

    CHENG Ying-liang; WU Hai-lan; CHEN Zhen-hua; WANG Hui-min; LI Ling-ling

    2006-01-01

    Zinc phosphate films were formed on AZ31 magnesium alloy by immersing into a phosphatation bath to enhance the corrosion resistance of AZ31. Different films were prepared by changing the processing parameters such as immersing time and temperature. The corrosion protection of the coatings was studied by electrochemical measurements such as electrochemical impedance spectroscopy, potentiodynamic polarization curves, and the structure of the films were studied by metalloscopy and X-ray diffraction (XRD). The results show that, the film formed at 80 ℃, 10 min has the highest corrosion resistance. The XRD patterns show that the film consists of hopeite (Zn3(PO4)2·xH2O).

  5. Effect of Heat Treatment on the Microstructure and Corrosion Resistance of Cu-Zn Alloy

    Institute of Scientific and Technical Information of China (English)

    Xu Tao; Zhang Hailong; Xiao Nianxin; Zhao Xiangling

    2007-01-01

    The microstructure of Cu-Zn alloy with different heat treatment conditions in 3.5% NaCl + NH3 solution were observed, and the average corrosion rates and electrochemical data of Cu-Zn alloy were measured, as well as the effect of heat treatment on microstructure and corrosion resistance of Cu-Zn alloy was analyzed. The results show that the microstructure of Cu-Zn alloy has been changed due to the heat treatment. As a results, the better corrosion resistance can be obtained for the Cu-Zn alloy quenched from 900℃ for 0.5h followed by tempered at 100℃ for 2h.

  6. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Tang Junlei; Han Zhongzhi [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.cn [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Tang Yuming [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-01-15

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  7. A variable hydrophobic surface improves corrosion resistance of electroplating copper coating

    Science.gov (United States)

    Xu, Xiuqing; Zhu, Liqun; Li, Weiping; Liu, Huicong

    2011-04-01

    In this paper, Cu/liquid microcapsule composite coating was prepared by electroplating method. And a variable hydrophobic surface was obtained due to the slow release of microcapsules and the rough surface. The hydrophobic property and corrosion resistance of the composite was investigated by means of water contact angle instrument and electrochemical technique, respectively. The results suggest that the contact angle (CA) of composite increases gradually with the increasing storing time, and the stable super-hydrophobic property was exhibited after storing in air for 15 days. Meanwhile, the excellent corrosion resistance was displayed, which could be ascribed to the good stability of hydrophobic film on composite surface.

  8. 76 FR 4291 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Partial Rescission of...

    Science.gov (United States)

    2011-01-25

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... administrative review of the countervailing duty order on corrosion- resistant carbon steel flat products from... ] requests for administrative review and partial revocation of the countervailing duty order on corrosion...

  9. 76 FR 69703 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of Extension of...

    Science.gov (United States)

    2011-11-09

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...) published a notice of initiation of the administrative review of the antidumping duty order on corrosion... results of this review. See Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of...

  10. 78 FR 55241 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2013-09-10

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...) is conducting an administrative review of the countervailing duty (CVD) order on corrosion-resistant.... SUPPLEMENTARY INFORMATION: Scope of the Order The merchandise covered by this Order \\2\\ is certain corrosion...

  11. 75 FR 18153 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2010-04-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea..., the Department published in the Federal Register the countervailing duty order on corrosion-resistant...

  12. 77 FR 16810 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2012-03-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea..., the Department published in the Federal Register the countervailing duty order on corrosion-resistant...

  13. 76 FR 20954 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-04-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea..., the Department published in the Federal Register the countervailing duty order on corrosion-resistant...

  14. 77 FR 25141 - Corrosion-Resistant Carbon Steel Flat Products From Germany and South Korea: Extension of Time...

    Science.gov (United States)

    2012-04-27

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and South Korea... of the antidumping duty (AD) orders on corrosion-resistant carbon steel flat products (CORE) from... Countervailing Duty Operations, Office 3, regarding ``Sunset Reviews of the Antidumping Duty Orders on Corrosion...

  15. 75 FR 77615 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of Extension of...

    Science.gov (United States)

    2010-12-13

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...) published a notice of initiation of the administrative review of the antidumping duty order on corrosion... results of this review. See Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of...

  16. Study on possibility for the improvement of corrosion resistance of metals using laser-formed oxide surface structure

    Science.gov (United States)

    Ruzankina, J. S.; Vasiliev, O. S.

    2016-08-01

    The laser processes of oxidation are currently known and used extensively, in particular, to improve corrosion resistance of metals possessing certain properties and composition. In this regard, actuality is the methods of laser oxidation of metals and the determination of their modes of treatment in each specific case. Increase of corrosion resistance ST20 can carried out with the formation on the surface oxide films, as well as by reducing surface roughness. Studied various modes of processing of the steel surface. Corrosion resistance investigated for protecting a metal. Defocusing the beam to allow the surface treatment of a wide beam in the low temperature mode of processing. For further study of the irradiated surface on the corrosion resistance was conducted by chemical treatment in acid. Estimated phase composition of films formed under laser treatment simulated in the program astics. The study to increase the corrosion resistance of steel and titanium, have shown that under the chosen methods of processing of materials degradation observed.

  17. Nano-phases and corrosion resistance of C+Mo dual implanted steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The corrosion resistance of C+Mo dual-implanted H13 steel wasstudied using multi-sweep cyclic voltammetry. The phase formation conditions for corrosion resistance and its effects were researched. The super-saturation solid station solution of Mo+ and C+ atoms was formed in Mo+C dual implanted steel. Precipitate phase with nanometer size Fe2Mo, FeMo, MoC, Fe5C3 and Fe7C3 were formed in dual implanted layer. The passivation layer consisted of these nanometer phases. The corrosion resistance of the dual implanted layer was better than that of single Mo implantation. Jp of the Mo implanted sample is 0.55 times that of H13 steel. The corrosion resistance of the dual implantation was enhanced when ion dose increased. When the Mo+ ion dose was 6×1017/cm2 in the dual implantation, Jp of the dual implanted sample was only 0.11 times that in H13 steel. What is important is that pitting corrosion properties of dual implanted steel were improved obviously.

  18. The Enhancement of Mg Corrosion Resistance by Alloying Mn and Laser-Melting

    Directory of Open Access Journals (Sweden)

    Youwen Yang

    2016-03-01

    Full Text Available Mg has been considered a promising biomaterial for bone implants. However, the poor corrosion resistance has become its main undesirable property. In this study, both alloying Mn and laser-melting were applied to enhance the Mg corrosion resistance. The corrosion resistance, mechanical properties, and microstructure of rapid laser-melted Mg-xMn (x = 0–3 wt % alloys were investigated. The alloys were composed of dendrite grains, and the grains size decreased with increasing Mn. Moreover, Mn could dissolve and induce the crystal lattice distortion of the Mg matrix during the solidification process. Mn ranging from 0–2 wt % dissolved completely due to rapid laser solidification. As Mn contents further increased up to 3 wt %, a small amount of Mn was left undissolved. The compressive strength of Mg-Mn alloys increased first (up to 2 wt % and then decreased with increasing Mn, while the hardness increased continuously. The refinement of grains and the increase in corrosion potential both made contributions to the enhancement of Mg corrosion resistance.

  19. Nanostructure and Properties of Corrosion Resistance in C+Ti Multi-Ion-Implanted Steel

    Institute of Scientific and Technical Information of China (English)

    张通和; 吴瑜光; 刘安东; 张旭; 王晓妍

    2003-01-01

    The corrosion and pitting corrosion resistance of C+ Ti dual and C+Ti+C ternary implanted H13 steel were studied by using a multi-sweep cyclic voltammetry and a scanning electron microscope. The effects of phase formation on corrosion and pitting corrosion resistance were explored. The x-ray diffraction analysis shows that the nanometer-sized precipitate phases consist of compounds of Fe2 Ti, TiC, Fe2C and Fe3 C in dual implanted layer and even in ternary implanted layer. The passivation layer consists of these nanometer phases. It has been found that the corrosion and pitting corrosion resistance of dual and ternary implanted H13 steel are improved extremely. The corrosion resistance of ternary implanted layer is better than that of dual implantations and is enhanced with the increasing ion dose. When the ion dose of Ti is 6 × 1017/cm2 in the ternary implantation sample, the anodic peak current density is 95 times less than that of the H13 steel. The pitting corrosion potential of dual and ternary implantation samples is in the range from 55mV to 160mV which is much higher than that of the H13 steel. The phases against the corrosion and pitting corrosion are nanometer silkiness phases.

  20. Corrosion resistance of amorphous and crystalline Pd40Ni40P20 alloys in aqueous solutions

    DEFF Research Database (Denmark)

    Wu, Y.F.; Chiang, Wen-Chi; Chu, J.

    2006-01-01

    The corrosion behaviors of amorphous and crystalline Pd40Ni40P20 alloys in various aqueous solutions are reported in this paper. The corrosion resistance of crystalline (annealed) Pd40Ni40P20 is better than that of amorphous Pd40Ni40P20 in various corrosive solutions, due to crystalline Pd40Ni40P20...

  1. Effects of Alloy Element and Microstructure on Corrosion Resistant Property of Deposited Metals of Weathering Steel

    Institute of Scientific and Technical Information of China (English)

    Xiao-ming XIAO; Yun PENG; Cheng-yong MA; Zhi-ling TIAN

    2016-01-01

    Alloy element and microstructure are key factors that dominate mechanical and corrosion resistant properties of weathering steel.The effect of Mo on microstructure,mechanical properties and corrosion resistant property of depos-ited metal was investigated.Experimental results show that with the increase of Mo content in deposited metals,the phase transformation temperature decreases,and the ferrite zone in CCT diagram moves rightward,resulting in en-larged bainite zone and reduced ferrite and pearlite zone.The addition of 0�24 mass% Mo in deposited metal results in the increase of tensile strength,more M-A constituent and less high angle grain which reduce the low temperature toughness.It is found that Mo can raise the weathering resistance of deposited metal in industrial atmosphere.Analy-sis indicates that Mo may enrich in the inner rust layer,produce MoO3 ,enhance the formation of compact rust film and impede the anode dissolution reaction.Granular bainite in deposited metals displays better corrosion resistance than acicular ferrite during the initial corrosion stage,but its long-term influence on the corrosion resistance is limited.

  2. Applications in the Nuclear Industry for Corrosion-Resistant Amorphous-Metal Thermal-Spray Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Choi, J

    2007-07-18

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Fe-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials.

  3. Preparation and Corrosion Resistance of Rare Earth Conversion Coatings on AZ91 Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    Xu Yue; Chen Xiang; Lü Zushun; Li Yingjie

    2005-01-01

    The feasibility of forming pollution-free and environmentally benign Ce-based rare earth conversion coatings (short for RECCs) on AZ91 magnesium alloy to enhance corrosion resistance was studied. The effect of optimum processing parameters on corrosion resistance of RECCs, such as density of treating solution, temperature and time of coating formation were discussed. Protective performance of conversion coatings on magnesium alloy was evaluated by moisture/heating test, anodic polarization, etc. The results show that Ce-based RECCs under moisture/heating condition can remain intact, with high coverage and no obvious corrosion phenomenon. Corrosion potential increases and passive phenomenon occurs while current density decreases, therefore Ce-based RECCs can improve corrosion resistance of AZ91 magnesium alloy. The morphology of Ce-based RECCs prepared under optimum process through SEM observation is found to be a few particles coherent to the base coating, and the coating has no cracks and exhibits apparent corrosion resistance during corrosion courses of AZ91 magnesium alloy.

  4. Effect of laser polishing on the surface roughness and corrosion resistance of Nitinol stents.

    Science.gov (United States)

    Park, Chan-Hee; Tijing, Leonard D; Pant, Hem Raj; Kim, Cheol Sang

    2015-01-01

    In this paper, we investigated the effect of laser polishing at different treatment times on the surface roughness and corrosion resistance of a biliary nickel-titanium (NiTi or Nitinol) stent. A specific area of the stent wire surface was checked for changes in roughness by scanning electron microscopy (SEM) and a noncontact profilometer. The corrosion resistance was assessed by potentiodynamic polarization test and electrochemical impedance spectroscopy. The surface characterization revealed that laser polishing reduced the surface roughness of stent by 34-64% compared to that of the as-received stent surface condition depending on the treatment time (i.e., 700-1600 μm). Measurements using potentiodynamic polarization in simulated body fluid solution showed better anti-corrosion performance of laser-polished stent compared to magnetically-polished stent and has comparable corrosion resistance with the as-received stent condition. In this paper, we have shown a preliminary study on the potential of laser polishing for the improvement of surface roughness of stent without affecting much its corrosion resistance.

  5. Corrosion Resistance of an electrodeposited Zinc Coating Containing CeO2 Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    HE Jian-ping; LUO Xin-yi; CHEN Su-jing; WANG Xian-you

    2004-01-01

    A Zinc coating containing CeO2 nanoparticles has been deposited by electrodeposition in a zinc plating bath.The content of CeO2 in the coating is 0.22 mass%. The results of weight loss experiments and electrochemistry tests show that corrosion resistance of the Zinc coating containing CeO2 nanoparticles is remarkably improved in contrast to the pure zinc coating in 0.5 M MgSO4 solution. The effects of CeO2 microparticles on the corrosion resistance of the zinc coating have been studied, the results show that CeO2 microparticles have no effect on the corrosion resistance of the zinc coating. SEM and XRD experiments suggest that the presence of CeO2 nanoparticles in the coating causes the modification of the surface morphology and preferential orientation of the crystal planes; therefore, the reason for the enhancement of corrosion resistance is mainly related to improvement of the structure of the coating.

  6. Impact of the nanostructuration on the corrosion resistance and hardness of irradiated 316 austenitic stainless steels

    Science.gov (United States)

    Hug, E.; Prasath Babu, R.; Monnet, I.; Etienne, A.; Moisy, F.; Pralong, V.; Enikeev, N.; Abramova, M.; Sauvage, X.; Radiguet, B.

    2017-01-01

    The influence of grain size and irradiation defects on the mechanical behavior and the corrosion resistance of a 316 stainless steel have been investigated. Nanostructured samples were obtained by severe plastic deformation using high pressure torsion. Both coarse grain and nanostructured samples were irradiated with 10 MeV 56Fe5+ ions. Microstructures were characterized using transmission electron microscopy and atom probe tomography. Surface mechanical properties were evaluated thanks to hardness measurements and the corrosion resistance was studied in chloride environment. Nanostructuration by high pressure torsion followed by annealing leads to enrichment in chromium at grain boundaries. However, irradiation of nanostructured samples implies a chromium depletion of the same order than depicted in coarse grain specimens but without metallurgical damage like segregated dislocation loops or clusters. Potentiodynamic polarization tests highlight a definitive deterioration of the corrosion resistance of coarse grain steel with irradiation. Downsizing the grain to a few hundred of nanometers enhances the corrosion resistance of irradiated samples, despite the fact that the hardness of nanocrystalline austenitic steel is only weakly affected by irradiation. These new experimental results are discussed in the basis of couplings between mechanical and electrical properties of the passivated layer thanks to impedance spectroscopy measurements, hardness properties of the surfaces and local microstructure evolutions.

  7. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  8. PRODUCTION OF POROUS POWDER MATERIALS OF SPHERICAL POWDERS OF CORROSION-RESISTANT STEEL

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevskij

    2012-01-01

    Full Text Available Production of porous powder materials from spherical powders of corrosion-resistant steel 12Х18н10Т with formation at low pressures 120–140 mpa in the mold with the subsequent activated sintering became possible due to increase of duration of process of spattering and formation of condensate particles (Si–C or (Mo–Si on surface.

  9. Investigation of Corrosion Resistance Using Positron Annihilation for an Amorphous Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An amorphous alloy with Ni-(17~19) at. pct P prepared by electrodeposition process was studied using positron annihilation technique (PAT) associated with X-ray diffraction and the measurement of corrosion rate. It is suggested that defect or the interface between precipitates and matrix is one of the important factors which decrease corrosion resistance of the alloy after crystallization.

  10. Steel corrosion resistance in model solutions and reinforced mortar containing wastes

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2012-01-01

    This work reports on the corrosion resistance of steel in alkaline model solutions and in cement-based materials (mortar). The model solutions and the mortar specimens were Ordinary Portland Cement (OPC) based. Further, hereby discussed is the implementation of an eco-friendly approach of waste

  11. Environmental Considerations in the Studies of Corrosion Resistant Alloys for High-Level Radioactive Waste Containment

    Energy Technology Data Exchange (ETDEWEB)

    Ilevbare, G O; Lian, T; Farmer, J C

    2001-11-26

    The corrosion resistance of Alloy 22 (UNS No.: N06022) was studied in simulated ground water of different pH values and ionic contents at various temperatures. Potentiodynamic polarization techniques were used to study the electrochemical behavior and measure the critical potentials in the various systems. Alloy 22 was found to be resistant to localized corrosion in the simulated ground waters tested.

  12. Increased corrosion resistance of the AZ80 magnesium alloy by rapid solidification.

    Science.gov (United States)

    Aghion, E; Jan, L; Meshi, L; Goldman, J

    2015-11-01

    Magnesium (Mg) and Mg-alloys are being considered as implantable biometals. Despite their excellent biocompatibility and good mechanical properties, their rapid corrosion is a major impediment precluding their widespread acceptance as implantable biomaterials. Here, we investigate the potential for rapid solidification to increase the corrosion resistance of Mg alloys. To this end, the effect of rapid solidification on the environmental and stress corrosion behavior of the AZ80 Mg alloy vs. its conventionally cast counterpart was evaluated in simulated physiological electrolytes. The microstructural characteristics were examined by optical microscopy, SEM, TEM, and X-ray diffraction analysis. The corrosion behavior was evaluated by immersion, salt spraying, and potentiodynamic polarization. Stress corrosion resistance was assessed by Slow Strain Rate Testing. The results indicate that the corrosion resistance of rapidly solidified ribbons is significantly improved relative to the conventional cast alloy due to the increased Al content dissolved in the α-Mg matrix and the correspondingly reduced presence of the β-phase (Mg17 Al12 ). Unfortunately, extrusion consolidated solidified ribbons exhibited a substantial reduction in the environmental performance and stress corrosion resistance. This was mainly attributed to the detrimental effect of the extrusion process, which enriched the iron impurities and increased the internal stresses by imposing a higher dislocation density. In terms of immersion tests, the average corrosion rate of the rapidly solidified ribbons was <0.4 mm/year compared with ∼2 mm/year for the conventionally cast alloy and 26 mm/year for the rapidly solidified extruded ribbons.

  13. Effect of plasma nitriding and titanium nitride coating on the corrosion resistance of titanium.

    Science.gov (United States)

    Wang, Xianli; Bai, Shizhu; Li, Fang; Li, Dongmei; Zhang, Jing; Tian, Min; Zhang, Qian; Tong, Yu; Zhang, Zichuan; Wang, Guowei; Guo, Tianwen; Ma, Chufan

    2016-09-01

    The passive film on the surface of titanium can be destroyed by immersion in a fluoridated acidic medium. Coating with titanium nitride (TiN) may improve the corrosion resistance of titanium. The purpose of this in vitro study was to investigate the effect of duplex treatment with plasma nitriding and TiN coating on the corrosion resistance of cast titanium. Cast titanium was treated with plasma nitriding and TiN coating. The corrosion resistance of the duplex-treated titanium in fluoride-containing artificial saliva was then investigated through electrochemical and immersion tests. The corroded surface was characterized by scanning electron microscopy (SEM) with energy-dispersive spectroscopy surface scan analysis. The data were analyzed using ANOVA (α=.05) RESULTS: Duplex treatment generated a dense and uniform TiN film with a thickness of 4.5 μm. Compared with untreated titanium, the duplex-treated titanium displayed higher corrosion potential (Ecorr) values (Pplasma nitriding and TiN coating significantly improved the corrosion resistance of cast titanium in a fluoride-containing environment. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Enhanced corrosion resistance properties of radiofrequency cold plasma nitrided carbon steel: Gravimetric and electrochemical results

    Energy Technology Data Exchange (ETDEWEB)

    Bouanis, F.Z. [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF-LSPES UMR-CNRS 8008, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Bentiss, F. [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); Traisnel, M. [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF-LSPES UMR-CNRS 8008, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Jama, C. [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF-LSPES UMR-CNRS 8008, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France)], E-mail: charafeddine.jama@ensc-lille.fr

    2009-03-01

    Cold plasma nitriding treatment was performed to improve the corrosion resistance of C38 carbon steel. Nitriding process was conducted using a radiofrequency nitrogen plasma discharge for different times of treatment on non-heated substrates. The modification of the corrosion resistance characteristic of the C38 steel due to the treatment in acid medium (1 M HCl) were investigated by gravimetric and electrochemical tests such as potentiodynamic polarisation curves and electrochemical impedance spectroscopy (EIS). It was shown that the plasma nitriding treatment improves the corrosion resistance. Indeed, in the gravimetric tests, nitrided samples showed lower weight loss and lower corrosion rate in comparison to untreated one. In the Tafel polarisation tests, the nitrided samples showed greatly reduced corrosion current densities, anodic dissolution and also retarded the hydrogen evolution reaction. Using EIS method, an adequate structural model of the interface was used and the values of the corresponding parameters were calculated and discussed. The results obtained from weight loss and electrochemical studies were in reasonable agreement. X-ray photoelectron spectroscopy (XPS) was carried out to establish the mechanism of corrosion inhibition of nitrided C38 steel in 1 M HCl medium. The enhancement of the corrosion resistance is believed to be related to the iron nitride compound layer formed on the C38 steel surface during plasma nitriding, which protected the underlying metal from corrosive attack in the aggressive solutions.

  15. Steel corrosion resistance in model solutions and reinforced mortar containing wastes

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2012-01-01

    This work reports on the corrosion resistance of steel in alkaline model solutions and in cement-based materials (mortar). The model solutions and the mortar specimens were Ordinary Portland Cement (OPC) based. Further, hereby discussed is the implementation of an eco-friendly approach of waste util

  16. Influence of silicon addition on the mechanical properties and corrosion resistance of low-alloy steel

    Indian Academy of Sciences (India)

    M Hebda; H Dębecka; J Kazior

    2015-12-01

    The addition of silicon to low-alloy steel allows to modify the materials' microstructure and thus to improve their corrosion resistance and mechanical properties. The influence of adding different amounts of silicon on the properties (density, transverse rupture strength, microhardness and corrosion resistance) and microstructure of low-alloy steel was investigated. Samples were prepared via the mechanical alloying process, which is the most useful method to homogeneously introduce silicon to low-alloy steel. Sintering was performed by using the spark plasma sintering (SPS) technique. After the SPS process, half of each of the obtained samples was heat-treated in a vacuum furnace. The results show that high-density materials were achieved, and a homogeneous and fine microstructure was obtained. The investigated compositions containing 1 wt% of silicon had better corrosion resistance than samples with 3 wt% of silicon addition. Furthermore, corrosion resistance as well as the mechanical and plastic properties of the samples with 1 wt% of silicon can be further improved by applying heat treatment.

  17. Electrolytic deposition and corrosion resistance of Zn–Ni coatings obtained from sulphate-chloride bath

    Indian Academy of Sciences (India)

    Katarzyna Wykpis; Magdalena Popczyk; Antoni Budniok

    2011-07-01

    Zn–Ni coatings were deposited under galvanostatic conditions on steel substrate (OH18N9). The influence of current density of deposition on the surface morphology, chemical and phase composition was investigated. The corrosion resistance of Zn–Ni coatings obtained at current density 10–25 mA cm-2 are measured, and are compared with that of metallic cadmium coating. Structural investigations were performed by the X-ray diffraction (XRD) method. The surface morphology and chemical composition of deposited coatings were studied using a scanning electron microscope (JEOL JSM-6480) with EDS attachment. Studies of electrochemical corrosion resistance were carried out in the 5% NaCl, using potentiodynamic and electrochemical impedance spectroscopy (EIS) methods. On the ground of these research, the possibility of deposition of Zn–Ni coatings contained 24–26% at. Ni was exhibited. It was stated, that surface morphology, chemical and phase composition of these coatings are practically independent on current density of deposition. On the basis of electrochemical investigations it was found that corrosion resistance of these Zn–Ni coatings is also independent of current density. These coatings are more corrosion resistant in 5% NaCl solution than metallic cadmium. It was suggested that the Zn–Ni coating may be used as a substitute for toxic cadmium.

  18. Corrosion resistant Zn–Co alloy coatings deposited using saw-tooth current pulse

    Indian Academy of Sciences (India)

    S Yogesha; A Chitharanjan Hegde

    2011-12-01

    Micro/nanostructured multilayer coatings of Zn–Co alloy were developed periodically on mild steel from acid chloride bath. Composition modulated multilayer alloy (CMMA) coatings, having gradual change in composition (in each layer) were developed galvanostatically using saw-tooth pulses through single bath technique (SBT). CMMA coatings were developed under different conditions of cyclic cathode current densities (CCCDs) and number of layers, and their corrosion resistances were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) method. Optimal configuration, represented as (Zn–Co)2.0/4.0/300 was found to exhibit ∼ 89 times better corrosion resistance compared to monolithic (Zn–Co)3.0 alloy deposited for same time, from same bath. The better corrosion resistance of CMMA coatings was attributed to changed interfacial dielectric properties, evidenced by dielectric spectroscopy. Improved corrosion resistance was attributed to formation of -type semiconductor film at the interface, supported by the Mott–Schottky plot. Further, the formation of multilayer and corrosion mechanism was analysed using scanning electron microscopy (SEM).

  19. Catalytic Methane Decomposition over Fe-Al2O3

    KAUST Repository

    Zhou, Lu

    2016-05-09

    The presence of a Fe-FeAl2O4 structure over an Fe-Al2O3 catalysts is demonstrated to be vital for the catalytic methane decomposition (CMD) activity. After H2 reduction at 750°C, Fe-Al2O3 prepared by means of a fusion method, containing 86.5wt% FeAl2O4 and 13.5wt% Fe0, showed a stable CMD activity at 750°C for as long as 10h. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electrical discharge machining studies on reactive sintered FeAl

    Indian Academy of Sciences (India)

    A K Khanra; S Patra; M M Godkhindi

    2006-06-01

    Electrical discharge machining (EDM) studies on reactive sintered FeAl were carried out with different process parameters. The metal removal rate and tool removal rate were found to increase with the applied pulse on-time. The surface roughness of machined surface also changed with the applied pulse on-time. XRD analysis of machined surface of sintered FeAl showed the formation of Fe3C phase during the EDM process. The debris analysis was used to identify the material removal mechanism occurring during the EDM of sintered FeAl.

  1. Improvement of Microhardness and Corrosion Resistance of Stainless Steel by Nanocomposite Coating

    Directory of Open Access Journals (Sweden)

    Hiba Husam Ismail

    2014-12-01

    Full Text Available Stainless steel (AISI 304 has good electrical and thermal conductivities, good corrosion resistance at ambient temperature, apart from these it is cheap and abundantly available; but has good mechanical properties such as hardness. To improve the hardness and corrosion resistance of stainless steel its surface can be modified by developing nanocomposite coatings applied on its surface. The main objective of this paper is to study effect of electroco-deposition method on microhardness and corrosion resistance of stainless steel, and to analyze effect of nanoparticles (Al2O3, ZrO2 , and SiC on properties of composite coatings. In this paper employed Electroco-deposition process to develop a composite coating with (Ni matrix and Ceramic oxide particles: Al2O3 (135nm, ZrO2 (40nm, and SiC (80nm as reinforcements. The coatings were developed with 10 g/L, and 20 g/L concentrations in bath, at four different current densities (0.5, 1, 2, 3 A/dm2 using Watts bath to study the effect of current density and particle concentration in bath, on structure and properties of the coatings developed. The surface morphology of nanocomposite coating was characterized by Scanning Electron Microscopy (SEM. The hardness of the nanocoating was carried out using Digital Vickers microhardness tester. The corrosion resistance property of nanocomposite coating was carried out in 3.5% NaCl solution used Open circuit potential (OCP and potentialastic polarization. The results showed the nanocomposites coating have a smooth and compact surface and have higher hardness than the uncoated stainless steel (2.3 times, and also found that the nanocomposite coating improves the corrosion resistance significantly (89.25%.

  2. A new method to improve the corrosion resistance of titanium for hydrometallurgical applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing, E-mail: jing.liu@alumni.ubc.ca; Alfantazi, Akram; Asselin, Edouard

    2015-03-30

    Highlights: • A new method to fabricate TiO{sub 2} films on Ti by chemical oxidation with H{sub 2}O{sub 2}. • The addition of SO{sub 4}{sup 2−} ions in H{sub 2}O{sub 2} solutions promoted the formation of anatase. • The addition of of Cl{sup −} ions in H{sub 2}O{sub 2} solutions favored the formation of rutile. • 2 M H{sub 2}O{sub 2}/0.1 M HCl solution leads to TiO{sub 2} films with the highest corrosion resistance. - Abstract: The main objective of the present work was to develop a method to fabricate titanium oxide films with high corrosion resistance by controlled chemical oxidation with H{sub 2}O{sub 2} solutions at 90 °C. The prepared chemically oxidized films (COFs) were characterized by X-ray diffraction (XRD) measurements and found to be a mixture of anatase and rutile or pure rutile, depending mainly on the presence of Cl{sup −} and SO{sub 4}{sup 2−} in H{sub 2}O{sub 2} solutions. XRD results indicated that the addition of SO{sub 4}{sup 2−} ions promoted the formation of anatase; while the addition of Cl{sup −} ions favored the formation of rutile. Linear polarization resistance and electrochemical impedance spectroscopy measurements were used to evaluate the corrosion resistance of the as grown COFs for hydrometallurgical applications. Results verified that chemical oxidation with H{sub 2}O{sub 2} solutions is capable of improving the corrosion resistance of Ti for hydrometallurgical applications. Chemical oxidation with 2 M H{sub 2}O{sub 2}/0.1 M HCl solution led to the best improvement of the corrosion resistance of Ti.

  3. Effect of Surface Modification on Corrosion Resistance of Pure Titanium. An in Vivo Observation

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-mei; GUO Tian-wen; WANG Da-lin

    2006-01-01

    Objective: The aim of this experiment is to study the effect of three methods of surface modification on the corrosion resistance of commercial pure Titanium when used in oral environment for half a year. Method: 48 specimens of pure titanium were made and divided into four groups randomly, one group was selected randomly as Group Ⅰ(control group), the other three groups were treated by three methods of surface modification individually, Group Ⅱ: heating oxidation in air(400℃,30min.), Group Ⅲ : anodization(45 volts, 10 min.), Group Ⅳ: TiN coating(firing temperature 200℃ , total coating time 62min.). Six edentulous volunteers with healthy oral mucosa participated in the in vivo study. One testing piece from each group was selected and fixed in the polished surface of upper complete dentures. Dynamic polarization curves were traced with electrochemical method after the specimens were placed either in oral cavity or in air for 6 months. Results: After all specimens were used, Ecorr altered in every group , Ecorr from high to low were in turn: TiN coating group > heating oxidation group > anodization group >control group, no obvious passive potential Ep and Ip was found in control group.Heating oxidation in air exhibited similar Ep to anodization, but Ip was remarkably lower than that of anodization; TiN coating showed obviously different polarization curves compared with heating -oxidation group and anodization group, Ecorr was positive, and no Ep and Ip was found. Conclusion: Under present experimental condition, all the three treatment methods could enhance corrosion resistance of pure titanium in oral environment, heating oxidation in air exhibited better resistance to corrode than anodization, TiN coating possessed the most excellent corrosion resistance, even after exposed in oral condition for 6 months, there was little change of corrosion resistance. Therefore TiN coating could be adopted to improve corrosion resistance of pure titanium in

  4. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel.

    Science.gov (United States)

    Huang, Qiaoling; Yang, Yun; Hu, Ronggang; Lin, Changjian; Sun, Lan; Vogler, Erwin A

    2015-01-01

    Superhydrophilic and superhydrophobic TiO2 nanotube (TNT) arrays were fabricated on 316L stainless steel (SS) to improve corrosion resistance and hemocompatibility of SS. Vertically-aligned superhydrophilic amorphous TNTs were fabricated on SS by electrochemical anodization of Ti films deposited on SS. Calcination was carried out to induce anatase phase (superhydrophilic), and fluorosilanization was used to convert superhydrophilicity to superhydrophobicity. The morphology, structure and surface wettability of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and contact angle goniometry. The effects of surface wettability on corrosion resistance and platelet adhesion were investigated. The results showed that crystalline phase (anatase vs. amorphous) and wettability strongly affected corrosion resistance and platelet adhesion. The superhydrophilic amorphous TNTs failed to protect SS from corrosion whereas superhydrophobic amorphous TNTs slightly improved corrosion resistance of SS. Both superhydrophilic and superhydrophobic anatase TNTs significantly improved corrosion resistance of SS. The superhydrophilic amorphous TNTs minimized platelet adhesion and activation whereas superhydrophilic anatase TNTs activated the formation of fibrin network. On the contrary, both superhydrophobic TNTs (superhydrophobic amorphous TNTs and superhydrophobic anatase TNTs) reduced platelet adhesion significantly and improved corrosion resistance regardless of crystalline phase. Superhydrophobic anatase TNTs coating on SS surface offers the opportunity for the application of SS as a promising permanent biomaterial in blood contacting biomedical devices, where both reducing platelets adhesion/activation and improving corrosion resistance can be effectively combined.

  5. Effects of Solution and Aging Treatments on Corrosion Resistance of As-cast 60NiTi Alloy

    Science.gov (United States)

    Qin, Qiuhui; Wen, Yuhua; Wang, Gaixia; Zhang, Lanhui

    2016-12-01

    60NiTi alloy has become a competitive candidate for bearing applications due to its shape memory effect, superelasticity, high strength, hardness, excellent abrasion resistance and corrosion resistance, etc. However, the relationship between its corrosion resistance and heat treatment is not clearly understood. Therefore, we used OM, XRD, SEM and EDS to study the evolution of microstructure in as-cast, solution-treated and aged 60NiTi alloy. Besides, the potentiodynamic polarization and salt spray test were used to compare corrosion resistance of 60NiTi alloy and 316 stainless steel and to study the effect of microstructures on corrosion resistance of 60NiTi alloy. The results show that the corrosion resistance of as-cast 60NiTi alloy is comparable to that of 316 stainless steel, but the corrosion resistance of solution-treated and aged 60NiTi alloys is much superior. The significantly reduced Ni3Ti phase after the solution and aging treatments is responsible for the remarkable improvement in the corrosion resistance of as-cast 60NiTi alloy.

  6. Environmental embrittlement of intermetallic compounds in Fe-Al alloys

    Institute of Scientific and Technical Information of China (English)

    张建民; 张瑞林; S.H.YU; 余瑞璜

    1996-01-01

    First,it is proposed that hydrogen atoms occupy the interstitial sites in Fe3Al and FeAl.Then the environmental embrittlement of intermetallic compounds in Fe-Al alloys is studied in the light of calculated valence electron structures and bond energy of Fe3Al and FeAl containing hydrogen atoms.From the analyses it is found that the states of metal atoms will change,in which more lattice electrons will become covalent electrons to bond with hydrogen atoms when the atomic hydrogen diffuses into the intermetallic compounds in Fe-Al alloys,which will result in the decrease of local metallicity in Fe3Al and FeAl.Meanwhile,it is found that the crystal will easily cleave since solute hydrogen bonds with metal atoms and severely anisotropic bonds form.As a conclusion,these factors result in the environmental embrittlement of Fe3Al and FeAl.

  7. Improved corrosion resistance of 316L stainless steel by nanocrystalline and electrochemical nitridation in artificial saliva solution

    Science.gov (United States)

    Lv, Jinlong; Liang, Tongxiang

    2015-12-01

    The fluoride ion in artificial saliva significantly changed semiconductor characteristic of the passive film formed on the surface of 316L stainless steels. The electrochemical results showed that nanocrystalline α‧-martensite improved corrosion resistance of the stainless steel in a typical artificial saliva compared with coarse grained stainless steel. Moreover, comparing with nitrided coarse grained stainless steel, corrosion resistance of the nitrided nanocrystalline stainless steel was also improved significantly, even in artificial saliva solution containing fluoride ion. The present study showed that the cryogenic cold rolling and electrochemical nitridation improved corrosion resistance of 316L stainless steel for the dental application.

  8. Electrochemical and pitting corrosion resistance of AISI 4145 steel subjected to massive laser shock peening treatment with different coverage layers

    Science.gov (United States)

    Lu, J. Z.; Han, B.; Cui, C. Y.; Li, C. J.; Luo, K. Y.

    2017-02-01

    The effects of massive laser shock peening (LSP) treatment with different coverage layers on residual stress, pitting morphologies in a standard corrosive solution and electrochemical corrosion resistance of AISI 4145 steel were investigated by pitting corrosion test, potentiodynamic polarisation test, and SEM observations. Results showed massive LSP treatment can effectively cause an obvious improvement of pitting corrosion resistance of AISI 4145 steel, and increased coverage layer can also gradually improve its corrosion resistance. Massive LSP treatment with multiple layers was shown to influence pitting corrosion behaviour in a standard corrosive solution.

  9. Corrosion resistance of the soldering joint of post-soldering of palladium-based metal-ceramic alloys.

    Science.gov (United States)

    Kawada, E; Sakurai, Y; Oda, Y

    1997-05-01

    To evaluate the corrosion resistance of post soldering of metal-ceramic alloys, four commercially available palladium-system metal-ceramic alloys (Pd-Cu, Pd-Ni, Pd-Ag, and Pd-Sb systems) and two types of solder (12 k gold solder and 16 k gold solder) with different compositions and melting points were used. The corrosion resistance of the soldered joint was evaluated by anodic polarization. The electrochemical characteristics of soldered surface were measured using electrochemical equipment. Declines in corrosion resistance were not detectable with Pd-Cu, Pd-Ag and Pd-Sb types, but break down at low potential occurred with Pd-Ni type.

  10. Iron-Based Amorphous Metals:The High Performance Corrosion Resistant Materials(HPCRM) Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J

    2007-07-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  11. New Low-Sn Zr Cladding Alloys with Excellent Autoclave Corrosion Resistance and High Strength

    Directory of Open Access Journals (Sweden)

    Ruiqian Zhang

    2017-04-01

    Full Text Available It is expected that low-Sn Zr alloys are a good candidate to improve the corrosion resistance of Zr cladding alloys in nuclear reactors, presenting excellent corrosion resistance and high strength. The present work developed a new alloy series of Zr-0.25Sn-0.36Fe-0.11Cr-xNb (x = 0.4~1.2 wt % to investigate the effect of Nb on autoclave corrosion resistance. Alloy ingots were prepared by non-consumable arc-melting, solid-solutioned, and then rolled into thin plates with a thickness of 0.7 mm. It was found that the designed low-Sn Zr alloys exhibit excellent corrosion resistances in three out of pile autoclave environments (distilled water at 633 K/18.6 MPa, 70 ppm LiOH solution at 633 K/18.6 MPa, and superheated water steam at 673 K/10.3 MPa, as demonstrated by the fact of the Zr-0.25Sn-0.36Fe-0.11Cr-0.6Nb alloy shows a corrosion weight gain ΔG = 46.3 mg/dm2 and a tensile strength of σUTS = 461 MPa following 100 days of exposure in water steam. The strength of the low-Sn Zr alloy with a higher Nb content (x = 1.2 wt % is enhanced up to 499 MPa, comparable to that of the reference high-Sn N36 alloy (Zr-1.0Sn-1.0Nb-0.25Fe, wt %. Although the strength improvement is at a slight expense of corrosion resistance with the increase of Nb, the corrosion resistance of the high-Nb alloy with x = 1.2 (ΔG = 90.4 mg/dm2 for 100-day exposure in the water steam is still better than that of N36 (ΔG = 103.4 mg/dm2.

  12. Corrosion resistance and biocompatibility of titanium surface coated with amorphous tantalum pentoxide

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ying-Sui [Department of Oral Biology, National Yang-Ming University, Taipei, Taiwan (China); Chang, Jean-Heng [Dental Department, Cheng Hsin General Hospital, Taipei, Taiwan (China); Huang, Her-Hsiung, E-mail: hhhuang@ym.edu.tw [Department of Dentistry, National Yang-Ming University, Taipei, Taiwan (China); Department of Dentistry, Taipei City Hospital, Taipei, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan (China)

    2013-01-01

    Tantalum pentoxide (Ta{sub 2}O{sub 5}) possesses good corrosion resistance and biocompatibility. This study aimed to improve the corrosion resistance and biocompatibility of titanium (Ti) by coating it with an amorphous Ta{sub 2}O{sub 5} surface layer. An amorphous Ta{sub 2}O{sub 5} layer was prepared on the Ti surface using a simple hydrolysis–condensation process at room temperature. The surface characteristics of the test specimens were analyzed using X-ray photoelectron spectroscopy, glancing angle X-ray diffraction, field emission scanning electron microscopy, and contact angle measurements. The corrosion resistance of the test specimens was evaluated from the potentiodynamic polarization curves and ion release measurements in simulated blood plasma (SBP). The biocompatibility of the test specimens was evaluated in terms of the protein (albumin) adsorption, cell adhesion, and cell growth of human bone marrow mesenchymal stem cells (hBMSCs). The amorphous Ta{sub 2}O{sub 5} layer with a porous micro-/nano-scale topography, which was deposited on the Ti surface using a simple hydrolysis–condensation process, increased the corrosion resistance (i.e., increased the corrosion potential and decreased the anodic current and ion release) of the Ti in the SBP and improved the surface wettability, albumin adsorption, and cell adhesion. We conclude that the presence of an amorphous Ta{sub 2}O{sub 5} layer on the Ti surface increased the corrosion resistance and biocompatibility of Ti. - Highlights: ► Amorphous Ta{sub 2}O{sub 5} layer was coated on Ti using simple hydrolysis–condensation process. ► Ta{sub 2}O{sub 5} surface layer showed a micro-/nano-scale porous topography. ► Ta{sub 2}O{sub 5} layer enhanced wettability and corrosion resistance of Ti. ► Ta{sub 2}O{sub 5} layer enhanced protein adsorption, cell adhesion, and cell proliferation of Ti.

  13. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Material (HPCRM) Development

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J S; Saw, C; Haslam, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D' Amato, A; Aprigliano, L

    2008-01-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  14. Laser cladding of Zr-based coating on AZ91D magnesium alloy for improvement of wear and corrosion resistance

    Indian Academy of Sciences (India)

    Kaijin Huang; Xin Lin; Changsheng Xie; T M Yue

    2013-02-01

    To improve the wear and corrosion resistance of AZ91D magnesium alloy, Zr-based coating made of Zr powder was fabricated on AZ91D magnesium alloy by laser cladding. The microstructure of the coating was characterized by XRD, SEM and TEM techniques. The wear resistance of the coating was evaluated under dry sliding wear test condition at room temperature. The corrosion resistance of the coating was tested in simulated body fluid. The results show that the coating mainly consists of Zr, zirconium oxides and Zr aluminides. The coating exhibits excellent wear resistance due to the high microhardness of the coating. The main wear mechanism of the coating and the AZ91D sample are different, the former is abrasive wear and the latter is adhesive wear. The coating compared to AZ91D magnesium alloy exhibits good corrosion resistance because of the good corrosion resistance of Zr, zirconium oxides and Zr aluminides in the coating.

  15. 77 FR 67395 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Revised Schedule for the...

    Science.gov (United States)

    2012-11-09

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Revised Schedule for the Subject Reviews AGENCY: United States International Trade Commission. ACTION: Notice. DATES: Effective...

  16. Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Maciej; Greń, Katarzyna [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Kukharenko, Andrey I. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Mira str. 19 (Russian Federation); Korotin, Danila M. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Michalska, Joanna [Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego Street 8, 40-019 Katowice (Poland); Szyk-Warszyńska, Lilianna; Mosiałek, Michał [Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, Niezapominajek Street 8, 30-239 Kraków (Poland); Żak, Jerzy [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Pamuła, Elżbieta [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza Avenue 30, 30-059 Kraków (Poland); Kurmaev, Ernst Z. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Cholakh, Seif O. [Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Mira str. 19 (Russian Federation); Simka, Wojciech, E-mail: wojciech.simka@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland)

    2014-09-01

    The work presents results of the studies performed on electropolishing of pure niobium in a bath that contained: sulphuric acid, hydrofluoric acid, ethylene glycol and acetanilide. After the electropolishing, the specimens were subjected to anodic passivation in a 1 mol dm{sup −3} phosphoric acid solution at various voltages. The surface morphology, thickness, roughness and chemical composition of the resulting oxide layers were analysed. Thusly prepared niobium samples were additionally investigated in terms of their corrosion resistance in Ringer's solution. The electropolished niobium surface was determined to be smooth and lustrous. The anodisation led to the growth of barrier-like oxide layers, which were enriched in phosphorus species. - Highlights: • Pure niobium was electropolished and subsequently anodised in a H{sub 3}PO{sub 4} solution. • Phosphorus was successfully introduced into the oxide layers after the treatment. • Corrosion resistance of niobium in Ringer's solution was improved after anodising.

  17. A comparative study of the corrosion resistance of incoloy MA 956 and PM 2000 superalloys

    Directory of Open Access Journals (Sweden)

    Maysa Terada

    2010-12-01

    Full Text Available Austenitic stainless steels, titanium and cobalt alloys are widely used as biomaterials. However, new medical devices require innovative materials with specific properties, depending on their application. The magnetic properties are among the properties of interest for some biomedical applications. However, due to the interaction of magnetic materials with Magnetic Resonance Image equipments they might used only as not fixed implants or for medical devices. The ferromagnetic superalloys, Incoloy MA 956 and PM 2000, produced by mechanical alloying, have similar chemical composition, high corrosion resistance and are used in high temperature applications. In this study, the corrosion resistance of these two ferritic superalloys was compared in a phosphate buffer solution. The electrochemical results showed that both superalloys are passive in this solution and the PM 2000 present a more protective passive film on it associated to higher impedances than the MA 956.

  18. Heat Treatment and Properties of Nitrogen Alloyed, Martensitic,Corrosion-resistant Steels

    Institute of Scientific and Technical Information of China (English)

    Reinhold Schneider; Klaus Sammt; Roland Rabitsch; Michael Haspel

    2004-01-01

    This paper gives a short introduction to the typical process route and material properties of these steels in comparison to standard martensitic corrosion-resistant steels. The typical response of these steels to various heat treatment parameters is shown and explained using the three grades M333, N360 and M340 (all made by Bohler Edelstahl GmbH) as examples, and the physical metallurgy of these steels and its consequences for practical heat treatment is explained. The correlation between tempering parameters and their effect on the toughness and corrosion properties is explained in particular detail, showing that these new steels not only offer far better property combinations under the usual heat treatment parameters than standard martensitic corrosion-resistant steels, but that they also open the door to extending heat treatment combinations and properties.

  19. Electroless Plating of Ni-Fe-P Alloy and Corrosion Resistance of the Deposit

    Institute of Scientific and Technical Information of China (English)

    Senlin WANG

    2005-01-01

    Electroless Ni-Fe-P alloys in an alkaline bath were plated. Theeffects of deposition parameters on the plating rate and the coating composition were examined. The weight loss test and the anodic polarization measurement of the deposits in 3.5 wt pct NaCl solution (pH7.0) showed that the deposits with the mole ratio of NiSO4/FeSO4 being 0.07:0.03, pH8.0 and 7.5 possess better corrosion resistance than that of the other deposits and the Ni-Fe-P deposits did not form passive films in this environment. In 5.0 wt pct NaOH solution, the Ni-Fe-P deposits have better corrosion resistance and formed passive films.

  20. Influence of inorganic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.

    2009-01-01

    was investigated. Sulphuric, nitric and phosphoric acids of different concentrations were used to clean the alloy for various pickling times. The surface morphology, composition and phases were elucidated using scanning electron microscopy, X-ray fluorescence analysis, spark discharge-optical emission spectroscopy...... the corrosion resistance of the alloy. The cleaning efficiency of the three acids used and the corrosion protection mechanisms were found to be remarkably different. Best corrosion results were obtained with nitric acid, followed closely by phosphoric acid. Only the sulphuric acid failed more or less when...... of micro-galvanic couples and can therefore increase corrosion attack on these alloys. Due to this influence they should be removed to obtain good corrosion resistance. In this study, the effect of inorganic acid pickling on the corrosion behaviour of a commercial AZ31 magnesium alloy sheet...

  1. Preparation and corrosion resistance of MAO/Ni-P composite coat on Mg alloy

    Science.gov (United States)

    Fan, Xizhi; Wang, Ying; Zou, Binglin; Gu, Lijian; Huang, Wenzhi; Cao, Xueqiang

    2013-07-01

    Microarc oxidation (MAO) coat was designed as an intermediate layer for the electroless plated Ni-P top coat, providing inert surface and necessary hardness for Mg alloy substrate. The composite coat was successfully prepared to improve the corrosion resistance of Mg alloy. The preparation and the characterization of the composite coat were investigated. The results show that the pre-treatment of MAO before electroless plating plays an important role in the deposition of compact composite coat. The activation (by HF solution) makes the MAO coat dense with uniform cracks which supply excellent bonding interface for Ni-P coat. Compared with monolithic MAO or Ni-P coat, the composite coat has excellent corrosion resistance and stable bonding interface. There is main pit corrosion at substrate after the corrosive medium penetrating through the whole coat. With the inert MAO interlayer, the electrochemical corrosion between the Ni-P and substrate is effectively inhibited.

  2. Nanotextured stainless steel for improved corrosion resistance and biological response in coronary stenting

    Science.gov (United States)

    Mohan, Chandini C.; Prabhath, Anupama; Cherian, Aleena Mary; Vadukumpully, Sajini; Nair, Shantikumar V.; Chennazhi, Krishnaprasad; Menon, Deepthy

    2014-12-01

    Nanosurface engineering of metallic substrates for improved cellular response is a persistent theme in biomaterials research. The need to improve the long term prognosis of commercially available stents has led us to adopt a `polymer-free' approach which is cost effective and industrially scalable. In this study, 316L stainless steel substrates were surface modified by hydrothermal treatment in alkaline pH, with and without the addition of a chromium precursor, to generate a well adherent uniform nanotopography. The modified surfaces showed improved hemocompatibility and augmented endothelialization, while hindering the proliferation of smooth muscle cells. Moreover, they also exhibited superior material properties like corrosion resistance, surface integrity and reduced metal ion leaching. The combination of improved corrosion resistance and selective vascular cell viability provided by nanomodification can be successfully utilized to offer a cell-friendly solution to the inherent limitations pertinent to bare metallic stents.

  3. Recent developments in wear- and corrosion-resistant alloys for the oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Raghu, D. [Deloro Stellite Inc., Goshen, IN (United States). Stellite Coatings Div.; Wu, J.B.C. [Stoody Deloro Stellite, Inc., St. Louis, MO (United States)

    1997-11-01

    Oil production and refining pose very severe wear and corrosion environments. Material designers are challenged with the need to design and develop materials that combine high corrosion resistance with good wear resistance. Coupled with that is the need for these materials to meet requirements such as fracture toughness and resistance to sulfide and chloride stress corrosion cracking. Often, increasing wear resistance compromises the corrosion and welding characteristics. This article covers a variety of material developments that address the problems of wear and corrosion, including alloy design fundamentals and pertinent wear properties and general corrosion resistance compared to traditional wear-resistant materials. Proven applications, with particular reference to petroleum and petrochemical areas, are discussed. Potential applications are also cited.

  4. Optimization of Oxidation Temperature for Commercially Pure Titanium to Achieve Improved Corrosion Resistance

    Science.gov (United States)

    Bansal, Rajesh; Singh, J. K.; Singh, Vakil; Singh, D. D. N.; Das, Parimal

    2017-02-01

    Thermal oxidation of commercially pure titanium (cp-Ti) was carried out at different temperatures, ranging from 200 to 900 °C to achieve optimum corrosion resistance of the thermally treated surface in simulated body fluid. Scanning electron microscopy, x-ray diffraction, Raman spectroscopy and electrochemical impedance spectroscopy techniques were used to characterize the oxides and assess their protective properties exposed in the test electrolyte. Maximum resistance toward corrosion was observed for samples oxidized at 500 °C. This was attributed to the formation of a composite layer of oxides at this temperature comprising Ti2O3 (titanium sesquioxide), anatase and rutile phases of TiO2 on the surface of cp-Ti. Formation of an intact and pore-free oxide-substrate interface also improved its corrosion resistance.

  5. Evaluating the corrosion resistance of UBM-deposited Cr/CrN multilayers

    Directory of Open Access Journals (Sweden)

    Yuri Lizbeth Chipatecua Godoy

    2011-05-01

    Full Text Available This work was aimed at evaluating the corrosion resistance of multilayer Cr/CrN coatings deposited by the unbalan-ced magnetron sputtering (UBM technique. Coatings were produced at room temperature using 400 mA discharge current, 9 sccm argon flow and 3 sccm nitrogen flow. The total thickness of coatings deposited on AISI 304 stainless steel and silicon (100 varied between 0.2 a 3 μm as bilayer period varied between 20 and 200 nm. Coating microstructure and chemical composition was stu-died through scanning electron microscopy (SEM and tex-ture and crystalline phases were analysed by X-ray diffraction (XRD before and after corrosion tests which were carried out by potentiodynamic polarisation using 0.5 M H2SO4 + 0.05M KSCN solution. Lower bilayer period coatings presented better corrosion resistance and their corrosion mechanism is discussed in this article.

  6. Composition and corrosion resistance of cerium conversion films on 2195Al-Li alloy

    Institute of Scientific and Technical Information of China (English)

    SONG Dong; FENG Xingguo; SUN Mingren; MA Xinxin; TANG Guangze

    2012-01-01

    The Ce conversion films on 2195Al-Li alloy without and with post-treatment were studied and the corrosion resistance was evaluated as well.The surface morphology was observed by scanning electron microscopy (SEN),and the chemical composition was characterized by X-ray photoelectron spectroscopy (XPS).The corrosion behaviors of 2195Al-Li alloy and conversion coating were assessed by means of potentiodynamic polarization curves.The experimental results indicated that after post-treatment the surface quality was improved significantly.According to XPS,the conversion coating after post-treatment was mainly composed of CeO2,Ce2O3,Ce-OH and a little MoO3 and MoO2.The results of potentiodynamic polarization curves revealed that the conversion coating with post-treatment possessed better corrosion resistance than bare alloy and Ce conversion coating without post-treatment.

  7. Corrosion Resistance of Galvanized Steel in the Environment of a Bioreactor

    Directory of Open Access Journals (Sweden)

    Šustr Michal

    2016-06-01

    Full Text Available The article deals with monitoring the corrosion resistibility of welded materials in the anaerobic fermenter (bioreactor. The main goal of this research is to assess the change of hardness after degradation. The change of hardness occurs in the corrosion environment and it correlates with the corrosion resistibility of material. The purpose of this experiment is to recognize the possibilities of using the CMT welded materials in the defined environment. As an innovative technology the acoustic emission method is used for assessment of surface layer disruption during hardness testing. Aluminium alloy with galvanized steel (AluZinc was used as an experimental material. The basic materials were welded by the filler material AlSi3.

  8. Improving Corrosion Resistance of Ferrous Alloy to Molten Zn by Modifying the Laves Phase Characteristics

    Science.gov (United States)

    Liu, X.; Yin, F. C.; Lou, J.; Ouyang, X. M.; Li, Z.

    2017-08-01

    The Laves phase morphology in the Fe25Mo14Cr10Ni1Si (wt.%) alloy was modified by Si addition to improve the corrosion resistance of the ferrous alloy to molten zinc. The Si-containing alloy showed a woven, needle-like Laves phase with higher Mo content than that of the Fe25Mo14Cr10Ni alloy. Corrosion resistance to molten Zn for the Si-containing alloy was more than 20 times higher than that of the silicon-free alloy mainly as a result of the characteristics of the modified Laves phase. This phase was oriented perpendicular to the Zn-diffusion direction, which effectively prevented corrosion by the molten Zn, leading to a denser FeZn13 layer rather than the FeZn10 layer produced in the Fe25Mo14Cr10Ni alloy.

  9. Wear and corrosion resistance of laser remelted and plasma sprayed Ni and Cr coatings on copper

    Institute of Scientific and Technical Information of China (English)

    梁工英; 黄俊达; 安耿

    2004-01-01

    Nickel and chromium coatings were produced on the copper sheet using plasma spraying and laser remelting. The sliding wear test was achieved on a block-on-ring tester and the corrosion test was carried out in an acidic atmosphere. The corrosive behaviors of both coatings and original copper samples were investigated by using an impedance comparison method. The experimental results show that the nickel and chromium coatings display better wear resistance and corrosion resistance relative to the original pure copper sample. The wear resistance of the coatings is 8 - 12 times as large as original samples, and the wear resistance of laser remelted samples is better than that of plasma sprayed ones. The corrosion resistance of laser remelted nickel and chromium samples is better than that of plasma sprayed samples respectively. The corrosion rate of chromium coatings is less than that of nickel coatings, and the laser remelted Cr coating exhibits the least corrosion rate.

  10. INFLUENCE OF PHOSPHATIZED SURFACE LAYER ON CORROSION RESISTANCE OF Mg-Al-RE ALLOY

    Directory of Open Access Journals (Sweden)

    Katarína Miková

    2015-09-01

    Full Text Available This contribution deals with evaluation of the corrosion resistance of extruded Mg-2Al-1RE (AE21 magnesium alloy in the state before and after treatment of ground surface by selected phosphatizing procedure. Specimens were exposed to 0.1M NaCl solution for several time periods starting from 5 minutes up-to 168 hours at room temperature of 22 ± 1 °C. Afterwards electrochemical impedance spectroscopy was carried out on the exposed specimens. Based on the results obtained from the electrochemical tests and visual observation of corrosion attack progress, positive or negative impact of selected phosphating process on the corrosion resistance of Mg-2Al-1RE magnesium alloy under given conditions was assessed.

  11. Studies on Wear and Corrosion Resistances of Carbon Nitride Thin Films on Ti Alloy

    Institute of Scientific and Technical Information of China (English)

    LiJin-chai; GuoHuai-xi; LuXlan-feng; ZhangZhi-hong; YeMing-sheng

    2003-01-01

    CNx/SiCN composite films were prepared on titanium ( Ti ) alloy substrates by Radio Frequency Plasma Enhanced Chemical Vapor Deposition ( RF-PECVD ). As a buffer layer, SiCN ensured the adhesion of the CNx thin films on Ti substrates. X-ray diffraction (XRD) measurement revealed that the composite films possessed α-C3N4 structure.The microhardness of the films was 48 to 50 GPa. In or der totest the characteristics of wear and corrosion resistances, we prepared Ti alloy samples with and without CNx/SiCN composite films. Also for strengthening the effect of wear and corrosion, the wear tests were carried out under high load (12 MPa) and in 0. 9% NaCl solution. Results of the wear tests and the corrosive electrochemical measurements showed that the samples coated with CNx films had excellent charac-teristics of wear and corrosion resistances compared with Ti alloy substrate samples.

  12. Effects of Nano Pigments on the Corrosion Resistance of Alkyd Coating

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Alkyd coatings embedded with nano-TiO2 and nano-ZnO pigments were prepared. The effects of nano pigments on anticorrosion performance of alkyd coatings were investigated using electrochemical impedance spectrum (EIS). For the sake of comparison, the corrosion protection of alkyd coatings with conventional TiO2 and ZnO was also studied. It was found that nano-TiO2 pigment improved the corrosion resistance as well as the hardness of alkyd coatings. The optimal amount of nano-TiO2 in a colored coating for corrosion resistance was 1%. The viscosities of alkyd coatings with nanometer TiO2 and ZnO and conventional TiO2 and ZnO pigments were measured and the relation between viscosity and anticorrosion performance was discussed.

  13. Improvement on the Corrosion Resistance of AZ91D Magnesium Alloy by Aluminum Diffusion Coating

    Institute of Scientific and Technical Information of China (English)

    Hongwei HUO; Ying LI; Fuhui WANG

    2007-01-01

    By combination of magnetron sputtering deposition and vacuum annealing, an aluminum diffusion coating was prepared on the substrate of AZ91D alloy to improve its corrosion resistance. The microstructure and composition of the diffusion coating was investigated by scanning electron microscopy and X-ray diffraction. The diffusion coating was mainly comprised of β phase-Al12Mg17. The continuous immersion test in 3.5 wt pct neutral NaCl solution indicated that the specimen with diffusion coating had better corrosion resistance compared with the bare AZ91D alloy specimen. The potentiodynamic polarization measurement indicated that the diffusion coating could function as an effectively protective layer to reduce the corrosion rate of AZ91D alloy when exposed to 3.5 wt pct NaCl solution.

  14. Studies on Wear and Corrosion Resistances of Carbon Nitride Thin Films on Ti Alloy

    Institute of Scientific and Technical Information of China (English)

    Li Jin-chai; Guo Huai-xi; Lu Xian-feng; Zhang Zhi-hong; Ye Ming-sheng

    2003-01-01

    CNx/SiCN composite films were prepared on titanium ( Ti ) alloy substrates by Radio Frequency Plasma Enhanced Chemical Vapor Deposition ( RF-PECVD ). As a buffer layer, SiCN ensured the adhesion of the CNx thin films on Ti substrates. X-ray diffraction (XRD) measurement revealed that the composite films possessed α-C3N4 structure.The microhardness of the films was 48 to 50 GPa. In order to test the characteristics of wear and corrosion resistances, we prepared Ti alloy samples with and without CNx/SiCN composite films. Also for strengthening the effect of wear and corrosion, the wear tests were carried out under high load (12 MPa) and in 0. 9% NaCl solution. Results of the wear tests and the corrosive electrochemical measurements showed that the samples coated with CNx films had excellent characteristics of wear and corrosion resistances compared with Ti alloy substrate samples.

  15. Electrodeposition, Structure and Corrosion Resistance of Nanocrystalline Ni-W Alloy

    Institute of Scientific and Technical Information of China (English)

    YANG, Fang-Zu(杨防祖); GUO, Yi-Fei(郭逸飞); HUANG, Ling(黄令); XU, Shu-Kai(许书楷); ZHOU, Shao-Min(周绍民)

    2004-01-01

    Ni-W alloy was electrodeposited from the electrolyte solution containing sodium tungstate, nickel sulfate and ammonium citrate. The electrodeposition, heat treatment, structure, surface morphology and corrosion resistance in w=0.03 NaCl solution, of Ni-W alloys were studied by means of DSC, XRD, SEM and electrochemical techniques. The results showed that the obtained Ni-W alloy electrodeposit with W weight content (wW=0.471) was presented in more typical nanocrystalline. After heat treatment at 400 ℃ for 1 h, the phase structure of the deposits was not obviously changed whereas the agglomerate for the reunion of tiny grains on deposit surface caused the granule in a more smooth morphology, the microhardness was slightly increased and the corrosion resistance was enhanced.

  16. Microstructure and Corrosion Resistance of Aluminium and Copper Composite Coatings Deposited by LPCS Method

    Directory of Open Access Journals (Sweden)

    Winnicki M.

    2016-12-01

    Full Text Available The paper presents the study of microstructure and corrosion resistance of composite coatings (Al+Al2O3 and Cu+Al2O3 deposited by Low Pressure Cold Spraying method (LPCS. The atmospheric corrosion resistance was examined by subjecting the samples to cyclic salt spray and Kesternich test chambers, with NaCl and SO2 atmospheres, respectively. The selected tests allowed reflecting the actual working conditions of the coatings. The analysis showed very satisfactory results for copper coatings. After eighteen cycles, with a total time of 432 hours, the samples show little signs of corrosion. Due to their greater susceptibility to chloride ions, aluminium coatings have significant corrosion losses.

  17. Towards a Better Corrosion Resistance and Biocompatibility Improvement of Nitinol Medical Devices

    Science.gov (United States)

    Rokicki, Ryszard; Hryniewicz, Tadeusz; Pulletikurthi, Chandan; Rokosz, Krzysztof; Munroe, Norman

    2015-04-01

    Haemocompatibility of Nitinol implantable devices and their corrosion resistance as well as resistance to fracture are very important features of advanced medical implants. The authors of the paper present some novel methods capable to improve Nitinol implantable devices to some marked degree beyond currently used electropolishing (EP) processes. Instead, a magnetoelectropolishing process should be advised. The polarization study shows that magnetoelectropolished Nitinol surface is more corrosion resistant than that obtained after a standard EP and has a unique ability to repassivate the surface. Currently used sterilization processes of Nitinol implantable devices can dramatically change physicochemical properties of medical device and by this influence its biocompatibility. The Authors' experimental results clearly show the way to improve biocompatibility of NiTi alloy surface. The final sodium hypochlorite treatment should replace currently used Nitinol implantable devices sterilization methods which rationale was also given in our previous study.

  18. Photoelectrochemical Study of Corrosion Resisting Property of Cupronickel B10 in Simulated Cooling Water

    Institute of Scientific and Technical Information of China (English)

    XU Qunjie; WAN Zongyue; ZHOU Guoding; YIN Renhe; CAO Weimin; LIN Changjian

    2009-01-01

    The corrosion behavior for cupronickel B10 electrode in simulated cooling water has been studied by using cyclic voltammetry, a photocurrent response method and electrochemical impedance spectroscopy (EIS). The cupronickel electrode shows a p-type photoresponse to positive and negative potential scan, which comes from Cu2O layer on its surface, but its Iph.max is less than that in borax buffer solution. The corrosion resisting property of the cupronickel B10 electrode appeared worse with the increase in the concentrations of Cl-, SO2-4 and S2 ions, as well as with increasing pH. The rise in the temperature may result in a photoresponse changes from p-type to n-type, and the corrosion resisting property fell simultaneously. The results of the EIS measurement agree well with those obtained by a photoelectrochemical method.

  19. Effect of Post Heat Treatment on Corrosion Resistance of Phytic Acid Conversion Coated Magnesium

    Institute of Scientific and Technical Information of China (English)

    R.K. Gupta; K. Mensah-Darkwa; D. Kumar

    2013-01-01

    An environment friendly chemical conversion coating for magnesium was obtained by using a phytic acid solution.The effect of post-coating 1heat treatment on the microstructures and corrosion properties of phytic acid conversion coated magnesium was investigated.It was observed that the microstructure and corrosion resistive properties were improved for the heat treated samples.The corrosion current density for bare magnesium,phytic acid conversion coated magnesium,and post-coating heat treated magnesium was calculated to be 2.48 × 10-5,1.18 × 10-6,and 9.27 × 10-7 A/cm2,respectively.The lowest corrosion current density for the heat treated sample indicated its highest corrosion resistive effect for the magnesium.The maximum corrosion protective nature of the heat treated sample was further confirmed by the largest value of impedance in electrochemical impedance spectroscopy studies.

  20. Influence of composition and heat treatments on corrosion resistance of Fe-Co-BSi amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, E.; Antonione, C.; Baricco, M.; Rosalbino, F.; Zucchi, F. (Ist. Elettrotecnico Nazionale Galileo Ferraris, Turin (Italy) Turin Univ. (Italy) Politecnico di Torino (Italy))

    This paper studies the influence of composition and heat treatments on the corrosion resistance, in a solution of Na/sub 2/SO/sub 4/ 0.05M + H/sub 2/SO/sub 4/ 0.05M, at 1.5 pH, of a series of iron base amorphous alloys with increasing cobalt content, i.e., Fe/sub 80-x/Co/sub x/B/sub 10/Si/sub 10/ with x=0, 30, and 80. The treatments were carried out in an argon atmosphere over increasing time durations: 30, 60, 120, and 240 minutes, and increasing temperatures: 350, 400, 450 and 500 degrees C respectively. It was possible to observe that, independent of heat treatment, the corrosion resistance increased with increasing cobalt concentration. In comparing samples having the same chemical composition, it was noted that their electrochemical behaviour worsened with increasing temperature and time.

  1. Advanced Corrosion-Resistant Zr Alloys for High Burnup and Generation IV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Arthur Motta; Yong Hwan Jeong; R.J. Comstock; G.S. Was; Y.S. Kim

    2006-10-31

    The objective of this collaboration between four institutions in the US and Korea is to demonstrate a technical basis for the improvement of the corrosion resistance of zirconium-based alloys in more extreme operating environments (such as those present in severe fuel duty,cycles (high burnup, boiling, aggressive chemistry) andto investigate the feasibility (from the point of view of corrosion rate) of using advanced zirconium-based alloys in a supercritical water environment.

  2. Improving Corrosion Resistance and Biocompatibility of Magnesium Alloy by Sodium Hydroxide and Hydrofluoric Acid Treatments

    Directory of Open Access Journals (Sweden)

    Chang-Jiang Pan

    2016-12-01

    Full Text Available Owing to excellent mechanical property and biodegradation, magnesium-based alloys have been widely investigated for temporary implants such as cardiovascular stent and bone graft; however, the fast biodegradation in physiological environment and the limited surface biocompatibility hinder their clinical applications. In the present study, magnesium alloy was treated by sodium hydroxide (NaOH and hydrogen fluoride (HF solutions, respectively, to produce the chemical conversion layers with the aim of improving the corrosion resistance and biocompatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR and X-ray photoelectron spectroscopy (XPS indicated that the chemical conversion layers of magnesium hydroxide or magnesium fluoride were obtained successfully. Sodium hydroxide treatment can significantly enhance the surface hydrophilicity while hydrogen fluoride treatment improved the surface hydrophobicity. Both the chemical conversion layers can obviously improve the corrosion resistance of the pristine magnesium alloy. Due to the hydrophobicity of magnesium fluoride, HF-treated magnesium alloy showed the relative better corrosion resistance than that of NaOH-treated substrate. According to the results of hemolysis assay and platelet adhesion, the chemical surface modified samples exhibited improved blood compatibility as compared to the pristine magnesium alloy. Furthermore, the chemical surface modified samples improved cytocompatibility to endothelial cells, the cells had better cell adhesion and proliferative profiles on the modified surfaces. Due to the excellent hydrophilicity, the NaOH-treated substrate displayed better blood compatibility and cytocompatibility to endothelial cells than that of HF-treated sample. It was considered that the method of the present study can be used for the surface modification of the magnesium alloy to enhance the corrosion resistance and biocompatibility.

  3. Mechanical properties and corrosion resistance of some titanium alloys in marine environment

    Directory of Open Access Journals (Sweden)

    Dupuis Jennifer

    2013-11-01

    Full Text Available Titanium alloys are used in several fields such as aerospace industry or biomedical. They are increasingly used in marine applications, a highly corrosive environment. We chose titanium alloys for their good properties such as high mechanical strength, low density and excellent corrosion resistance. This study is focused on titanium alloys potentially interesting to be used in marine transports, and mainly for the boats fittings such as a winch for example.

  4. Corrosion resistant three-dimensional nanotextured silicon for water photo-oxidation

    Science.gov (United States)

    Carter, Rachel; Chatterjee, Shahana; Gordon, Evan; Share, Keith; Erwin, William R.; Cohn, Adam P.; Bardhan, Rizia; Pint, Cary L.

    2015-10-01

    We demonstrate the ability to chemically transform bulk silicon into a nanotextured surface that exhibits excellent electrochemical stability in aqueous conditions for water photo-oxidation. Conformal defective graphene coatings on nanotextured silicon formed by thermal treatment enable over 50× corrosion resistance in aqueous electrolytes based upon Tafel analysis and impedance spectroscopy. This enables nanotextured silicon as an effective oxygen-evolution photoanode for water splitting with saturation current density measured near 35 mA cm-2 under 100 mW cm-2 (1 sun) illumination. Our approach builds upon simple and scalable processing techniques with silicon to develop corrosion resistant electrodes that can benefit a broad range of catalytic and photocatalytic applications.We demonstrate the ability to chemically transform bulk silicon into a nanotextured surface that exhibits excellent electrochemical stability in aqueous conditions for water photo-oxidation. Conformal defective graphene coatings on nanotextured silicon formed by thermal treatment enable over 50× corrosion resistance in aqueous electrolytes based upon Tafel analysis and impedance spectroscopy. This enables nanotextured silicon as an effective oxygen-evolution photoanode for water splitting with saturation current density measured near 35 mA cm-2 under 100 mW cm-2 (1 sun) illumination. Our approach builds upon simple and scalable processing techniques with silicon to develop corrosion resistant electrodes that can benefit a broad range of catalytic and photocatalytic applications. Electronic supplementary information (ESI) available: (i) Experimental details, (ii) Nyquist plot from EIS data, (iii) FTIR of H-terminated silicon, (iv) reflectance measurements to quantify light trapping in nanotextured silicon, (v) LSV from Tafel analysis, and (vi) J-V curves for H-terminated flat samples, (vii) stability test of photoanode, and (viii) forward and reverse scans for each sample type. See DOI: 10

  5. Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cockeram, B.V.

    1999-11-01

    Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing alloys in the as-deposited condition have acceptable corrosion resistance when the chromium to carbon ratio is greater than 4. Tristelle 5183, with a high niobium (stabilizer) content, did not follow this trend due to precipitation of niobium-rich carbides instead of chromium-rich carbides. This result indicates that iron-base hardfacing alloys containing high stabilizer contents may possess good corrosion resistance with Cr:C < 4. NOREM 02, NOREM 01, and NoCo-M2 hardfacing alloys had acceptable corrosion resistance in the as-deposited and 885 C/4 hour heat treated condition, but rusting from sensitization was observed in the 621 C/6 hour heat treated condition. The feasibility of using an Electrochemical Potentiokinetic Reactivation (EPR) test method, such as used for stainless steel, to detect sensitization in iron-base hardfacing alloys was evaluated. A single loop-EPR method was found to provide a more consistent measurement of sensitization than a double loop-EPR method. The high carbon content that is needed for a wear resistant hardfacing alloy produces a high volume fraction of chromium-rich carbides that are attacked during EPR testing. This results in inherently lower sensitivity for detection of a sensitized iron-base hardfacing alloy than stainless steel using conventional EPR test methods.

  6. Influence of casting procedures on the corrosion resistance of clinical dental alloys containing palladium.

    Science.gov (United States)

    Viennot, Stéphane; Lissac, Michèle; Malquarti, Guillaume; Dalard, Francis; Grosgogeat, Brigitte

    2006-05-01

    The aim of this study was to compare the in vitro corrosion resistance in artificial saliva of two palladium-silver alloys (a Pd-Ag (Pors on 4) and an Ag-Pd (Palliag LTG)), with and without casting defects; 1 nickel-chrome alloy and 1 high-gold alloy, cast under recommended conditions, served as controls. For each of the palladium-based alloys, three specimens corresponding to three different casting conditions were used: under recommended conditions, with the use of a graphite-containing investment and crucible, and by reusing the sprues and sprue button. The electrochemical tests were run in Fusayama-Meyer artificial saliva. The open-circuit potential was recorded in mV/SCE at t=24h. Then, potentiodynamic polarization was performed to measure the polarization resistance (R(p)) in kOmega cm(2) and the corrosion current (i(corr)) in microA cm(-2). Data were evaluated with one-way analysis of variance and multiple comparisons test (alpha=0.05). In addition, each specimen was examined by scanning electron microscopy. Compared to the control alloys, the electrochemical experiments in artificial saliva indicated satisfactory corrosion resistance for the Pd-Ag and Ag-Pd alloys; these results are related to their high noble metal content and stable substructure. The Pd-Ag alloy displayed superior electrochemical properties to those of the Ag-Pd alloy regardless of the casting condition. The use of the graphite-containing crucible and investment during the cast process did not dramatically reduce the corrosion resistance values, but the reuse of sprues and the sprue button did. The optimal corrosion resistance values were obtained for the alloys cast according to the recommended conditions.

  7. The corrosion resistance of zinc coatings in the presence of boron-doped detonation nanodiamonds (DND)

    Science.gov (United States)

    Burkat, G. K.; Alexandrova, G. S.; Dolmatov, V. Yu; Osmanova, E. D.; Myllymäki, V.; Vehanen, A.

    2017-02-01

    The effect of detonation nanodiamonds, doped with boron (boron-DND) in detonation synthesis on the process of zinc electrochemical deposition from zincate electrolyte is investigated. It is shown that the scattering power (coating uniformity) increases 2-4 times (depending on the concentration of DND-boron electrolyte conductivity does not change, the corrosion resistance of Zn- DND -boron coating increases 2.6 times in 3% NaCl solution (corrosion currents) and 3 times in the climatic chamber.

  8. Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC

    Science.gov (United States)

    Zhang, Zhe; Yu, Ting; Kovacevic, Radovan

    2017-07-01

    Metal Matrix Composites (MMC) fabricated by the laser cladding process have been widely applied as protective coatings in industries to improve the wear, erosion, and corrosion resistance of components and prolong their service life. In this study, the AISI 420/VC metal matrix composites with different weight percentage (0 wt.%-40 wt.%) of Vanadium Carbide (VC) were fabricated on a mild steel A36 by a high power direct diode laser. An induction heater was used to preheat the substrate in order to avoid cracks during the cladding process. The effect of carbide content on the microstructure, elements distribution, phases, and microhardness was investigated in detail. The erosion resistance of the coatings was tested by using the abrasive waterjet (AWJ) cutting machine. The corrosion resistance of the coatings was studied utilizing potentiodynamic polarization. The results showed that the surface roughness and crack susceptibility of the laser cladded layer were increased with the increase in VC fraction. The volume fraction of the precipitated carbides was increased with the increase in the VC content. The phases of the coating without VC consisted of martensite and austenite. New phases such as precipitated VC, V8C7, M7C3, and M23C6 were formed when the primary VC was added. The microhardness of the clads was increased with the increase in VC. The erosion resistance of the cladded layer was improved after the introduction of VC. The erosion resistance was increased with the increase in the VC content. No obvious improvement of erosion resistance was observed when the VC fraction was above 30 wt.%. The corrosion resistance of the clads was decreased with the increase in the VC content, demonstrating the negative effect of VC on the corrosion resistance of AISI 420 stainless steel

  9. Corrosion resistance of titanium-containing dental orthodontic wires in fluoride-containing artificial saliva

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.-H. [Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Wang, C.-C. [Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan County 736, Taiwan (China); Huang, T.-K. [College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, L.-K. [Department of Dentistry, Taipei City Hospital, Taipei 115, Taiwan (China); Chou, M.-Y. [Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Huang, H.-H., E-mail: hhhuang@ym.edu.t [Department of Dentistry, Taipei City Hospital, Taipei 115, Taiwan (China); Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China)

    2009-11-20

    This study was to investigate the corrosion resistance of different Ti-containing dental orthodontic wires (including Ni-Ti, Ni-Ti-Cu, Ti-Mo-Zr-Sn, and Ti-Nb alloys) in acidic fluoride-containing artificial saliva using cyclic potentiodynamic polarization curve measurements. Different NaF concentrations (0%, 0.2%, and 0.5%), simulating the fluoride contents in commercial toothpastes, were added to the artificial saliva. Surface characterization was analyzed using X-ray photoelectron spectrometry. Cyclic potentiodynamic polarization curves showed that the presence of fluoride ions, especially 0.5% NaF, was detrimental to the protective ability of the TiO{sub 2}-based film on the Ti-containing wires. This might lead to a decrease in the corrosion resistance of the tested alloys, i.e. an increase in the corrosion rate and anodic current density and a decrease in the passive film breakdown potential. Among the tested Ti-containing wires, the Ni-Ti and Ni-Ti-Cu wires containing mainly TiO{sub 2} on surface film were more susceptible to fluoride-enhanced corrosion, while the Ti-Mo-Zr-Sn and Ti-Nb wires containing MoO{sub 3}/ZrO{sub 2}/SnO and Nb{sub 2}O{sub 5}, respectively, along with TiO{sub 2} on surface film were pitting corrosion resistant and showed a lower susceptibility to fluoride-enhanced corrosion. The difference in corrosion resistance of the tested commercial Ti-containing dental orthodontic wires was significantly dependent on the passive film characteristics on wires' surface.

  10. Corrosion Resistance of High Strength Concrete Containing Palm Oil Fuel Ash as Partial Cement Replacement

    OpenAIRE

    F. Mat Yahaya; Muthusamy, K.; Sulaiman, N.

    2014-01-01

    This experimental work investigates the influence of POFA as partial cement replacement towards corrosion resistance of high strength concrete. Plain high strength concrete (P0) with 100% ordinary Portland cement (control specimen) and POFA high strength concrete containing POFA as partial cement replacement material were used. At the first stage, mix with 20% POFA (P20) has been identified as the best performing mix after cubes (150×150×150 mm) containing various content of POFA as partial c...

  11. Effect of Deleterious Phases on Corrosion Resistance of Duplex Stainless Steel (2205

    Directory of Open Access Journals (Sweden)

    AbdulKadar M. Godil

    2013-07-01

    Full Text Available Duplex stainless steel is a Ferritic(BCC-Austenitic(FCC steel, covers the advantages of both Austenitic and Ferritic Stainless steels. They having good mechanical and corrosion resistance properties are widely used in many industries like chemical plants, refineries for critical equipments such as pressure vessels, heatexchangers, water heaters. Major problem occurs with duplex steels when they are worked or heated above about temperature of 280°C. Detrimental phases like Sigma, Chi, Laves and Alpha prime form when the Duplex steels are treated above this temperature and they retard the properties of Duplex stainless steels. They also cause embrittlement above temperature of 475°C called “475°C embrittlement”. During welding of duplex steels, Secondary austenite also forms, which is also one of the harmful phases in duplex steels. Among all of these phases, Sigma (σ is extremely harmful to the corrosion resistance of steel. Due to these limitations duplexgrades are not used above certain temperature ranges. In this experimental work a plate of duplex grade 2205 in hot worked condition was procured from TCR Advanced Engineering Pvt. Ltd., GIDC, Vadodara. Initially chemical composition of the plate was checked with emission spectrometer, tensile test and hardness tests werecarried out for comparing with the standard data. As there was no Sigma phase detected when tested with ASTM 930 in the received sample, Sigma phase was intentionally produced by giving heat treatment in the range of 700-850°C. Sigma phases were quantified with ASTM 930 practice A, by electrolytic etching with 40% NaOH. The effect of Sigma phase on corrosion resistance was measured by ASTM G48. The pitting corrosion resistance was evaluated in terms of average pit depth and overall corrosion rate.

  12. Effect of calcium-ion implantation on the corrosion resistance and biocompatibility of titanium.

    Science.gov (United States)

    Krupa, D; Baszkiewicz, J; Kozubowski, J A; Barcz, A; Sobczak, J W; Bilińiski, A; Lewandowska-Szumieł, M D; Rajchel, B

    2001-08-01

    This work presents data on the structure and corrosion resistance of titanium after calcium-ion implantation with a dose of 10(17) Ca+/cm2. The ion energy was 25 keV. Transmission electron microscopy was used to investigate the microstructure of the implanted layer. The chemical composition of the surface layer was examined by XPS and SIMS. The corrosion resistance was examined by electrochemical methods in a simulated body fluid (SBF) at a temperature of 37 degrees C. Biocompatibility tests in vitro were performed in a culture of human derived bone cells (HDBC) in direct contact with the materials tested. Both, the viability of the cells determined by an XTT assay and activity of the cells evaluated by alkaline phosphatase activity measurements in contact with implanted and non-implanted titanium samples were detected. The morphology of the cells spread on the surface of the materials examined was also observed. The results confirmed the biocompatibility of both calcium-ion-implanted and non-implanted titanium under the conditions of the experiment. As shown by TEM results, the surface layer formed during calcium-ion implantation was amorphous. The results of electrochemical examinations indicate that calcium-ion implantation increases the corrosion resistance, but only under stationary conditions; during anodic polarization the calcium-ion-implanted samples undergo pitting corrosion. The breakdown potential is high (2.7-3 V).

  13. High corrosion resistance of austenitic stainless steel alloyed with nitrogen in an acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Metikos-Hukovic, M., E-mail: mmetik@fkit.h [Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Savska 16, P.O. Box 177, 100000 Zagreb (Croatia); Babic, R. [Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Savska 16, P.O. Box 177, 100000 Zagreb (Croatia); Grubac, Z. [Department of General and Inorganic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split (Croatia); Petrovic, Z. [Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Savska 16, P.O. Box 177, 100000 Zagreb (Croatia); Lajci, N. [Faculty of Mine and Metallurgy, University of Prishtina, 10000 Prishtina, Kosovo (Country Unknown)

    2011-06-15

    Highlights: {yields} ASS alloyed with nitrogen treated at 1150 {sup o}C exhibits microstructure homogeneity. {yields} Passivation peak of ASS corresponds to oxidation of metal and absorbed hydrogen. {yields} Transfer phenomena and conductivity depend on the film formation potential. {yields} Electronic structure of the passive film and its corrosion resistance correlate well. {yields} Passive film on ASS with nitrogen is low disordered and high corrosion resistant. - Abstract: Passivity of austenitic stainless steel containing nitrogen (ASS N25) was investigated in comparison with AISI 316L in deareated acid solution, pH 0.4. A peculiar nature of the passivation peak in a potentiodynamic curve and the kinetic parameters of formation and growth of the oxide film have been discussed. The electronic-semiconducting properties of the passive films have been correlated with their corrosion resistance. Alloying austenitic stainless steel with nitrogen increases its microstructure homogeneity and decreases the concentration of charge carriers, which beneficially affects the protecting and electronic properties of the passive oxide film.

  14. In vitro corrosion resistance of Lotus-type porous Ni-free stainless steels.

    Science.gov (United States)

    Alvarez, Kelly; Hyun, Soong-Keun; Fujimoto, Shinji; Nakajima, Hideo

    2008-11-01

    The corrosion behavior of three kinds of austenitic high nitrogen Lotus-type porous Ni-free stainless steels was examined in acellular simulated body fluid solutions and compared with type AISI 316L stainless steel. The corrosion resistance was evaluated by electrochemical techniques, the analysis of released metal ions was performed by inductively coupled plasma mass spectrometry (ICP-MS) and the cytotoxicity was investigated in a culture of murine osteoblasts cells. Total immunity to localized corrosion in simulated body fluid (SBF) solutions was exhibited by Lotus-type porous Ni-free stainless steels, while Lotus-type porous AISI 316L showed very low pitting corrosion resistance evidenced by pitting corrosion at a very low breakdown potential. Additionally, Lotus-type porous Ni-free stainless steels showed a quite low metal ion release in SBF solutions. Furthermore, cell culture studies showed that the fabricated materials were non-cytotoxic to mouse osteoblasts cell line. On the basis of these results, it can be concluded that the investigated alloys are biocompatible and corrosion resistant and a promising material for biomedical applications.

  15. Corrosion resistance and calcium–phosphorus precipitation of micro-arc oxidized magnesium for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lichen; Cui, Chunxiang, E-mail: hutcui@hebut.edu.cn; Wang, Xin; Liu, Shuangjin; Bu, Shaojing; Wang, Qingzhou; Qi, Yumin

    2015-03-01

    Highlights: • Hydroxyapatite (HA) powders were added to the electrolyte. • The HA powders have participated in the formation reactions of MAO coating. • The growth efficiency of MAO coating was greatly enhanced owing to the HA addition. • The specimen anodized in the HA-containing electrolyte has a better corrosion resistance. • The specimen anodized in the HA-containing electrolyte can more efficiently induce Ca–P precipitation. - Abstract: To improve the corrosion resistance of magnesium, micro-arc oxidation (MAO) coatings were prepared on magnesium substrates in an aqueous solution with and without hydroxyapatite (HA) powders addition. The micrographs of scanning electron microscopy (SEM), the energy dispersive spectrometer (EDS) spectra, and X-ray diffraction (XRD) analysis show that the HA powders added into the electrolyte have participated in the formation reactions of MAO coating and the growth efficiency of MAO coating is greatly enhanced. Potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) confirm that the specimen anodized in the HA-containing electrolyte has a better corrosion resistance than the specimen anodized in the HA-free electrolyte. Immersion tests also indicate that the specimen anodized in the HA-containing electrolyte can more efficiently induce Ca–P precipitation compared with the specimen anodized in the HA-free electrolyte.

  16. Albumin coatings by alternating current electrophoretic deposition for improving corrosion resistance and bioactivity of titanium implants.

    Science.gov (United States)

    Höhn, Sarah; Braem, Annabel; Neirinck, Bram; Virtanen, Sannakaisa

    2017-04-01

    Although Ti alloys are generally regarded to be highly corrosion resistant, inflammatory conditions following surgery can instigate breakdown of the TiO2 passivation layer leading to an increased metal ion release. Furthermore proteins present in the surrounding tissue will readily adsorb on a titanium surface after implantation. In this paper alternating current electrophoretic deposition (AC-EPD) of bovine serum albumin (BSA) on Ti6Al4V was investigated in order to increase the corrosion resistance and control the protein adsorption capability of the implant surface. The Ti6Al4V surface was characterized with SEM, XPS and ToF-SIMS after long-term immersion tests under physiological conditions and simulated inflammatory conditions either in Dulbecco's Modified Eagle Medium (DMEM) or DMEM supplemented with fetal calf serum (FCS). The analysis showed an increased adsorption of amino acids and proteins from the different immersion solutions. The BSA coating was shown to prevent selective dissolution of the vanadium (V) rich β-phase, thus effectively limiting metal ion release to the environment. Electrochemical impedance spectroscopy measurements confirmed an increase of the corrosion resistance for BSA coated surfaces as a function of immersion time due to the time-dependent adsorption of the different amino acids (from DMEM) and proteins (from FCS) as observed by ToF-SIMS analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of organic additives on the corrosion resistance properties of electroless nickel deposits

    Energy Technology Data Exchange (ETDEWEB)

    Liu Haiping [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Li Ning [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: lininghit@163.com; Bi Sifu; Li Deyu; Zou Zhongli [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2008-02-29

    The effects of two organic additives, 3-S isothiuronium propyl sulfonate (UPS) and thiourea (TU) on the properties of electroless nickel (EN) deposit were investigated. The properties of EN deposits were examined by electrochemical impedance spectroscopy (EIS) and nitric acid corrosion test in combination with scanning electron microscope, X-ray fluorescence spectrometer, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy analysis. The results show that TU and UPS had different influences on the morphology of EN deposits. The two additives decreased phosphorus content and increased sulfur content in the EN deposit. XRD studies indicated that addition TU or UPS could enhance the crystallization of EN deposits. EIS studies demonstrated that the EN coating with TU or UPS has a lower corrosion resistance. However, the nitric acid test indicated that the corrosion resistance of EN deposit could be improved by adding UPS to EN bath. A cause for understanding the increase of the nitric acid corrosion resistance with UPS was indicated based on the above experiments.

  18. Corrosion resistance of benzotriazole passivated Cu-Zn-Al shape memory alloy in artificial Ringer's solution

    Institute of Scientific and Technical Information of China (English)

    LIANG Chenghao; CHEN Bangyi; CHEN Wan; WANG Hua

    2005-01-01

    The corrosion resistance of the Cu-Zn-Al shape memory alloy passivated by benzotriazole was investigated by salt spraying test and electrochemical methods in artificial Ringer's solution. The results showed that after benzotriazole passivation, the corrosion resistance of the Cu-Zn-Al shape memory alloy was improved evidently. The anodic polarization current density of the passivated alloy decreased, the mass loss reduced, the anodic passivation accelerated, the anodic active dissolution was inhibited effectively, and the surface tarnishing was restrained. Infrared reflection spectrum test showed that Cu(Ⅰ)-benzoaiazole or Cu(Ⅱ)-benzotriazole complex layer was formed on the surface of the Cu-Zn-Al shape memory alloy after passivation. This layer appeared plane, well adhesion, and presented homogeneous golden metallic luster. The corrosion resistance of the Cu-Zn-Al shape memory alloy passivated by benzotriazole is improved for the formation of an electrochemical stable baffle layer on passivated surface. This layer separates the metal substrate from the outside corrosion medium effectively and retards the corrosion process of dezincification.

  19. Correlation Between Microstructure and Corrosion Resistance of Magnesium Alloys Prepared by High Strain Rate Rolling

    Science.gov (United States)

    Chen, Jihua; Chen, Guanqing; Yan, Hongge; Su, Bin; Gong, Xiaole; Zhou, Bo

    2017-09-01

    Microstructure and corrosion resistance in Hank's solution of four magnesium alloys (pure Mg, ZK60, Mg-4Zn and Mg-4Zn-0.3Ca) prepared by high strain rate rolling (HSRR) and conventional rolling (CR) are comparatively investigated. The HSRR alloy exhibits better bio-corrosion resistance than the CR alloy. The HSRR ZK60 alloy has finer grains, higher dynamic recrystallization (DRX) extent, lower twin fraction, coarser residual second-phase particles, finer and denser nanometer β 1 precipitates, lower residual compressive stress and stronger basal texture than the CR alloy. The average corrosion rate of the HSRR ZK60 sheet after 90-day immersion in Hank's solution is 0.17 mg cm-2 d-1, about 19% lower than that of the CR sheet. Its corrosion current density is 30.9 μA/cm2, about 45% lower than that of the CR sheet. Bio-corrosion resistance enhancement by HSRR can be mainly ascribe to the reduced grain size, the relatively adequate DRX, non-twinning, the coarser residual second-phase particles, the finer and denser nanometer precipitates and the slightly stronger (0001) texture.

  20. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo [School of Mechanical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Dong Rip, E-mail: dongrip@hanyang.ac.kr [School of Mechanical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-06-15

    Graphical abstract: - Highlights: • Cerium oxide nanorods were uniformly grown on diverse substrates. • Changes in growth conditions led to morphology evolution of cerium oxide nanostructures. • The grown cerium oxide nanostructures were single or poly crystalline. • Direct growth of cerium oxide nanorods made the diverse substrates superhydrophobic and anti-corrosive without any surface modifiers. - Abstract: Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  1. Superhydrophobic surface fabricated on iron substrate by black chromium electrodeposition and its corrosion resistance property

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Feng, Haitao [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Lin, Feng [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Yabin [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Wang, Liping [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Dong, Yaping [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Li, Wu, E-mail: liwu2016@126.com [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China)

    2016-08-15

    Highlights: • Superhydrophobic surface was fabricated by black chromium electrodeposition and stearic acid modification. • The reaction process is simple, and of low cost, and no special instrument or environment is needed. • The obtained superhydrophobic surface presents good water repellency, and performs well at corrosion resistance. - Abstract: The fabrication of superhydrophobic surface on iron substrate is carried out through 20 min black chromium electrodeposition, followed by immersing in 0.05 M ethanolic stearic acid solution for 12 h. The resultant superhydrophobic complex film is characterized by scanning electron microscope (SEM), disperse Spectrometer (EDS), atomic force microscope (AFM), water contact angle (CA), sliding angle (SA) and X-ray photoelectron spectroscope (XPS), and its corrosion resistance property is measured with cyclic voltammetry (CV), linear polarization and electrochemical impedance spectroscopy (EIS). The results show that the fabricated superhydrophobic film has excellent water repellency (CA, 158.8°; SA, 2.1°) and significantly high corrosion resistance (1.31 × 10{sup 6} Ω cm{sup −2}) and excellent corrosion protection efficiency (99.94%).

  2. Nano Structured Plasma Spray Coating for Wear and High Temperature Corrosion Resistance Applications

    Science.gov (United States)

    Ghosh, D.; Shukla, A. K.; Roy, H.

    2014-04-01

    The nano structured coating is a major challenge today to improve the different mechanical properties, wear and high temperature corrosion resistance behaviour of different industrial alloys. This paper is a review on synthesis of nano powder, plasma spraying methods, techniques of nano structured coating by plasma spray method, mechanical properties, tribological properties and high temperature corrosion behaviour of nano structured coating. Nano structured coatings of ceramic powders/composites are being developed for wide variety of applications like boiler, turbine and aerospace industries, which requires the resistance against wear, corrosion, erosion etc. The nano sized powders are subjected to agglomeration by spray drying, after which nano structured coating can be successfully applied over the substrate. Nano structured coating shows improved mechanical wear resistance and high temperature corrosion resistance. The significant improvement of wear and corrosion resistance is mainly attributed to formation of semi molten nano zones in case of nano structured coatings. The future scope of application of nano structured coating has also been highlighted in this paper.

  3. Microstructure and Corrosion Resistance of Electrodeposited Ni-Cu-Mo Alloy Coatings

    Science.gov (United States)

    Meng, Xinjing; Shi, Xi; Zhong, Qingdong; Shu, Mingyong; Xu, Guanquan

    2016-09-01

    This paper deals with the electrodeposition of Ni-Cu-Mo ternary alloy coatings on low-carbon steel substrate from an aqueous citrate sulfate bath. The structures and microstructure of coatings were characterized by scanning electron microscopy and x-ray diffractometry. The corrosion resistance of coatings was investigated by potentiodynamic polarization (Tafel) and electrochemical impedance spectroscopy techniques. The results show that the Ni-Cu-Mo coatings are mainly composed of fcc-Ni phase and a small amount of NiCu phase. Ni-Cu-Mo coatings exhibit a nodular surface morphology, and the roughness of electroplated coating increases with the increasing of Na2MoO4·2H2O in the bath. The corrosion performance of the coatings is significantly affected by the Mo content of the alloy coating and their surface morphology. The coating prepared in bath containing 40 g/L Na2MoO4·2H2O has the highest corrosion resistance in 3.5 wt.% NaCl solution, while that prepared in bath containing 60 g/L (or more) Na2MoO4·2H2O shows a lower corrosion resistance due to the presence of microcracks on the coating surface.

  4. Effect of calcium and phosphorus ion implantation on the corrosion resistance and biocompatibility of titanium.

    Science.gov (United States)

    Krupa, D; Baszkiewicz, J; Kozubowski, J A; Lewandowska-Szumieł, M; Barcz, A; Sobczak, J W; Biliński, A; Rajchel, A

    2004-01-01

    This paper is concerned with the corrosion resistance and biocompatibility of titanium after surface modification by the ion implantation of calcium or phosphorus or calcium + phosphorus. Calcium and phosphorus ions were implanted in a dose of 10(17) ions/cm(2). The ion beam energy was 25 keV. The microstructure of the implanted layers was examined by TEM. The chemical composition of the surface layers was determined by XPS and SIMS. The corrosion resistance was examined by electrochemical methods in a simulated body fluid (SBF) at a temperature of 37 degrees C. The biocompatibility was evaluated in vitro. As shown by TEM results, the surface layers formed during calcium, phosphorus and calcium + phosphorus implantation were amorphous. The results of the electrochemical examinations (Stern's method) indicate that the calcium, phosphorus and calcium + phosphorus implantation into the surface of titanium increases its corrosion resistance in stationary conditions after short- and long-term exposures in SBF. Potentiodynamic tests show that the calcium-implanted samples undergo pitting corrosion during anodic polarisation. The breakdown potentials measured are high (2.5 to 3 V). The good biocompatibility of all the investigated materials was confirmed under the specific conditions of the applied examination, although, in the case of calcium implanted titanium it was not as good as that of non-implanted titanium.

  5. Effect of phosphorus-ion implantation on the corrosion resistance and biocompatibility of titanium.

    Science.gov (United States)

    Krupa, D; Baszkiewicz, J; Kozubowski, J A; Barcz, A; Sobczak, J W; Biliński, A; Lewandowska-Szumieł, M; Rajchel, B

    2002-08-01

    This work presents data on the structure and corrosion resistance of titanium after phosphorus-ion implantation with a dose of 10(17)P/cm2. The ion energy was 25keV. Transmission electron microscopy was used to investigate the microstructure of the implanted layer. The chemical composition of the surface layer was examined by X-ray photoelectron spectroscopy and secondary ion mass spectrometry. The corrosion resistance was examined by electrochemical methods in a simulated body fluid at a temperature of 37 C. Biocompatibility tests in vitro were performed in a culture of human derived bone cells in direct contact with the materials tested. Both, the viability of the cells determined by an XTT assay and activity of the cells evaluated by alkaline phosphatase activity measurements in contact with implanted and non-implanted titanium samples were detected. The morphology of the cells spread on the surface of the materials examined was also observed. The results confirmed the biocompatibility of both phosphorus-ion-implanted and non-implanted titanium under the conditions of the experiment. As shown by transmission electron microscope results, the surface layer formed during phosphorus-ion implantation was amorphous. The results of electrochemical examinations indicate that phosphorus-ion implantation increases the corrosion resistance after short-term as well as long-term exposures.

  6. Preparation of novel functional Mg/O/PCL/ZnO composite biomaterials and their corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Zhongxian; Tan, Cui; Xu, Lan; Yang, Na; Li, Qing, E-mail: liqingdswu@163.com

    2015-10-01

    Highlights: • Novel functional Mg/O/PCL/ZnO composite biomaterials were prepared. • The biomaterials were prepared by anodization treatment and dip-coating technique. • The composite biomaterials were smooth and with low porosity. • The prepared biomaterials have good corrosion resistance in SBF. • The composite biomaterials can release zinc ion to promote bone formation. - Abstract: In this study, novel and functional Mg/O/PCL/ZnO (magnesium/anodic film/poly(ε-caprolactone)/zinc oxide) composite biomaterials for enhancing the bioactivity and biocompatibility of the implant was prepared by using anodization treatment and dip-coating technique. The surface morphology, microstructure, adhesion strength and corrosion resistance of the composite biomaterials were investigated using scanning electron microscopy (SEM), adhesion measurements, electrochemical tests and immersion tests respectively. In addition, the biocompatible properties of Mg (magnesium), Mg/PCL (magnesium/poly(ε-caprolactone)) and Mg/O/PCL (magnesium/anodic film/poly(ε-caprolactone)) samples were also investigated. The results show that the Mg/O/PCL/ZnO composite biomaterials were with low porosity and with the ZnO powders dispersed in PCL uniformly. The adhesion tests suggested that Mg/O/PCL/ZnO composite biomaterials had better adhesion strength than that of Mg/PCL composite biomaterials obviously. Besides, an in vitro test for corrosion demonstrated that the Mg/O/PCL/ZnO composite biomaterials had good corrosion resistance and zinc ion was released obviously in SBF.

  7. Hydroxyapatite/poly(epsilon-caprolactone) double coating on magnesium for enhanced corrosion resistance and coating flexibility.

    Science.gov (United States)

    Jo, Ji-Hoon; Li, Yuanlong; Kim, Sae-Mi; Kim, Hyoun-Ee; Koh, Young-Hag

    2013-11-01

    Hydroxyapatite was deposited on pure magnesium (Mg) with a flexible poly(ε-caprolactone) interlayer to reduce the corrosion rate of Mg and enhance coating flexibility. The poly(ε-caprolactone) interlayer was uniformly coated on Mg by a spraying method, followed by hydroxyapatite deposition on the poly(ε-caprolactone) using an aerosol deposition method. In scanning electron microscopy observations, inorganic/organic composite-like structure was observed between the hydroxyapatite and poly(ε-caprolactone) layers, resulting from the collisions of hydroxyapatite particles into the poly(ε-caprolactone) matrix at the initial stage of the aerosol deposition. The corrosion resistance of the coated Mg was examined using potentiodynamic polarization tests. The hydroxyapatite/poly(ε-caprolactone) double coating remarkably improved the corrosion resistance of Mg in Hank's solution. In the in vitro cell tests, the coated Mg showed better cell adhesion compared with the bare Mg due to the reduced corrosion rate and enhanced biocompatibility. The stability and flexibility of hydroxyapatite/poly(ε-caprolactone) double coating was investigated by scanning electron microscopy inspections after the coated Mg was deformed. The hydroxyapatite coating on the poly(ε-caprolactone) interlayer revealed enhanced coating stability and flexibility without cracking or delamination during bending and stretching compared with the hydroxyapatite single coating. These results demonstrated that the hydroxyapatite/poly(ε-caprolactone) double coating significantly improved the surface corrosion resistance of Mg and enhanced coating flexibility for use of Mg as a biodegradable implant.

  8. [Corrosion resistance of casted titanium by compound treatments in the artificial saliva with different fluoride concentrations].

    Science.gov (United States)

    Wang, Xian-li; Guo, Tian-wen

    2012-09-01

    To study the corrosion resistance of casted titanium by plasma nitriding and TiN-coated compound treatments in the artificial saliva with different fluoride concentrations and to investigate whether compound treatments can increase the corrosion resistance of casted titanium. Potentiodynamic polarization technique was used to depict polarization curve and to measured the current density of corrosion (Icorr) and the electric potential of corrosion (Ecorr) of casted titanium (Group A) and casted titanium by compound treatments (Group B) in the artificial saliva with different fluoride concentrations. After electrochemical experiment, the microstructure was observed by scanning electron microscope (SEM). The Icorrs of Group A and B in the artificial saliva of different fluoride concentrations were (1530.23 ± 340.12), (2290.36 ± 320.10), (4130.52 ± 230.17) nA and (2.62 ± 0.64), (7.37 ± 3.59), (10.76 ± 6.05) nA, respectively. The Ecorrs were (-0.93 ± 0.10), (-0.89 ± 0.21), (-0.57 ± 0.09) V and (-0.21 ± 0.04), (-0.17 ± 0.03), (-0.22 ± 0.03) V, respectively.The Icorrs of Group B were significantly lower (P plasma nitriding and TiN-coated compound treatments can significantly increase the corrosion resistance of casted titanium.

  9. Electrochemical anodizing treatment to enhance localized corrosion resistance of pure titanium.

    Science.gov (United States)

    Prando, Davide; Brenna, Andrea; Bolzoni, Fabio M; Diamanti, Maria V; Pedeferri, Mariapia; Ormellese, Marco

    2017-01-26

    Titanium has outstanding corrosion resistance due to the thin protective oxide layer that is formed on its surface. Nevertheless, in harsh and severe environments, pure titanium may suffer localized corrosion. In those conditions, costly titanium alloys containing palladium, nickel and molybdenum are used. This purpose investigated how it is possible to control corrosion, at lower cost, by electrochemical surface treatment on pure titanium, increasing the thickness of the natural oxide layer. Anodic oxidation was performed on titanium by immersion in H2SO4 solution and applying voltages ranging from 10 to 80 V. Different anodic current densities were considered. Potentiodynamic tests in chloride- and fluoride-containing solutions were carried out on anodized titanium to determine the pitting potential. All tested anodizing treatments increased corrosion resistance of pure titanium, but never reached the performance of titanium alloys. The best corrosion behavior was obtained on titanium anodized at voltages lower than 40 V at 20 mA/cm2. Titanium samples anodized at low cell voltage were seen to give high corrosion resistance in chloride- and fluoride-containing solutions. Electrolyte bath and anodic current density have little effect on the corrosion behavior.

  10. Effects of aluminum nanocrystals on the corrosion resistance of aluminum-based metallic glasses

    Science.gov (United States)

    Lucente, Ashley Marie

    Aluminum-based metallic glasses possess some remarkable attributes that make them appealing for corrosion prevention applications. For example, Al-based glasses are resistant to pitting corrosion and can function as a corrosion barrier film, a sacrificial anode, and provide active corrosion inhibition by releasing alloying elements as inhibiting ions. While the amorphous structure makes these functions possible by allowing a high alloying element content to be achieved in solid solution, it is also a potential weakness because the amorphous structure is metastable. Partial crystallization occurs over time as nanometer-scale, solute-depleted f.c.c. Al precipitates ("nanocrystals") nucleate and grow within a remaining amorphous matrix. There was once some concern that these nanocrystals may serve as pit initiation sites and degrade the good pitting resistance of an amorphous alloy. Contrary to early predictions, this work shows that several partially nanocrystalline Al-based alloys are as corrosion resistant as fully amorphous alloys of the same bulk composition. This thesis provides an in-depth investigation of several mechanisms that can explain the good corrosion resistance of partially nanocrystalline glasses. The corrosion resistance of the amorphous and partially nanocrystalline glasses was first characterized by examining chloride induced pitting. The results of these experiments guided diagnostic studies of chloride-induced metastable pitting and stable pit growth, alkaline dissolution and passivation behavior, and surface characterization using SEM, TEM, and AFM, all at a sensitivity level tailored to detect nm-scale corrosion processes. These techniques together served as diagnostics to help determine the mechanism by which the corrosion resistance of a partially nanocrystalline Al-based glass may be similar or superior to that of its fully amorphous precursor. The overall conclusion of this dissertation is that Al-based glassy alloys with solute

  11. Enhanced High Temperature Corrosion Resistance in Advanced Fossil Energy Systems by Nano-Passive Layer Formation

    Energy Technology Data Exchange (ETDEWEB)

    Arnold R. Marder

    2007-06-14

    Due to their excellent corrosion resistance, iron aluminum alloys are currently being considered for use as weld claddings in fossil fuel fired power plants. The susceptibility to hydrogen cracking of these alloys at higher aluminum concentrations has highlighted the need for research into the effect of chromium additions on the corrosion resistance of lower aluminum alloys. In the present work, three iron aluminum alloys were exposed to simulated coal combustion environments at 500 C and 700 C for both short (100 hours) and long (5,000 hours) isothermal durations. Scanning electron microscopy was used to analyze the corrosion products. All alloys exhibited excellent corrosion resistance in the short term tests. For longer exposures, increasing the aluminum concentration was beneficial to the corrosion resistance. The addition of chromium to the binary iron aluminum alloy prevented the formation iron sulfide and resulted in lower corrosion kinetics. A classification of the corrosion products that developed on these alloys is presented. Scanning transmission electron microscopy (STEM) of the as-corroded coupons revealed that chromium was able to form chromium sulfides only on the higher aluminum alloy, thereby preventing the formation of deleterious iron sulfides. When the aluminum concentration was too low to permit selective oxidation of only aluminum (upon initial exposure to the corrosion environment), the formation of chromium oxide alongside the aluminum oxide led to depletion of chromium beneath the oxide layer. Upon penetration of sulfur through the oxide into this depletion layer, iron sulfides (rather than chromium sulfides) were found to form on the low aluminum alloy. Thus, it was found in this work that the role of chromium on alloy corrosion resistance was strongly effected by the aluminum concentration of the alloy. STEM analysis also revealed the encapsulation of external iron sulfide products with a thin layer of aluminum oxide, which may provide a

  12. Development of novel protective high temperature coatings on heat exchanger steels and their corrosion resistance in simulated coal firing environment; Developpement de revetements pour les aciers d'echangeurs thermiques et amelioration de leur resistance a la corrosion en environnement simulant les fumees de combustion et de charbon

    Energy Technology Data Exchange (ETDEWEB)

    Rohr, V.

    2005-10-15

    Improving the efficiencies of thermal power plants requires an increase of the operating temperatures and thus of the corrosion resistance of heat exchanger materials. Therefore, the present study aimed at developing protective coatings using the pack cementation process. Two types of heat exchanger steels were investigated: a 17% Cr-13% Ni austenitic steel and three ferritic-martensitic steels with 9 (P91 and P92) and 12% Cr (HCM12A). The austenitic steel was successfully aluminized at 950 C. For the ferritic-martensitic steels, the pack cementation temperature was decreased down to 650 C, in order to maintain their initial microstructure. Two types of aluminides, made of Fe{sub 2}Al{sub 5} and FeAl, were developed. A mechanism of the coating formation at low temperature is proposed. Furthermore, combining the pack cementation with the conventional heat treatment of P91 allowed to take benefit of higher temperatures for the deposition of a two-step Cr+Al coating. The corrosion resistance of coated and uncoated steels is compared in simulated coal firing environment for durations up to 2000 h between 650 and 700 C. It is shown that the coatings offer a significant corrosion protection and, thus, an increase of the component lifetime. Finally, the performance of coated 9-12% Cr steels is no longer limited by corrosion but by interdiffusion between the coating and the substrate. (author)

  13. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    Energy Technology Data Exchange (ETDEWEB)

    Aghion, E., E-mail: egyon@bgu.ac.il; Perez, Y.

    2014-10-15

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments.

  14. Characterisation and corrosion resistance of TiN-Ni nanocomposite coatings using RBS and NRA

    Energy Technology Data Exchange (ETDEWEB)

    Noli, F., E-mail: noli@chem.auth.grl [Department of Chemistry, Aristotle University, GR-54124 Thessaloniki (Greece); Misaelides, P., E-mail: misailid@auth.gr [Department of Chemistry, Aristotle University, GR-54124 Thessaloniki (Greece); Lagoyannis, A., E-mail: lagoya@inp.demokritos.gr [Tandem Accelerator Laboratory, Nuclear Physics Institute, NCSR Demokritos, GR-15310 Aghia Paraskevi, Attiki (Greece); Akbari, A., E-mail: alireza_ak@yahoo.com [Universite de Poitiers, Laboratoire de Physique des Materiaux (PHYMAT), UMR6630-CNRS, 86960 Chasseneuil, Futuroscope Cedex (France)

    2011-12-15

    Nanocomposite TiN-Ni coatings were produced by a duplex treatment on Ti-6Al-4V substrates. The procedure consisted of plasma nitriding of the substrate followed by deposition of a TiN-Ni layer by sputtering a composite Ti-Ni target with 1.2 keV Ar{sup +} ions. The growing film was bombarded during deposition by a mixture of 50 eV Ar{sup +}-N{sup 2+}-N{sup +} ions. The temperature as well as the Ni- and the N-content of the coatings varied in order to obtain the optimum structural and mechanical properties. The surface morphology of the coatings was examined by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The results showed that Ni appears as an amorphous phase around the TiN crystallites. The thickness and the composition of the coatings were investigated by Rutherford Backscattering Spectrometry (RBS) using deuterons as projectiles. The nitrogen depth distribution in the coatings was determined by Nuclear Reaction Analysis (NRA) using {sup 14}N(d, {alpha}) and {sup 14}N(d, p) nuclear reactions. The corrosion resistance of the nitrided and non-nitrided coatings in aggressive environment (NaCl 3% solution at RT) was investigated using electrochemical techniques (potentiodynamic polarisation and cyclic voltammetry). It was found that nanocomposite coatings are stable and do not influence the corrosion resistance of the Ti-alloy substrate. The nitrided coatings exhibited higher wear and corrosion resistance related with their Ni-content.

  15. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings

    Science.gov (United States)

    Jones, John Eric; Chen, Meng; Yu, Qingsong

    2015-01-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20–25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH3/O2 plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O-and N-contents on the surfaces were substantially increased after NH3/O2 plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH3/O2 plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electro-chemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream. PMID:24500866

  16. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dhandapani, Vishnu Shankar [PG & Research Department of Physics, PSG College of Arts & Science, Coimbatore 641 014, Tamil Nadu (India); Center for Nano-Wear, Yonsei University, Seoul 120-749 (Korea, Republic of); Subbiah, Ramesh [Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejon 305-333 (Korea, Republic of); Thangavel, Elangovan [PG & Research Department of Physics, PSG College of Arts & Science, Coimbatore 641 014, Tamil Nadu (India); Center for Nano-Wear, Yonsei University, Seoul 120-749 (Korea, Republic of); Arumugam, Madhankumar [Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Park, Kwideok [Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejon 305-333 (Korea, Republic of); Gasem, Zuhair M. [Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Veeraragavan, Veeravazhuthi, E-mail: vv.vazhuthi@gmail.com [PG & Research Department of Physics, PSG College of Arts & Science, Coimbatore 641 014, Tamil Nadu (India); Kim, Dae-Eun, E-mail: kimde@yonsei.ac.kr [Center for Nano-Wear, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2016-05-15

    Highlights: • a-C:Ti nanocomposite coatings were prepared on 316L stainless steel by using R.F. magnetron sputtering method. • Properties of the nanocomposite coatings were analyzed with respect to titanium content. • Corrosion resistance, biocompatibility and hydrophobicity of nanocomposite coating were enhanced with increasing titanium content. • Coating with 2.33 at.% titanium showed superior tribological properties compared to other coatings. - Abstract: Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp{sup 2} bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  17. CO{sub 2} corrosion resistance of carbon steel in relation with microstructure changes

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa, Nathalie, E-mail: nochoa@usb.ve [Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Aptdo., 89000, Caracas (Venezuela, Bolivarian Republic of); Vega, Carlos [Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Aptdo., 89000, Caracas (Venezuela, Bolivarian Republic of); Pébère, Nadine; Lacaze, Jacques [Université de Toulouse, CIRIMAT, UPS/INPT/CNRS, ENSIACET, 4 Allée Emile Monso, CS 44362, 31030 Toulouse Cedex 4 (France); Brito, Joaquín L. [Laboratorio de Físico-química de Superficies, Centro de Química, Instituto Venezolano de Investigaciones Cientificas (IVIC), Carretera Panamericana, Km 11, Altos de Pipe, Estado Miranda (Venezuela, Bolivarian Republic of)

    2015-04-15

    The microstructural effects on the corrosion resistance of an API 5L X42 carbon steel in 0.5 M NaCl solution saturated with CO{sub 2} was investigated. Four microstructures were considered: banded (B), normalized (N), quenched and tempered (Q&T), and annealed (A). Electrochemical measurements (polarization curves and electrochemical impedance spectroscopy) were coupled with surface analyses (scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS)) to characterize the formation of the corrosion product layers. Electrochemical results revealed that corrosion resistance increased in the following order: B < N < Q&T < A. From the polarization curves it was shown that specifically, cathodic current densities were affected by microstructural changes. SEM images indicated that ferrite dissolved earlier than cementite and a thin layer of corrosion products was deposited on the steel surface. XPS analyses revealed that this layer was composed of a mixture of iron carbonate and non-dissolved cementite. It was also found that the quantity of FeCO{sub 3} content on the steel surface was greater for Q&T and A microstructures. These results, in agreement with the electrochemical data, indicate that the deposition mechanism of iron carbonate is closely related to the morphology of the non-dissolved cementite, determining the protective properties of the corrosion product layers. - Highlights: • The effect of change in microstructure on CO{sub 2} corrosion resistance was evaluated. • An API 5LX 42 carbon steel was immersed in a 0.5 M NaCl solution saturated with CO{sub 2}. • Banded, normalized, quenched-tempered and annealed microstructures were considered. • Electrochemical measurements were coupled with surface analysis. • Morphology and distribution of undissolved Fe{sub 3}C control corrosion kinetics.

  18. Evaluation of corrosion resistance and surface characteristics of orthodontic wires immersed in different mouthwashes.

    Science.gov (United States)

    Nalbantgil, Didem; Ulkur, Feyza; Kardas, Gulfeza; Culha, Mustafa

    2016-11-25

    Patients use mouthwashes in addition to mechanical cleaning during orthodontic treatment. The effects of mouthwashes on the archwires have not been examined yet. To compare the corrosion resistance of four different arch wires and corrosion effects of different mouthwashes to formulate a biocompatible and mechanically useful arch wire and mouthwash combination. Each group comprised of 4 wire samples of 2 cm 0.016 × 0.022 inch. 1st group: ion implanted nickel titanium (INT), 2nd group: nickel titanium, without ion implantation (NT), 3rd group: micro layered esthetic nickel titanium (ENT), 4th group: stainless steel (SS) wires. They were immersed inside 2 ml of artificial saliva solutions (AS) for the control, or AS (9%) combined with 1 of the 3 mouthwashes (91%) for study groups, for 24 hours. These mouthwashes were essential oil (EO), chlorhexidine (CHX), sodium-fluoride (NaF). An electrochemical analyzer was used for electrochemical impedance spectroscopy measurements. High corrosion resistance was obtained for ENT than the other wires. The corrosion potentials are 0.007, -0.042, 0.074 and -0.015 V (Ag/AgCl) for ENT, INT, SS and NT in the artificial salivary, respectively. In NaF containing mouthwash Rp value of ENT is significantly high in comparison to others. The impedance responses of all materials increased significantly in the presence of NaF mouthwash as well as in the CHX mouthwash. Low frequencies are seen at all materials in EO mouthwash. Diameters of loops are 22, 5.9, 5.9 and 3.7 MΩ at ENT, INT, SS and NT. In this study, micro layered esthetic nickel titanium wires are found biocompatible among other wires and NaF and CHX mouthwashes can be recommend for their good corrosion resistance during fixed orthodontic therapy.

  19. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings.

    Science.gov (United States)

    Eric Jones, John; Chen, Meng; Yu, Qingsong

    2014-10-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20-25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH₃/O₂ plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O- and N-contents on the surfaces were substantially increased after NH₃/O₂ plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH₃/O₂ plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream. © 2014 Wiley Periodicals, Inc.

  20. Enhancing surface integrity and corrosion resistance of laser cladded Cr-Ni alloys by hard turning and low plasticity burnishing

    Science.gov (United States)

    Zhang, Peirong; Liu, Zhanqiang

    2017-07-01

    In this research, the enhancements of surface integrity and corrosion resistance of the laser cladded parts by combined hard turning with low plasticity burnishing (LPB) were presented by both potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. The investigated results indicated that the corrosion resistance of the laser cladded parts could be improved by combined hard turning with LPB than by sole hard turning. An innovative model was proposed to explain the corrosion mechanism of the laser cladded parts after hybrid machining. Both surface adsorption and passive film were observed to dominate the corrosion resistance of the hybrid machined Cr-Ni alloys by laser cladding. The surface integrity led to the inhomogeneity of passive film, and then altered the corrosion resistance of the machined samples. In terms of the surface integrity factors, residual compressive stresses and surface finish were found to play more important roles in improving the corrosion resistance than the grain refinement and microhardness of the machined surface layer materials did. Based on the research results, anti-corrosion parts with laser cladded alloys could be fabricated by hybrid machining using the combination of hard turning and LPB.

  1. Corrosion resistance of Ni–Co alloy and Ni–Co/SiC nanocomposite coatings electrodeposited by sediment codeposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Bakhit, Babak, E-mail: b_bakhit@sut.ac.ir [Surface Engineering Group, Advanced Materials Research Center, Faculty of Materials Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz (Iran, Islamic Republic of); Akbari, Alireza; Nasirpouri, Farzad [Surface Engineering Group, Advanced Materials Research Center, Faculty of Materials Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz (Iran, Islamic Republic of); Hosseini, Mir Ghasem [Electrochemistry Research Laboratory, Department of Physical Chemistry, Chemistry Faculty, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2014-07-01

    Corrosion resistance of Ni–Co alloy and Ni–Co/SiC nanocomposite coatings electrodeposited in a modified Watts bath using sediment codeposition (SCD) technique was evaluated by potentiodynamic polarization measurements in the 3.5% NaCl solution and studied as a function of deposition conditions In order to characterize the morphology, chemical and phase compositions of the coatings, scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS) and X-ray diffraction (XRD) were utilized, respectively. It was observed that the cobalt content in the Ni–Co alloy coatings was increased through an anomalous behavior by increasing the cobalt concentration in the electrolyte. The highest percentage of SiC nano-particles (8.1 vol.%) in the Ni–Co/SiC nanocomposite coatings was achieved at 3 A/dm{sup 2} deposition current density and 5 g/l particle concentration. SEM and EDS analysis illustrated that SiC nano-particles were distributed uniformly throughout the nanocomposite coatings. The potentiodynamic polarization tests indicated that the corrosion resistance of the Ni–Co alloy coatings was varied as a function of the cobalt content, and the corrosion resistance of the Ni–Co/SiC nanocomposite coatings was markedly higher than the corrosion resistance of the Ni–Co alloy coatings. Among the studied coatings, Ni–Co/SiC nanocomposite coatings containing 8.1 vol.% SiC nano-particles exhibited the best corrosion resistance.

  2. Corrosion-resistant tube materials for extended life of openings in recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Paul, L.D.; Danielson, M.J.; Harper, S.L. (Babcock and Wilcox Co., Alliance, OH (United States). Research and Development Div.); Barna, J.L. (Babcock and Wilcox Co., Barberton, OH (United States). Fossil Power Div.)

    1993-08-01

    The corrosive conditions causing rapid corrosion of Type 304L stainless steel in tube openings have been duplicated in the laboratory. Alternate materials also have been tested, and some show improved corrosion resistance over Type 304L. Alloy 825 and Alloy 625 composite tubing and Alloy 600 and Alloy 625 weld overlay materials all show promise as a replacement for Type 304L in tube openings. All recovery boilers designed or operated at 8.375 MPa (1,200 psi) and above should consider using these replacement materials for tube openings.

  3. Evaluation of stray current corrosion resistance of concrete in metro construction

    Institute of Scientific and Technical Information of China (English)

    Shucai YANG; Xu YANG

    2008-01-01

    By simulation tests of concrete specimens in saturated Ca(OH)2 solution and seawater, and based on micro mechanism analysis, this paper evaluates the stray current corrosion resistance of concrete specimens of dif-ferent mixture ratios, and reaches a conclusion that the capability to resist stray current corrosion of optimally designed concrete mixed with good-quality fly ash and powdered slag is increased by over 5 times more than the reference concrete with the same water to binder ratio, and the service life of such kind of concrete meets the basic requirement of a metro project.

  4. Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Neil C. (Chicago, IL); Warner, Barry T. (South Holland, IL); Smaga, John A. (Lemont, IL); Battles, James E. (Oak Forest, IL)

    1983-01-01

    The corrosion rate of low carbon steel within a positive electrode of a high-temperature, secondary electrochemical cell that includes FeS as active material is substantially reduced by incorporating therein finely divided iron powder in stoichiometric excess to the amount required to form FeS in the fully charged electrode. The cell typically includes an alkali metal or alkaline earth metal as negative electrode active material and a molten metal halide salt as electrolyte. The excess iron permits use of inexpensive carbon steel alloys that are substantially free of the costly corrosion resistant elements chromium, nickel and molybdenum while avoiding shorten cell life resulting from high corrosion rates.

  5. A STUDY ON THE CORROSION RESISTANCE OF BRONZES COVERED WITH ARTIFICIAL PATINA

    Directory of Open Access Journals (Sweden)

    Julieta Daniela SABĂU (CHELARU

    2011-06-01

    Full Text Available In recent years, due to increased air pollution, bronze objects exposed in urban areas suffer continuous degradation. Therefore, it is important to find efficient methods to protect them against corrosion. The present work aims to investigate the corrosion resistance of various artificial patina currently used in bronze sculpture. Once formed, the patina is relative stable and acts as a protective coating of the bronze object under many exposure conditions. The protective effect of different artificial patinas was comparatively investigated by electrochemical and non-electrochemical methods.

  6. Superhydrophobic copper surfaces fabricated by fatty acid soaps in aqueous solution for excellent corrosion resistance

    Science.gov (United States)

    Xu, Wenlong; Hu, Yuanyuan; Bao, Wenda; Xie, Xiaoyu; Liu, Yiran; Song, Aixin; Hao, Jingcheng

    2017-03-01

    A simple and safe one-step immersion method was developed to obtain the stable superhydrophobic copper surfaces with excellent corrosion resistance ability using fatty acids in water-medium instead of ethanol. An organic alkali, N,N-dimethylcyclohexylamine (DMCHA), was chosen to solve the poor solubility of fatty acids in water and the high Krafft point of carboxylate salts with inorganic counterions. The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol (more than 2 d), which is universally feasible for the fabrication of superhydrophobic metal surfaces in industry scale, thereby greatly increasing the safety in industrial manufacture.

  7. The Application of Heat and Corrosion Resistant Phosphate Coatings Under Steam Pressure

    Science.gov (United States)

    1974-03-01

    August 1955. Bessey, R. E. and W. M. Kisner , "Heat Resistance of Phos- phate Protective Coatings," Technical Report SA-MR18- 1026, Springfield Armory...phosphate coatings heated in the absence of air lose their corrosion resistance between 400°F and 425’F. Bessey and Kisner ’ determined the weight loss...tests. These coatings had been heated in air at 212F, 300 0 F, and at 100-degree in- tervals up to 14000F. Bessey and Kisner reported that the corrosion

  8. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution.

  9. Protection of 2024-T3 aluminium alloy by corrosion resistant phytic acid conversion coating

    Science.gov (United States)

    Shi, Hongwei; Han, En-Hou; Liu, Fuchun; Kallip, Silvar

    2013-09-01

    The corrosion protection properties of environmentally friendly phytic acid conversion coatings were studied on 2024-T3 aluminium alloy. The films were prepared under acidic conditions with various pH values and characterised by SEM, EDS, ATR-FTIR and electrochemical techniques. The results indicate that the conversion coatings obtained by immersing the alloy in phytic acid solutions at pH from 3 to 5.5 provide excellent corrosion resistance. ATR-FTIR confirms that the film is formed by deposition of reaction products between Al3+ and phosphate groups in phytic acid molecules. The conformation models of the deposition film are proposed.

  10. INFLUENCE OF PHOSPHATIZED SURFACE LAYER ON CORROSION RESISTANCE OF Mg-Al-RE ALLOY

    OpenAIRE

    Katarína Miková; Filip Pastorek; Libor Trško; Sylvia Dundeková

    2015-01-01

    This contribution deals with evaluation of the corrosion resistance of extruded Mg-2Al-1RE (AE21) magnesium alloy in the state before and after treatment of ground surface by selected phosphatizing procedure. Specimens were exposed to 0.1M NaCl solution for several time periods starting from 5 minutes up-to 168 hours at room temperature of 22 ± 1 °C. Afterwards electrochemical impedance spectroscopy was carried out on the exposed specimens. Based on the results obtained from the electroc...

  11. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity

    Science.gov (United States)

    Wang, Guoyong; Liu, Shuai; Wei, Sufeng; Liu, Yan; Lian, Jianshe; Jiang, Qing

    2016-02-01

    Practical application of superhydrophobic surfaces is limited by the fragility of nanoscale asperities. Combining chemical etching and anodization, microscale pits and nanoscale pores, instead of the micro and nano protrusions on traditional superhydrophobic surfaces mimicking Lutos leaves, were fabricated on commercially pure aluminum surfaces. After modified by FDTS, the surfaces were superhydrophobic and self-cleaning. The ultrahigh hardness and electrochemical stability of Al2O3 coating endowed the surface excellent mechanical durability and good corrosion resistance. Because the method is scalable, it may find practical application on body panels of automobiles and aircrafts and so on.

  12. Effect of heat treatment on the corrosion resistance of modified aluminum-magnesium alloys in seawater

    Science.gov (United States)

    Ahmad, Z.; Aleem, A.

    1993-10-01

    Study of modified Al-2.5Mg alloys containing chromium, silica, iron, and manganese in various tempers (O, H-18, T-4, T-6, T-18, and H-34) has shown that their corrosion resistance is significantly altered by thermomechanical treatment and the beneficial effect of chromium on microstructural changes. Modified binary Al-2.5Mg alloys in the T-6 and T-4 tempers exhibit a higher resistance to corrosion in Arabian Gulf water than H-34 tempers due to the beneficial effect of chromium on microstructural changes.

  13. Effects of organic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.;

    2010-01-01

    mu m of the contaminated surface was required to reach corrosion rates less than 1 mm/year in salt spray condition. Among the three organic acids examined, acetic acid is the best choice. Oxalic acid can be an alternative while citric acid is not suitable for cleaning AZ31 sheet, because......Organic acids were used to clean AZ31 magnesium alloy sheet and the effect of the cleaning processes on the surface condition and corrosion performance of the alloy was investigated. Organic acid cleanings reduced the surface impurities and enhanced the corrosion resistance. Removal of at least 4...

  14. Magnetic performance and corrosion resistance of electroless plating CoWP film

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The CoWP film with good magnetic performance and corrosion resistance was electrolessly plated from alkaline solution. The technical parameters of the electroless plating system were optimized. When the pH value of electroless plating solution was 11.0 and the reducing agent (NaH2PO2) content was 0.4 mol L 1, the target chemical reactions proceeded in the electroless plating solution smoothly with negligible interference and side effects. CoWP film prepared under optimal deposition condition contained more ...

  15. Corrosion of carbon-alloyed iron aluminides

    Indian Academy of Sciences (India)

    M Sen; R Balasubramaniam; A V Ramesh Kumar

    2000-10-01

    The corrosion behaviour of two carbon-alloyed intermetallics of composition Fe–28.1Al–2.1C and Fe–27.5Al–3.7C has been studied and compared with that of binary intermetallics. Potentiodynamic polarization studies indicated that the intermetallics exhibited active–passive behaviour in an acidic solution of pH = 1, whereas they exhibited stable passivity in a buffer solution of pH 8.4. Corrosion rates were also obtained by immersion testing. The variation of corrosion rate as a function of time was similar for both the intermetallics. The variation in corrosion rate as a function of time has been explained based on the observed potentiodynamic polarization behaviour. Scanning electron microscopy of corroded surfaces indicated that the carbon-alloyed intermetallics were susceptible to galvanic corrosion, due to the presence of carbides.

  16. Commercialization of nickel and iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    1996-12-31

    Metallurgists are taught that intermetallics are brittle phases and should be avoided in alloys of commercial interest. This education is so deeply rooted that irrespective of significant advances made in ductilization of aluminides,the road to their acceptance commercialization is extremely difficult. This paper identifies the requirements for commercialization of any new alloys and reports the activities carried out to commercialize Ni and Fe aluminides. The paper also identifies areas which meet the current commercialization requirements and areas needing additional effort.

  17. High-strength iron aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    McKamey, C.G.; Maziasz, P.J.

    1996-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile ductility due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications despite their excellent corrosion properties. With regard to the ductility problem, alloy development efforts have produced significant improvements, with ductilities of 10-20% and tensile yield strengths as high as 500 MPa being reported. Likewise, initial improvements in creep resistance have been realized through small additions of Mo, Nb, and Zr.

  18. Weld overlay cladding with iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, G.M. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    The author has established a range of compositions for these alloys within which hot cracking resistance is very good, and within which cold cracking can be avoided in many instances by careful control of welding conditions, particularly preheat and postweld heat treatment. For example, crack-free butt welds have been produced for the first time in 12-mm thick wrought Fe{sub 3}Al plate. Cold cracking, however, still remains an issue in many cases. The author has developed a commercial source for composite weld filler metals spanning a wide range of achievable aluminum levels, and are pursuing the application of these filler metals in a variety of industrial environments. Welding techniques have been developed for both the gas tungsten arc and gas metal arc processes, and preliminary work has been done to utilize the wire arc process for coating of boiler tubes. Clad specimens have been prepared for environmental testing in-house, and a number of components have been modified and placed in service in operating kraft recovery boilers. In collaboration with a commercial producer of spiral weld overlay tubing, the author is attempting to utilize the new filler metals for this novel application.

  19. Iron aluminide knife and method thereof

    Science.gov (United States)

    Sikka, V.K.

    1997-08-05

    Fabricating an article of manufacture having a Fe{sub 3}Al-based alloy cutting edge is discussed. The fabrication comprises the steps of casting an Fe{sub 3}Al-based alloy, extruding into rectangular cross section, rolling into a sheet at 800 C for a period of time followed by rolling at 650 C, cutting the rolled sheet into an article having an edge, and grinding the edge of the article to form a cutting edge. 1 fig.

  20. Iron aluminide knife and method thereof

    Science.gov (United States)

    Sikka, Vinod K.

    1997-01-01

    Fabricating an article of manufacture having a Fe.sub.3 Al-based alloy cutting edge. The fabrication comprises the steps of casting an Fe.sub.3 Al-based alloy, extruding into rectangular cross section, rolling into a sheet at 800.degree. C. for a period of time followed by rolling at 650.degree. C., cutting the rolled sheet into an article having an edge, and grinding the edge of the article to form a cutting edge.

  1. High-strength iron aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    McKamey, C.G.; Marrero-Santos, Y.; Maziasz, P.J.

    1995-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile density due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications, despite their excellent corrosion properties. Improvements in room temperature tensile ductility have been realized mainly through alloying effects, changes in thermomechanical processing to control microstructure, and by control of the specimen`s surface condition. Ductilities of 10-20% and tensile yield strengths as high as 500 MPa have been reported. In terms of creep-rupture strength, small additions of Mo, Nb, and Zr have produced significant improvements, but at the expense of weldability and room-temperature tensile ductility. Recently an alloy containing these additions, designated FA-180, was shown to exhibit a creep-rupture life of over 2000 h after a heat treatment of 1 h at 1150{degrees}C. This study presents the results of creep-rupture tests at various test temperatures and stresses and discusses the results as part of our effort to understand the strengthening mechanisms involved with heat treatment at 1150{degrees}C.

  2. The Influence of Transition Metals Addition on the Corrosion Resistance of Nanocrystalline Al Alloys Produced by Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Asiful Hossain Seikh

    2016-06-01

    Full Text Available The corrosion resistance of nanocrystalline Al, Al-10 wt. % Fe and Al-10 wt. % Fe-5 wt. % Cr alloys was investigated in 3.5% NaCl solution using cyclic potentiodynamic polarization (CPP and electrochemical impedance spectroscopy (EIS techniques. The alloys were fabricated using mechanical alloying (MA and heat induction sintering. When compared with the corrosion resistance of pure Al, the experimental results indicated that the addition of 10 wt. % Fe and 10 wt. % Fe-5 wt. % Cr to pure Al has resulted in an enhancement in the corrosion resistance of these newly fabricated alloys. The resistance to corrosion is due to enhanced microstructural stability along with the formation of stable oxide layer.

  3. Microstructure and Corrosion Resistance of Cr7C3/γ-Fe Ceramal Composite Coating Fabricated by Plasma Cladding

    Institute of Scientific and Technical Information of China (English)

    LIU Junbo

    2007-01-01

    A new type in situ Cr7C3/γ-Fe ceramal composite coating was fabricated on substrate of hardened and tempered grade C steel by plasma cladding with Fe-Cr-C alloy powders. The ceramal composite coating has a rapidly solidified microstructure consisting of primary Cr7C3 and the Cr7C3/γ-Fe eutectics, and is metallurgically bonded to the degree C steel substrate. The corrosion resistances of the coating in water solutions of 0.5 mol/L H2SO4 and 3.5% NaCl were evaluated utilizing the electrochemical polarization corrosion-test method. Because of the inherent excellent corrosion-resisting properties of the constituting phase and the rapidly solidified homogeneous microstructure, the plasma clad ceramal composite coating exhibits excellent corrosion resistance in the water solutions of 0.5 mol/L H2SO4 and 3.5% NaCl.

  4. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    Science.gov (United States)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  5. XPS study of the corrosion resisting composite alloying layer obtained by double glow plasma with the brush plating Ni interlayer

    Institute of Scientific and Technical Information of China (English)

    Jiang Xu; Xishan Xie; Zhong Xu; Wenjin Liu

    2004-01-01

    The Ni-Cr-Mo-Cu multi-element surface alloying with the electric brush plating Ni interlayer on the low carbon steel substrate has been investigated. By the electrochemical method in 3.5% (mass fraction) NaC1 solution, the corrosion resistance of the composite alloying layer and single alloying layer is determined. The experimental results show that the corrosion resistance of the composite alloying layer is obviously better than that of the single alloying layer. The structure and composition of passive films formed on the two kinds of alloyed layers after electrochemical tests in 3.5% NaC1 solution have been studied using X-ray photoelectron spectroscopy (XPS). It is concluded that the double glow plasma surface alloying of low carbon steel with the electric brush plating Ni interlayer is an appropriate technique to enhance the corrosion resistance compared with the single double glow surface alloying.

  6. Corrosion Resistance and Pitting Behaviour of Low-Carbon High-Mn Steels in Chloride Solution

    Directory of Open Access Journals (Sweden)

    Grajcar A.

    2016-06-01

    Full Text Available Corrosion resistance of the X4MnSiAlNbTi27-4-2 and X6MnSiAlNbTi26-3-3 type austenitic steels, after hot deformation as well as after cold rolling, were evaluated in 3.5% NaCl solution using potentiodynamic polarization tests. A type of nonmetallic inclusions and their pitting corrosion behaviour were investigated. Additionally, the effect of cold deformation on the corrosion resistance of high-Mn steels was studied. The SEM micrographs revealed that corrosion damage formed in both investigated steels is characterized by various shapes and an irregular distribution at the metallic matrix, independently on the steel state (thermomechanically treated or cold worked. Corrosion pits are generated both in grain interiors, grain boundaries and along the deformation bands. Moreover, corrosion damage is stronger in cold deformed steels in comparison to the thermomechanically treated specimens. EDS analysis revealed that corrosion pits preferentially nucleated on MnS and AlN inclusions or complex oxysulphides. The morphology of corrosion damage in 3.5% NaCl supports the data registered in potentiodynamic tests.

  7. Influence of Heat Treatments on the Corrosion Resistance of Medium -Carbon Steel using Sulfuric Spring Water

    Directory of Open Access Journals (Sweden)

    Ikhlas Basheer

    2013-04-01

    Full Text Available The corrosion is one of the important problems that may be occur to the parts of machinery and equipment after manufactured and when used as a result of exposure to corrosive media. Plain-carbon steel is considered as one of the most common minerals used in industrial applications. Some of heat treatments can have direct effect on the corrosion rate of steel by building up galvanic corrosion cells between its microscopic phases. Therefore, to adopt one of kinds of the plain-carbon steel and the most commonly used in industry to be study subject, that is medium carbon steel and took samples of this steel has been treated thermally in three methods which the normalising, annealing, and hardening .The corrosive media used in the research is Sulfuric Spring, it contains many chemical compounds to show its influence on the corrosion of steel. The weight loss method is used to determine corrosion rate and to compare between the results obtained, show that the greatest corrosion resistance of the annealed steel and the corrosion resistance of the hardened steel is the lowest while the corrosion  resistance of the normalised steel is in-between them.         Calcium carbonate was formed on the metal surface which acts as an isolating layer which decrease corrosion rate with time

  8. Cellulose acetate/hydroxyapatite/chitosan coatings for improved corrosion resistance and bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhenyu; Qin, Jinli [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Ma, Jun, E-mail: caltary@gmail.com [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-04-01

    Cellulose acetate (CA) nanofibers were deposited on stainless steel plates by electrospinning technique. The composite of hydroxyapatite (HAP) nanoparticles and chitosan (CHI) was coated subsequently by dip-coating. The structure and morphology of the obtained coatings were investigated by Fourier transform infrared spectroscopy and scanning electron microscopy. The stability of the coatings in physiological environment was studied using electrochemical polarization and impedance spectroscopy. The CA nanofibers were embedded in the HAP/CHI coating and the resulted composite film was densely packed and uniform on the substrate. The in vitro biomineralization study of the coated samples immersed in simulated body fluid (SBF) confirmed the formation ability of bone-like apatite layer on the surface of HAP-containing coatings. Furthermore, the coatings could provide corrosion resistance to the stainless steel substrate in SBF. The electrochemical results suggested that the incorporation of CA nanofibers could improve the corrosion resistance of the HAP/CHI coating. Thus, biocompatible CA/HAP/CHI coated metallic implants could be very useful in the long-term stability of the biomedical applications. - Highlights: • The composite coatings were prepared by electrospinning and dip-coating. • Good in vitro bioactivity of the CA/HAP/CHI coating was confirmed. • Electrochemical behaviors in SBF of the coatings have been studied. • The CA/HAP/CHI coating shows better resistance property than HAP/CHI.

  9. Preparation, antibacterial effects and corrosion resistant of porous Cu–TiO{sub 2} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Haibo; Zhang, Xiangyu, E-mail: zhangxiangyu@tyut.edu.cn; Geng, Zhenhua; Yin, Yan; Hang, Ruiqiang; Huang, Xiaobo; Yao, Xiaohong; Tang, Bin

    2014-07-01

    Antibacterial TiO{sub 2} coatings with different concentrations of Cu (Cu–TiO{sub 2}) were prepared by micro-arc oxidation (MAO) on pre-sputtered CuTi films. The effect of Cu concentrations in CuTi films on the MAO process was investigated. The Cu–TiO{sub 2} coatings were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The corrosion resistance of Cu–TiO{sub 2} coatings was evaluated via potentiodynamic polarization method. The antibacterial properties were assessed by two methods: spread plate method and fluorescence staining. The experimental results demonstrate that the coatings are porous and consist of anatase phase, rutile phase and unoxidized titanium. The CuTi films are almost completely oxidized and the thickness of all MAO coatings is about 5–10 μm. Cu mainly exists as CuO in the TiO{sub 2} coatings. The Cu–TiO{sub 2} coatings exhibit excellent antibacterial activities, and the antibacterial rate gradually rise with the increase in Cu concentration in the MAO coatings. The corrosion resistance of MAO coatings is also improved slightly.

  10. Study of the Corrosion Resistance of Electroless Ni-P Deposits in a Sodium Chloride Medium

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The corrosion resistance of electroless Ni-P deposits with phosphorous contents from 12% to 14% in sodium chloride solutions was studied. The deposits were immersed in 3.5% NaCl solutions for 29 d to obtain the electrochemical parameters and were examined in a standard salt spray test for 15 d respectively. The corrosion resistance of the deposits was studied by potentio-dynamic scan, electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and cold-field emission scanning electron microscopy (FE-SEM) equipped with an energy dispersive X-ray detector (EDX). The patterns of XRD and the results of FE-SEM showed that the prepared deposits were amorphous. But after a 15 d standard salt spray test, a few pinholes appeared on the surface of the deposit and the weight content of phosphorus on the surface of the deposit was higher (which was beneficial to the formation of the passivation films) than that before the standard salt spray test when the nickel content was lower because the dissolved weight of nickel was greater than that of phosphorus. The results from potentio-dynamic scan and EIS showed that passivation films formed on the Ni-P deposit after immersion in the NaC1 solutions, which decreased the corrosion rate of Ni-P samples. The results of this work show their potential applications in marine corrosion.

  11. Fabrication and Corrosion Resistance of Superhydrophobic Hydroxide Zinc Carbonate Film on Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    Jin Liang

    2013-01-01

    Full Text Available Superhydrophobic hydroxide zinc carbonate (HZC films were fabricated on aluminum substrate through a convenient in situ deposition process. Firstly, HZC films with different morphologies were deposited on aluminum substrates through immersing the aluminum substrates perpendicularly into aqueous solution containing zinc nitrate hexahydrate and urea. Secondly, the films were then modified with fluoroalkylsilane (FAS: CH3(CF26(CH23Si(OCH33 molecules by immersing in absolute ethanol solution containing FAS. The morphologies, hydrophobicity, chemical compositions, and bonding states of the films were analyzed by scanning electron microscopy (SEM, water contact angle measurement (CA, Fourier transform infrared spectrometer (FTIR, and X-ray photoelectron spectroscopy (XPS, respectively. It was shown by surface morphological observation that HZC films displayed different microstructures such as microporous structure, rose petal-like structure, block-shaped structure, and pinecone-like structure by altering the deposition condition. A highest water contact angle of 156.2° was obtained after FAS modification. Moreover, the corrosion resistance of the superhydrophobic surface on aluminum substrate was investigated using electrochemical impedance spectroscopy (EIS measurements. The EIS measurements’ results revealed that the superhydrophobic surface considerably improved the corrosion resistance of aluminum.

  12. The corrosion resistance of materials used for the manufacture of ear piercing studs

    Energy Technology Data Exchange (ETDEWEB)

    Correa, O. V.; Saiki, M.; Rogero, S. O.; Costa, I.

    2003-07-01

    Nickel containing alloy shave been widely used as substrates for the manufacture of studs used for ear piercing. Unfortunately, nickel has also been related to the development of allergic contact dermatitis caused by skin sensitization due to Ni''2+ ions. Nickel ions can be leached out into the body fluids due to corrosion reactions. Defect free coatings are very difficult to produce, and therefore nickel free materials should be used as substrates of ear piercing studs, although the commercial alloys used usually contain this element. In this study, the corrosion resistance of two kinds of commercial studs prepared with nickel containing substrates and a titanium laboratory made stud was determined in a culture medium. The corrosion resistance of the studs was investigated by means of potentiodynamic polarization tests and electrochemical impedance spectroscopy as a function of immersion time in the culture medium. The elements that leached out into the medium due to corrosion reactions were analyzed by instrumental neutron activation analysis. The surfaces of the commercial gold-coated studs were examined by scanning electron microscopy and analyzed by energy dispersive spectroscopy, both before and after exposure to the culture medium. The cytotoxicity of the tested studs was also determined in the culture medium. (Author) 10 refs.

  13. Effect of coating and surface modification on the corrosion resistance of selected alloys in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Zheng, W. [CANMET, Materials Technology Lab., Hamilton, Ontario (Canada); Cook, W. [Univ. of New Brunswick, Fredericton, New Brunswick (Canada); Toivonen, A.; Penttila, S. [VTT Technical Research Center of Finland, Espoo (Finland); Guzonas, D.; Woo, O.T. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Liu, P.; Bibby, D. [CANMET, Materials Technology Lab., Hamilton, Ontario (Canada)

    2011-07-01

    Materials selection is one of the key tasks in Gen-IV reactor development. There is no known material that can meet the expected core outlet conditions of the Canadian SCWR concept (625{sup o}C core outlet temperature). High-Cr steels with excellent corrosion resistance are often susceptible to embrittlement due to the precipitation of sigma and other phases in the microstructure. Low-Cr steels such as P91 and oxide dispersion strengthened (ODS) steels exhibit good high-temperature mechanical properties, but the lack of sufficient Cr content makes this group alloy corrode too fast. Improvement in this alloy is needed in order for it to be considered as a piping construction material. In this report, the development of a metallic coating on a P91 substrate is discussed. Recent effort on selection of in-core cladding alloys has focused on heat-resistant 3xx series stainless steels. These alloys have higher strength at high-temperature ranges, but corrosion and stress-corrosion cracking resistance are a concern. Metallic coating and surface modification are considered as possible solutions to overcome this challenge. The effects of surface modification on the corrosion rate of austenitic steels were also reported in this paper. As-machined surface showed much better corrosion resistance than polished surface and advanced surface analyses showed distinct differences in the nature and the morphology of the surface layer metal. Possible mechanisms for improved corrosion performance are discussed. (author)

  14. The Effect of Surface Patterning on Corrosion Resistance of Biomedical Devices

    Science.gov (United States)

    Guo, Mengnan; Toloei, Alisina; Rotermund, Harm H.

    2016-10-01

    In this study, two styles of surface topographies have been created on stainless steel wires to test their corrosion resistance as simulated implanted biomedical devices. Grade 316 LVM stainless steel wire was initially polished to G1500 surface finish before treatment to produce the two different topographies: 1. Unidirectional roughness was created using SiC papers and 2. Various patterns were created with specific hole diameter and inter-hole spacing using focused ion beam (FIB). In order to simulate the environment of implanted biomedical devices, a three-electrode electrochemical cell with 0.9% (by mass) NaCl solution has been used to test the corrosion resistance of the samples by potentiodynamic polarization test method. SEM and EDS analyzed the appearance and chemical composition of different elements including oxygen on the surface. The potential of stable pitting, time related to the initiation of the stable pitting, and the highest corrosion current associated with stable pitting have been compared for samples with the two styles of topography. It was found that surfaces with patterns have a relatively higher pitting potential and it takes longer time to initiate stable pitting than the surface without any patterns.

  15. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V.

    Science.gov (United States)

    Grotberg, John; Hamlekhan, Azhang; Butt, Arman; Patel, Sweetu; Royhman, Dmitry; Shokuhfar, Tolou; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T

    2016-02-01

    The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment.

  16. Improving Corrosion Resistance of Cf/Mg Composites using Rare Earth Conversion Coatings

    Institute of Scientific and Technical Information of China (English)

    Song Meihui; Wang Chunyu; Wu Gaohui

    2007-01-01

    The surface of carbon fiber reinforced Mg matrix (Cf/Mg) composites was modified by treatment of rare earth conversion coating, and nontoxic, non-pollution Ce conversion coatings were prepared. The effect of the coatings on corrosion behaviors of composites was investigated by electrochemical polarization technology and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. The higher Ecorr and lower icorr were obtained by Ce conversion coatings. EIS results showed that the higher values of R2 were obtained by treatment containing CeCl3, the high corrosion resistance occured in treatment containing CeCl3, the low corrosion resistance in uncoating sample, the coating of treatment containing Ce(NO3)3 was medium. The microstructure of Ce conversion coatings was observed by scanning electron microscopy (SEM), and the elements of corresponding for coatings was characterized by energy dispersive spectrometer (EDS). The micro-cracks and Ce-riched spherical particles were characteristics of these coatings.

  17. Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel

    Science.gov (United States)

    Trelewicz, Jason R.; Halada, Gary P.; Donaldson, Olivia K.; Manogharan, Guha

    2016-03-01

    Additive manufacturing (AM) of metal alloys to produce complex part designs via powder bed fusion methods such as laser melting promises to be a transformative technology for advanced materials processing. However, effective implementation of AM processes requires a clear understanding of the processing-structure-properties-performance relationships in fabricated components. In this study, we report on the formation of micro and nanoscale structures in 316L stainless steel samples printed by laser AM and their implications for general corrosion resistance. A variety of techniques including x-ray diffraction, optical, scanning and transmission electron microscopy, x-ray fluorescence, and energy dispersive x-ray spectroscopy were employed to characterize the microstructure and chemistry of the laser additively manufactured 316L stainless steel, which are compared with wrought 316L coupons via electrochemical polarization. Apparent segregation of Mo has been found to contribute to a loss of passivity and an increased anodic current density. While porosity will also likely impact the environmental performance (e.g., facilitating crevice corrosion) of AM alloys, this work demonstrates the critical influence of microstructure and heterogeneous solute distributions on the corrosion resistance of laser additively manufactured 316L stainless steel.

  18. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    Science.gov (United States)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-05-01

    Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  19. Producing cobalt–graphene composite coating by pulse electrodeposition with excellent wear and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cansen; Su, Fenghua, E-mail: fhsu@scut.edu.cn; Liang, Jizhao

    2015-10-01

    Graphical abstract: - Highlights: • Graphene oxide/cobalt coatings are synthesized by pulse electrodeposition. • Incorporating GO refines the grain size and changes the microstructure of the coating. • Incorporating GO greatly improves the friction reduction and wear resistance of the coating. • The corrosion resistance is enhanced by the incorporation of GO. - Abstract: Cobalt (Co) and graphene oxide/cobalt (GO/Co) composite coatings were fabricated by pulse electrodeposition technique from an aqueous bath containing cobalt sulfate and GO, etc. Effect of the incorporations of GO on morphology, phase structure, average grain size and corrosion and wear resistance of the resulting composite coatings were evaluated in detail. Scanning electron microscope (SEM) and energy dispersed X-ray (EDX) show that the GO nanosheets disperse homogeneously in the composite coating and the incorporations of GO change the morphologies of the deposit from conical shaped structure to protruding structure. In addition, the co-deposition GO with Co ions favor the formation of hcp (1 0 0), (0 0 2) and (1 0 1) textures in the composite coating and have functions of grain refining and hardness enhancement. The wear tests show that the incorporations of GO in the coating improve the wear resistance and friction reduction of the deposit. The electrochemical corrosion tests using potentiodynamic polarization and electrochemical impedance spectroscopy show that the GO/Co composite coating possesses better corrosion resistance than the pure Co coating.

  20. Preparation and corrosion resistance of pulse electrodeposited Zn and Zn-SiC nanocomposite coatings

    Science.gov (United States)

    Sajjadnejad, M.; Mozafari, A.; Omidvar, H.; Javanbakht, M.

    2014-05-01

    Pure Zn and Zn matrix composite coatings containing nano-sized SiC particles with an average size of 50 nm were prepared from the zinc sulfate bath. The effects of the pulse frequency, maximum current density and duty cycle on the amount of particles embedded were examined. Electron microscopic studies revealed that the coating morphology was modified by the presence of SiC nanoparticles. In the presence of SiC nanoparticles deposit grows in outgrowth mode resulting in a very rough and porous microstructure. However, at very low and very high duty cycles a smooth and pore free microstructure was obtained. Corrosion resistance properties of the coatings were studied using potentiodynamic polarization technique in 1 M NaCl solution. It was established that presence of well-dispersed nanoparticles significantly improves corrosion resistance of the zinc by filling gaps and defects between zinc flakes and leading to a smoother surface. However, presence of the SiC nanoparticles led to a mixed microstructure with fine and coarse zinc flakes in some coatings, which presented a weak corrosion behavior. Incorporation of SiC nanoparticles enhanced hardness of the Zn coatings by fining deposit structure and through the dispersion hardening effect.

  1. Pulse electrodeposited nickel using sulphamate electrolyte for hardness and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Sivasakthi, P.; Sekar, R.; Bapu, G.N.K.Ramesh, E-mail: bapu2657@yahoo.com

    2015-10-15

    Highlights: • Nickel deposits from sulphamate solutions using pulse method are prepared. • Effect of duty cycle and frequency are studied. • XRD, SEM and AFM of the nickel deposits are characterized. • Corrosion characteristics of the nickel deposit are reported. - Abstract: Nickel deposits have been obtained on mild steel substrate by pulse current (PC) electrodeposition method using nickel sulphamate electrolyte. Micro hardness values increased with decreasing duty cycle and pulse frequency. X-ray diffraction studies revealed that (2 0 0) plane was predominant and the nickel deposit obtained at low duty cycle and low frequency has the smallest grain size. The surface morphology of the coatings was explored by scanning electron microscopy (SEM) and atomic force microscopy. These studies showed that the microstructure of the nickel coatings changed from pyramidal structure to homogeneous structure with increasing duty cycle and pulse frequencies. The corrosion resistance of coatings was evaluated by potentiodynamic polarization and electrochemical impedance studies in 3.5 wt% sodium chloride (NaCl) solutions. An enhancement of the corrosion resistance, charge-transfer resistance and wear resistance has been obtained at low duty cycle and low frequencies.

  2. [Effect of aurum coating on corrosion resistance of Ni-Cr alloy].

    Science.gov (United States)

    Chen, Zhi-hong; Liu, Li; Mao, Ying-jie

    2007-02-01

    To evaluate the effect of aurum coating on corrosion resistance of Ni-Cr alloy in artificial saliva environment. The corrosion potential (E(corr)), self-corrosion current density (I(corr)), and polarization resistance (R(p)) of three alloys were measured using electrochemical methods to compare the difference of corrosion resistance between aurum-coated Ni-Cr alloy and Ni-Cr alloy or Au alloy. Meanwhile, microstructural and phase diffraction was examined with field scanning electromicroscopy (FSEM) and surface chemical analysis was performed by energy diffraction X-ray (EDX). The I(corr) of aurum-coated Ni-Cr alloy was (0.70 +/- 0.20) x 10(-6) A/cm2, which was significantly higher than that of Au alloy (P Cr alloy (P coated Ni-Cr alloy was (34.77 +/- 12.61) KOmega.cm2, which was higher than that of Ni-Cr alloy (P Cr alloy coated with aurum was better than that of Ni-Cr alloy. The results of EDX indicated that released Ni and Cr of Ni-Cr alloy coated with aurum after test were less than those of Ni-Cr alloy (P coated Ni-Cr alloy is higher than that of Ni-Cr alloy.

  3. [Effects of TiSi coating on corrosion resistance of dental Co-Cr alloy].

    Science.gov (United States)

    Hu, Bin; Chen, Jie; Zhang, Fu-qiang

    2011-12-01

    To investigate the effect of titanium-silicon(TiSi) coating on corrosion resistance of dental CoCr alloy. The commonly used CoCr alloy was cast into 10mm×10mm×3mm specimen in size. Then the specimen was coated with TiSi on the surface by sol-gel method. The specimens were immersed in artificial saliva. Weight loss method was used to analyze corrosion rate. Element analysis using Auger Electron Spectroscopy (AES) was performed to compare the content of element before and after coating of TiSi in artificial saliva. SAS8.0 software package was used for statistical analysis. By weight lost method, before and after coating TiSi, the corrosive rate was 0.163 g·m(-2)·h(-1) and 0.138 g·m(-2)·h(-1) respectively. With AES, in Co-Cr alloy not coating TiSi, atomic concentration (g·m(-2)) of Ni, Co, Cr and Si was 7.728582657,0.008801153,0.306195965 and 0.194851978,respectively. After coating Ti-Si,the content of Ni, Co, Cr and Si and 4.745189808,0.004718889, 0.153195362 and 0.778406136, respectively. The release rate of the Ni,Co,cr were decreased after coating. TiSi coating can improve corrosion resistance of CoCr alloy.

  4. [Effect of titanium nitride coating on bacterial corrosion resistance of dental Co-Cr alloy].

    Science.gov (United States)

    Zou, Jie; Chen, Jie; Hu, Bin

    2010-04-01

    To study the influence of titanium nitride(TiN) coating on bacterial corrosion resistance of clinically used Co-Cr alloy. The Co-Cr alloy commonly used for casting metal full crown was casted with specimen 10mm x 10mm x 3mm in size. The specimen was coated with a thickness of 2.5 microm TiN coating on the surface by multi-arc physical vapor deposition. Then the specimen before and after coating titanium nitride were exposed to TSB media with S.mutans or Actinomyces viscosus,while pure media,as control.After inoculated for 24 hours, the Tafel polarization curves of the specimen were measured by electrochemical station. From the Tafel polarization curves, the non-coated Co-Cr alloy showed that corrosion potential moved to the negative way in presence of oral bacteria,and passivation interval got shorter.While the polarization curves of the specimen after coating TiN changed slightly in presence of oral microorganism. The TiN significantly weakened the corrosion action of bacteria on the alloy. These results demonstrate that the TiN coating with better tolerance to the bacterial action can improve bacterial corrosion resistance of Co-Cr alloy.Supported by Research Fund of Science and Technology Commission of Shanghai Municipality(Grant No.08DZ2271100) and Shanghai Leading Academic Discipline Project (Grant No. S30206).

  5. The effects of argon ion bombardment on the corrosion resistance of tantalum

    Science.gov (United States)

    Ramezani, A. H.; Sari, A. H.; Shokouhy, A.

    2017-02-01

    Application of ion beam has been widely used as a surface modification method to improve surface properties. This paper investigates the effect of argon ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, argon ions with energy of 30 keV and in doses of 1 × 1017-10 × 1017 ions/cm2 were used. The surface bombardment with inert gases mainly produces modified topography and morphology of the surface. Atomic Force Microscopy was also used to patterned the roughness variations prior to and after the implantation phase. Additionally, the corrosion investigation apparatus wear was applied to compare resistance against tantalum corrosion both before and after ion implantation. The results show that argon ion implantation has a substantial impact on increasing resistance against tantalum corrosion. After the corrosion test, scanning electron microscopy (SEM) analyzed the samples' surface morphologies. In addition, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this paper was to obtain the perfect condition for the formation of tantalum corrosion resistance. In order to evaluate the effect of the ion implantation on the corrosion behavior, potentiodynamic tests were performed. The results show that the corrosion resistance of the samples strongly depends on the implantation doses.

  6. Influence of Processing and Heat Treatment on Corrosion Resistance and Properties of High Alloyed Steel Coatings

    Science.gov (United States)

    Hill, Horst; Weber, Sebastian; Raab, Ulrich; Theisen, Werner; Wagner, Lothar

    2012-09-01

    Corrosion and abrasive wear are two important aspects to be considered in numerous engineering applications. Looking at steels, high-chromium high-carbon tool steels are proper and cost-efficient materials. They can either be put into service as bulk materials or used as comparatively thin coatings to protect lower alloyed construction or heat treatable steels from wear and corrosion. In this study, two different corrosion resistant tool steels were used for the production of coatings and bulk material. They were processed by thermal spraying and super solidus liquid phase sintering as both processes can generally be applied to produce coatings on low alloyed substrates. Thermally sprayed (high velocity oxygen fuel) coatings were investigated in the as-processed state, which is the most commonly used condition for technical applications, and after a quenching and tempering treatment. In comparison, sintered steels were analyzed in the quenched and tempered condition only. Significant influence of alloy chemistry, processing route, and heat treatment on tribological properties was found. Experimental investigations were supported by computational thermodynamics aiming at an improvement of tribological and corrosive resistance.

  7. Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31

    Science.gov (United States)

    Cui, Lan-Yue; Zeng, Rong-Chang; Zhu, Xiao-Xiao; Pang, Ting-Ting; Li, Shuo-Qi; Zhang, Fen

    2016-06-01

    Biocompatible polyelectrolyte multilayers (PEMs) and polysiloxane hybrid coatings were prepared to improve the corrosion resistance of biodegradable Mg alloy AZ31. The PEMs, which contained alternating poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH), were first self-assembled on the surface of the AZ31 alloy substrate via electrostatic interactions, designated as (PAH/PSS)5/AZ31. Then, the (PAH/PSS)5/AZ31 samples were dipped into a methyltrimethoxysilane (MTMS) solution to fabricate the PMTMS films, designated as PMTMS/(PAH/PSS)5/AZ31. The surface morphologies, microstructures and chemical compositions of the films were investigated by FE-SEM, FTIR, XRD and XPS. Potentiodynamic polarization, electrochemical impedance spectroscopy and hydrogen evolution measurements demonstrated that the PMTMS/(PAH/PSS)5/AZ31 composite film significantly enhanced the corrosion resistance of the AZ31 alloy in Hank's balanced salt solution (HBSS). The PAH and PSS films effectively improved the deposition of Ca-P compounds including Ca3(PO4)2 and hydroxyapatite (HA). Moreover, the corrosion mechanism of the composite coating was discussed. These coatings could be an alternative candidate coating for biodegradable Mg alloys.

  8. Effect of phytic acid on the microstructure and corrosion resistance of Ni coating

    Energy Technology Data Exchange (ETDEWEB)

    Meng Guozhe, E-mail: mengguozhe@hrbeu.edu.c [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China)] [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun Feilong [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China); Shaoa Yawei [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang Tao; Wang Fuhui [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China)] [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Dong Chaofang [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Li, Xiaogang [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)] [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China)

    2010-08-01

    In this work, the pure Ni coatings were synthesized on Q235 steel by using reverse pulsed electrodeposition technique in sulphate-based baths with 0, 0.1, 0.2 and 0.3 g/L phytic acid additive. The effect of phytic acid on the microstructure and micro-morphology of the sample was observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. And the effect of phytic acid on the corrosion resistance of the sample was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results demonstrated that the addition of phytic acid was in favor of the growth of nano-scale twins (NT) in the interior of grains, which was due to the lowered stacking fault energies of Ni during the electrodeposition, and the typical morphology of pyramidal islands on the surface. The results also demonstrated that the effect of phytic acid was not monotonous with increasing concentration: the passive current density i{sub p} was minimum and the charge transfer resistance R{sub t} was maximum for the sample obtained from the bath with 0.2 g/L phytic acid, indicating that the sample obtained from the bath with 0.2 g/L phytic acid showed the best corrosion resistance.

  9. Corrosion resistance of CrN thin films produced by dc magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ruden, A. [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales (Colombia); Laboratorio de Recubrimientos Duros y Aplicaciones Industriales–RDAI, Universidad del Valle, Calle 13 N° 100-00 Ciudadela Meléndez, Cali (Colombia); Departamento de matemáticas, Universidad Tecnológica de Pereira, Pereira (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales (Colombia); Paladines, A.U.; Sequeda, F. [Laboratorio de Recubrimientos Duros y Aplicaciones Industriales–RDAI, Universidad del Valle, Calle 13 N° 100-00 Ciudadela Meléndez, Cali (Colombia)

    2013-04-01

    In this study, the electrochemical behavior of chromium nitride (CrN) coatings deposited on two steel substrates, AISI 304 and AISI 1440, was investigated. The CrN coatings were prepared using a reactive d.c. magnetron sputtering deposition technique at two different pressures (P1 = 0.4 Pa and P2 = 4 Pa) with a mixture of N{sub 2}–Ar (1.5-10). The microstructure and crystallinity of the CrN coatings were investigated using X-ray diffraction. The aqueous corrosion behavior of the coatings was evaluated using two methods. The polarization resistance (Tafel curves) and electrochemical impedance spectra (EIS) in a saline (3.5% NaCl solution) environment were measured in terms of the open-circuit potentials and polarization resistance (R{sub p}). The results indicated that the CrN coatings present better corrosion resistance and R{sub p} values than do the uncoated steel substrates, especially for the coatings produced on the AISI 304 substrates, which exhibited a strong enhancement in the corrosion resistance. Furthermore, better behavior was observed for the coatings produced at lower pressures (0.4 Pa) than those grown at 4 Pa.

  10. Multiscale Electrochemical Investigation of the Corrosion Resistance of Various Alloys Used in Dental Prostheses

    Science.gov (United States)

    Iacoban, Sorin; Mareci, Daniel; Bolat, Georgiana; Munteanu, Corneliu; Souto, Ricardo Manuel

    2015-04-01

    The electrochemical behavior of Ag-Pd (Paliag), Ni-Cr (Heraenium NA), and Co-Cr (Heraenium CE) alloys used in dental prosthetics construction of crowns and bridges was studied in 0.9 pct NaCl solution at 298 K (25 °C). The localized electrochemical characteristics related to corrosion resistance and eventual breakdown of the protecting oxide layers were investigated by scanning electrochemical microscopy (SECM), whereas potentiodynamic polarization and electrochemical impedance spectroscopy techniques were employed to establish oxide stability. When the corrosion resistance of the alloys was evaluated by means of the corrosion current value determined around their corresponding open circuit potential in 0.9 pct NaCl solution, good protection can be expected resulting from their spontaneous passivation (low current densities in the order of tenths of μA cm-2). The polarization resistance of all the samples increased with immersion time, in the sequence Ag-Pd human body. Although a passivation mechanism was still operating in the chromium-containing alloys, oxide dissolution and precipitation of corrosion products occurred on Ag-Pd instead.

  11. Fabrication and corrosion resistance of Mg-Zn-Y-based nano-quasicrystals alloys

    Directory of Open Access Journals (Sweden)

    Zhifeng Wang

    2012-02-01

    Full Text Available A wedge-shaped copper mold was used to fabricate micro quasicrystals(QCs. Stable Mg-Zn-Y-based nano-QCs were directly synthesized through this simple route instead of crystallization from metallic glasses or complicated forming processes at high temperature. The study showed that on the tips of the wedge-shaped ingots, the minimum diameter of nano-QCs approach to 4~6 nm. The main size of nano-QCs is about 10~30 nm. The maximum microhardness of QCs has been dramatically improved to about HV440 which increased by about 280% compared with that of the petal-like QCs fabricated under common cast iron mold cooling conditions. Possessing a certain negative enthalpy of mixing and existence of Frank-Kasper-type phases determined the formation of Mg-Zn-Y-based nano-QCs. The further electrochemical studies showed that Mg71Zn26Y2Cu1 nano-QC alloy possess high corrosion resistance in simulated seawater and its corrosion resistance is much better than those of the Mg72Zn26Y2 and Mg71Zn26Y2Cu0.5 Ni0.5 nano-QC alloys.

  12. A new steel with good low-temperature sulfuric acid dew point corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X.Q.; Li, X.G. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Key Laboratory of Corrosion and Protection (Ministry of Education), Beijing (China); Sun, F.L. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Lv, S.J. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Equipment and Power Department, Shijiazhuang Refine and Chemical Company Limited, SINOPEC, Shijiazhuang (China)

    2012-07-15

    In this work, new steels (1, 2, and 3) were developed for low-temperature sulfuric acid dew point corrosion. The mass loss rate, macro- and micro-morphologies and compositions of corrosion products of new steels in 10, 30, and 50% H{sub 2}SO{sub 4} solutions at its corresponding dew points were investigated by immersion test, scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS). The results indicated that mass loss rate of all the tested steels first strongly increased and then decreased as H{sub 2}SO{sub 4} concentration increased, which reached maximum at 30%. Corrosion resistance of 2 steel is the best among all specimens due to its fine and homogeneous morphologies of corrosion products. The electrochemical corrosion properties of new steels in 10 and 30% H{sub 2}SO{sub 4} solutions at its corresponding dew points were studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results demonstrated that corrosion resistance of 2 steel is the best among all the experimental samples due to its lowest corrosion current density and highest charge transfer resistance, which is consistent with the results obtained from immersion tests. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. The enhanced corrosion resistance of UMAO coatings on Mg by silane treatment

    Institute of Scientific and Technical Information of China (English)

    Muqin Li; Jiang Liu; Jungang Li; Yongjiang Li; Shouduo Lu; Yuqi Yuan

    2014-01-01

    The surface silanization was carried out on ultrasonic micro-arc oxidation (UMAO) coatings on pure magnesium using KH550 as silane coupling agent (SCA). The surface morphology, chemical bonds and corrosion resistance of the silane films were investigated by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and electrochemical workstation, respectively. The results showed that hybrid coatings were successfully prepared on pure magnesium by UMAO-NaOH (1 mol/L, 2 mol/L, 3 mol/L)-SCA processing. The organic films with Si–O–Mg bonds are helpful for the reduction of the pores in UMAO coatings. The pores decreased with increasing NaOH concentration. Compared with single UMAO treatment, the corrosion potentials (Ecorr) of magnesium plates with UMAO-NaOH (1 mol/L, 2 mol/L, 3 mol/L)-SCA treatment increased by 29 mV, 53 mV and 75 mV, respectively, meanwhile the corrosion current density (Icorr) reduced one to two orders of magnitude. It indicated that the corrosion resistance of the coatings was improved by silane treatment.

  14. The enhanced corrosion resistance of UMAO coatings on Mg by silane treatment

    Directory of Open Access Journals (Sweden)

    Muqin Li

    2014-10-01

    Full Text Available The surface silanization was carried out on ultrasonic micro-arc oxidation (UMAO coatings on pure magnesium using KH550 as silane coupling agent (SCA. The surface morphology, chemical bonds and corrosion resistance of the silane films were investigated by scanning electron microscope (SEM, Fourier transform infrared spectroscopy (FTIR and electrochemical workstation, respectively. The results showed that hybrid coatings were successfully prepared on pure magnesium by UMAO-NaOH (1 mol/L, 2 mol/L, 3 mol/L-SCA processing. The organic films with Si–O–Mg bonds are helpful for the reduction of the pores in UMAO coatings. The pores decreased with increasing NaOH concentration. Compared with single UMAO treatment, the corrosion potentials (Ecorr of magnesium plates with UMAO-NaOH (1 mol/L, 2 mol/L, 3 mol/L-SCA treatment increased by 29 mV, 53 mV and 75 mV, respectively, meanwhile the corrosion current density (Icorr reduced one to two orders of magnitude. It indicated that the corrosion resistance of the coatings was improved by silane treatment.

  15. Effect Of Heat Treatment On The Corrosion Resistance Of Aluminized Steel Strips

    Directory of Open Access Journals (Sweden)

    Żaba K.

    2015-09-01

    Full Text Available The paper presents the results of corrosion resistance of heat treated aluminized steel strips. Products coated by Al-10Si alloy are used among others in a manufacturing process of welded pipes as the elements of the car exhaust systems, working in high temperatures and different environments (eg. wet, salty. The strips and tubes high performance requirements are applied to stability, thickness and roughness of Al-Si coating, adhesion and corrosion resistance. Tubes working in elements of exhaust systems in a wide range of temperatures are exposed to the effects of many aggressive factors, such as salty snow mud. It was therefore decided to carry out research on the impact of corrosion on the environmental influence on heat treated aluminized steel strips. The heat treatment was carried out temperatures in the range 250-700°C for 30, 180, 1440 minutes. Then the coatings was subjected to cyclic impact of snow mud. Total duration of treatment was 12 months and it was divided into three stages of four months and at the end of each stage was made the assessment of factor of corrosion. The results are presented in the form of macroscopic, microscopic (using a scanning electron microscope observations and the degree and type of rusty coating.

  16. Surface treatment to improve corrosion resistance of A1 plate heat exchangers

    Institute of Scientific and Technical Information of China (English)

    Jong-Soon KIM; Tae-Ho KANG; In-Kwan KIM

    2009-01-01

    The correlations between thermal and physical properties were studied through thermal conductivity measurements, hardness tests, salt spray tests (AASS) among the surface treatment samples named K20, K40 with thickness of 20, 40 μm respectively and raw sample named K00. In thermal conductivity measurements, there are little differences among the samples as K00, K20 and K40, they exhibit 153.39, 150.69 and 149.76 W/(m·K), respectively. According to hardness tests, K00, K20 and K40 exhibit 87.9, 259.7 and 344.8 in Vickers values. In the result of salt spray tests to examine the effects on corrosion resistance, K00, K20 and K40 exhibit the grade of 3-5, 2.0-9.8 and 10, respectively. The mutual relation of the above results was analyzed. It is found that the surface treatments do not affect the thermal conductivity of aluminum and result in the improvement of physical properties. As a result of the technology, the surface improvement of aluminum alloy specimen is achieved without thermal degradation. It validates the ability of the aluminum plate heat exchangers with surface treatment to enhance the corrosion resistance. Present work is performed as the first fundamental threshold in the process of aluminum plate heat exchangers development to check out its possibility, therefore the next step-experimental and numerical study of practical aluminum plate heat exchangers will be made.

  17. Evaluation of the corrosion resistance of the galvanized SS400 steel in NaCl solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seung Mo; Jang, Chang Heui; Kim, In Sup [KAIST, Taejon (Korea, Republic of); Lee, Kyung Ho; Choi, Byung Il [Korea Hydro and Nuclear Power Co., Taejon (Korea, Republic of)

    2006-07-01

    A typical CANDU plant generates about 5,000 spent fuel bundles annually, which are stored in a spent fuel pool. Because the storage capacity of a spent pool is 10 years of spent fuel bundles, the Silo type storage modules are used to store the extra fuel bundles. In a multi-unit site like Wolsong, the extra space needed for the Silo type storage modules are ever increasing with the operating years. Therefore a more space effective storage system is necessary to accommodate all the extra spent fuels from the four CANDU units at site. A new dry storage system, MACSTOR/KN-400 (M/KN- 400) that is based upon MACSTOR design concept was developed. M/KN-400 will be built at the seaside in Wolsong site and galvanized carbon steel will be used for storage cylinder material to protect from the corrosion. Generally, galvanized carbon steels, in which the Zn layer on the surface acts as a sacrificial anode, are known to have good corrosion resistance in the atmospheric or aqueous conditions. However, in the brine condition containing chloride ions or steam environment, the Zn layer can be damaged. Therefore, considering the seaside atmosphere in which the storage system are located, the integrity of the storage cylinder is likely to be affected by the corrosion caused by the salt included in the atmosphere. In this study, electrochemical corrosion tests were performed on the galvanized carbon steels to estimate the corrosion resistance of the storage cylinder.

  18. Chromium-modified a-C films with advanced structural, mechanical and corrosive-resistant characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Miao Yi [International Chinese-Belarusian scientific laboratory on vacuum-plasma technology, Nanjing University of Science and Technology, Nanjing 210094 (China); Francisk Skorina Gomel State University, Gomel 246019 (Belarus); Jiang, Xiaohong, E-mail: jxh0668@sina.com [International Chinese-Belarusian scientific laboratory on vacuum-plasma technology, Nanjing University of Science and Technology, Nanjing 210094 (China); Francisk Skorina Gomel State University, Gomel 246019 (Belarus); Piliptsou, D.G., E-mail: pdg_@mail.ru [International Chinese-Belarusian scientific laboratory on vacuum-plasma technology, Nanjing University of Science and Technology, Nanjing 210094 (China); Francisk Skorina Gomel State University, Gomel 246019 (Belarus); Zhuang, Yuzhao; Rogachev, A.V.; Rudenkov, A.S. [International Chinese-Belarusian scientific laboratory on vacuum-plasma technology, Nanjing University of Science and Technology, Nanjing 210094 (China); Francisk Skorina Gomel State University, Gomel 246019 (Belarus); Balmakou, A. [Faculty of Material Science and Technology, Slovak University of Technology, Trnava 91724 (Slovakia)

    2016-08-30

    Highlights: • Influence of the chromium interlayer on the structure and mechanical properties of a-C:Cr films. • Residual stress and wear of a-C:Cr and Cr/a-C varies due to their phase and surface morphology. • Chromium-modified a-C films with advanced structural, mechanical and corrosive-resistant characteristics. - Abstract: To improve structural, mechanical and chemical properties of diamond-like carbon films, we developed amorphous carbon chromium-modified composite films fabricated by means of cathode magnetic filtered arc deposition. The properties were analyzed by Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy for the purpose of the structure characterization, elemental analysis and topology examination. Moreover, we also assessed residual stress, the coefficient of friction, hardness, the elastic modulus and corrosion parameters through X-ray double-crystal surface profilometry, tribo-testing, nanoindenter-testing, as well as contact angle measurements and potentiodynamic polarization analysis. As a result of a comparative analysis, we revealed a substantial improvement in the characteristics of developed composite films in comparison with amorphous carbon films. For example, Cr-modification is resulted, in greater integrated performance, toughness and corrosion resistance; the residual stress was reduced substantially.

  19. Grain boundary network control and its effect on intergranular corrosion resistance of Alloy 690

    Energy Technology Data Exchange (ETDEWEB)

    Shuang Xia; Hui Li; Chang Liang Hu; Ting Guang Lui; Bang Xin Zhou; Wen Jue Chen [Institute of Materials, Shanghai University, P.O. Box 269, 149 Yanchang Road (China)

    2011-07-01

    Grain boundary engineering was carried out in Alloy 690 tube sample and its effect on the intergranular corrosion resistance was investigated. Through small amount of deformation by cold drawing and short time annealing at high temperature, the proportion of low {Sigma} coincidence site lattice (CSL) grain boundaries of the Alloy 690 tube sample can be enhanced to about 75% which mainly were of {Sigma}3{sup n} (n = 1, 2, 3...) type. In this case, the grain boundary network (GBN) was featured by the formation of large grain-clusters produced by multiple twinning during recrystallization. All of the grains inside this kind of cluster had {Sigma}3{sup n} mutual mis-orientations, and hence all the boundaries inside the cluster were of {Sigma}3{sup n} type and form many interconnected {Sigma}3{sup n} type triple junctions. The weight losses due to grain dropping during intergranular corrosion for the samples with the modified GBN were much less than that with conventional microstructure. Based on the characterization by scanning electron microscope (SEM) and electron backscatter diffraction (EBSD) technique, it was shown that the large grain-cluster microstructure played a key role in enhancing the intergranular corrosion resistance: 1) the large grain-cluster can arrest the penetration of intergranular corrosion; 2) the large grain-cluster can protect the under layer microstructure. (authors)

  20. Corrosion Resistance of High Strength Concrete Containing Palm Oil Fuel Ash as Partial Cement Replacement

    Directory of Open Access Journals (Sweden)

    F. Mat Yahaya

    2014-06-01

    Full Text Available This experimental work investigates the influence of POFA as partial cement replacement towards corrosion resistance of high strength concrete. Plain high strength concrete (P0 with 100% ordinary Portland cement (control specimen and POFA high strength concrete containing POFA as partial cement replacement material were used. At the first stage, mix with 20% POFA (P20 has been identified as the best performing mix after cubes (150×150×150 mm containing various content of POFA as partial cement replacement were prepared, continuously water cured and subjected to compressive strength test at 28 days. At the second stage of study, control specimen (P0 and high strength concrete mix containing 20% POFA (P20 were prepared in form of cylinders with reinforcement bar buried in the middle for corrosion resistance test. Specimens were subjected to half cell potential technique following the procedures outlined in ASTM C876 (1994. Incorporation of POFA as partial cement replacement has contributed to densification of microstructure making the concrete denser thus exhibit higher resistance towards corrosion as compared to plain concrete.

  1. Plasma nitriding of a precipitation hardening stainless steel to improve erosion and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Cabo, Amado, E-mail: cabo@ionar.com.ar [IONAR S.A., Buenos Aires (Argentina); Bruhl, Sonia P.; Vaca, Laura S.; Charadia, Raul Charadia, E-mail: sonia@frcu.utn.erdu.ar, E-mail: vacal@frcu.utn.edu.ar, E-mail: charadia@frcu.urn.edu.ar, E-mail: dalibone@frcu.utn.edu.ar [Surface Engineering Group (GIS), Universidad Tecnologica Nacional, Facultad Regional Concepcion del Uruguay (Argentina)

    2010-07-01

    Precipitation hardening stainless steels are used as structural materials in the aircraft and the chemical industry because of their good combination of mechanical and corrosion properties. The aim of this work is to analyze the structural changes produced by plasma nitriding in the near surface of Thyroplast PH X Supra®, a PH stainless steel from ThyssenKrupp, and to study the effect of nitriding parameters in wear and corrosion resistance. Samples were first aged and then nitriding was carried out in an industrial facility at two temperatures, with two different nitrogen partial pressures in the gas mixture. After nitriding, samples were cut, polished, mounted in resin and etched with Vilella reagent to reveal the nitrided case. Nitrided structure was also analyzed with XRD. Erosion/Corrosion was tested against sea water and sand flux, and corrosion in a salt spray fog (ASTM B117). All nitrided samples presented high hardness. Samples nitrided at 390 deg C with different nitrogen partial pressure showed similar erosion resistance against water and sand flux. The erosion resistance of the nitrided samples at 500 deg C was the highest and XRD revealed nitrides. Corrosion resistance, on the contrary, was diminished; the samples suffered of general corrosion during the salt spray fog test. (author)

  2. Fabrication of biomimetic hydrophobic films with corrosion resistance on magnesium alloy by immersion process

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yan, E-mail: liuyan2000@jlu.edu.cn [Key Laboratory for Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Lu Guolong; Liu Jindan; Han Zhiwu; Liu Zhenning [Key Laboratory for Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer We have developed a facile and simple method of creating a hydrophobic surface on a magnesium alloy by an immersion process at room temperature. Black-Right-Pointing-Pointer The distribution of the micro-structure and the roughness of the surface play critical roles in transforming from hydrophilic to hydrophobic. Black-Right-Pointing-Pointer The hydrophobic coatings possess better corrosion resistance than magnesium alloy matrix. - Abstract: Biomimetic hydrophobic films of crystalline CeO{sub 2} were prepared on magnesium alloy by an immersion process with cerium nitrate solution and then modified with DTS (CH{sub 3}(CH{sub 2}){sub 11}Si(OCH{sub 3}){sub 3}). The CeO{sub 2} films fabricated with 20-min immersion yield a water contact angle of 137.5 {+-} 2 Degree-Sign , while 20-min DTS treatment on top of CeO{sub 2} can further enhance the water contact angle to 146.7 {+-} 2 Degree-Sign . Then corrosion-resistant property of these prepared films against NaCl solution was investigated and elucidated using electrochemical measurements.

  3. Mechanical properties and corrosion resistance of hot extruded Mg–2.5Zn–1Ca alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dexue, E-mail: dexeliu@hotmail.com [State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093-0411 (United States); Guo, Chenggong; Chai, Liqiang [State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); Sherman, Vincent R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093-0411 (United States); Qin, Xiaoqiong; Ding, Yutian [State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); Meyers, Marc A. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093-0411 (United States)

    2015-05-15

    Highlights: • MgZnCa alloy was extruded into precise microtube for resorbable stent applications. • Interconnection between micro-structure and corrosion properties was revealed. • Both strength and ductility were simultaneously improved by processing sequence. • Better corrosion resistance in PBS solution was achieved after grain refining. - Abstract: It is demonstrated that the mechanical properties and corrosion resistance of Mg–2.5 wt%Zn–1 wt%Ca alloy are enhanced by the microstructural changes imparted by hot extrusion. A processing procedure is developed to form hollow tubes with an outer diameter of ∼2.0 mm and wall thickness of ∼0.1 mm, which is well suited for subsequent stent manufacturing. The influence of thermal and mechanical processing on corrosion and plasticity was found to be associated with grain-size reduction and the redistribution of intermetallic particles within the microstructure, providing significant improvement of performance over the cast alloy. Observation of the fracture surfaces reveals a mode transition from brittle (cast) to ductile (processed). Enhanced mechanical properties and decreased resorption rate represent significantly improved performance of this alloy after the novel processing sequence. Based on the improved properties, the produced Mg alloy is more suitable for practical in vivo applications.

  4. Effect of Nitrogen Ion Implantation on the Structure and Corrosion Resistance of Equiatomic NiTi Shape Memory Alloy

    Institute of Scientific and Technical Information of China (English)

    HUA Yingjie; WANG Chongtai; MENG Changgong; YANG Dazhi

    2006-01-01

    To protect the surface of NiTi from corrosion, an ion implantation method was proposed. In the present work, a surface oxidized sample was implanted with nitrogen at energy of 100 keV. The corrosion resistance property was examined by the anodic polarization method in a simulated body fluid (SBF) at a temperature of 37 ℃ and contrasted to non-implanted NiTi samples. The composition and structure of the implanted layers were investigated by XPS. The experimental results from the electrochemical measurements provide an evidence that the nitrogen ion-implantation increases the corrosion resistance of NiTi shape memory alloy.

  5. Ion beam analysis, corrosion resistance and nanomechanical properties of TiAlCN/CNx multilayer grown by reactive magnetron sputtering

    OpenAIRE

    Alemon, B.; Flores, M.; Canto, C.; E. Andrade; O.G. de Lucio; M.F. Rocha; Broitman, Esteban

    2014-01-01

    A novel TiAlCN/CNx, multilayer coating, consisting of nine TiAlCN/CNx periods with a top layer 0.5 mu m of CNx, was designed to enhance the corrosion resistance of CoCrMo biomedical alloy. The multilayers were deposited by dc and RF reactive magnetron sputtering from Ti0.5Al0.5 and C targets respectively in a N-2/Ar plasma. The corrosion resistance and mechanical properties of the multilayer coatings were analyzed and compared to CoCrMo bulk alloy. Ion beam analysis (IBA) and X-ray diffractio...

  6. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo.

    Science.gov (United States)

    Zhao, Bingjing; Wang, Hong; Qiao, Ning; Wang, Chao; Hu, Min

    2017-01-01

    The purpose of this study is to determine the corrosion resistance of Ti-6Al-4V alloy fabricated with electron beam melting and selective laser melting for implantation in vivo. Ti-6Al-4V alloy specimens were fabricated with electron beam melting (EBM) and selective laser melting (SLM). A wrought form of Ti-6Al-4V alloy was used as a control. Surface morphology observation, component analysis, corrosion resistance experimental results, electrochemical impedance spectroscopy, crevice corrosion resistance experimental results, immersion test and metal ions precipitation analysis were processed, respectively. The thermal stability of EBM specimen was the worst, based on the result of open circuit potential (OCP) result. The result of electrochemical impedance spectroscopy indicated that the corrosion resistance of the SLM specimen was the best under the low electric potential. The result of potentiodynamic polarization suggested that the corrosion resistance of the SLM specimen was the best under the low electric potential (1.5V).The crevice corrosion resistance of the EBM specimen was the best. The corrosion resistance of SLM specimen was the best, based on the result of immersion test. The content of Ti, Al and V ions of EBM, SLM and wrought specimens was very low. In general, the scaffolds that were fabricated with EBM and SLM had good corrosion resistance, and were suitable for implantation in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Preparation of iron aluminate (FeAl2O4) nanoparticles from FeAl2O4 hollow particles fabricated by using a spray pyrolysis process

    Science.gov (United States)

    Yun, Jaecheol; Kim, Yangdo; Park, Dahee; Yun, Jung-Yeul

    2015-05-01

    Iron aluminate (FeAl2O4) hollow particles with a spinel structure were synthesized by using a spray pyrolysis process. FeAl2O4 hollow particles were formed at a reaction temperature of 900 °C at a flow rate of 40 L/min as a result of the rapid solvent evaporation and decomposition gases from the droplets in the spray solution prepared from metal salts and organic reagents. FeAl2O4 hollow particles were fabricated at a reaction temperature of 900 °C with a flow rate of 40 L/min. The FeAl2O4 hollow particles were heat treated for 3 hours at 600 °C in a 5% H2/Ar atmosphere to form the crystal particles. Subsequently, FeAl2O4 nanoparticles were fabricated from the FeAl2O4 hollow particles by using the wet milling process. After milling for 60 minutes, transmission electron microscopy revealed the FeAl2O4 particles to have a mean size of approximately 50 nm. The FeAl2O4 nanoparticles were fabricated successfully by using a two-step process, spray pyrolysis and wet milling.

  8. [The effect on anti-acid corrosion resistance of Ni-Cr alloy coating titanium].

    Science.gov (United States)

    Hu, Bin; Zhang, Fu-qiang

    2003-04-01

    The aim of this study was to investigate the variation of the corrosion resistance of Ni-Cr alloy in acid environment before and after coating titanium in vitro. 1. Surface treatment using sol-gel technique of coating titanium. The steps were as follows: (1) Pre-treatment: sanding, washing and activation in order to remove the oxidative product; (2) The preparation of sol: some small charged particles produced by the hydrolytic reaction, and formed sol. These particles would congeal into extremely small ones (diameter usually is 5 microns); (3) Coating; (4) Heat treatment: The organism was resolved and volatilizeed at high temperature, and the atoms of Ti were left. These atoms of Ti were very active and could combine firmly with the atoms on the surface awaiting of treatment. 2. artificial saliva; pH = 7.0 and pH = 5.6; temperature: 36.5 degrees C 3. Electrochemical test: polarization curve; instrument: ZF-3 poteniostat. Before coating titanium, when pH was 7.0, the electrode potential of Ni-Cr alloy was -160 mV, and the self-corrosion current density was 0.262 microA cm-2; when pH = 5.6, the data were -182 mV and 0.352 microA cm-2, respectively. This result showed that when pH value reduced, the potential and current density descended, too. This indicated that the material was easy to be corroded. After coating titanium, when pH value was 7.0, the potential was -71 mV, the self-corrosion current density was 0.152 microA cm-2; when pH = 5.6, the data were -89 mV and 0.174 microA cm-2. This indicated that the corrosion rate of material descended evidently after coating titanium in acid environment. (1) Not only before coating Ti but also after coating, the corrosion resistance of Ni-Cr alloy would descend in acid environment;(2) In acid environment, the corrosion resistance of Ni-Cr alloy after coating titanium was superior to that of the material before coating. So was in neutral environment.

  9. Corrosion resistance of the composite materials: nanocrystalline powder – polymer type in acid environment

    Directory of Open Access Journals (Sweden)

    B. Ziębowicz

    2009-10-01

    Full Text Available Purpose: The paper presents corrosion resistance of composite materials Fe73.5Cu1Nb3Si13.5B9 – PEHD type in sulphuric acid and hydrochloric acid environments.Design/methodology/approach: Composite materials Fe73.5Cu1Nb3Si13.5B9 – PEHD type were manufactured by one-sided uniaxal pressing. The amount of polymer matrix was 2.5%, 5.0%, 7.5%, wt. Powder of the Fe73.5Cu1Nb3Si13.5B9 was made by the high-energy grinding in the shaker type 8000SPEX CertiPrep Mixer/Mill for 1 h, 3 h, 5 h. Composite materials were placed in a corrosive environment and two tests were carried out as specified below: test at the temperature of 25°C, 0.1 M solution of hydrochloric acid HCl, time 348 h; test temperature 25°C, 0.1 M solution of sulphuric acid H2SO4, time 348 h, test temperature 25°C.Findings: Obtained results of corrosion resistance allow to evaluate corrosion wear of composite materials FINEMET (Fe73.5Cu1Nb3Si13.5B9 – PEHD in acidic solutions of 0.1M HCl and 0.1M H2SO4. It was found that the composite materials with 7.5% wt. of polyethylene portion show the best corrosion resistance.Research limitations/implications: Composite materials Fe73.5Cu1Nb3Si13.5B9– PEHD type manufacturing greatly expand the application possibilities of soft magnetic materials nanocrystalline powders however further examination to obtain improved properties of magnetic composite materials and investigations of new machines and devices constructions with these materials elements are still needed.Originality/value: Results allow to complete data concerning composite materials nanocrystalline powder – polymer type which are an attractive alternative for traditional materials with specific magnetic properties. Results are the base for further investigations of the impact of corrosion environment on the magnetic properties such composite materials.

  10. Oxidation Control of Atmospheric Plasma Sprayed FeAl Intermetallic Coatings Using Dry-Ice Blasting

    Science.gov (United States)

    Song, Bo; Dong, Shujuan; Coddet, Pierre; Hansz, Bernard; Grosdidier, Thierry; Liao, Hanlin; Coddet, Christian

    2013-03-01

    The performance of atmospheric plasma sprayed FeAl coatings has been remarkably limited because of oxidation and phase transformation during the high-temperature process of preparation. In the present work, FeAl intermetallic coatings were prepared by atmospheric plasma spraying combined with dry-ice blasting. The microstructure, oxidation, porosity, and surface roughness of FeAl intermetallic coatings were investigated. The results show that a denser FeAl coating with a lower content of oxide and lower degree of phase transformation can be achieved because of the cryogenic, the cleaning, and the mechanical effects of dry-ice blasting. The surface roughness value decreased, and the adhesive strength of FeAl coating increased after the application of dry-ice blasting during the atmospheric plasma spraying process. Moreover, the microhardness of the FeAl coating increased by 72%, due to the lower porosity and higher dislocation density.

  11. Cost-effective solutions for corrosion-resistant expandable-screen base pipe in sour/brine service

    Energy Technology Data Exchange (ETDEWEB)

    Chitwood, G. [Halliburton Energy Services, Calgary, AB (Canada); Skogsberg, L. [Shell International E and P Inc., Calgary, AB (Canada)

    2004-07-01

    In order to remain competitive, oilfield operators use the lowest-cost materials that meet the technical needs of an operation. As field development expands into deeper and more corrosive environments, there is a greater demand for corrosion-resistant alloys. The main environmental factors that affect stress corrosion cracking (SCC) behaviour of S31603 are hydrogen sulphide (H{sub 2}S) content, acidity, chloride concentration, oxygen contamination and temperature. In expandable sand control systems, new technology must compete with existing non-expandable screens that are low-cost to manufacture. The first choice for a corrosion-resistant alloy for base pipe in conventional sand screens is the low cost 13Cr which provides corrosion resistance in mild H{sub 2}S situations under a range of chloride and temperature conditions. The material, however, lacks ductility needed for 25 per cent expansion. Another option is to use 316L (UNS S31603), an alloy with sufficient ductility and strength, but with questionable corrosion resistance when it comes to chloride SCC. The potential application of S31603 in several projects was presented along with data needed to establish a performance envelope for this material which has been shown to be a cost-effective material for base pipes in sand-control screens. 3 refs., 2 tabs., 3 figs.

  12. A process for the production of a scale-proof and corrosion-resistant coating on graphite and carbon bodies

    Science.gov (United States)

    Fitzer, E.

    1981-01-01

    A process for the production of a corrosion resistant coating on graphite and carbon bodies is described. The carbon or graphite body is coated or impregnated with titanium silicide under the addition of a metal containing wetting agent in a nitrogen free atmosphere, so that a tight coating is formed.

  13. Improving the corrosion resistance of Mg–4.0Zn–0.2Ca alloy by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Y.H. [The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zhang, B.P., E-mail: zhangbp@sxicc.ac.cn [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, C.X. [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Geng, L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-12-01

    In this paper, corrosion resistance of the Mg–4.0Zn–0.2Ca alloy was modified by micro-arc oxidation (MAO) process. The microstructure and phase constituents of MAO layer were characterized by SEM, XRD and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of MAO treated Mg–4.0Zn–0.2Ca alloy in the simulated body fluid were characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure results indicated that a kind of ceramic film was composed by MgO and MgF{sub 2} was formed on the surface of Mg–4.0Zn–0.2Ca alloy after MAO treatment. The electrochemical test reveals that the corrosion resistance of MAO treated samples increase 1 order of magnitude. The mechanical intensity test showed that the MAO treated samples has suitable mechanical properties. - Highlights: • Ceramic layer which is composited by MgO and MgF{sub 2} is prepared to improve the corrosion resistance of Mg–4.0Zn–0.2Ca alloy. • MAO treatment does not affect the mechanical properties of the Mg–4.0Zn–0.2Ca alloy. • After 30-day immersion in SBF, the mechanical properties of MAO coated samples are still enough for bone fixed.

  14. Composite plasma electrolytic oxidation to improve the thermal radiation performance and corrosion resistance on an Al substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghyun [Department of Materials Science and Engineering, Pusan National University, Busan 46241 (Korea, Republic of); Sung, Dahye [Department of Materials Science and Engineering, Pusan National University, Busan 46241 (Korea, Republic of); Korea Institute of Industrial Technology (KITECH), Busan 46742 (Korea, Republic of); Lee, Junghoon [Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Kim, Yonghwan [Korea Institute of Industrial Technology (KITECH), Busan 46742 (Korea, Republic of); Chung, Wonsub, E-mail: wschung1@pusan.ac.kr [Department of Materials Science and Engineering, Pusan National University, Busan 46241 (Korea, Republic of)

    2015-12-01

    Highlights: • Composite plasma electrolytic oxidation was performed using dispersed CuO particles in convectional PEO electrolyte. • Thermal radiation performance and corrosion resistance were examined by FT-IR spectroscopy and electrochemical methods, respectively. • Deposited copper oxide on the surface of the Al substrate was enhanced the corrosion resistance and the emissivity compared with the conventional PEO. - Abstract: A composite plasma electrolytic oxidation (PEO) was performed for enhancing the thermal radiation performance and corrosion resistance on an Al alloy by dispersing cupric oxide (CuO) particles in a conventional PEO electrolyte. Cu-based oxides (CuO and Cu{sub 2}O) formed by composite PEO increased the emissivity of the substrate to 0.892, and made the surface being dark color, similar to a black body, i.e., an ideal radiator. In addition, the corrosion resistance was analyzed using potentio-dynamic polarization and electrochemical impedance spectroscopy tests in 3.5 wt.% NaCl aqueous solution. An optimum condition of 10 ampere per square decimeter (ASD) current density and 30 min processing time produced appropriate surface morphologies and coating thicknesses, as well as dense Cu- and Al-based oxides that constituted the coating layers.

  15. Computer Simulation and Experimental Validation on the Oxidation and Sulfate Corrosion Resistance of Novel Chromium Based High Temperature Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shizhong

    2013-02-28

    This report summarizes our recent works of ab initio molecular dynamics inter-atomic potentials development on dilute rare earth element yttrium (Y) etc. doped chromium (Cr) alloy systems, its applications in oxidation and corrosion resistance simulation, and experiment validation on the candidate systems. The simulation methods, experimental validation techniques, achievements already reached, students training, and future improvement are briefly introduced.

  16. Effect of additive on corrosion resistance of NiFe2O4 ceramics as inert anodes

    Institute of Scientific and Technical Information of China (English)

    XI Jin-hui; XIE Ying-jie; YAO Guang-chun; LIU Yi-han

    2008-01-01

    In order to improve the corrosion resistance of NiFe2O4 ceramics as inert anode, additive V2O5 was added to raw materials NiO and Fe2O3. The inert anodes of nickel-ferrite ceramics were prepared by powder metallurgic method and the static corrosion rate in Na3AlF6-Al2O3 was determined by mass loss measurement. The effect of V2O5 on sintering property and corrosion resistance was studied. The results show that V2O5 can promote the grain to develop completely and improve sintering property. EDS results show the reaction product Ni2FeVO6 distributes along the grain boundary. The corrosion tests show that V2O5 is beneficial to improving corrosion resistance remarkably. The reasons that V2O5 can improve the corrosion resistance must be V2O5 promoting the gains to develop completely and Ni2FeVO6 distributes along the grain boundary. The stable structure can control the chemical dissolution of ceramics anode and the reinforced grain boundary can control the grain-boundary corrosion rate.

  17. Ion beam analysis, corrosion resistance and nanomechanical properties of TiAlCN/CNx multilayer grown by reactive magnetron sputtering

    Science.gov (United States)

    Alemón, B.; Flores, M.; Canto, C.; Andrade, E.; de Lucio, O. G.; Rocha, M. F.; Broitman, E.

    2014-07-01

    A novel TiAlCN/CNx multilayer coating, consisting of nine TiAlCN/CNx periods with a top layer 0.5 μm of CNx, was designed to enhance the corrosion resistance of CoCrMo biomedical alloy. The multilayers were deposited by dc and RF reactive magnetron sputtering from Ti0.5Al0.5 and C targets respectively in a N2/Ar plasma. The corrosion resistance and mechanical properties of the multilayer coatings were analyzed and compared to CoCrMo bulk alloy. Ion beam analysis (IBA) and X-ray diffraction tests were used to measure the element composition profiles and crystalline structure of the films. Corrosion resistance was evaluated by means of potentiodynamic polarization measurements using simulated body fluid (SBF) at typical body temperature and the nanomechanical properties of the multilayer evaluated by nanoindentation tests were analyzed and compared to CoCrMo bulk alloy. It was found that the multilayer hardness and the elastic recovery are higher than the substrate of CoCrMo. Furthermore the coated substrate shows a better general corrosion resistance than that of the CoCrMo alloy alone with no observation of pitting corrosion.

  18. 77 FR 27438 - Certain Corrosion-Resistant Carbon Steel Flat Products From Korea: Final Results of Expedited...

    Science.gov (United States)

    2012-05-10

    ..., plated, or coated with corrosion-resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel- or... nonmetallic substances in addition to the metallic coating, in coils (whether or not in successively... other nonmetallic substances in addition to the metallic coating. Excluded from the order are...

  19. 76 FR 55004 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary...

    Science.gov (United States)

    2011-09-06

    ... rectangular shape, either clad, plated, or coated with corrosion-resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel- or iron-based alloys, whether or not corrugated or painted, varnished or coated with plastics or other nonmetallic substances in addition to the metallic coating, in...

  20. 76 FR 15291 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Science.gov (United States)

    2011-03-21

    ... rectangular shape, either clad, plated, or coated with corrosion-resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel- or iron-based alloys, whether or not corrugated or painted, varnished or coated with plastics or other nonmetallic substances in addition to the metallic coating, in...

  1. 75 FR 13490 - Certain Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Notice of...

    Science.gov (United States)

    2010-03-22

    ... with corrosion-resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel- or iron-based... substances in addition to the metallic coating, in coils (whether or not in successively superimposed layers..., varnished or coated with plastics or other nonmetallic substances in addition to the metallic coating....

  2. 77 FR 14501 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Science.gov (United States)

    2012-03-12

    ... coated with corrosion-resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel- or iron-based... substances in addition to the metallic coating, in coils (whether or not in successively superimposed layers..., varnished or coated with plastics or other nonmetallic substances in addition to the metallic coating....

  3. 77 FR 25405 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2012-04-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...'') published a notice of initiation of the administrative review of the antidumping duty order on corrosion...

  4. 75 FR 25841 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2010-05-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...'') published a notice of initiation of the administrative review of the antidumping duty order on corrosion...

  5. 76 FR 21332 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-04-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...'') published a notice of initiation of the administrative review of the antidumping duty order on corrosion...

  6. EXAFS study of ion beam mixed Fe/Al multilayers

    CERN Document Server

    Arcon, I; Zalar, A; Kodre, A; Jagielski, J

    2003-01-01

    Composition and structure of Fe/Al multilayer coatings after ion beam mixing at different temperatures are studied. Samples were prepared by consecutive sputter deposition of Fe and Al on well-polished silicon substrate. The samples were ion beam mixed with 330 keV Ar ions at the dose of 3x10 sup 1 sup 5 ions/cm sup 2 in the temperature range between room temperature and 400 deg. C. AES depth profiles showed that mixing between Fe and Al layers started at 100 deg. C and was complete at 400 deg. C. Fe K-edge EXAFS, however, reveals that Fe bcc metallic phase is still present at all temperatures. The amount of an additional Fe-Al phase is about 20% up to 300 deg. C, increasing to 50% at 400 deg. C.

  7. Effect of Pyrrole and N-Methylpyrrole Coatings on Corrosion Resistance of Mild Steel

    Institute of Scientific and Technical Information of China (English)

    AliAshrafi; M.A.Golozarl; S.Mallakpour; AliGhasemi

    2004-01-01

    Electrochemical polymerizations of various ratios of pyrrole and methylpyrrole monomers were performed in aqueous toluene-4-sulfinic acid sodium salt (T4SNa) electrolyte, using galvanostatic method, pH of electrolyte was adjusted by p-toluene sulfonic acid (PTSA). In order to prevent corrosion of mild steel substrates during coating deposition, specimens were pretreated in 0.5M oxalic acid solution, employing galvanostatic method. This would passivate the steel substrate and facilitate the coating process as well. Corrosion resistance of coated substrates was investigated in 1M NaCl solution using Tafel polarization technique. In addition, using scanning electron microscopy (SEM), morphological characterization of coatings produced, was investigated. Regarding the corrosion characteristics, results obtained revealed that the ratio of 1 to 1(Pyrrole/Methylpyrrole) could play an important role.

  8. Effect of Mn Content and Solution Annealing Temperature on the Corrosion Resistance of Stainless Steel Alloys

    Directory of Open Access Journals (Sweden)

    Ihsan-ul-Haq Toor

    2014-01-01

    Full Text Available The corrosion behavior of two specially designed austenitic stainless steels (SSs having different Nickel (Ni and Manganese (Mn contents was investigated. Prior to electrochemical tests, SS alloys were solution-annealed at two different temperatures, that is, at 1030°C for 2 h and 1050°C for 0.5 h. Potentiodynamic polarization (PD tests were carried out in chloride and acidic chloride, whereas linear polarization resistance (LPR and electrochemical impedance spectroscopy (EIS was performed in 0.5 M NaCl solution at room temperature. SEM/EDS investigations were carried out to study the microstructure and types of inclusions present in these alloys. Experimental results suggested that the alloy with highest Ni content and annealed at 1050°C/0.5 hr has the highest corrosion resistance.

  9. Influence of Nano-Al Concentrates on the Corrosion Resistance of Epoxy Coatings

    Institute of Scientific and Technical Information of China (English)

    Yongchun Liang; Fu-Chun Liu; Ming Nie; Shuyan Zhao; Jiedong Lin; En-Hou Han

    2013-01-01

    A two-stage process was used to produce nano-composite epoxy coatings.The first step involved preparing nano-Al concentrates with high concentration and low viscosity,and the second step produced nanocomposite epoxy coatings by mixing the nano-Al concentrates and epoxy resin.Later,the coating was examined with immersion and salt spray tests.The coatings were characterized by electrochemical impedance spectroscopy (EIS),scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS).The results showed that the 5% nano-Al significantly improves the corrosion resistance of the coatings.There are two effects of nano-Al on the coating.Nano-Al is corroded initially to protect the substrate from corrosion,and then the aluminum oxide and aluminum hydroxide were produced after corrosion of nano-Al,which hindered the transmission of corrosion fluid into the coatings.

  10. Evaluation of High Temperature Corrosion Resistance of Finned Tubes Made of Austenitic Steel And Nickel Alloys

    Directory of Open Access Journals (Sweden)

    Turowska A.

    2016-06-01

    Full Text Available The purpose of the paper was to evaluate the resistance to high temperature corrosion of laser welded joints of finned tubes made of austenitic steel (304,304H and nickel alloys (Inconel 600, Inconel 625. The scope of the paper covered the performance of corrosion resistance tests in the atmosphere of simulated exhaust gases of the following chemical composition: 0.2% HCl, 0.08% SO2, 9.0% O2 and N2 in the temperature of 800°C for 1000 hours. One found out that both tubes made of austenitic steel and those made of nickel alloy displayed good resistance to corrosion and could be applied in the energy industry.

  11. Effects of surface topography and vibrations on wetting: Superhydrophobicity, icephobicity and corrosion resistance

    Science.gov (United States)

    Ramachandran, Rahul

    Concrete and metallic materials are widely used in construction and water industry. The interaction of both these materials with water and ice (or snow) produces undesirable results and is therefore of interest. Water that gets absorbed into the pores of dry concrete expands on freezing and can lead to crack formation. Also, the ice accretion on concrete surfaces such as roadways can have disastrous consequence. Metallic components used in the water industry undergo corrosion due to contact with aqueous corrosive solutions. Therefore, it is desirable to make concrete water/ice-repellent, and to make metallic surfaces corrosion-resistant. Recent advances in micro/nanotechnology have made it possible to design functional micro/nanostructured surfaces with micro/nanotopography providing low adhesion. Some examples of such surfaces are superhydrophobic surfaces, which are extremely water repellent, and icephobic surfaces, which have low ice adhesion, repel incoming water droplets before freezing, or delay ice nucleation. This dissertation investigates the effects of surface micro/nanotopography and small amplitude fast vibrations on the wetting and adhesion of concrete with the goal of producing hydrophobic and icephobic concrete, and on the wetting of metallic surfaces to prevent corrosion. The relationship between surface micro/nanotopography and small fast vibrations is established using the method of separation of motions. Both these small scale effects can be substituted by an effective force or energy. The structure-property relationships in materials and surfaces are established. Both vibrations as well as surface micro/nanopatterns can affect wetting properties such as contact angle and surface free energy. Hydrophobic engineered cementitious composite samples are produced by controlling their surface topography and surface free energy. The surface topography is controlled by varying the concrete mixture composition. The surface free energy of concrete is

  12. Martensitic stainless steel seamless linepipe with superior weldability and CO{sub 2} corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Y.; Kimura, M.; Koseki, T.; Toyooka, T.; Murase, F. [Kawasaki Steel Corp., Handa, Aichi (Japan)

    1997-08-01

    Two types of new martensitic stainless steel with good weldability and superior corrosion resistance have been developed for line pipe application. Both steels are suitable for welding without preheating owing to lowering C and N contents, and they show good low temperature toughness in welds without PWHT. One is applied to sweet environments. It gives better resistance to CO{sub 2} corrosion than the 13Cr martensitic stainless steel for OCTG. Lowering C and addition of Ni contribute to reduction of general corrosion rate in the CO{sub 2} environment. The addition of Cu improves the pitting resistance. The other is applied to light sour environments. It gives good SSC resistance in welds owing to the improvement of the pitting resistance due to Mo addition. The seamless pipes of these martensitic stainless steels are applicable as substitutes for a part of duplex stainless steel flow lines.

  13. Corrosion resistance of premodeled wires made of stainless steel used for heart electrotherapy leaders

    Science.gov (United States)

    Przondziono, J.; Walke, W.; Młynarski, R.; Szatka, W.

    2012-05-01

    The purpose of the study is to evaluate resistance to electrochemical corrosion of wire made of X10CrNi18-8 stainless steel designed for use in cardiology treatment. The influence of strain formed in the premodeling process and methods of wire surface preparation to corrosive resistance in artificial plasma solution were analysed. Wire corrosion tests were carried out in the solution of artificial plasma. Resistance to electrochemical corrosion was evaluated on the ground of recorded curves of anodic polarization by means of potentiodynamic method. Potentiodynamic tests carried out enabled to determine how the resistance to pitting corrosion of wire changes, depending on strain formed in the premodeling process as well as on the method of wire surface preparation. For evaluation of phenomena occurring on the surface of tested steel, electrochemical impedance spectroscopy (EIS) was applied. Deterioration of corrosive properties of wire along with the increase in the formed strain hardening was observed.

  14. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen

    DEFF Research Database (Denmark)

    Chan, Chi-Wai; Lee, Seunghwan; Smith, Graham

    2016-01-01

    , the quaternary Ti-Nb-Zr-Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must...... be resolved before commercialising in the orthopaedic market. In this work, a newly developed laser surface treatment technique was employed to improve the surface properties of Ti-35.3Nb-7.3Zr-5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing...... findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT....

  15. Chromium-modified a-C films with advanced structural, mechanical and corrosive-resistant characteristics

    Science.gov (United States)

    Ming, Miao Yi; Jiang, Xiaohong; Piliptsou, D. G.; Zhuang, Yuzhao; Rogachev, A. V.; Rudenkov, A. S.; Balmakou, A.

    2016-08-01

    To improve structural, mechanical and chemical properties of diamond-like carbon films, we developed amorphous carbon chromium-modified composite films fabricated by means of cathode magnetic filtered arc deposition. The properties were analyzed by Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy for the purpose of the structure characterization, elemental analysis and topology examination. Moreover, we also assessed residual stress, the coefficient of friction, hardness, the elastic modulus and corrosion parameters through X-ray double-crystal surface profilometry, tribo-testing, nanoindenter-testing, as well as contact angle measurements and potentiodynamic polarization analysis. As a result of a comparative analysis, we revealed a substantial improvement in the characteristics of developed composite films in comparison with amorphous carbon films. For example, Cr-modification is resulted, in greater integrated performance, toughness and corrosion resistance; the residual stress was reduced substantially.

  16. Influence of the layer architecture of DLC coatings on their wear and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Bobzin, Kirsten; Bagcivan, Nazlim; Theiss, Sebastian; Weiss, Raphael [RWTH Aachen (Germany). Inst. fuer Oberflaechentechnik; Depner, Udo; Trossmann, Torsten; Ellermeier, Joerg; Oechsner, Matthias [Technische Univ. Darmstadt (Germany). Inst. fuer Werkstoffkunde

    2012-06-15

    In this work, the influence of diamond-like carbon top layers deposited on two different types of layer architecture on wear and corrosion resistance is investigated. Physical vapour deposition coatings with a-C:H top layer of various thicknesses were deposited on plasma nitrided 42CrMo4 by reactive magnetron sputter ion plating. Beneath the top layer, an architecture with and without a-C interlayers was deposited. Investigations using potentiodynamic polarisation testing in artificial seawater as well as an impact tribometer show that it is possible to protect low-alloy heat treatable steel from both corrosion and wear by using pretreatment and an appropriate diamond-like carbon coating. Thicker a-C:H top layers as well as the addition of a-C interlayers resulted in an overall improvement in the coating behaviour. (orig.)

  17. The influence of sodium chlorides fog on corrosion resistance of heat exchangers used in automotive

    Science.gov (United States)

    Peta, Katarzyna; Grochalski, Karol; Piasecki, Adam; Żurek, Jan

    2017-01-01

    In the work, the most important factors which influence on the exploitative durability of heat exchangers are classified. Particular attention was paid to the compounds of sodium chloride used in the winter season for road maintenance. In order to determine their impact on automotive heat exchanger corrosion resistance, a test of heaters in a salt chamber which imitates the conditions of their work was realized. It also allows to verify the durability of these products. To evaluate the corrosion changes, observation with the use of light microscopy and scanning microscopy SEM were made supplemented with microanalysis of chemical composition by EDS spectroscopy method. Critical areas in the heat exchangers which are mostly exposed to damage including the formation of local corrosion pits were located and analyzed.

  18. The influence of sodium chlorides fog on corrosion resistance of heat exchangers used in automotive

    Directory of Open Access Journals (Sweden)

    Peta Katarzyna

    2017-01-01

    Full Text Available In the work, the most important factors which influence on the exploitative durability of heat exchangers are classified. Particular attention was paid to the compounds of sodium chloride used in the winter season for road maintenance. In order to determine their impact on automotive heat exchanger corrosion resistance, a test of heaters in a salt chamber which imitates the conditions of their work was realized. It also allows to verify the durability of these products. To evaluate the corrosion changes, observation with the use of light microscopy and scanning microscopy SEM were made supplemented with microanalysis of chemical composition by EDS spectroscopy method. Critical areas in the heat exchangers which are mostly exposed to damage including the formation of local corrosion pits were located and analyzed.

  19. Effect of high repetition laser shock peening on biocompatibility and corrosion resistance of magnesium

    Science.gov (United States)

    Caralapatti, Vinodh Krishna; Narayanswamy, Sivakumar

    2017-02-01

    Magnesium, as a biomaterial has the potential to replace conventional implant materials owing to its numerous advantages. However, high corrosion rate is a major obstacle that has to be addressed for its implementation as implants. This study aims to evaluate the feasibility and effects of High Repetition Laser Shock Peening (HRLSP) on biocompatibility and corrosion resistance of Mg samples and as well as to analyze the effect of operational parameters such as peening with overlap on corrosion rate. From the results obtained using hydrogen evolution and mass loss methods, it was found that corrosion rates of both 0% overlap and 66% overlap peened samples reduced by more than 50% compared to that of unpeened sample and sample peened with 66% overlap exhibited least corrosion. The biocompatibility of peened Mg samples was also enhanced as there was neither rapid pH variation nor large hydrogen bubble formation around samples.

  20. Effect of Pyrrole and N-Methylpyrrole Coatings on Corrosion Resistance of Mild Steel

    Institute of Scientific and Technical Information of China (English)

    Ali Ashrafi; M.A.Golozar; S.Mailakpour; Ali Ghasemi

    2004-01-01

    Electrochemical polymerizations of various ratios of pyrrole and methylpyrrole monomers were performed in aqueous toluene-4-sulfinic acid sodium salt (T4SNa) electrolyte, using galvanostatic method. pH of electrolyte was adjusted by p-toluene sulfonic acid (PTSA). In order to prevent corrosion of mild steel substrates during coating deposition,specimens were pretreated in 0.5M oxalic acid solution, employing galvanostatic method. This would passivate the steel substrate and facilitate the coating process as well. Corrosion resistance of coated substrates was investigated in 1M NaCl solution using Tafel polarization technique. In addition, using scanning electron microscopy (SEM), morphological characterization of coatings produced, was investigated. Regarding the corrosion characteristics, results obtained revealed that the ratio of 1 to 1 (Pyrrole/Methylpyrrole) could play an important role.

  1. Microstructure and intergranular corrosion resistance of UNS S17400 (17-4PH) stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, S.S.M., E-mail: ssmtavares@terra.com.b [Universidade Federal Fluminense - Programa de Pos-graduacao em Engenharia Mecanica (PGMEC), Rua Passo da Patria, 156 - CEP 24210-240 - Niteroi/RJ (Brazil); Silva, F.J. da; Scandian, C. [Universidade Federal do Espirito Santo - Departamento de Engenharia Mecanica - Av. Fernando Ferrrari, 514 - CEP 29075-910 - Vitoria/ES (Brazil); Silva, G.F. da [Universidade Federal Fluminense - Programa de Pos-graduacao em Engenharia Mecanica (PGMEC), Rua Passo da Patria, 156 - CEP 24210-240 - Niteroi/RJ (Brazil); Abreu, H.F.G. de [Universidade Federal do Ceara - Departamento de Engenharia Metalurgica e Materiais - Campus do Pici, Bloco 702 - CEP 60455-760 - Fortaleza/CE (Brazil)

    2010-11-15

    UNS S17400 or 17-4PH is a precipitation hardening martensitic stainless steel with many industrial applications. Quite different mechanical properties can be produced in this material by varying the aging temperature. In this work, the influence of aging temperature on the intergranular corrosion susceptibility was evaluated by electrochemical and metallographic tests. The microstructural features were investigated by X-ray diffraction, optical and scanning electron microscopy. Intergranular chromium carbide precipitation occurs in specimens aged at high temperatures, although NbC carbides were also observed. The results obtained by double loop electrochemical potentiodynamic reactivation tests (DL-EPR) show that the susceptibility to intergranular corrosion resistance increases with the increase of aging temperature. Healing due to Cr diffusion in the 600-650 {sup o}C range was not observed by DL-EPR tests.

  2. Evaluation of the corrosion resistance of AISI 316 stainless steel filters

    Directory of Open Access Journals (Sweden)

    Luzinete Pereira Barbosa

    2005-06-01

    Full Text Available In this investigation, the corrosion resistance of AISI 316 SS filters prepared with powders in the size ranges 74-44 µm and 210-105 µm and compacted with pressures of 300 MPa and 400 MPa has been evaluated in naturally aerated 0.5 M H2SO4 solution at 25 °C. Weight loss of filters manufactured with compacting pressure of 400 MPa were significantly higher than that of filters compacted at 300 MPa. The filter compacted at 400 MPa had higher carbon and nitrogen contents compared to those compacted at 300 MPa. The former also had chromium rich precipitates and oxides in the grain boundaries. The pores in filters compacted at 400 MPa were smaller than in filters compacted at 300 MPa. Smaller pores favor the formation of concentration cells and consequently, increased crevice corrosion.

  3. Improvement of carbon corrosion resistance through heat-treatment in polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Y.J.; Oh, H.S.; Kim, H. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical and Biomolecular Engineering

    2010-07-01

    Electrochemical corrosion of carbon in the catalyst layer of polymer electrolyte membrane fuel cells (PEMFCs) is a critical factor in limiting their durability. The corrosion rate increases during the iterative abnormal operating conditions known as reverse current phenomenon. The corrosion causes a decrease of the active surface of the platinum (Pt) catalyst. The graphitization of carbon increases corrosion resistance, and the hydrophobicity of the carbon surface can also play an important role in decreasing carbon corrosion. This study investigated the effect of heat-treating carbon nanofibers (CNFs) for use in PEMFC applications. The aim of the study was to determine if heat treatments modified the carbon surface by eliminating the oxygen functional group and increasing hydrophobicity. The electrochemical carbon corrosion of CNFs were compared after heat treatments at various temperatures. Mass spectrometry was used to measure electrochemical carbon corrosion by monitoring the amounts of carbon dioxide (CO{sub 2}) produced during the electrochemical oxidation process. 2 refs.

  4. Electrodeposition and Corrosion Resistance Properties of Zn-Ni/TiO2 Nano composite Coatings

    Directory of Open Access Journals (Sweden)

    B. M. Praveen

    2011-01-01

    Full Text Available Nano sized TiO2 particles were prepared by sol-gel method. TiO2 nano particles were dispersed in zinc-nickel sulphate electrolyte and thin film of Zn-Ni-TiO2 composite was generated by electrodeposition on mild steel plates. The effect of TiO2 on the corrosion behavior and hardness of the composite coatings was investigated. The film was tested for its corrosion resistance property using electrochemical, weight loss, and salt spray methods. The paper revealed higher resistance of composite coating to corrosion. Microhardness of the composite coating was determined. Scanning electron microscope images and X-ray diffraction patterns of coating revealed its fine-grain nature. Average crystalline size of the composite coating was calculated. The anticorrosion mechanism of the composite coating was also discussed.

  5. Corrosion resistance and microstructure of alloy 625 weld overlay on ASTM A516 grade 70

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Mohammad J. [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Petroleum Engineering Dept.; Ketabchi, Mostafa [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Mining and Metallurgical Engineering Dept.

    2016-02-01

    Nickel-based alloys are a crucial class of materials because of their excellent corrosion resistance. In the present study, single layer and two layers alloy 625 weld overlays were deposited by GTAW process on A516 grade 70 carbon steel. The dilution in terms of Fe, Ni, Mo and Nb content was calculated in 30 points of weld overlay. Microstructure observations showed that alloy 625 had austenitic structure with two types of Laves and NbC secondary phases. The uniform and pitting corrosion resistance of alloy 625 weld overlay as casted and as forged were evaluated in accordance with ASTM G48-2011 standard at different temperatures to determine the weight loss and critical pitting temperature. For achieving a better comparison, samples from alloy 625 as casted and as forged were tested under the same conditions. The results point out that single layer alloy 625 weld overlay is not suitable for chloride containing environments, two layers alloy 625 weld overlay and alloy 625 as casted have acceptable corrosion resistance and almost the same critical pitting temperature. Alloy 625 as forged has the best corrosion resistance and the highest critical pitting temperature among all test specimens. Also, the corrosion behavior was evaluated in accordance with ASTM G28 standard. The corrosion rate of single layer weld overlay was unacceptable. The average corrosion rate of two layers weld overlay and in casted condition were 35.82 and 33.01 mpy, respectively. [German] Nickellegierungen sind aufgrund ihres exzellenten Korrosionswiderstandes eine bedeutende Werkstoffklasse. In der diesem Beitrag zugrunde liegenden Studie wurden mittels WIG-Schweissens ein- und zweilagige Schweissplattierungen auf den Kohlenstoffstahl A516 (Grade 70) aufgebracht. Die Vermischung in Form des Fe-, Ni-, Mo- und Nb-Gehaltes wurde an 30 Punkten der Schweissplattierungen berechnet. Die mikrostrukturellen Untersuchungen ergaben, dass die Legierung 625 eine austenitische Struktur mit zwei Arten von

  6. Influence of microstructure on the corrosion resistance of Fe-44Ni thin films

    Institute of Scientific and Technical Information of China (English)

    Lin Lu; Tian-cheng Liu; Xiao-gang Li

    2016-01-01

    An Fe–44Ni nanocrystalline (NC) alloy thin film was prepared through electrodeposition. The relation between the microstructure and corrosion behavior of the NC film was investigated using electrochemical methods and chemical analysis approaches. The results show that the NC film is composed of a face-centered cubic phase (γ-(Fe,Ni)) and a body-centered cubic phase (α-(Fe,Ni)) when it is annealed at temperatures less than 400°C. The corrosion resistance increases with the increase in grain size, and the corresponding corrosion process is controlled by oxygen reduction. The NC films annealed at 500°C and 600°C do not exhibit the same pattern, although their grain sizes are considerably large. This result is attributed to the existence of an anodic phase, Fe0.947Ni0.054, in these films. Under this condition, the related corrosion process is synthetically controlled by anodic dissolution and depolarization.

  7. Formation and Corrosion Resistance of Mg-Al Hydrotalcite Film on Mg-Gd-Zn Alloy

    Science.gov (United States)

    Ba, Z. X.; Dong, Q. S.; Kong, S. X.; Zhang, X. B.; Xue, Y. J.; Chen, Y. J.

    2017-06-01

    An environment-friendly technique for depositing a Mg-Al hydrotalcite (HT) (Mg6Al2(OH)16-CO3ṡ4H2O) conversion film was developed to protect the Mg-Gd-Zn alloy from corrosion. The morphology and chemical compositions of the film were analyzed by scanning electronic microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and Raman spectroscopy (RS), respectively. The electrochemical test and hydrogen evolution test were employed to evaluate the biocorrosion behavior of Mg-Gd-Zn alloy coated with the Mg-Al HT film in the simulated body fluid (SBF). It was found that the formation of Mg-Al HT film was a transition from amorphous precursor to a crystalline HT structure. The HT film can effectively improve the corrosion resistance of magnesium alloy. It indicates that the process provides a promising approach to modify Mg-Gd-Zn alloy.

  8. Corrosion resistance of Mg-Mn-Ce magnesium alloy modified by polymer plating

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Polymeric nano-film on the surface of Mg-Mn-Ce magnesium alloy was fabricated by polymer plating of 6-dihexylamino-1,3,5-triazine-2,4-dithiol monosodium(DHN)to improve its corrosion resistance.The electrochemical reaction process was analyzed by cyclic voltammetry and two obvious peaks of oxidation reaction were observed.The static contact angle of distilled water on polymer-plated surface can be up to 106.3°while on the blank surface it is 45.8°.Potentiodynamic polarization results show that the polymeric film Can increase the corrosion potential from-1.594 V VS SCE for blank to-0.382 V VS SCE.The results of electrochemical impedance spectroscopy indicate that the charge transfer resistances of blank and polymer-plated fabricating hydrophobic film on Mg-Mn-Ce alloy surface and improving its anti-corrosion property.

  9. CORROSION RESISTANCE OF HOT DIP GALVANIZED STEEL PRETREATED WITH BIS-FUNCTIONAL SILANES MODIFIED WITH NANOALUMINA

    Institute of Scientific and Technical Information of China (English)

    F.J.Shan; C.S.Liu; S.H.Wang; G.C.Qi

    2008-01-01

    The corrosion behavior of hot dip galvanized steel pretreated with bis-[triethoxy-silylpropyl]tetrasulfide (BTESPT) modified with alumina particles was studied.The corrosion resistance of the passiving films was evaluated by Tafel polarization curve and electrochemical impedance spectroscopy.The films formed on the galvanized steel substrate were characterized by Fourier transform infrared spectroscopy and energy dispersive X-ray spectrometry.The surface morphology of the treated hot dip galva-nized steel samples was observed by Field Emission Scanning Electron Microscope. The results show that the pretreatments on the basis of silane films modified with nanoalumina particles have reduced both anodic and cathodic current densities,and increased total impedance in the measured frequency,consequently,improving cor-rosion protection for hot dip galvanized steel during immersion in NaCl solutions compared to chromate films and silane films.

  10. Corrosion resistance, composition and structure of RE chemical conversion coating on magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Golden yellow rare earths chemical conversion coating was obtained on the surface of magnesium alloy by immersing in cerium sulfate solution.The corrosion resistance of RE conversion coating was evaluated using immersion test and potentiodynamic polarization measurements in 3.5%NaCl solution.The morphologies of samples before corrosion and after corrosion were observed by SEM.The structures and compositions of the RE conversion coating were studied by means of XPS.XRD and IR.The results show that,the conversion coating consists of mainly two kinds of element Ce and O,the valences of cerium are+3 and+4.and OH exists in the coating.The anti-corrosion property of magnesium alloy is increased obviously by rare earths conversion coating,Its self-corrosion current density decreases and the coating has self-repairing capability in the corrosion process in 3.5%NaCl solution.

  11. Development of coatings with improved corrosion resistance in sulfur-containing environments

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. (Argonne National Lab., IL (USA)); Johnson, R.N. (Westinghouse Hanford Co., Richland, WA (USA))

    1990-01-01

    Corrosion of metallic structure materials at elevated temperatures in complex multicomponent gas environments is a potential problem in many fossil energy systems, especially those using coal as a feedstock. The use of appropriate corrosion-resistant coatings on metallic components can minimize material degradation and extend component life. In the present study, the chemical compatibility of a number of coatings is examined by exposing them to simulated oxygen/sulfur mixed-gas environments at metal temperatures of 500 and 650{degree}C. Coatings were developed via pack cementation and electrospark deposition techniques on T22 and T91 substrates. The oxidation/sulfidation test results for the coated specimens were compared with those for the uncoated alloys and for high-chromium structural alloys of interest in fossil energy applications. Coatings tested were Fe--Cr--Mo. Alloys tested include nickel base, nickel, and chromium alloys, and stainless steel 310. 5 refs., 12 figs., 2 tabs.

  12. Development of coatings with improved corrosion resistance in sulfur-containing environments. [Fe-Cr-Mo

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. (Materials and Components Tech. Div., Argonne National Lab., IL (USA)); Johnson, R.N. (Hanford Engineering Development Lab., Westinghouse Hanford Co., Richland, WA (USA))

    1990-12-10

    Corrosion of metallic structural materials at elevated temperatures in complex multicomponent gas environments is a potential problem in many fossil energy systems, especially those using coal as a feedstock. The use of appropriate corrosion-resistant coatings on metallic components offers an avenue to minimize material degradation and to extend component life. In the present study, the chemical compatibility of a number of coatings is examined by exposing them to simulated oxygen-sulfur mixed gas environments at metal temperatures of 500 and 650degC. Coatings were developed via pack cementation and electrospark deposition techniques on T22 and T91 substrates. The oxidation-sulfidation test results obtained for the coated specimens were compared with those for the uncoated alloys as well as other high chromium structural alloys of interest in fossil energy applications. (orig.).

  13. Influence of microstructure on the corrosion resistance of Fe-44Ni thin films

    Science.gov (United States)

    Lu, Lin; Liu, Tian-cheng; Li, Xiao-gang

    2016-06-01

    An Fe-44Ni nanocrystalline (NC) alloy thin film was prepared through electrodeposition. The relation between the microstructure and corrosion behavior of the NC film was investigated using electrochemical methods and chemical analysis approaches. The results show that the NC film is composed of a face-centered cubic phase (γ-(Fe,Ni)) and a body-centered cubic phase (α-(Fe,Ni)) when it is annealed at temperatures less than 400°C. The corrosion resistance increases with the increase in grain size, and the corresponding corrosion process is controlled by oxygen reduction. The NC films annealed at 500°C and 600°C do not exhibit the same pattern, although their grain sizes are considerably large. This result is attributed to the existence of an anodic phase, Fe0.947Ni0.054, in these films. Under this condition, the related corrosion process is synthetically controlled by anodic dissolution and depolarization.

  14. Analysis of corrosion resistance behavior of inhibitors in concrete using electrochemical techniques

    Science.gov (United States)

    Song, Ha-Won; Saraswathy, Velu

    2006-08-01

    Reinforced concrete is one of the most durable and cost effective construction materials. However, in high chloride environments, it can suffer from corrosion due to chloride induced breakdown of the normal passive layer protecting the reinforcing steel bars inside concrete. One means of protecting embedded steel reinforcement from chloride induced corrosion is the addition of corrosion inhibiting admixtures. In the present investigation, various inhibitors such as sodium nitrite, zinc oxide, mono ethanol amine, diethanolamine, and triethanol amine have been used in concrete in different percentages. Their effectiveness was then studied using various electrochemical techniques such as rapid chloride ion penetration test, open circuit potential measurement, electrochemical impedance measurement, potentiodynamic polarization measurement, and gravimetric weight loss measurement. The results thus obtained indicate that the addition of inhibitors enhances the corrosion resistance properties.

  15. Improvement of corrosion resistance of Nisbnd Mo alloy coatings: Effect of heat treatment

    Science.gov (United States)

    Mousavi, R.; Bahrololoom, M. E.; Deflorian, F.; Ecco, L.

    2016-02-01

    In this paper, Nisbnd Mo alloy coatings were deposited from bath containing sodium citrate, nickel sulphate, and sodium molybdate. Essentially, this work is divided into two mains parts: (i) the optimization on the coatings deposition parameters and (ii) the effect of the heat treatment. Polarization curves and electrochemical impedance spectroscopy were acquired using potentiostat/galvanostat and a frequency response analyzer, respectively. Morphology and chemical composition of the coatings were investigated by scanning electron microscopy and energy dispersive spectroscopy, respectively. Polarization curves at different condition revealed that electroplating at temperature 40 oC, pH 9 provides a dense coating with high efficiency. Following the optimization of the deposition parameters, the coatings were annealed at 200, 400, and 600 oC for 25 min. The results showed that the coatings obtained at temperature 40 oC, pH 9, and annealing at 600 oC has the highest corrosion resistance and microhardness.

  16. Review on Improving Wear and Corrosion Resistance of Steels via Plasma Electrolytic Saturation Technology

    Science.gov (United States)

    Lin, Naiming; Xie, Ruizhen; Zhou, Peng; Zou, Jiaojuan; Ma, Yong; Wang, Zhenxia; Han, Pengju; Wang, Zhihua; Tang, Bin; Tian, Wei

    2016-03-01

    Plasma electrolytic saturation (PES) technique which holds the advantages of short treating time and limited heating influence and immediate quenching effect is conducted under high voltage power supply in some electrolyte has been extensively applied to enhance the surface performance of metallic materials. Steel is widely used in various fields thanks to its promising merits of easy workability, plasticity, toughness and weldability. It accounts for a large proportion in the application scope of the metal materials. Steel surfaces with good corrosion resistance, promising wear resistance and high hardness would be obtained by PES. Meanwhile, uniformed coatings can be formed without special requirements for substrate geometries using the PES. This paper first presents a brief introduction of the technological principle of PES. The status on studies and applications of PES for improving surface performance of steels has been reviewed.

  17. Influence of Laser Peening on Phase Transformation and Corrosion Resistance of AISI 321 steel

    Science.gov (United States)

    Karthik, D.; Swaroop, S.

    2016-07-01

    The objective of this study is to investigate the influence of laser peening without coating (LPwC) on austenitic to martensitic (γ → α') phase transformation and corrosion behavior of austenitic stainless steel AISI 321 in 3.5% NaCl environment. Results indicate that LPwC induces a large compressive residual stresses of nearly -854 MPa and γ → α' phase transformation of about 18% (volume fraction). Microstructures of peened surface confirmed the γ → α' phase transformation and showed no grain refinement. Hardness increased slightly with a case depth of 900 μm. Despite the smaller surface roughness introduced, corrosion resistance improved after peening due to compressive residual stresses.

  18. A Magnetic Properties and Corrosion Resistance of Fe-Si Alloy Coating Prepared on Mild Steel

    Directory of Open Access Journals (Sweden)

    Yi WANG

    2014-12-01

    Full Text Available The present work deals with preparation of Fe3Si coatings on mild steel and evaluation of its magnetic property and corrosion behavior. Magnetic property of coatings was measured using a vibrating sample magnetometer, the result shows that the saturation magnetization reached to the maximum value (214.1 emu•g-1 and the coercivity fell to the lowest (23.11 Oe in 1000oC. Corrosion behaviour of the coatings was studied using polarization in 3.5%NaCl solution. It was found that the corrosion current density (icorr decreased with increasing of heat treatment temperature up to 1000oC, indicating an improvement in corrosion resistance. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6446

  19. Enhanced wear and corrosion resistance of plasma electrolytic carburized layer on T8 carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jie; Wang, Bin; Zhang, Yifan; Liu, Run [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Xia, Yuan; Li, Guang [Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Xue, Wenbin, E-mail: xuewb@bnu.edu.cn [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2016-03-01

    A hardening layer of 70 μm on T8 carbon steel was fabricated by plasma electrolytic carburizing (PEC) in glycerol solution at 380 V with 3 min treatment. The discharge process was characterized using optical emission spectroscopy (OES), and the electron temperature in plasma envelope was determined. Meanwhile, diffusion coefficient of carbon was calculated on the basis of carbon concentration profile. The tribological property of carburized steel under dry sliding against ZrO{sub 2} ball was measured by a ball-disc friction and wear tester. The corrosion behaviors were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). It was found that the carburized layer mainly contained α-Fe and Fe{sub 3}C phases with maximum hardness of 620 HV. The PEC treatment significantly decreased the friction coefficient from 0.4 to 0.1. The wear rate of PEC treated steel was about 5.86 × 10{sup −6} mm{sup 3}/N·m, which was less than 1/4 of T8 steel substrate. After PEC treatment, the wear and corrosion resistance of T8 steel were improved. Particularly, the pitting corrosion of steel substrate was obviously suppressed. - Highlights: • Electron temperature in plasma electrolytic carburizing process is determined. • Diffusion coefficient of carbon in PEC is higher than conventional carburizing. • Wear and corrosion resistance of T8 steel are both improved after PEC treatment. • Pitting corrosion of steel substrate is obviously suppressed by PEC treatment.

  20. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vladescu, A., E-mail: alinava@inoe.ro [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Braic, M. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Azem, F. Ak [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Buca-Izmir (Turkey); Titorencu, I. [Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P.Hasdeu, Bucharest (Romania); Braic, V. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Pruna, V. [Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P.Hasdeu, Bucharest (Romania); Kiss, A. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Parau, A.C.; Birlik, I. [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Buca-Izmir (Turkey)

    2015-11-01

    Highlights: • Hydroxyapatite has been produced at temperature from 400 to 800 °C by magnetron sputtering. • Hydroxyapatite crystallinity is improved by increasing substrate temperature. • The increase of substrate temperature resulted in corrosion resistance increasing. • The coating shows high growth of the osteosarcoma cells over a wide temperature range. - Abstract: Hydroxyapatite (HAP) ceramics belong to a class of calcium phosphate-based materials, which have been widely used as coatings on titanium medical implants in order to improve bone fixation and thus to increase the lifetime of the implant. In this study, HAP coatings were deposited from pure HAP targets on Ti6Al4V substrates using the radio-frequency magnetron sputtering technique at substrate temperatures ranging from 400 to 800 °C. The surface morphology and the crystallographic structure of the films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion resistance of the coatings in saliva solution at 37 °C was evaluated by potentiodynamic polarization. Additionally, the human osteosarcoma cell line (MG-63) was used to test the biocompatibility of the coatings. The results showed that all of the coatings grown uniformly and that the increasing substrate temperature induced an increase in their crystallinity. Corrosion performance of the coatings was improved with the increase of the substrate temperature from 400 °C to 800 °C. Furthermore, all the coatings support the attachment and growth of the osteosarcoma cells with regard to the in vitro test findings.

  1. Influence of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel welding joints

    Science.gov (United States)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhang, Jianli

    2017-02-01

    The influences of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel joints welded by gas tungsten arc welding (GTAW) and flux-cored arc welding (FCAW) with different shielding gas compositions were studied by optical microscopy, electron backscatter diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron probe microanalysis, and potentiostatic and potentiodynamic polarization methods The adding 2% N2 in shielding gas facilitated primary austenite formation in GTAW weld metal (WM) and suppressed Cr2N precipitation in GTAW weld root. In the HAZ, the banded microstructure disappeared while the coarse ferrite grains maintained same orientation as the banded ferrite in the BM. In the WM, the ferrite had one single orientation throughout a grain, whereas several families of austenite appeared. The austenite both in BM and WM enriched in Ni and nitro`gen, while Cr and Mo were concentrated in the ferrite and thus no element showed clear dendritic distribution in the WM (ER2209 and E2209T1). In addition, the secondary austenite had higher Ni content but lower Cr and Mo content than the primary austenite. The N2-supplemented shielding gas promoted nitrogen solid-solution in the primary and secondary austenite. Furthermore, the secondary austenite had relatively lower pitting resistance equivalent number (PREN) than the ferrite and primary austenite, thereby resulting in its preferential corrosion. The Cr2N precipitation led to relatively poor resistance to pitting corrosion in three HAZs and pure Ar shielding GTAW weld root. The N2-supplemented shielding gas improved pitting corrosion resistance of GTAW joint by increasing PREN of secondary austenite and suppressing Cr2N precipitation. In addition, the FCAW WM had much poorer resistance to pitting corrosion than the GTAW WM due to many O-Ti-Si-Mn inclusions. In the BM, since the austenite with lower PREN compared

  2. Corrosion Resistance of Synergistic Welding Process of Aluminium Alloy 6061 T6 in Sea Water

    Directory of Open Access Journals (Sweden)

    Kharia Salman Hassan

    2014-12-01

    Full Text Available This work involves studying corrosion resistance of AA 6061T6 butt welded joints using Two different welding processes, tungsten inert gas (TIG and a solid state welding process known as friction stir welding, TIG welding process carried out by using Rolled sheet of thickness6mm to obtain a weld joint with dimension of (100, 50, 5 mm using ER4043 DE (Al Si5 as filler metal and argon as shielding gas, while Friction stir welding process carried out using CNC milling machine with a tool of rotational speed 1000 rpm and welding speed of 50mm/min to obtain the same butt joint dimensions. Also one of weld joint in the same dimensions subjected to synergistic weld process TIG and FSW weld process at the same previous weld conditions. All welded joints were tested by X-ray radiography and Faulty pieces were excluded. The joints without defects used to prepare many specimens for Corrosion test by the dimensions of (15*15*3 mm according to ASTM G71-31. Specimens subjected to micro hardness and microstructure test. Corrosion test was achieved by potential at scan rate( +1000 ,-1000mv/sec to estimate corrosion parameters by extrapolator Tafle method after polarized ±100 mv around open circuit potential,in seawater (3.5%NaCl at a temperature of 25°C. From result which obtained by Tafel equation. It was found that corrosion rate for TIG weld joint was higher than the others but synergistic weld process contributed in improving TIG corrosion resistance by a percentage of 14.3%. and FSW give the lest corrosion rate comparing with base metal.

  3. Different immersion periods and aqueous solutions effects upon the corrosion resistance of zinc and aluminium specimens

    Directory of Open Access Journals (Sweden)

    Osório, W. R.

    2005-12-01

    Full Text Available Several metallic materials form spontaneously an oxide film at the surface when is exposed in a corrosive environment. It is well known that the type of corrosive media may develop different results at the material corrosion resistance. The aim of the present paper is to investigate the influence of immersion periods and different solutions upon the corrosion resistance of pure Zn and Al specimens presenting different grain morphologies. The specimens were monitored for several periods in a 3 % NaCl solution at room temperature. Tests were also performed with variations of the 3 % NaCl solution modified by additions of acid and alkaline components. Both the electrochemical impedance spectroscopy (EIS and polarization methods were applied.

    Algunos materiales metálicos, cuando se encuentran en un entorno corrosivo, forman espontáneamente una película de óxido en su superficie. Se sabe que los medios corrosivos pueden dar resultados diferentes, según sea la resistencia a la corrosión del material. El propósito del siguiente trabajo es investigar la influencia de los períodos de inmersión en diferentes soluciones sobre la resistencia a la corrosión de probetas de cinc y aluminio puros, con morfologías de grano diferentes. Las probetas fueron ensayadas durante varios períodos de tiempo en soluciones de NaCl 3 % y también con adiciones de ácidos y bases. Se utilizaron las técnicas de espectrometría de impedancia electroquímica (EIS y de polarización.

  4. The corrosion resistance of Eurofer 97 and ODS-Eurofer steels for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Terada, M. [Escola Politecnica da Univ. de Sao Paulo, Dept. de Engenharia Metalurgica e de Materiais, Sao Paulo-SP (Brazil); Zschommler Sandim, H.R. [Sao Paulo Univ., Dept. de Engenharia de Materiais, Polo Urbo-Industrial, Lorena-SP (Brazil); Costa, I. [Instituto de Pesquisas Energeticas e Nucleares IPEN-CCTM, Sao Paulo - SP (Brazil); Padilha, A.F. [Escola Politecnica da Universidade de Sao Paulo, Dept. de Engenharia Metalurgica e de Materiais, Sao Paulo-SP (Brazil)

    2009-07-01

    Reduced-activation-ferritic-martensitic (RAFM) steels are considered for application in fusion technology as structural materials for the first wall of future fusion reactors DEMO. Ferritic-martensitic steels show reasonably good thermo-physical and mechanical properties, low sensitivity to radiation-induced swelling and helium embrittlement under (fission) neutron irradiation and good compatibility with major cooling and breeding materials. In recent years, reduced activation versions of this type of steels have been developed in Japan and Europe in laboratory scale and tested with equivalent or even better mechanical properties. In result of a systematic development of reduced activation ferritic-martensitic (RAFM) steels in Europe, the 9% CrWVTa alloy EUROFER was specified, and industrial batches have been produced in a variety of different semi-finished product forms. The EUROFER 97 alloy was developed on the basis of the experience gained with steels of the OPTIFER, MANET and F82H-modified type. Oxide dispersion to strengthen (ODS) alloys have been used in order to increase the working temperature of RAFM steels increasing their potentiality for applications in fusion reactors that operate at temperatures higher than 650 C. The literature on the corrosion properties of these alloys is scarce. In the present work the corrosion resistance of EUROFER 97 and ODS-EUROFER was tested in solutions containing H{sub 2}SO{sub 4} and KSCN at 25 C. The results were compared to those of AISI 430 ferritic and AISI 410 martensitic conventional stainless steels. The as-received samples were tested by electrochemical techniques, specifically, potentiodynamic polarization curves and double loop electrochemical potentio-kinetic reactivation tests. The surfaces were observed by scanning electron microscopy (SEM) after exposure to corrosive media. The results showed that EUROFER 97 and ODS-EUROFER present similar corrosion resistance but lower than that of ferritic AISI 430 and

  5. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chi-Wai, E-mail: c.w.chan@qub.ac.uk [School of Mechanical and Aerospace Engineering, Queen' s University Belfast, BT9 5AH (United Kingdom); Lee, Seunghwan [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Smith, Graham [Department of Natural Sciences, University of Chester, Thornton Science Park, Chester CH2 4NU (United Kingdom); Sarri, Gianluca [School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Ng, Chi-Ho [School of Mechanical and Aerospace Engineering, Queen' s University Belfast, BT9 5AH (United Kingdom); Laser Engineering and Manufacturing Research Centre, Faculty of Science and Engineering, University of Chester, Parkgate Road, Chester CH1 4BJ (United Kingdom); Sharba, Ahmed [School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Man, Hau-Chung [Department of Industrial and Systems Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong (China)

    2016-03-30

    Graphical abstract: - Highlights: • Laser technology is a fast, clean and flexible method for surface hardening of TNZT. • Laser can form a protective hard layer on TNZT surface without altering surface roughness. • The laser-formed layer is metallurgically bonded to the substrate. • Laser-treated TNZT is highly resistant to corrosion and wear in Hank's solution. - Abstract: The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti–Nb–Zr–Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly developed laser surface treatment technique was employed to improve the surface properties of Ti–35.3Nb–7.3Zr–5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing incidence X-ray diffraction (GI-XRD) and X-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks’ solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT.

  6. Mechanical and corrosion resistance properties of TiO2 nanoparticles reinforced Ni coating by electrodeposition

    Science.gov (United States)

    Shao, W.; Nabb, D.; Renevier, N.; Sherrington, I.; Luo, J. K.

    2012-09-01

    Coatings have been widely used in engineering and decoration to protect components and products and enhance their life span. Nickel (Ni) is one of the most important hard coatings. Improvement in its tribological and mechanical properties would greatly enhance its use in industry. Nanocomposite coatings of metals with various reinforced nanoparticles have been developed in last few decades. Titania (TiO2) exhibit excellent mechanical properties. It is believed that TiO2 incorporation in Ni matrix will improve the properties of Ni coatings significantly. The main purpose of the current work is to investigate the mechanical and anti-corrosion properties of the electroplated nickel nanocomposite with a small percentage of TiO2. The surface morphology of nanocomposite coating was characterized by scanning electron microscopy (SEM). The hardness of the nanocoating was carried out using micromaterials nanoplatform. The sliding wear rate of the coating at room temperature in dry condition was assessed by a reciprocating ball-on-disk computer-controlled oscillating tribotester. The results showed the nanocomposite coatings have a smoother and more compact surface than the pure Ni layer and have higher hardness and lower wear rate than the pure Ni coating. The anti-corrosion property of nanocomposite coating was carried out in 3.5% NaCl and high concentrated 35% NaCl solution, respectively. The results also showed that the nanocomposite coating improves the corrosion resistance significantly. This present work reveals that incorporation of TiO2 in nickel nanocomposite coating can achieve improved corrosion resistance and mechanical properties of both hardness and wear resistance performances, and the improvement becomes stronger as the content of TiO2 is increased.

  7. Effects of surface roughness on corrosion resistance of pure Titanium:An in vivo observation

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-mei; WANG Shao-hai; WANG Da-lin; GUO Tian-wen; QI Wen-sheng

    2005-01-01

    Objective: To study the effect of surface configuration and roughness on the corrosion resis tance of pure Titanium (Ti) after used in oral environment for half a year. Methods :Three edentulous volunteers with healthy oral mucosa participated in an in vivo study. Four kinds of pure Ti testing pieces with different surface roughness were fixed in the polished surface of upper complete dentures and the other in the tissue surface of the dentures. After 6-month wearing the denture, dynamic polarization curves were traced with electrochemical method. Results :Ep and Ip of specimen used in oral cavity was higher than that left in air,which meant corrosion resistance falling. Compared to plane one,Ecorr of wrinkly specimen was more positive,and Ep and Ip were more higher,so its corrosion resistance reduced. With the increase of surface roughness,Ep and Ip increased from 0. 937 V and 1. 810 μA (Group Ⅱ ) to 1. 701 V and 2. 252 μA (Group Ⅳ )respectively,there was even no passivation in Group Ⅲ (which was the most coarse),so proneness to corrosion enhanced. For specimen with the same surface roughness ,Ep and Ip of Group Ⅳ (1. 701 V and 2. 252 μA respectively),which was placed on polished surface of denture base,was higher than that on tissue surface (Group V , 1. 304 V, 1. 946 μA). Conclusion:From the perspective of corrosion behavior,wrinkly surface should not be adopted when pure Ti prosthesis is used ,and surface roughness on the polishing surface of pure Ti prosthesis should be paid more attention,especially on clasps and connectors,where there is often more force to be exerted.

  8. Improvement of corrosion resistance of AZ91D magnesium alloy by gadolinium addition

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xue-hua; WEI Zhong-ling; CHEN Qiu-rong; GAN Fu-xing

    2006-01-01

    Based on the previous investigation on beneficial introduction of holmium into magnesium alloy, the effect of gadolinium, an adjacent rare earth element, on corrosion resistance was examined. The corrosion behavior of two Mg-9Al-Gd alloys (Mg-9Al-0.45Gd and Mg-9Al-1.43Gd) was evaluated and compared with that of Mg-9Al alloy without Gd by means of specimen mass loss and hydrogen evolution in 3.5% NaCl solution saturated with Mg(OH)2. The Gd-containing alloys exhibit enhanced corrosion resistance with respect to the plain Mg-9Al alloy. The microstructures of Mg-9Al alloy and Mg-9Al-0.45 Gd alloy were observed by electron probe microanalysis (EPMA) and energy dispersion spectroscopy (EDS). The alloys with Gd addition show a microstructure characterized by α phase solid solution, surrounded by minor amount of β phase and more grain-like Gd-containing phase. To illustrate the involved mechanism their polarization curves were recorded. The electrochemical investigations reveal that Gd addition shifts the corrosion potential of the alloy towards active, as Gd containing phase is more active and hence less cathodic. As a result, the micro-galvanic corrosion is suppressed. Moreover corrosion product films formed on the Gd containing alloys are more compact and provide a better protective effectiveness than that on the alloy without Gd against corrosion. Repassivation measurements in mixture solution of 0.21 mol/L K2CrO4+0.6 mol/L NaCl also verify the beneficial role of Gd addition. Based on the present preliminary analysis, both the deposited Gd-containing phases and corrosion product films are believed to be responsible for the improved corrosion behaviour due to Gd addition.

  9. The effect of carbon content on mechanical properties, failure and corrosion resistance of deposited chromium metal

    Directory of Open Access Journals (Sweden)

    Леонід Кімович Лещинськiй

    2017-06-01

    Full Text Available It has been shown that if choosing a metal composition for surfacing rolls and rollers of continuous casting machines, both the carbon impact on the mechanical and functional properties and the critical values of the chromium concentration, which determine the corrosion resistance of the metal with regard to electrochemical corrosion theory, should be considered as well. The paper studied the effect of chromium and carbon steel the X5-X12 type on the structure, technological strength, mechanical properties, fracturing resistance and corrosion resistance of the weld metal. The composition of chromium tool steels (deposited metal (X5-used for the rolls of hot rolling mills and (X12-used for continuous casting machines rollers correspond to these values. The impact of carbon on the properties of the deposited metal containing chromium was considered by comparing the data for both types of the deposited metal. It was found that for both types of the deposited metal (X5 and X12, the limiting value of the carbon content, providing an optimal combination of strength, ductility, failure resistance is the same. If the carbon content is more than the limiting value – (0,25% the technological strength and failure resistance of the deposited metal significantly reduce. With increasing carbon content from 0,18 to 0,25% the martensite structure has a mixed morphology – lath and plate. The strength and toughness of the deposited metal grow. Of particular interest is simultaneous increase in the specific work of failure resulted from crack inhibition at the boundary with far less solid and more ductile ferrite. As for the 5% chromium metal, the X12 type composition with 0,25% C, is borderline. With a further increase in the carbon content of the metal both ductility and failure resistance sharply decrease and with 0,40% C the growth rate of fatigue crack increases by almost 1,5 times

  10. Corrosion resistance and biocompatibility of zirconium oxynitride thin film growth by RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cubillos, G. I.; Olaya, J. J.; Clavijo, D.; Alfonso, J. E. [Universidad Nacional de Colombia, Carrera 45 No. 26-85, AA 14490 Bogota D. C. (Colombia); Bethencourt, M., E-mail: jealfonsoo@unal.edu.co [Universidad de Cadiz, Centro Andaluz de Ciencia y Tecnologia Marinas, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Av. Republica de Saharaui, Puerto Real, E-11510 Cadiz (Spain)

    2012-07-01

    Thin films of zirconium oxynitride were grown on common glass, silicon (100) and stainless steel 316 L substrates using the reactive RF magnetron sputtering technique. The films were analyzed through structural, morphological and biocompatibility studies. The structural analysis was carried out using X-ray diffraction (XRD), and the morphological analysis was carried out using scanning electron microscopy (Sem) and atomic force microscopy (AFM). These studies were done as a function of growth parameters, such as power applied to the target, substrate temperature, and flow ratios. The corrosion resistance studies were made on samples of stainless steel 316 L coated and uncoated with Zr{sub x}N{sub y}O films, through of polarization curves. The studies of biocompatibility were carried out on zirconium oxynitride films deposited on stainless steel 316 L through proliferation and cellular adhesion. The XRD analysis shows that films deposited at 623 K, with a flow ratio {Phi}N{sub 2}/{Phi}O{sub 2} of 1.25 and a total deposit time of 30 minutes grew preferentially oriented along the (111) plane of the zirconium oxynitride monoclinic phase. The Sem analyses showed that the films grew homogeneously, and the AFM studies indicated that the average rugosity of the film was 5.9 nm and the average particle size was 150 nm. The analysis of the corrosion resistant, shows that the stainless steel coated with the film was increased a factor 10. Finally; through the analysis of the biocompatibility we established that the films have a better surface than the substrate (stainless steel 316 L) in terms of the adhesion and proliferation of bone cells. (Author)

  11. Effects of rare earth on inclusions and corrosion resistance of 10PCuRE weathering steel

    Institute of Scientific and Technical Information of China (English)

    YUE

    2010-01-01

    The types,morphologies and distributions of nonmetallic inclusions in Cu-P weathering steels with and without rare earth were analyzed through a quantitative image analyzer,scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS)attached to SEM.Solid-soluble content of rare earth in the steels was analyzed by non-aqua electroanalysis and ICP.The results showed that rare earth modified the types and the morphologies of inclusions in the weathering steels.The small spherical rare earth oxysulfides and rare earth sulphides replaced the elongated MnS inclusions in the RE weathering steels.The rare earth inclusions dispersedly distributed and most inclusions were smaller than 2 μm in size.The optimum content of RE was 0.0065%-0.016% for 10PCuRE weathering steels containing about0.002% oxygen and 0.004% sulfur.Solid-soluble content of rare earth in steels was(14-20)x 10-6,which can act as a micro-alloying element.The corrosion resistance of 10PCuRE weathering steels and Q235 were studied by dry-wet cyclic immersion test.Their corrosion rates were obtained respectively.The polarization curves and pitting corrosion behaviors of weathering steels with and without rare earth were measured by electrochemical methods.The corrosion resistance of Cu-P weathering steels was improved by adding an appropriate amount of rare earth.Less and fewer rare earth inclusions largely decreased pitting susceptibility and rate of pit propagation.The pitting potential and the resistance against pitting corrosion of the RE weathering steel were significantly improved due to the modification of rare earth to inclusions.

  12. Electrolessly Plated Ni-Zn(Fe)-P Alloy and Its Corrosion Resistance Properties

    Institute of Scientific and Technical Information of China (English)

    WANG Sen-lin; WU Hui-huang

    2005-01-01

    The autocatalytic deposition of Ni-Zn(Fe)-P alloys has been carried out on substrate of carbon steel from a bath containing nickel sulfate, zinc sulfate, sodium hypophosphite, sodium citrate and boric acid. The effects of pH and the molar ratio of NiSO4/ZnSO4 on the deposition rate and the composition of deposits have been studied. It was found that the presence of zinc sulfate in the bath has an inhibitory effect on the alloy deposition. The structure and the surface morphology of Ni-Zn(Fe)-P coatings were characterized with XRD and SEM, respectively. The alloys plated under the experimental conditions consisted of an amorphous phase coexisting with a crystalline cubic Ni phase(poly-crystalline). The surface morphology of the coating is dependent on the deposition parameters. The corrosion resistance of the Ni-Zn(Fe)-P deposits was examined via mass loss tests and anodic polarization measurements, respectively. The results show that the surface morphologies of the deposits and the corrosion resistance of the deposits have been improved. The results of mass loss tests almost accord with those of anodic polarization measurements. The corrosion mechanisms of Ni-Zn(Fe)-P alloys in NaCl and NaOH solutions were investigated by means of EDX. The deposit immersed in an NaCl or an NaOH solution contains more content of oxygen and less contents of the metals(except Fe) than that placed in air, which shows that the NaCl or NaOH solution can accelerate the oxidation of the deposit.

  13. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Jordi Perez; Marc Hornbostel; Kai-Hung Lau; Angel Sanjurjo

    2007-05-31

    Advanced electric power generation systems use a coal gasifier to convert coal to a gas rich in fuels such as H{sub 2} and CO. The gas stream contains impurities such as H{sub 2}S and HCl, which attack metal components of the coal gas train, causing plant downtime and increasing the cost of power generation. Corrosion-resistant coatings would improve plant availability and decrease maintenance costs, thus allowing the environmentally superior integrated-gasification-combined-cycle (IGCC) plants to be more competitive with standard power-generation technologies. Heat-exchangers, particle filters, turbines, and other components in the IGCC system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy will improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. The Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers. In this study, the use of corrosion-resistant coatings on low alloy steels was investigated for use as high-temperature components in IGCC systems. The coatings were deposited using SRI's fluidized-bed reactor chemical vapor deposition technique. Diffusion coatings of Cr and Al were deposited by this method on to dense and porous, low alloy stainless steel substrates. Bench-scale exposure tests at 900 C with a simulated coal gas stream containing 1.7% H{sub 2}S showed that the low alloy steels such SS405 and SS409 coated with

  14. Novel mesoporous FeAl bimetal oxides for As(III) removal: Performance and mechanism.

    Science.gov (United States)

    Ding, Zecong; Fu, Fenglian; Cheng, Zihang; Lu, Jianwei; Tang, Bing

    2017-02-01

    In this study, novel mesoporous FeAl bimetal oxides were successfully synthesized, characterized, and employed for As(III) removal. Batch experiments were conducted to investigate the effects of Fe/Al molar ratio, dosage, and initial solution pH values on As(III) removal. The results showed that the FeAl bimetal oxide with Fe/Al molar ratio 4:1 (shorten as FeAl-4) can quickly remove As(III) from aqueous solution in a wide pH range. The FeAl-4 before and after reaction with As(III) was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED), Brunauer-Emmett-Teller (BET) surface area measurement, and X-ray photoelectron spectroscopy (XPS). The BET results showed that the original FeAl-4 with a high surface area of 223.9 m(2)/g was a mesoporous material. XPS analysis indicated that the surface of FeAl-4 possessed a high concentration of M-OH (where M represents Fe and Al), which was beneficial to the immobility of As(III). The excellent performance of FeAl-4 makes it a potentially attractive material for As(III) removal from aqueous solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Materials (HPCRM) Development Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J; Saw, C; Haslem, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D' Amato, A; Aprigliano, L

    2009-03-16

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal make this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of these iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  16. Tensile strength and corrosion resistance of brazed and laser-welded cobalt-chromium alloy joints.

    Science.gov (United States)

    Zupancic, Rok; Legat, Andraz; Funduk, Nenad

    2006-10-01

    laser-welded joints (404 MPa and 405 MPa). When laser welding was used, successful joining was limited to the peripheral aspects of the weld. The welding technique did not significantly affect the joint tensile strength. Electrochemical measurements indicated that the corrosion resistance of the laser-welded joints was better than of the brazed ones, primarily due to differences in passivation ability. Laser welding provides excellent corrosion resistance to cobalt-chromium alloy joints, but strength is limited due to the shallow weld penetration. Brazed joints are less resistant to corrosion but have higher tensile strength than laser welds.

  17. Corrosion resistance and durability of siloxane ceramic/polymer films for aluminum alloys in marine environments

    Science.gov (United States)

    Kusada, Kentaro

    The objective of this study is to evaluate corrosion resistance and durability of siloxane ceramic/polymer films for aluminum alloys in marine environments. Al5052-H3 and Al6061-T6 were selected as substrates, and HCLCoat11 and HCLCoat13 developed in the Hawaii Corrosion Laboratory were selected for the siloxane ceramic/polymer coatings. The HCLCoat11 is a quasi-ceramic coating that has little to no hydrocarbons in its structure. The HCLCoat13 is formulated to incorporate more hydrocarbons to improve adhesion to substrate surfaces with less active functionalities. In this study, two major corrosion evaluation methods were used, which were the polarization test and the immersion test. The polarization tests provided theoretical corrosion rates (mg/dm 2/day) of bare, HCLCoat11-coated, and HCLCoat13-coated aluminum alloys in aerated 3.15wt% sodium chloride solution. From these results, the HCLCoat13-coated Al5052-H3 was found to have the lowest corrosion rate which was 0.073mdd. The next lowest corrosion rate was 0.166mdd of the HCLCoat11-coated Al5052-H3. Corrosion initiation was found to occur at preexisting breaches (pores) in the films by optical microscopy and SEM analysis. The HCLCoat11 film had many preexisting breaches of 1-2microm in diameter, while the HCLCoat13 film had much fewer preexisting breaches of less than 1microm in diameter. However, the immersion tests showed that the seawater immersion made HCLCoat13 film break away while the HCLCoat11 film did not apparently degrade, indicating that the HCLCoat11 film is more durable against seawater than the HCLCoat13. Raman spectroscopy revealed that there was some degradation of HCLCoat11 and HCLCoat13. For the HCLCoat11 film, the structure relaxation of Si-O-Si linkages was observed. On the other hand, seawater generated C-H-S bonds in the HCLCoat13 film resulting in the degradation of the film. In addition, it was found that the HCLCoat11 coating had anti-fouling properties due to its high water contact

  18. Corrosion resistance and development length of steel reinforcement with cementitious coatings

    Science.gov (United States)

    Pei, Xiaofei

    This research program focused on the corrosion resistance and development length of reinforcing steel coated with Cementitious Capillary Crystalline Waterproofing (CCCW) materials. The first part of this research program involved using the half-cell potential method to evaluate the corrosion resistance of CCCW coating materials. One hundred and two steel bars were embedded in concrete cylinders and monitored. In total, 64 steel reinforcing bars were coated with CCCW prior to embedment, 16 mortar cylinders were externally coated with CCCW, and 22 control (uncoated) samples were tested. All the samples were immersed in a 3.5% concentration chloride solution for a period of one year. Three coating types were studied: CCCW-B, CCCW-B+ C and CCCW-C+D. The test results showed that the CCCW coating materials delayed the corrosion activity to varying degrees. In particular, CCCW-C+D applied on the reinforcing steel surface dramatically delayed the corrosion activity when compared to the control samples. After being exposed to the chloride solution for a period of one year, no sign of corrosion was observed for the cylinders where the concrete surface was coated. The second part of this research evaluated the bond strength and development length of reinforcing steel coated with two types of CCCW coating materials (CCCW-B+C and CCCW-C+D) using a modified pull-out test method. A self-reacting inverted T-shaped beam was designed to avoid compression in the concrete surrounding the reinforcing steel. Steel reinforcing bars were embedded along the web portion of the T-beam with various embedded lengths and were staggered side by side. In total, six T-beams were fabricated and each beam contained 8 samples. Both short-term (7 days) and long-term (3 months) effects of water curing were evaluated. The reinforcing steel bars coated with CCCW-B+C demonstrated a higher bond strength than did samples coated with CCCW-C+D. However, the bond strengths of samples with coating materials

  19. Exploring the incorporation of nitrogen in titanium and its influence on the electrochemical corrosion resistance in acidic media

    Science.gov (United States)

    Velasco-Velez, J. J.; Davaasuren, B.; Scherzer, M.; Cap, S.; Willinger, M.; Guo, J.-H.; Schlögl, R.; Knop-Gericke, A.

    2016-08-01

    The role of the nitrogen incorporation into titanium, its chemical nature, the location in the titanium lattice and its electrochemical performance were investigated by a combination of several spectroscopy and microscopy techniques using samples prepared by CVD of NH3 at different temperatures and successive electrochemically tested in 1 M of HClO4. We found that nitrogen is incorporated in either the interstitial or substitutional site of the lattice depending on the preparation temperature modifying strongly its corrosion resistance which was ascribed to the N 2p hybridization with the Ti 3d orbitals. It was found that at low temperature the N 2p orbitals were more likely to hybridize with Ti3d-t2g orbitals while higher temperature favors the hybridization with the Ti3d-eg orbitals. This is responsible for the corrosion resistance shown by the samples prepared at higher temperature.

  20. DOE-DARPA High-Performance Corrosion-Resistant Materials (HPCRM), Annual HPCRM Team Meeting & Technical Review

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Brown, B; Bayles, B; Lemieux, T; Choi, J; Ajdelsztajn, L; Dannenberg, J; Lavernia, E; Schoenung, J; Branagan, D; Blue, C; Peter, B; Beardsley, B; Graeve, O; Aprigliano, L; Yang, N; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Boudreau, J

    2007-09-21

    The overall goal is to develop high-performance corrosion-resistant iron-based amorphous-metal coatings for prolonged trouble-free use in very aggressive environments: seawater & hot geothermal brines. The specific technical objectives are: (1) Synthesize Fe-based amorphous-metal coating with corrosion resistance comparable/superior to Ni-based Alloy C-22; (2) Establish processing parameter windows for applying and controlling coating attributes (porosity, density, bonding); (3) Assess possible cost savings through substitution of Fe-based material for more expensive Ni-based Alloy C-22; (4) Demonstrate practical fabrication processes; (5) Produce quality materials and data with complete traceability for nuclear applications; and (6) Develop, validate and calibrate computational models to enable life prediction and process design.

  1. CORROSION RESISTANCE OF ORGANOMETALLIC COATING APLICATED IN FUEL TANKS USING ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY IN BIOFUEL – PART I

    Directory of Open Access Journals (Sweden)

    Milene Adriane Luciano

    2014-10-01

    Full Text Available Nowadays, the industry has opted for more sustainable production processes, and the planet has also opted for new energy sources. From this perspective, automotive tanks with organometallic coatings as well as a partial substitution of fossil fuels by biofuels have been developed. These organometallic coated tanks have a zinc layer, deposited by a galvanizing process, formed between the steel and the organometallic coating. This work aims to characterize the organometallic coating used in metal automotive tanks and evaluate their corrosion resistance in contact with hydrated ethyl alcohol fuel (AEHC. For this purpose, the resistance of all layers formed between Zinc and EEP steel and also the tin coated steel, which has been used for over thirty years, were evaluated. The technique chosen was the Electrochemical Impedance Spectroscopy. The results indicated an increase on the corrosion resistance when organometallic coatings are used in AEHC medium. In addition to that, these coatings allow an estimated 25% reduction in tanks production costs.

  2. Corrosion resistance of multilayer hybrid sol-gel coatings deposited on the AISI 316L austenitic stainless steel

    Science.gov (United States)

    Caballero, Y. T.; Rondón, E. A.; Rueda, L.; Hernández Barrios, C. A.; Coy, A.; Viejo, F.

    2016-02-01

    In the present work multilayer hybrid sol-gel coatings were synthesized on the AISI 316L austenitic stainless steel employed in the fabrication of orthopaedic implants. Hybrid sols were obtained from a mixture of inorganic precursor, TEOS, and organic, GPTMS, using ethanol as solvent, and acetic acid as catalyst. The characterization of the sols was performed using pH measurements, rheological tests and infrared spectroscopy (FTIR) for different ageing times. On the other hand, the coatings were characterized by scanning electron microscopy (SEM), while the corrosion resistance was evaluated using anodic potentiodynamic polarization in SBF solution at 37±2°C. The results confirmed that sol-gel synthesis employing TEOS-GPTMS systems produces uniform and homogeneous coatings, which enhanced the corrosion resistance with regard to the parent alloy. Moreover, corrosion performance was retained after applying more than one layer (multilayer coatings).

  3. Corrosion Resistance of Zn and Cu Coated Steel Pipes as a Substitute for Cu Pipe in an Air Conditioner System

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae Gyeong; Park, Chan Jin; Hong, Sung Kil [Chonnam National University, Gwangju (Korea, Republic of)

    2009-02-15

    We investigated the corrosion resistance of Zn and Cu coated steel pipes as a substitute for Cu pipe in an air-conditioner system. In addition, the galvanic corrosion tendency between two dissimilar metal parts was studied. The corrosion resistance of the Cu electroplated steel was similar to that of Cu, while the corrosion rate of the Zn electro-galvanized and the galvalume (Zn-55 % Al) coated steels was much higher and not suitable for Cu substitute in artificial sea water and acidic rain environments. Furthermore, the galvanic difference between Cu electroplated steel and Cu was so small that the Cu coated steel pipe can be used as a substitute for Cu pipe in an air-conditioner system.

  4. Effects of Boron Bearing Additives on Oxidation and Corrosion Resistance of Doloma—based carbon bonded Refractories

    Institute of Scientific and Technical Information of China (English)

    YEFangbao; ZHONGXiangchong; 等

    1998-01-01

    Oxidation of the added graphite and the bonding carbon is an imortant degradation mode of doloma-carbon refractories in service,In this work,the behavior and effects of various boron bearing materials(CaB6,ZrB2,Bc and colemanite)as an-tioxidants have been investigated and compared to the effect of Al-Mg alloy,For CaO-MgO-C mate-rials,the effect of boron bearingadditives is better than Al-Mg alloy,The borate melt formed at high temperature would retard or prevent carbon oxidation,thus contributing to improved oxidation resistance,Preliminary investigations on the effect of boron bearing additives and Al-Mg alloy on corrosion resistance of doloma-carbon materials have indicated that simultaneous addition of the two types of additives would lead to pronounced improvement of slag corrosion resistance.

  5. Corrosion Resistance of the Superhydrophobic Mg(OH2/Mg-Al Layered Double Hydroxide Coatings on Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Fen Zhang

    2016-04-01

    Full Text Available Coatings of the Mg(OH2/Mg-Al layered double hydroxide (LDH composite were formed by a combined co-precipitation method and hydrothermal process on the AZ31 alloy substrate in alkaline condition. Subsequently, a superhydrophobic surface was successfully constructed to modify the composite coatings on the AZ31 alloy substrate using stearic acid. The characteristics of the composite coatings were investigated by means of X-ray diffractometer (XRD, Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, scanning electronic microscope (SEM and contact angle (CA. The corrosion resistance of the coatings was assessed by potentiodynamic polarization, the electrochemical impedance spectrum (EIS, the test of hydrogen evolution and the immersion test. The results showed that the superhydrophobic coatings considerably improved the corrosion resistant performance of the LDH coatings on the AZ31 alloy substrate.

  6. Growth and corrosion resistance of molybdate modified zinc phosphate conversion coatings on hot-dip galvanized steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The modified zinc phosphate conversion coatings(ZPC) were formed on hot-dip galvanized(HDG) steel when 1.0 g/L sodium molybdate were added in a traditional zinc phosphate solution. The growth performance and corrosion resistance of the modified ZPC were investigated by SEM, open circuit potential(OCP), mass gain, potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) measurements and compared with those of the traditional ZPC. The results show that if sodium molybdate is added in a traditional zinc phosphate solution, the nucleation of zinc phosphate crystals is increased obviously; zinc phosphate crystals are changed from bulky acicular to fine flake and a more compact ZPC is obtained. Moreover, the mass gain and coverage of the modified ZPC are also boosted. The corrosion resistance of ZPI is increased with an increase in coverage, and thus the corrosion protection ability of the modified ZPC for HDG steel is more outstanding than that of the traditional ZPC.

  7. A Study of Magnesium-Base Metallic Systems and Development of Principles for Creation of Corrosion-Resistant Magnesium Alloys

    Science.gov (United States)

    Mukhina, I. Yu.

    2014-11-01

    The effect of 26 alloying elements on the corrosion resistance of high-purity magnesium in a 0.5-n solution of sodium chloride and in a humid atmosphere (0.005 n) is studied. The Mg - Li, Mg - Ag, Mg - Zn, Mg - Cu, Mg - Gd, Mg - Al, Mg - Zr, Mg - Mn and other binary systems, which present interest as a base for commercial or perspective castable magnesium alloys, are studied. The characteristics of corrosion resistance of the binary alloys are analyzed in accordance with the group and period of the Mendeleev's periodic law. The roles of the electrochemical and volume factors and of the factor of the valence of the dissolved element are determined.

  8. Micro-arc oxidization of a novel Mg–1Ca alloy in three alkaline KF electrolytes: Corrosion resistance and cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Z.J.; Li, M.; Liu, Q.; Xu, X.C. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Cheng, Y., E-mail: chengyan@pku.edu.cn [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zheng, Y.F. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China); Xi, T.F. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Wei, S.C. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100871 (China)

    2014-02-15

    A newly-developed Mg–1Ca (wt%) alloy was treated by micro-arc oxidization (MAO) in KF-silicate- (Si coating), KF-phosphate- (P coating) and KF-silicate-phosphate (SiP coating) electrolytes. The microstructure, composition and corrosion resistance of the resultant MAO coatings were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffractometry (XRD). Electrochemical analysis and immersion test in Hanks’ solution and MTT assay for in-vitro toxicity against MG63 cells were subsequently carried out. Results showed that all the three MAO coatings contributed to the improvement of corrosion resistance and cytocompatibility of substrate; however, P coating outperformed the two others due to its specific microstructure and composition.

  9. Improvement of corrosion resistance and antibacterial effect of NiTi orthopedic materials by chitosan and gold nanoparticles

    Science.gov (United States)

    Ahmed, Rasha A.; Fadl-allah, Sahar A.; El-Bagoury, Nader; El-Rab, Sanaa M. F. Gad

    2014-02-01

    Biocomposite consists of gold nanoparticles (AuNPs) and a natural polymer as Chitosan (CS) was electrodeposited over NiTi alloy to improve biocompatibility, biostability, surface corrosion resistance and antibacterial effect for orthopedic implantation. The forming process and surface morphology of this biocomposite coats over NiTi alloy were studied. The results showed that the nm-scale gold particles were embedded in the composite forming compact, thick and smooth coat. Elemental analysis revealed significant less Ni ion release from the coated NiTi alloy compared with the uncoated one by 20 fold. Furthermore, the electrochemical corrosion measurements indicated that AuNPs/CS composite coat was effective for improving corrosion resistance in different immersion times and at all pH values, which suggests that the coated NiTi alloys have potential for orthopedic applications. Additionally, the efficiencies of the biocomposite coats for inhibiting bacterial growth indicate high antibacterial effect.

  10. The Effect of La on the Microstructure and Corrosion-resistance of Hot-dipped Aluminizing Steel

    Institute of Scientific and Technical Information of China (English)

    WENJiu-ba; ZHANGWei; LIXiao-yuan; LIQuan-an

    2004-01-01

    The effect of the content of rare-earth La on the microstructure and corrosion-resistance of hot-dipped aluminum was investigated in this paper. The results show that, under the same technology conditions, the thickness of hot-dipped aluminizing layer by adding the appropriate content of rare-earth La is about 2-3 times as much as that without rare-earth La, and the microstructure of hot-dipped aluminizing layer has also greatly changed ,and a great deal of phase Fe3A1 waspreci pitated along the boundary of a phase. The corrosion resistance of the hot-dipped layer with rare-earth is greatly increased.

  11. The Effect of La on the Microstructure and Corrosion-resistance of Hot-dipped Aluminizing Steel

    Institute of Scientific and Technical Information of China (English)

    WEN Jiu-ba; ZHANG Wei; LI Xiao-yuan; LI Quan-an

    2004-01-01

    The effect of the content of rare-earth La on the microstructure and corrosion-resistance of hot-dipped aluminum was investigated in this paper. The results show that, under the same technology conditions, the thickness of hot-dipped aluminizing layer by adding the appropriate content of rare-earth La is about 2~3 times as much as that without rare-earth La, and the microstructure of hot-dipped aluminizing layer has also greatly changed ,and a great deal of phase Fe3Al was precipitated along the boundary of α phase. The corrosion resistance of the hot-dipped layer with rare-earth is greatly increased.

  12. Preparation of Phytic Acid/Silane Hybrid Coating on Magnesium Alloy and Its Corrosion Resistance in Simulated Body Fluid

    Science.gov (United States)

    Wang, Fengwu; Cai, Shu; Shen, Sibo; Yu, Nian; Zhang, Feiyang; Ling, Rui; Li, Yue; Xu, Guohua

    2017-09-01

    In order to decrease the corrosion rate and improve the bioactivity of magnesium alloy, phytic acid/saline hybrid coatings were synthesized on AZ31 magnesium alloys by sol-gel dip-coating method. It was found that the mole ratio of phytic acid to γ-APS had a great influence on coating morphology and the corresponding corrosion resistance of the coated magnesium alloys. When the mole ratio of phytic acid to γ-APS was 1:1, the obtained hybrid coating was integral and without cracks, which was ascribed to the strong chelate capability of phytic acid and Si-O-Si network derived from silane. Electrochemical test result indicated that the corrosion resistance of the coated magnesium alloy was about 27 times larger than that of the naked counterpart. In parallel, immersion test showed that the phytic acid/silane hybrid coating could induce CaP-mineralized product deposition, which offered another protection for magnesium alloy.

  13. Surface morphology and corrosion resistance of electrodeposited composite coatings containing polyethylene or polythiophene in Ni–Mo base

    Indian Academy of Sciences (India)

    J Niedbała

    2011-07-01

    Ni–Mo + PENi and Ni–Mo + PTh composite coatings have been prepared by nickel-molybdenum deposition from a bath containing a suspension of PENi or Th. These coatings were obtained at galvanostatic conditions, at a current density of dep = – 0.100 A cm-2 and temperature of 293 K. A scanning electron microscope was used for surface morphology characterization of the coatings. The chemical composition of the coatings was determined by EDS. Electrochemical corrosion resistance investigations were carried out in 5 M KOH, using potentiodynamic and electrochemical impedance spectroscopy (EIS) methods. On the basis of these investigations it was found, that the composite coatings containing thiophene are more corrosion resistant in alkaline solution than the Ni–Mo + PENi coatings. This is caused by presence of the polymer on the coatings surface and decrease of corrosion active surface area of the coatings.

  14. Enhanced corrosion resistance and biocompatibility of β-type Ti–25Nb–25Zr alloy by electrochemical anodization

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Her-Hsiung [Department of Dentistry, National Yang-Ming University, Taipei, 112 Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung, 404 Taiwan (China); Department of Biomedical Informatics, Asia University, Taichung, 413 Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei, 112 Taiwan (China); Wu, Chia-Ping; Sun, Ying-Sui; Huang, Hsun-Miao [Institute of Oral Biology, National Yang-Ming University, Taipei, 112 Taiwan (China); Lee, Tzu-Hsin, E-mail: biomaterials@hotmail.com [School of Dentistry, Chung Shan Medical University, Taichung, 402 Taiwan (China); Oral Medicine Center, Chung Shan Medical University Hospital, Taichung, 402 Taiwan (China)

    2013-12-31

    The biocompatibility of implants is largely determined by their surface characteristics. This study presents a novel method for performing electrochemical anodization on β-type Ti–25Nb–25Zr alloy with a low elastic modulus (approximately 70 GPa). This method results in a thin hybrid layer capable of enhancing the surface characteristics of the implants. We investigated the surface topography and microstructure of the resulting Ti–25Nb–25Zr alloy. The corrosion resistance was evaluated using potentiodynamic polarization curve measurements in simulated body fluid. The cytotoxicity was evaluated according to International Organization for Standardization 10993–5 specification. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed using scanning electron microscopy and fluorescence microscopy. The anodization produced a thin (approximately 40 nm-thick) hybrid oxide layer with a nanoporous outer sublayer (pore size < 15 nm) and a dense inner layer. The thin hybrid oxide layer increased the corrosion resistance of the Ti–25Nb–25Zr alloy by increasing the corrosion potential and decreasing both the corrosion rate and passive current. Ti–25Nb–25Zr alloys with and without anodization treatment were non-toxic. Surface nanotopography on the anodized Ti–25Nb–25Zr alloy enhanced protein adsorption and cell adhesion. Our results demonstrate that electrochemical anodization increases the corrosion resistance and cell adhesion of β-type Ti–25Nb–25Zr alloy while providing a lower elastic modulus suitable for implant applications. - Highlights: • An electrochemical anodization was applied to β-type Ti–25Nb–25Zr alloy surface. • Anodized surface had nanoscale hybrid oxide layer. • Anodized surface increased corrosion resistance due to dense inner sublayer. • Anodized surface enhanced cell adhesion due to nanoporous outer sublayer. • Electrochemical anodization has potential as implant surface treatment.

  15. Effects of Oxide Film on the Corrosion Resistance of Titanium Grade 7 in Fluoride-Containing NaCl Brines

    Energy Technology Data Exchange (ETDEWEB)

    Lian, T; Whalen, M T; Wong, L

    2004-11-30

    The effects of oxide film on the corrosion behavior of Titanium Grade 7 (0.12-0.25% Pd) in fluoride-containing NaCl brines have been investigated. With the presence of a 0.6 {micro}m thick oxide layer, the annealed Ti grade 7 exhibited a significant improvement on the anodic polarization behavior. However, the oxide film did not demonstrate sustainable corrosion resistance in fluoride-containing solutions.

  16. Corrosion Resistance of The Bearing Steel 67SiMnCr6-6-4 with Nanobainitic Structure

    Directory of Open Access Journals (Sweden)

    Skołek E.

    2015-04-01

    Full Text Available The paper describes a comparative study of the corrosion resistance of bearing steel 67SiMnCr6-6-4 after two kinds of nanostructuring treatments and two kinds of conventional quenching and tempering treatments. The nanostructuring treatment consisted of austempering with an isothermal quenching at 240°C and 300°C. The conventional heat treatment consisted on quenching and tempering at 350°C for 1 h and quenching and tempering at 550°C for 1 h. Time and temperature of tempering was chosen so that the hardness of both samples (nanostructured as well as quenched and tempered was similar. The microstructure of steel after each heat treatment was described with the use of transmission electron microscopy (TEM. It was shown, that the austempering conducted at 240°C produced homogenous nanobainitic structure consisting of carbide-free bainite plates with nanometric thickness separated by the layers of retained austenite. The austempering at 300°C produced a sub-micrometric carbide-free bainite with retained austenite in form of layers and small blocks. The conventional heat treatments led to a tempered martensite microstructure. The corrosion resistance study was carried out in Na2SO4 acidic and neutral environment using potentiodynamic and electrochemical impedance spectroscopy (EIS methods. The corrosion resistance of nanostructured steel samples were compared to the steel samples with tempered martensite. The obtained results indicate, that the corrosion resistance of bearing steel with nanobainitic structure is similar to steel with tempered martensite in both acidic and neutral environment. This means that the high density of intercrystalline boundaries in nanobinite does not deteriorate the corrosion properties of the bearing steel.

  17. Corrosion resistance of nickel and nickel alloys. (Latest citations from Information Services in Mechanical Engineering database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The bibliography contains citations concerning the corrosion resistance of nickel and nickel alloys used in electrical and structural materials and chemical processes. Topics include susceptibility of nickel to high temperature sulfidation, normal exposure to saline and other high chloride environments, pitting corrosion, and metal coatings. Special cases of corrosion of weld-filler metal combinations are also included. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. Electroless Ni-P/Ni-B duplex coatings: preparation and evaluation of microhardness, wear and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, T.S.N. Sankara; Krishnaveni, K.; Seshadri, S.K

    2003-12-20

    The present work deals with the formation of Ni-P/Ni-B duplex coatings by electroless plating process and evaluation of their hardness, wear resistance and corrosion resistance. The Ni-P/Ni-B duplex coatings were prepared using dual baths (acidic hypophosphite- and alkaline borohydride-reduced electroless nickel baths) with both Ni-P and Ni-B as inner layers and with varying single layer thickness. Scanning electron microscopy (SEM) was used to assess the duplex interface. The microhardness, wear resistance and corrosion resistance of electroless nickel duplex coatings were compared with electroless Ni-P and Ni-B coatings of similar thickness. The study reveals that the Ni-P and Ni-B coatings are amorphous in their as-plated condition and upon heat-treatment at 450 deg. C for 1 h, both Ni-P and Ni-B coatings crystallize and produce nickel, nickel phosphide and nickel borides in the respective coatings. All the three phases are formed when Ni-P/Ni-B and Ni-B/Ni-P duplex coatings are heat-treated at 450 deg. C for 1 h. The duplex coatings are uniform and the compatibility between the layers is good. The microhardness, wear resistance and corrosion resistance of the duplex coating is higher than Ni-P and Ni-B coatings of similar thickness. Among the two types of duplex coatings studied, hardness and wear resistance is higher for coatings having Ni-B coating as the outer layer whereas better corrosion resistance is offered by coatings having Ni-P coating as the outer layer.

  19. Improvement of mechanical properties and corrosion resistance of biodegradable Mg-Nd-Zn-Zr alloys by double extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaobo, E-mail: xbxbzhang2003@163.com [School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167 (China); Wang, Zhangzhong [School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167 (China); Yuan, Guangyin [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai, 200240 (China); Xue, Yajun [School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167 (China)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Microstructure of Mg-Nd-Zn-Zr alloys was refined and homogenized by double extrusion process. Black-Right-Pointing-Pointer The mechanical properties of the alloys were significantly enhanced by double extrusion. Black-Right-Pointing-Pointer The biocorrosion resistance of the alloys was improved by double extrusion. - Abstract: Mg-Nd-Zn-Zr alloy is a novel and promising biodegradable magnesium alloy due to good biocompatibility, desired uniform corrosion mode and outstanding corrosion resistance in simulated body fluid (SBF). However, the corrosion resistance and mechanical properties should be improved to meet the requirement of the biodegradable implants, such as plates, screws and cardiovascular stents. In the present study, double extrusion process was adopted to refine microstructure and improve mechanical properties of Mg-2.25Nd-0.11Zn-0.43Zr and Mg-2.70Nd-0.20Zn-0.41Zr alloys. The corrosion resistance of the alloys after double extrusion was also studied. The results show that the microstructure of the alloys under double extrusion becomes much finer and more homogeneous than those under once extrusion. The yield strength, ultimate tensile strength and elongation of the alloys under double extrusion are over 270 MPa, 300 MPa and 32%, respectively, indicating that outstanding mechanical properties of Mg-Nd-Zn-Zr alloy can be obtained by double extrusion. The results of immersion experiment and electrochemical measurements in SBF show that the corrosion resistance of Alloy 1 and Alloy 2 under double extrusion was increased by 7% and 8% respectively compared with those under just once extrusion.

  20. Influence of Surface Gas-Phase Rare Earth Permeation Plus Laser Melting Solidification on Microstructure and Corrosion Resistance of Pure Iron

    Institute of Scientific and Technical Information of China (English)

    许越; 纪红; 陈湘; 赵连城

    2002-01-01

    The samples of pure Fe were treated by surface gas-phase RE permeation plus laser melting solidification (LMS). The microstructures were observed by Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy (XPS), meanwhile the corrosion resistance was investigated by electrochemical impedance spectroscopy (EIS) and anodic polarization. The results show that this treatment can remarkably improve the density and uniformity of microstructure, and enhance corrosion resistance of the pure Fe surface.

  1. Effect of boron addition on pitting corrosion resistance of modified 9Cr-1Mo steel: Application of electrochemical noise

    Energy Technology Data Exchange (ETDEWEB)

    Pujar, M.G., E-mail: pujar55@gmail.com [Metallurgy and Materials Group (MMG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Das, C.R.; Thirunavukkarasu, S.; Kamachi Mudali, U.; Bhaduri, A.K. [Metallurgy and Materials Group (MMG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Brijitta, J.; Tata, B.V.R. [Materials Science Group (MSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India)

    2011-10-17

    Highlights: {yields} Weibull probability plots separate pitting and passive corrosion events. {yields} Gumbel distribution analysis gives maximum metastable pit depths. {yields} Addition of boron results in superior pitting corrosion resistance in 0.1 M NaCl. {yields} Incorporation of B into M{sub 23}C{sub 6} carbides refines them and improves pitting resistance. {yields} Coarse M{sub 23}C{sub 6} carbides and delta-ferrite result in inferior pitting resistance. - Abstract: 9Cr-1Mo steels indigenously melted with the addition of boron (Alloy B) and without it (Alloy D) along with Alloy C (without boron addition with minor changes in the trace element concentrations) were studied for their pitting corrosion resistance in 0.001 M, 0.01 M, 0.05 M and 0.1 M sodium chloride solutions using electrochemical noise (EN) technique. Weibull probability plots were used to determine the pit embryo generation rates. Gumbel extreme value analysis was conducted to determine the maximum metastable as well as stable pit radii. The analysis of the data showed superior pitting corrosion resistance of the Alloy B compared to Alloy C as well as Alloy D.

  2. Application of High Temperature Corrosion-Resistant Materials and Coatings Under Severe Corrosive Environment in Waste-to-Energy Boilers

    Science.gov (United States)

    Kawahara, Yuuzou

    2007-06-01

    Corrosion-resistant materials (CRMs) and coatings are key technologies to increase power generation efficiency and reduce maintenance in waste-to-energy (WTE) plants. Corrosion environment became severe as steam temperatures have increased. The steam condition of more than 400 °C/3.9 MPa became possible in WTE boilers by using highly durable corrosion-resistant coatings, such as thermal spray of Al/80Ni20Cr alloy, HVOF-sprayed NiCrSiB alloy, Alloy 625 weld overlay for waterwall tubes and also superheater tubes. Also, the use of 310S type stainless steels and high Cr-high Mo-Ni base and high Si-Cr-Ni-Fe alloys have progressed because of a better understanding of corrosion mechanisms. Furthermore, high durability coatings using cermet and ceramic materials were applied to high temperature superheaters. This paper describes the major developments and the application of CRMs and coating technologies in the last 30 years in WTE plants, the corrosion mechanisms of alloys, the deterioration mechanisms of spray coating layers, and future subjects for the development of corrosion-resistant materials and coatings.

  3. Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment

    Science.gov (United States)

    Sidhu, T. S.; Prakash, S.; Agrawal, R. D.

    2006-09-01

    No alloy is immune to hot corrosion attack indefinitely. Coatings can extend the lives of substrate materials used at higher temperatures in corrosive environments by forming protective oxides layers that are reasonably effective for long-term applications. This article is concerned with studying the performance of high-velocity oxyfuel (HVOF) sprayed NiCrBSi, Cr3C2-NiCr, Ni-20Cr, and Stellite-6 coatings on a nickel-base superalloy at 900 °C in the molten salt (Na2SO4-60% V2O5) environment under cyclic oxidation conditions. The thermogravimetric technique was used to establish kinetics of corrosion. Optical microscope, x-ray diffraction, scanning electron microscopy/electron dispersive analysis by x-ray (SEM/EDAX), and electron probe microanalysis (EPMA) techniques were used to characterize the as-sprayed coatings and corrosion products. The bare superalloy suffered somewhat accelerated corrosion in the given environmental conditions. whereas hot corrosion resistance of all the coated superalloys was found to be better. Among the coating studied, Ni-20Cr coated superalloy imparted maximum hot corrosion resistance, whereas Stellite-6 coated indicated minimum resistance. The hot corrosion resistance of all the coatings may be attributed to the formation of oxides and spinels of nickel, chromium, or cobalt.

  4. An effective and novel pore sealing agent to enhance the corrosion resistance performance of Al coating in artificial ocean water

    Science.gov (United States)

    Lee, Han-Seung; Singh, Jitendra Kumar; Ismail, Mohamed A.

    2017-02-01

    A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance.

  5. Influence of the post-weld surface treatment on the corrosion resistance of the duplex stainless steel 1.4062

    Science.gov (United States)

    Rosemann, P.; Müller, C.; Baumann, O.; Modersohn, W.; Halle, T.

    2017-03-01

    The duplex stainless steel 1.4062 (X2CrNiN22-2) is used as alternative material to austenitic stainless steels in the construction industry. The corrosion resistance of welded seams is influenced by the base material, the weld filler material, the welding process and also by the final surface treatment. The scale layer next to the weld seam can be removed by grinding, pickling, electro-polished or blasting depending on the application and the requested corrosion resistance. Blasted surfaces are often used in industrial practice due to the easier and cheaper manufacturing process compared to pickled or electro-polished surfaces. Furthermore blasting with corundum-grain is more effective than blasting with glass-beads which also lower the process costs. In recent years, stainless steel surfaces showed an unusually high susceptibility to pitting corrosion after grinding with corundum. For this reason, it is now also questioned critically whether the corrosion resistance is influenced by the applied blasting agent. This question was specifically investigated by comparing grinded, pickled, corundum-grain- and glass-bead-blasted welding seams. Results of the SEM analyses of the blasting agents and the blasted surfaces will be presented and correlated with the different performed corrosion tests (potential measurement, KorroPad-test and pitting potential) on welding seams with different surface treatments.

  6. Development in corrosion resistance by microstructural refinement in Zr-16 SS 304 alloy using suction casting technique

    Energy Technology Data Exchange (ETDEWEB)

    Das, N., E-mail: nirupamd@barc.gov.in; Sengupta, P.; Abraham, G.; Arya, A.; Kain, V.; Dey, G.K.

    2016-08-15

    Highlights: • Grain refinement was made in Zr–16 wt.% SS alloy while prepared by suction casting process. • Distribution of Laves phase, e.g., Zr{sub 2}(Fe, Cr) was raised in suction cast (SC) Zr–16 wt.% SS. • Corrosion resistance was improved in SC alloy compared to that of arc-melt-cast alloy. • Grain refinement in SC alloy assisted for an increase in its corrosion resistance. - Abstract: Zirconium (Zr)-stainless steel (SS) hybrid alloys are being considered as baseline alloys for developing metallic-waste-form (MWF) with the motivation of disposing of Zr and SS base nuclear metallic wastes. Zr–16 wt.% SS, a MWF alloy optimized from previous studies, exhibit significant grain refinement and changes in phase assemblages (soft phase: Zr{sub 2}(Fe, Cr)/α-Zr vs. hard phase: Zr{sub 3}(Fe, Ni)) when prepared by suction casting (SC) technique in comparison to arc-cast-melt (AMC) route. Variation in Cr-distribution among different phases are found to be low in suction cast alloy, which along with grain refinement restricted Cr-depletion at the Zr{sub 2}(Fe, Cr)/Zr interfaces, prone to localized attack. Hence, SC alloy, compared to AMC alloy, showed lower current density, higher potential at the breakdown of passivity and higher corrosion potential during polarization experiments (carried out under possible geological repository environments, viz., pH 8, 5 and 1) indicating its superior corrosion resistance.

  7. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications.

    Science.gov (United States)

    Samuel, Sonia; Nag, Soumya; Nasrazadani, Seifollah; Ukirde, Vaishali; El Bouanani, Mohamed; Mohandas, Arunesh; Nguyen, Kytai; Banerjee, Rajarshi

    2010-09-15

    While direct metal deposition of metallic powders, via laser deposition, to form near-net shape orthopedic implants is an upcoming and highly promising technology, the corrosion resistance and biocompatibility of such novel metallic biomaterials is relatively unknown and warrants careful investigation. This article presents the results of some initial studies on the corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys. These new generation beta titanium alloys are promising due to their low elastic modulus as well as due the fact that they comprise of completely biocompatible alloying elements. The results indicate that the corrosion resistance of these laser-deposited alloys is comparable and in some cases even better than the currently used commercially-pure (CP) titanium (Grade 2) and Ti-6Al-4V ELI alloys. The in vitro studies indicate that the Ti-Nb-Zr-Ta alloys exhibit comparable cell proliferation but enhanced cell differentiation properties as compared with Ti-6Al-4V ELI.

  8. Effects of Tungsten Addition on the Microstructure and Corrosion Resistance of Fe-3.5B Alloy in Liquid Zinc.

    Science.gov (United States)

    Liu, Xin; Wang, Mengmeng; Yin, Fucheng; Ouyang, Xuemei; Li, Zhi

    2017-04-10

    The effects of tungsten addition on the microstructure and corrosion resistance of Fe-3.5B alloys in a liquid zinc bath at 520 °C were investigated by means of scanning electron microscopy, X-ray diffraction and electron probe micro-analysis. The microstructure evolution in different alloys is analyzed and discussed using an extrapolated Fe-B-W ternary phase diagram. Experimental results show that there are three kinds of borides, the reticular (Fe, W)₂B, the rod-like (Fe, W)₃B and flower-like FeWB. The addition of tungsten can refine the microstructure and improve the stability of the reticular borides. Besides, it is beneficial to the formation of the metastable (Fe, W)₃B phase. The resultant Fe-3.5B-11W (wt %) alloy possesses excellent corrosion resistance to liquid zinc. When tungsten content exceeds 11 wt %, the formed flower-like FeWB phase destroys the integrity of the reticular borides and results in the deterioration of the corrosion resistance. Also, the corrosion failure resulting from the spalling of borides due to the initiation of micro-cracks in the grain boundary of borides is discussed in this paper.

  9. Effect of samarium on microstructure and corrosion resistance of aged as-cast AZ92 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    吴道高; 颜世宏; 王志强; 张志琦; 苗睿瑛; 张小伟; 陈德宏

    2014-01-01

    The effects of samarium (Sm) on microstructure and corrosion resistance of AZ92 magnesium alloy were characterized and analyzed by scanning electronic microscopy, X-ray diffraction, mass loss test, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy and potentio-dynamic polarization test. The results showed that the added Sm could promote continuous precipitation ofβ-Mg17Al12 phase in grains, and meanwhile restrain discontinuous precipitation of the same phase along the grain boundaries. Thus, the precipitations distributed more uniformly in the aged AZ92 magnesium alloys. When the content of Sm was 0.5 wt.%, the corrosion resistance of aged AZ92 alloy tended to be the best, which was due to theβ-phase distributes more homogeneous reducing the galvanic corrosion. The corrosion product film had more integrality and compactness than AZ92 alloys without Sm. However, it resulted in worse corrosion resistance of AZ92 alloy because of the formation of mass cathodic Al2Sm phase coming from excess Sm in AZ92 alloy.

  10. The corrosion resistance of Wiron(®)88 in the presence of S. mutans and S. sobrinus bacteria.

    Science.gov (United States)

    Proença, L; Barroso, H; Figueiredo, N; Lino, A R; Capelo, S; Fonseca, I T E

    2015-01-01

    The corrosion resistance of Wiron(®)88, a Ni-Cr-Mo alloy, was evaluated in liquid growth media in the absence and presence of the Streptococcus sobrinus and Streptococcus mutans strains. Open circuit potential measurements, cyclic voltammetry, linear sweep voltammetry, as well as electronic microscopy coupled to electron diffraction spectroscopy (SEM/EDS), were the main techniques used in this study. It was concluded that the presence of S. sobrinus and S. mutans have only a slight effect on the corrosion resistance of the Wiron(®)88 alloy, with the S. mutans being slightly more aggressive. For both strains the corrosion resistance R p is of the same order (kΩ cm(2)). After 24 h immersion the S. sobrinus lead to and R p of 11.02, while the S. mutans lead to of 5.59 kΩ cm(2). SEM/EDS studies on the Wiron(®)88 samples, with 24 days of immersion, at 37 °C, have confirmed bio-corrosion of the alloy occurring through the dissolution of Ni as Ni(2+) and formation of chromium and molybdenum oxides. The bacterial adhesion to the surface is not uniform.

  11. Corrosion Resistance of Sintered NdFeB Permanent Magnet With Ni-P/TiO2 Composite Film

    Institute of Scientific and Technical Information of China (English)

    SONG Lai-zhou; YANG Zhi-yong

    2009-01-01

    The Ni-P/TiO2 composite film on sintered NdFeB permanent magnet was investigated by X-ray diffraction (XRD), environmental scanning electron microscopy (ESEM), and energy dispersive X-ray spectrometer (EDX).The corrosion resistance of Ni-P/TiO2 film coated on NdFeB magnet, in 0. 5 mol/L NaCl solution, was studied by potentiodynamic polarization, salt spray test and electrochemical impedance spectroscopy (EIS) techniques. The selfcorrosion current density (icorr) and the polarization resistance (Rp) of Ni-P/TiO2 film are 0. 22 μA/cm2 (about 14% of that of Ni-P coating), and 120 kΩ·cm2 (about 2 times of that of Ni-P coating), respectively. The anti-salt spray time of Ni-P/TiO2 film is about 2.5 times of that of the Ni-P coating. The results indicate that Ni-P/TiO2 film has a better corrosion resistance than Ni-P coating, and the composite film increases the corrosion resistance of NdFeB magnet markedly.

  12. [The effect of C-SiO2 composite films on corrosion resistance of dental Co-Cr alloy].

    Science.gov (United States)

    Huang, Yi; Hu, Jing-Yu; Liu, Yu-Pu; Zhao, Dong-Yuan; Yu, You-Cheng; Bi, Wei

    2016-10-01

    To study the effect of carbon-silica composite films on corrosion resistance of Co-Cr alloy in simulated oral environment and provide evidences for clinical application of this new material. Co-Cr alloy specimens were cut into appropriate size of 20 mm × 20 mm × 0.5 mm. Then, the carbon-silica composite films were spin-coated onto the specimens. Subsequently, ICP-AES was used to observe the Co, Cr, Mo ion concentrations. Finally, Tafel polarization curves of the specimens were used to measure the electrochemical corrosion resistance by electrochemical workstation. SAS8.0 software package was used for statistical analysis. The results of ICP-AES showed that the ion concentrations of Co, Cr, Mo of specimens coated with composite films in the testing liquid were significantly smaller than that of Co-Cr alloy specimens. Tafel polarization curves showed that in the specimens coated with composite films, the corrosion potential moved in the positive direction and increased from -0.261 V to -0.13 V. At the same time, the corrosion current density decreased from -5.0017μA/cm(2) to -5.3006 μA/cm(2). Carbon-silica composite films (silica=61.71wt %) can reduce the release of metal ions significantly and improve the corrosion resistance of Co-Cr alloys effectively. Carbon-silica composite films may be a promising dental material.

  13. Corrosion resistance and biological activity of TiO2 implant coatings produced in oxygen-rich environments.

    Science.gov (United States)

    Zhang, Rui; Wan, Yi; Ai, Xing; Liu, Zhanqiang; Zhang, Dong

    2017-01-01

    The physical and chemical properties of bio-titanium alloy implant surfaces play an important role in their corrosion resistance and biological activity. New turning and turning-rolling processes are presented, employing an oxygen-rich environment in order to obtain titanium dioxide layers that can both protect implants from corrosion and also promote cell adhesion. The surface topographies, surface roughnesses and chemical compositions of the sample surfaces were obtained using scanning electron microscopy, a white light interferometer, and the Auger electron spectroscopy, respectively. The corrosion resistance of the samples in a simulated body fluid was determined using electrochemical testing. Biological activity on the samples was also analyzed, using a vitro cell culture system. The results show that compared with titanium oxide layers formed using a turning process in air, the thickness of the titanium oxide layers formed using turning and turning-rolling processes in an oxygen-rich environment increased by 4.6 and 7.3 times, respectively. Using an oxygen-rich atmosphere in the rolling process greatly improves the corrosion resistance of the resulting samples in a simulated body fluid. On samples produced using the turning-rolling process, cells spread quickly and exhibited the best adhesion characteristics.

  14. An effective and novel pore sealing agent to enhance the corrosion resistance performance of Al coating in artificial ocean water

    Science.gov (United States)

    Lee, Han-Seung; Singh, Jitendra Kumar; Ismail, Mohamed A.

    2017-01-01

    A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance. PMID:28157233

  15. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez-Mariano; Angel Sanjurjo

    2006-12-31

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period, we analyzed several coated and exposed samples of 409 steel by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX), and report on the findings of four samples: (1) Analysis of two porous coupons after exposure to the porous metal particulate filter of the coal gasification power plant at 370 C for 2140 hours revealed that corrosion takes place in the bulk of the sample while the most external zone surface survived the test. (2) Coating and characterization of several porous 409 steel coupons after being coated with nitrides of Ti, Al and/or Si showed that adjusting experimental conditions results in thicker coatings in the bulk of the sample. (3) Analysis of coupons exposed to simulated coal gas at 370 C for 300 hours showed that a better corrosion resistance is achieved by improving the coatings in the bulk of the samples.

  16. Atomic-scale decoration for improving the pitting corrosion resistance of austenitic stainless steels

    Science.gov (United States)

    Zhou, Y. T.; Zhang, B.; Zheng, S. J.; Wang, J.; San, X. Y.; Ma, X. L.

    2014-01-01

    Stainless steels are susceptible to the localized pitting corrosion that leads to a huge loss to our society. Studies in the past decades confirmed that the pitting events generally originate from the local dissolution in MnS inclusions which are more or less ubiquitous in stainless steels. Although a recent study indicated that endogenous MnCr2O4 nano-octahedra within the MnS medium give rise to local nano-galvanic cells which are responsible for the preferential dissolution of MnS, effective solutions of restraining the cells from viewpoint of electrochemistry are being tantalizingly searched. Here we report such a galvanic corrosion can be greatly resisted via bathing the steels in Cu2+-containing solutions. This chemical bath generates Cu2-δS layers on the surfaces of MnS inclusions, invalidating the nano-galvanic cells. Our study provides a low-cost approach via an atomic scale decoration to improve the pitting corrosion resistance of stainless steels in a volume-treated manner.

  17. Effect of Plasma Nitriding Process Conditions on Corrosion Resistance of 440B Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Łępicka Magdalena

    2014-09-01

    Full Text Available Martensitic stainless steels are used in a large number of various industrial applications, e.g. molds for plastic injections and glass moldings, automotive components, cutting tools, surgical and dental instruments. The improvement of their tribological and corrosion properties is a problem of high interest especially in medical applications, where patient safety becomes a priority. The paper covers findings from plasma nitrided AISI 440B (PN-EN or DIN X90CrMoV18 stainless steel corrosion resistance studies. Conventionally heat treated and plasma nitrided in N2:H2 reaction gas mixture (50:50, 65:35 and 80:20, respectively in two different temperature ranges (380 or 450°C specimens groups were examined. Microscopic observations and electrochemical corrosion tests were performed using a variety of analytical techniques. As obtained findings show, plasma nitriding of AISI 440B stainless steel, regardless of the process temperature, results in reduction of corrosion current density. Nevertheless, applying thermo-chemical process which requires exceeding temperature of about 400°C is not recommended due to increased risk of steel sensitization to intergranular and stress corrosion. According to the results, material ion nitrided in 450°C underwent leaching corrosion processes, which led to significant disproportion in chemical composition of the corroded and corrosion-free areas. The authors suggest further research into corrosion process of plasma nitrided materials and its degradation products.

  18. Development of Custom 465® Corrosion-Resisting Steel for Landing Gear Applications

    Science.gov (United States)

    Daymond, Benjamin T.; Binot, Nicolas; Schmidt, Michael L.; Preston, Steve; Collins, Richard; Shepherd, Alan

    2016-04-01

    Existing high-strength low-alloy steels have been in place on landing gear for many years owing to their superior strength and cost performance. However, there have been major advances in improving the strength of high-performance corrosion-resisting steels. These materials have superior environmental robustness and remove the need for harmful protective coatings such as chromates and cadmium now on the list for removal under REACH legislation. A UK government-funded collaborative project is underway targeting a refined specification Custom 465® precipitation hardened stainless steel to replace the current material on Airbus A320 family aircraft main landing gear, a main fitting component developed by Messier-Bugatti-Dowty. This is a collaborative project between Airbus, Messier-Bugatti-Dowty, and Carpenter Technology Corporation. An extensive series of coupon tests on four production Heats of the material have been conducted, to obtain a full range of mechanical, fatigue, and corrosion properties. Custom 465® is an excellent replacement to the current material, with comparable tensile strength and fracture toughness, better ductility, and very good general corrosion and stress corrosion cracking resistance. Fatigue performance is the only significant area of deficit with respect to incumbent materials, fatigue initiation being often related to carbo-titanium-nitride particles and cleavage zones.

  19. Enhancement of corrosion resistance of polypyrrole using metal oxide nanoparticles: Potentiodynamic and electrochemical impedance spectroscopy study.

    Science.gov (United States)

    Hosseini, Marzieh; Fotouhi, Lida; Ehsani, Ali; Naseri, Maryam

    2017-11-01

    We introduce a simple and facile strategy for dispersing of nanoparticles within a p-type conducting polymer matrix by in situ electropolymerization using oxalic acid as the supporting electrolyte. Coatings prepared from polypyrrole-nano-metal oxide particles synthesized by in situ polymerization were found to exhibit excellent corrosion resistance much superior to polypyrrole (Ppy) in aggressive environments. The anti-corrosion behavior of polypyrrole films in different states and the presence of TiO2, Mn2O3 and ZnO nanoparticles synthesized by electropolymerization on Al electrodes have been investigated in corrosive solutions using potentiodynamic polarization and electrochemical impedance spectroscopy. The electrochemical response of the coated electrodes in polymer and nanocomposite state was compared with bare electrodes. The use of TiO2 nanoparticles has proved to be a great improvement in the performances of polypyrrole films for corrosion protection of Al samples. The polypyrrole synthesized in the presence of TiO2 nanoparticles coated electrodes offered a noticeable enhancement of protection against corrosion processes. The exceptional improvement of performance of these coatings has been associated with the increase in barrier to diffusion, prevention of charge transport by the nanosize TiO2, redox properties of polypyrrole as well as very large surface area available for the liberation of dopant due to nano-size additive. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The effect of Ti(CN/TiNb(CN coating on erosion–corrosion resistance

    Directory of Open Access Journals (Sweden)

    William Aperador Chaparro

    2013-02-01

    Full Text Available The goal of this work was to study electrochemical behaviour in corrosion-erosion conditions for Ti(CN/TiNb(CN multilayer coatings having 1, 50, 100, 150 and 200 bilayer periods on AISI 4140 steel substrates by using a multi-target magnetron reactive sputtering device, with an r.f. source (13.56 MHz, two cylindrical magnetron cathodes and two stoichiometric TiC and Nb targets. The multi-layers were evaluated by comparing them to corrosion, erosion and erosion corrosion for a 30º impact angle in a solution of 0.5 M NaCl and silica, analysing the effect of impact angle and the number of bilayers on these coatings’ corrosion resistance. The electrochemical characterisation was performed using electrochemical impedance spectroscopy for analysing corrosion surface; surface morphology was characterised by using a high-resolution scanning electron microscope (SEM. The results showed a de-creased corrosion rate for multilayer systems tested at 30°.

  1. Improving corrosion resistance of RE-containing magnesium alloy ZE41A through ECAP

    Institute of Scientific and Technical Information of China (English)

    JIANG; Jinghua; MA; Aibin

    2009-01-01

    Significant grain refinement was achieved in rare earth (RE) containing aeronautic magnesium alloy ZE41A through equal-chan-nel angular pressing (ECAP) using rotary die at 603 K. Influence of ECAP pass number on its microstructure change and corrosion behavior was investigated by optical microscope (OM)/scanning electron microscope (SEM) observation and potentiostatic polarization tests in aque-otis solution of NaCl, respectively. The results showed that ultrafine equiaxial grains (about 2.5 μm) were obtained over 16 passes due to plastic-induced grain refinement accommodated by dynamic recrystallization. The lower corrosion current density and nobler corrosion po-tential correlated with large number of pressing passes were attributed to the low tendency toward localized corrosion with broken secondary phase after homogenization on ultrafine-grained Mg matrix. The multi-pass ECAP method made the ZE41A aeronautic magnesium alloy more attractive since severe plastic deformation may significandy improve its corrosion resistance besides superior mechanical properties.

  2. Prediction of Corrosion Resistance of Concrete Containing Natural Pozzolan from Compressive Strength

    Science.gov (United States)

    al-Swaidani, A. M.; Ismat, R.; Diyab, M. E.; Aliyan, S. D.

    2015-11-01

    A lot of Reinforced Concrete (RC) structures in Syria have suffered from reinforcement corrosion which shortened significantly their service lives. Probably, one of the most effective approaches to make concrete structures more durable and concrete industry on the whole - more sustainable is to substitute pozzolan for a portion of Portland cement (PC). Syria is relatively rich in natural pozzolan. In the study, in order to predict the corrosion resistance from compressive strength, concrete specimens were produced with seven cement types: one plain Portland cement (control) and six natural pozzolan-based cements with replacement levels ranging from 10 to 35%. The development of the compressive strengths of concrete cube specimens with curing time has been investigated. Chloride penetrability has also been evaluated for all concrete mixes after three curing times of 7, 28 and 90 days. The effect on resistance of concrete against damage caused by corrosion of the embedded reinforcing steel has been investigated using an accelerated corrosion test by impressing a constant anodic potential for 7, 28 and 90 days curing. Test results have been statistically analysed and correlation equations relating compressive strength and corrosion performance have been developed. Significant correlations have been noted between the compressive strength and both rapid chloride penetrability and corrosion initiation times. So, this prediction could be reliable in concrete mix design when using natural pozzolan as cement replacement.

  3. Corrosion Resistance of Ni/Al2O3 Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    Beata KUCHARSKA

    2016-05-01

    Full Text Available Nickel matrix composite coatings with ceramic disperse phase have been widely investigated due to their enhanced properties, such as higher hardness and wear resistance in comparison to the pure nickel. The main aim of this research was to characterize the structure and corrosion properties of electrochemically produced Ni/Al2O3 nanocomposite coatings. The coatings were produced in a Watts bath modified by nickel grain growth inhibitor, cationic surfactant and the addition of alumina particles (low concentration 5 g/L. The process has been carried out with mechanical and ultrasonic agitation. The Ni/Al2O3 nanocomposite coatings were characterized by SEM, XRD and TEM techniques. In order to evaluate corrosion resistance of produced coatings, the corrosion studies have been carried out by the potentiodynamic method in a 0.5 M NaCl solution. The corrosion current, corrosion potential and corrosion rate were determined. Investigations of the morphology, topography and corrosion damages of the produced surface layers were performed by scanning microscope techniques. DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7407

  4. A facile electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yi [State Key Lab of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Rd. 8, Xindu District, Chengdu City, Sichuan Province 610500 (China); School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu City, Sichuan Province 610500 (China); He, Yi, E-mail: chemheyi@swpu.edu.cn [State Key Lab of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Rd. 8, Xindu District, Chengdu City, Sichuan Province 610500 (China); School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu City, Sichuan Province 610500 (China); Luo, Pingya, E-mail: luopy@swpu.edu.cn [State Key Lab of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Rd. 8, Xindu District, Chengdu City, Sichuan Province 610500 (China); Chen, Xi; Liu, Bo [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu City, Sichuan Province 610500 (China)

    2016-04-15

    Graphical abstract: - Highlights: • A facile fabrication of superhydrophobic film was obtained on carbon steel. • Composition of superhydrophobic film is iron palmitate. • The film exhibits excellent chemical stability and good self-cleaning effect. • Corrosion of C45 steel is significantly inhibited with superhydrophobic surface. - Abstract: Superhydrophobic Fe film with hierarchical micro/nano papillae structures is prepared on C45 steel surface by one-step electrochemical method. The superhydrophobic surface was measured with a water contact angle of 160.5 ± 0.5° and a sliding angle of 2 ± 0.5°. The morphology of the fabricated surface film was characterized by field emission scanning electron microscopy (FE-SEM), and the surface structure seems like accumulated hierarchical micro-nano scaled particles. Furthermore, according to the results of Fourier transform infrared spectra (FT-IR) and X-ray photoelectron spectroscopy (XPS), the chemical composition of surface film was iron complex with organic acid. Besides, the electrochemical measurements showed that the superhydrophobic surface improved the corrosion resistance of carbon steel in 3.5 wt.% NaCl solution significantly. The superhydrophobic layer can perform as a barrier and provide a stable air–liquid interface which inhibit penetration of corrosive medium. In addition, the as-prepared steel exhibited an excellent self-cleaning ability that was not favor to the accumulation of contaminants.

  5. Mussel-inspired superhydrophobic surfaces with enhanced corrosion resistance and dual-action antibacterial properties.

    Science.gov (United States)

    Qian, Hongchang; Li, Minglu; Li, Zhong; Lou, Yuntian; Huang, Luyao; Zhang, Dawei; Xu, Dake; Du, Cuiwei; Lu, Lin; Gao, Jin

    2017-11-01

    In this study, a multilayer antibacterial film was assembled onto 316L stainless steel via mussel-inspired depositions of polydopamine (PDA) and silver (Ag) nanoparticles followed by post-modification with 1H, 1H, 2H, 2H-perfluorodecanethiol. The resulting surface exhibited excellent superhydrophobicity with hierarchical micro/nanostructures that were constructed by both PDA and Ag nanoparticles. The crystal structure and chemical composition of these surfaces were investigated using X-ray photoelectron spectroscopy (XPS) analysis. Potentiodynamic polarization measurements revealed that the corrosion resistance of the as-prepared surfaces were sequentially increased after each step of the fabrication process. Compared with the surface covered with only Ag nanoparticles, the superhydrophobic surfaces exhibited substantially enhanced antibacterial activity against the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, resulting from the synergistic antibacterial actions of the superhydrophobic surface and Ag nanoparticles. The superhydrophobic surface exhibited lower cytotoxicity, compared to the surface covered with Ag nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Enhanced corrosion resistance of magnesium alloy AM60 by cerium(III) in chloride solution

    Energy Technology Data Exchange (ETDEWEB)

    Heakal, F. El-Taib, E-mail: fakihaheakal@yahoo.com [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt); Shehata, O.S. [Physical Chemistry Department, National Research Centre, Dokki, Giza (Egypt); Tantawy, N.S. [Girl' s College of Arts, Science and Education, Ain Shams University, Asma Fahmi Street, Cairo (Egypt)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Corrosion rate of AM60 in Cl{sup -} solution decreases with increasing [Ce{sup 3+}] up to 1 mM. Black-Right-Pointing-Pointer Beyond that level the corrosion rate increases and then stabilizes. Black-Right-Pointing-Pointer The spontaneously formed film characterises by increasing resistance with time. Black-Right-Pointing-Pointer The converted film after 10 d immersion exhibits self-healing in plain Cl{sup -} solution. Black-Right-Pointing-Pointer Ce(III) should be present in the corrodent to form a more compact surface coating. - Abstract: Cerium(III) was utilised to enhance the corrosion resistance of AM60 in NaCl solution. Ce{sup 3+} can suppress corrosion deterioration up to 1.0 mM. Beyond that level corrosion rate increases till a steady value. Surface film resistance increases with time evolution until 24 h, then decreases and stabilizes. The converted film after 240 h immersion exhibits self-healing and thickening when re-exposed to plain chloride solution. SEM and EDX confirmed that when Ce is present as additive in solution, more compact coating is formed better than its presence as a post coating on the alloy surface before being immersed in the corrosive environment.

  7. Characterization, mechanical properties and corrosion resistance of biocompatible Zn-HA/TiO2 nanocomposite coatings.

    Science.gov (United States)

    Mirak, Mohammad; Alizadeh, Morteza; Ghaffari, Mohammad; Ashtiani, Mohammad Najafi

    2016-09-01

    Biocompatible Zinc-hydroxyapatite-titania and Zinc-hydroxyapatite nanocomposite coatings have been prepared by electrodeposition on NiTi shape memory alloy. Structures of coatings were characterized using X-ray diffraction (XRD). It was found that addition of TiO2 particles cause to reduction of crystallite size of coating. Scanning Electronic Microscope (SEM) observation showed that the Zn-HA/TiO2 coating consists of plate-like regions which can express that this plate-like structure can facilitate bone growth. X-ray photoelectron microscope (XPS) was performed to investigation of chemical state of composite coating and showed that Zinc matrix was bonded to oxygen. high-resolution transmission electron microscope (HRTEM) result illustrated the crystalline structure of nanocomposite coating. Mechanical behavior of coating was evaluated using microhardness and ball on disk wear test. The TiO2 incorporated composite coatings exhibited the better hardness and anti-wear performance than the Zn-HA coatings. Polarization measurements have been used to evaluate the electrochemical coatings performance. The Zn-HA/TiO2 composite coatings showed the highest corrosion resistance compared with Zn-HA and bare NiTi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Improvement of corrosion resistance of Ni−Mo alloy coatings: Effect of heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, R., E-mail: mousavi@scu.ac.ir [Department of Materials Science and Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Bahrololoom, M.E. [Department of Materials Science and Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Deflorian, F.; Ecco, L. [Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento (Italy)

    2016-02-28

    Graphical abstract: - Highlights: • Conjunction between SEM, EIS, and Tafel measurements to obtain a coat with dense morphology and without crack. • An inverse Hall-Petch effect is observed after annealing the coatings, i.e. the coatings get harder as the grain size is increased by increasing annealing temperature up to 600 {sup o}C. • Heat treatment can improve the mechanical and corrosion properties of coatings. - Abstract: In this paper, Ni−Mo alloy coatings were deposited from bath containing sodium citrate, nickel sulphate, and sodium molybdate. Essentially, this work is divided into two mains parts: (i) the optimization on the coatings deposition parameters and (ii) the effect of the heat treatment. Polarization curves and electrochemical impedance spectroscopy were acquired using potentiostat/galvanostat and a frequency response analyzer, respectively. Morphology and chemical composition of the coatings were investigated by scanning electron microscopy and energy dispersive spectroscopy, respectively. Polarization curves at different condition revealed that electroplating at temperature 40 {sup o}C, pH 9 provides a dense coating with high efficiency. Following the optimization of the deposition parameters, the coatings were annealed at 200, 400, and 600 {sup o}C for 25 min. The results showed that the coatings obtained at temperature 40 {sup o}C, pH 9, and annealing at 600 {sup o}C has the highest corrosion resistance and microhardness.

  9. A facile electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on carbon steel

    Science.gov (United States)

    Fan, Yi; He, Yi; Luo, Pingya; Chen, Xi; Liu, Bo

    2016-04-01

    Superhydrophobic Fe film with hierarchical micro/nano papillae structures is prepared on C45 steel surface by one-step electrochemical method. The superhydrophobic surface was measured with a water contact angle of 160.5 ± 0.5° and a sliding angle of 2 ± 0.5°. The morphology of the fabricated surface film was characterized by field emission scanning electron microscopy (FE-SEM), and the surface structure seems like accumulated hierarchical micro-nano scaled particles. Furthermore, according to the results of Fourier transform infrared spectra (FT-IR) and X-ray photoelectron spectroscopy (XPS), the chemical composition of surface film was iron complex with organic acid. Besides, the electrochemical measurements showed that the superhydrophobic surface improved the corrosion resistance of carbon steel in 3.5 wt.% NaCl solution significantly. The superhydrophobic layer can perform as a barrier and provide a stable air-liquid interface which inhibit penetration of corrosive medium. In addition, the as-prepared steel exhibited an excellent self-cleaning ability that was not favor to the accumulation of contaminants.

  10. Corrosion resistance of pseudo-spin-valve systems: Pd vs. Ta capping layers

    Science.gov (United States)

    Matthes, P.; Albrecht, M.

    2016-08-01

    An analysis of both magnetic and magneto-transport properties in dependence of the corrosion resistance is presented for a pseudo-spin-valve (PSV) system with different capping layers. The magnetoresistive part of the sample consists of a [Co/Pd] multilayer with perpendicular magnetic anisotropy and a single Co layer with in-plane easy axis separated by a Cu spacer, forming a PSV system with crossed anisotropies. The samples were annealed under ambient conditions up to temperatures of 200 °C to facilitate the corrosion process. Whereas the magnetic properties are stable up to 100 °C independent of the capping layer, the giant magnetoresistance (GMR) effect is more sensitive on annealing. In case of Pd as capping layer, the GMR of the pseudo-spin-valve considerably degrades already after annealing at 60 °C, whereby even by thickening of the Pd layer up to 10 nm, no pronounced improvement was obtained. On the contrary, for Ta as capping layer the GMR ratio stays constant upon heating up to 100 °C, followed by a comparable moderate decay for even higher annealing temperatures.

  11. Influence of hardening and surface modification of endourological wires on corrosion resistance.

    Science.gov (United States)

    Walke, Witold; Przondziono, Joanna

    2012-01-01

    Guide wires with suitable functional characteristics are of crucial importance for proper urological treatment. This study presents an analysis of the effect of work hardening taking place in the process of wire cold drawing and the effect of surface modification by means of electrochemical polishing and chemical passivation on the resistance of wires made of X10CrNi18-8 steel used in urology. Corrosion resistance was evaluated on the grounds of the registered anodic polarisation curves by means of potentiodynamic method. The tests were made in solution simulating human urine. Anodic polarisation curves were presented for selected wire diameters. Mechanical properties were tested in a static uniaxial tensile test. The course of flow curve as well as mathematical form of flow stress function were determined. Curves presenting the relation of polarisation resistance as a function of strain applied in the drawing process are given. The tests carried out show that surface modification by means of electrochemical polishing and then chemical passivation of wires used in endourological treatment is fundamental.

  12. Plasma electrolytic oxidation coating on AZ91 magnesium alloy modified by neodymium and its corrosion resistance

    Science.gov (United States)

    Song, Y. L.; Liu, Y. H.; Yu, S. R.; Zhu, X. Y.; Wang, Q.

    2008-03-01

    Ceramic coatings on the surfaces of Mg-9Al-1Zn (AZ91) magnesium alloy and Mg-9Al-1Zn-1Nd magnesium alloy (AZ91 magnesium alloy modified by neodymium, named as AZ91Nd in this paper) are synthesized in aluminate electrolyte by plasma electrolytic oxidation (PEO) process, respectively. X-ray diffraction and X-ray photoelectron spectroscopy analyses show the PEO coating on the Mg-9Al-1Zn-1Nd alloy comprises not only MgO and Al 2O 3, which are found in the coating on the AZ91 alloy, but also a trace amount of Nd 2O 3. Microstructure observations indicate the addition of Nd can decrease the sizes of β phases and form Al 2Nd intermetallics in the AZ91 alloy. The fine β phases can effectively restrain the formation of unclosed-holes and greatly decrease the sizes of pores in the coating during the PEO process. In addition, the Al 2Nd intermetallics can be completely covered due to the lateral growth of the PEO coatings formed on the α and β phases. As a result, the coating on the AZ91Nd alloy possesses a dense microstructure compared with that on the AZ91 alloy. The following corrosion tests indicate the corrosion resistance of the PEO coating on the AZ91Nd alloy is evidently higher than that of the PEO coating on the AZ91 alloy.

  13. In Vivo Corrosion Resistance of Ca-P Coating on AZ60 Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    Xing Xiao; Haiying Yu; Qingsan Zhu; Guangyu Li; Yang Qu; Rui Gu

    2013-01-01

    Magnesium-based alloys are frequently reported as potential biodegradable orthopedic implant materials.Controlling the degradation rate and mechanical integrity of magnesium alloys in the physiological environment is the key to their applications.In this study,calcium phosphate (Ca-P) coating was prepared on AZ60 magnesium alloy using phosphating technology.AZ60 samples were immersed in a phosphating solution at 37 ± 2 ℃ for 30 min,and the solution pH was adjusted to 2.6 to 2.8 by adding NaOH solution.Then,the samples were dried in an attemperator at 60 ℃.The degradation behavior was studied in vivo using Ca-P coated and uncoated magnesium alloys.Samples of these two different materials were implanted into rabbit femora,and the corrosion resistances were evaluated after 1,2,and 3 months.The Ca-P coated samples corroded slower than the uncoated samples with prolonged time.Significant differences (p < 0.05) in mass losses and corrosion rates between uncoated samples and Ca-P coated samples were observed by micro-computed tomography.The results indicate that the Ca-P coating could slow down the degradation of magnesium alloy in vivo.

  14. The intrinsically high pitting corrosion resistance of mechanically polished nitinol in simulated physiological solutions.

    Science.gov (United States)

    Bai, Zhijun; Rotermund, Harm H

    2011-10-01

    Nitinol wires have been widely used in many biomedical applications, such as cardiovascular stent due to their superelasticity and shape memory effect. However, their corrosion properties and the related biocompatibility are not well understood, and the reported results are controversial. In this study, we evaluate the pitting corrosion property of nitinol, titanium, nickel, and 316L stainless steel (316LSS) wires with different surface roughnesses in a saline solution at 37 °C. The cyclic potentiodynamic polarization results show that mechanically polished nitinol and Ti wires are highly resistant to pitting corrosion, while Ni and 316LSS wires are susceptible to pitting corrosion. Electrochemical impedance spectroscopy is used to study the interface of oxide film/solution and all mechanically polished nitinol wires are covered by 2-3 nm thick films formed under open circuit potential. Furthermore, the electronic structures and semiconducting properties of passive films on nitinol, Ti and Ni wires are studied by Mott-Schottky analysis. Passive films formed on nitinol and Ti exhibit n-type semiconducting characteristics, whereas films on Ni show p-type semiconducting characteristics. Scanning Kelvin Microscopy is used to measure the surface potential difference between common inclusions from the nitinol matrix and the results indicate that the inclusions are more electrochemically noble than the nitinol matrix. Band energy theory is used to model the electrochemical interface between the passive films of nitinol and the solution under different applied potential conditions. A mechanism for the strong pitting corrosion resistance of nitinol in saline solution is proposed.

  15. Corrosion Resistance of a Sand Particle-Modified Enamel Coating Applied to Smooth Steel Bars

    Directory of Open Access Journals (Sweden)

    Fujian Tang

    2014-09-01

    Full Text Available The protective performance of a sand particle-modified enamel coating on reinforcing steel bars was evaluated in 3.5 wt% NaCl solution by electrochemical impedance spectroscopy (EIS. Seven percentages of sand particles by weight were investigated: 0%, 5%, 10%, 20%, 30%, 50% and 70%. The phase composition of the enamel coating and sand particles were determined with the X-ray diffraction (XRD technique. The surface and cross-sectional morphologies of the sand particle-modified enamel coating were characterized using scanning electron microscopy (SEM. XRD tests revealed three phases of sand particles: SiO2, CaCO3 and MgCO3. SEM images demonstrated that the enamel coating wetted well with the sand particles. However, a weak enamel coating zone was formed around the sand particles due to concentrated air bubbles, leading to micro-cracks as hydrogen gas pressure builds up and exceeds the tensile strength of the weak zone. As a result, the addition of sand particles into the enamel coating reduced both the coating and corrosion resistances.

  16. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels.

    Science.gov (United States)

    Le, M K; Zhu, X M

    2001-04-01

    Plasma source ion nitriding has emerged as a low-temperature, low-pressure nitriding approach for low-energy implanting nitrogen ions and then diffusing them into steel and alloy. In this work, a single high nitrogen face-centered-cubic (f.c.c.) phase (gammaN) formed on the 1Cr18Ni9Ti and AISI 316L austenitic stainless steels with a high nitrogen concentration of about 32 at % was characterized using Auger electron spectroscopy, electron probe microanalysis, glancing angle X-ray diffraction, and transmission electron microscopy. The corrosion resistance of the gammaN-phase layer was studied by the electrochemical cyclic polarization measurement in Ringer's solutions buffered to pH from 3.5 to 7.2 at a temperature of 37 degrees C. No pitting corrosion in the Ringer's solutions with pH = 7.2 and 5.5 was detected for the gammaN-phase layers on the two stainless steels. The high pitting potential for the gammaN-phase layers is higher, about 500 and 600 mV, above that of the two original stainless steels, respectively, in the Ringer's solution with pH = 3.5. The corroded surface morphologies of the gammaN-phase layers observed by scanning electron microscopy are consistent with the results of the electrochemical polarization measurement.

  17. Mechanical Properties and Corrosion Resistance of HVOF Sprayed Coatings Using Nanostructured Carbide Powders

    Directory of Open Access Journals (Sweden)

    Żórawski W.

    2016-12-01

    Full Text Available Nanostructured and composite WC-12Co coatings were prepared by means of the supersonic spray process (HVOF. The microstructure and composition of WC-12Co nanostructured powder were analyzed by scanning electron microscope (SEM and transmission electron microscope (TEM. Investigations revealed nano grains of WC with the size in the range of 50-500 nm. The nanostructured sprayed coating was analysed by SEM and phase composition was investigated by X-ray diffractometer (XRD. A denser coating structure with higher hardness was observed compared to conventional coating with a small amount of W2C, WC1−x, W and some amorphous phase. Young’s modulus and hardness were determined by depth sensing indentation in HVOF sprayed WC-12Co nanostructured coatings. Results were compared to conventional coatings and the relevance of the nanostructure was analyzed. An indentation size effect was observed on the polished surface and cross-section of both coatings. Data provided by indentation tests at maximum load allow to estimate hardness and elastic modulus. Enhanced nanomechanical properties of conventional coating in comparison to nanostructured one were observed. Nanostructured coatings WC-12Co (N revealed significantly better corrosion resistance.

  18. Corrosion resistance of a steel under an oxidizing atmosphere in a fluid catalytic cracking regenerator

    Directory of Open Access Journals (Sweden)

    Ieda Caminha

    2004-03-01

    Full Text Available In the present work, the corrosion resistance of an ASTM A 387 G11 steel was evaluated under two conditions: an oxidizing atmosphere in a fluid catalytic cracking regenerator of a petroleum processing unit and a simulated atmosphere in the laboratory, at temperatures of 650 °C and 700 °C. The characterization of the phases present in the oxidized layer was carried out by X-ray diffraction (XRD, optical microscopy (OM and scanning electron microscopy (SEM with X-ray energy dispersive analysis (EDS. Severe corrosion was observed after exposure to both the real and simulated conditions, with formation of several iron oxides (Fe2O3, Fe3O4 and FeO in the product scale layer, as well as a slight inner oxidation and sulfidation of chromium in the substrate. Internal nitridation of the silicon and the manganese was observed only in the real condition, probably related to the long-term exposure inside the regenerator.

  19. Structure, morphology and corrosion resistance of Ni–Mo+PTh composite coatings

    Indian Academy of Sciences (India)

    J Niedbała

    2015-06-01

    Ni–Mo+PTh composite coatings were prepared from nickel–molybdenum galvanic bath with the addition of thiophene (Th) and HClO4 as result of two processes: induced Ni–Mo alloy deposition and PTh polymerization. A scanning electron microscope was used for surface morphology characterization of the coatings. The Scanning ElectrochemicalWorkstationM370 was used to the surface map of the tested composite coatings. The chemical composition of the coatings was determined by the energy-dispersive spectroscopy (EDS) method. It was stated that the surface of the coatings are characterized by the presence of Ni–Mo particles and polythiophene agglomerates. Electrochemical corrosion investigations of coatings were carried out in the 5 M KOH solution, using voltammetry and electrochemical impedance spectroscopy (EIS) methods. On the basis of these research works it was found that the composite Ni–Mo+PTh coatings are more corrosion resistant in alkaline solution than Ni–Mo. The reasons for this are the presence of the polymer on the surface of the coatings and a decrease of corrosion active surface area of the coatings.

  20. Effect of carbon on corrosion resistance of powder-processed Fe–0.35%P alloys

    Indian Academy of Sciences (India)

    Yashwant Mehta; Shefali Trivedi; K Chandra; P S Mishra

    2010-08-01

    The corrosion behaviour of phosphoric irons containing 0.35 wt % P, 2% copper, 2% nickel, 1% silicon, 0.5% molybdenum, with/without 0.15% carbon prepared by powder forging route were studied in different environments. The various environments chosen were acidic (0.25 M H2SO4 solution of pH 0.6), neutral/marine (3.5% NaCl solution of pH 6.8) and alkaline (0.5 M Na2CO3 + 1.0 M NaHCO3 solution of pH 9.4). The corrosion studies were conducted using Tafel extrapolation and linear polarization methods. The studies also compare Armco iron with phosphoric irons. It was observed that the addition of carbon improved the corrosion resistance of a Fe–0.35%P–2%Ni–2%Cu–1%Si–0.5%Mo alloy in all the environments. Corrosion rates were highest in acid medium, minimal in alkaline medium and low in neutral solution. SEM/EDAX was used to characterize the compositions.