WorldWideScience

Sample records for corrosion-resistant coating development

  1. Corrosion-resistant coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, D.M.; Martin, R.L. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    SiC-based heat exchangers have been identified as the prime candidate material for use as heat exchangers in advanced combined cycle power plants. Unfortunately, hot corrosion of the SiC-based materials created by alkali metal salts present in the combustion gases dictates the need for corrosion-resistant coatings. The well-documented corrosion resistance of CS-50 combined with its low (and tailorable) coefficient of thermal expansion and low modulus makes CS-50 an ideal candidate for this application. Coatings produced by gelcasting and traditional particulate processing have been evaluated.

  2. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  3. Corrosion-resistant metallic coatings

    OpenAIRE

    F. Presuel-Moreno; M.A. Jakab; N. Tailleart; Goldman, M.; J. R. Scully

    2008-01-01

    We describe recent computational and experimental studies on the corrosion properties of metallic coatings that can be tailored (tuned) to deliver up to three corrosion-inhibiting functions to an underlying substrate. Attributes are tuned by a selection of alloy compositions and nanostructures, ideally in alloy systems that offer flexibility of choice to optimize the corrosion-resisting properties. An amorphous Al-based coating is tuned for corrosion protection by on-demand release of ionic i...

  4. Corrosion resistant coating

    Science.gov (United States)

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  5. Development of coatings with improved corrosion resistance in sulfur-containing environments

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. (Argonne National Lab., IL (USA)); Johnson, R.N. (Westinghouse Hanford Co., Richland, WA (USA))

    1990-01-01

    Corrosion of metallic structure materials at elevated temperatures in complex multicomponent gas environments is a potential problem in many fossil energy systems, especially those using coal as a feedstock. The use of appropriate corrosion-resistant coatings on metallic components can minimize material degradation and extend component life. In the present study, the chemical compatibility of a number of coatings is examined by exposing them to simulated oxygen/sulfur mixed-gas environments at metal temperatures of 500 and 650{degree}C. Coatings were developed via pack cementation and electrospark deposition techniques on T22 and T91 substrates. The oxidation/sulfidation test results for the coated specimens were compared with those for the uncoated alloys and for high-chromium structural alloys of interest in fossil energy applications. Coatings tested were Fe--Cr--Mo. Alloys tested include nickel base, nickel, and chromium alloys, and stainless steel 310. 5 refs., 12 figs., 2 tabs.

  6. Development of coatings with improved corrosion resistance in sulfur-containing environments. [Fe-Cr-Mo

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. (Materials and Components Tech. Div., Argonne National Lab., IL (USA)); Johnson, R.N. (Hanford Engineering Development Lab., Westinghouse Hanford Co., Richland, WA (USA))

    1990-12-10

    Corrosion of metallic structural materials at elevated temperatures in complex multicomponent gas environments is a potential problem in many fossil energy systems, especially those using coal as a feedstock. The use of appropriate corrosion-resistant coatings on metallic components offers an avenue to minimize material degradation and to extend component life. In the present study, the chemical compatibility of a number of coatings is examined by exposing them to simulated oxygen-sulfur mixed gas environments at metal temperatures of 500 and 650degC. Coatings were developed via pack cementation and electrospark deposition techniques on T22 and T91 substrates. The oxidation-sulfidation test results obtained for the coated specimens were compared with those for the uncoated alloys as well as other high chromium structural alloys of interest in fossil energy applications. (orig.).

  7. Corrosion resistance and development length of steel reinforcement with cementitious coatings

    Science.gov (United States)

    Pei, Xiaofei

    This research program focused on the corrosion resistance and development length of reinforcing steel coated with Cementitious Capillary Crystalline Waterproofing (CCCW) materials. The first part of this research program involved using the half-cell potential method to evaluate the corrosion resistance of CCCW coating materials. One hundred and two steel bars were embedded in concrete cylinders and monitored. In total, 64 steel reinforcing bars were coated with CCCW prior to embedment, 16 mortar cylinders were externally coated with CCCW, and 22 control (uncoated) samples were tested. All the samples were immersed in a 3.5% concentration chloride solution for a period of one year. Three coating types were studied: CCCW-B, CCCW-B+ C and CCCW-C+D. The test results showed that the CCCW coating materials delayed the corrosion activity to varying degrees. In particular, CCCW-C+D applied on the reinforcing steel surface dramatically delayed the corrosion activity when compared to the control samples. After being exposed to the chloride solution for a period of one year, no sign of corrosion was observed for the cylinders where the concrete surface was coated. The second part of this research evaluated the bond strength and development length of reinforcing steel coated with two types of CCCW coating materials (CCCW-B+C and CCCW-C+D) using a modified pull-out test method. A self-reacting inverted T-shaped beam was designed to avoid compression in the concrete surrounding the reinforcing steel. Steel reinforcing bars were embedded along the web portion of the T-beam with various embedded lengths and were staggered side by side. In total, six T-beams were fabricated and each beam contained 8 samples. Both short-term (7 days) and long-term (3 months) effects of water curing were evaluated. The reinforcing steel bars coated with CCCW-B+C demonstrated a higher bond strength than did samples coated with CCCW-C+D. However, the bond strengths of samples with coating materials

  8. Corrosion-resistant metallic coatings

    Directory of Open Access Journals (Sweden)

    F. Presuel-Moreno

    2008-10-01

    Full Text Available We describe recent computational and experimental studies on the corrosion properties of metallic coatings that can be tailored (tuned to deliver up to three corrosion-inhibiting functions to an underlying substrate. Attributes are tuned by a selection of alloy compositions and nanostructures, ideally in alloy systems that offer flexibility of choice to optimize the corrosion-resisting properties. An amorphous Al-based coating is tuned for corrosion protection by on-demand release of ionic inhibitors to protect defects in the coating, by formation of an optimized barrier to local corrosion in Cl− containing environments, as well as by sacrificial cathodic prevention. Further progress in this field could lead to the design of the next generation of adaptive or tunable coatings that inhibit corrosion of underlying substrates.

  9. Coatings for improved corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1992-05-01

    Several coating approaches are being developed to resist attack in coal-fired environments and thereby minimize corrosion of underlying substrate alloys and extend the time for onset of breakaway corrosion. In general, coating systems can be classified as either diffusion or overlay type, which are distinguished principally by the method of deposition and the structure of the resultant coating-substrate bond. The coating techniques examined are pack cementation, electrospark deposition, physical and chemical vapor deposition, plasma spray, and ion implantation. In addition, ceramic coatings are used in some applications.

  10. Development of Self-Healing Coatings Based on Linseed Oil as Autonomous Repairing Agent for Corrosion Resistance

    Directory of Open Access Journals (Sweden)

    Karan Thanawala

    2014-11-01

    Full Text Available In recent years corrosion-resistant self-healing coatings have witnessed strong growth and their successful laboratory design and synthesis categorises them in the family of smart/multi-functional materials. Among various approaches for achieving self-healing, microcapsule embedment through the material matrix is the main one for self-healing ability in coatings. The present work focuses on optimizing the process parameters for developing microcapsules by in-situ polymerization of linseed oil as core and urea-formaldehyde as shell material. Characteristics of these microcapsules with respect to change in processing parameters such as stirring rate and reaction time were studied by using optical microscopy (OM, scanning electron microscopy (SEM and Fourier transform infrared spectroscopy (FT-IR. The effectiveness of these microcapsules in coatings was characterized by studying their adhesion, performance, and mechanical properties.

  11. Studies on broad spectrum corrosion resistant oxide coatings

    Indian Academy of Sciences (India)

    Someswar Datta

    2001-12-01

    The corrosion resistant oxide coatings, developed and applied by the conventional vitreous enamelling techniques, showed superior resistance to a range of mineral acids at various strengths and temperatures, alkaline solutions, boiling water and chrome plating solutions. These coatings possess considerable abrasion and impact resistance as well as high thermal shock resistance. The properties of the coating system have been studied in detail and found to be strongly dependent on composition and processing parameters. These coatings have been characterized by X-ray diffraction analysis and SEM studies. Some of the coating materials have been found to be biocompatible.

  12. High-temperature corrosion resistance of ceramics and ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.

    1996-06-01

    Ceramics and ceramic composites offer the potential to operate fossil energy systems at the higher temperatures necessary for improved energy efficiency and better environmental control. However, because many fossil fuel-derived processes contain sulfur, chlorine, and carbon, as well as oxygen, degradation from high-temperature corrosion and environmental effects arising from reactions of solids with gases and condensable products is a common life-determining factor in operating systems. Ceramic-based products are not immune to such degradation; adequate corrosion resistance must be assured to exploit the technical and economic potential of such materials. This is normally accomplished by using stable, sound oxides that exist in their bulk form, that naturally grow as surface layers upon exposure to an oxidizing environment, or that are deposited as a coating on a susceptible material. It is therefore important to examine the critical issues with respect to more environmental stability of ceramics that have the potential to be corrosion resistant in particular fossil environments. Key aspects include not only chemical compatibility, but the influence of the environment on the mechanical behavior of the ceramic materials. In addition, for coatings, the mechanical reliability of the ceramic is a key issue in that an otherwise corrosion-resistant surface layer must remain sound and adherent in order to provide protection to the underlying substrate. The purpose of this work is to support the development of advanced ceramics and ceramic composites for applications in fossil environments by examining critical issues related to high-temperature corrosion resistance. More specifically, the overall objective of this task is to examine the chemical compatibility and reliability of potentially corrosion-resistant ceramics being developed as protective overcoats and/or structural materials as parts of other work elements funded by the AR&TD Program.

  13. Improvement of Microhardness and Corrosion Resistance of Stainless Steel by Nanocomposite Coating

    OpenAIRE

    Hiba Husam Ismail; Kareem Neamah Sallomi; Hamid S. Mahdi

    2014-01-01

    Stainless steel (AISI 304) has good electrical and thermal conductivities, good corrosion resistance at ambient temperature, apart from these it is cheap and abundantly available; but has good mechanical properties such as hardness. To improve the hardness and corrosion resistance of stainless steel its surface can be modified by developing nanocomposite coatings applied on its surface. The main objective of this paper is to study effect of electroco-deposition method on microhardness and cor...

  14. The corrosion resistance of zinc-nickel composite coatings

    OpenAIRE

    Panek, J; Bierska-Piech; M. Karolus

    2011-01-01

    Purpose: The aim of this work was to estimate the corrosion resistance of composite Zn+Ni and (Ni-Zn+Ni)/Zn coatings by salt spray test, electrochemical methods and grazing incidence X-ray diffraction (GIXD) method.Design/methodology/approach: The corrosion resistance properties of zinc-nickel coatings in 5% NaCl solution were investigated by salt spray test in 5% NaCl solution and electrochemical methods. Using Stern method the corrosion potential - Ecorr, corrosion current density - icorr,...

  15. Corrosion resistant coatings suitable for elevated temperature application

    Science.gov (United States)

    Chan, Kwai S [San Antonio, TX; Cheruvu, Narayana Sastry [San Antonio, TX; Liang, Wuwei [Austin, TX

    2012-07-31

    The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.

  16. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Angel Sanjurjo

    2004-05-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. A review of the literature indicated that the Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers. We selected diffusion coatings of Cr and Al, and surface coatings of Si and Ti for the preliminary testing. These coatings will be applied using the fluidized bed chemical vapor deposition technique developed at SRI which is rapid and relatively inexpensive. We have procured coupons of typical alloys used in a gasifier. These coupons will be coated with Cr, Al, Si, and Ti. The samples will be tested in a bench-scale reactor using simulated coal gas compositions. In addition, we will be sending coated samples for insertion in the gas stream of the coal gasifier.

  17. Electrodeposition and Corrosion Resistance of Ni-Graphene Composite Coatings

    Science.gov (United States)

    Szeptycka, Benigna; Gajewska-Midzialek, Anna; Babul, Tomasz

    2016-08-01

    The research on the graphene application for the electrodeposition of nickel composite coatings was conducted. The study assessed an important role of graphene in an increased corrosion resistance of these coatings. Watts-type nickel plating bath with low concentration of nickel ions, organic addition agents, and graphene as dispersed particles were used for deposition of the composite coatings nickel-graphene. The results of investigations of composite coatings nickel-graphene deposited from the bath containing 0.33, 0.5, and 1 g/dm3 graphene and one surface-active substance were shown. The contents of particles in coatings, the surface morphology, the cross-sectional structures of the coated samples, and their thickness and the internal stresses were studied. Voltammetric method was used for examination of the corrosion resistance of samples of composite coatings in 0.5 M NaCl. The obtained results suggest that the content of incorporated graphene particles increases with an increasing amount of graphene in plating bath. The application of organic compounds was advantageous because it caused compressive stresses in the deposited coatings. All of the nickel-graphene composite layers had better corrosion resistance than the nickel coating.

  18. Corrosion Resistance of Ceramic Coating on Steel Substrate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fe/Al2O3 ceramic coating was made by spraying and sol-gel. The corrosion resistance between Fe/Al2O3 ceramic coating and steel 45# was studied. By microscope and X-ray diffraction, the binding and the composition of the interface were also analyzed. The results showed that Fe/Al2O3 ceramic coating had dense structure, less porosity and better binding with the substrate which was effective to prevent erosive liquor immersing into the inside of ceramic coating. Some substances that distributed homogeneously in Fe/Al2O3 ceramic coating,such as α-Al2O3, FeAlO3 and Fe3Al, could improve the corrosion resistance of this material.

  19. Enhancement of Corrosion Resistance of Zinc Coatings Using Green Additives

    Science.gov (United States)

    Punith Kumar, M. K.; Srivastava, Chandan

    2014-10-01

    In the present work, morphology, microstructure, and electrochemical behavior of Zn coatings containing non-toxic additives have been investigated. Zn coatings were electrodeposited over mild steel substrates using Zn sulphate baths containing four different organic additives: sodium gluconate, dextrose, dextrin, and saccharin. All these additives are "green" and can be derived from food contents. Morphological and structural characterization using electron microscopy, x-ray diffraction, and texture co-efficient analysis revealed an appreciable alteration in the morphology and texture of the deposit depending on the type of additive used in the Zn plating bath. All the Zn coatings, however, were nano-crystalline irrespective of the type of additive used. Polarization and electrochemical impedance spectroscopic analysis, used to investigate the effect of the change in microstructure and morphology on corrosion resistance behavior, illustrated an improved corrosion resistance for Zn deposits obtained from plating bath containing additives as compared to the pure Zn coatings.

  20. Corrosion Resistance of Zinc Coatings With Aluminium Additive

    Directory of Open Access Journals (Sweden)

    Votava Jiří

    2014-08-01

    Full Text Available This paper is focused on evaluation of anticorrosion protection of inorganic metal coatings such as hot-dipped zinc and zinc-galvanized coatings. The thickness and weight of coatings were tested. Further, the evaluation of ductile characteristics in compliance with the norm ČSN EN ISO 20482 was processed. Based on the scratch tests, there was evaluated undercorrosion in the area of artificially made cut. Corrosion resistance was evaluated in compliance with the norm ČSN EN ISO 9227 (salt-spray test. Based on the results of the anticorrosion test, there can be stated corrosion resistance of each individual protective coating. Tests were processed under laboratory conditions and may vary from tests processed under conditions of normal atmosphere.

  1. Corrosion Resistant Coatings for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  2. Improvement of Microhardness and Corrosion Resistance of Stainless Steel by Nanocomposite Coating

    Directory of Open Access Journals (Sweden)

    Hiba Husam Ismail

    2014-12-01

    Full Text Available Stainless steel (AISI 304 has good electrical and thermal conductivities, good corrosion resistance at ambient temperature, apart from these it is cheap and abundantly available; but has good mechanical properties such as hardness. To improve the hardness and corrosion resistance of stainless steel its surface can be modified by developing nanocomposite coatings applied on its surface. The main objective of this paper is to study effect of electroco-deposition method on microhardness and corrosion resistance of stainless steel, and to analyze effect of nanoparticles (Al2O3, ZrO2 , and SiC on properties of composite coatings. In this paper employed Electroco-deposition process to develop a composite coating with (Ni matrix and Ceramic oxide particles: Al2O3 (135nm, ZrO2 (40nm, and SiC (80nm as reinforcements. The coatings were developed with 10 g/L, and 20 g/L concentrations in bath, at four different current densities (0.5, 1, 2, 3 A/dm2 using Watts bath to study the effect of current density and particle concentration in bath, on structure and properties of the coatings developed. The surface morphology of nanocomposite coating was characterized by Scanning Electron Microscopy (SEM. The hardness of the nanocoating was carried out using Digital Vickers microhardness tester. The corrosion resistance property of nanocomposite coating was carried out in 3.5% NaCl solution used Open circuit potential (OCP and potentialastic polarization. The results showed the nanocomposites coating have a smooth and compact surface and have higher hardness than the uncoated stainless steel (2.3 times, and also found that the nanocomposite coating improves the corrosion resistance significantly (89.25%.

  3. Corrosion resistant Zn–Co alloy coatings deposited using saw-tooth current pulse

    Indian Academy of Sciences (India)

    S Yogesha; A Chitharanjan Hegde

    2011-12-01

    Micro/nanostructured multilayer coatings of Zn–Co alloy were developed periodically on mild steel from acid chloride bath. Composition modulated multilayer alloy (CMMA) coatings, having gradual change in composition (in each layer) were developed galvanostatically using saw-tooth pulses through single bath technique (SBT). CMMA coatings were developed under different conditions of cyclic cathode current densities (CCCDs) and number of layers, and their corrosion resistances were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) method. Optimal configuration, represented as (Zn–Co)2.0/4.0/300 was found to exhibit ∼ 89 times better corrosion resistance compared to monolithic (Zn–Co)3.0 alloy deposited for same time, from same bath. The better corrosion resistance of CMMA coatings was attributed to changed interfacial dielectric properties, evidenced by dielectric spectroscopy. Improved corrosion resistance was attributed to formation of -type semiconductor film at the interface, supported by the Mott–Schottky plot. Further, the formation of multilayer and corrosion mechanism was analysed using scanning electron microscopy (SEM).

  4. Development of weldable, corrosion-resistant iron-aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    Corrosion-resistant, weldable FeAl alloys have been developed with improved high-temperature strength industrial applications. Previous processing difficulties with these alloys led to their evaluation as weld-overlay claddings on conventional structural steels to take advantage of their good properties now. Simplified and better processing methods for monolithic FeAl components are also currently being developed so that components for industrial testing can be made. Other avenues for producing FeAl coatings are currently being explored. Neutron scattering experiments residual stress distributions in the FeAl weld-overlay cladding began in FY 1993 and continued this year.

  5. Applications in the Nuclear Industry for Corrosion-Resistant Amorphous-Metal Thermal-Spray Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Choi, J

    2007-07-18

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Fe-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials.

  6. Improvement in corrosion resistance of magnesium coating with cerium treatment

    Institute of Scientific and Technical Information of China (English)

    Samia Ben Hassen; Latifa Bousselmi; Patricc Bercot; El Mustafa Rezrazi; Ezzeddine Triki

    2009-01-01

    Corrosion protection afforded by a magnesium coating treated in cerium salt solution on steel substrate was investigated using open circuit potential, polarization curves, and electrochemical impedance spectroscopy (EIS) in 0.005 M sodium chloride solution (NaCl). The morphology of the surface was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The cerium treated coating was obtained by immersion in CeCl3 solution. The results showed that the corrosion resistance of the treated magnesium coating was improved. The corrosion potential of the treated coating was found to be nobler than that of the untreated magnesium coating and the corrosion current decreased significantly. Impedance results showed that the cerium treatment increased corrosion protection. The improvement of anti-corrosion properties was ataibuted to the formation of cerium oxides and hydroxides that gave to a physical barrier effect.

  7. Nano Structured Plasma Spray Coating for Wear and High Temperature Corrosion Resistance Applications

    Science.gov (United States)

    Ghosh, D.; Shukla, A. K.; Roy, H.

    2014-04-01

    The nano structured coating is a major challenge today to improve the different mechanical properties, wear and high temperature corrosion resistance behaviour of different industrial alloys. This paper is a review on synthesis of nano powder, plasma spraying methods, techniques of nano structured coating by plasma spray method, mechanical properties, tribological properties and high temperature corrosion behaviour of nano structured coating. Nano structured coatings of ceramic powders/composites are being developed for wide variety of applications like boiler, turbine and aerospace industries, which requires the resistance against wear, corrosion, erosion etc. The nano sized powders are subjected to agglomeration by spray drying, after which nano structured coating can be successfully applied over the substrate. Nano structured coating shows improved mechanical wear resistance and high temperature corrosion resistance. The significant improvement of wear and corrosion resistance is mainly attributed to formation of semi molten nano zones in case of nano structured coatings. The future scope of application of nano structured coating has also been highlighted in this paper.

  8. Development of Erosion-Corrosion-Resistant Cold-Spray Nanostructured Ni-20Cr Coating for Coal-Fired Boiler Applications

    Science.gov (United States)

    Kumar, M.; Singh, H.; Singh, N.; Chavan, N. M.; Kumar, S.; Joshi, S. V.

    2015-12-01

    The erosion-corrosion (E-C) behavior of a cold-spray nanostructured Ni-20Cr coating was studied under cyclic conditions in a coal-fired boiler. This study was done for 15 cycles (1500 h), in which each cycle comprised 100 h of heating in the boiler environment, followed by 1 h of cooling under ambient air conditions. The E-C extent was evaluated in terms of thickness loss data of the samples. The eroded-corroded samples were characterized using XRD, SEM/EDS, and x-ray mapping analyses. The nanostructured coating offered excellent E-C protection to boiler tube material (SA 516 steel) under harsh live conditions of the boiler. This E-C resistance offered by investigated coating may be attributed to the presence of protective NiO and Cr2O3 phases in its oxide scale and its superior as-sprayed microhardness.

  9. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Angel Sanjurjo

    2004-05-01

    Heat-exchangers, filters, turbines, and other components in integrated coal gasification combined cycle system must withstand demanding conditions of high temperatures and pressure differentials. Under the highly sulfiding conditions of the high temperature coal gas, the performance of components degrade significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. A review of the literature indicates that the corrosion reaction is the competition between oxidation and sulfidation reactions. The Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers.

  10. White primer permits a corrosion-resistant coating of minimum weight

    Science.gov (United States)

    Albrecht, R. H.; Jensen, D. P.; Schnake, P.

    1966-01-01

    White primer for coating 2219 aluminum alloy supplies a base for a top coating of enamel. A formulation of pigments and vehicle results in a primer with high corrosion resistance and minimum film thickness.

  11. Effect of temperature on structure and corrosion resistance for electroless NiWP coating

    Indian Academy of Sciences (India)

    M Q YU; Q QIAO; F YOU; C L LI; Y ZHAO; Z Z XIAO; H L LUO; Z F XU; KAZUHIRO MATSUGI; J K YU

    2016-04-01

    The effect of plating temperatures between 60 and 90$^{\\circ}$C on structure and corrosion resistance for electroless NiWP coatings on AZ91D magnesium alloy substrate was investigated. Results show that temperature has a significant influence on the surface morphology and corrosion resistance of the NiWP alloy coating. An increase in temperature will lead to an increase in coating thickness and form a more uniform and dense NiWP coatings. Moreover, cracks were observed by SEM in coating surface and interface at the plating temperature of 90$^{\\circ}$C. Coating corrosion resistance is highly dependent on temperature according to polarization curves. The optimum temperature isfound to be 80$^{\\circ}$C and the possible reasons of corrosion resistance for NiWP coating have been discussed.

  12. Corrosion resistance of zinc-magnesium coated steel

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, N.C. [Ford Motor Company Ltd., Dunton Engineering Centre, Room GB15/GM-D01, Laindon, Basildon, Essex SS15 6EE (United Kingdom) and School of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)]. E-mail: niamh.hosking@gmail.com; Stroem, M.A. [Volvo Car Corporation, Building VCPC, Maildrop PV 1B, Volvo Jacobs vag, Goeteborg SE-405 31 (Sweden); Shipway, P.H. [School of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Rudd, C.D. [School of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2007-09-15

    A significant body of work exists in the literature concerning the corrosion behaviour of zinc-magnesium coated steel (ZMG), describing its enhanced corrosion resistance when compared to conventional zinc-coated steel. This paper begins with a review of the literature and identifies key themes in the reported mechanisms for the attractive properties of this material. This is followed by an experimental programme where ZMG was subjected to an automotive laboratory corrosion test using acidified NaCl solution. A 3-fold increase in time to red rust compared to conventional zinc coatings was measured. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy were used to characterize the corrosion products formed. The corrosion products detected on ZMG included simonkolleite (Zn{sub 5}Cl{sub 2}(OH){sub 8} . H{sub 2}O), possibly modified by magnesium uptake, magnesium hydroxide (Mg(OH){sub 2}) and a hydroxy carbonate species. It is proposed that the oxygen reduction activity at the (zinc) cathodes is reduced by precipitation of alkali-resistant Mg(OH){sub 2}, which is gradually converted to more soluble hydroxy carbonates by uptake of atmospheric carbon dioxide. This lowers the surface pH sufficiently to allow thermodynamically for general precipitation of insoluble simonkolleite over the corroding surface thereby retarding the overall corrosion reactions, leaving only small traces of magnesium corrosion products behind. Such a mechanism is consistent with the experimental findings reported in the literature.

  13. Hydroxyapatite/poly(epsilon-caprolactone) double coating on magnesium for enhanced corrosion resistance and coating flexibility.

    Science.gov (United States)

    Jo, Ji-Hoon; Li, Yuanlong; Kim, Sae-Mi; Kim, Hyoun-Ee; Koh, Young-Hag

    2013-11-01

    Hydroxyapatite was deposited on pure magnesium (Mg) with a flexible poly(ε-caprolactone) interlayer to reduce the corrosion rate of Mg and enhance coating flexibility. The poly(ε-caprolactone) interlayer was uniformly coated on Mg by a spraying method, followed by hydroxyapatite deposition on the poly(ε-caprolactone) using an aerosol deposition method. In scanning electron microscopy observations, inorganic/organic composite-like structure was observed between the hydroxyapatite and poly(ε-caprolactone) layers, resulting from the collisions of hydroxyapatite particles into the poly(ε-caprolactone) matrix at the initial stage of the aerosol deposition. The corrosion resistance of the coated Mg was examined using potentiodynamic polarization tests. The hydroxyapatite/poly(ε-caprolactone) double coating remarkably improved the corrosion resistance of Mg in Hank's solution. In the in vitro cell tests, the coated Mg showed better cell adhesion compared with the bare Mg due to the reduced corrosion rate and enhanced biocompatibility. The stability and flexibility of hydroxyapatite/poly(ε-caprolactone) double coating was investigated by scanning electron microscopy inspections after the coated Mg was deformed. The hydroxyapatite coating on the poly(ε-caprolactone) interlayer revealed enhanced coating stability and flexibility without cracking or delamination during bending and stretching compared with the hydroxyapatite single coating. These results demonstrated that the hydroxyapatite/poly(ε-caprolactone) double coating significantly improved the surface corrosion resistance of Mg and enhanced coating flexibility for use of Mg as a biodegradable implant.

  14. Structure and Corrosion Resistance of Microarc Oxidation Coatings on AZ91D Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    Cui Shihai; Han Jianmin; Li Weijing; Li Ronghua; Zhu Xiaowen; Wang Jinhua

    2004-01-01

    Magnesium alloys are widely used as shells of 3C (computer, mobile phone and consumer electronics) equipments for its impressive mechanical and physical properties, such as low density, good resistance to electromagnetic radiation, suitable for high pressure diecasting and easily recycling, etc. But poor corrosion resistance confines its extensively application. In this paper, protective coatings was successfully prepared on AZ91D magnesium alloys by micro-arc oxidation (MAO) and painting process. Microstructures and phases of MAO coatings were invesgated with scanning electron microscope (SEM) and X-Ray diffractometer. Mechanical properties of MAO coating, such as adhesive force and corrosion resistance, were also tested. Results showed that MAO coatings were a good base for painting process. MAO coatings with paint have good adhesive properties to base metal and excellent corrosion resistance. Micro-arc oxidation with painting process is a good kind of surface treatment to improve the corrosion resistance of mobile phone shell made of AZ91D magnesium alloys.

  15. Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cui Xiufang [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li Qingfen [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Li Ying; Wang Fuhui [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Jin Guo [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)], E-mail: jg97721@yahoo.com.cn; Ding Minghui [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2008-12-30

    In this paper, a new innoxious and pollution-free chemical protective coating for magnesium alloys, phytic acid conversion coating, was prepared. The conversion coatings are found to have high cover ratio and no cracks are found by atomic force microscopes (AFM) and scanning electron microscopy (SEM). The main elements of the conversion coatings are Mg, Al, O, P and C by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The chemical state of the elements in the coatings was also investigated by Fourier transform infrared spectroscopy (FTIR). AES depth profile analysis suggests that the thickness of the conversion coating is about 340 nm. The corrosion resistance of the coatings was evaluated by polarization curves. The results indicate that the corrosion resistance for the conversion coated AZ91D magnesium alloys in 3.5% NaCl solution increases markedly. The mechanisms of corrosion resistance and coatings formation are also discussed.

  16. Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy

    Science.gov (United States)

    Cui, Xiufang; Li, Qingfen; Li, Ying; Wang, Fuhui; Jin, Guo; Ding, Minghui

    2008-12-01

    In this paper, a new innoxious and pollution-free chemical protective coating for magnesium alloys, phytic acid conversion coating, was prepared. The conversion coatings are found to have high cover ratio and no cracks are found by atomic force microscopes (AFM) and scanning electron microscopy (SEM). The main elements of the conversion coatings are Mg, Al, O, P and C by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The chemical state of the elements in the coatings was also investigated by Fourier transform infrared spectroscopy (FTIR). AES depth profile analysis suggests that the thickness of the conversion coating is about 340 nm. The corrosion resistance of the coatings was evaluated by polarization curves. The results indicate that the corrosion resistance for the conversion coated AZ91D magnesium alloys in 3.5% NaCl solution increases markedly. The mechanisms of corrosion resistance and coatings formation are also discussed.

  17. CORROSION RESISTANCE OF ORGANOMETALLIC COATING APLICATED IN FUEL TANKS USING ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY IN BIOFUEL – PART I

    Directory of Open Access Journals (Sweden)

    Milene Adriane Luciano

    2014-10-01

    Full Text Available Nowadays, the industry has opted for more sustainable production processes, and the planet has also opted for new energy sources. From this perspective, automotive tanks with organometallic coatings as well as a partial substitution of fossil fuels by biofuels have been developed. These organometallic coated tanks have a zinc layer, deposited by a galvanizing process, formed between the steel and the organometallic coating. This work aims to characterize the organometallic coating used in metal automotive tanks and evaluate their corrosion resistance in contact with hydrated ethyl alcohol fuel (AEHC. For this purpose, the resistance of all layers formed between Zinc and EEP steel and also the tin coated steel, which has been used for over thirty years, were evaluated. The technique chosen was the Electrochemical Impedance Spectroscopy. The results indicated an increase on the corrosion resistance when organometallic coatings are used in AEHC medium. In addition to that, these coatings allow an estimated 25% reduction in tanks production costs.

  18. Development of microarc oxidation process to improve corrosion resistance on AZ91HP magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rong-fa; SHAN Da-yong; HAN En-hou; GUO Shi-bo

    2006-01-01

    A new anodizing process,which does not contain chromate but can improve the corrosion resistance of magnesium alloys significantly,was developed using a microarc power supply. Surface morphology was observed and the coating was compact and ceramic-like. In addition,the corrosion resistance of samples before and after anodization by the new process and a method in US Patent 5470664 was compared by potentiodymaic polarization curves,electrochemical impedance spectroscopy (EIS) and salt spray test. The results show that the anodization can improve the corrosion resistance of magnesium alloy. The samples obtained by the new process and the method mentioned in the US Patent 5470664 achieve 9 and 7 rates after 336 h salt spray test,respectively.

  19. Effects of lanthanum addition on corrosion resistance of hot-dipped galvalume coating

    Institute of Scientific and Technical Information of China (English)

    YANG Dong; CHEN Jianshe; HAN Qing; LIU Kuiren

    2009-01-01

    Effects of La addition on corrosion resistance of hot-dipped galvalume coating steel wire were investigated. The corrosion resistance of Zn-Al-Si-La alloy coatings containing 0, 0.02wt.%, 0.05wt.%, 0.1wt.% and 0.2wt.% La were evaluated by various tests such as copper-accelerated acetic acid salt spray testing (CASS), immersion test in 3.5% NaCl solution, electrochemical tests including weak polarization curves and electrochemical impedance spectroscopy (EIS) tests, scanning electron microscope (SEM) test and X-ray diffraction (XRD) test. It was found that the corrosion resistance of galvalume coating could be improved by adding proper amounts of La. Meanwhile, the mechanism of the improvement of corrosion resistance by La addition was discussed.

  20. Mechanical and corrosion resistance properties of TiO2 nanoparticles reinforced Ni coating by electrodeposition

    Science.gov (United States)

    Shao, W.; Nabb, D.; Renevier, N.; Sherrington, I.; Luo, J. K.

    2012-09-01

    Coatings have been widely used in engineering and decoration to protect components and products and enhance their life span. Nickel (Ni) is one of the most important hard coatings. Improvement in its tribological and mechanical properties would greatly enhance its use in industry. Nanocomposite coatings of metals with various reinforced nanoparticles have been developed in last few decades. Titania (TiO2) exhibit excellent mechanical properties. It is believed that TiO2 incorporation in Ni matrix will improve the properties of Ni coatings significantly. The main purpose of the current work is to investigate the mechanical and anti-corrosion properties of the electroplated nickel nanocomposite with a small percentage of TiO2. The surface morphology of nanocomposite coating was characterized by scanning electron microscopy (SEM). The hardness of the nanocoating was carried out using micromaterials nanoplatform. The sliding wear rate of the coating at room temperature in dry condition was assessed by a reciprocating ball-on-disk computer-controlled oscillating tribotester. The results showed the nanocomposite coatings have a smoother and more compact surface than the pure Ni layer and have higher hardness and lower wear rate than the pure Ni coating. The anti-corrosion property of nanocomposite coating was carried out in 3.5% NaCl and high concentrated 35% NaCl solution, respectively. The results also showed that the nanocomposite coating improves the corrosion resistance significantly. This present work reveals that incorporation of TiO2 in nickel nanocomposite coating can achieve improved corrosion resistance and mechanical properties of both hardness and wear resistance performances, and the improvement becomes stronger as the content of TiO2 is increased.

  1. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Tang Junlei; Han Zhongzhi [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.cn [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Tang Yuming [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-01-15

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  2. 2D Heterostructure coatings of hBN-MoS2 layers for corrosion resistance

    Science.gov (United States)

    Vandana, Sajith; Kochat, Vidya; Lee, Jonghoon; Varshney, Vikas; Yazdi, Sadegh; Shen, Jianfeng; Kosolwattana, Suppanat; Vinod, Soumya; Vajtai, Robert; Roy, Ajit K.; Sekhar Tiwary, Chandra; Ajayan, P. M.

    2017-02-01

    Heterostructures of atomically thin 2D materials could have improved physical, mechanical and chemical properties as compared to its individual components. Here we report, the effect of heterostructure coatings of hBN and MoS2 on the corrosion behavior as compared to coatings employing the individual 2D layer compositions. The poor corrosion resistance of MoS2 (widely used as wear resistant coating) can be improved by incorporating hBN sheets. Depending on the atomic stacking of the 2D sheets, we can further engineer the corrosion resistance properties of these coatings. A detailed spectroscopy and microscopy analysis has been used to characterize the different combinations of layered coatings. Detailed DFT based calculation reveals that the effect on the electrical properties due to atomic stacking is one of the major reasons for the improvement seen in corrosion resistance.

  3. High Corrosion-Resistance Double-Layer Ni-P Coating on Steels

    Institute of Scientific and Technical Information of China (English)

    JIANG Hai; LIU Xian-li; JIANG Zhang-hao; LI Guang-yu; LIAN Jian-she; GU Chang-dong

    2004-01-01

    Double-layer Ni-P alloy coating with a thickness about 20 μm and different Ni-P layers was prepared by electroless deposition and its corrosion resistance was studied. The microstructure and corrosion-resistance of the coatings were analyzed by SEM, XRD, electrochemical polarization measurements and salt spray tests. The salt spray tests showed that the double-layer coating exhibits better corrosion resistance. The time of the emergence of the first red rust spot on the coating surface can reach 384 hours, and the gray rusts were firstly emergered during the salt spray tests. The electrochemical analysis revealed that the difference in the corrosion potential between the double layers plays a very important role in protecting the substrate from rusting.

  4. The corrosion resistance and neutron-absorbing properties of coatings based on amorphous alloys

    Science.gov (United States)

    Sevryukov, O. N.; Polyansky, A. A.

    2016-04-01

    The object of the present study was the corrosion-resistant amorphizing alloys with an increased content of boron for cladding the surface of metals, rapidly quenched alloys without boron for protective coatings on a high-boron cladding layer, as well as steel samples with a protective coating with a high content of boron and without boron. The aim of the work is to investigate the corrosion resistance of a coating in water at the temperature of 40 °C in conditions of an open access of oxygen for 1000 h, as well as the features of the microstructure of clad samples before and after the corrosion tests. New data on the corrosion resistance of Cr18Ni10Ti steel samples with a protective layer from a rapidly quenched alloy Ni-19Cr-10Si (in wt.%) on a high-boron coating have been obtained.

  5. Effect of coating and surface modification on the corrosion resistance of selected alloys in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Zheng, W. [CANMET, Materials Technology Lab., Hamilton, Ontario (Canada); Cook, W. [Univ. of New Brunswick, Fredericton, New Brunswick (Canada); Toivonen, A.; Penttila, S. [VTT Technical Research Center of Finland, Espoo (Finland); Guzonas, D.; Woo, O.T. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Liu, P.; Bibby, D. [CANMET, Materials Technology Lab., Hamilton, Ontario (Canada)

    2011-07-01

    Materials selection is one of the key tasks in Gen-IV reactor development. There is no known material that can meet the expected core outlet conditions of the Canadian SCWR concept (625{sup o}C core outlet temperature). High-Cr steels with excellent corrosion resistance are often susceptible to embrittlement due to the precipitation of sigma and other phases in the microstructure. Low-Cr steels such as P91 and oxide dispersion strengthened (ODS) steels exhibit good high-temperature mechanical properties, but the lack of sufficient Cr content makes this group alloy corrode too fast. Improvement in this alloy is needed in order for it to be considered as a piping construction material. In this report, the development of a metallic coating on a P91 substrate is discussed. Recent effort on selection of in-core cladding alloys has focused on heat-resistant 3xx series stainless steels. These alloys have higher strength at high-temperature ranges, but corrosion and stress-corrosion cracking resistance are a concern. Metallic coating and surface modification are considered as possible solutions to overcome this challenge. The effects of surface modification on the corrosion rate of austenitic steels were also reported in this paper. As-machined surface showed much better corrosion resistance than polished surface and advanced surface analyses showed distinct differences in the nature and the morphology of the surface layer metal. Possible mechanisms for improved corrosion performance are discussed. (author)

  6. Preparation and corrosion resistance of MAO/Ni-P composite coat on Mg alloy

    Science.gov (United States)

    Fan, Xizhi; Wang, Ying; Zou, Binglin; Gu, Lijian; Huang, Wenzhi; Cao, Xueqiang

    2013-07-01

    Microarc oxidation (MAO) coat was designed as an intermediate layer for the electroless plated Ni-P top coat, providing inert surface and necessary hardness for Mg alloy substrate. The composite coat was successfully prepared to improve the corrosion resistance of Mg alloy. The preparation and the characterization of the composite coat were investigated. The results show that the pre-treatment of MAO before electroless plating plays an important role in the deposition of compact composite coat. The activation (by HF solution) makes the MAO coat dense with uniform cracks which supply excellent bonding interface for Ni-P coat. Compared with monolithic MAO or Ni-P coat, the composite coat has excellent corrosion resistance and stable bonding interface. There is main pit corrosion at substrate after the corrosive medium penetrating through the whole coat. With the inert MAO interlayer, the electrochemical corrosion between the Ni-P and substrate is effectively inhibited.

  7. Electrolytic deposition and corrosion resistance of Zn–Ni coatings obtained from sulphate-chloride bath

    Indian Academy of Sciences (India)

    Katarzyna Wykpis; Magdalena Popczyk; Antoni Budniok

    2011-07-01

    Zn–Ni coatings were deposited under galvanostatic conditions on steel substrate (OH18N9). The influence of current density of deposition on the surface morphology, chemical and phase composition was investigated. The corrosion resistance of Zn–Ni coatings obtained at current density 10–25 mA cm-2 are measured, and are compared with that of metallic cadmium coating. Structural investigations were performed by the X-ray diffraction (XRD) method. The surface morphology and chemical composition of deposited coatings were studied using a scanning electron microscope (JEOL JSM-6480) with EDS attachment. Studies of electrochemical corrosion resistance were carried out in the 5% NaCl, using potentiodynamic and electrochemical impedance spectroscopy (EIS) methods. On the ground of these research, the possibility of deposition of Zn–Ni coatings contained 24–26% at. Ni was exhibited. It was stated, that surface morphology, chemical and phase composition of these coatings are practically independent on current density of deposition. On the basis of electrochemical investigations it was found that corrosion resistance of these Zn–Ni coatings is also independent of current density. These coatings are more corrosion resistant in 5% NaCl solution than metallic cadmium. It was suggested that the Zn–Ni coating may be used as a substitute for toxic cadmium.

  8. Application of High Temperature Corrosion-Resistant Materials and Coatings Under Severe Corrosive Environment in Waste-to-Energy Boilers

    Science.gov (United States)

    Kawahara, Yuuzou

    2007-06-01

    Corrosion-resistant materials (CRMs) and coatings are key technologies to increase power generation efficiency and reduce maintenance in waste-to-energy (WTE) plants. Corrosion environment became severe as steam temperatures have increased. The steam condition of more than 400 °C/3.9 MPa became possible in WTE boilers by using highly durable corrosion-resistant coatings, such as thermal spray of Al/80Ni20Cr alloy, HVOF-sprayed NiCrSiB alloy, Alloy 625 weld overlay for waterwall tubes and also superheater tubes. Also, the use of 310S type stainless steels and high Cr-high Mo-Ni base and high Si-Cr-Ni-Fe alloys have progressed because of a better understanding of corrosion mechanisms. Furthermore, high durability coatings using cermet and ceramic materials were applied to high temperature superheaters. This paper describes the major developments and the application of CRMs and coating technologies in the last 30 years in WTE plants, the corrosion mechanisms of alloys, the deterioration mechanisms of spray coating layers, and future subjects for the development of corrosion-resistant materials and coatings.

  9. Corrosion Resistance of an electrodeposited Zinc Coating Containing CeO2 Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    HE Jian-ping; LUO Xin-yi; CHEN Su-jing; WANG Xian-you

    2004-01-01

    A Zinc coating containing CeO2 nanoparticles has been deposited by electrodeposition in a zinc plating bath.The content of CeO2 in the coating is 0.22 mass%. The results of weight loss experiments and electrochemistry tests show that corrosion resistance of the Zinc coating containing CeO2 nanoparticles is remarkably improved in contrast to the pure zinc coating in 0.5 M MgSO4 solution. The effects of CeO2 microparticles on the corrosion resistance of the zinc coating have been studied, the results show that CeO2 microparticles have no effect on the corrosion resistance of the zinc coating. SEM and XRD experiments suggest that the presence of CeO2 nanoparticles in the coating causes the modification of the surface morphology and preferential orientation of the crystal planes; therefore, the reason for the enhancement of corrosion resistance is mainly related to improvement of the structure of the coating.

  10. Electrodeposition of high corrosion resistance Cu/Ni-P coating on AZ91D magnesium alloy

    Science.gov (United States)

    Zhang, Shan; Cao, Fahe; Chang, Linrong; Zheng, JunJun; Zhang, Zhao; Zhang, Jianqing; Cao, Chunan

    2011-08-01

    High corrosion resistance Cu/Ni-P coatings were electrodeposited on AZ91D magnesium alloy via suitable pretreatments, such as one-step acid pickling-activation, once zinc immersion and environment-friendly electroplated copper as the protective under-layer, which made Ni-P deposit on AZ91D Mg alloy in acid plating baths successfully. The pH value and current density for Ni-P electrodeposition were optimized to obtain high corrosion resistance. With increasing the phosphorous content of the Ni-P coatings, the deposits were found to gradually transform to amorphous structure and the corrosion resistance increased synchronously. The anticorrosion ability of AZ91D Mg alloy was greatly improved by the amorphous Ni-P deposits, which was investigated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The corrosion current density ( Icorr) of the coated Mg alloy substrate is about two orders of magnitude less than that of the uncoated.

  11. Progress in Research on Vanadate-Based Coatings on Corrosion Resistance

    Institute of Scientific and Technical Information of China (English)

    Zou Zhongli; Li Ning; Li Deyu

    2007-01-01

    Vanadate, usually used as the corrosion resistant inhibitor for the paint systems, is one of the substances that have been proposed as alternative to toxic chromate for the corrosion protection. In this paper, the possibility of vanadate passivating from its chemical properties was introduced firstly. Then, the progress and examples in research on vanadate conversion coatings on the corrosion resistance were summarized. And the substrates discussed here contained aluminum alloys, magnesium alloys and so on. Finally, the research tendency of vanadate-based coatings was discussed.

  12. Comparison of surface fractal dimensions of chromizing coating and P110 steel for corrosion resistance estimation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Naiming, E-mail: lnmlz33@163.com [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Guo, Junwen [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Xie, Faqin [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Zou, Jiaojuan; Tian, Wei [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Yao, Xiaofei [School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710032 (China); Zhang, Hongyan; Tang, Bin [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2014-08-30

    Highlights: • Continuous chromizing coating was synthesized on P110 steel by pack cementation. • The chromizing coating showed better corrosion resistance. • Comparison of surface fractal dimensions can estimate corrosion resistance. - Abstract: In the field of corrosion research, mass gain/loss, electrochemical tests and comparing the surface elemental distributions, phase constitutions as well as surface morphologies before and after corrosion are extensively applied to investigate the corrosion behavior or estimate the corrosion resistance of materials that operated in various environments. Most of the above methods are problem oriented, complex and longer-period time-consuming. However from an object oriented point of view, the corroded surfaces of materials often have self-similar characterization: fractal property which can be employed to efficiently achieve damaged surface analysis. The present work describes a strategy of comparison of the surface fractal dimensions for corrosion resistance estimation: chromizing coating was synthesized on P110 steel surface to improve its performance via pack cementation. Scanning electron microscope (SEM) was used to investigate the surface morphologies of the original and corroded samples. Surface fractal dimensions of the detected samples were calculated by binary images related to SEM images of surface morphologies with box counting algorithm method. The results showed that both surface morphologies and surface fractal dimensions of P110 steel varied greatly before and after corrosion test, but the chromizing coating changed slightly. The chromizing coating indicated better corrosion resistance than P110 steel. Comparison of surface fractal dimensions of original and corroded samples can rapidly and exactly realize the estimation of corrosion resistance.

  13. Wear and corrosion resistance of laser remelted and plasma sprayed Ni and Cr coatings on copper

    Institute of Scientific and Technical Information of China (English)

    梁工英; 黄俊达; 安耿

    2004-01-01

    Nickel and chromium coatings were produced on the copper sheet using plasma spraying and laser remelting. The sliding wear test was achieved on a block-on-ring tester and the corrosion test was carried out in an acidic atmosphere. The corrosive behaviors of both coatings and original copper samples were investigated by using an impedance comparison method. The experimental results show that the nickel and chromium coatings display better wear resistance and corrosion resistance relative to the original pure copper sample. The wear resistance of the coatings is 8 - 12 times as large as original samples, and the wear resistance of laser remelted samples is better than that of plasma sprayed ones. The corrosion resistance of laser remelted nickel and chromium samples is better than that of plasma sprayed samples respectively. The corrosion rate of chromium coatings is less than that of nickel coatings, and the laser remelted Cr coating exhibits the least corrosion rate.

  14. In vitro investigation of biodegradable polymeric coating for corrosion resistance of Mg-6Zn-Ca alloy in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, Swati, E-mail: gaurswat@gmail.com [IITB–Monash Research Academy, IIT Bombay, Powai, Mumbai 400076 (India); Singh Raman, R.K. [Department of Mechanical, Monash University, Clayton, VIC-3800 (Australia); Department of Aerospace Engineering, Monash University, Clayton, VIC-3800 (Australia); Department of Chemical Engineering, Monash University, Clayton, VIC-3800 (Australia); Khanna, A.S. [Department of Metallurgical Engineering and Materials Science, IIT Bombay, Powai, Mumbai 400076 (India)

    2014-09-01

    A silane-based biodegradable coating was developed and investigated to improve corrosion resistance of an Mg-6Zn-Ca magnesium alloy to delay the biodegradation of the alloy in the physiological environment. Conditions were optimized to develop a stable and uniform hydroxide layer on the alloys surface—known to facilitate silane-substrate adhesion. A composite coating of two silanes, namely, diethylphosphatoethyltriethoxysilane (DEPETES) and bis-[3-(triethoxysilyl) propyl] tetrasulfide (BTESPT), was developed, by the sol-gel route. Corrosion resistance of the coated alloy was characterized in a modified-simulated body fluid (m-SBF), using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The silane coating provided significant and durable corrosion resistance. During the course of this, hydrogen evolution and pH variation, if any, were monitored for both bare and coated alloys. The coating morphology was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) and the cross-linking in the coating was studied using Fourier transform infrared spectroscopy (FTIR). As indicated by X-ray diffraction (XRD) results, an important finding was the presence of hydrated magnesium phosphate on the sample that was subjected to immersion in m-SBF for 216 h. Magnesium phosphate is reported to support osteoblast formation and tissue healing. - Highlights: • A silane-based coating was investigated for improving corrosion resistance. • Coating was developed on Mg-6Zn-Ca alloy to delay its biodegradation in m-SBF. • Corrosion resistance was characterized, using polarization and EIS. • The coating morphology was characterized using SEM, EDAX, XRD and FTIR. • 1:4 volume ratio of DEPETES:BTESPT showed significant corrosion resistance.

  15. Laser cladding of Zr-based coating on AZ91D magnesium alloy for improvement of wear and corrosion resistance

    Indian Academy of Sciences (India)

    Kaijin Huang; Xin Lin; Changsheng Xie; T M Yue

    2013-02-01

    To improve the wear and corrosion resistance of AZ91D magnesium alloy, Zr-based coating made of Zr powder was fabricated on AZ91D magnesium alloy by laser cladding. The microstructure of the coating was characterized by XRD, SEM and TEM techniques. The wear resistance of the coating was evaluated under dry sliding wear test condition at room temperature. The corrosion resistance of the coating was tested in simulated body fluid. The results show that the coating mainly consists of Zr, zirconium oxides and Zr aluminides. The coating exhibits excellent wear resistance due to the high microhardness of the coating. The main wear mechanism of the coating and the AZ91D sample are different, the former is abrasive wear and the latter is adhesive wear. The coating compared to AZ91D magnesium alloy exhibits good corrosion resistance because of the good corrosion resistance of Zr, zirconium oxides and Zr aluminides in the coating.

  16. Preparation and Corrosion Resistance of Rare Earth Conversion Coatings on AZ91 Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    Xu Yue; Chen Xiang; Lü Zushun; Li Yingjie

    2005-01-01

    The feasibility of forming pollution-free and environmentally benign Ce-based rare earth conversion coatings (short for RECCs) on AZ91 magnesium alloy to enhance corrosion resistance was studied. The effect of optimum processing parameters on corrosion resistance of RECCs, such as density of treating solution, temperature and time of coating formation were discussed. Protective performance of conversion coatings on magnesium alloy was evaluated by moisture/heating test, anodic polarization, etc. The results show that Ce-based RECCs under moisture/heating condition can remain intact, with high coverage and no obvious corrosion phenomenon. Corrosion potential increases and passive phenomenon occurs while current density decreases, therefore Ce-based RECCs can improve corrosion resistance of AZ91 magnesium alloy. The morphology of Ce-based RECCs prepared under optimum process through SEM observation is found to be a few particles coherent to the base coating, and the coating has no cracks and exhibits apparent corrosion resistance during corrosion courses of AZ91 magnesium alloy.

  17. Effects of Nano Pigments on the Corrosion Resistance of Alkyd Coating

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Alkyd coatings embedded with nano-TiO2 and nano-ZnO pigments were prepared. The effects of nano pigments on anticorrosion performance of alkyd coatings were investigated using electrochemical impedance spectrum (EIS). For the sake of comparison, the corrosion protection of alkyd coatings with conventional TiO2 and ZnO was also studied. It was found that nano-TiO2 pigment improved the corrosion resistance as well as the hardness of alkyd coatings. The optimal amount of nano-TiO2 in a colored coating for corrosion resistance was 1%. The viscosities of alkyd coatings with nanometer TiO2 and ZnO and conventional TiO2 and ZnO pigments were measured and the relation between viscosity and anticorrosion performance was discussed.

  18. Microstructure and Corrosion Resistance of Electrodeposited Ni-Cu-Mo Alloy Coatings

    Science.gov (United States)

    Meng, Xinjing; Shi, Xi; Zhong, Qingdong; Shu, Mingyong; Xu, Guanquan

    2016-09-01

    This paper deals with the electrodeposition of Ni-Cu-Mo ternary alloy coatings on low-carbon steel substrate from an aqueous citrate sulfate bath. The structures and microstructure of coatings were characterized by scanning electron microscopy and x-ray diffractometry. The corrosion resistance of coatings was investigated by potentiodynamic polarization (Tafel) and electrochemical impedance spectroscopy techniques. The results show that the Ni-Cu-Mo coatings are mainly composed of fcc-Ni phase and a small amount of NiCu phase. Ni-Cu-Mo coatings exhibit a nodular surface morphology, and the roughness of electroplated coating increases with the increasing of Na2MoO4·2H2O in the bath. The corrosion performance of the coatings is significantly affected by the Mo content of the alloy coating and their surface morphology. The coating prepared in bath containing 40 g/L Na2MoO4·2H2O has the highest corrosion resistance in 3.5 wt.% NaCl solution, while that prepared in bath containing 60 g/L (or more) Na2MoO4·2H2O shows a lower corrosion resistance due to the presence of microcracks on the coating surface.

  19. Effect of plasma nitriding and titanium nitride coating on the corrosion resistance of titanium.

    Science.gov (United States)

    Wang, Xianli; Bai, Shizhu; Li, Fang; Li, Dongmei; Zhang, Jing; Tian, Min; Zhang, Qian; Tong, Yu; Zhang, Zichuan; Wang, Guowei; Guo, Tianwen; Ma, Chufan

    2016-09-01

    The passive film on the surface of titanium can be destroyed by immersion in a fluoridated acidic medium. Coating with titanium nitride (TiN) may improve the corrosion resistance of titanium. The purpose of this in vitro study was to investigate the effect of duplex treatment with plasma nitriding and TiN coating on the corrosion resistance of cast titanium. Cast titanium was treated with plasma nitriding and TiN coating. The corrosion resistance of the duplex-treated titanium in fluoride-containing artificial saliva was then investigated through electrochemical and immersion tests. The corroded surface was characterized by scanning electron microscopy (SEM) with energy-dispersive spectroscopy surface scan analysis. The data were analyzed using ANOVA (α=.05) RESULTS: Duplex treatment generated a dense and uniform TiN film with a thickness of 4.5 μm. Compared with untreated titanium, the duplex-treated titanium displayed higher corrosion potential (Ecorr) values (Pplasma nitriding and TiN coating significantly improved the corrosion resistance of cast titanium in a fluoride-containing environment. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Phosphating process of AZ31 magnesium alloy and corrosion resistance of coatings

    Institute of Scientific and Technical Information of China (English)

    CHENG Ying-liang; WU Hai-lan; CHEN Zhen-hua; WANG Hui-min; LI Ling-ling

    2006-01-01

    Zinc phosphate films were formed on AZ31 magnesium alloy by immersing into a phosphatation bath to enhance the corrosion resistance of AZ31. Different films were prepared by changing the processing parameters such as immersing time and temperature. The corrosion protection of the coatings was studied by electrochemical measurements such as electrochemical impedance spectroscopy, potentiodynamic polarization curves, and the structure of the films were studied by metalloscopy and X-ray diffraction (XRD). The results show that, the film formed at 80 ℃, 10 min has the highest corrosion resistance. The XRD patterns show that the film consists of hopeite (Zn3(PO4)2·xH2O).

  1. A variable hydrophobic surface improves corrosion resistance of electroplating copper coating

    Science.gov (United States)

    Xu, Xiuqing; Zhu, Liqun; Li, Weiping; Liu, Huicong

    2011-04-01

    In this paper, Cu/liquid microcapsule composite coating was prepared by electroplating method. And a variable hydrophobic surface was obtained due to the slow release of microcapsules and the rough surface. The hydrophobic property and corrosion resistance of the composite was investigated by means of water contact angle instrument and electrochemical technique, respectively. The results suggest that the contact angle (CA) of composite increases gradually with the increasing storing time, and the stable super-hydrophobic property was exhibited after storing in air for 15 days. Meanwhile, the excellent corrosion resistance was displayed, which could be ascribed to the good stability of hydrophobic film on composite surface.

  2. Improvement on the Corrosion Resistance of AZ91D Magnesium Alloy by Aluminum Diffusion Coating

    Institute of Scientific and Technical Information of China (English)

    Hongwei HUO; Ying LI; Fuhui WANG

    2007-01-01

    By combination of magnetron sputtering deposition and vacuum annealing, an aluminum diffusion coating was prepared on the substrate of AZ91D alloy to improve its corrosion resistance. The microstructure and composition of the diffusion coating was investigated by scanning electron microscopy and X-ray diffraction. The diffusion coating was mainly comprised of β phase-Al12Mg17. The continuous immersion test in 3.5 wt pct neutral NaCl solution indicated that the specimen with diffusion coating had better corrosion resistance compared with the bare AZ91D alloy specimen. The potentiodynamic polarization measurement indicated that the diffusion coating could function as an effectively protective layer to reduce the corrosion rate of AZ91D alloy when exposed to 3.5 wt pct NaCl solution.

  3. Effect of Post Heat Treatment on Corrosion Resistance of Phytic Acid Conversion Coated Magnesium

    Institute of Scientific and Technical Information of China (English)

    R.K. Gupta; K. Mensah-Darkwa; D. Kumar

    2013-01-01

    An environment friendly chemical conversion coating for magnesium was obtained by using a phytic acid solution.The effect of post-coating 1heat treatment on the microstructures and corrosion properties of phytic acid conversion coated magnesium was investigated.It was observed that the microstructure and corrosion resistive properties were improved for the heat treated samples.The corrosion current density for bare magnesium,phytic acid conversion coated magnesium,and post-coating heat treated magnesium was calculated to be 2.48 × 10-5,1.18 × 10-6,and 9.27 × 10-7 A/cm2,respectively.The lowest corrosion current density for the heat treated sample indicated its highest corrosion resistive effect for the magnesium.The maximum corrosion protective nature of the heat treated sample was further confirmed by the largest value of impedance in electrochemical impedance spectroscopy studies.

  4. Microstructure and Corrosion Resistance of Aluminium and Copper Composite Coatings Deposited by LPCS Method

    Directory of Open Access Journals (Sweden)

    Winnicki M.

    2016-12-01

    Full Text Available The paper presents the study of microstructure and corrosion resistance of composite coatings (Al+Al2O3 and Cu+Al2O3 deposited by Low Pressure Cold Spraying method (LPCS. The atmospheric corrosion resistance was examined by subjecting the samples to cyclic salt spray and Kesternich test chambers, with NaCl and SO2 atmospheres, respectively. The selected tests allowed reflecting the actual working conditions of the coatings. The analysis showed very satisfactory results for copper coatings. After eighteen cycles, with a total time of 432 hours, the samples show little signs of corrosion. Due to their greater susceptibility to chloride ions, aluminium coatings have significant corrosion losses.

  5. Cellulose acetate/hydroxyapatite/chitosan coatings for improved corrosion resistance and bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhenyu; Qin, Jinli [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Ma, Jun, E-mail: caltary@gmail.com [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-04-01

    Cellulose acetate (CA) nanofibers were deposited on stainless steel plates by electrospinning technique. The composite of hydroxyapatite (HAP) nanoparticles and chitosan (CHI) was coated subsequently by dip-coating. The structure and morphology of the obtained coatings were investigated by Fourier transform infrared spectroscopy and scanning electron microscopy. The stability of the coatings in physiological environment was studied using electrochemical polarization and impedance spectroscopy. The CA nanofibers were embedded in the HAP/CHI coating and the resulted composite film was densely packed and uniform on the substrate. The in vitro biomineralization study of the coated samples immersed in simulated body fluid (SBF) confirmed the formation ability of bone-like apatite layer on the surface of HAP-containing coatings. Furthermore, the coatings could provide corrosion resistance to the stainless steel substrate in SBF. The electrochemical results suggested that the incorporation of CA nanofibers could improve the corrosion resistance of the HAP/CHI coating. Thus, biocompatible CA/HAP/CHI coated metallic implants could be very useful in the long-term stability of the biomedical applications. - Highlights: • The composite coatings were prepared by electrospinning and dip-coating. • Good in vitro bioactivity of the CA/HAP/CHI coating was confirmed. • Electrochemical behaviors in SBF of the coatings have been studied. • The CA/HAP/CHI coating shows better resistance property than HAP/CHI.

  6. The corrosion resistance of zinc coatings in the presence of boron-doped detonation nanodiamonds (DND)

    Science.gov (United States)

    Burkat, G. K.; Alexandrova, G. S.; Dolmatov, V. Yu; Osmanova, E. D.; Myllymäki, V.; Vehanen, A.

    2017-02-01

    The effect of detonation nanodiamonds, doped with boron (boron-DND) in detonation synthesis on the process of zinc electrochemical deposition from zincate electrolyte is investigated. It is shown that the scattering power (coating uniformity) increases 2-4 times (depending on the concentration of DND-boron electrolyte conductivity does not change, the corrosion resistance of Zn- DND -boron coating increases 2.6 times in 3% NaCl solution (corrosion currents) and 3 times in the climatic chamber.

  7. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dhandapani, Vishnu Shankar [PG & Research Department of Physics, PSG College of Arts & Science, Coimbatore 641 014, Tamil Nadu (India); Center for Nano-Wear, Yonsei University, Seoul 120-749 (Korea, Republic of); Subbiah, Ramesh [Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejon 305-333 (Korea, Republic of); Thangavel, Elangovan [PG & Research Department of Physics, PSG College of Arts & Science, Coimbatore 641 014, Tamil Nadu (India); Center for Nano-Wear, Yonsei University, Seoul 120-749 (Korea, Republic of); Arumugam, Madhankumar [Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Park, Kwideok [Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejon 305-333 (Korea, Republic of); Gasem, Zuhair M. [Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Veeraragavan, Veeravazhuthi, E-mail: vv.vazhuthi@gmail.com [PG & Research Department of Physics, PSG College of Arts & Science, Coimbatore 641 014, Tamil Nadu (India); Kim, Dae-Eun, E-mail: kimde@yonsei.ac.kr [Center for Nano-Wear, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2016-05-15

    Highlights: • a-C:Ti nanocomposite coatings were prepared on 316L stainless steel by using R.F. magnetron sputtering method. • Properties of the nanocomposite coatings were analyzed with respect to titanium content. • Corrosion resistance, biocompatibility and hydrophobicity of nanocomposite coating were enhanced with increasing titanium content. • Coating with 2.33 at.% titanium showed superior tribological properties compared to other coatings. - Abstract: Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp{sup 2} bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  8. Robust Slippery Coating with Superior Corrosion Resistance and Anti-Icing Performance for AZ31B Mg Alloy Protection.

    Science.gov (United States)

    Zhang, Jialei; Gu, Changdong; Tu, Jiangping

    2017-03-29

    Biomimetic slippery liquid-infused porous surfaces (SLIPSs) are developed as a potential alternative to superhydrophobic surfaces (SHSs) to resolve the issues of poor durability in corrosion protection and susceptibility to frosting. Herein, we fabricated a double-layered SLIPS coating on the AZ31 Mg alloy for corrosion protection and anti-icing application. The porous top layer was infused by lubricant, and the compact underlayer was utilized as a corrosion barrier. The water-repellent SLIPS coating exhibits a small sliding angle and durable corrosion resistance compared with the SHS coating. Moreover, the SLIPS coating delivers durable anti-icing performance for the Mg alloy substrate, which is obviously superior to the SHS coating. Multiple barriers in the SLIPS coating, including the infused water-repellent lubricant, the self-assembled monolayers coated porous top layer, and the compact layered double hydroxide-carbonate composite underlayer, are suggested as being responsible for the enhanced corrosion resistance and anti-icing performance. The robust double-layered SLIPS coating should be of great importance to expanding the potential applications of light metals and their alloys.

  9. Development on Self- Leveling Vinyl Resin Floor Coating with Excellent Corrosion Resistance%自流平乙烯基重防腐地坪涂料的研制

    Institute of Scientific and Technical Information of China (English)

    黄凯; 谢亦富; 赖映标; 范栋岩; 陈绍波

    2012-01-01

    In this paper, one kind of self - leveling vinyl resin - based floor coating with heavy corrosion resistance was prepared on the basis of raw material selection and formulation optimization. Effect of different vinyl ester resins, different vinyl resin - based color pastes and their dosage, different paraffin wax dispersion and their dosage, and additives on the appearance and corrosion resistance performance of coating film were discussed. The self - leveling vinyl floor coating was featured by its convenient to apply, good self - leveling, excellent corrosion resistance and storage stability.%通过原材料的配套筛选和配方优化研制出一种性能优异的自流平乙烯基重防腐地坪涂料.讨论了乙烯基树脂、乙烯基色浆的种类和添加量、蜡液的种类和添加量、助剂等因素对最终涂膜外观及耐腐蚀性能的影响.所制得的乙烯基重防腐地坪涂料具有施工工艺简单、自流平效果好、高耐腐蚀性和良好的贮存性能.

  10. High temperature ceramic articles having corrosion resistant coating

    Science.gov (United States)

    Stinton, David P.; Lee, Woo Y.

    1997-01-01

    A ceramic article which includes a porous body of SiC fibers, Si.sub.3 N.sub.4 fibers, SiC coated fibers or Si.sub.3 N.sub.4 coated fibers, having at least one surface, the article having a coating of AlN adherently disposed throughout at least a portion of the porous body.

  11. A Study on Corrosion Resistance of Coating System on Steel

    Energy Technology Data Exchange (ETDEWEB)

    Nah, Hwan Seon; Lee, Hyeon Ju; Kim, Kang Seok [Korea Electricity Power Research Institute, Daejeon (Korea, Republic of); Lee, Chul Woo [KEPCO E and Co., Yongin (Korea, Republic of)

    2007-04-15

    The design purpose of architectural finish on steel structures is to prevent corrosion in the respect of structural durability, function, beauty and economy. In particular, as structures located on shores is easily degraded due to damage from salt, it is necessary to evaluate the applied coating systems on steel structures. This study is focused on anti-corrosive tests of both steel surfaces and high strength bolts. Two kinds of tests were conducted on each specimen under the condition of outdoor exposure and salt spray comparatively during 760 hours. In case of coating systems on steel surfaces, three layered coating system showed the best function among the various coating systems. Regarding the coating systems on high strength bolts, the coating system composed of zinc dust on hot dip galvanized coating was found to be the best against corrosion.

  12. Improving hot corrosion resistance of two phases intermetallic alloy α2-Ti3Al/γ-TiAl with enamel coating

    Science.gov (United States)

    Pambudi, Muhammad Jajar; Basuki, Eddy Agus; Prajitno, Djoko Hadi

    2017-01-01

    TiAl intermetallic alloys have attracted great interest among aerospace industry after successful utilization in low pressure turbine blades of aircraft engine which makes dramatic weight saving up to 40% weight saving. However, poor oxidation and corrosion resistance at temperatures above 800°C still become the drawbacks of this alloys, making the development of protective coatings to improve the resistance is important. This study investigates the hot corrosion behavior of two phases intermetallic alloy α2-Ti3Al/γ-TiAl with and without enamel coating using immersion test method in molten salt of 85%-wt Na2SO4 and 15%-wt NaCl at 850°C. The results show after 50 hours of hot corrosion test, bare alloy showed poor hot corrosion resistance due to the formation of non-protective Al2O3+TiO2 mixed scale at the surface of the alloy. Improvement of hot corrosion resistance was obtained in samples protected with enamel coating, indicated by significant decreasing in mass change (mg/cm2) by 98.20%. Enamel coating is expected to has the capability in suppressing the diffusion of oxygen and corrosive ions into the substrate layer, and consequently, it improves hot corrosion resistance of the alloy. The study showed that enamel coatings have strong adherent to the substrate and no spallation was observed after hot corrosion test. Nevertheless, the dissolution of oxides components of the enamel coating into the molten salts was observed that lead enamel coating degradation. This degradation is believed involving Cl- anion penetration into the substrate through voids in the coating that accelerates the corrosion of the two phases α2-Ti3Al/γ-TiAl alloy. Even though further observations are needed, it appears that enamel coating could be a promising protective coating to increase hot corrosion resistance of TiAl intermetallic alloys.

  13. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    Science.gov (United States)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-05-01

    Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  14. Producing cobalt–graphene composite coating by pulse electrodeposition with excellent wear and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cansen; Su, Fenghua, E-mail: fhsu@scut.edu.cn; Liang, Jizhao

    2015-10-01

    Graphical abstract: - Highlights: • Graphene oxide/cobalt coatings are synthesized by pulse electrodeposition. • Incorporating GO refines the grain size and changes the microstructure of the coating. • Incorporating GO greatly improves the friction reduction and wear resistance of the coating. • The corrosion resistance is enhanced by the incorporation of GO. - Abstract: Cobalt (Co) and graphene oxide/cobalt (GO/Co) composite coatings were fabricated by pulse electrodeposition technique from an aqueous bath containing cobalt sulfate and GO, etc. Effect of the incorporations of GO on morphology, phase structure, average grain size and corrosion and wear resistance of the resulting composite coatings were evaluated in detail. Scanning electron microscope (SEM) and energy dispersed X-ray (EDX) show that the GO nanosheets disperse homogeneously in the composite coating and the incorporations of GO change the morphologies of the deposit from conical shaped structure to protruding structure. In addition, the co-deposition GO with Co ions favor the formation of hcp (1 0 0), (0 0 2) and (1 0 1) textures in the composite coating and have functions of grain refining and hardness enhancement. The wear tests show that the incorporations of GO in the coating improve the wear resistance and friction reduction of the deposit. The electrochemical corrosion tests using potentiodynamic polarization and electrochemical impedance spectroscopy show that the GO/Co composite coating possesses better corrosion resistance than the pure Co coating.

  15. Preparation, antibacterial effects and corrosion resistant of porous Cu–TiO{sub 2} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Haibo; Zhang, Xiangyu, E-mail: zhangxiangyu@tyut.edu.cn; Geng, Zhenhua; Yin, Yan; Hang, Ruiqiang; Huang, Xiaobo; Yao, Xiaohong; Tang, Bin

    2014-07-01

    Antibacterial TiO{sub 2} coatings with different concentrations of Cu (Cu–TiO{sub 2}) were prepared by micro-arc oxidation (MAO) on pre-sputtered CuTi films. The effect of Cu concentrations in CuTi films on the MAO process was investigated. The Cu–TiO{sub 2} coatings were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The corrosion resistance of Cu–TiO{sub 2} coatings was evaluated via potentiodynamic polarization method. The antibacterial properties were assessed by two methods: spread plate method and fluorescence staining. The experimental results demonstrate that the coatings are porous and consist of anatase phase, rutile phase and unoxidized titanium. The CuTi films are almost completely oxidized and the thickness of all MAO coatings is about 5–10 μm. Cu mainly exists as CuO in the TiO{sub 2} coatings. The Cu–TiO{sub 2} coatings exhibit excellent antibacterial activities, and the antibacterial rate gradually rise with the increase in Cu concentration in the MAO coatings. The corrosion resistance of MAO coatings is also improved slightly.

  16. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2005-01-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period we coated coupons of selected alloy steels with diffusion coatings of Cr and Al, as well as with titanium and tantalum nitrides. The coated samples were analyzed for their surface composition. In several instances, the samples were also cut to determine the depth profile of the coating. Several of the early runs did not yield uniform or deep enough coatings and hence a significant portion of the effort in this period was devoted fixing the problems with our fluidized bed reactor. Before the end of the quarter we had prepared a number of samples, many of them in duplicates, and sent one set to Wabash River Energy Laboratory for them to install in their gasifier. The gasifier was undergoing a scheduled maintenance and thus presented an opportunity to place some of our coupons in the stream of an operating gasifier. The samples submitted included coated and uncoated pairs of different alloys.

  17. The Application of Heat and Corrosion Resistant Phosphate Coatings Under Steam Pressure

    Science.gov (United States)

    1974-03-01

    August 1955. Bessey, R. E. and W. M. Kisner , "Heat Resistance of Phos- phate Protective Coatings," Technical Report SA-MR18- 1026, Springfield Armory...phosphate coatings heated in the absence of air lose their corrosion resistance between 400°F and 425’F. Bessey and Kisner ’ determined the weight loss...tests. These coatings had been heated in air at 212F, 300 0 F, and at 100-degree in- tervals up to 14000F. Bessey and Kisner reported that the corrosion

  18. Characterisation and corrosion resistance of TiN-Ni nanocomposite coatings using RBS and NRA

    Energy Technology Data Exchange (ETDEWEB)

    Noli, F., E-mail: noli@chem.auth.grl [Department of Chemistry, Aristotle University, GR-54124 Thessaloniki (Greece); Misaelides, P., E-mail: misailid@auth.gr [Department of Chemistry, Aristotle University, GR-54124 Thessaloniki (Greece); Lagoyannis, A., E-mail: lagoya@inp.demokritos.gr [Tandem Accelerator Laboratory, Nuclear Physics Institute, NCSR Demokritos, GR-15310 Aghia Paraskevi, Attiki (Greece); Akbari, A., E-mail: alireza_ak@yahoo.com [Universite de Poitiers, Laboratoire de Physique des Materiaux (PHYMAT), UMR6630-CNRS, 86960 Chasseneuil, Futuroscope Cedex (France)

    2011-12-15

    Nanocomposite TiN-Ni coatings were produced by a duplex treatment on Ti-6Al-4V substrates. The procedure consisted of plasma nitriding of the substrate followed by deposition of a TiN-Ni layer by sputtering a composite Ti-Ni target with 1.2 keV Ar{sup +} ions. The growing film was bombarded during deposition by a mixture of 50 eV Ar{sup +}-N{sup 2+}-N{sup +} ions. The temperature as well as the Ni- and the N-content of the coatings varied in order to obtain the optimum structural and mechanical properties. The surface morphology of the coatings was examined by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The results showed that Ni appears as an amorphous phase around the TiN crystallites. The thickness and the composition of the coatings were investigated by Rutherford Backscattering Spectrometry (RBS) using deuterons as projectiles. The nitrogen depth distribution in the coatings was determined by Nuclear Reaction Analysis (NRA) using {sup 14}N(d, {alpha}) and {sup 14}N(d, p) nuclear reactions. The corrosion resistance of the nitrided and non-nitrided coatings in aggressive environment (NaCl 3% solution at RT) was investigated using electrochemical techniques (potentiodynamic polarisation and cyclic voltammetry). It was found that nanocomposite coatings are stable and do not influence the corrosion resistance of the Ti-alloy substrate. The nitrided coatings exhibited higher wear and corrosion resistance related with their Ni-content.

  19. Method of forming corrosion resistant coatings on metal articles

    Energy Technology Data Exchange (ETDEWEB)

    Restall, J.E.

    1983-05-10

    A metallic or ceramic layer is deposited on a component by plasma spraying. This produces a rough, still porous, coating which is poorly bonded at the interface with the substrate. Aluminium or chromium is vapor deposited under pulsating pressure to react with the substrate to form an oxidation resistant coating of Ni Al (intermetallic) or Ni Cr (solid solution) which may include ceramic particles and is aerodynamically smooth.

  20. Improving Corrosion Resistance of Cf/Mg Composites using Rare Earth Conversion Coatings

    Institute of Scientific and Technical Information of China (English)

    Song Meihui; Wang Chunyu; Wu Gaohui

    2007-01-01

    The surface of carbon fiber reinforced Mg matrix (Cf/Mg) composites was modified by treatment of rare earth conversion coating, and nontoxic, non-pollution Ce conversion coatings were prepared. The effect of the coatings on corrosion behaviors of composites was investigated by electrochemical polarization technology and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. The higher Ecorr and lower icorr were obtained by Ce conversion coatings. EIS results showed that the higher values of R2 were obtained by treatment containing CeCl3, the high corrosion resistance occured in treatment containing CeCl3, the low corrosion resistance in uncoating sample, the coating of treatment containing Ce(NO3)3 was medium. The microstructure of Ce conversion coatings was observed by scanning electron microscopy (SEM), and the elements of corresponding for coatings was characterized by energy dispersive spectrometer (EDS). The micro-cracks and Ce-riched spherical particles were characteristics of these coatings.

  1. [Effects of TiSi coating on corrosion resistance of dental Co-Cr alloy].

    Science.gov (United States)

    Hu, Bin; Chen, Jie; Zhang, Fu-qiang

    2011-12-01

    To investigate the effect of titanium-silicon(TiSi) coating on corrosion resistance of dental CoCr alloy. The commonly used CoCr alloy was cast into 10mm×10mm×3mm specimen in size. Then the specimen was coated with TiSi on the surface by sol-gel method. The specimens were immersed in artificial saliva. Weight loss method was used to analyze corrosion rate. Element analysis using Auger Electron Spectroscopy (AES) was performed to compare the content of element before and after coating of TiSi in artificial saliva. SAS8.0 software package was used for statistical analysis. By weight lost method, before and after coating TiSi, the corrosive rate was 0.163 g·m(-2)·h(-1) and 0.138 g·m(-2)·h(-1) respectively. With AES, in Co-Cr alloy not coating TiSi, atomic concentration (g·m(-2)) of Ni, Co, Cr and Si was 7.728582657,0.008801153,0.306195965 and 0.194851978,respectively. After coating Ti-Si,the content of Ni, Co, Cr and Si and 4.745189808,0.004718889, 0.153195362 and 0.778406136, respectively. The release rate of the Ni,Co,cr were decreased after coating. TiSi coating can improve corrosion resistance of CoCr alloy.

  2. Corrosion resistance of Ni–Co alloy and Ni–Co/SiC nanocomposite coatings electrodeposited by sediment codeposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Bakhit, Babak, E-mail: b_bakhit@sut.ac.ir [Surface Engineering Group, Advanced Materials Research Center, Faculty of Materials Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz (Iran, Islamic Republic of); Akbari, Alireza; Nasirpouri, Farzad [Surface Engineering Group, Advanced Materials Research Center, Faculty of Materials Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz (Iran, Islamic Republic of); Hosseini, Mir Ghasem [Electrochemistry Research Laboratory, Department of Physical Chemistry, Chemistry Faculty, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2014-07-01

    Corrosion resistance of Ni–Co alloy and Ni–Co/SiC nanocomposite coatings electrodeposited in a modified Watts bath using sediment codeposition (SCD) technique was evaluated by potentiodynamic polarization measurements in the 3.5% NaCl solution and studied as a function of deposition conditions In order to characterize the morphology, chemical and phase compositions of the coatings, scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS) and X-ray diffraction (XRD) were utilized, respectively. It was observed that the cobalt content in the Ni–Co alloy coatings was increased through an anomalous behavior by increasing the cobalt concentration in the electrolyte. The highest percentage of SiC nano-particles (8.1 vol.%) in the Ni–Co/SiC nanocomposite coatings was achieved at 3 A/dm{sup 2} deposition current density and 5 g/l particle concentration. SEM and EDS analysis illustrated that SiC nano-particles were distributed uniformly throughout the nanocomposite coatings. The potentiodynamic polarization tests indicated that the corrosion resistance of the Ni–Co alloy coatings was varied as a function of the cobalt content, and the corrosion resistance of the Ni–Co/SiC nanocomposite coatings was markedly higher than the corrosion resistance of the Ni–Co alloy coatings. Among the studied coatings, Ni–Co/SiC nanocomposite coatings containing 8.1 vol.% SiC nano-particles exhibited the best corrosion resistance.

  3. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2005-03-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period we conducted two exposure tests with coated and uncoated coupons. The first one was aborted after a short period, because of a leak in the pressure regulator of a CO/CO{sub 2}/H{sub 2} gas mixture gas cylinder that was used to prepare the simulated coal gas stream. Nevertheless, this run was very instructive as it showed that during the brief exposure when the concentration of H{sub 2}S increased to 8.6%, even specialty alloys such as HR160 and I800 were badly corroded, yet the sample of a SS405-steel that was coated with Ti/Ta showed no signs of corrosion. After replacing the pressure regulator, a second run was conducted with a fresh set of coated and uncoated samples. The Ti/Ta-coated on to SS405 steel from the earlier runs was also exposed in this test. The run proceeded smoothly, and at the end of test the uncoated steels were badly damaged, some evidence of corrosion was found on coupons of HR160 and I800 alloys and the Cr-coated steels, but again, the Ti/Ta-coated sample appeared unaffected.

  4. Corrosion resistance and biocompatibility of titanium surface coated with amorphous tantalum pentoxide

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ying-Sui [Department of Oral Biology, National Yang-Ming University, Taipei, Taiwan (China); Chang, Jean-Heng [Dental Department, Cheng Hsin General Hospital, Taipei, Taiwan (China); Huang, Her-Hsiung, E-mail: hhhuang@ym.edu.tw [Department of Dentistry, National Yang-Ming University, Taipei, Taiwan (China); Department of Dentistry, Taipei City Hospital, Taipei, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan (China)

    2013-01-01

    Tantalum pentoxide (Ta{sub 2}O{sub 5}) possesses good corrosion resistance and biocompatibility. This study aimed to improve the corrosion resistance and biocompatibility of titanium (Ti) by coating it with an amorphous Ta{sub 2}O{sub 5} surface layer. An amorphous Ta{sub 2}O{sub 5} layer was prepared on the Ti surface using a simple hydrolysis–condensation process at room temperature. The surface characteristics of the test specimens were analyzed using X-ray photoelectron spectroscopy, glancing angle X-ray diffraction, field emission scanning electron microscopy, and contact angle measurements. The corrosion resistance of the test specimens was evaluated from the potentiodynamic polarization curves and ion release measurements in simulated blood plasma (SBP). The biocompatibility of the test specimens was evaluated in terms of the protein (albumin) adsorption, cell adhesion, and cell growth of human bone marrow mesenchymal stem cells (hBMSCs). The amorphous Ta{sub 2}O{sub 5} layer with a porous micro-/nano-scale topography, which was deposited on the Ti surface using a simple hydrolysis–condensation process, increased the corrosion resistance (i.e., increased the corrosion potential and decreased the anodic current and ion release) of the Ti in the SBP and improved the surface wettability, albumin adsorption, and cell adhesion. We conclude that the presence of an amorphous Ta{sub 2}O{sub 5} layer on the Ti surface increased the corrosion resistance and biocompatibility of Ti. - Highlights: ► Amorphous Ta{sub 2}O{sub 5} layer was coated on Ti using simple hydrolysis–condensation process. ► Ta{sub 2}O{sub 5} surface layer showed a micro-/nano-scale porous topography. ► Ta{sub 2}O{sub 5} layer enhanced wettability and corrosion resistance of Ti. ► Ta{sub 2}O{sub 5} layer enhanced protein adsorption, cell adhesion, and cell proliferation of Ti.

  5. Albumin coatings by alternating current electrophoretic deposition for improving corrosion resistance and bioactivity of titanium implants.

    Science.gov (United States)

    Höhn, Sarah; Braem, Annabel; Neirinck, Bram; Virtanen, Sannakaisa

    2017-04-01

    Although Ti alloys are generally regarded to be highly corrosion resistant, inflammatory conditions following surgery can instigate breakdown of the TiO2 passivation layer leading to an increased metal ion release. Furthermore proteins present in the surrounding tissue will readily adsorb on a titanium surface after implantation. In this paper alternating current electrophoretic deposition (AC-EPD) of bovine serum albumin (BSA) on Ti6Al4V was investigated in order to increase the corrosion resistance and control the protein adsorption capability of the implant surface. The Ti6Al4V surface was characterized with SEM, XPS and ToF-SIMS after long-term immersion tests under physiological conditions and simulated inflammatory conditions either in Dulbecco's Modified Eagle Medium (DMEM) or DMEM supplemented with fetal calf serum (FCS). The analysis showed an increased adsorption of amino acids and proteins from the different immersion solutions. The BSA coating was shown to prevent selective dissolution of the vanadium (V) rich β-phase, thus effectively limiting metal ion release to the environment. Electrochemical impedance spectroscopy measurements confirmed an increase of the corrosion resistance for BSA coated surfaces as a function of immersion time due to the time-dependent adsorption of the different amino acids (from DMEM) and proteins (from FCS) as observed by ToF-SIMS analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Influence of Nano-Al Concentrates on the Corrosion Resistance of Epoxy Coatings

    Institute of Scientific and Technical Information of China (English)

    Yongchun Liang; Fu-Chun Liu; Ming Nie; Shuyan Zhao; Jiedong Lin; En-Hou Han

    2013-01-01

    A two-stage process was used to produce nano-composite epoxy coatings.The first step involved preparing nano-Al concentrates with high concentration and low viscosity,and the second step produced nanocomposite epoxy coatings by mixing the nano-Al concentrates and epoxy resin.Later,the coating was examined with immersion and salt spray tests.The coatings were characterized by electrochemical impedance spectroscopy (EIS),scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS).The results showed that the 5% nano-Al significantly improves the corrosion resistance of the coatings.There are two effects of nano-Al on the coating.Nano-Al is corroded initially to protect the substrate from corrosion,and then the aluminum oxide and aluminum hydroxide were produced after corrosion of nano-Al,which hindered the transmission of corrosion fluid into the coatings.

  7. Corrosion resistance, composition and structure of RE chemical conversion coating on magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Golden yellow rare earths chemical conversion coating was obtained on the surface of magnesium alloy by immersing in cerium sulfate solution.The corrosion resistance of RE conversion coating was evaluated using immersion test and potentiodynamic polarization measurements in 3.5%NaCl solution.The morphologies of samples before corrosion and after corrosion were observed by SEM.The structures and compositions of the RE conversion coating were studied by means of XPS.XRD and IR.The results show that,the conversion coating consists of mainly two kinds of element Ce and O,the valences of cerium are+3 and+4.and OH exists in the coating.The anti-corrosion property of magnesium alloy is increased obviously by rare earths conversion coating,Its self-corrosion current density decreases and the coating has self-repairing capability in the corrosion process in 3.5%NaCl solution.

  8. [Effect of aurum coating on corrosion resistance of Ni-Cr alloy].

    Science.gov (United States)

    Chen, Zhi-hong; Liu, Li; Mao, Ying-jie

    2007-02-01

    To evaluate the effect of aurum coating on corrosion resistance of Ni-Cr alloy in artificial saliva environment. The corrosion potential (E(corr)), self-corrosion current density (I(corr)), and polarization resistance (R(p)) of three alloys were measured using electrochemical methods to compare the difference of corrosion resistance between aurum-coated Ni-Cr alloy and Ni-Cr alloy or Au alloy. Meanwhile, microstructural and phase diffraction was examined with field scanning electromicroscopy (FSEM) and surface chemical analysis was performed by energy diffraction X-ray (EDX). The I(corr) of aurum-coated Ni-Cr alloy was (0.70 +/- 0.20) x 10(-6) A/cm2, which was significantly higher than that of Au alloy (P Cr alloy (P coated Ni-Cr alloy was (34.77 +/- 12.61) KOmega.cm2, which was higher than that of Ni-Cr alloy (P Cr alloy coated with aurum was better than that of Ni-Cr alloy. The results of EDX indicated that released Ni and Cr of Ni-Cr alloy coated with aurum after test were less than those of Ni-Cr alloy (P coated Ni-Cr alloy is higher than that of Ni-Cr alloy.

  9. [Effect of titanium nitride coating on bacterial corrosion resistance of dental Co-Cr alloy].

    Science.gov (United States)

    Zou, Jie; Chen, Jie; Hu, Bin

    2010-04-01

    To study the influence of titanium nitride(TiN) coating on bacterial corrosion resistance of clinically used Co-Cr alloy. The Co-Cr alloy commonly used for casting metal full crown was casted with specimen 10mm x 10mm x 3mm in size. The specimen was coated with a thickness of 2.5 microm TiN coating on the surface by multi-arc physical vapor deposition. Then the specimen before and after coating titanium nitride were exposed to TSB media with S.mutans or Actinomyces viscosus,while pure media,as control.After inoculated for 24 hours, the Tafel polarization curves of the specimen were measured by electrochemical station. From the Tafel polarization curves, the non-coated Co-Cr alloy showed that corrosion potential moved to the negative way in presence of oral bacteria,and passivation interval got shorter.While the polarization curves of the specimen after coating TiN changed slightly in presence of oral microorganism. The TiN significantly weakened the corrosion action of bacteria on the alloy. These results demonstrate that the TiN coating with better tolerance to the bacterial action can improve bacterial corrosion resistance of Co-Cr alloy.Supported by Research Fund of Science and Technology Commission of Shanghai Municipality(Grant No.08DZ2271100) and Shanghai Leading Academic Discipline Project (Grant No. S30206).

  10. Diffusion Coatings for Corrosion Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2005-01-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve its resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period we focused on getting a bench-scale test system to expose alloy coupons to simulated gasifier environment. The test facility was designed to allow about 20 specimen coupons to be exposed simultaneously for an extend period to a simulated coal gas stream at temperatures up to 1000 C. The simulated gas stream contained about 26%H{sub 2}, 39%CO, 17%CO{sub 2}, 1.4% H{sub 2}S and balance steam. We successfully ran a 100+h test with coated and uncoated stainless steel coupons. The tested alloys include SS304, SS316, SS405, SS409, SS410, and IN800. The main finding is that Ti/Ta coating provides excellent protection to SS405 under conditions where uncoated austenitic and ferritic stainless steel alloy coupons are badly corroded. Cr coatings also appear to afford some protection against corrosion.

  11. Tailored Aluminium based Coatings for Optical Appearance and Corrosion Resistance

    DEFF Research Database (Denmark)

    Aggerbeck, Martin

    The current project investigated the possibility of designing aluminium based coatings focusing on the effect of composition and surface finish on the optical appearance and on the alkaline corrosion properties using titanium as the main alloying element. The main results and discussions of this ......The current project investigated the possibility of designing aluminium based coatings focusing on the effect of composition and surface finish on the optical appearance and on the alkaline corrosion properties using titanium as the main alloying element. The main results and discussions...... the optical appearance is affected by the alloy composition, surface morphology, and the microstructure. Four commercial aluminium alloys were studied before and after polishing, etching, anodisation, and hot water sealing, giving an overview on how the alloy composition affects the appearance. It was found...... that the roughness after etching increases with higher amounts of alloying elements (especially iron and silicon). Proper polishing requires some alloy hardness, while alloy purity is required for a glossy appearance after anodisation. Magnetron sputtered aluminium based coatings containing up to 18 wt. % titanium...

  12. Protection of 2024-T3 aluminium alloy by corrosion resistant phytic acid conversion coating

    Science.gov (United States)

    Shi, Hongwei; Han, En-Hou; Liu, Fuchun; Kallip, Silvar

    2013-09-01

    The corrosion protection properties of environmentally friendly phytic acid conversion coatings were studied on 2024-T3 aluminium alloy. The films were prepared under acidic conditions with various pH values and characterised by SEM, EDS, ATR-FTIR and electrochemical techniques. The results indicate that the conversion coatings obtained by immersing the alloy in phytic acid solutions at pH from 3 to 5.5 provide excellent corrosion resistance. ATR-FTIR confirms that the film is formed by deposition of reaction products between Al3+ and phosphate groups in phytic acid molecules. The conformation models of the deposition film are proposed.

  13. Electrodeposition and Corrosion Resistance Properties of Zn-Ni/TiO2 Nano composite Coatings

    Directory of Open Access Journals (Sweden)

    B. M. Praveen

    2011-01-01

    Full Text Available Nano sized TiO2 particles were prepared by sol-gel method. TiO2 nano particles were dispersed in zinc-nickel sulphate electrolyte and thin film of Zn-Ni-TiO2 composite was generated by electrodeposition on mild steel plates. The effect of TiO2 on the corrosion behavior and hardness of the composite coatings was investigated. The film was tested for its corrosion resistance property using electrochemical, weight loss, and salt spray methods. The paper revealed higher resistance of composite coating to corrosion. Microhardness of the composite coating was determined. Scanning electron microscope images and X-ray diffraction patterns of coating revealed its fine-grain nature. Average crystalline size of the composite coating was calculated. The anticorrosion mechanism of the composite coating was also discussed.

  14. Improvement of corrosion resistance of Nisbnd Mo alloy coatings: Effect of heat treatment

    Science.gov (United States)

    Mousavi, R.; Bahrololoom, M. E.; Deflorian, F.; Ecco, L.

    2016-02-01

    In this paper, Nisbnd Mo alloy coatings were deposited from bath containing sodium citrate, nickel sulphate, and sodium molybdate. Essentially, this work is divided into two mains parts: (i) the optimization on the coatings deposition parameters and (ii) the effect of the heat treatment. Polarization curves and electrochemical impedance spectroscopy were acquired using potentiostat/galvanostat and a frequency response analyzer, respectively. Morphology and chemical composition of the coatings were investigated by scanning electron microscopy and energy dispersive spectroscopy, respectively. Polarization curves at different condition revealed that electroplating at temperature 40 oC, pH 9 provides a dense coating with high efficiency. Following the optimization of the deposition parameters, the coatings were annealed at 200, 400, and 600 oC for 25 min. The results showed that the coatings obtained at temperature 40 oC, pH 9, and annealing at 600 oC has the highest corrosion resistance and microhardness.

  15. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel.

    Science.gov (United States)

    Huang, Qiaoling; Yang, Yun; Hu, Ronggang; Lin, Changjian; Sun, Lan; Vogler, Erwin A

    2015-01-01

    Superhydrophilic and superhydrophobic TiO2 nanotube (TNT) arrays were fabricated on 316L stainless steel (SS) to improve corrosion resistance and hemocompatibility of SS. Vertically-aligned superhydrophilic amorphous TNTs were fabricated on SS by electrochemical anodization of Ti films deposited on SS. Calcination was carried out to induce anatase phase (superhydrophilic), and fluorosilanization was used to convert superhydrophilicity to superhydrophobicity. The morphology, structure and surface wettability of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and contact angle goniometry. The effects of surface wettability on corrosion resistance and platelet adhesion were investigated. The results showed that crystalline phase (anatase vs. amorphous) and wettability strongly affected corrosion resistance and platelet adhesion. The superhydrophilic amorphous TNTs failed to protect SS from corrosion whereas superhydrophobic amorphous TNTs slightly improved corrosion resistance of SS. Both superhydrophilic and superhydrophobic anatase TNTs significantly improved corrosion resistance of SS. The superhydrophilic amorphous TNTs minimized platelet adhesion and activation whereas superhydrophilic anatase TNTs activated the formation of fibrin network. On the contrary, both superhydrophobic TNTs (superhydrophobic amorphous TNTs and superhydrophobic anatase TNTs) reduced platelet adhesion significantly and improved corrosion resistance regardless of crystalline phase. Superhydrophobic anatase TNTs coating on SS surface offers the opportunity for the application of SS as a promising permanent biomaterial in blood contacting biomedical devices, where both reducing platelets adhesion/activation and improving corrosion resistance can be effectively combined.

  16. Preparation and corrosion resistance of pulse electrodeposited Zn and Zn-SiC nanocomposite coatings

    Science.gov (United States)

    Sajjadnejad, M.; Mozafari, A.; Omidvar, H.; Javanbakht, M.

    2014-05-01

    Pure Zn and Zn matrix composite coatings containing nano-sized SiC particles with an average size of 50 nm were prepared from the zinc sulfate bath. The effects of the pulse frequency, maximum current density and duty cycle on the amount of particles embedded were examined. Electron microscopic studies revealed that the coating morphology was modified by the presence of SiC nanoparticles. In the presence of SiC nanoparticles deposit grows in outgrowth mode resulting in a very rough and porous microstructure. However, at very low and very high duty cycles a smooth and pore free microstructure was obtained. Corrosion resistance properties of the coatings were studied using potentiodynamic polarization technique in 1 M NaCl solution. It was established that presence of well-dispersed nanoparticles significantly improves corrosion resistance of the zinc by filling gaps and defects between zinc flakes and leading to a smoother surface. However, presence of the SiC nanoparticles led to a mixed microstructure with fine and coarse zinc flakes in some coatings, which presented a weak corrosion behavior. Incorporation of SiC nanoparticles enhanced hardness of the Zn coatings by fining deposit structure and through the dispersion hardening effect.

  17. A process for the production of a scale-proof and corrosion-resistant coating on graphite and carbon bodies

    Science.gov (United States)

    Fitzer, E.

    1981-01-01

    A process for the production of a corrosion resistant coating on graphite and carbon bodies is described. The carbon or graphite body is coated or impregnated with titanium silicide under the addition of a metal containing wetting agent in a nitrogen free atmosphere, so that a tight coating is formed.

  18. Development of novel protective high temperature coatings on heat exchanger steels and their corrosion resistance in simulated coal firing environment; Developpement de revetements pour les aciers d'echangeurs thermiques et amelioration de leur resistance a la corrosion en environnement simulant les fumees de combustion et de charbon

    Energy Technology Data Exchange (ETDEWEB)

    Rohr, V.

    2005-10-15

    Improving the efficiencies of thermal power plants requires an increase of the operating temperatures and thus of the corrosion resistance of heat exchanger materials. Therefore, the present study aimed at developing protective coatings using the pack cementation process. Two types of heat exchanger steels were investigated: a 17% Cr-13% Ni austenitic steel and three ferritic-martensitic steels with 9 (P91 and P92) and 12% Cr (HCM12A). The austenitic steel was successfully aluminized at 950 C. For the ferritic-martensitic steels, the pack cementation temperature was decreased down to 650 C, in order to maintain their initial microstructure. Two types of aluminides, made of Fe{sub 2}Al{sub 5} and FeAl, were developed. A mechanism of the coating formation at low temperature is proposed. Furthermore, combining the pack cementation with the conventional heat treatment of P91 allowed to take benefit of higher temperatures for the deposition of a two-step Cr+Al coating. The corrosion resistance of coated and uncoated steels is compared in simulated coal firing environment for durations up to 2000 h between 650 and 700 C. It is shown that the coatings offer a significant corrosion protection and, thus, an increase of the component lifetime. Finally, the performance of coated 9-12% Cr steels is no longer limited by corrosion but by interdiffusion between the coating and the substrate. (author)

  19. Influence of Processing and Heat Treatment on Corrosion Resistance and Properties of High Alloyed Steel Coatings

    Science.gov (United States)

    Hill, Horst; Weber, Sebastian; Raab, Ulrich; Theisen, Werner; Wagner, Lothar

    2012-09-01

    Corrosion and abrasive wear are two important aspects to be considered in numerous engineering applications. Looking at steels, high-chromium high-carbon tool steels are proper and cost-efficient materials. They can either be put into service as bulk materials or used as comparatively thin coatings to protect lower alloyed construction or heat treatable steels from wear and corrosion. In this study, two different corrosion resistant tool steels were used for the production of coatings and bulk material. They were processed by thermal spraying and super solidus liquid phase sintering as both processes can generally be applied to produce coatings on low alloyed substrates. Thermally sprayed (high velocity oxygen fuel) coatings were investigated in the as-processed state, which is the most commonly used condition for technical applications, and after a quenching and tempering treatment. In comparison, sintered steels were analyzed in the quenched and tempered condition only. Significant influence of alloy chemistry, processing route, and heat treatment on tribological properties was found. Experimental investigations were supported by computational thermodynamics aiming at an improvement of tribological and corrosive resistance.

  20. Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31

    Science.gov (United States)

    Cui, Lan-Yue; Zeng, Rong-Chang; Zhu, Xiao-Xiao; Pang, Ting-Ting; Li, Shuo-Qi; Zhang, Fen

    2016-06-01

    Biocompatible polyelectrolyte multilayers (PEMs) and polysiloxane hybrid coatings were prepared to improve the corrosion resistance of biodegradable Mg alloy AZ31. The PEMs, which contained alternating poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH), were first self-assembled on the surface of the AZ31 alloy substrate via electrostatic interactions, designated as (PAH/PSS)5/AZ31. Then, the (PAH/PSS)5/AZ31 samples were dipped into a methyltrimethoxysilane (MTMS) solution to fabricate the PMTMS films, designated as PMTMS/(PAH/PSS)5/AZ31. The surface morphologies, microstructures and chemical compositions of the films were investigated by FE-SEM, FTIR, XRD and XPS. Potentiodynamic polarization, electrochemical impedance spectroscopy and hydrogen evolution measurements demonstrated that the PMTMS/(PAH/PSS)5/AZ31 composite film significantly enhanced the corrosion resistance of the AZ31 alloy in Hank's balanced salt solution (HBSS). The PAH and PSS films effectively improved the deposition of Ca-P compounds including Ca3(PO4)2 and hydroxyapatite (HA). Moreover, the corrosion mechanism of the composite coating was discussed. These coatings could be an alternative candidate coating for biodegradable Mg alloys.

  1. The enhanced corrosion resistance of UMAO coatings on Mg by silane treatment

    Institute of Scientific and Technical Information of China (English)

    Muqin Li; Jiang Liu; Jungang Li; Yongjiang Li; Shouduo Lu; Yuqi Yuan

    2014-01-01

    The surface silanization was carried out on ultrasonic micro-arc oxidation (UMAO) coatings on pure magnesium using KH550 as silane coupling agent (SCA). The surface morphology, chemical bonds and corrosion resistance of the silane films were investigated by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and electrochemical workstation, respectively. The results showed that hybrid coatings were successfully prepared on pure magnesium by UMAO-NaOH (1 mol/L, 2 mol/L, 3 mol/L)-SCA processing. The organic films with Si–O–Mg bonds are helpful for the reduction of the pores in UMAO coatings. The pores decreased with increasing NaOH concentration. Compared with single UMAO treatment, the corrosion potentials (Ecorr) of magnesium plates with UMAO-NaOH (1 mol/L, 2 mol/L, 3 mol/L)-SCA treatment increased by 29 mV, 53 mV and 75 mV, respectively, meanwhile the corrosion current density (Icorr) reduced one to two orders of magnitude. It indicated that the corrosion resistance of the coatings was improved by silane treatment.

  2. The enhanced corrosion resistance of UMAO coatings on Mg by silane treatment

    Directory of Open Access Journals (Sweden)

    Muqin Li

    2014-10-01

    Full Text Available The surface silanization was carried out on ultrasonic micro-arc oxidation (UMAO coatings on pure magnesium using KH550 as silane coupling agent (SCA. The surface morphology, chemical bonds and corrosion resistance of the silane films were investigated by scanning electron microscope (SEM, Fourier transform infrared spectroscopy (FTIR and electrochemical workstation, respectively. The results showed that hybrid coatings were successfully prepared on pure magnesium by UMAO-NaOH (1 mol/L, 2 mol/L, 3 mol/L-SCA processing. The organic films with Si–O–Mg bonds are helpful for the reduction of the pores in UMAO coatings. The pores decreased with increasing NaOH concentration. Compared with single UMAO treatment, the corrosion potentials (Ecorr of magnesium plates with UMAO-NaOH (1 mol/L, 2 mol/L, 3 mol/L-SCA treatment increased by 29 mV, 53 mV and 75 mV, respectively, meanwhile the corrosion current density (Icorr reduced one to two orders of magnitude. It indicated that the corrosion resistance of the coatings was improved by silane treatment.

  3. [The effect on anti-acid corrosion resistance of Ni-Cr alloy coating titanium].

    Science.gov (United States)

    Hu, Bin; Zhang, Fu-qiang

    2003-04-01

    The aim of this study was to investigate the variation of the corrosion resistance of Ni-Cr alloy in acid environment before and after coating titanium in vitro. 1. Surface treatment using sol-gel technique of coating titanium. The steps were as follows: (1) Pre-treatment: sanding, washing and activation in order to remove the oxidative product; (2) The preparation of sol: some small charged particles produced by the hydrolytic reaction, and formed sol. These particles would congeal into extremely small ones (diameter usually is 5 microns); (3) Coating; (4) Heat treatment: The organism was resolved and volatilizeed at high temperature, and the atoms of Ti were left. These atoms of Ti were very active and could combine firmly with the atoms on the surface awaiting of treatment. 2. artificial saliva; pH = 7.0 and pH = 5.6; temperature: 36.5 degrees C 3. Electrochemical test: polarization curve; instrument: ZF-3 poteniostat. Before coating titanium, when pH was 7.0, the electrode potential of Ni-Cr alloy was -160 mV, and the self-corrosion current density was 0.262 microA cm-2; when pH = 5.6, the data were -182 mV and 0.352 microA cm-2, respectively. This result showed that when pH value reduced, the potential and current density descended, too. This indicated that the material was easy to be corroded. After coating titanium, when pH value was 7.0, the potential was -71 mV, the self-corrosion current density was 0.152 microA cm-2; when pH = 5.6, the data were -89 mV and 0.174 microA cm-2. This indicated that the corrosion rate of material descended evidently after coating titanium in acid environment. (1) Not only before coating Ti but also after coating, the corrosion resistance of Ni-Cr alloy would descend in acid environment;(2) In acid environment, the corrosion resistance of Ni-Cr alloy after coating titanium was superior to that of the material before coating. So was in neutral environment.

  4. Microstructure and Corrosion Resistance of Cr7C3/γ-Fe Ceramal Composite Coating Fabricated by Plasma Cladding

    Institute of Scientific and Technical Information of China (English)

    LIU Junbo

    2007-01-01

    A new type in situ Cr7C3/γ-Fe ceramal composite coating was fabricated on substrate of hardened and tempered grade C steel by plasma cladding with Fe-Cr-C alloy powders. The ceramal composite coating has a rapidly solidified microstructure consisting of primary Cr7C3 and the Cr7C3/γ-Fe eutectics, and is metallurgically bonded to the degree C steel substrate. The corrosion resistances of the coating in water solutions of 0.5 mol/L H2SO4 and 3.5% NaCl were evaluated utilizing the electrochemical polarization corrosion-test method. Because of the inherent excellent corrosion-resisting properties of the constituting phase and the rapidly solidified homogeneous microstructure, the plasma clad ceramal composite coating exhibits excellent corrosion resistance in the water solutions of 0.5 mol/L H2SO4 and 3.5% NaCl.

  5. Effect of Pyrrole and N-Methylpyrrole Coatings on Corrosion Resistance of Mild Steel

    Institute of Scientific and Technical Information of China (English)

    AliAshrafi; M.A.Golozarl; S.Mallakpour; AliGhasemi

    2004-01-01

    Electrochemical polymerizations of various ratios of pyrrole and methylpyrrole monomers were performed in aqueous toluene-4-sulfinic acid sodium salt (T4SNa) electrolyte, using galvanostatic method, pH of electrolyte was adjusted by p-toluene sulfonic acid (PTSA). In order to prevent corrosion of mild steel substrates during coating deposition, specimens were pretreated in 0.5M oxalic acid solution, employing galvanostatic method. This would passivate the steel substrate and facilitate the coating process as well. Corrosion resistance of coated substrates was investigated in 1M NaCl solution using Tafel polarization technique. In addition, using scanning electron microscopy (SEM), morphological characterization of coatings produced, was investigated. Regarding the corrosion characteristics, results obtained revealed that the ratio of 1 to 1(Pyrrole/Methylpyrrole) could play an important role.

  6. Effect of Pyrrole and N-Methylpyrrole Coatings on Corrosion Resistance of Mild Steel

    Institute of Scientific and Technical Information of China (English)

    Ali Ashrafi; M.A.Golozar; S.Mailakpour; Ali Ghasemi

    2004-01-01

    Electrochemical polymerizations of various ratios of pyrrole and methylpyrrole monomers were performed in aqueous toluene-4-sulfinic acid sodium salt (T4SNa) electrolyte, using galvanostatic method. pH of electrolyte was adjusted by p-toluene sulfonic acid (PTSA). In order to prevent corrosion of mild steel substrates during coating deposition,specimens were pretreated in 0.5M oxalic acid solution, employing galvanostatic method. This would passivate the steel substrate and facilitate the coating process as well. Corrosion resistance of coated substrates was investigated in 1M NaCl solution using Tafel polarization technique. In addition, using scanning electron microscopy (SEM), morphological characterization of coatings produced, was investigated. Regarding the corrosion characteristics, results obtained revealed that the ratio of 1 to 1 (Pyrrole/Methylpyrrole) could play an important role.

  7. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vladescu, A., E-mail: alinava@inoe.ro [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Braic, M. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Azem, F. Ak [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Buca-Izmir (Turkey); Titorencu, I. [Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P.Hasdeu, Bucharest (Romania); Braic, V. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Pruna, V. [Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P.Hasdeu, Bucharest (Romania); Kiss, A. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Parau, A.C.; Birlik, I. [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Buca-Izmir (Turkey)

    2015-11-01

    Highlights: • Hydroxyapatite has been produced at temperature from 400 to 800 °C by magnetron sputtering. • Hydroxyapatite crystallinity is improved by increasing substrate temperature. • The increase of substrate temperature resulted in corrosion resistance increasing. • The coating shows high growth of the osteosarcoma cells over a wide temperature range. - Abstract: Hydroxyapatite (HAP) ceramics belong to a class of calcium phosphate-based materials, which have been widely used as coatings on titanium medical implants in order to improve bone fixation and thus to increase the lifetime of the implant. In this study, HAP coatings were deposited from pure HAP targets on Ti6Al4V substrates using the radio-frequency magnetron sputtering technique at substrate temperatures ranging from 400 to 800 °C. The surface morphology and the crystallographic structure of the films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion resistance of the coatings in saliva solution at 37 °C was evaluated by potentiodynamic polarization. Additionally, the human osteosarcoma cell line (MG-63) was used to test the biocompatibility of the coatings. The results showed that all of the coatings grown uniformly and that the increasing substrate temperature induced an increase in their crystallinity. Corrosion performance of the coatings was improved with the increase of the substrate temperature from 400 °C to 800 °C. Furthermore, all the coatings support the attachment and growth of the osteosarcoma cells with regard to the in vitro test findings.

  8. Characterization, mechanical properties and corrosion resistance of biocompatible Zn-HA/TiO2 nanocomposite coatings.

    Science.gov (United States)

    Mirak, Mohammad; Alizadeh, Morteza; Ghaffari, Mohammad; Ashtiani, Mohammad Najafi

    2016-09-01

    Biocompatible Zinc-hydroxyapatite-titania and Zinc-hydroxyapatite nanocomposite coatings have been prepared by electrodeposition on NiTi shape memory alloy. Structures of coatings were characterized using X-ray diffraction (XRD). It was found that addition of TiO2 particles cause to reduction of crystallite size of coating. Scanning Electronic Microscope (SEM) observation showed that the Zn-HA/TiO2 coating consists of plate-like regions which can express that this plate-like structure can facilitate bone growth. X-ray photoelectron microscope (XPS) was performed to investigation of chemical state of composite coating and showed that Zinc matrix was bonded to oxygen. high-resolution transmission electron microscope (HRTEM) result illustrated the crystalline structure of nanocomposite coating. Mechanical behavior of coating was evaluated using microhardness and ball on disk wear test. The TiO2 incorporated composite coatings exhibited the better hardness and anti-wear performance than the Zn-HA coatings. Polarization measurements have been used to evaluate the electrochemical coatings performance. The Zn-HA/TiO2 composite coatings showed the highest corrosion resistance compared with Zn-HA and bare NiTi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Influence of the layer architecture of DLC coatings on their wear and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Bobzin, Kirsten; Bagcivan, Nazlim; Theiss, Sebastian; Weiss, Raphael [RWTH Aachen (Germany). Inst. fuer Oberflaechentechnik; Depner, Udo; Trossmann, Torsten; Ellermeier, Joerg; Oechsner, Matthias [Technische Univ. Darmstadt (Germany). Inst. fuer Werkstoffkunde

    2012-06-15

    In this work, the influence of diamond-like carbon top layers deposited on two different types of layer architecture on wear and corrosion resistance is investigated. Physical vapour deposition coatings with a-C:H top layer of various thicknesses were deposited on plasma nitrided 42CrMo4 by reactive magnetron sputter ion plating. Beneath the top layer, an architecture with and without a-C interlayers was deposited. Investigations using potentiodynamic polarisation testing in artificial seawater as well as an impact tribometer show that it is possible to protect low-alloy heat treatable steel from both corrosion and wear by using pretreatment and an appropriate diamond-like carbon coating. Thicker a-C:H top layers as well as the addition of a-C interlayers resulted in an overall improvement in the coating behaviour. (orig.)

  10. A Magnetic Properties and Corrosion Resistance of Fe-Si Alloy Coating Prepared on Mild Steel

    Directory of Open Access Journals (Sweden)

    Yi WANG

    2014-12-01

    Full Text Available The present work deals with preparation of Fe3Si coatings on mild steel and evaluation of its magnetic property and corrosion behavior. Magnetic property of coatings was measured using a vibrating sample magnetometer, the result shows that the saturation magnetization reached to the maximum value (214.1 emu•g-1 and the coercivity fell to the lowest (23.11 Oe in 1000oC. Corrosion behaviour of the coatings was studied using polarization in 3.5%NaCl solution. It was found that the corrosion current density (icorr decreased with increasing of heat treatment temperature up to 1000oC, indicating an improvement in corrosion resistance. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6446

  11. Improvement of corrosion resistance of Ni−Mo alloy coatings: Effect of heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, R., E-mail: mousavi@scu.ac.ir [Department of Materials Science and Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Bahrololoom, M.E. [Department of Materials Science and Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Deflorian, F.; Ecco, L. [Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento (Italy)

    2016-02-28

    Graphical abstract: - Highlights: • Conjunction between SEM, EIS, and Tafel measurements to obtain a coat with dense morphology and without crack. • An inverse Hall-Petch effect is observed after annealing the coatings, i.e. the coatings get harder as the grain size is increased by increasing annealing temperature up to 600 {sup o}C. • Heat treatment can improve the mechanical and corrosion properties of coatings. - Abstract: In this paper, Ni−Mo alloy coatings were deposited from bath containing sodium citrate, nickel sulphate, and sodium molybdate. Essentially, this work is divided into two mains parts: (i) the optimization on the coatings deposition parameters and (ii) the effect of the heat treatment. Polarization curves and electrochemical impedance spectroscopy were acquired using potentiostat/galvanostat and a frequency response analyzer, respectively. Morphology and chemical composition of the coatings were investigated by scanning electron microscopy and energy dispersive spectroscopy, respectively. Polarization curves at different condition revealed that electroplating at temperature 40 {sup o}C, pH 9 provides a dense coating with high efficiency. Following the optimization of the deposition parameters, the coatings were annealed at 200, 400, and 600 {sup o}C for 25 min. The results showed that the coatings obtained at temperature 40 {sup o}C, pH 9, and annealing at 600 {sup o}C has the highest corrosion resistance and microhardness.

  12. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

    2007-09-20

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  13. Mechanical Properties and Corrosion Resistance of HVOF Sprayed Coatings Using Nanostructured Carbide Powders

    Directory of Open Access Journals (Sweden)

    Żórawski W.

    2016-12-01

    Full Text Available Nanostructured and composite WC-12Co coatings were prepared by means of the supersonic spray process (HVOF. The microstructure and composition of WC-12Co nanostructured powder were analyzed by scanning electron microscope (SEM and transmission electron microscope (TEM. Investigations revealed nano grains of WC with the size in the range of 50-500 nm. The nanostructured sprayed coating was analysed by SEM and phase composition was investigated by X-ray diffractometer (XRD. A denser coating structure with higher hardness was observed compared to conventional coating with a small amount of W2C, WC1−x, W and some amorphous phase. Young’s modulus and hardness were determined by depth sensing indentation in HVOF sprayed WC-12Co nanostructured coatings. Results were compared to conventional coatings and the relevance of the nanostructure was analyzed. An indentation size effect was observed on the polished surface and cross-section of both coatings. Data provided by indentation tests at maximum load allow to estimate hardness and elastic modulus. Enhanced nanomechanical properties of conventional coating in comparison to nanostructured one were observed. Nanostructured coatings WC-12Co (N revealed significantly better corrosion resistance.

  14. Structure, morphology and corrosion resistance of Ni–Mo+PTh composite coatings

    Indian Academy of Sciences (India)

    J Niedbała

    2015-06-01

    Ni–Mo+PTh composite coatings were prepared from nickel–molybdenum galvanic bath with the addition of thiophene (Th) and HClO4 as result of two processes: induced Ni–Mo alloy deposition and PTh polymerization. A scanning electron microscope was used for surface morphology characterization of the coatings. The Scanning ElectrochemicalWorkstationM370 was used to the surface map of the tested composite coatings. The chemical composition of the coatings was determined by the energy-dispersive spectroscopy (EDS) method. It was stated that the surface of the coatings are characterized by the presence of Ni–Mo particles and polythiophene agglomerates. Electrochemical corrosion investigations of coatings were carried out in the 5 M KOH solution, using voltammetry and electrochemical impedance spectroscopy (EIS) methods. On the basis of these research works it was found that the composite Ni–Mo+PTh coatings are more corrosion resistant in alkaline solution than Ni–Mo. The reasons for this are the presence of the polymer on the surface of the coatings and a decrease of corrosion active surface area of the coatings.

  15. Surface morphology and corrosion resistance of electrodeposited composite coatings containing polyethylene or polythiophene in Ni–Mo base

    Indian Academy of Sciences (India)

    J Niedbała

    2011-07-01

    Ni–Mo + PENi and Ni–Mo + PTh composite coatings have been prepared by nickel-molybdenum deposition from a bath containing a suspension of PENi or Th. These coatings were obtained at galvanostatic conditions, at a current density of dep = – 0.100 A cm-2 and temperature of 293 K. A scanning electron microscope was used for surface morphology characterization of the coatings. The chemical composition of the coatings was determined by EDS. Electrochemical corrosion resistance investigations were carried out in 5 M KOH, using potentiodynamic and electrochemical impedance spectroscopy (EIS) methods. On the basis of these investigations it was found, that the composite coatings containing thiophene are more corrosion resistant in alkaline solution than the Ni–Mo + PENi coatings. This is caused by presence of the polymer on the coatings surface and decrease of corrosion active surface area of the coatings.

  16. Mussel-inspired nano-multilayered coating on magnesium alloys for enhanced corrosion resistance and antibacterial property.

    Science.gov (United States)

    Wang, Bi; Zhao, Liang; Zhu, Weiwei; Fang, Liming; Ren, Fuzeng

    2017-09-01

    Magnesium alloys are promising candidates for load-bearing orthopedic implants due to their biodegradability and mechanical resemblance to natural bone tissue. However, the high degradation rate and the risk of implant-associated infections pose grand challenges for their clinical applications. Herein, we developed a nano-multilayered coating strategy through polydopamine and chitosan assisted layer-by-layer assembly of osteoinductive carbonated apatite and antibacterial sliver nanoparticles on the surface of AZ31 magnesium alloys. The fabricated nano-multilayered coating can not only obviously enhance the corrosion resistance but also significantly increase the antibacterial activity and demonstrate better biocompatility of magnesium alloys. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Jordi Perez; Marc Hornbostel; Kai-Hung Lau; Angel Sanjurjo

    2007-05-31

    Advanced electric power generation systems use a coal gasifier to convert coal to a gas rich in fuels such as H{sub 2} and CO. The gas stream contains impurities such as H{sub 2}S and HCl, which attack metal components of the coal gas train, causing plant downtime and increasing the cost of power generation. Corrosion-resistant coatings would improve plant availability and decrease maintenance costs, thus allowing the environmentally superior integrated-gasification-combined-cycle (IGCC) plants to be more competitive with standard power-generation technologies. Heat-exchangers, particle filters, turbines, and other components in the IGCC system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy will improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. The Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers. In this study, the use of corrosion-resistant coatings on low alloy steels was investigated for use as high-temperature components in IGCC systems. The coatings were deposited using SRI's fluidized-bed reactor chemical vapor deposition technique. Diffusion coatings of Cr and Al were deposited by this method on to dense and porous, low alloy stainless steel substrates. Bench-scale exposure tests at 900 C with a simulated coal gas stream containing 1.7% H{sub 2}S showed that the low alloy steels such SS405 and SS409 coated with

  18. Electroless Ni-P/Ni-B duplex coatings: preparation and evaluation of microhardness, wear and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, T.S.N. Sankara; Krishnaveni, K.; Seshadri, S.K

    2003-12-20

    The present work deals with the formation of Ni-P/Ni-B duplex coatings by electroless plating process and evaluation of their hardness, wear resistance and corrosion resistance. The Ni-P/Ni-B duplex coatings were prepared using dual baths (acidic hypophosphite- and alkaline borohydride-reduced electroless nickel baths) with both Ni-P and Ni-B as inner layers and with varying single layer thickness. Scanning electron microscopy (SEM) was used to assess the duplex interface. The microhardness, wear resistance and corrosion resistance of electroless nickel duplex coatings were compared with electroless Ni-P and Ni-B coatings of similar thickness. The study reveals that the Ni-P and Ni-B coatings are amorphous in their as-plated condition and upon heat-treatment at 450 deg. C for 1 h, both Ni-P and Ni-B coatings crystallize and produce nickel, nickel phosphide and nickel borides in the respective coatings. All the three phases are formed when Ni-P/Ni-B and Ni-B/Ni-P duplex coatings are heat-treated at 450 deg. C for 1 h. The duplex coatings are uniform and the compatibility between the layers is good. The microhardness, wear resistance and corrosion resistance of the duplex coating is higher than Ni-P and Ni-B coatings of similar thickness. Among the two types of duplex coatings studied, hardness and wear resistance is higher for coatings having Ni-B coating as the outer layer whereas better corrosion resistance is offered by coatings having Ni-P coating as the outer layer.

  19. Plasma electrolytic oxidation coating on AZ91 magnesium alloy modified by neodymium and its corrosion resistance

    Science.gov (United States)

    Song, Y. L.; Liu, Y. H.; Yu, S. R.; Zhu, X. Y.; Wang, Q.

    2008-03-01

    Ceramic coatings on the surfaces of Mg-9Al-1Zn (AZ91) magnesium alloy and Mg-9Al-1Zn-1Nd magnesium alloy (AZ91 magnesium alloy modified by neodymium, named as AZ91Nd in this paper) are synthesized in aluminate electrolyte by plasma electrolytic oxidation (PEO) process, respectively. X-ray diffraction and X-ray photoelectron spectroscopy analyses show the PEO coating on the Mg-9Al-1Zn-1Nd alloy comprises not only MgO and Al 2O 3, which are found in the coating on the AZ91 alloy, but also a trace amount of Nd 2O 3. Microstructure observations indicate the addition of Nd can decrease the sizes of β phases and form Al 2Nd intermetallics in the AZ91 alloy. The fine β phases can effectively restrain the formation of unclosed-holes and greatly decrease the sizes of pores in the coating during the PEO process. In addition, the Al 2Nd intermetallics can be completely covered due to the lateral growth of the PEO coatings formed on the α and β phases. As a result, the coating on the AZ91Nd alloy possesses a dense microstructure compared with that on the AZ91 alloy. The following corrosion tests indicate the corrosion resistance of the PEO coating on the AZ91Nd alloy is evidently higher than that of the PEO coating on the AZ91 alloy.

  20. Preparation of Phytic Acid/Silane Hybrid Coating on Magnesium Alloy and Its Corrosion Resistance in Simulated Body Fluid

    Science.gov (United States)

    Wang, Fengwu; Cai, Shu; Shen, Sibo; Yu, Nian; Zhang, Feiyang; Ling, Rui; Li, Yue; Xu, Guohua

    2017-09-01

    In order to decrease the corrosion rate and improve the bioactivity of magnesium alloy, phytic acid/saline hybrid coatings were synthesized on AZ31 magnesium alloys by sol-gel dip-coating method. It was found that the mole ratio of phytic acid to γ-APS had a great influence on coating morphology and the corresponding corrosion resistance of the coated magnesium alloys. When the mole ratio of phytic acid to γ-APS was 1:1, the obtained hybrid coating was integral and without cracks, which was ascribed to the strong chelate capability of phytic acid and Si-O-Si network derived from silane. Electrochemical test result indicated that the corrosion resistance of the coated magnesium alloy was about 27 times larger than that of the naked counterpart. In parallel, immersion test showed that the phytic acid/silane hybrid coating could induce CaP-mineralized product deposition, which offered another protection for magnesium alloy.

  1. Effect of phytic acid on the microstructure and corrosion resistance of Ni coating

    Energy Technology Data Exchange (ETDEWEB)

    Meng Guozhe, E-mail: mengguozhe@hrbeu.edu.c [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China)] [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun Feilong [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China); Shaoa Yawei [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang Tao; Wang Fuhui [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China)] [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Dong Chaofang [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Li, Xiaogang [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)] [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China)

    2010-08-01

    In this work, the pure Ni coatings were synthesized on Q235 steel by using reverse pulsed electrodeposition technique in sulphate-based baths with 0, 0.1, 0.2 and 0.3 g/L phytic acid additive. The effect of phytic acid on the microstructure and micro-morphology of the sample was observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. And the effect of phytic acid on the corrosion resistance of the sample was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results demonstrated that the addition of phytic acid was in favor of the growth of nano-scale twins (NT) in the interior of grains, which was due to the lowered stacking fault energies of Ni during the electrodeposition, and the typical morphology of pyramidal islands on the surface. The results also demonstrated that the effect of phytic acid was not monotonous with increasing concentration: the passive current density i{sub p} was minimum and the charge transfer resistance R{sub t} was maximum for the sample obtained from the bath with 0.2 g/L phytic acid, indicating that the sample obtained from the bath with 0.2 g/L phytic acid showed the best corrosion resistance.

  2. Corrosion Resistance of a Sand Particle-Modified Enamel Coating Applied to Smooth Steel Bars

    Directory of Open Access Journals (Sweden)

    Fujian Tang

    2014-09-01

    Full Text Available The protective performance of a sand particle-modified enamel coating on reinforcing steel bars was evaluated in 3.5 wt% NaCl solution by electrochemical impedance spectroscopy (EIS. Seven percentages of sand particles by weight were investigated: 0%, 5%, 10%, 20%, 30%, 50% and 70%. The phase composition of the enamel coating and sand particles were determined with the X-ray diffraction (XRD technique. The surface and cross-sectional morphologies of the sand particle-modified enamel coating were characterized using scanning electron microscopy (SEM. XRD tests revealed three phases of sand particles: SiO2, CaCO3 and MgCO3. SEM images demonstrated that the enamel coating wetted well with the sand particles. However, a weak enamel coating zone was formed around the sand particles due to concentrated air bubbles, leading to micro-cracks as hydrogen gas pressure builds up and exceeds the tensile strength of the weak zone. As a result, the addition of sand particles into the enamel coating reduced both the coating and corrosion resistances.

  3. One-step spray-coating process for the fabrication of colorful superhydrophobic coatings with excellent corrosion resistance.

    Science.gov (United States)

    Li, Jian; Wu, Runni; Jing, Zhijiao; Yan, Long; Zha, Fei; Lei, Ziqiang

    2015-10-06

    A simple method was used to generate colorful hydrophobic stearate particles via chemical reactions between inorganic salts and sodium stearate. Colored self-cleaning superhydrophobic coatings were prepared through a facile one-step spray-coating process by spraying the stearate particle suspensions onto stainless steel substrates. Furthermore, the colorful superhydrophobic coating maintains excellent chemical stability under both harsh acidic and alkaline circumstances. After being immersed in a 3.5 wt % NaCl aqueous solution for 1 month, the as-prepared coatings remained superhydrophobic; however, they lost their self-cleaning property with a sliding angle of about 46 ± 3°. The corrosion behavior of the superhydrophobic coatings on the Al substrate was characterized by the polarization curve and electrochemical impedance spectroscopy (EIS). The electrochemical corrosion test results indicated that the superhydrophobic coatings possessed excellent corrosion resistance, which could supply efficient and long-term preservation for the bare Al substrate.

  4. Corrosion Resistance of the Superhydrophobic Mg(OH2/Mg-Al Layered Double Hydroxide Coatings on Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Fen Zhang

    2016-04-01

    Full Text Available Coatings of the Mg(OH2/Mg-Al layered double hydroxide (LDH composite were formed by a combined co-precipitation method and hydrothermal process on the AZ31 alloy substrate in alkaline condition. Subsequently, a superhydrophobic surface was successfully constructed to modify the composite coatings on the AZ31 alloy substrate using stearic acid. The characteristics of the composite coatings were investigated by means of X-ray diffractometer (XRD, Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, scanning electronic microscope (SEM and contact angle (CA. The corrosion resistance of the coatings was assessed by potentiodynamic polarization, the electrochemical impedance spectrum (EIS, the test of hydrogen evolution and the immersion test. The results showed that the superhydrophobic coatings considerably improved the corrosion resistant performance of the LDH coatings on the AZ31 alloy substrate.

  5. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez-Mariano; Angel Sanjurjo

    2006-12-31

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period, we analyzed several coated and exposed samples of 409 steel by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX), and report on the findings of four samples: (1) Analysis of two porous coupons after exposure to the porous metal particulate filter of the coal gasification power plant at 370 C for 2140 hours revealed that corrosion takes place in the bulk of the sample while the most external zone surface survived the test. (2) Coating and characterization of several porous 409 steel coupons after being coated with nitrides of Ti, Al and/or Si showed that adjusting experimental conditions results in thicker coatings in the bulk of the sample. (3) Analysis of coupons exposed to simulated coal gas at 370 C for 300 hours showed that a better corrosion resistance is achieved by improving the coatings in the bulk of the samples.

  6. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    Science.gov (United States)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  7. Corrosion Resistance of Ni/Al2O3 Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    Beata KUCHARSKA

    2016-05-01

    Full Text Available Nickel matrix composite coatings with ceramic disperse phase have been widely investigated due to their enhanced properties, such as higher hardness and wear resistance in comparison to the pure nickel. The main aim of this research was to characterize the structure and corrosion properties of electrochemically produced Ni/Al2O3 nanocomposite coatings. The coatings were produced in a Watts bath modified by nickel grain growth inhibitor, cationic surfactant and the addition of alumina particles (low concentration 5 g/L. The process has been carried out with mechanical and ultrasonic agitation. The Ni/Al2O3 nanocomposite coatings were characterized by SEM, XRD and TEM techniques. In order to evaluate corrosion resistance of produced coatings, the corrosion studies have been carried out by the potentiodynamic method in a 0.5 M NaCl solution. The corrosion current, corrosion potential and corrosion rate were determined. Investigations of the morphology, topography and corrosion damages of the produced surface layers were performed by scanning microscope techniques. DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7407

  8. In Vivo Corrosion Resistance of Ca-P Coating on AZ60 Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    Xing Xiao; Haiying Yu; Qingsan Zhu; Guangyu Li; Yang Qu; Rui Gu

    2013-01-01

    Magnesium-based alloys are frequently reported as potential biodegradable orthopedic implant materials.Controlling the degradation rate and mechanical integrity of magnesium alloys in the physiological environment is the key to their applications.In this study,calcium phosphate (Ca-P) coating was prepared on AZ60 magnesium alloy using phosphating technology.AZ60 samples were immersed in a phosphating solution at 37 ± 2 ℃ for 30 min,and the solution pH was adjusted to 2.6 to 2.8 by adding NaOH solution.Then,the samples were dried in an attemperator at 60 ℃.The degradation behavior was studied in vivo using Ca-P coated and uncoated magnesium alloys.Samples of these two different materials were implanted into rabbit femora,and the corrosion resistances were evaluated after 1,2,and 3 months.The Ca-P coated samples corroded slower than the uncoated samples with prolonged time.Significant differences (p < 0.05) in mass losses and corrosion rates between uncoated samples and Ca-P coated samples were observed by micro-computed tomography.The results indicate that the Ca-P coating could slow down the degradation of magnesium alloy in vivo.

  9. Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment

    Science.gov (United States)

    Sidhu, T. S.; Prakash, S.; Agrawal, R. D.

    2006-09-01

    No alloy is immune to hot corrosion attack indefinitely. Coatings can extend the lives of substrate materials used at higher temperatures in corrosive environments by forming protective oxides layers that are reasonably effective for long-term applications. This article is concerned with studying the performance of high-velocity oxyfuel (HVOF) sprayed NiCrBSi, Cr3C2-NiCr, Ni-20Cr, and Stellite-6 coatings on a nickel-base superalloy at 900 °C in the molten salt (Na2SO4-60% V2O5) environment under cyclic oxidation conditions. The thermogravimetric technique was used to establish kinetics of corrosion. Optical microscope, x-ray diffraction, scanning electron microscopy/electron dispersive analysis by x-ray (SEM/EDAX), and electron probe microanalysis (EPMA) techniques were used to characterize the as-sprayed coatings and corrosion products. The bare superalloy suffered somewhat accelerated corrosion in the given environmental conditions. whereas hot corrosion resistance of all the coated superalloys was found to be better. Among the coating studied, Ni-20Cr coated superalloy imparted maximum hot corrosion resistance, whereas Stellite-6 coated indicated minimum resistance. The hot corrosion resistance of all the coatings may be attributed to the formation of oxides and spinels of nickel, chromium, or cobalt.

  10. Electrochemical impedance spectroscopic investigation of the role of alkaline pre-treatment in corrosion resistance of a silane coating on magnesium alloy, ZE41

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty Banerjee, P. [Department of Chemical Engineering, Monash University, Clayton, VIC-3800 (Australia); CAST Cooperative Research Centre, Hawthorn, VIC-3122 (Australia); Singh Raman, R.K., E-mail: raman.singh@eng.monash.edu.a [Department of Chemical Engineering, Monash University, Clayton, VIC-3800 (Australia); Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC-3800 (Australia)

    2011-04-15

    The protective performance of the coatings of bis-1,2-(triethoxysilyl) ethane (BTSE) on ZE41 magnesium alloy with different surface pre-treatments were evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 0.1 M sodium chloride solution. Electrical equivalent circuits were developed based upon hypothetical corrosion mechanisms and simulated to correspond to the experimental data. The morphology and cross section of the alloy subjected to different pre-treatments and coatings were characterized using scanning electron microscope. A specific alkaline pre-treatment of the substrate prior to the coating has been found to improve the corrosion resistance of the alloy.

  11. Corrosion Mechanism of Corrosion-Resistant Steel Developed for Bottom Plate of Cargo Oil Tanks

    Institute of Scientific and Technical Information of China (English)

    Feilong SUN; Xiaogang LI; Fan ZHANG; Xuequn CHENG; Cheng ZHOU; Nianchun WU; Yuqun YIN

    2013-01-01

    A new type of corrosion-resistant steel consisting of ferrite and bainite phases was developed for cargo oil tanks of crude oil tankers.The corrosion rate of this new steel was 0.22 mm/a,which was equivalent to ca.1/5 of the criterion (≤ 1 mm/a) for corrosion-resistant steels.The composition and element distribution of the corrosion products were investigated by micro-Raman spectrometry and energy dispersive spectrometer.The results demonstrated that the corrosion product was composed of α-FeOOH,Fe3O4 and a continuous Cu enrichment layer.This kind of corrosion product was protective to the steel matrix and accounted for the enhancement of the corrosion resistance of the new developed steel.

  12. Corrosion resistance of multilayer hybrid sol-gel coatings deposited on the AISI 316L austenitic stainless steel

    Science.gov (United States)

    Caballero, Y. T.; Rondón, E. A.; Rueda, L.; Hernández Barrios, C. A.; Coy, A.; Viejo, F.

    2016-02-01

    In the present work multilayer hybrid sol-gel coatings were synthesized on the AISI 316L austenitic stainless steel employed in the fabrication of orthopaedic implants. Hybrid sols were obtained from a mixture of inorganic precursor, TEOS, and organic, GPTMS, using ethanol as solvent, and acetic acid as catalyst. The characterization of the sols was performed using pH measurements, rheological tests and infrared spectroscopy (FTIR) for different ageing times. On the other hand, the coatings were characterized by scanning electron microscopy (SEM), while the corrosion resistance was evaluated using anodic potentiodynamic polarization in SBF solution at 37±2°C. The results confirmed that sol-gel synthesis employing TEOS-GPTMS systems produces uniform and homogeneous coatings, which enhanced the corrosion resistance with regard to the parent alloy. Moreover, corrosion performance was retained after applying more than one layer (multilayer coatings).

  13. TiO{sub 2} coated multi-wall carbon nanotube as a corrosion inhibitor for improving the corrosion resistance of BTESPT coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuping; Zhu, Hongzheng; Zhuang, Chen [Institute of Materials Science and Engineering, Ocean University of China, Songling Road 238, Qingdao, 266100 (China); Chen, Shougang, E-mail: sgchen@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Songling Road 238, Qingdao, 266100 (China); Wang, Longqiang [Institute of Materials Science and Engineering, Ocean University of China, Songling Road 238, Qingdao, 266100 (China); Dong, Lihua [Institute of Ocean Materials and Engineering, Shanghai Maritime University, Shanghai, 200135 (China); Yin, Yansheng, E-mail: ysyin@shmtu.edu.cn [Institute of Ocean Materials and Engineering, Shanghai Maritime University, Shanghai, 200135 (China)

    2016-08-15

    The composite coatings of TiO{sub 2} coated multi-wall carbon nanotube (MWCNTs)/bis-[triethoxysilylpropyl]tetrasulfide (BTESPT) with different components were prepared on AA 2024 by the cathodic electrophoretic deposition technique and the experimental conditions were optimized to attain the appropriate volume ratio. The modified MWCNTs obviously improved the corrosion resistance of BTESPT and BTESPT/TiO{sub 2} coatings, especially for the long-term corrosion resistance ability because of the good dispersion of MWCNTs. The geometry of composite coatings were explored by scanning electron microscopy, fourier transform infrared spectra and the surface coverage rate (θ), the results indicate that the composite coatings produce good cross-linked structure at the interfacial layer, the coating compactness increases gradually with the addition of TiO{sub 2} and/or MWCNTs, and the composite coating effectively postpones the production of cracks with the addition of MWCNTs. - Highlights: • The composite coatings with different components were prepared on AA 2024 by the cathodic electrophoretic deposition technology. • The formation of composite coating on AA 2024 surface considerably improved the corrosion resistance ability. • The composite coating with a TiO{sub 2} to MWCNTs volume ratio of 4/1 shows the best corrosion resistance. • The kinetic evaluation of inhibitive behavior for different coatings against immersion time was explored.

  14. Electrophoretic Deposition, Microstructure, and Corrosion Resistance of Porous Sol-Gel Glass/Polyetheretherketone Coatings on the Ti-13Nb-13Zr Alloy

    Science.gov (United States)

    Moskalewicz, Tomasz; Zych, Anita; Łukaszczyk, Alicja; Cholewa-Kowalska, Katarzyna; Kruk, Adam; Dubiel, Beata; Radziszewska, Agnieszka; Berent, Katarzyna; Gajewska, Marta

    2017-02-01

    In this study, microporous composite sol-gel glass/polyetheretherketone (SGG/PEEK) coatings were produced on the Ti-13Nb-13Zr titanium alloy by electrophoretic deposition. Coatings with different levels of high open porosity were developed by introducing SGG particles of varying diameters into the PEEK matrix. The microstructure of the coatings was characterized by electron microscopy and X-ray diffractometry. The coatings with 40-50 µm thickness were composed of semicrystalline SGG particles consisting of hydroxyapatite, CaSiO3, some Ca2SiO4, and an amorphous phase containing Ca, Si, P, and O, homogeneously embedded in a semicrystalline PEEK matrix. The size of SGG particles present in the coatings strongly influenced the formation of microcracks and their adhesion to the underlying substrate. Microscratch tests showed that the coating containing SGG particles with a diameter smaller than 45 µm and open porosity of 45 pct exhibited good adhesion to the titanium alloy substrate, much better than the coating containing particles with a diameter smaller than 85 µm and total open porosity equal to 48 pct. The corrosion resistance was investigated in Ringer's solution at a temperature of 310 K (37 °C) for a pH equal to 7.4 and in deaerated solutions with the use of open-circuit potential, potentiodynamic polarization, and electrochemical impedance spectroscopy. The SGG/PEEK-coated alloy indicated better electrochemical corrosion resistance compared with the uncoated alloy.

  15. Electrophoretic Deposition, Microstructure, and Corrosion Resistance of Porous Sol-Gel Glass/Polyetheretherketone Coatings on the Ti-13Nb-13Zr Alloy

    Science.gov (United States)

    Moskalewicz, Tomasz; Zych, Anita; Łukaszczyk, Alicja; Cholewa-Kowalska, Katarzyna; Kruk, Adam; Dubiel, Beata; Radziszewska, Agnieszka; Berent, Katarzyna; Gajewska, Marta

    2017-05-01

    In this study, microporous composite sol-gel glass/polyetheretherketone (SGG/PEEK) coatings were produced on the Ti-13Nb-13Zr titanium alloy by electrophoretic deposition. Coatings with different levels of high open porosity were developed by introducing SGG particles of varying diameters into the PEEK matrix. The microstructure of the coatings was characterized by electron microscopy and X-ray diffractometry. The coatings with 40-50 µm thickness were composed of semicrystalline SGG particles consisting of hydroxyapatite, CaSiO3, some Ca2SiO4, and an amorphous phase containing Ca, Si, P, and O, homogeneously embedded in a semicrystalline PEEK matrix. The size of SGG particles present in the coatings strongly influenced the formation of microcracks and their adhesion to the underlying substrate. Microscratch tests showed that the coating containing SGG particles with a diameter smaller than 45 µm and open porosity of 45 pct exhibited good adhesion to the titanium alloy substrate, much better than the coating containing particles with a diameter smaller than 85 µm and total open porosity equal to 48 pct. The corrosion resistance was investigated in Ringer's solution at a temperature of 310 K (37 °C) for a pH equal to 7.4 and in deaerated solutions with the use of open-circuit potential, potentiodynamic polarization, and electrochemical impedance spectroscopy. The SGG/PEEK-coated alloy indicated better electrochemical corrosion resistance compared with the uncoated alloy.

  16. An effective and novel pore sealing agent to enhance the corrosion resistance performance of Al coating in artificial ocean water

    Science.gov (United States)

    Lee, Han-Seung; Singh, Jitendra Kumar; Ismail, Mohamed A.

    2017-02-01

    A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance.

  17. An effective and novel pore sealing agent to enhance the corrosion resistance performance of Al coating in artificial ocean water

    Science.gov (United States)

    Lee, Han-Seung; Singh, Jitendra Kumar; Ismail, Mohamed A.

    2017-01-01

    A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance. PMID:28157233

  18. Corrosion Resistance of Zn and Cu Coated Steel Pipes as a Substitute for Cu Pipe in an Air Conditioner System

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae Gyeong; Park, Chan Jin; Hong, Sung Kil [Chonnam National University, Gwangju (Korea, Republic of)

    2009-02-15

    We investigated the corrosion resistance of Zn and Cu coated steel pipes as a substitute for Cu pipe in an air-conditioner system. In addition, the galvanic corrosion tendency between two dissimilar metal parts was studied. The corrosion resistance of the Cu electroplated steel was similar to that of Cu, while the corrosion rate of the Zn electro-galvanized and the galvalume (Zn-55 % Al) coated steels was much higher and not suitable for Cu substitute in artificial sea water and acidic rain environments. Furthermore, the galvanic difference between Cu electroplated steel and Cu was so small that the Cu coated steel pipe can be used as a substitute for Cu pipe in an air-conditioner system.

  19. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Material (HPCRM) Development

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J S; Saw, C; Haslam, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D' Amato, A; Aprigliano, L

    2008-01-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  20. Corrosion resistant PEM fuel cell

    Science.gov (United States)

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  1. Corrosion resistance of Zn-Al layered double hydroxide/poly(lactic acid) composite coating on magnesium alloy AZ31

    Science.gov (United States)

    Zeng, Rong-Chang; Li, Xiao-Ting; Liu, Zhen-Guo; Zhang, Fen; Li, Shuo-Qi; Cui, Hong-Zhi

    2015-12-01

    A Zn-Al layered double hydroxide (ZnAl-LDH) coating consisted of uniform hexagonal nano-plates was firstly synthesized by co-precipitation and hydrothermal treatment on the AZ31 alloy, and then a poly(lactic acid) (PLA) coating was sealed on the top layer of the ZnAl-LDH coating using vacuum freeze-drying. The characteristics of the ZnAl-LDH/PLA composite coatings were investigated by means of XRD, SEM, FTIR and EDS. The corrosion resistance of the coatings was assessed by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the ZnAl-LDH coating contained a compact inner layer and a porous outer layer, and the PLA coating with a strong adhesion to the porous outer layer can prolong the service life of the ZnAl-LDH coating. The excellent corrosion resistance of this composite coating can be attributable to its barrier function, ion-exchange and self-healing ability.

  2. The effect of Ti(CN/TiNb(CN coating on erosion–corrosion resistance

    Directory of Open Access Journals (Sweden)

    William Aperador Chaparro

    2013-02-01

    Full Text Available The goal of this work was to study electrochemical behaviour in corrosion-erosion conditions for Ti(CN/TiNb(CN multilayer coatings having 1, 50, 100, 150 and 200 bilayer periods on AISI 4140 steel substrates by using a multi-target magnetron reactive sputtering device, with an r.f. source (13.56 MHz, two cylindrical magnetron cathodes and two stoichiometric TiC and Nb targets. The multi-layers were evaluated by comparing them to corrosion, erosion and erosion corrosion for a 30º impact angle in a solution of 0.5 M NaCl and silica, analysing the effect of impact angle and the number of bilayers on these coatings’ corrosion resistance. The electrochemical characterisation was performed using electrochemical impedance spectroscopy for analysing corrosion surface; surface morphology was characterised by using a high-resolution scanning electron microscope (SEM. The results showed a de-creased corrosion rate for multilayer systems tested at 30°.

  3. Growth process and corrosion resistance of ceramic coatings of micro-arc oxidation on Mg-Gd-Y magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    王萍; 李建平; 郭永春; 杨忠

    2010-01-01

    The regulation of ceramic coating formed by micro-arc oxidation on Mg-11Gd-1Y-0.5Zn (wt.%) magnesium alloys was investigated by scanning electron microscopy (SEM) and X-ray diffractometer (XRD). The relation of phase structure and corrosion resistance of MgO coating formed by micro-arc oxidation in different growth stages was analyzed. The results showed that the growth of coating accorded with linear regularity in the initial stage of micro-arc oxidation, which was the stage of anodic oxidation controlled ...

  4. Development of oxidation/corrosion-resistant composite materials and interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Besmann, T.M.; Shanmugham, S. [and others

    1995-06-01

    Continuous fiber ceramic composites (CFCCs) are being developed for high temperature structural applications, many of which are in oxidative environments. Such composites are attractive since they are light-weight and possess the desired mechanical properties at elevated temperature and in aggressive environments. The most significant advantage is their toughness and their non-catastrophic failure behavior. The mechanical properties of CFCCs have been characteristically linked with the nature of the interfacial bond between the fibers and the matrix. Weakly bonded fiber-matrix intefaces allow an impinging matrix crack to be deflected such that the fracture process occurs through several stages: Crack deflection, debonding at the interface, fiber slip and pull-out, and ultimately fiber failure. Such a composite will fail in a graceful manner and exhibit substantial fracture toughness. Currently, carbon interface coatings are used to appropriately tailor interface properties, however their poor oxidation resistance has required a search of an appropriate replacement. Generally, metal oxides are inherently stable to oxidation and possess thermal expansion coefficients relatively close to those of Nicalon and SiC. However, the metal oxides must also be chemically compatible with the fiber and matrix. If the fiber/interface/matrix system is chemically compatible, then the interfacial bonding stress is influenced by the thermal residual stresses that are generated as the composite is cooled from processing to room temperature. In the current work, thermomechanical computational results were obtained from a finite element model (FEM) for calculating the thermal residual stresses. This was followed by experimental evaluation of Nicalon/SiC composites with carbon, alumina, and mullite interfacial coatings.

  5. Development of Custom 465® Corrosion-Resisting Steel for Landing Gear Applications

    Science.gov (United States)

    Daymond, Benjamin T.; Binot, Nicolas; Schmidt, Michael L.; Preston, Steve; Collins, Richard; Shepherd, Alan

    2016-04-01

    Existing high-strength low-alloy steels have been in place on landing gear for many years owing to their superior strength and cost performance. However, there have been major advances in improving the strength of high-performance corrosion-resisting steels. These materials have superior environmental robustness and remove the need for harmful protective coatings such as chromates and cadmium now on the list for removal under REACH legislation. A UK government-funded collaborative project is underway targeting a refined specification Custom 465® precipitation hardened stainless steel to replace the current material on Airbus A320 family aircraft main landing gear, a main fitting component developed by Messier-Bugatti-Dowty. This is a collaborative project between Airbus, Messier-Bugatti-Dowty, and Carpenter Technology Corporation. An extensive series of coupon tests on four production Heats of the material have been conducted, to obtain a full range of mechanical, fatigue, and corrosion properties. Custom 465® is an excellent replacement to the current material, with comparable tensile strength and fracture toughness, better ductility, and very good general corrosion and stress corrosion cracking resistance. Fatigue performance is the only significant area of deficit with respect to incumbent materials, fatigue initiation being often related to carbo-titanium-nitride particles and cleavage zones.

  6. Growth and corrosion resistance of molybdate modified zinc phosphate conversion coatings on hot-dip galvanized steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The modified zinc phosphate conversion coatings(ZPC) were formed on hot-dip galvanized(HDG) steel when 1.0 g/L sodium molybdate were added in a traditional zinc phosphate solution. The growth performance and corrosion resistance of the modified ZPC were investigated by SEM, open circuit potential(OCP), mass gain, potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) measurements and compared with those of the traditional ZPC. The results show that if sodium molybdate is added in a traditional zinc phosphate solution, the nucleation of zinc phosphate crystals is increased obviously; zinc phosphate crystals are changed from bulky acicular to fine flake and a more compact ZPC is obtained. Moreover, the mass gain and coverage of the modified ZPC are also boosted. The corrosion resistance of ZPI is increased with an increase in coverage, and thus the corrosion protection ability of the modified ZPC for HDG steel is more outstanding than that of the traditional ZPC.

  7. Optimization of the HOVF Spray Parameters by Taguchi Method for High Corrosion-Resistant Fe-Based Coatings

    Science.gov (United States)

    Qin, Yujiao; Wu, Yuping; Zhang, Jianfeng; Hong, Sheng; Guo, Wenmin; Chen, Liyan; Liu, Hao

    2015-07-01

    Taguchi method was used to optimize the parameters of the high velocity oxygen fuel (HVOF) spray process and obtain the high corrosion-resistant Fe-based coatings. Based on the signal-to-noise ( S/ N) ratio and the analysis of variance, the significance of spray parameters in determining the porosity of the coatings was found to be in the order of spray distance, oxygen flow, and kerosene flow. Thus, the optimal parameters for the porosity of the HVOF sprayed Fe-based coating were determined as 280 mm for the spray distance, 963 scfh for the oxygen flow, and 28 gph for the kerosene flow. The potentiodynamic polarization and EIS tests indicated that the Fe-based coating prepared with the optimal parameters exhibited a higher corrosion potential ( E corr) of -196.14 mV, a lower corrosion current density ( i corr) of 0.14 μA/cm2, and a higher coating resistance ( R c) of 2.26 × 106 Ω cm2 than those of the hard chromium coating in 3.5% sodium chloride solution. This superior corrosion resistance could be attributed to the dense structure with low porosity and partially amorphous phases of the Fe-based coatings.

  8. Effect of rare element cerium on the morphology and corrosion resistance of electro-less Ni-P coatings

    Directory of Open Access Journals (Sweden)

    Fu Chuan-qi

    2015-01-01

    Full Text Available This paper reports an experimental study on the microstructure and corrosion resistance of electro-less Ni-P coatings with increasing content of the rare element cerium (Ce. Surface morphology and the composition of the electro-less Ni-P coatings were studied by scanning electron microscope (SEM, X-ray energy dispersed analysis (EDS and X-ray diffraction analysis (XRD. Hardness and Adhesive force are researched by a HX-200 Vickers diamond indenter micro-hardness tester. Furthermore, we study the adhesive force by using the Revetest scratch tester. We get the possession of Ce amorphous Ni-P coatings which has excellent properties in anti-corrosion. The effect of the rare element cerium concentration on corrosion resistance of the coatings was evaluated in the groundwater immersion test and porosity test, respectively. The results indicated that added little the rare element cerium into the plating bath increased the phosphorus content of the coatings, decreased the corrosion rates, it also decreases the porosity of the amorphous Ni-P coatings. The lowest corrosion rates of the amorphous Ni-P coatings in groundwater immersion test is 4.1 um · h-1, at the rare element cerium concentration of 0.12g · L-1.

  9. Corrosion resistance of electrodeposited Ni-B and Ni-B-Si{sub 3}N{sub 4} composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Krishnaveni, K. [National Metallurgical Laboratory, Madras Centre CSIR Complex, Taramani, Chennai 600 113 (India); Narayanan, T.S.N. Sankara [National Metallurgical Laboratory, Madras Centre CSIR Complex, Taramani, Chennai 600 113 (India)], E-mail: tsnsn@rediffmail.com; Seshadri, S.K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Chennai 600 036 (India)

    2009-07-08

    Corrosion resistance of electrodeposited (ED) and electroless (EL) composite coatings have been a debatable issue in the published literature. The present paper aims to compare the corrosion resistance of ED Ni-B-Si{sub 3}N{sub 4} composite coating with its plain counter part. The ED Ni-B coatings were prepared using Watt's nickel bath modified with the addition of dimethylamine borane and the ED Ni-B-Si{sub 3}N{sub 4} composite coatings were prepared using the same bath in which Si{sub 3}N{sub 4} particles (mean diameter: 0.80 {mu}m) were dispersed in it. The structural and morphological characteristics of ED Ni-B and Ni-B-Si{sub 3}N{sub 4} composite coatings were determined using X-ray diffraction (XRD) measurements and scanning electron microscopy (SEM). The corrosion resistances of ED Ni-B and Ni-B-Si{sub 3}N{sub 4} composite coatings, both in as-plated and heat treated conditions, in 3.5% NaCl, were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies. The study reveals that the extent of shift in corrosion potential (E{sub corr}) towards the noble direction, decrease in corrosion current density (i{sub corr}), increase in charge transfer resistance (R{sub ct}) and decrease in double layer capacitance (C{sub dl}) values with the incorporation of Si{sub 3}N{sub 4} particles in the ED Ni-B matrix is not appreciable, both in as-plated and heat-treated conditions. The occurrence of the second phase angle maximum suggests penetration of the electrolyte via the pores/micro-pores in these coating to create another interface, namely, the electrolyte/substrate. Unlike the nanosized particles, the micron size Si{sub 3}N{sub 4} particles (mean diameter: 0.80 {mu}m) used in this study is not capable of completely filling all the pores in the coating and allowed diffusion of chloride ions along the interface. The marginal improvement in corrosion resistance observed for ED Ni-B-Si{sub 3}N{sub 4} composite coatings compared

  10. CORROSION RESISTANT CERAMIC COATING FOR X80 PIPELINE STEEL BY LOW-TEMPERATURE PACK ALUMINIZING AND OXIDATION TREATMENT

    OpenAIRE

    HUANG MIN; FU QIAN-GANG; WANG YU; ZHONG WEN-WU

    2013-01-01

    In this paper, we discuss the formation of ceramic coatings by a combined processing of low-temperature pack aluminizing and oxidation treatment on the surface of X80 pipeline steel substrates in order to improve the corrosion resistance ability of X80 pipeline steel. First, Fe-Al coating consisting of FeAl3 and Fe2Al5 was prepared by a low-temperature pack aluminizing at 803 K which was fulfilled by adding zinc in the pack powder. Pre-treatment of X80 pipeline steel was carried out through s...

  11. Characterization and Evaluation of Cyclic Hot Corrosion Resistance of Detonation-Gun Sprayed Ni-5Al Coatings on Inconel-718

    Science.gov (United States)

    Saladi, Sekar; Menghani, Jyoti V.; Prakash, Satya

    2015-06-01

    The high temperature hot corrosion behavior of bare and detonation-gun-sprayed Ni-5Al coatings on Ni-based superalloy Inconel-718 is comparatively discussed in the present study. Hot corrosion studies were carried out at 900 °C for 100 cycles in Na2SO4-60% V2O5 molten salt environment under cyclic heating and cooling conditions. The thermo-gravimetric technique was used to establish the kinetics of hot corrosion. X-ray diffraction, SEM/EDAX, and X-ray mapping techniques were used to analyze the hot corrosion products of bare and coated superalloys. The results indicate that Ni-5Al-coated superalloy showed very good hot corrosion resistance. The overall weight gain and parabolic rate constant of Ni-5Al-coated superalloy were less in comparison with the bare superalloy. The D-gun-sprayed Ni-5Al coating was found to be uniform, adherent, and dense in hot corrosion environment. The formation of nickel- and aluminum-rich oxide scale might have contributed for the better hot corrosion resistance of the coated superalloy.

  12. Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications

    Energy Technology Data Exchange (ETDEWEB)

    Seals, Roland D.

    2015-08-18

    The present disclosure relates generally to hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications. More specifically, the present disclosure relates to hardface coatings that include a network of titanium monoboride (TiB) needles or whiskers in a matrix, which are formed from titanium (Ti) and titanium diboride (TiB.sub.2) precursors by reactions enabled by the inherent energy provided by the process heat associated with coating deposition and, optionally, coating post-heat treatment. These hardface coatings are pyrophoric, thereby generating further reaction energy internally, and may be applied in a functionally graded manner. The hardface coatings may be deposited in the presence of a number of fluxing agents, beta stabilizers, densification aids, diffusional aids, and multimode particle size distributions to further enhance their performance characteristics.

  13. Recent developments in wear- and corrosion-resistant alloys for the oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Raghu, D. [Deloro Stellite Inc., Goshen, IN (United States). Stellite Coatings Div.; Wu, J.B.C. [Stoody Deloro Stellite, Inc., St. Louis, MO (United States)

    1997-11-01

    Oil production and refining pose very severe wear and corrosion environments. Material designers are challenged with the need to design and develop materials that combine high corrosion resistance with good wear resistance. Coupled with that is the need for these materials to meet requirements such as fracture toughness and resistance to sulfide and chloride stress corrosion cracking. Often, increasing wear resistance compromises the corrosion and welding characteristics. This article covers a variety of material developments that address the problems of wear and corrosion, including alloy design fundamentals and pertinent wear properties and general corrosion resistance compared to traditional wear-resistant materials. Proven applications, with particular reference to petroleum and petrochemical areas, are discussed. Potential applications are also cited.

  14. CORROSION RESISTANCE OF Fe–Al/Al2O3 DUPLEX COATING ON PIPELINE STEEL X80 IN SIMULATED OIL AND GAS WELL ENVIRONMENT

    OpenAIRE

    MIN HUANG; YU WANG; PING-GU WANG; QIN-YI SHI; MENG-XIAN ZHANG

    2015-01-01

    Corrosion resistant Fe–Al/Al2O3 duplex coating for pipeline steel X80 was prepared by a combined treatment of low-temperature aluminizing and micro-arc oxidation (MAO). Phase composition and microstructure of mono-layer Fe–Al coating and Fe–Al/Al2O3 duplex coating were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) with energy dispersive spectrometer (EDS). Corrosion resistance of the coated pipeline steel X80 in a simulated oil and gas well condition was also investig...

  15. Corrosion Resistance of Electroless Ni-Cu-P Ternary Alloy Coatings in Acidic and Neutral Corrosive Mediums

    Directory of Open Access Journals (Sweden)

    Mbouillé Cissé

    2010-01-01

    Full Text Available Electroless Ni-Cu-P alloy coatings were deposited on the ordinary steel substrate in an acidic hypophosphite-type plating bath. These coatings were characterized by a scanning electron microscope (SEM and an X-ray diffraction. The micrograph shows that coating presents a nodular aspect and is relatively homogeneous and very smooth. The EDX analysis shows that the coating contains 12 wt.% of phosphorus element with a predominance of nickel element. In addition, the anticorrosion properties of the Ni-Cu-P coatings in 1 M HCl, 1 M H2SO4, and 3% NaCl solutions were investigated using Tafel polarization curves, electrochemical impedance spectroscopy, and SEM/EDX analysis. The result showed a marginal improvement in corrosion resistance in 3% NaCl solution compared to acidic medium. It also showed that the corrosion mechanism depends on the nature of the solution.

  16. Comparative Study by Electrochemical Impedance Spectroscopy (EIS On The Corrosion Resistance of Industrial and Laboratory Zinc Coatings

    Directory of Open Access Journals (Sweden)

    Y. Hamlaoui

    2007-01-01

    Full Text Available In this work, corrosion monitoring of Zn-based coatings is investigated through potentiodynamic and electrochemical impedance spectroscopy (EIS methods. The first part of the study is devoted to galvanised coatings conventionally manufactured in the industry. The second part focuses on the corrosion resistance of a laboratory-made electrolytic coating. For such purpose, the corrosion behaviour is studied in NaCl media under various conditions. The results show that EIS allows to establish the interfacial reactions and the dissolution mechanisms occurring in this media, hence to foresee the protection conferred by these coatings. Moreover, the salted media at different concentrations allow to unambiguously assess the coating quality in terms of porosity. However, others corrosive media can reveal the slowest reaction without having appeal to a very low frenquency scanning. Finally, Zn/NaCl interface is characterised by a specific equivalent circuit giving a similar impedance response.

  17. Annealing effect on corrosion resistance of Bi{sub x}Ti{sub y}O{sub z} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pinzon, M. J.; Alfonsoa, J. E.; Olaya, J. J. [Universidad Nacional de Colombia, Grupo de Ciencia de Materiales y Superficies, Bogota AA 14490 (Colombia); Pineda Vargas, C. A., E-mail: jealfonsoo@unal.edu.co [iThemba LABS, Materials Research Department, PO Box 722, Somerset West 7129 (South Africa)

    2016-11-01

    Bismuth titanate (Bi-xTi{sub y}O{sub z}) has received widespread attention due to the fact that during recent times it has found important applications in strategic research fields such as optics and optoelectronic, and more recently studies have shown how their physicochemical properties may be harnessed in order to be able to use Bi{sub x}Ti{sub y}O{sub z}, as an anti corrosive coating. In this work bismuth titanate (Bi{sub x}Ti{sub y}O{sub z}) coatings were grown on titanium alloy (Ti6A14V) substrates, using RF magnetron sputtering at room temperature. The main objectives of the work were quantify the evolution of crystallographic phase formation, as a function of the annealing temperature, and establish the chemical composition in order to characterize the behaviour of the bismuth titanate coating as a protective coating of the corrosion. The morphology of the coating was observed via scanning electronic microscopy (Sem); the crystalline structure was characterized by X-ray diffraction (XRD) and the chemical composition was analyzed by Rutherford Backscattering Spectrometry (RBS). The corrosion resistance of the coatings was studied by potentiodynamic polarization (Pp) test (Tafel extrapolation). Sem results showed that the surface roughness of the coatings changed when the temperature of annealing increased. Similar change occurred after Pp tests. The XRD analysis revealed a change in the coatings microstructure as a function of the annealing temperature, since they evolved from a completely amorphous phase to a polycrystalline phase. RBS results indicate that coatings growing at high temperature have a complex chemical composition. Finally, the electrochemical analysis showed that the corrosion resistance of the coating is much better in the amorphous phases of bismuth titanate than in the polycrystalline phases. (Author)

  18. Development of Advanced Wear and Corrosion Resistant Systems Through Laser Surface Alloying and Materials Simulations

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Martukanitz and S. Babu

    2007-05-03

    Laser surfacing in the form of cladding, alloying, and modifications are gaining widespread use because of its ability to provide high deposition rates, low thermal distortion, and refined microstructure due to high solidification rates. Because of these advantages, laser surface alloying is considered a prime candidate for producing ultra-hard coatings through the establishment or in situ formation of composite structures. Therefore, a program was conducted by the Applied Research Laboratory, Pennsylvania State University and Oak Ridge National Laboratory to develop the scientific and engineering basis for performing laser-based surface modifications involving the addition of hard particles, such as carbides, borides, and nitrides, within a metallic matrix for improved wear, fatigue, creep, and corrosion resistance. This has involved the development of advanced laser processing and simulation techniques, along with the refinement and application of these techniques for predicting and selecting materials and processing parameters for the creation of new surfaces having improved properties over current coating technologies. This program has also resulted in the formulation of process and material simulation tools capable of examining the potential for the formation and retention of composite coatings and deposits produced using laser processing techniques, as well as positive laboratory demonstrations in producing these coatings. In conjunction with the process simulation techniques, the application of computational thermodynamic and kinetic models to design laser surface alloying materials was demonstrated and resulted in a vast improvement in the formulation of materials used for producing composite coatings. The methodology was used to identify materials and to selectively modify microstructures for increasing hardness of deposits produced by the laser surface alloying process. Computational thermodynamic calculations indicated that it was possible to induce the

  19. The Influence of Modes of Deposition of Coatings on the Corrosion Resistance of Welded Joints of Steels in Acidic Media;

    Science.gov (United States)

    Saraev, Yu N.; Bezborodov, V. P.; Selivanov, Y. V.

    2016-08-01

    In this work, effect of welding on corrosion of welded joints of austenitic steel 12KH18N10T. It is shown that the use of pulsed - arc welding steel 12KH18N10T allows you to create a protective coating with dispersed structure with less thermal impact on the zone of the welded joint. Coating is of such structure allows 1.5 to 6 times to reduce the corrosion rate of welded joints of steel 12KH18N10T in active chemical environments. Pulse the process of deposition of coatings on welded joint of steels can be effectively used for the protection against corrosion in the repair of equipment of chemical industry. The results obtained can be recommended for use when welding a protective corrosion - resistant coatings on working surfaces of equipment of chemical productions.

  20. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-09-19

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

  1. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    Science.gov (United States)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB.

  2. Antibacterial Properties and Corrosion Resistance of Nitrogen-doped TiO2 Coatings on Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Hefeng Wang; Bin Tang; Xiuyan Li; Yong Ma

    2011-01-01

    The Nitrogen-doped TiO2 (N-TiO2) coatings were fabricated on 304 austenitic stainless steel (SS) substrates by oxidation of titanium nitride coatings, which were prepared by plasma surface alloying technique. Microstructural investigation, corrosion tests and antibacterial tests were conducted to study the properties of N-TiO2 coatings. Composition analysis shows that the SS substrates were shielded by the N-TiO2 coatings entirely. The N-TiO2 coatings are anatase in structure as characterized by X-ray diffraction. The corrosion properties of N-TiO2 coated SS samples in Hanks' solution were investigated by a series of tests. The electrochemical measurements indicate that the corrosion potential positively shifts from -0.275 V for untrated SS to -0.267 V for N-TiO2, while the corrosion current density decreases from 1.3× 10-5 A/cm2 to 4.1×10-6A/cm2. The corrosion resistance obtained by fitting the impedance spectra also reveals that the N-TiO2 coatings provide good protection for SS substrate against corrosion in Hanks' solution. Electrochemistry noise tests indicate that the N-TiO2 coatings effectively retard the local pitting and crevice corrosion of the SS substrate. The results of the antibacterial test reveal that N-TiO2 coatings give 304 austenitic SS an excellent antibacterial property.

  3. Electrically Conductive, Corrosion-Resistant Coatings Through Defect Chemistry for Metallic Interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Anil V. Virkar

    2006-12-31

    The principal objective of this work was to develop oxidation protective coatings for metallic interconnect based on a defect chemistry approach. It was reasoned that the effectiveness of a coating is dictated by oxygen permeation kinetics; the slower the permeation kinetics, the better the protection. All protective coating materials investigated to date are either perovskites or spinels containing metals exhibiting multiple valence states (Co, Fe, Mn, Cr, etc.). As a result, all of these oxides exhibit a reasonable level of electronic conductivity; typically at least about {approx}0.05 S/cm at 800 C. For a 5 micron coating, this equates to a maximum {approx}0.025 {Omega}cm{sup 2} area specific resistance due to the coating. This suggests that the coating should be based on oxygen ion conductivity (the lower the better) and not on electronic conductivity. Measurements of ionic conductivity of prospective coating materials were conducted using Hebb-Wagner method. It was demonstrated that special precautions need to be taken to measure oxygen ion conductivity in these materials with very low oxygen vacancy concentration. A model for oxidation under a protective coating is presented. Defect chemistry based approach was developed such that by suitably doping, oxygen vacancy concentration was suppressed, thus suppressing oxygen ion transport and increasing effectiveness of the coating. For the cathode side, the best coating material identified was LaMnO{sub 3} with Ti dopant on the Mn site (LTM). It was observed that LTM is more than 20 times as effective as Mn-containing spinels. On the anode side, LaCrO3 doped with Nb on the Cr site (LNC) was the material identified. Extensive oxidation kinetics studies were conducted on metallic alloy foils with coating {approx}1 micron in thickness. From these studies, it was projected that a 5 micron coating would be sufficient to ensure 40,000 h life.

  4. Development of improved and corrosion-resistant surfaces for fossil power system components

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Santella, M.L.; Goodwin, G.M.

    1996-06-01

    The purpose of this task is to develop the corrosion-resistant surfaces on a variety of fossil power system components. The Fe-Al alloys ranging in aluminum from 16 to 36 @ % are of interest. The surfaces of Fe-Al alloys can be produced by weld overlay. However, because of their limited room-temperature ductility, the production of weld wire for these compositions is not commercially feasible. The alloying element dilution during weld overlay also makes depositing exact surface composition rather difficult.

  5. Effect of Sputtered TiAICr Coatings on Oxidation and Hot Corrosion Resistance of Ti-24Al-14Nb-3V

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of sputtered Ti-50Al-10Cr and Ti-50Al-20Cr coatings on both isothermal and cyclic oxidation resistance at 800~900°C and hot corrosion resistance at 850°C of Ti-24Al-14Nb3V was investigated. Results indicated that Ti-24Al-14Nb-3V alloys exhibited poor oxidation resistance due to the formation of Al2O3+TiO2+AlNbO4 mixed scales in air at 800~900°C and poor hot corrosion resistance due to the spallation of scales formed in Na2SO4+K2SO4 melts at 850°C. Both Ti-S0Al-10Cr and Ti-50Al-20Cr coatings remarkably improved the oxidation and hot corrosion resistance of Ti-24Al-14Nb-3V alloy.

  6. Synthesis and characterization of binder-free Cr{sub 3}C{sub 2} coatings on nickel-based alloys for molten fluoride salt corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Brupbacher, Michael C.; Zhang, Dajie [Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Buchta, William M. [The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Graybeal, Mark L. [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Rhim, Yo-Rhin [The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Nagle, Dennis C. [Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Spicer, James B., E-mail: spicer@jhu.edu [Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2015-06-15

    Under various conditions, chromium carbides appear to be relatively stable in the presence of molten fluoride salts and this suggests that their use in corrosion resistant coatings for fluoride salt environments could be beneficial. One method for producing these coatings is the carburization of sprayed Cr coatings using methane-containing gaseous precursors. This process has been investigated for the synthesis of binder-free chromium carbide coatings on nickel-based alloy substrates for molten fluoride salt corrosion resistance. The effects of the carburization process on coating microstructure have been characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) in conjunction with energy dispersive spectroscopy (EDS). Both plasma-sprayed and cold-sprayed Cr coatings have been successfully converted to Cr{sub 3}C{sub 2}, with the mechanism of conversion being strongly influenced by the initial porosity in the as-deposited coatings.

  7. Effect of Sealing Treatment on Corrosion Resistance of Plasma-Sprayed NiCrAl/Cr2O3-8 wt.%TiO2 Coating

    Science.gov (United States)

    Zhang, Jingjing; Wang, Zehua; Lin, Pinghua; Lu, Wenhuan; Zhou, Zehua; Jiang, Shaoqun

    2011-03-01

    Plasma-sprayed ceramic coatings inherently contain pores and micro-cracks which is deleterious when performed in aggressive environment. Various methods were applied to the as-sprayed coatings in order to improve the corrosion resistance. In the investigation of this study, plasma-sprayed NiCrAl/Cr2O3-8 wt.%TiO2 coatings were sealed by epoxy resin and silicone resin, respectively. Coatings were characterized by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), optical microscopy (OM) and x-ray diffraction (XRD). The possible corrosion mechanism was discussed. The results of salt spray test and electrochemical measurements indicated that after the sealing treatment, the porosity of coatings decreased obviously and a compact layer was formed to protect the coating from corrosion. The silicone resin proved to be more effective than epoxy resin in enhancing the corrosion resistance of the coatings used in this research.

  8. Corrosion Resistance Properties of Aluminum Coating Applied by Arc Thermal Metal Spray in SAE J2334 Solution with Exposure Periods

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2016-03-01

    Full Text Available Arc thermal metal spray coating provides excellent corrosion, erosion and wear resistance to steel substrates. This paper incorporates some results of aluminum coating applied by this method on plain carbon steel. Thereafter, coated panels were exposed to an environment known to form stable corrosion products with aluminum. The coated panels were immersed in Society of Automotive Engineers (SAE J2334 for different periods of time. This solution consists of an aqueous solution of NaCl, CaCl2 and NaHCO3. Various electrochemical techniques, i.e., corrosion potential-time, electrochemical impedance spectroscopy (EIS and the potentiodynamic were used to determine the performance of stimulants in improving the properties of the coating. EIS studies revealed the kinetics and mechanism of corrosion and potentiodynamic attributed the formation of a passive film, which stifles the penetration of aggressive ions towards the substrate. The corrosion products that formed on the coating surface, identified using Raman spectroscopy, were Dawsonite (NaAlCO3(OH2 and Al(OH3. These compounds of aluminum are very sparingly soluble in aqueous solution and protect the substrate from pitting and uniform corrosion. The morphology and composition of corrosion products determined by scanning electron microscopy and energy dispersive X-ray analyses indicated that the environment plays a decisive role in improving the corrosion resistance of aluminum coating.

  9. Comparison of Super-Hydrophobicity and Corrosion Resistance of Micro-Nano Structured Nickel and Nickel- Cobalt Alloy Coatings on Copper Substrate

    Directory of Open Access Journals (Sweden)

    S. Khorsand

    2016-03-01

    Full Text Available Super-hydrophobic nickel and nickel-cobalt alloy coatings with micro-nano structure were successfully electrodeposited on copper substrates with one and two steps electrodeposition. Surface morphology, wettability and corrosion  resistance were characterized by scanning electron microscopy, water contact angle measurements, electrochemical impedanc spectroscopy (EIS and potentiodynamic polarization curves. The results showed that the wettability of the micro-nano Ni and Ni-Co films varied from super-hydrophilicity to super-hydrophobicity by exposure of the surface to air at room temperature. The corrosion results revealed the positive effect of hydrophobicity on corrosion resistance of Ni coating (~10 times and Ni-Co coating (~100 times in comparison with their fresh coatings. The results showed that super-hydrophobic nickel coating had higher corrosion resistance than super-hydrophobic nickel-cobalt coating.

  10. Wear and Corrosion Resistance of Fe Based Coatings by HVOF Sprayed on Gray Cast-Iron for Automotive Application

    Directory of Open Access Journals (Sweden)

    M.S. Priyan

    2014-12-01

    Full Text Available In this study, commercially available FeSiNiCr and FeBCr alloy powders were designed with suitable compositions, gas atomized and then coated on gray cast-iron substrate. The microstructures of the feed stock Fe based alloy powders and the coatings were investigated by means of optical microscopy (OM, X-Ray diffraction (XRD, Thermogravimetric analysis (TGA and Scanning Electron Microscopy (SEM. In the present study, both the coating materials experienced two-body wear mechanisms. The results showed that for loads of 0.05 N, 0.1 N and 0.2 N, the wear resistance of FeBCr coating was less than FeSiNiCr by 44 %, 40 % and 31 %, respectively. The results indicated that the coated substrates exhibited lower corrosion current densities and lower corrosion rates, when placed in 20 wt.% H2SO4 solutions. In addition, the use of optimal spraying parameters/conditions gave improvements to the corrosion resistance of the substrates that had been treated with the crystalline coating.

  11. Corrosion resistance of plasma sprayed NiCrAl + (ZrO2 + Y2O3 ) thermal barrier coating on 18 -8 steel surface

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei; L(U) Tao; DING Hua-dong; ZHOU Hai; LIU Kai

    2005-01-01

    The corrosion resistance of NiCrAl +(ZrO2 + Y2 O3 )thermal barrier coating, formed with the plasma spraying technique, on the 18 - 8 steel surface was investigated. The phase structure and morphology of the coating were analyzed by means of X-ray diffraction(XRD) and scanning electron microscopy(SEM). The electrochemical corrosion behavior of the coating in 1.0 mol/L H2 SO4 solution was studied by using electrochemical measurement methods. The results show that the gradient plasma spraying coating is composed of the NiCrAlY primer coating and the (ZrO2 + Y2O3 ) top coating, and the coating thickness is 360 μm. The microhardness of coating reaches 1 100 HV. The corrosion resistance of the plasma sprayed coating of the 18 - 8 steel surface is about 5 times as great as that of the original pattern. The corrosion resistance of the coating is enhanced notably.

  12. High Density Infrared (HDI) Transient Liquid Coatings for Improved Wear and Corrosion Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Ronald W. Smith

    2007-07-05

    This report documents a collaborative effort between Oak Ridge National Laboratory (ORNL), Materials Resources International and an industry team of participants to develop, evaluate and understand how high density infrared heating technology could be used to improve infiltrated carbide wear coatings and/or to densify sprayed coatings. The research included HDI fusion evaluations of infiltrated carbide suspensions such (BrazeCoat® S), composite suspensions with tool steel powders, thermally sprayed Ni-Cr- B-Si (self fluxing alloy) and nickel powder layers. The applied work developed practical HDI / transient liquid coating (TLC) procedures on test plates that demonstrated the ability to fuse carbide coatings for industrial applications such as agricultural blades, construction and mining vehicles. Fundamental studies helped create process models that led to improved process understanding and control. The coating of agricultural blades was demonstrated and showed the HDI process to have the ability to fuse industrial scale components. Sliding and brasive wear tests showed that high degree of wear resistance could be achieved with the addition of tool steel powders to carbide particulate composites.

  13. High Density Infrared (HDI) Transient Liquid Coatings for Improved Wear and Corrosion Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Ronald W. Smith

    2007-07-05

    This report documents a collaborative effort between Oak Ridge National Laboratory (ORNL), Materials Resources International and an industry team of participants to develop, evaluate and understand how high density infrared heating technology could be used to improve infiltrated carbide wear coatings and/or to densify sprayed coatings. The research included HDI fusion evaluations of infiltrated carbide suspensions such (BrazeCoat® S), composite suspensions with tool steel powders, thermally sprayed Ni-Cr- B-Si (self fluxing alloy) and nickel powder layers. The applied work developed practical HDI / transient liquid coating (TLC) procedures on test plates that demonstrated the ability to fuse carbide coatings for industrial applications such as agricultural blades, construction and mining vehicles. Fundamental studies helped create process models that led to improved process understanding and control. The coating of agricultural blades was demonstrated and showed the HDI process to have the ability to fuse industrial scale components. Sliding and brasive wear tests showed that high degree of wear resistance could be achieved with the addition of tool steel powders to carbide particulate composites.

  14. The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei; Zhang, Guangdao [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Tan, Lili; Yang, Ke [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Ai, Hongjun, E-mail: aihongjuna@sina.com [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China)

    2016-06-01

    This study aimed to evaluate the effect of fluorine coated Mg alloy and clarify its mechanism in bone formation. We implanted the fluorine coated AZ31B Mg alloy screw (group F) in rabbit mandibular and femur in vivo. Untreated AZ31B Mg alloy screw (group A) and titanium screw (group T) were used as control. Then, scanning electron microscopy, the spectral energy distribution analysis, hard and decalcified bone tissues staining were performed. Immunohistochemistry was employed to examine the protein expressions of bone morphogenetic protein 2 (BMP-2) and collagen type I in the vicinity of the implant. Compared with the group A, the degradation of the alloy was reduced, the rates of Mg corrosion and Mg ion release were slowed down, and the depositions of calcium and phosphate increased in the group F in the early stage of implantation. Histological results showed that fluorine coated Mg alloy had well osteogenic activity and biocompatibility. Moreover, fluoride coating obviously up-regulated the expressions of collagen type I and BMP-2. This study confirmed that the fluorine coating might improve the corrosion resistance of AZ31B Mg alloy and promote bone formation by up-regulated the expressions of collagen type I and BMP-2. - Highlights: • Fluoride coating inhibited the degradation of the alloy in the early implantation. • Fluorine coating could slow down the rate of Mg corrosion and Mg ion release. • Fluorine coating could promote the deposition of Ca and P in vivo. • Fluorine coated Mg alloy had well osteogenic activity and biocompatibility. • Fluorine coating up-regulated the expression of BMP-2 and collagen type I protein.

  15. The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model.

    Science.gov (United States)

    Sun, Wei; Zhang, Guangdao; Tan, Lili; Yang, Ke; Ai, Hongjun

    2016-06-01

    This study aimed to evaluate the effect of fluorine coated Mg alloy and clarify its mechanism in bone formation. We implanted the fluorine coated AZ31B Mg alloy screw (group F) in rabbit mandibular and femur in vivo. Untreated AZ31B Mg alloy screw (group A) and titanium screw (group T) were used as control. Then, scanning electron microscopy, the spectral energy distribution analysis, hard and decalcified bone tissues staining were performed. Immunohistochemistry was employed to examine the protein expressions of bone morphogenetic protein 2 (BMP-2) and collagen type I in the vicinity of the implant. Compared with the group A, the degradation of the alloy was reduced, the rates of Mg corrosion and Mg ion release were slowed down, and the depositions of calcium and phosphate increased in the group F in the early stage of implantation. Histological results showed that fluorine coated Mg alloy had well osteogenic activity and biocompatibility. Moreover, fluoride coating obviously up-regulated the expressions of collagen type I and BMP-2. This study confirmed that the fluorine coating might improve the corrosion resistance of AZ31B Mg alloy and promote bone formation by up-regulated the expressions of collagen type I and BMP-2.

  16. Corrosion Resistance of Ni-Based WC/Co Coatings Deposited by Spray and Fuse Process Varying the Oxygen Flow

    Science.gov (United States)

    Jiménez, H.; Olaya, J. J.; Alfonso, J. E.; Mtshali, C. B.; Pineda-Vargas, C. A.

    2017-08-01

    In this work, the effect of oxygen flow variation in the corrosion behavior of Ni-based WC/Co coatings deposited by spray and fuse process was investigated. The coatings were deposited on gray cast iron substrates using a Superjet Eutalloy thermal spraying gun. The morphology of the coatings was analyzed using scanning electron microscopy. The crystallographic phases were registered by x-ray diffraction (XRD), the diffraction patterns show the crystalline phases of the powder components with principal reflections for Ni and WC, the increase in flame temperature, due to the oxygen flow variation, generated amorphization in the nickel and an important crystallization of the planes (111) and (222) of WC as well as the decarburization of WC in W2C and W metallic. The corrosion behavior was investigated at room temperature in a 3.5% w/w aqueous solution of NaCl via potentiodynamic polarization. Electrochemical corrosion test showed that the coatings deposited under neutral flame conditions with an oxygen flow of 12.88 SCFH evidenced higher corrosion resistance. The chemical composition of the coatings and corrosion areas were analyzed by particle-induced x-ray emission, this technique permitting the corroboration of the decarburization process of WC determined by XRD and the formation of Cl structures.

  17. Effects of increase extent of voltage on wear and corrosion resistance of micro-arc oxidation coatings on AZ91D alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effects of increase extent of voltage on the wear resistance and corrosion resistance of micro-arc oxidation(MAO)coatings on AZ91D magnesium alloy were investigated in silicate electrolyte.The results show that with increasing extent of voltage,both of the thickness and bonding force of MAO coatings first increase,and then decrease.These parameters are all up to their maximum values when the increase extent of voltage is 20 V.The roughness of the coatings always increases.The coating has the best corrosion resistance when the increase extent of voltage is not below 25 V,and the coating has the best wear resistance when the increase extent of voltage is 10 V.The wear mechanisms for the micro-arc oxidation are abrasive wear and micromachining wear.These are related to their microstructures.

  18. Formation of Chromium Coating and Comparative Examination on Corrosion Resistance with 13Cr Steel in CO2-SATURATED Simulated Oilfield Brine

    Science.gov (United States)

    Zou, Jiaojuan; Xie, Faqin; Lin, Naiming; Yao, Xiaofei; Tian, Wei; Tang, Bin

    2013-07-01

    In order to enhance the surface properties of P110 oil casing tube steel and increase its usage during operation, chromium coating was fabricated by pack cementation. Scanning electron microscope, energy dispersive spectrometry and X-ray diffraction were used to investigate the surface morphology, cross-sectional microstructure, element distribution and phase constitutions of the coating. Comparative examinations on corrosion resistance between chromium coating and 13Cr stainless steel in CO2-saturated simulated oilfield brine were carried out via electrochemical measurements. The results showed that the obtained coating was uniform and compact, mainly consisted of CrxCy and doped with minor Cr2N. Chromizing treatment made it possible to create on the working surface of P110 steel with enhanced corrosion resistance, and the chromium coating indicated lower pitting corrosion sensitivity than that of 13Cr stainless steel.

  19. Durable Corrosion Resistance of Copper Due to Multi-Layer Graphene

    Directory of Open Access Journals (Sweden)

    Abhishek Tiwari

    2017-09-01

    Full Text Available Ultra-thin graphene coating has been reported to provide considerable resistance against corrosion during short-term exposures, however, there is great variability in the corrosion resistance due to graphene coating in different studies. It may be possible to overcome the problem of hampered corrosion protection ability of graphene that is caused due to defective single layer graphene by applying multilayer graphene. Systematic electrochemical characterization showed that the multilayer graphene coating developed in the study provided significant corrosion resistance in a chloride solution and the corrosion resistance was sustained for long durations (~400 h, which is attributed to the multilayer graphene.

  20. Corrosion Resistance of 304L SS Spray Coated with Zirconia Nanoparticles

    Science.gov (United States)

    Maheswari, A. Uma; Sivakumar, M.; Indhumathi, N.; Mohan, Sreedevi R.

    2016-09-01

    Influence of substrate temperature on corrosion (in 3.5% NaCl) and wear resistance of nanostructured zirconia thin film coated 304L SS substrates are studied by electrochemical and nano-indentation methods. This analysis shows 304L SS substrate spray coated with nanostructured zirconia at substrate temperature closer to the boiling point of the spray solvent ethanol exhibited good corrosion and wear resistance behaviour. This is because of the compressive stress developed during film fabrication at lower substrate temperature (∼50 °C) and hence constrains the indentation plasticity, which leads to higher indentation load than the bare 304L SS.

  1. Electrodeposition and corrosion resistance of nanocrystalline white bronze (CuSn) coatings

    NARCIS (Netherlands)

    Hovestad, A.; Lekka, M.; Willemsen, R.M.R.; Tacken, R.A.; Bonora, P.L.

    2008-01-01

    For jewellery applications electroplated white bronze (CuSn) was investigated as undercoating for noble metal finishes as alternative to nickel. A strongly acidic plating bath was developed with an organic additive to suppress hydrogen evolution and obtain bright coatings. An electrochemical study o

  2. Electrodeposition and corrosion resistance of nanocrystalline white bronze (CuSn) coatings

    NARCIS (Netherlands)

    Hovestad, A.; Lekka, M.; Willemsen, R.M.R.; Tacken, R.A.; Bonora, P.L.

    2008-01-01

    For jewellery applications electroplated white bronze (CuSn) was investigated as undercoating for noble metal finishes as alternative to nickel. A strongly acidic plating bath was developed with an organic additive to suppress hydrogen evolution and obtain bright coatings. An electrochemical study

  3. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Materials (HPCRM) Development Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J; Saw, C; Haslem, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D' Amato, A; Aprigliano, L

    2009-03-16

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal make this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of these iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  4. Development of new corrosion-resistant and wear-resistant materials for use in aggressive hydrogen medium

    Energy Technology Data Exchange (ETDEWEB)

    Slys, I.G.; Berezanskaya, V.I.; Kossko, I.A.; Pomytkin, A.P. [National Academy of Sciences of the Ukraine, Kiev (Ukraine). Inst. for Problems of Materials Science

    2001-05-01

    Sulphidized chromium exceeds similar double-amorphous alloys with sulphur content up to 30% and chemical heat coatings by its corrosive, mechanical and antifrictional characteristics. It can be used individually or as a macroisotopic composite chromium sulphide coating, as corrosion-resistant and high-temperature tribotechnical material. The use of sulphidized chromium and composite isotropic chromium sulphide coatings for fraction units, end seals and other critical assemblies of equipment used for production, transportation and processing of oil and gas with increased content of aggressive components (such as hydrogen sulphide and carbon dioxide) can significantly improve technology and ecological safety. (Author)

  5. Vegetable-Oil-Based Hyperbranched Polyester-Styrene Copolymer Containing Silver Nanoparticle as Antimicrobial and Corrosion-Resistant Coating Materials

    Directory of Open Access Journals (Sweden)

    Manawwer Alam

    2013-01-01

    Full Text Available Pongamia oil (PO was converted to Pongamia oil hydroxyl (POH via epoxidation process. The esterification of POH with linolenic acid was carried out to form hyperbranched polyester (HBPE, and further styrenation was performed at the conjugated double bond in the chain of linolenic acid. After styrenation, silver nanoparticle was added in different weight percentages (0.1–0.4 wt%. The structural elucidation of POH, HBPE, and HBPE-St was carried out by FT-IR, 1H-NMR, and 13C-NMR spectroscopic techniques. Physicochemical and physicomechanical analyses were performed by standard method. Thermal behavior of the HBPE-St was analyzed by using thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The coatings of HBPE-St were prepared on mild steel strips. The anticorrosive behavior of HBPE-St resin-based coatings in acid, saline, and tap water was evaluated, and the molecular weight of HBPE-St was determined by gel permeation chromatography (GPC. The antibacterial activities of the HBPE-St copolymers were tested in vitro against bacteria and fungi by disc diffusion method. The HBPE-St copolymers exhibited good antibacterial activities and can be used as antimicrobial and corrosion-resistant coating materials.

  6. Effect of WO3 nanoparticle loading on the microstructural, mechanical and corrosion resistance of Zn matrix/TiO2-WO3 nanocomposite coatings for marine application

    Science.gov (United States)

    Popoola, A. P. I.; Daniyan, A. A.; Umoru, L. E.; Fayomi, O. S. I.

    2017-03-01

    In this study, for marine application purposes, we evaluated the effect of process parameter and particle loading on the microstructure, mechanical reinforcement and corrosion resistance properties of a Zn-TiO2-WO3 nanocomposite produced via electrodeposition. We characterized the morphological properties of the composite coatings with a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive Spectrometer (EDS). We carried out mechanical examination using a Dura Scan hardness tester and a CERT UMT-2 multi-functional tribological tester. We evaluated the corrosion properties by linear polarization in 3.5% NaCl. The results show that the coatings exhibited good stability and the quantitative particle loading greatly enhanced the structural and morphological properties, hardness behavior and corrosion resistance of the coatings. We observed the precipitation of this alloy on steel is greatly influenced by the composite characteristics.

  7. Corrosion resistance appraisal of TiN, TiCN and TiAlN coatings deposited by CAE-PVD method on WC-Co cutting tools exposed to artificial sea water

    Science.gov (United States)

    Matei, A. A.; Pencea, I.; Branzei, M.; Trancă, D. E.; Ţepeş, G.; Sfăt, C. E.; Ciovica (Coman), E.; Gherghilescu, A. I.; Stanciu, G. A.

    2015-12-01

    A new advanced sintered composite cutting tool has been developed based on tungsten carbide matrix ligated with cobalt (WC-Co) additivated with tantalum carbide (TaC), titanium carbide (TiC) and niobium carbide (NbC) as grain growth inhibitors. Titanium nitride (TiN), titanium carbonitride (TiCN) and titanium aluminium nitride (TiAlN) coatings were deposited on these tools by CAE-PVD technique to find out the best solution to improve the corrosion resistance of this tool in marine environment. The electrochemical behaviours of the specimens in 3.5% NaCl water solution were estimated by potentiodynamic polarization measurements i.e. the open circuit potential (Eoc), corrosion potential (Ecorr) and corrosion current density (icorr). Wide angle X-ray diffraction (WAXD), optical microscopy (OM) and atomic force microscopy (AFM) investigations have been carried on tested and untested specimens to substantiate the corrosion resistance of the tested specimens. Based on the open circuit potential (Eoc) and corrosion potential (Ecorr) results, the tested specimens were ranked as TiN, TiAlN, TiCN and WC-Co while on corrosion current density (icorr) and protective efficiency (P) values they have been ranked as TiN, TiAlN, WC-Co and TiCN. The WAXD, MO and AFM results unambiguously show that the corrosion resistance depends on the nature and morphology of the coating.

  8. Influence of bath PH value on microstructure and corrosion resistance of phosphate chemical conversion coating on sintered Nd-Fe-B permanent magnets

    Science.gov (United States)

    Ding, Xia; Xue, Long-fei; Wang, Xiu-chun; Ding, Kai-hong; Cui, Sheng-li; Sun, Yong-cong; Li, Mu-sen

    2016-10-01

    The effect of bath PH value on formation, microstructure and corrosion resistance of the phosphate chemical conversion (PCC) coatings as well as the effect on the magnetic property of the magnets is investigated in this paper. The results show that the coating mass and thickness increase with the decrease of the bath PH value. Scanning electron microscopy observation demonstrates that the PCC coatings are in a blocky structure with different grain size. Transmission electron microscope and X-ray diffractometer tests reveal the coatings are polycomponent and are mainly composed of neodymium phosphate hydrate and praseodymium phosphate hydrate. The electrochemical analysis and static immersion corrosion test show the corrosion resistance of the PCC coatings prepared at bath PH value of 0.52 is worst. Afterwards the corrosion resistance increases first and then decreases with the increasing of the bath PH values. The magnetic properties of all the samples with PCC treatment are decreased. The biggest loss is occurred when the bath PH value is 0.52. Taken together, the optimum PH range of 1.00-1.50 for the phosphate solution has been determined.

  9. Corrosion-resistant uranium

    Science.gov (United States)

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  10. Effect of current density on the structure, composition and corrosion resistance of plasma electrolytic oxidation coatings on Mg-Li alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijun [Key Laboratory of Superlight Materials and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Yuan, Yi, E-mail: yi.yuan@hrbeu.edu.cn [Key Laboratory of Superlight Materials and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Jing, Xiaoyan [Key Laboratory of Superlight Materials and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The PEO coatings exhibit tunable characteristics by controlling the current density. Black-Right-Pointing-Pointer The coating formed at 5 A/dm{sup 2} exhibits the highest corrosion resistance. Black-Right-Pointing-Pointer Anti-corrosion properties of PEO coatings are related to coating surface composition. - Abstract: The effect of current density on the oxidation process, morphology, composition and anti-corrosion properties of coatings are elucidated. X-ray photoelectron spectroscopy and X-ray diffraction analysis of coatings show that coatings prepared at different current densities are composed of MgO and {gamma}-Mg{sub 2}SiO{sub 4} and {alpha}-Mg{sub 2}SiO{sub 4} phase. The chemical composition of PEO coatings varies from surface to the interior of the oxide coating. The PEO coatings exhibit tunable thickness, composition ratio, and porosity by controlling the current density, which ultimately affects film morphology and anti-corrosion properties. The superior corrosion resistance of coating obtained at 5 A/dm{sup 2} is attributed to the compactness of the barrier layer and the highest MgO/Mg{sub 2}SiO{sub 4} ratio.

  11. A study on microstructure and corrosion resistance of ZrO2-containing PEO coatings formed on AZ31 Mg alloy in phosphate-based electrolyte

    Science.gov (United States)

    Zhuang, J. J.; Guo, Y. Q.; Xiang, N.; Xiong, Y.; Hu, Q.; Song, R. G.

    2015-12-01

    ZrO2-containing ceramic coatings formed on the AZ31 Mg alloy were fabricated in an alkaline electrolyte containing sodium phosphate and potassium fluorozirconate (K2ZrF6) by plasma electrolytic oxidation (PEO). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) techniques were used to study the phase structure and composition of the coatings. It is indicated that the coatings formed in the K2ZrF6-containing electrolyte were composed of MgO, MgF2 and t-ZrO2. Morphological investigation carried out by scanning electron microscopy (SEM) and stereoscopic microscopy, revealed that the uniformity of coatings increased and roughness of coatings decreased after the addition of K2ZrF6. Electrochemical investigation was achieved by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test. The results showed that the PEO coating formed in K2ZrF6-containing electrolyte exhibited an improved corrosion resistance than that of the coating formed in K2ZrF6-free electrolyte. In addition, the polarization and EIS tests results both showed that the suitable concentration (2.5 g/l) of K2ZrF6 is of significant ability to improve the corrosion resistance of coatings. However, 5 g/l and 10 g/l K2ZrF6 has a negative effect on improving the corrosion resistance of PEO coatings compared with the coating formed in 2.5 g/l K2ZrF6-containing electrolyte.

  12. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez-Mariano; Angel Sanjurjo

    2007-03-31

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the hightemperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period, we analyzed several 409 low alloy steel samples after coating them in our fluidized bed reactor and also after exposing them to our corrosion test. We report the following findings: 1. A protective coating was deposited inside a porous 409 steel sample to protect it from sulfidation attack. The coating was based on a combination of Si diffusion layer, Nb interlayer and nitrides of titanium and silicon. 2. Analysis of solid coupons exposed to simulated coal gas at 900 C for 300 h showed that multilayer metal/ceramic coatings provide a better protection than ceramic coatings. 3. Deposition of several ceramic/metal multilayer coatings showed that coatings with niobium and tantalum interlayers have good adhesion. However, coatings with a tungsten interlayer suffered localized delaminating and coatings with Zr interlayers showed poor adhesion. 4. Analysis of solid coupons, coated with the above-mentioned multilayer films, after exposure to simulated coal gas at 900 C for 300 h showed that niobium is the best candidate for interlayer material.

  13. Effect of Corrosion Resistant Coatings on the Fatigue Strength of Cast Magnesium Alloys

    Science.gov (United States)

    1977-08-01

    DOW 17 anodic coatings - both light and heavy applications. Pretreatments such as acid pickling, shot peening, and polystyrene impregnation were also...After 7 Days in HJjh Ituoidity Environnent ................... 74 SO Exposed and Unexposed (Upper Left Only) Speciroens With DOW 7 Coating (06...standard acid pickling pretreatment was also evaluated as well as practices not currently employed such as polystyrene impregnation and shot peening

  14. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez-Mariano; Angel Sanjurjo

    2006-06-30

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period, we analyzed several coated and exposed samples of 409 steel by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). We report here on findings of this analysis: (1) A SS409 coupon that was coated with multilayered combined nitrides of Ti, Al, and Si showed adherent coatings on the surface; (2) A similarly coated coupon, after exposure to simulated coal gas at 900 C for 300 h, revealed that the coating has cracked during the exposure; (3) An SS409 coupon that was coated with nitrides of Ti and Si with a barrier layer of tungsten in between to improve the adhesion of the coating and to prevent outward diffusion of iron to the surface. (4) A porous coupon was coated with nitrides of Ti and Al and examination of the coupon revealed deposition of Ti at the interior surfaces. A similarly prepared coupon was exposed to simulated coal gas at 370 C for 300 h, and it showed no corrosion.

  15. Enhanced corrosion resistance and hemocompatibility of biomedical NiTi alloy by atmospheric-pressure plasma polymerized fluorine-rich coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Penghui; Li, Limin [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wang, Wenhao [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Division of Spine Surgery, Department of Orthopaedics and Traumatology, Pokfulam, Hong Kong (China); Jin, Weihong [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Liu, Xiangmei [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062 (China); Yeung, Kelvin W.K. [Division of Spine Surgery, Department of Orthopaedics and Traumatology, Pokfulam, Hong Kong (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2014-04-01

    Highlights: • Fluoropolymer is deposited on NiTi alloy via atmospheric-pressure plasma polymerization. • The corrosion resistance of NiTi alloy in SBF and DMEM is evidently improved. • The adsorption ratio of albumin to fibrinogen is increased on the coated surface. • The reduced platelet adhesion number indicates better in vitro hemocompatibility. - Abstract: To improve the corrosion resistance and hemocompatibility of biomedical NiTi alloy, hydrophobic polymer coatings are deposited by plasma polymerization in the presence of a fluorine-containing precursor using an atmospheric-pressure plasma jet. This process takes place at a low temperature in air and can be used to deposit fluoropolymer films using organic compounds that cannot be achieved by conventional polymerization techniques. The composition and chemical states of the polymer coatings are characterized by fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the coated and bare NiTi samples is assessed and compared by polarization tests and electrochemical impedance spectroscopy (EIS) in physiological solutions including simulated body fluids (SBF) and Dulbecco's Modified Eagle's medium (DMEM). The corrosion resistance of the coated NiTi alloy is evidently improved. Protein adsorption and platelet adhesion tests reveal that the adsorption ratio of albumin to fibrinogen is increased and the number of adherent platelets on the coating is greatly reduced. The plasma polymerized coating renders NiTi better in vitro hemocompatibility and is promising as a protective and hemocompatible coating on cardiovascular implants.

  16. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2005-09-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period, we conducted several exposure tests with coated and uncoated coupons including a ''500-h'' test. The first experiment was a 316-h test and was designed to look at the performance of Ti/Ta nitride coatings, which seemed to fare the best in earlier tests. The next experiment was a 112-h test with a range of pure metals and commercially available materials. Its purpose was to help identify those metals that best withstood gasifier environment, and hence should be good ingredients for coatings. Finally, we ran a ''500-h'' test, which was also our milestone, with coupons coated with Ti/Ta nitride or Cr/Al coatings.

  17. Preparation and Corrosion Resistance of Magnesium Coatings by Magnetron Sputtering Deposition

    Institute of Scientific and Technical Information of China (English)

    Hongwei HUO; Ying LI; Fuhui WANG

    2003-01-01

    Magnesium coatings were fabricated on stainless steel substrates (1Cr11Ni2W2MoV) by a plane magnetron sputteringtechnique. The argon pressure and the substrate condition (including temperature and the substrate was rotated orfixed) were varied in order to evaluate the influence of the parameters on the crystal orientation and morphology of thecoating. The corrosion behavior of the coatings in 1 wt pct NaCl solution was studied by electrochemical methods.The results showed that all coatings exhibited preferred orientation (002) as the argon pressure increased from 0.2 to0.4 Pa. The morphologies of the coatings varied with the argon pressure and with whether the substrate was rotatedor fixed. The open circuit potential of the coatings was more positive than that of cast AZ91D magnesium alloy.However, the immersion test in 1 wt pct NaCl solution showed that the corrosion rates of the coatings were higherthan that of cast AZ91D magnesium alloy.

  18. Effects of heat treatment on the corrosion resistance of carbon steel coated with LaMgAl11O19 thermal barrier coatings

    Institute of Scientific and Technical Information of China (English)

    Liang-liang Huang; Hui-min Meng; Li-kang Liang; Sen Li; Jin-hui Shi

    2015-01-01

    LaMgAl11O19 thermal barrier coatings (TBCs) were applied to carbon steels with a NiCoCrAlY bond coat by plasma spraying. The effects of heat treatment on the corrosion resistance of carbon steel coated with LaMgAl11O19 TBCs were investigated in 3.5wt% NaCl solution using polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and X-ray diffrac-tion (XRD). The results show that a large number of cracks are found in the LaMgAl11O19 TBCs after the samples are heat-treated, including some through-thickness cracks. The corrosion forms of the as-sprayed and heat-treated TBCs are uniform corrosion and pitting corrosion, respectively. The as-sprayed TBCs exhibit three EIS time constants after being immersed for less than 7 d, and then a new time constant ap-pears because of steel substrate corrosion. When the immersion time is increased to 56 d, a Warburg impedance (W) component appears in the EIS data. The EIS data for the heat-treated TBCs exhibit only two time constants after the samples are immersed for less than 14 d, and a new time constant appears when the immersion time is increased further. The heat treatment reduces the corrosion resistance of carbon steel coated with LaMgAl11O19 TBCs. The corrosion products are primarilyγ-FeOOH and Fe3O4.

  19. Innovative micro-textured hydroxyapatite and poly(l-lactic)-acid polymer composite film as a flexible, corrosion resistant, biocompatible, and bioactive coating for Mg implants.

    Science.gov (United States)

    Kim, Sae-Mi; Kang, Min-Ho; Kim, Hyoun-Ee; Lim, Ho-Kyung; Byun, Soo-Hwan; Lee, Jong-Ho; Lee, Sung-Mi

    2017-12-01

    The utility of a novel ceramic/polymer-composite coating with a micro-textured microstructure that would significantly enhance the functions of biodegradable Mg implants is demonstrated here. To accomplish this, bioactive hydroxyapatite (HA) micro-dots can be created by immersing a Mg implant with a micro-patterned photoresist surface in an aqueous solution containing calcium and phosphate ions. The HA micro-dots can then be surrounded by a flexible poly(l-lactic)-acid (PLLA) polymer using spin coating to form a HA/PLLA micro-textured coating layer. The HA/PLLA micro-textured coating layer showed an excellent corrosion resistance when it was immersed in a simulated body fluid (SBF) solution and good biocompatibility, which was assessed by in vitro cell tests. In addition, the HA/PLLA micro-textured coating layer had high deformation ability, where no apparent changes in the coating layer were observed even after a 5% elongation, which would be unobtainable using HA and PLLA coating layers; furthermore, this allowed the mechanically-strained Mg implant with the HA/PLLA micro-textured coating layer to preserve its excellent corrosion resistance and biocompatibility in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2006-01-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period we tested coated alloy coupons under conditions designed to mimic the conditions in the filter unit after the high-temperature heat recovery unit (HTHRU). The filter unit is another important area where corrosion has caused unscheduled downtime, and the remedy has been the use of sintered metal tubes made of expensive alloys such as inconel. The objective of our test was to determine if those coatings on 400-series steel that were not able to withstand the harsher conditions of the HTHRU, may be sufficiently resistant for use in the filter unit, at the reduced temperatures. Indeed, most of our coatings survived well; the exceptions were the coated porous samples of SS316. We continued making improvements to our coatings apparatus and the procedure began during the last quarter. As a result of these modifications, the coupons we are now producing are uniform. We describe the improved procedure for preparing diffusion coatings. Finally, because porous samples of steel in grades other than SS316 are not readily available, we also decided to procure SS409 powder and fabricate our own sintered porous coupons.

  1. Corrosion-resistant coatings for high-temperature high-sulfur- activity applications

    Energy Technology Data Exchange (ETDEWEB)

    Selman, J.R.; Aladjov, B.; Chen, B. (Illinois Inst. of Tech., Chicago, IL (United States). Chemical Engineering Dept.)

    1992-01-01

    The previously started experiments to verify the feasibility of obtaining molybdenum and molybdenum carbide coatings from oxide-based melts were continued. A molten salt bath consisting of an equimolar mixture of Na{sub 2}WO{sub 4} and K{sub 2}WO{sub 4} was used. The molybdenum and carbon species were introduced as alkali molybdate and carbonate. The coating morphology depends strongly on melt composition, temperature and moisture content. Application of initial pre-electrolysis significantly changes the composition and morphology of the coatings. Using non-lithium alkali salts, coatings of better quality were obtained. Adding 3-8 mol% Na{sub 2}B{sub 4}O{sub 7} to the basic non-lithium bath composition was observed to cause significant morphology and quality changes. Bath compositions produce a more uniform small-grain-size coating and they do not require extensive purification. Constant current and reverse and/or pulse current patterns were applied during plating. The latter produces smaller-grain-size coatings at the same working temperature. Research was undertaken to deposit Mo and Mo{sub 2} C films on a substrate 2.5 cm by 3.8 cm in area. Using an orthogonal factorial design, a new series of experiments has been carried out to investigate the effect of the evaporation rate of Mo(CO){sub 6} as a precursor. From the weight gain of the substrate, initial conclusions have been drawn about the optimal conditions for maximum evaporation rate, deposition rate and thickness. Thicker coatings (a few {mu}m) have been obtained which show two different types of crystallites growing on an initially amorphous film. A two dimensional transport and reaction kinetics model for a parallel-plate PECVD reactor was outlined. The PECVD results will be used to verify the model. The primary parameters to be explored are those representing the deposition kinetics of Mo and C.

  2. Corrosion-resistant coatings for high-temperature high-sulfur- activity applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Selman, J.R.; Aladjov, B.; Chen, B. [Illinois Inst. of Tech., Chicago, IL (United States). Chemical Engineering Dept.

    1992-01-01

    The previously started experiments to verify the feasibility of obtaining molybdenum and molybdenum carbide coatings from oxide-based melts were continued. A molten salt bath consisting of an equimolar mixture of Na{sub 2}WO{sub 4} and K{sub 2}WO{sub 4} was used. The molybdenum and carbon species were introduced as alkali molybdate and carbonate. The coating morphology depends strongly on melt composition, temperature and moisture content. Application of initial pre-electrolysis significantly changes the composition and morphology of the coatings. Using non-lithium alkali salts, coatings of better quality were obtained. Adding 3-8 mol% Na{sub 2}B{sub 4}O{sub 7} to the basic non-lithium bath composition was observed to cause significant morphology and quality changes. Bath compositions produce a more uniform small-grain-size coating and they do not require extensive purification. Constant current and reverse and/or pulse current patterns were applied during plating. The latter produces smaller-grain-size coatings at the same working temperature. Research was undertaken to deposit Mo and Mo{sub 2} C films on a substrate 2.5 cm by 3.8 cm in area. Using an orthogonal factorial design, a new series of experiments has been carried out to investigate the effect of the evaporation rate of Mo(CO){sub 6} as a precursor. From the weight gain of the substrate, initial conclusions have been drawn about the optimal conditions for maximum evaporation rate, deposition rate and thickness. Thicker coatings (a few {mu}m) have been obtained which show two different types of crystallites growing on an initially amorphous film. A two dimensional transport and reaction kinetics model for a parallel-plate PECVD reactor was outlined. The PECVD results will be used to verify the model. The primary parameters to be explored are those representing the deposition kinetics of Mo and C.

  3. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2005-12-01

    Heat exchangers, particle filters, turbines, and other components in an integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high-alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period, we conducted a simulated gasifier test primarily with TiN-coated steel samples. Although the test showed these coatings to offer significant protection against corrosion, they also revealed a lack of uniformity in the coatings. We spent a considerable amount of effort improving our coatings procedure as well as the fluidized bed reactor and its heater. Based on the results collected thus far, we selected 12 samples and sent them to ConocoPhillips for testing in their gasifier at the Wabash River Energy plant.

  4. Improvement to the Corrosion Resistance of Ti-Based Implants Using Hydrothermally Synthesized Nanostructured Anatase Coatings

    Directory of Open Access Journals (Sweden)

    Martina Lorenzetti

    2014-01-01

    Full Text Available The electrochemical behavior of polycrystalline TiO2 anatase coatings prepared by a one-step hydrothermal synthesis on commercially pure (CP Ti grade 2 and a Ti13Nb13Zr alloy for bone implants was investigated in Hank’s solution at 37.5 °C. The aim was to verify to what extent the in-situ-grown anatase improved the behavior of the substrate in comparison to the bare substrates. Tafel-plot extrapolations from the potentiodynamic curves revealed a substantial improvement in the corrosion potentials for the anatase coatings. Moreover, the coatings grown on titanium also exhibited lower corrosion-current densities, indicating a longer survival of the implant. The results were explained by considering the effects of crystal morphology, coating thickness and porosity. Evidence for the existing porosity was obtained from corrosion and nano-indentation tests. The overall results indicated that the hydrothermally prepared anatase coatings, with the appropriate morphology and surface properties, have attractive prospects for use in medical devices, since better corrosion protection of the implant can be expected.

  5. Effect of Heat Treatment on Corrosion Resistance of Ni-B Coating%热处理对Ni-B涂层耐腐蚀性能的影响

    Institute of Scientific and Technical Information of China (English)

    孙万昌; 张磊; 谭明锋; 丁晋

    2011-01-01

    Electroless Ni-B alloy coating was prepared on medium carbon steel sheet using a low temperature electroless bath. The surface and cross-section morphologies of Ni-B alloy coating were observed with optical microscope. The influences of heat treatment on phase structure and corrosion resistance of the coating were studied. The results show that Ni-B coating shows a good adhesion to the substrate. The structure of as-plated Ni-B coating is amorphous, and the coating shows the best corrosion resistance. However, the corrosion resistance of Ni-B coating decreases after heat treatment.%采用低温化学镀液相沉积技术,以45钢为基体材料,制备了Ni-B合金镀层.利用光学显微镜观察了镀层的微观形貌,借助X射线衍射仪分析了热处理前后Ni-B镀层相结构的变化,采用电化学极化曲线表征了热处理前后镀层的腐蚀过电位.结果表明:Ni-B镀层与45钢基体结合较好,界面连续、均匀、平整,表面形貌呈菜花状的胞状结构.NaBH-4的添加量为0.9g/L时,Ni-B镀层呈非晶态,Ni-B镀层的耐蚀性最好.热处理后,镀层由非晶态向晶态转变,镀层的耐蚀性下降.

  6. Influence of heat treatment on bond strength and corrosion resistance of sol-gel derived bioglass-ceramic coatings on magnesium alloy.

    Science.gov (United States)

    Shen, Sibo; Cai, Shu; Xu, Guohua; Zhao, Huan; Niu, Shuxin; Zhang, Ruiyue

    2015-05-01

    In this study, bioglass-ceramic coatings were prepared on magnesium alloy substrates through sol-gel dip-coating route followed by heat treatment at the temperature range of 350-500°C. Structure evolution, bond strength and corrosion resistance of samples were studied. It was shown that increasing heat treatment temperature resulted in denser coating structure as well as increased interfacial residual stress. A failure mode transition from cohesive to adhesive combined with a maximum on the measured bond strength together suggested that heat treatment enhanced the cohesion strength of coating on the one hand, while deteriorated the adhesion strength of coating/substrate on the other, thus leading to the highest bond strength of 27.0MPa for the sample heat-treated at 450°C. This sample also exhibited the best corrosion resistance. Electrochemical tests revealed that relative dense coating matrix and good interfacial adhesion can effectively retard the penetration of simulated body fluid through the coating, thus providing excellent protection for the underlying magnesium alloy.

  7. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2006-06-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. In previous tests, we had frequently encountered problems with our steam generator that were exacerbated by the very low flow rates that we needed. During this period we installed a new computer-controlled system for injecting water into the steam generator that eliminated this problem. We also tested alloy coupons coated by using the improved procedures described in our last quarterly report. Most of these coatings were nitrided Ti and Ta coatings, either by themselves, or sometimes with barrier layers of Al and Si nitrides. The samples were tested for 300 h at 900 C in a gas stream designed to mimic the environment in the high temperature heat recovery unit (HTHRU). Three samples that showed least corrosion were exposed for an additional 100 h.

  8. Corrosion resistance of Zn-Co-Fe alloy coatings on high strength steel

    NARCIS (Netherlands)

    Lodhi, Z.F.; Mol, J.M.C.; Hovestad, A.; Hoen-Velterop, L. 't; Terryn, H.; Wit, J.H.W.de

    2009-01-01

    The corrosion properties of electrodeposited zinc-cobalt-iron (Zn-Co-Fe) alloys (up to 40 wt.% Co and 1 wt.% Fe) on steel were studied by using various electrochemical techniques and compared with zinc (Zn) and cadmium (Cd) coatings in 3.5% NaCl solution. It was found that with an increase in Co con

  9. Electrochemical methods for characterisation of thermal spray corrosion resistant stainless steel coatings

    NARCIS (Netherlands)

    Hofman, R.; Vreijling, M.P.W.; Ferrari, G.M.; Wit, J.H.W. de

    1998-01-01

    The use of thermal spray stainless steel coatings for protection of low alloyed steels against different types of corrosion is limited due to high porosity levels and oxide inclusions. In this paper electrochemical methods like corrosion potential monitoring and cyclic voltammetry are reported to mo

  10. Electrochemical methods for characterisation of thermal spray corrosion resistant stainless steel coatings

    NARCIS (Netherlands)

    Hofman, R.; Vreijling, M.P.W.; Ferrari, G.M.; Wit, J.H.W. de

    1998-01-01

    The use of thermal spray stainless steel coatings for protection of low alloyed steels against different types of corrosion is limited due to high porosity levels and oxide inclusions. In this paper electrochemical methods like corrosion potential monitoring and cyclic voltammetry are reported to

  11. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez-Mariano; Angel Sanjurjo

    2005-03-15

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period, we conducted two 300-hour tests. In the first test, we exposed samples at 900 C under conditions simulating the high-temperature heat recovery unit (HTHRU). The second test was at 370 C, corresponding to the filter units following the HTHRU. The tests were showed the resilience of silicon nitride as a coating component, and the new coating procedures better penetrated the pores in sintered metal filter samples. Finally, we also received samples that were exposed in the Wabash River plant. Unfortunately, all these samples, that were prepared last year, were severely eroded and/or corroded.

  12. Development in corrosion resistance by microstructural refinement in Zr-16 SS 304 alloy using suction casting technique

    Energy Technology Data Exchange (ETDEWEB)

    Das, N., E-mail: nirupamd@barc.gov.in; Sengupta, P.; Abraham, G.; Arya, A.; Kain, V.; Dey, G.K.

    2016-08-15

    Highlights: • Grain refinement was made in Zr–16 wt.% SS alloy while prepared by suction casting process. • Distribution of Laves phase, e.g., Zr{sub 2}(Fe, Cr) was raised in suction cast (SC) Zr–16 wt.% SS. • Corrosion resistance was improved in SC alloy compared to that of arc-melt-cast alloy. • Grain refinement in SC alloy assisted for an increase in its corrosion resistance. - Abstract: Zirconium (Zr)-stainless steel (SS) hybrid alloys are being considered as baseline alloys for developing metallic-waste-form (MWF) with the motivation of disposing of Zr and SS base nuclear metallic wastes. Zr–16 wt.% SS, a MWF alloy optimized from previous studies, exhibit significant grain refinement and changes in phase assemblages (soft phase: Zr{sub 2}(Fe, Cr)/α-Zr vs. hard phase: Zr{sub 3}(Fe, Ni)) when prepared by suction casting (SC) technique in comparison to arc-cast-melt (AMC) route. Variation in Cr-distribution among different phases are found to be low in suction cast alloy, which along with grain refinement restricted Cr-depletion at the Zr{sub 2}(Fe, Cr)/Zr interfaces, prone to localized attack. Hence, SC alloy, compared to AMC alloy, showed lower current density, higher potential at the breakdown of passivity and higher corrosion potential during polarization experiments (carried out under possible geological repository environments, viz., pH 8, 5 and 1) indicating its superior corrosion resistance.

  13. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Ji, Xiaoyan (Jane); Day, Sumner D.; Blue, Craig A.; Rivard, John D. K.; Aprigliano, Louis F.; Kohler, Leslie K.; Bayles, Robert; Lemieux, Edward J.; Yang, Nancy; Perepezko, John H.; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J.

    2013-07-09

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  14. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

    2013-09-03

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  15. Highly Corrosion Resistant and Sandwich-like Si3N4/Cr-CrNx/Si3N4 Coatings Used for Solar Selective Absorbing Applications.

    Science.gov (United States)

    Zhang, Ke; Du, Miao; Haoa, Lei; Meng, Jianping; Wang, Jining; Mi, Jing; Liu, Xiaopeng

    2016-12-14

    Highly corrosion resistant, layer-by-layer nanostructured Si3N4/Cr-CrNx/Si3N4 coatings were deposited on aluminum substrate by DC/RF magnetron sputtering. Corrosion resistance experiments were performed in 0.5, 1.0, 3.0, and 5.0 wt % NaCl salt spray at 35 °C for 168 h. Properties of the coatings were comprehensively investigated in terms of optical property, surface morphology, microstructure, elemental valence state, element distribution, and potentiodynamic polarization. UV-vis-near-IR spectrophotometer and FTIR measurements show that the change process in optical properties of Si3N4/Cr-CrNx/Si3N4/Al coatings can be divided into three stages: a rapid active degradation stage, a steady passivation stage, and a transpassivation degradation stage. With the increase in the concentration of NaCl salt spray, solar absorptance and thermal emittance experienced a slight degradation. SEM images reveal that there is an increase in surface defects, such as microcracks and holes and -cracks. XRD and TEM measurements indicate that the phase structure changed partially and the content of CrOx and Al2O3 has increased. Auger electron spectroscopy shows that the elements of Cr, N, and O have undergone a minor diffusion. Electrochemical polarization curves show that the as-deposited Si3N4/Cr-CrNx/Si3N4/Al coatings have excellent corrosion resistance of 3633.858 kΩ, while after corroding in 5.0 wt % NaCl salt spray for 168 h the corrosion resistance dropped to 13.759 kΩ. However, these coatings still have an outstanding performance of high solar absorptance of 0.924 and low thermal emittance of 0.090 after corroding in 3.0 wt % NaCl salt spray for 120 h. Thus, the Si3N4/Cr-CrNx/Si3N4/Al coating is a good choice for solar absorber coatings applied in the high-saline environment.

  16. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez Mariano; Angel Sanjurjo

    2006-09-30

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. The primary activity this period was preparation and presentation of the findings on this project at the Twenty-Third annual Pittsburgh Coal Conference. Dr. Malhotra attended this conference and presented a paper. A copy of his presentation constitutes this quarterly report.

  17. Fabrication of a novel Mg-RE (Nd,Ce) intermetallic compound coating by molten salt diffusion and its effect on corrosion resistance of magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    韩宝军; 古东懂; 何琼; 张小联; 彭光怀; 杨初斌

    2016-01-01

    A novel Mg-rare earth (Nd,Ce) coating containing intermetallic compound was fabricated on the surface of the AZ91D magnesium alloy by bathing the sample in a NaCl-KCl-LiCl-NdCl3-CeCl3 molten salt. The cross-sectional morphology, microstruc-ture and phase composition of the coating were investigated by scanning electron microscopy (SEM), transmission electron micros-copy (TEM) and energy dispersive spectroscopy (EDS). The corrosion resistance was characterized by the potentiodynamic polariza-tion curves. The SEM observation indicated that a continuous and compact diffusion coating was obtained on the surface of SMATed AZ91D magnesium alloy and the XRD and TEM investigations revealed that the new phases were Al2Ce and Al2Nd intermetallic. The potentiodynamic polarization curves showed that the Mg-RE coating improved the corrosion resistance of the AZ91D magne-sium alloy, and the corrosion current density of the coated sample was about 1510 mA/cm2 lower than the uncoated sample.

  18. Improved Corrosion Resistance and Mechanical Properties of CrN Hard Coatings with an Atomic Layer Deposited Al2O3 Interlayer.

    Science.gov (United States)

    Wan, Zhixin; Zhang, Teng Fei; Lee, Han-Bo-Ram; Yang, Ji Hoon; Choi, Woo Chang; Han, Byungchan; Kim, Kwang Ho; Kwon, Se-Hun

    2015-12-01

    A new approach was adopted to improve the corrosion resistance of CrN hard coatings by inserting a Al2O3 layer through atomic layer deposition. The influence of the addition of a Al2O3 interlayer, its thickness, and the position of its insertion on the microstructure, surface roughness, corrosion behavior, and mechanical properties of the coatings was investigated. The results indicated that addition of a dense atomic layer deposited Al2O3 interlayer led to a significant decrease in the average grain size and surface roughness and to greatly improved corrosion resistance and corrosion durability of CrN coatings while maintaining their mechanical properties. Increasing the thickness of the Al2O3 interlayer and altering its insertion position so that it was near the surface of the coating also resulted in superior performance of the coating. The mechanism of this effect can be explained by the dense Al2O3 interlayer acting as a good sealing layer that inhibits charge transfer, diffusion of corrosive substances, and dislocation motion.

  19. Structure and corrosion resistance of ZrO{sub 2} ceramic coatings on AZ91D Mg alloys by plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yao Zhongping, E-mail: yaozhongping@hit.edu.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology Harbin 150001 (China); Postdoctoral Station of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Xu Yongjun; Liu Yunfu; Wang Dali; Jiang Zhaohua; Wang Fuping [School of Chemical Engineering and Technology, Harbin Institute of Technology Harbin 150001 (China)

    2011-08-18

    Highlights: > The ZrO{sub 2} ceramic coatings on AZ91D Mg alloys was prepared in tripolyphosphate and fluorozirconate solution. > The double-layer structure with the loose and porous outer layer and the compact inner layer was analyzed by SEM and EIS technique > The polarization resistance obtained from the equivalent circuit of the EIS was consistent with the results of the polarizing curves tests. - Abstract: The aim of this work is to study the structure and the corrosion resistance of the plasma electrolytic oxidation ZrO{sub 2} ceramic coatings on Mg alloys. The ceramic coatings were prepared on AZ91D Mg alloy in Na{sub 5}P{sub 3}O{sub 10} and K{sub 2}ZrF{sub 6} solution by pulsed single-polar plasma electrolytic oxidation (PEO). The phase composition, morphology and element distribution in the coating were investigated by X-ray diffractometry, scanning electron microscopy and energy distribution spectroscopy, respectively. The results show that the coating thickness and surface roughness were increased with the increase of the reaction time. The ceramic coatings were of double-layer structure with the loose and porous outer layer and the compact inner layer. And the coating was composed of P, Zr, Mg and K, of which P and Zr were the main elements in the coating. P in the coating existed in the form of amorphous state, while Zr crystallized in the form of t-ZrO{sub 2} and a little c-ZrO{sub 2} in the coating. Electrochemical impedance spectra (EIS) and the polarizing curve tests of the coatings were measured through CHI604 electrochemical analyzer in 3.5% NaCl solution to evaluate the corrosion resistance. The polarization resistance obtained from the equivalent circuit of the EIS was consistent with the results of the polarizing curves tests.

  20. The development of high strength corrosion resistant precipitation hardening cast steels

    Science.gov (United States)

    Abrahams, Rachel A.

    Precipitation Hardened Cast Stainless Steels (PHCSS) are a corrosion resistant class of materials which derive their properties from secondary aging after a normalizing heat treatment step. While PHCSS materials are available in austenitic and semi-austenitic forms, the martensitic PHCSS are most widely used due to a combination of high strength, good toughness, and corrosion resistance. If higher strength levels can be achieved in these alloys, these materials can be used as a lower-cost alternative to titanium for high specific strength applications where corrosion resistance is a factor. Although wrought precipitation hardened materials have been in use and specified for more than half a century, the specification and use of PHCSS has only been recent. The effects of composition and processing on performance have received little attention in the cast steel literature. The work presented in these investigations is concerned with the experimental study and modeling of microstructural development in cast martensitic precipitation hardened steels at high strength levels. Particular attention is focused on improving the performance of the high strength CB7Cu alloy by control of detrimental secondary phases, notably delta ferrite and retained austenite, which is detrimental to strength, but potentially beneficial in terms of fracture and impact toughness. The relationship between age processing and mechanical properties is also investigated, and a new age hardening model based on simultaneous precipitation hardening and tempering has been modified for use with these steels. Because the CB7Cu system has limited strength even with improved processing, a higher strength prototype Fe-Ni-Cr-Mo-Ti system has been designed and adapted for use in casting. This prototype is expected to develop high strengths matching or exceed that of cast Ti-6Al-4V alloys. Traditional multicomponent constitution phase diagrams widely used for phase estimation in conventional stainless steels

  1. Advanced Materials for Aircraft Propulsion Systems. Phase I. Investigation of Corrosion Resistant Coatings for Service at 3000 F and above.

    Science.gov (United States)

    diffusion barrier between the coating and metallic substrate. Preliminary studies were limited to development of coatings that would be applicable to the protection of Ni-base and Co-base superalloys. (Author)

  2. Preparation, corrosion resistance and hemocompatibility of the superhydrophobic TiO2 coatings on biomedical Ti-6Al-4V alloys

    Science.gov (United States)

    Jiang, J. Y.; Xu, J. L.; Liu, Z. H.; Deng, L.; Sun, B.; Liu, S. D.; Wang, L.; Liu, H. Y.

    2015-08-01

    In this paper the micro-arc oxidation (MAO) technique and subsequent superhydrophobic treatment were applied to fabricate the superhydrophobic TiO2 coatings on biomedical Ti-6Al-4V alloys. The surface morphology, surface roughness, water contact angle, corrosion resistance and hemocompatibility of the MAO and superhydrophobic samples were investigated. The results showed that the single anatase TiO2 coating was formed on the surface Ti-6Al-4V alloy with rough and porous micrometer-scale structure. The low surface energy film was grafted on the surface of the TiO2 coating by self-assembling reaction during the hydrophobic treatment process, which resulted in the formation of superhydrophobic surfaces with the water contact angle of 153.39°. It was found that the corrosion resistance of the superhydrophobic samples increased by one order of magnitude compared to those of the uncoated Ti-6Al-4V alloys. The hemolysis ratio and platelets adhesion characteristics of the Ti-6Al-4V alloys were also improved greatly through the MAO treatment and subsequent superhydrophobic treatment. Especially, no platelet could be observed on the surface of the superhydrophobic samples. Therefore, the superhydrophobic TiO2 coatings of Ti-6Al-4V alloys with higher hemocompatibility would show great promise in their potential blood-contacting applications.

  3. 机械镀锌镀层钝化与耐蚀性能研究%PASSIVATION AND CORROSION RESISTANCE OF MECHANICALLY PLATED ZINC COATING

    Institute of Scientific and Technical Information of China (English)

    赵增典; 黄保雷; 陈磊; 李德刚

    2009-01-01

    对机械镀锌层分别用三价铬、稀土和六价铬进行了钝化处理,利用盐雾试验和电化学测试对不同钝化膜的耐蚀性与电化学行为进行了比较研究.盐雾试验结果表明,稀土与三价铬钝化处理的效果均已超过传统的六价铬钝化,比六价铬钝化膜的耐蚀性提高了一倍以上;稀土钝化膜的耐蚀性最好,三价铬钝化膜的耐蚀性仅次于稀土钝化膜的.电化学测试表明,三价铬、稀土和六价铬钝化膜都能够不同程度地抑制腐蚀的阴极电极反应,抑制阴极反应程度最大的是稀土钝化膜,其次是三价铬钝化膜,最小的是六价铬钝化膜.三价铬与稀土钝化工艺的环保和良好的防腐效果使其具有良好的应用前景.%The mechanically plated zinc coating was passivated with chemicals containing trivalent chromi-um,rare earth metal and hexavalent chromium respectively.Then the corrosion resistance and electrochemi-cal behavior of the passivated coatings were compared by salt spay test and electrochemical test.The result of salt spay test showed that the coatings passivated with trivalent chromium and rare earth metal are superi-or to that with hexavalent chromium by one fold in corrosion resistance.The coating passivated with rare earth metal Was the best in corrosion resistance and that with trivalent chromium was the next.The electro-chemical test showed that all the passivation treatments with trivalent chromium,rare earth metal and hexa-valent chromium could suppress the cathode reactions to some extent.The effectiveness of passivation chem-icals in suppression of the cathodic reaction might be ranking as follows:rare earth metal,trivalent chromi-um.and hexavalent chromiam.Therefore,chemicals containing trivalent chromiam and rare earth metal had good application foreground for their good corrosion resistance and environmental-friendly.

  4. THE EFFECT OF DEPOSITION PARAMETERS ON THE CHEMICAL COMPOSITION AND CORROSION RESISTANCE OF TICXNY COATINGS PRODUCED ON HIGH-SPEED STEEL SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Senna L.F.

    2001-01-01

    Full Text Available TiCxNy coatings deposited on high-speed steel substrates have been used to enhance the tribological properties of cutting tools (hardness, wear resistance, etc. as well as their corrosion resistance in an aggressive environment. These layers are usually produced by plasma deposition techniques (PVD or CVD, and different coating properties can be obtained with each method. In this work, TiCxNy films were deposited on AISI M2 high-speed steel substrates by the reactive magnetron sputtering technique. A series of samples with a variety of reactive gas mixtures (nitrogen and methane, substrate biases, and deposition temperatures was produced. As a result, coatings with different chemical compositions were deposited for each group of deposition parameters. Gas mixture composition and substrate bias directly affected the chemical composition of the coating, while deposition temperature influenced the chemical composition of TiCxNy layers to a very low extent.

  5. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    Science.gov (United States)

    Carter, J David [Bolingbrook, IL; Mawdsley, Jennifer R [Woodridge, IL; Niyogi, Suhas [Woodridge, IL; Wang, Xiaoping [Naperville, IL; Cruse, Terry [Lisle, IL; Santos, Lilia [Lombard, IL

    2010-04-20

    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  6. A new strategy for improvement of the corrosion resistance of a green cerium conversion coating through thermal treatment procedure before and after application of epoxy coating

    Science.gov (United States)

    Mahidashti, Z.; Shahrabi, T.; Ramezanzadeh, B.

    2016-12-01

    The effect of post-heating of CeCC on its surface morphology and chemistry has been studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and contact angle (CA) measurements. The corrosion protection performance of the coatings was investigated by electrochemical impedance spectroscopy (EIS). The effect of thermal treatment of CeCC on the corrosion protection performance of epoxy coating was investigated by EIS. Results showed that the heat treatment of Ce film noticeably improved its corrosion resistance and adhesion properties compared to that of untreated samples. The CeCC deposited on the steel substrate at room temperature had a highly cracked structure, while the amount of micro-cracks significantly reduced after post-heating procedure. Results obtained from EIS analysis confirmed the effect of post-heating of CeCC on its corrosion protection performance enhancement. The increase of post-heating temperature and time up to 140 °C and 3 h led to better results.

  7. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings Evaluation of Corrosion Reistance FY05 HPCRM Annual Report # Rev. 1DOE-DARPA Co-Sponsored Advanced Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Haslam, J J; Day, S D

    2007-09-19

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  8. Corrosion resistance and biological activity of TiO2 implant coatings produced in oxygen-rich environments.

    Science.gov (United States)

    Zhang, Rui; Wan, Yi; Ai, Xing; Liu, Zhanqiang; Zhang, Dong

    2017-01-01

    The physical and chemical properties of bio-titanium alloy implant surfaces play an important role in their corrosion resistance and biological activity. New turning and turning-rolling processes are presented, employing an oxygen-rich environment in order to obtain titanium dioxide layers that can both protect implants from corrosion and also promote cell adhesion. The surface topographies, surface roughnesses and chemical compositions of the sample surfaces were obtained using scanning electron microscopy, a white light interferometer, and the Auger electron spectroscopy, respectively. The corrosion resistance of the samples in a simulated body fluid was determined using electrochemical testing. Biological activity on the samples was also analyzed, using a vitro cell culture system. The results show that compared with titanium oxide layers formed using a turning process in air, the thickness of the titanium oxide layers formed using turning and turning-rolling processes in an oxygen-rich environment increased by 4.6 and 7.3 times, respectively. Using an oxygen-rich atmosphere in the rolling process greatly improves the corrosion resistance of the resulting samples in a simulated body fluid. On samples produced using the turning-rolling process, cells spread quickly and exhibited the best adhesion characteristics.

  9. The improvement of corrosion resistance of fluoropolymer coatings by SiO2/poly(styrene-co-butyl acrylate) nanocomposite particles

    Science.gov (United States)

    Chen, L.; Song, R. G.; Li, X. W.; Guo, Y. Q.; Wang, C.; Jiang, Y.

    2015-10-01

    The effects of nano-silica particles on the anticorrosion properties of fluoropolymer coatings on mild steel have been investigated in this paper. In order to enhance the dispersibility of nano-silica in fluoropolymer coatings, we treated the surface of nano-silica with poly(styrene-co-butyl acrylate) (P(St-BA)). The surface grafting of P(St-BA) on the nanoparticles were detected using Fourier transform infrared spectroscopy (FT-IR), thermo gravimetric analyzer (TGA), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The surface of nanocomposite coatings and the coating-substrates bond texture were detected by FE-SEM. We also used energy-dispersive X-ray spectroscopy (EDS) to analyze whether the nanocomposite particles were added into the fluoropolymer coatings. In addition, the influences of various nanoparticles on the corrosion resistance of fluoropolymer-coated steel were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results shown that nanocomposite particles can be dispersed better in fluoropolymer coatings, and the electrochemical results clearly shown the improvement of the protective properties of the nanocomposite coatings when 4 wt.% SiO2/P(St-BA) was added to the fluoropolymer coatings.

  10. Wear and Corrosion Resistance of Thick Ti-6Al-4V Coating Deposited on Ti-6Al-4V Substrate via High-Pressure Cold Spray

    Science.gov (United States)

    Khun, N. W.; Tan, A. W. Y.; Sun, W.; Liu, E.

    2017-08-01

    Ti-6Al-4V (Ti64) coating with a thickness of about 9 mm was deposited on commercial Ti64 substrate via a high-pressure cold spray process. The microstructure, hardness, and wear and corrosion resistance of the Ti64 coating were systematically investigated. The hardness of the Ti64 coating was higher than that of the Ti64 substrate due to the cold-worked microstructure of the coating. The tribological results showed that there was no significant difference in the surface wear rates of the Ti64 coating measured on its different layers while the surface wear resistance of the Ti64 coating was lower than its cross-sectional wear resistance. The corrosion results showed that the Ti64 coating did not effectively prevent its underlying Ti64 substrate from corrosion due to the occurrence of pores in the coating microstructure. It could be concluded that the hardness and wear resistance of the Ti64 coating were comparable to those of the commercial Ti64 substrate.

  11. 镀膜工艺对复配十八烷胺膜层抗腐蚀性能的影响%Influence on Coating Process on Corrosion Resistance of Octadecylamine Coating with Surfactant Mixture

    Institute of Scientific and Technical Information of China (English)

    刘俊英; 危晴; 吴志明; 曲敬信

    2011-01-01

    The influences of the coating process on the the corrosion resistance of octadecylamine corrosion inhibitor with surfactant mixture were studied, and the corrosion mechanism of the coatings was analyzed. The main results show that the microscopic defects of the coating are corroded when the coating solution pH=6, and the corrosion is corroded on the grain boundary of the coating when the coating solution pH=8~12. The coating's structure is integrity and the corrosion resistance increases with the increase of coating solution pH. The corrosion resistance of the coating enhances and its microstructure becomes dense with the increase of temperature. The best coating process of the octadecylamine corrosion inhibitor with surfactant mixture is coating solution pH=10 and coating temperature 250 °C.%研究了镀膜工艺对复配十八烷胺缓蚀剂膜层抗腐蚀性能影响,并分析了膜层的腐蚀机理.结果表明,镀膜液pH=6的膜层腐蚀发生在微观缺陷上,pH=8~12的膜层腐蚀发生在晶界上;随着镀膜液pH值升高,膜层结构完整,抗腐蚀性能增强;在镀膜液pH=8~12时,随镀膜温度升高,膜层的组织致密,抗腐蚀性能增强.镀膜液pH=10、镀膜温度250℃为复配十八烷胺缓蚀剂最佳镀膜工艺.

  12. Surface modification for corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1993-06-01

    The raw gas environments that arise from coal gasification have chemical compositions that are low in pO{sub 2} and moderate-to-high in pS{sub 2}. Metallic materials for service in such an environment undergo predominantly sulfidation attack at temperatures of 400 to 700{degree}C. Modification of alloy compositions in bulk can alter the scaling processes and lead to improvements in corrosion resistance, but the benefits can only be attained at temperatures much higher than the service temperatures of the components. Modification of surfaces of structural components by several of the coating techniques examined in this study showed substantial benefit in corrosion resistance when tested in simulated coal gasification environments. The paper presents several examples of surface modification and their corrosion performance.

  13. [Corrosion resistance and wear resistance of Ni-Cr alloy after coating titanium nitride (TiN) in oral containing fluorine environment].

    Science.gov (United States)

    Weng, Wei-Min; Yu, Wei-Qiang; Shan, Wei-Lan; Zhang, Fu-Qiang

    2010-12-01

    The aim of this study was to evaluate the corrosion resistance and wear resistance of Ni-Cr alloy after coating titanium nitride (TiN) in oral containing fluorine environment. Physical vapor deposition was established to coat titanium nitride (TiN) on the surface of dental cast Ni-Cr alloy to form TiN/Ni-Cr compound. Both Ni-Cr alloy and TiN/Ni-Cr compound were exposed to 37 degrees centigrade, artificial saliva containing 0.24% NaF. The polarization curves of the specimens were measured by PARSTAT 2273 electrochemical station to investigate its corrosion resistance. Vicker's hardness was measured by HXD-1000TMC/LCD micro-hardness tester to investigate its wear resistance. Statistical analysis was performed by SAS 8.2 software package for Student's t methods. The corrosion potential of Ni-Cr alloy was -362.407 mV, the corrosion current density was 1.568μAcm(-2),the blunt-breaking potential was 426 mV bofor TiN coating. The corrosion potential of TiN/Ni-Cr compound was -268.638 mV, the corrosion current density was 0.114μAcm(-2),the blunt-breaking potential was 1142 mV after TiN coating. Polarization curves showed TiN/Ni-Cr compound improved the corrosion potential and blunt-breaking potential, decreased the corrosion current density. The Vicker's hardness of Ni-Cr alloy was 519.75±27.27 before TiN coating, the Vicker's hardness of TiN/Ni-Cr compound was 803.24±24.64, the D-value between them was 283.49±39.34. The difference of Vicker's harnesses between Ni-Cr alloy and TiN/Ni-Cr compound had significant (Pcoating can improve the corrosion resistant to F-and the surface hardness of Ni-Cr alloy. Supported by Research Fund of Science and Technology Commission of Shanghai Municipality (Grant No.08DZ2271100), Shanghai Leading Academic Discipline Project (Grant No.S30206 ) and Research Fund of Health Bureau of Shanghai Municipality (Grant No.2009074).

  14. Effect of borate coating on corrosion resistance of pure nickel in molten LiCl-Li2O

    Institute of Scientific and Technical Information of China (English)

    刘瑞岩; 王旭; 张俊善; 王秀敏; 祝美丽

    2004-01-01

    The pack boriding process was used to treat pure nickel at a boriding temperature of 950 ℃ for a boriding time of 5 h. A dense and continuous borided layer with 40 μm thickness was obtained on pure nickel. Corrosion behavior of the borided layer was investigated in molten LiCl-10% Li2O(mass fraction) at 750 ℃ in air. The mass lower than that of unborided pure nickel. The preferential corrosion of B in borided layer effectively prevents the corrosion of nickel, which improves the corrosion resistance of pure nickel in molten LiCl-Li2 O.

  15. PLASMA SPRAYED Al₂O₃-13 WT.%TiO₂ COATING SEALED WITH ORGANIC-INORGANIC HYBRID AGENT AND ITS CORROSION RESISTANCE IN ACID ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Zehua Zhou

    2016-07-01

    Full Text Available A novel organic-inorganic hybrid material of γ-methacryloxypropyltrime-thoxysilane (KH570 -SiO₂ was fabricated by Sol-Gel method. The hybrid material was used as the sealing agent for the plasma sprayed Al₂O₃-13 wt.% TiO₂ coating. Infrared spectrum and grafted mechanism of the hybrid agent (HA were studied. Moreover, morphology and porosity, as well as characteristics of immersion plus electrochemical corrosion in acid environment of the coating with and without sealing treatment were evaluated, compared with those of the coating sealed with the conventional silicone resin agent (SRA. The results reveal that KH570 was successfully grafted onto the surface of SiO₂. The HA film sealed on the surface of the coating presents a little better quality than the SRA film. The porosities of the coatings after the sealing treatment decreased. Furthermore, the sealing treatment can improve efficiently the corrosion resistance of the coating in 5 vol.% HCl solution. The hybrid sealing agent can become a candidate for the plasma sprayed Al₂O₃-13 wt.% TiO₂ coating used in acid environment to overcome some disadvantages of organic agents such as severely environmental pollution.

  16. Deposition of nanostructured fluorine-doped hydroxyapatite-polycaprolactone duplex coating to enhance the mechanical properties and corrosion resistance of Mg alloy for biomedical applications.

    Science.gov (United States)

    Bakhsheshi-Rad, H R; Hamzah, E; Kasiri-Asgarani, M; Jabbarzare, S; Iqbal, N; Abdul Kadir, M R

    2016-03-01

    The present study addressed the synthesis of a bi-layered nanostructured fluorine-doped hydroxyapatite (nFHA)/polycaprolactone (PCL) coating on Mg-2Zn-3Ce alloy via a combination of electrodeposition (ED) and dip-coating methods. The nFHA/PCL composite coating is composed of a thick (70-80 μm) and porous layer of PCL that uniformly covered the thin nFHA film (8-10 μm) with nanoneedle-like microstructure and crystallite size of around 70-90 nm. Electrochemical measurements showed that the nFHA/PCL composite coating presented a high corrosion resistance (R(p)=2.9×10(3) kΩ cm(2)) and provided sufficient protection for a Mg substrate against galvanic corrosion. The mechanical integrity of the nFHA/PCL composite coatings immersed in SBF for 10 days showed higher compressive strength (34% higher) compared with the uncoated samples, indicating that composite coatings can delay the loss of compressive strength of the Mg alloy. The nFHA/PCL coating indicted better bonding strength (6.9 MPa) compared to PCL coating (2.2 MPa). Immersion tests showed that nFHA/PCL composite-coated alloy experienced much milder corrosion attack and more nucleation sites for apatite compared with the PCL coated and uncoated samples. The bi-layered nFHA/PCL coating can be a good alternative method for the control of corrosion degradation of biodegradable Mg alloy for implant applications.

  17. Protective Effect of the Sputtered TiAlCrAg Coating on the High-Temperature Oxidation and Hot Corrosion Resistance of Ti-Al-Nb Alloy

    Institute of Scientific and Technical Information of China (English)

    Yanjun XI; Fuhui WANG; Lianlong HE

    2004-01-01

    The effect of a sputtered Ti-48Al-8Cr-2Ag (at. pct) coating on the oxidation resistance of the cast Ti-46.5Al-5Nb (at. pct) alloy was investigated in air at 1000~1100℃. Hot corrosion in molten 75 wt pct Na2SO4+25 wt pct K2SO4 was investigated at 900℃. The scale on the cast TiAlNb tends to spall in air, while the scale on coating is very adherent. The sputtered Ti-48Al-8Cr-2Ag coating remarkably improved high temperature oxidation resistance of the cast Ti-46.5Al-5Nb alloy because of the formation of an adherent Al2O3 scale. Due to the inward diffusion of Cr,Kirkendall voids were found at the coating/substrate interface. TiAlCrAg coating provided excellent hot corrosion resistance for TiAlNb alloy in molten 75 wt pct Na2SO4+25 wt pct K2SO4 at 900℃ due to the formation of a continuous Al2O3 scale.

  18. Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition

    Directory of Open Access Journals (Sweden)

    Shi Hong Zhang et al

    2008-01-01

    Full Text Available Micron-size Ni-base alloy (NBA powders were mixed with both 1.5 wt.% (hereinafter % micron-size CeO2 (m-CeO2 and also 1.5% and 3.0% nano-size CeO2 (n- CeO2 powders. These mixtures were coated on low-carbon steel (Q235 by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- and n- CeO2 /NBA have been investigated. The results showed that a smooth coating was prepared under suitable processing parameters (P= 2.0 kW, V= 180 mm min- 1 by adding 1.5% n- CeO2. In addition to the primary phases of γ-Ni, Cr23 C6 and Ni3 B in the Ni-base alloy coating, CeNi3 was formed in Ni-base alloy coatings with both n- CeO2 and m-CeO2 particles, and CeNi5 appeared in the coating upon decreasing the size of CeO2 particles. Well-developed dendrites were observed in the Ni-base alloy coating; directional dendrites grew at the interface in the coating upon the addition of m-CeO2, whereas fine and multioriented dendrites grew upon decreasing the size of CeO2 particles to the nanoscale. Actinomorphic dendrites and compact equiaxed dendrites grew from the interface to near the surface upon increasing the content of n- CeO2 from 1.5 to 3.0%. In strongly acidic HNO3 solution, the severe corrosion of dendrites occurred and there were many corrosion pits in the Ni-base alloy coating; intercrystalline corrosion also has a dominant role upon the addition of m-CeO2, whereas uniform corrosion occurs in the coating as the size of CeO2 particles is decreased to nanoscale.

  19. Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition.

    Science.gov (United States)

    Hong Zhang, Shi; Xi Li, Ming; Hong Yoon, Jae; Yul Cho, Tong; Zhu He, Yi; Gyu Lee, Chan

    2008-07-01

    Micron-size Ni-base alloy (NBA) powders were mixed with both 1.5 wt.% (hereinafter %) micron-size CeO2 (m-CeO2) and also 1.5% and 3.0% nano-size CeO2 (n- CeO2) powders. These mixtures were coated on low-carbon steel (Q235) by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- and n- CeO2 /NBA) have been investigated. The results showed that a smooth coating was prepared under suitable processing parameters (P= 2.0 kW, V= 180 mm min(- 1)) by adding 1.5% n- CeO2. In addition to the primary phases of γ-Ni, Cr23C6 and Ni3B in the Ni-base alloy coating, CeNi3 was formed in Ni-base alloy coatings with both n- CeO2 and m-CeO2 particles, and CeNi5 appeared in the coating upon decreasing the size of CeO2 particles. Well-developed dendrites were observed in the Ni-base alloy coating; directional dendrites grew at the interface in the coating upon the addition of m-CeO2, whereas fine and multioriented dendrites grew upon decreasing the size of CeO2 particles to the nanoscale. Actinomorphic dendrites and compact equiaxed dendrites grew from the interface to near the surface upon increasing the content of n- CeO2 from 1.5 to 3.0%. In strongly acidic HNO3 solution, the severe corrosion of dendrites occurred and there were many corrosion pits in the Ni-base alloy coating; intercrystalline corrosion also has a dominant role upon the addition of m-CeO2, whereas uniform corrosion occurs in the coating as the size of CeO2 particles is decreased to nanoscale.

  20. Effect of Deposition Time on the Morphological Features and Corrosion Resistance of Electroless Ni-High P Coatings on Aluminium

    Directory of Open Access Journals (Sweden)

    N. Sridhar

    2013-01-01

    Full Text Available High phosphorus Ni-P alloy was deposited on aluminium substrate using electroless deposition route. Using zincating bath, the surface was activated before deposition. Deposition time was varied from 15 minutes to 3 hours. Deposit was characterised using scanning electron microscope with energy dispersive spectroscope, X-ray diffraction, and microhardness tester. The corrosion resistance was measured using Tafel extrapolation route. The medium was aqueous 5% HNO3 solution. The analysis showed that the deposit consisted of nodules of submicron and micron scale. The predominant phase in the deposit was nickel along with phosphides of nickel. Compared to substrate material, deposit showed higher hardness. With increase in deposition time, the deposit showed more nobleness in 5% HNO3 solution and nobleness reached a limiting value in 1 hour deposition time.

  1. Corrosion resistant coatings for SiC and Si{sub 3}N{sub 4} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Thierry; Shaokai Yang; J.J. Brown

    1998-09-01

    It is the goal of this program to (1) develop coatings for SiC and Si{sub 3}N{sub 4} that will enhance their performance as heat exchangers under coal combustion conditions and (2) to conduct an in-depth evaluation of the cause and severity of ceramic heat exchanger deterioration and failure under coal combustion conditions.

  2. Effect of ultrasonic cold forging technology as the pretreatment on the corrosion resistance of MAO Ca/P coating on AZ31B Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lingling, E-mail: daisy_chenlingling@163.com [College of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617 (China); College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Gu, Yanhong, E-mail: gu_yanhong@163.com [College of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617 (China); Liu, Lu, E-mail: liulu@bipt.edu.cn [College of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617 (China); Liu, Shujing, E-mail: liushujing@bipt.edu.cn [College of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617 (China); Hou, Binbin, E-mail: sohu19880815@126.com [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); Liu, Qi, E-mail: 13521196884@sina.cn [College of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617 (China); Ding, Haiyang, E-mail: dinghaiyang@bipt.edu.cn [College of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617 (China)

    2015-06-25

    Highlights: • Ultrasonic cold forging technology was used as the pretreatment for MAO coating. • Nano layer with the grain size of 30–80 nm was formed on the UCFT treated surface. • Calcium phosphate contained coating was obtained by MAO process. • The remained nano layer underlying MAO coating could impact the corrosion resistance greatly. - Abstract: A calcium phosphate contained (Ca/P) coating was obtained on AZ31B Mg alloy by micro-arc oxidation (MAO) process under the pretreatment of ultrasonic cold forging technology (UCFT). The surface nanograins were introduced after UCFT pretreatment on AZ31B Mg alloy. Optical microscope (OM) was employed to observe the microstructures of the untreated and UCFT treated samples. Transmission electron microscopy (TEM) and atomic force microscope (AFM) were employed to observe the microstructures of nanograins and the surface roughness of the UCFT treated Mg alloys. The grain size of the UCFT treated Mg alloy is 48.67 nm and the surface roughness is 17.03 nm. The microstructures and the phase compositions of MAO samples were observed and analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The XRD results show that the coating include Ca/P phase, including hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}), HA), tertiary calcium phosphate (Ca{sub 3}(PO{sub 4}){sub 2}, TCP) and calcium phosphate dehydrate (CaHPO{sub 4}⋅2H{sub 2}O, DCPD). The hardness of the samples was measured by the micro-hardness tester under the loads of 10 g, 25 g and 50 g. 3D topographies of hardness indenter were characterized by 3D profiler. The immersion tests and potentiodynamic polarization tests were used to evaluate the weight loss rate and corrosion current density in simulated body fluid (SBF). The results show that the corrosion resistance of Ca/P MAO coating on Mg alloy was improved greatly by the pretreatment of UCFT.

  3. Corrosion Resistance of Amorphous Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 coating - a new criticality-controlled material

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J S; Saw, C K; Rebak, R; Day, S D; Lian, T; Hailey, P; Payer, J H; Branagan, D J; Aprigliano, L F

    2007-03-28

    An iron-based amorphous metal with good corrosion resistance and a high absorption cross-section for thermal neutrons has been developed and is reported here. This amorphous alloy has the approximate formula Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} and is known as SAM2X5. Chromium (Cr), molybdenum (Mo) and tungsten (W) were added to provide corrosion resistance, while boron (B) was added to promote glass formation and the absorption of thermal neutrons. Since this amorphous metal has a higher boron content than conventional borated stainless steels, it provides the nuclear engineer with design advantages for criticality control structures with enhanced safety. While melt-spun ribbons with limited practical applications were initially produced, large quantities (several tons) of gas atomized powder have now been produced on an industrial scale, and applied as thermal-spray coatings on prototypical half-scale spent nuclear fuel containers and neutron-absorbing baskets. These prototypes and other SAM2X5 samples have undergone a variety of corrosion testing, including both salt-fog and long-term immersion testing. Modes and rates of corrosion have been determined in various relevant environments, and are reported here. While these coatings have less corrosion resistance than melt-spun ribbons and optimized coatings produced in the laboratory, substantial corrosion resistance has been achieved.

  4. Effects of Duplex Nitriding and TiN Coating Treatment on Wear Resistance, Corrosion Resistance and Biocompatibility of Ti6Al4V Alloy

    Science.gov (United States)

    Kao, W. H.; Su, Y. L.; Hsieh, Y. T.

    2017-08-01

    Ti6Al4V alloy substrates were nitrided at 900 °C. TiN coatings were then deposited on the nitrided substrates using a closed-field unbalanced magnetron sputtering system. The microstructure, hardness and adhesion properties of the TiN-N-Ti6Al4V substrates were evaluated and compared with those of an untreated Ti6Al4V sample, a nitrided Ti6Al4V sample and a TiN-coated Ti6Al4V sample, respectively. The tribological properties of the various samples were investigated by means of reciprocating sliding wear tests performed in 0.9 wt.% NaCl solution against 316L, Si3N4 and Ti6Al4V balls, respectively. In addition, the corrosion resistance was evaluated using potentiodynamic polarization tests. Finally, the biocompatibility of the samples was investigated by observing the attachment and growth of purified mouse leukemic monocyte/macrophage cells (Raw 264.7) on the sample surface after culturing periods of 24, 72 and 120 h, respectively. Overall, the results showed that the duplex nitriding/TiN coating treatment significantly improved the tribological, anti-corrosion and biocompatibility properties of the original Ti6Al4V alloy.

  5. Bio-inspired citrate-functionalized apatite thin films crystallized on Ti-6Al-4V implants pre-coated with corrosion resistant layers.

    Science.gov (United States)

    Delgado-López, José Manuel; Iafisco, Michele; Rodríguez-Ruiz, Isaac; Gómez-Morales, Jaime

    2013-10-01

    In this paper the crystallization of a bioinspired citrate-functionalized apatite (cit-Ap) thin film (thickness about 2μm) on Ti-6Al-4V supports pre-coated with bioactive and corrosion resistant buffer layer of silicon nitride (Si3N4), silicon carbide (SiC) or titanium nitride (TiN) is reported. The apatitic coatings were produced by a new coating technique based on the induction heating of the implants immersed in a flowing calcium-citrate-phosphate solution at pH11. The influence of the buffer layers and the surface roughness of the substrate on the chemical-physical features and adhesion of the cit-Ap films were investigated. The best plasticity, compactness and adherence properties have been found in the Ap layer grown on Si3N4, followed by the Ap grown on SiC and TiN, respectively. The adhesion property was likely related to the roughness of the buffered substrates, whereas the compactness and plasticity were closely related to the operating conditions during the Ap crystallization (flow rate of the solution and increase of temperature) rather than to the nature of the buffer layer.

  6. Development of weldable, corrosion-resistant iron-aluminide (FeAl) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    A boron-microalloyed FeAl alloy (Fe-36Al-0.2Mo-0.05Zr-0.13C, at.%, with 100-400 appm B) with improved weldability and mechanical properties was developed in FY 1994. A new scale-up and industry technology development phase for this work began in FY 1995, pursuing two parallel paths. One path was developing monolithic FeAl component and application technology, and the other was developing coating/cladding technology for alloy steels, stainless steels and other Fe-Cr-Ni alloys. In FY 1995, it was found that cast FeAl alloys had good strength at 700-750{degrees}C, and some (2.5%) ductility in air at room-temperature. Hot-extruded FeAl with refined grain size was found to have ductility and to also have good impact-toughness at room-temperature. Further, it was discovered that powder-metallurgy (P/M) FeAl, consolidated by direct hot-extrusion at 950-1000{degrees}C to have an ultra fine-grained microstructure, had the highest ductility, strength and impact-toughness ever seen in such intermetallic alloys.

  7. Corrosion-resistant metal surfaces

    Science.gov (United States)

    Sugama, Toshifumi [Wading River, NY

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  8. Effect of hot dip galvanized coating on the corrosion resistance of the external surface of reinforcement steel

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Oezlem; Topuz, Polat [Gedik University Vocational School, Istanbul (Turkey)

    2016-02-01

    Studies have been carried out to investigate the performance of hot dip galvanized coating on reinforcement corrosion. The coated and uncoated concrete specimens were subjected to accelerated corrosion to determine the time to corrosion initiation. The accelerated corrosion test results clearly showed that the specimens with hot dip galvanized coatings performed very well against reinforcement corrosion and were better than uncoated specimens.

  9. Development of inorganic and organic hybrid nanocoating based on carbon nanotubes for corrosion resistance.

    Science.gov (United States)

    Kang, T H; Bagkar, Nitin C; Jung, Y S; Chun, H H; Shin, S C; Cho, H; Kim, J K; Kim, T G

    2014-10-01

    In this study, we report the synthesis and characterization of novel hybrid nanocoating based on carbon nanotubes (CNTs) on anodized aluminum surfaces (AAO). The hybrid nanocoating was deposited by number of methods which include spray coating, spin coating and dip coating. The bonding of nanocoating with metal surface is an important parameter for successful modification of the metal surfaces. The improved adhesion of nanocoating on metal surfaces could be attributed to chemical bonding of sol-gel nanocoating with anodized surfaces. The nanocoated anodized aluminum surfaces showed superior adhesion and excellent anticorrosive properties. The nanocoated panels showed enhanced galvanic protection comparable to 80% of titanium metal as determined by galvanic corrosion measurements. It also showed higher thermal conductivities than stainless steel and bare anodized surfaces.

  10. Corrosion Resistance of Electroless Ni-P Coating in Hydrofluoric Acid%化学镀镍-磷镀层在氢氟酸中的耐蚀性

    Institute of Scientific and Technical Information of China (English)

    李壮; 梁平

    2013-01-01

    为了改善Q 235钢在氢氟酸中的耐蚀性,采用化学镀技术在其表面制备了镍-磷镀层.采用金相显微镜对镍-磷镀层的表面形貌进行了观察,通过浸泡和电化学等方法考察了Q235钢和镍-磷镀层在氢氟酸中的耐蚀性.结果表明:所得镍磷镀层光滑、致密、平整,在氢氟酸中表现出较低的自腐蚀电流密度和较大的电荷转移电阻,可明显降低Q 235钢在氢氟酸中的腐蚀速率.%In order to improve the corrosion resistance of Q 235 steel in hydrofluoric acid, a Ni-P coating was prepared on its surface by electroless plating. The surface morphology of the coating was observed using metalloscope, and the corrosion behavior of Q 235 steel and Ni-P coating was investigated by immersion and electrochemical method. The results show that the Ni-P coating is smooth and dense, and exhibits a lower self-corrosion current density and a higher charge-transfer resistance in hydrofluoric acid, that can obviously decrease the corrosion rate of Q 235 steel in hydrofluoric acid.

  11. Study of the HVOF Ni-Based Coatings' Corrosion Resistance Applied on Municipal Solid-Waste Incinerators

    Science.gov (United States)

    Guilemany, J. M.; Torrell, M.; Miguel, J. R.

    2008-06-01

    Oxidation of exchanger steel tubes causes important problems in Municipal Solid-Waste Incinerator (MSWI) plants. The present paper shows a possible solution for this problem through High-Velocity Oxygen Fuel (HVOF) thermal spray coatings. A comparative study was carried out between powder and wire Ni-based thermal spray coatings (with the same composition). These optimized coatings were compared based on their microstructure, wear properties (ASTM G99-90, ASTM G65-91), and erosion-corrosion (E-C) resistance. An E-C test designed in the Thermal Spray Centre was performed to reproduce the mechanisms that take place in a boiler. Studying the results of this test, the wire HVT Inconel coating sprayed by propylene appears to be the best alternative. A commercial bulk material with a composition similar to Ni-based coatings was tested to find the products of the oxidation reactions. The protective mechanisms of these materials were assessed after studying the results obtained for HVOF coatings and the bulk material where the presence of nickel and chromium oxides as a corrosion product can be seen. Kinetic evolution of the Ni-based coatings can be studied by thermogravimetric analysis. The protection that Inconel coatings give to the tube through the difference of the gain mass can be seen. Ni-based HVOF coatings by both spray conditions are a promising alternative to MSWI protection against chlorine environments, and their structures have a very important role.

  12. Corrosion-Resistant High-Entropy Alloys: A Review

    Directory of Open Access Journals (Sweden)

    Yunzhu Shi

    2017-02-01

    Full Text Available Corrosion destroys more than three percent of the world’s gross domestic product. Therefore, the design of highly corrosion-resistant materials is urgently needed. By breaking the classical alloy-design philosophy, high-entropy alloys (HEAs possess unique microstructures, which are solid solutions with random arrangements of multiple elements. The particular locally-disordered chemical environment is expected to lead to unique corrosion-resistant properties. In this review, the studies of the corrosion-resistant HEAs during the last decade are summarized. The corrosion-resistant properties of HEAs in various aqueous environments and the corrosion behavior of HEA coatings are presented. The effects of environments, alloying elements, and processing methods on the corrosion resistance are analyzed in detail. Furthermore, the possible directions of future work regarding the corrosion behavior of HEAs are suggested.

  13. Improvement of the corrosion resistance by using enamel coating applied to the carbon steel fin tubes of the HRSG

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Seok; Lee, Jong Wook [BHI, Haman (Korea, Republic of)

    2014-07-15

    Gas side corrosion affects all heat recovery steam generators (HRSGs). Consequences range from unsightliness and reduced performance to reliability problems and potential safety hazards. The enamel coating used for the HRSG fin tubes was visually and microscopically inspected, analyzed and compared with original one. From the results of the analysis, there was not much different between the coating and the original in the comparison of the strength, SEM (scanning electron microscope), and thermal expansion. For the overall heat transfer due to the coating, it was found that the coating fin tubes have about 2% degradation in comparison with the original ones. However, the use of enamel coating can help strongly to delay the corrosion problem by flue gases in the HRSG.

  14. Effect of chromium on the corrosion resistance of aluminide coatings on nickel and nickel-based substrates

    Energy Technology Data Exchange (ETDEWEB)

    Godlewski, K.; Godlewska, E.

    1987-04-01

    The aluminide and Cr-Al diffusion coatings on nickel and the nickel-based alloy EI 867 obtained by a two-step pack cementation technique were subjected to various corrosion tests consisting of oxidation under thermal cycling conditions as well as isothermal oxidation in the presence of fused Na/sub 2/SO/sub 4/. The presence of chromium in the surface layer of aluminide coatings had a beneficial effect on their resistance to oxidation in that the oxide layer formed was less prone to spallation. This type of coating microstructure also appeared to be advantageous with respect to hot corrosion since pitting, which is typical of the degradation of aluminide coatings, was not observed. It is postulated that the chromium-enriched zone acts as a barrier to the oxidation of refractory metals (molybdenum, tungsten and vanadium) present in somewhat deeper coating layers in the form of carbide or intermetallic phases, thus preventing the onset of catastrophic corrosion.

  15. Corrosion-resistant sulfur concretes

    Science.gov (United States)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1983-04-01

    Sulfur concretes have been developed by the Bureau of Mines as construction materials with physical and mechanical properties that suit them for use in acid and salt corrosive environments where conventional concretes fail. Mixture design methods were established for preparing sulfur concretes using different types of aggregates and recently developed mixed-modified sulfur cements. Bench-scale testing of the sulfur concretes has shown their potential value. Corrosion resistance, strength, and durability of sulfur concrete are superior to those of conventional materials. Field in situ evaluation tests of the sulfur concretes as replacement for conventional concrete materials are in progress in corrosive areas of 24 commercial chemical, fertilizer, and metallurgical plants.

  16. Corrosion Resistance of the Superhydrophobic Mg(OH)2/Mg-Al Layered Double Hydroxide Coatings on Magnesium Alloys

    National Research Council Canada - National Science Library

    Zhang, Fen; Zhang, Changlei; Zeng, Rongchang; Song, Liang; Guo, Lian; Huang, Xiaowen

    2016-01-01

      Coatings of the Mg(OH)2/Mg-Al layered double hydroxide (LDH) composite were formed by a combined co-precipitation method and hydrothermal process on the AZ31 alloy substrate in alkaline condition...

  17. Effect of applied bias voltage on corrosion-resistance for TiC{sub 1-x}N{sub x} and Ti{sub 1-x}Nb{sub x}C{sub 1-y}N{sub y} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo, J.C., E-mail: Jcesarca@calima.univalle.edu.co [Department of Physics, Universidad del Valle, Ciudad Universitaria Melendez, A.A. 25360 Cali (Colombia); Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain); Amaya, C. [Department of Physics, Universidad del Valle, Ciudad Universitaria Melendez, A.A. 25360 Cali (Colombia); Laboratorio de Recubrimientos Duros DT-ASTIN SENA, Cali (Colombia); Yate, L. [Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain); Aperador, W.; Zambrano, G.; Gomez, M.E. [Department of Physics, Universidad del Valle, Ciudad Universitaria Melendez, A.A. 25360 Cali (Colombia); Alvarado-Rivera, J.; Munoz-Saldana, J. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Queretaro (Mexico); Prieto, P. [Department of Physics, Universidad del Valle, Ciudad Universitaria Melendez, A.A. 25360 Cali (Colombia); Centro de Excelencia en Nuevos Materiales, Calle 13 100-00 Edificio 320, espacio 1026, Cali (Colombia)

    2010-02-15

    Corrosion-resistance behavior of titanium carbon nitride (Ti-C-N) and titanium niobium carbon nitride (Ti-Nb-C-N) coatings deposited onto Si(1 0 0) and AISI 4140 steel substrates via r.f. magnetron sputtering process was analyzed. The coatings in contact with a solution of sodium chloride at 3.5% were studied by Tafel polarization curves and impedance spectroscopy methods (EIS). Variations of the bias voltage were carried out for each series of deposition to observe the influence of this parameter upon the electrochemical properties of the coatings. The introduction of Nb in the ternary Ti-C-N film was evaluated via X-ray diffraction (XRD) analysis. The structure was characterized by using Raman spectroscopy to identify ternary and quaternary compounds. Surface corrosion processes were characterized using optical microscopy and scanning electron microscopy (SEM). XRD results show conformation of the quaternary phase, change in the strain of the film, and lattice parameter as the effect of the Nb inclusion. The main Raman bands were assigned to interstitial phases and 'impurities' of the coatings. Changes in Raman intensities were attributed to the incorporation of niobium in the Ti-C-N structure and possibly to resonance enhancement. Finally, the corrosion data obtained for Ti-C-N were compared with the results of corrosion tests of Ti-Nb-C-N coating. The results obtained showed that the incorporation of niobium to Ti-C-N coatings led to an increase in the corrosion-resistance. On another hand, an increase in the bias voltage led to a decrease in the corrosion-resistance for both Ti-C-N and Ti-Nb-C-N coatings.

  18. Influence of CrN-coating thickness on the corrosion resistance behaviour of aluminium-based bipolar plates

    Science.gov (United States)

    Barranco, José; Barreras, Félix; Lozano, Antonio; Maza, Mario

    The electrical and corrosion properties of CrN-coated aluminium alloy Magnal-45 (Al-5083) probes have been evaluated, in order to assess their viability to be used as bipolar plates in polymer electrolyte fuel cells. To this end, ceramic micro-layers of chromium nitride (CrN) with different thicknesses (3, 4, and 5 μm) have been deposited on the surface of the Al alloy (Al-5083) using the physical vapour deposition (PVD) technique. A decrease in 2 orders of magnitude of I corr values for the coated Al has been observed compared to the as-received Al-alloy when the probes have been exposed to simulated anodic conditions in a micro-reactor. On the other hand, when subjected to a cathodic-simulated environment, the Al-CrN probes with 3 μm and 4 μm coatings have shown a decrease in I corr of one order of magnitude, while a variation of two orders of magnitude has also been obtained for the 5 μm coating.

  19. Evaluation of corrosion resistance of aluminium coating with and without annealing against molten carbonate using electrochemical impedance spectroscopy

    Science.gov (United States)

    Ni, C. S.; Lu, L. Y.; Zeng, C. L.; Niu, Y.

    2014-09-01

    An arc ion plating (AIP) was used to fabricate a FeAl layer on 310S stainless steel to protect the sealing area being corroded by the molten carbonate in molten carbonate fuel cells (MCFCs). The degradation of aluminide coatings comes from both the corrosion of the coating in contact with the molten carbonate and the aluminium depletion due to the interdiffusion of aluminium and the substrate. The in-situ forming of aluminide in molten carbonate at 650 °C could be a possible way to reduce the inward diffusion of aluminium in the conventional pre-annealing at 850 °C. Electrochemical impedance spectroscopy (EIS) measurements were performed to model the corrosion of this pre-formed FeAl coating in comparison with the one formed in-situ in molten (0.62 Li+0.38 K)2CO3 at 650 °C. Although α-LiAlO2 is the corrosion product in both cases, the impedance spectra show distinct rate-limiting steps; the former is controlled by the charged particles passing through the scale, while the latter by their diffusion in the melt. The microstructure of the scale might be the reason for the difference in corrosion mechanism.

  20. A Study of Magnesium-Base Metallic Systems and Development of Principles for Creation of Corrosion-Resistant Magnesium Alloys

    Science.gov (United States)

    Mukhina, I. Yu.

    2014-11-01

    The effect of 26 alloying elements on the corrosion resistance of high-purity magnesium in a 0.5-n solution of sodium chloride and in a humid atmosphere (0.005 n) is studied. The Mg - Li, Mg - Ag, Mg - Zn, Mg - Cu, Mg - Gd, Mg - Al, Mg - Zr, Mg - Mn and other binary systems, which present interest as a base for commercial or perspective castable magnesium alloys, are studied. The characteristics of corrosion resistance of the binary alloys are analyzed in accordance with the group and period of the Mendeleev's periodic law. The roles of the electrochemical and volume factors and of the factor of the valence of the dissolved element are determined.

  1. Electrochemistry Analyzed on Corrosion Resistance of Micro-arc Oxidation and Organic Coating for Mg Alloy%镁合金微弧氧化及后续涂装耐蚀性电化学分析

    Institute of Scientific and Technical Information of China (English)

    李新波; 孙长涛; 郝建民; 王伟

    2009-01-01

    采用IM6e型电化学工作站,对MB8镁合金微弧氧化及封孔涂装后试样进行电化学I/E极化曲线和Tafel斜率分析.结果表明:各种封孔工艺都能不同程度地提高微弧氧化陶瓷层的耐蚀性,其中电泳涂装降低腐蚀电流1个数量级,是良好的封孔工艺:采用水煮+有机树脂多种封孔工艺综合处理降低陶瓷层腐蚀电流2个数量级,耐蚀性最好.%Mg alloy MB8 was surface-modified by micro-arc oxidation (MAO).Several organic coatings were prepared on the micro-arc oxidation coating of the Mg alloy.Electrochemical workstation IM6e was used to measure the electrochemical steady state I/E polarization curves and Tafel slope of the micro-arc oxidation coating in combination with organic coatings.The results show that the organic coatings can increase various degrees of the corrosion resistance of the ceramic layer by micro-arc oxidization of the Mg alloy.Especially,the corrosion resistance of sample which used multi-technics of seal is best.

  2. Evaluation of hot corrosion resistance of Ni-base alloys using immersion test, coating test and embedding test; Shinseki shiken , tofu shiken , maibotsu shiken ni yoru Ni ki gokin no koon taishoku sei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Zang, G.; Nishikata, A.; Tsuru, T. [Tokyo Inst. of Tech. (Japan)

    1997-07-20

    Coating test, immersion test and embedding test are usually employed as the methods for testing high temperature corrosion caused by molten salts. In this study, corrosion-resistant properties of twelve kinds of Ni-based alloys are evaluated systematically by immersion, coating and embedding tests using a sulfate, a chloride and a mixture thereof as the molten salts, and the differences of the results obtained by each testing method are examined. The main results of this study are described herein. The reproducibility of said tests is getting higher in an order of embedding test, coating test and immersion test. Especially an extremely high reproducibility is shown by the immersion test. In all corrosive ashes of sulfate, chloride and the mixture thereof, a good correlation is shown between the results of the immersion test and those of the coating test. The results of embedding test are correlated well with those of other tests in sulfate and sulfate/chloride mixture circumstance, while no such a correlation is indicated in chloride. In chloride corrosive ash and sulfate/chloride mixture corrosive ash, the corrosion amounts in coating and embedding tests are rather bigger than that in immersion test. In particular, a large amount of corrosion more than one digital is shown in the alloys with excellent corrosion-resistance. 33 refs., 11 figs., 5 tabs.

  3. Improved Corrosion Resistance of Pulse Plated Nickel through Crystallisation Control

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Watanabe, Tohru; Andersen, Jens Enevold Thaulov

    1995-01-01

    When electrodeposition of nickel is used for corrosion protection of steel two aspects are important. The porosity of the coating and the resistance against corrosion provided by the coating itself. Using simple pulsed current (PC) plating, the size of the deposited crystals can be significantly...... smaller, thereby reducing porosity correspondingly. This usually also leads to improved hardness of the coating. Introducing pulse reversal (PR) plating, the most active crystals are continuously dissolved during the anodic pulse, providing a coating with improved subsequent corrosion resistance in almost...... any corrosive environment. This correlation between film texture and corrosion resistance will be discussed....

  4. Improved Corrosion Resistance of Pulse Plated Nickel through Crystallisation Control

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Watanabe, Tohru; Andersen, Jens Enevold Thaulov

    1995-01-01

    When electrodeposition of nickel is used for corrosion protection of steel two aspects are important. The porosity of the coating and the resistance against corrosion provided by the coating itself. Using simple pulsed current (PC) plating, the size of the deposited crystals can be significantly...... smaller, thereby reducing porosity correspondingly. This usually also leads to improved hardness of the coating. Introducing pulse reversal (PR) plating, the most active crystals are continuously dissolved during the anodic pulse, providing a coating with improved subsequent corrosion resistance in almost...... any corrosive environment. This correlation between film texture and corrosion resistance will be discussed....

  5. Corrosion resistance of zirconium oxynitride coatings deposited via DC unbalanced magnetron sputtering and spray pyrolysis-nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Cubillos, G.I., E-mail: gcubillos@unal.edu.co [Department of Chemistry, Group of Materials and Chemical Processes, Universidad Nacional de Colombia, Av. Cra. 30 No 45-03, Bogotá (Colombia); Bethencourt, M., E-mail: manuel.bethencourt@uca.es [Department of Materials Science, Metallurgy Engineering and Inorganic Chemistry, International Campus of Excellence of the Sea - CEI-MAR, University of Cadiz, Avda. República Saharaui s/n, 11510 Puerto Real, Cádiz (Spain); Olaya, J.J., E-mail: jjolayaf@unal.edu.co [Faculty of Engineering, Group of Materials and Chemical Processes, Universidad Nacional de Colombia, Av. Cra. 30 No 45-03, Bogotá (Colombia)

    2015-02-01

    Highlights: • New ZrO{sub x}N{sub y} films were deposited on stainless steel 316L using PSY-N and UBMS. • ZrO{sub x}N{sub y} rhombohedral polycrystalline film grew with PSY-N. • Zr{sub 2}ON{sub 2} crystalline structures, mostly oriented along the (2 2 2) plane, grew with UBMS. • Layers improved corrosion behavior in NaCl media, especially those deposited by UBMS. - Abstract: ZrO{sub x}N{sub y}/ZrO{sub 2} thin films were deposited on stainless steel using two different methods: ultrasonic spray pyrolysis-nitriding (SPY-N) and the DC unbalanced magnetron sputtering technique (UBMS). Using the first method, ZrO{sub 2} was initially deposited and subsequently nitrided in an anhydrous ammonia atmosphere at 1023 K at atmospheric pressure. For UBMS, the film was deposited in an atmosphere of air/argon with a Φair/ΦAr flow ratio of 3.0. Structural analysis was carried out through X-ray diffraction (XRD), and morphological analysis was done through scanning electron microscopy (SEM) and atomic force microscopy (AFM). Chemical analysis was carried out using X-ray photoelectron spectroscopy (XPS). ZrO{sub x}N{sub y} rhombohedral polycrystalline film was produced with spray pyrolysis-nitriding, whereas using the UBMS technique, the oxynitride films grew with cubic Zr{sub 2}ON{sub 2} crystalline structures preferentially oriented along the (2 2 2) plane. Upon chemical analysis of the surface, the coatings exhibited spectral lines of Zr3d, O1s, and N1s, characteristic of zirconium oxynitride/zirconia. SEM analysis showed the homogeneity of the films, and AFM showed morphological differences according to the deposition technique of the coatings. Zirconium oxynitride films enhanced the stainless steel's resistance to corrosion using both techniques. The protective efficacy was evaluated using electrochemical techniques based on linear polarization (LP). The results indicated that the layers provide good resistance to corrosion when exposed to chloride

  6. 改善印制电路板化学镀镍耐蚀性的研究进展%Research progress of improvement of corrosion resistance of electroless nickel coating on printed circuit board

    Institute of Scientific and Technical Information of China (English)

    冯立; 何为; 黄雨新; 何杰; 徐缓

    2013-01-01

    在印制电路板化学镀镍/金过程中,镍、金原子固有的结构特征使镍镀层极易被氧化腐蚀,从而影响镀层的可焊性。从化学镀Ni-P基多元合金,引入纳米粒子和稀土材料,以及化学镀Ni-B合金三方面,介绍了改善印制电路板化学镀镍层耐蚀性的研究现状。对印制电路板化学镀镍耐蚀性的改善方法提出了建议。%Oxidation corrosion of nickel coating occurs easily during the electroless nickel/gold plating process on the surface of printed circuit board because of the inherent structure features of nickel and gold atoms, thus affecting the solderability of coating. The research progress of improvement of corrosion resistance of electroless nickel coating on printed circuit board was introduced from three aspects including electroless Ni-P-based multicomponent alloy plating, introduction of nanoparticles and rare earth materials, and electroless Ni-B alloy. Some suggestions about improvement method of corrosion resistance of electroless nickel coating on printed circuit board were proposed.

  7. Micro-arc oxidization of a novel Mg–1Ca alloy in three alkaline KF electrolytes: Corrosion resistance and cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Z.J.; Li, M.; Liu, Q.; Xu, X.C. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Cheng, Y., E-mail: chengyan@pku.edu.cn [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zheng, Y.F. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China); Xi, T.F. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Wei, S.C. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100871 (China)

    2014-02-15

    A newly-developed Mg–1Ca (wt%) alloy was treated by micro-arc oxidization (MAO) in KF-silicate- (Si coating), KF-phosphate- (P coating) and KF-silicate-phosphate (SiP coating) electrolytes. The microstructure, composition and corrosion resistance of the resultant MAO coatings were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffractometry (XRD). Electrochemical analysis and immersion test in Hanks’ solution and MTT assay for in-vitro toxicity against MG63 cells were subsequently carried out. Results showed that all the three MAO coatings contributed to the improvement of corrosion resistance and cytocompatibility of substrate; however, P coating outperformed the two others due to its specific microstructure and composition.

  8. High Velocity Oxidation and Hot Corrosion Resistance of Some ODS Alloys

    Science.gov (United States)

    Lowell, C. E.; Deadmore, D. L.

    1977-01-01

    Several oxide dispersion strengthened (ODS) alloys were tested for cyclic, high velocity, oxidation, and hot corrosion resistance. These results were compared to the resistance of an advanced, NiCrAl coated superalloy. An ODS FeCrAl were identified as having sufficient oxidation and hot corrosion resistance to allow potential use in an aircraft gas turbine without coating.

  9. 适宜碳化钨含量提高Ti(C,N)-WC涂层耐磨耐蚀性%Appropriate WC content improving wear and corrosion resistance of Ti(C, N)-WC coating

    Institute of Scientific and Technical Information of China (English)

    屈平; 马跃进; 赵建国; 马璐萍; 刘俊峰

    2014-01-01

    growth, and thus it played a role in the grain refinement and dispersion strengthening which improved the strength of the coating. When the WC content was 12%, the typical development of core-ring structure became perfect, and uniformly dispersed and embedded in the binder phase, and the grain was finest. When the WC content exceeded 15% and reached18%, the ring phase changed thick or incomplete, grain coarsening, the core-ring structure reduced and had the tendency of disappearing, composite coating appeared holes and cracks. The micro hardness, wear and corrosion resistance properties of the coating strengthened with the increasing of the added amount of WC, when WC content was 12%, the maximum and average hardness of coatings was HV0.52030 and HV0.51750 which was about 6 times the hardness of the substrate, the friction coefficient of coating was about 2/5 of the substrate, the wear loss of coating was about 1/16 of Q235B steel, the wear resistance of the composite coating was excellent. In 5%H2SO4 solution, the corrosion rate of the coating with WC content of 12%was 1/9 of Q235B, in 3.5%NaCl solution, the corrosion rate of coating with WC content of 12%was 1/4 of Q235B, so the resistant corrosion property of composite coating with WC content of 12%was optimal in acidic and sodium chloride environment. Ti (C,N)-WC composite coatings have better wear and corrosion resistance behavior than the substrate. The trial provides a experimental and theoretical reference for strengthening agricultural machinery materials.%为了提高农机关键部件表面强度,采用反应等离子熔覆技术,在 Q235B 钢表面制备了不同碳化钨 WC含量的 Ti(C,N)-WC 金属陶瓷复合涂层。利用扫描电镜、X 射线衍射仪、显微硬度计、摩擦磨损试验机、电化学工作站对复合涂层的形貌、物相及其耐磨耐蚀性进行了分析,并与Q235B钢进行了硬度、耐磨耐蚀性对比试验。结果表明:涂层组织主要由硬质相、包

  10. Quantification of corrosion resistance of a new-class of criticality control materials: thermal-spray coatings of high-boron iron-based amorphous metals - Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J S; Shaw, C K; Rebak, R; Day, S D; Lian, T; Hailey, P; Payer, J H; Branagan, D J; Aprigliano, L F

    2007-03-28

    An iron-based amorphous metal, Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} (SAM2X5), with very good corrosion resistance was developed. This material was produced as a melt-spun ribbon, as well as gas atomized powder and a thermal-spray coating. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. Earlier studies have shown that ingots and melt-spun ribbons of these materials have good passive film stability in these environments. Thermal spray coatings of these materials have now been produced, and have undergone a variety of corrosion testing, including both atmospheric and long-term immersion testing. The modes and rates of corrosion have been determined in the various environments, and are reported here.

  11. Effect of microstructure on the corrosion and deformation behavior of a newly developed 6Mn-5Cr-1.5Cu corrosion-resistant white iron

    Science.gov (United States)

    Rao, P. N. V. R. S. S. V. Prasada; Patwardhan, A. K.; Jain, N. C.

    1993-02-01

    development, the composition thus developed betters the performance of 22 pct Ni containing Ni-Resist irons as far as strength and freedom from pitting and graphitic corrosion are concerned; however, the corrosion resistance is somewhat lower. In conclusion, the usefulness of the different microstructures in attaining a useful combination of corrosion resistance and deformation behavior has been assessed. The data thus generated provide definite clues to developing new materials with improved performance for resisting aqueous corrosion in marine environments.

  12. Corrosion Resistance of Ni-Cu-P Coating in Hydrofluoric Acid Solution%Ni-Cu-P镀层在氢氟酸溶液中的耐蚀性研究

    Institute of Scientific and Technical Information of China (English)

    刘文涛; 王洪志; 胡传顺; 梁平; 秦华; 李壮

    2011-01-01

    Ni - Cu - P ternary alloy plating was made by electroless plating technology in the surface of 20R steel for improving corrosion resistance of 20R steel in hydrofluoric acid. The surface morphology and structure of the coating were observed and tested through metallography and X - ray diffraction technique. The corrosion behavior of 20R steel and the coating was tested by immersion method and electrochemical system in hydrofluoric acid solution. The results show that; Ni- Cu-P coating can deposit smoothly in the surface of 20R steel. The coating is smooth, compact and crack free and has prevented 20R steel from contacting hydrofluoric acid directly. The coating is much easier to passivate in hydrofluoric acid solution. Thus, the coating has corrosion resistance to some extent.%为了改善20R钢在氢氟酸介质中的耐蚀性,采用化学镀技术在该材料表面制备了Ni-Cu-P三元合金镀层.通过金相显微镜和X射线衍射观察和分析了镀层的表面形貌和组成,通过浸泡法、电化学系统测试了20R钢和镀层在氢氟酸溶液中的腐蚀性能.结果表明:Ni-Cu-P镀层能顺利地在20R钢表面发生沉积,镀层光滑、致密、无裂纹,阻隔了氢氟酸与20R钢的直接接触.镀层在氢氟酸溶液中更容易发生钝化,具有一定的耐蚀性能.

  13. Coal Ash Corrosion Resistant Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2003-08-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a reasonably high alkali content, thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was well within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that the aggressive alkali-iron-trisulfate constituent was present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. This report provides the results of the evaluation of Test Section C, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. The analysis of Test Section C followed much the same protocol that was employed in the assessment of Test Section A. Again, the focus was on determining and documenting the relative corrosion rates of the candidate materials. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials for both Test Sections A and C

  14. Corrosion Resistance of Phytic Acid Conversion Coating Modified by Molybdate on Surface of Aluminum Alloy%铝合金表面钼酸盐改进植酸转化膜的耐蚀性能

    Institute of Scientific and Technical Information of China (English)

    林碧兰

    2016-01-01

    目的:通过钼酸钠( SM)添加剂、SM前处理、SM后处理三种方案对铝合金表面植酸转化膜进行改进研究,以进一步提高其耐蚀性。方法通过动电位极化测试研究改进后铝合金在3.5%(质量分数) NaCl溶液中的耐蚀性。结果随着SM添加剂浓度的增加,铝合金表面植酸转化膜的耐蚀性先增强再减弱,SM质量浓度为30 g/L时的腐蚀保护效率P e 最大,达95.5%,而不含SM时的P e 仅为86.8%。 pH值太大(pH=8.0)或太小(pH=3.0)都不利于形成耐蚀性更好的膜层,pH值为6.0时的Pe 达98.6%。SM后处理会严重影响植酸转化膜的耐蚀性,腐蚀电流密度Jcorr大幅增大;SM前处理可提高植酸转化膜的耐蚀性,Pe达98.2%;SM前处理与添加剂同时应用时,植酸转化膜耐蚀性提高幅度更显著,Jcorr仅为0.042μA/cm2,极化电阻Rp达222 kΩ·cm2,Pe 达99.5%。结论 SM添加剂和SM前处理均可明显提高铝合金表面植酸转化膜的耐蚀性,且复合作用时的效果更显著,而SM后处理不能提高铝合金表面植酸转化膜的耐蚀性。%ABSTRACT:Objective To further enhance the corrosion resistance of phytic acid conversion coating on the surface of aluminum alloy, sodium molybdate ( SM) additives, SM pre-treatment and SM post-treatment were applied to modify the process. Methods The corrosion resistance of the modified aluminum alloy in 3. 5wt.% NaCl solution was investigated through dynamicpotential polar-ization test. Results With the increase in concentration of SM additives, the corrosion resistance of phytic acid conversion coating first increased and then decreased, and the corrosion protection efficiency Pe was the largest, reaching about 95. 5% when SM was 30 g/L, while the value was 86. 8% without SM additives. The Pe value reached 98. 6% at pH 6. 0, while a larger or a smaller pH (i. e. pH 8. 0 or pH 3. 0) was not beneficial to form a more anti-corrosion coating. However, the corrosion resistance of phytic acid

  15. Structure and Corrosion Resistance of a Composite γ-Amino Propyl Triethoxy Silane and γ-Glycidoxy Propyl Trimethoxy Silane Conversion Coating on Galvanized Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; LIU Chang-sheng; YU Hai-yun; AN Cheng-qiang

    2012-01-01

    In an aqueous solution of the mixtures of γ-amino propyl triethoxy silane and γ-glycidoxy propyl trimethoxy silane, a composite silane conversion coating was developed on galvanized steel. FESEM (field emission scanning electron microscope), XPS (X-ray photoelectron spectroscopy), ATR FTIR (attenuated total reflection Flourier transform infrared spectroscopy) and SST (salt spray test) were used to characterize the obtained composite silane conversion coating and also the coating formation process was studied. The result showed that the surface of the composite silane conversion coating was complete, consecutive and compact. The coating could endure a neutral salt spray test for 72 h without corrosion. The result of salt spray test indicated that the composite silane conversion coating can provide a better corrosion inhibition than the coating which was composed of the single silane. Based on observation and analysis, it was proposed that the formation process of the silane coating on zinc should consist of three steps: the hydrolysis of the silane molecules, silane chemical adsorption and silane crosslinking condensation. The crosslinking reactions took place between ~'-amino propyl triethoxy and "/-glycidoxy propyl trimethoxy silane during the forming process of the coating, and a high crosslinked density interpenetrating structure network was obtained, so the composite silane conversion coating could keep the corrosive substances from the zinc more effectively.

  16. Corrosion resistance of monolayer hexagonal boron nitride on copper

    Science.gov (United States)

    Mahvash, F.; Eissa, S.; Bordjiba, T.; Tavares, A. C.; Szkopek, T.; Siaj, M.

    2017-02-01

    Hexagonal boron nitride (hBN) is a layered material with high thermal and chemical stability ideal for ultrathin corrosion resistant coatings. Here, we report the corrosion resistance of Cu with hBN grown by chemical vapor deposition (CVD). Cyclic voltammetry measurements reveal that hBN layers inhibit Cu corrosion and oxygen reduction. We find that CVD grown hBN reduces the Cu corrosion rate by one order of magnitude compared to bare Cu, suggesting that this ultrathin layer can be employed as an atomically thin corrosion-inhibition coating.

  17. R~D Status of Corrosion-resistant Thermal Spray Coatings to Molten Zinc%耐锌液腐蚀热喷涂涂层的研发现状

    Institute of Scientific and Technical Information of China (English)

    邓春明; 刘敏; 曾翠丽; 邓畅光; 邝子奇; 毛杰

    2011-01-01

    Zinc plated steel has found its wide applications in all kinds of industries, but some key parts in the production line, such as bearing and sink roller, suffer from serious corrosion of molten zinc, which greatly affects the production efficiency and the quality of products. Thermal spray coatings serve as important corrosion resistance coatings to get rid of the above troubles. The R&D status of thermal spray coatings against zinc corrosion and their corresponding manufacturing technique were introduced, and the corrosion failure mechanism for thermal spray coatings was systematically analyzed. The importance of sealing reagent was emphasized for thermal spray coatings. Finally, the improvement in the corrosion resistance to zinc molten was directed to the inhibition of crack formation.%生产镀锌板的热浸镀机组中的各种轴承、沉没辊等受锌液的强烈腐蚀,对热镀锌的生产和产品质量有很大影响.热喷涂耐锌液腐蚀涂层是解决这一难题的一种重要的防护方法.本文主要介绍了近年来国内外关于耐锌液腐蚀热喷涂涂层材料的开发及相应的涂层制备技术,系统分析了各涂层材料在锌液中的腐蚀机理和封孔剂在热喷涂涂层耐锌液腐蚀中的重要性,并指出涂层中微裂纹的控制是提高其耐锌液腐蚀性能的方向.

  18. Grf/6061AI复合材料表面铈氧化膜耐蚀特性研究%Effect of Ce Conversion Coating for Corrosion Resistance on Grf/6061 AI Composites Surface

    Institute of Scientific and Technical Information of China (English)

    刘炎; 邢春英; 陈国钦; 王春雨; 张强; 武高辉

    2011-01-01

    碳纤维增强铝基复合材料具有高比强度、高比模量等优异的力学性能,在航空航天领域有着极广泛的应用前景。然而,石墨纤维增强铝基复合材料在使用过程中极易发生多种形式的腐蚀破坏。利用SEM、EDS、全浸泡试验、极化曲线测试等手段,对Grf/6061A1复合材料表面不同成膜时间的稀土转化膜耐蚀性能进行了探讨。结果表明:稀土转化膜成膜完整时能有效阻碍氧和电子的迁移,从而使材料腐蚀电位φcorr上升,腐蚀电流密度icorr显著减小,点蚀敏感性下降,耐蚀性能显著提高;稀土膜成膜不完整时,不能有效阻碍氧和电子的迁移,相反由于成膜过程对材料的腐蚀作用,导致材料耐腐蚀性不佳甚至有所降低。%With the high specific strength and high specific modulus, carbon fibre reinforced aluminum matrix composites has a broad prospect of application in aerospace field. However, several forms of corrosion might happen in the course of use. In this paper, the morphology and composition of Ce conversion coating are studied by the scanning electronic microscope (SEM) and energy disperse spectroscopy (EDS). The corrosion resistance of the conversion coating is examined by immersion tests, polarization curves and electrochemical impedance spectroscopy. The results show that the complete Ce conversion coating could hinder the transfer of oxygen and electrons. Thereby, the corrosion potential φcorr of the specimens increases and the corrosion current density ieorr decreases. As a result, the sensitivity of pitting corrosion of the specimens reduces and the corrosion resistance increases. Due to the non-complete coating could not hinder the transfer of oxygen and electrons effectively and the corrosion behavior during coating formation, the corrosion resistance of the specimens decreases.

  19. Effect of silicate pretreatment, post-sealing and additives on corrosion resistance of phosphated galvanized steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Sodium silicate (water glass) pretreatment before phosphating, silicate post-sealing after phosphating and adding silicate to a traditional phosphating solution were respectively carried out to obtain the improved phosphate coatings with high corrosion resistance and coverage on hot-dip galvanized(HDG) steel. The corrosion resistance, morphology and chemical composition of the coatings were investigated using neutral salt spray(NSS) tests, scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). The results show that pretreatment HDG steel with silicate solutions, phosphate coatings with finer crystals and higher coverage are formed and the corrosion resistance is enhanced. Adding silicate to a traditional phosphating solution, the surface morphology of the coatings is nearly unchanged. The corrosion resistance of the coatings is mainly dependent on phosphating time.Phosphating for a longer time (such as 5 min), the corrosion resistance, increasing with concentration of silicate, is improved significantly. Post-sealing the phosphated HDG steel with silicate solutions, the pores among the zinc phosphate crystals are sealed with the films containing Si, P, O and Zn and the continuous composite coatings are formed. The corrosion resistance of the composite coatings, related to the pH value, contents of hydrated gel of silica and Si2O52- and post-sealing time, is increased markedly. The improved coatings with optimal corrosion resistance are obtained for phosphating 5 min and post-sealing with 5 g/L silicate solution for 10 min.

  20. Corrosion resistant solar mirror

    Energy Technology Data Exchange (ETDEWEB)

    Medwick, Paul A.; Abbott, Edward E.

    2016-07-19

    A reflective article includes a transparent substrate having a first major surface and a second major surface. A base coat is formed over at least a portion of the second major surface. A primary reflective coating having at least one metallic layer is formed over at least a portion of the base coat. A protective coating is formed over at least a portion of the primary reflective coating. The article further includes a solar cell and an anode, with the solar cell connected to the metallic layer and the anode.

  1. 锌镍合金镀工艺优化及镀层耐腐蚀性的研究%Research on Process Optimization of Zn-Ni Alloy Plating and Coating Corrosion Resistance

    Institute of Scientific and Technical Information of China (English)

    陈伟; 唐凌燕; 周英; 陈刚

    2015-01-01

    Objective To study the corrosion resistance of Zn-Ni alloy coating. Methods By orthogonal test method, the Zn-Ni alloy electroplating technology was optimized, and the plating solution formula was obtained. The corrosion resistance of the opti-mized Zn-Ni alloy plating was evaluated by neutral salt spray test, and compared to those of the galvanized layer and cadmium plat-ing layer. The influence of the main salt, complexing agent, pH value, current density and temperature on the coating corrosion re-sistance was analyzed. Results The optimal formula was:zinc oxide 6~14 g/L, nickel sulfate 20~30 g/L, sodium hydroxide 100~140 g/L, brightener 4~6 g/L, and complexing agent 50~70 g/L. The Zn-Ni alloy coating obtained using this formula had a white rust occurrence time of more than 720 hours in the neutral salt spray test. Conclusion The Zn-Ni alloy coating had excellent corro-sion resistance, superior to those of zinc and cadmium plating layer.%目的:研究锌镍合金镀层的耐腐蚀性能。方法通过正交试验法,对锌镍合金电镀工艺进行优化,获得镀液配方。通过中性盐雾试验评判优化后的锌镍合金镀层的耐腐蚀性能,并与镀锌层和镀镉层进行对比。分析主盐、络合剂、pH值、电流密度、温度等对镀层耐腐蚀性的影响。结果最优配方为:氧化锌6~14 g/L,硫酸镍20~30 g/L,氢氧化钠100~140 g/L,光亮剂4~6 g/L,络合剂50~70 g/L。该配方获得的锌镍合金镀层在中性盐雾实验中,出白锈的时间可以达到720 h以上。结论锌镍合金镀层的耐腐蚀性优良,优于镀锌层和镀镉层。

  2. A Comparison of the Corrosion Resistance of Iron-Based Amorphous Metals and Austenitic Alloys in Synthetic Brines at Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C

    2008-11-25

    Several hard, corrosion-resistant and neutron-absorbing iron-based amorphous alloys have now been developed that can be applied as thermal spray coatings. These new alloys include relatively high concentrations of Cr, Mo, and W for enhanced corrosion resistance, and substantial B to enable both glass formation and neutron absorption. The corrosion resistances of these novel alloys have been compared to that of several austenitic alloys in a broad range of synthetic brines, with and without nitrate inhibitor, at elevated temperature. Linear polarization and electrochemical impedance spectroscopy have been used for in situ measurement of corrosion rates for prolonged periods of time, while scanning electron microscopy (SEM) and energy dispersive analysis of X-rays (EDAX) have been used for ex situ characterization of samples at the end of tests. The application of these new coatings for the protection of spent nuclear fuel storage systems, equipment in nuclear service, steel-reinforced concrete will be discussed.

  3. Development of nano SiO{sub 2} incorporated nano zinc phosphate coatings on mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Tamilselvi, M. [Department of Chemistry, Thiru Kolanjiappar Government Arts College, Virudhachalam 606001 (India); Kamaraj, P. [Department of Chemistry, SRM University, Kattankulathur 603203 (India); Arthanareeswari, M., E-mail: arthanareeswari@gmail.com [Department of Chemistry, SRM University, Kattankulathur 603203 (India); Devikala, S.; Selvi, J. Arockia [Department of Chemistry, SRM University, Kattankulathur 603203 (India)

    2015-03-30

    Highlights: • Nano SiO{sub 2} incorporated nano zinc phosphate coating on mild steel was developed. • Coatings showed enhanced corrosion resistance. • The nano SiO{sub 2} is adsorbed on mild steel surface and become nucleation sites. • The nano SiO{sub 2} accelerates the phosphating process. - Abstract: This paper reports the development of nano SiO{sub 2} incorporated nano zinc phosphate coatings on mild steel at low temperature for achieving better corrosion protection. A new formulation of phosphating bath at low temperature with nano SiO{sub 2} was attempted to explore the possibilities of development of nano zinc phosphate coatings on mild steel with improved corrosion resistance. The coatings developed were studied by Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Electrochemical measurements. Significant variation in the coating weight, morphology and corrosion resistance was observed as nano SiO{sub 2} concentrations varied from 0.5–4 g/L. The results showed that, the nano SiO{sub 2} in the phosphating solution changed the initial potential of the interface between mild steel substrate and phosphating solution and reduce the activation energy of the phosphating process, increase the nucleation sites and yielded zinc phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance. Better corrosion resistance was observed for coatings derived from phosphating bath containing 1.5 g/L nano SiO{sub 2}. The new formulation reported in the present study was free from Ni or Mn salts and had very low concentration of sodium nitrite (0.4 g/L) as accelerator.

  4. Corrosion Resistance Behavior of Single-Layer Cathodic Arc PVD Nitride-Base Coatings in 1M HCl and 3.5 pct NaCl Solutions

    Science.gov (United States)

    Adesina, Akeem Yusuf; Gasem, Zuhair M.; Madhan Kumar, Arumugam

    2017-04-01

    The electrochemical behavior of single-layer TiN, CrN, CrAlN, and TiAlN coatings on 304 stainless steel substrate, deposited using state-of-the-art and industrial size cathodic arc PVD machine, were evaluated in 1M HCl and 3.5 pct NaCl solutions. The corrosion behavior of the blank and coated substrates was analyzed by electrochemical impedance spectroscopy (EIS), linear polarization resistance, and potentiodynamic polarization. Bond-coat layers of pure-Ti, pure-Cr, alloyed-CrAl, and alloyed-TiAl for TiN, CrN, CrAlN, and TiAlN coatings were, respectively, first deposited for improved coating adhesion before the actual coating. The average coating thickness was about 1.80 µm. Results showed that the corrosion potentials ( E corr) of the coated substrates were shifted to more noble values which indicated improvement of the coated substrate resistance to corrosion susceptibility. The corrosion current densities were lower for all coated substrates as compared to the blank substrate. Similarly, EIS parameters showed that these coatings possessed improved resistance to defects and pores in similar solution compared to the same nitride coatings developed by magnetron sputtering. The charge transfer resistance ( R ct) can be ranked in the following order: TiAlN > CrN > TiN > CrAlN in both media except in NaCl solution where R ct of TiN is lowest. While the pore resistance ( R po) followed the order: CrAlN > CrN > TiAlN > TiN in HCl solution and TiAlN > CrN > CrAlN > TiN in NaCl solution. It is found that TiAlN coating has the highest protective efficiencies of 79 and 99 pct in 1M HCl and 3.5 pct NaCl, respectively. SEM analysis of the corroded substrates in both media was also presented.

  5. Corrosion Resistance Behavior of Single-Layer Cathodic Arc PVD Nitride-Base Coatings in 1M HCl and 3.5 pct NaCl Solutions

    Science.gov (United States)

    Adesina, Akeem Yusuf; Gasem, Zuhair M.; Madhan Kumar, Arumugam

    2017-01-01

    The electrochemical behavior of single-layer TiN, CrN, CrAlN, and TiAlN coatings on 304 stainless steel substrate, deposited using state-of-the-art and industrial size cathodic arc PVD machine, were evaluated in 1M HCl and 3.5 pct NaCl solutions. The corrosion behavior of the blank and coated substrates was analyzed by electrochemical impedance spectroscopy (EIS), linear polarization resistance, and potentiodynamic polarization. Bond-coat layers of pure-Ti, pure-Cr, alloyed-CrAl, and alloyed-TiAl for TiN, CrN, CrAlN, and TiAlN coatings were, respectively, first deposited for improved coating adhesion before the actual coating. The average coating thickness was about 1.80 µm. Results showed that the corrosion potentials (E corr) of the coated substrates were shifted to more noble values which indicated improvement of the coated substrate resistance to corrosion susceptibility. The corrosion current densities were lower for all coated substrates as compared to the blank substrate. Similarly, EIS parameters showed that these coatings possessed improved resistance to defects and pores in similar solution compared to the same nitride coatings developed by magnetron sputtering. The charge transfer resistance (R ct) can be ranked in the following order: TiAlN > CrN > TiN > CrAlN in both media except in NaCl solution where R ct of TiN is lowest. While the pore resistance (R po) followed the order: CrAlN > CrN > TiAlN > TiN in HCl solution and TiAlN > CrN > CrAlN > TiN in NaCl solution. It is found that TiAlN coating has the highest protective efficiencies of 79 and 99 pct in 1M HCl and 3.5 pct NaCl, respectively. SEM analysis of the corroded substrates in both media was also presented.

  6. Microstructure and corrosion resistance of Fe-Al intermetallic coating on 45 steel synthesized by double glow plasma surface alloying technology

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiao-lin; YAO Zheng-jun; GU Xue-dong; CONG Wei; ZHANG Ping-ze

    2009-01-01

    A binary Fe-Al alloyed layer was synthesized on 45 steel by means of double glow plasma surface alloying technique. The corrosion-resisting layer prepared is composed of a sedimentary layer and a diffusion layer, with a total thickness of about 180 μm. The aluminum content of the alloyed layer shows gradual change from surface to the inside of substrate. The ideal profile is beneficial to the metallurgical bonding of the surface alloying layer with substrate materials. The microstructure of both layers consists of the Fe-Al intermetallic compound, which is FeAl with B2 structure in the sedimentary layer and Fe3Al with incompletely ordered DO3 structure in the diffusion layer. The protective film exhibits high micro-hardness. In comparison with the substrate of 45 steel, the corrosion resistance of the aluminized sample is much higher in 2.0% Na2S and 0.05 mol/L Na2SO4 + 0.5 mol/L NaCl mixed solutions.

  7. CORROSION RESISTANCE OF THE FLAKY ALUMINUM POWDER COATED BY EMULSION POLYMERIZATION%乳液聚合法包覆片状铝粉及其耐腐蚀性研究

    Institute of Scientific and Technical Information of China (English)

    梁伟; 叶红齐; 陈玉琼; 刘秀云

    2011-01-01

    以丙烯酸丁酯、苯乙烯为单体,十二烷基硫酸钠为乳化剂,过硫酸铵为引发剂,通过乳液共聚包覆在片状铝粉的表面,并探讨单体配比、反应温度、反应时间对包覆铝粉耐酸腐蚀性能的影响.结果表明,在单体丙烯酸丁酯与苯乙烯的配比mBA/mSt为1∶1、反应温度为80℃、反应时间为4 h时,包覆铝粉的耐酸腐蚀性能较好.运用红外光谱和扫描电镜对包覆样品进行分析表征.%To improve the corrosion resistance of the flaky aluminum powder, the flaky aluminum powder was coated by emulsion polymerization, which used butyl acrylate and styrene as monomers, sodium dodecyl sulfate as emulsifier and ammonium persulfate as initiator. The effect of the proportion of butyl acrylate and styrene, reaction temperature and reaction time on the corrosion resistance of the coated aluminum powder was examined. The results show: its acid resistance is improved obviously; the coated aluminum powder obtained under the conditions that the proportion of butyl acrylate and styrene (mBA/mSt) is 1:1, reaction temperature is 80 ℃ and reaction time is 4 h has good acid resistance. Moreover, the encapsulated samples were analyzed and characterized by Fourier transform infrared spectroscope and scanning electron microscope.

  8. Investigation on Corrosion Resistance of MoB-CoCr Coating in Molten Zinc%MoB-CoCr涂层耐锌液腐蚀性能研究

    Institute of Scientific and Technical Information of China (English)

    曾翠丽; 刘敏; 曾德长; 邝子奇

    2011-01-01

    The corrosion resistance and corrosion mechanism of MoB-CoCr coating prepared by high velocity oxygen fuel (HVOF) process in molten zinc immersion test was studied. The results show that the pores in coating serve as crack initiators, and the residual stress, quenching stress and thermal stress result from the difference between coating and substrate led to the propagation of crack, and even the spalling of the coating from substrate. While molten zinc is diffused into coating through cracks and hastened the extension of crack, the corrosion along the crack forms, finally molten zinc accelerates the failure of the coating.%研究了超音速火焰喷涂制备的MoB-CoCr涂层在熔融锌液中的腐蚀情况,并分析锌液对MoB-CoCr涂层的腐蚀机理.结果表明,涂层中的缺陷孔隙成为裂纹源,而MoB-CoCr涂层的残余应力、淬火应力以及涂层与不锈钢热膨胀系数不匹配所产生的应力使涂层开裂,甚至涂层与基体发生剥离,锌渗入到涂层缺陷中使裂纹扩展,形成沿着裂纹的腐蚀,加速了涂层的失效.

  9. DOE-DARPA High-Performance Corrosion-Resistant Materials (HPCRM), Annual HPCRM Team Meeting & Technical Review

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Brown, B; Bayles, B; Lemieux, T; Choi, J; Ajdelsztajn, L; Dannenberg, J; Lavernia, E; Schoenung, J; Branagan, D; Blue, C; Peter, B; Beardsley, B; Graeve, O; Aprigliano, L; Yang, N; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Boudreau, J

    2007-09-21

    The overall goal is to develop high-performance corrosion-resistant iron-based amorphous-metal coatings for prolonged trouble-free use in very aggressive environments: seawater & hot geothermal brines. The specific technical objectives are: (1) Synthesize Fe-based amorphous-metal coating with corrosion resistance comparable/superior to Ni-based Alloy C-22; (2) Establish processing parameter windows for applying and controlling coating attributes (porosity, density, bonding); (3) Assess possible cost savings through substitution of Fe-based material for more expensive Ni-based Alloy C-22; (4) Demonstrate practical fabrication processes; (5) Produce quality materials and data with complete traceability for nuclear applications; and (6) Develop, validate and calibrate computational models to enable life prediction and process design.

  10. Corrosion Resistant Steels for Structural Applications in Aircraft

    Science.gov (United States)

    2007-11-02

    Nitriding Trials ........................................................................................203 LIST OF TABLES Table 1 Property...25% min. transverse KIC 50 ksi√in min. Fatigue Similar to 300M Cleanliness AMS 2300, ASTM E45 SCC Superior to 300M Corrosion Resistance Better...those that have a high deformation resistance associated with very hard and thermal resistant multi-layer PVD titanium aluminum nitride coatings

  11. 柠檬酸对镧盐转化膜耐蚀性和自愈性的影响%Effect of Citric Acid on Corrosion Resistance and Self-Healing Ability of Lanthanum Conversion Coating

    Institute of Scientific and Technical Information of China (English)

    孔纲; 黄伟; 林德鑫; 王霞; 黎汉昌; 卢锦堂; 刘玲艳

    2012-01-01

    In this paper, first, hot-dip galvanized steels were immersed into passivation lanthanum solutions with or without citric acid to respectively obtain an improved lanthanum conversion coating or a traditional lanthanum conversion coating on the steel surface. Next, the corrosion resistances of the two kinds of coatings were investigated via the neutral salt spray ( NSS) test, the Tafel polarization and the electrochemical impedance spectroscopy. Then, the coatings scratched with a knife edge were corroded in a NSS chamber. Finally, the microstructure and chemical composition of the scratch surface during the corrosion were analyzed by means of SEM and EDS. The results show that the addition of citric acid in the passivation solution remarkably improves the corrosion resistance and the self-healing ability of the coating, and that, during the corrosion, lanthanum ions and citric acid anions produced by the dissolution of LaCit3 at the scratch migrate from the coating to the scratch to form a new passive coating containing Zn, O, La and C, thus effectively suppressing the corrosion of zinc at the scratch.%将热镀锌钢分别浸入添加和不添加柠檬酸的镧盐钝化液中,在镀锌钢表面获得柠檬酸改进型镧盐转化膜和常规镧盐转化膜.用中性盐雾(NSS)试验、塔菲尔极化和电化学阻抗谱研究了这些试样的耐蚀性能,并对带划痕的柠檬酸改进型和常规镧盐膜层试样进行NSS腐蚀,用扫描电子显微镜和能谱仪观察分析了腐蚀过程中划痕表面的组织形貌和化学成分.结果表明:柠檬酸的加入显著提高了镧盐转化膜的耐蚀性能,并使膜层具备自愈性;腐蚀过程中,划痕附近的柠檬酸镧溶解产生La3+和柠檬酸根离子,从膜层中扩散迁移至划痕处,形成新的由Zn、O、La、C元素组成的保护膜,从而抑制了划痕处锌的腐蚀.

  12. Corrosion resistant three-dimensional nanotextured silicon for water photo-oxidation

    Science.gov (United States)

    Carter, Rachel; Chatterjee, Shahana; Gordon, Evan; Share, Keith; Erwin, William R.; Cohn, Adam P.; Bardhan, Rizia; Pint, Cary L.

    2015-10-01

    We demonstrate the ability to chemically transform bulk silicon into a nanotextured surface that exhibits excellent electrochemical stability in aqueous conditions for water photo-oxidation. Conformal defective graphene coatings on nanotextured silicon formed by thermal treatment enable over 50× corrosion resistance in aqueous electrolytes based upon Tafel analysis and impedance spectroscopy. This enables nanotextured silicon as an effective oxygen-evolution photoanode for water splitting with saturation current density measured near 35 mA cm-2 under 100 mW cm-2 (1 sun) illumination. Our approach builds upon simple and scalable processing techniques with silicon to develop corrosion resistant electrodes that can benefit a broad range of catalytic and photocatalytic applications.We demonstrate the ability to chemically transform bulk silicon into a nanotextured surface that exhibits excellent electrochemical stability in aqueous conditions for water photo-oxidation. Conformal defective graphene coatings on nanotextured silicon formed by thermal treatment enable over 50× corrosion resistance in aqueous electrolytes based upon Tafel analysis and impedance spectroscopy. This enables nanotextured silicon as an effective oxygen-evolution photoanode for water splitting with saturation current density measured near 35 mA cm-2 under 100 mW cm-2 (1 sun) illumination. Our approach builds upon simple and scalable processing techniques with silicon to develop corrosion resistant electrodes that can benefit a broad range of catalytic and photocatalytic applications. Electronic supplementary information (ESI) available: (i) Experimental details, (ii) Nyquist plot from EIS data, (iii) FTIR of H-terminated silicon, (iv) reflectance measurements to quantify light trapping in nanotextured silicon, (v) LSV from Tafel analysis, and (vi) J-V curves for H-terminated flat samples, (vii) stability test of photoanode, and (viii) forward and reverse scans for each sample type. See DOI: 10

  13. Corrosion resistant metallic bipolar plate

    Science.gov (United States)

    Brady, Michael P.; Schneibel, Joachim H.; Pint, Bruce A.; Maziasz, Philip J.

    2007-05-01

    A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

  14. CORROSION RESISTANT JACKETED METAL BODY

    Science.gov (United States)

    Brugmann, E.W.

    1958-08-26

    Reactor faul elements of the elongated cylindrical type which are jacketed in a corrosion resistant material are described. Each feel element is comprised of a plurality of jacketed cylinders of fissionable material in end to end abutting relationship, the jackets being welded together at their adjoining ends to retain the individual segments together and seat the interior of the jackets.

  15. 碳钢表面等离子喷涂Cr2O3涂层及其耐腐蚀性能%Corrosion Resistance of Plasma Sprayed Cr2O3 Coating on Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    糜亮; 李水清; 丁毅; 马立群

    2011-01-01

    Cr2O3 coating on carbon steel was prepared by plasma spraying. The micro-structure and corrosion resistance of the spayed coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical tests. The results showed that the thickness of the coating was about 100μm and the phase composition was mainly Cr2O3. The corrosion rate of the Cr2O3 coating decreased dramaticlly after spraying Cr2O3.%利用等离子喷涂技术在45(XRD)等方法表征了涂层的微观形貌、表面元素组成以及相结构;测量了涂层的显微硬度;采用CS300P型电化学工作站检测了Cr2O3涂层的耐蚀性能.结果表明,在45#钢表面等离子喷涂CrzO3涂层的厚度约为100μm,相成分主要是Cr2O3;显微硬度值达到莫氏9级;喷涂Cr3Oa涂层后的试样腐蚀速率显著降低,耐蚀性能明显提高.

  16. 6061铝合金无铬磷酸盐稀土转化膜的腐蚀性研究%Study on the Corrosion Resistance of Chromium -Free Phosphate Rare Earth Conversion Coating on 6061 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    李红玲; 孟志芬; 韩延安; 娄淑芳; 李杰; 李文静

    2012-01-01

    测试了磷酸盐转化膜和稀土促进的转化膜在不同pH溶液中的极化曲线、时间-电位曲线和电化学阻抗谱(EIS),对磷酸盐转化膜的耐蚀性能进行了研究.电化学测试表明:稀土磷酸盐处理后的铝合金试样的阳极极化电流下降;交流阻抗测试结果显示:由稀土促进生成的磷酸盐化学转化膜具有较大的极化电阻,二者都说明经稀土促进的转化膜的耐腐蚀性能得到了加强.%The corrosion resistance of phosphate conversion coating was studied by the polarization curves, time - potential curves and electrochemical impedance spectroscopy of phosphate conversion coating in solutions with different pH values. Electrochemical tests showed that anodic polarization current of alumi num alloy treated by rare earth phosphate declined and AC impedance test results indicated that phosphate conversion coating activated by rare earth gave a large polarization resistance. Both indicated that the corro sion resistance of phosphate conversion coating activated by rare earth were enhanced.

  17. Corrosion Resistance of Ni60 Coatings Prepared on Aluminum Bronze Surface by Flame Remelting%铝青铜表面粉末火焰喷涂Ni60合金涂层的耐蚀性研究

    Institute of Scientific and Technical Information of China (English)

    韩付会; 昌霞; 张小彬; 黄伟九

    2013-01-01

    Abstract:Ni60 coating was prepared on QAL9-4 aluminum bronze surface by using oxygen-acetylene flame spraying-remelting technology.The corrosion behavior of aluminum bronze matrix and Ni60 coating was studied in 3.5% NaCl solution by using static immersion test,electrochemical experiments,surface analysis technology etc.The results showed that the corrosion resistance of aluminum bronze matrix could be obviously improved after coated with Ni60 ; the corrosion mechanism of matrix was dealuminzation,and the corrosion process of coating was the preferential dissolution of Cr element.%采用氧-乙炔火焰喷涂-重熔技术在QAL9-4铝青铜表面制备Ni60合金涂层,通过静态浸泡试验、电化学实验及表面分析技术等方法对铝青铜基体和Ni60合金涂层在3.5%NaCl溶液中的腐蚀行为进行了研究.结果表明,Ni60合金涂层可以明显提高铝青铜基体的耐蚀性能;基体主要发生脱铝腐蚀,而涂层的腐蚀过程则是铬元素的优先溶解.

  18. Development of an aluminized multi-phase steel with dual phase properties for high temperature corrosion resistance applications

    Energy Technology Data Exchange (ETDEWEB)

    Mahieu, J.; Cooman, B.C. de [Lab. for Iron and Steelmaking, Dept. of Metallurgy and Materials Science, Ghent Univ., Zwijnaarde (Belgium); Maki, J. [Yawata R and D Lab., Nippon Steel Corp. (Japan); Fiorucci, M. [Galvalange Sarl, Dudelange (Luxembourg); Claessens, S. [OCAS NV, Zelzate (Belgium)

    2003-04-01

    A high strength, high Mn, Cr-Mo containing multi-phase steel grade was aluminized with a 90 wt% Al-10 wt% Si alloy coating, using a laboratory hot-dip simulator. The adhesion of the coating to the steel strip was evaluated and the microstructure of the as deposited material was assessed. The coated sheet steel was tested at high temperatures by monitoring the weight gain of the samples and their mechanical properties as a function of time. It was found that the thermal properties of the aluminized sheet were excellent. The analysis of the coating/substrate interface revealed the dissolution of brittle intermetallic phases, explaining the excellent high temperature resistance performance of the Al-Si coating up to temperatures as high as 900 C. In addition, the use of a continuous annealing cycle common in current aluminizing lines, resulted in a dual phase microstructure. (orig.)

  19. Corrosion resistance of Al-based coatings in flowing Pb–15.7Li produced by aluminum electrodeposition from ionic liquids

    Directory of Open Access Journals (Sweden)

    Sven-Erik Wulf

    2016-12-01

    Full Text Available Reduced activation ferritic–martensitic steels are intended to serve as structural materials in different blanket designs, e.g. HCLL, DCLL and WCLL. In these designs the material is supposed to be in direct contact with the flowing liquid breeder material Pb–15.7Li at an operating temperature of up to 550°C. These conditions will lead to severe corrosion attack of the steel and high corrosion rates of up to 400µm per year are reported in the literature. To avoid or reduce corrosion Al-based corrosion barriers were developed in the last years by using electrochemical techniques to deposit aluminum. Until now two processes have been developed. The first one, so called ECA process, is based on volatile toluene electrolytes. Long-term corrosion experiments on these coatings indicated reduced corrosion rates compared to bare Eurofer steel in flowing Pb–15.7Li. However, these Fe–Al scales showed inhomogeneous corrosion attack of the corrosion barrier itself. In this study the improved ECX process was applied to produce Al-based coatings. The short-term corrosion behavior of such barrier coatings was analyzed for up to 4000h by diameter measurements and metallographic examinations. The investigation revealed uniform corrosion in comparison to inhomogeneous attack in case of ECA coated samples and reduced corrosion rates of around 20µm/a even for low exposure times of 4000h.

  20. Preparation and Corrosion Resistance Evaluation of Cerium Salt/Silane Composite Coating on Hot-Dip Galvanized Steel%热镀锌钢铈盐/硅烷复合膜的制备及其耐蚀性能

    Institute of Scientific and Technical Information of China (English)

    吴海江; 徐国荣; 许剑光; 徐红梅; 吴玉蓉; 颜焕元

    2013-01-01

    热镀锌钢板上单一的铈盐、硅烷钝化膜有一些缺点,对提高其耐蚀性作用不大.为此,将热镀锌钢板先经铈盐溶液处理,再用乙烯基三甲氧基硅烷溶液浸渍,获得了铈盐/硅烷复合钝化膜.采用扫描电镜(SEM)、俄歇电子能谱(AES)、盐水全浸试验和电化学交流阻抗谱(EIS)研究了复合膜层的表面形貌、结构特性和耐蚀性能.结果表明:硅烷膜能较好地填充铈盐转化膜中的裂纹,铈盐/硅烷复合膜层连续、完整、致密,厚400~450 nm,与基体结合较好,复合膜中硅烷膜/铈盐转化膜/锌基体的化学成分呈连续的梯度变化;与热镀锌钢相比,单一铈盐转化膜、硅烷膜的交流阻抗值增加了1个多数量级,复合膜的则增加了约2个数量级,复合膜层的耐蚀性较单一膜层显著增强,且优于常规铬酸盐钝化膜.%Hot-dip galvanized steel was firstly treated in the solution of cerium nitrate and then immersed in vinyltrimethoxysilane solution to obtain composite coating consisting of cerium salt coating and silane coating. The morphology and microstructure of as - obtained composite coating were analyzed by scanning electron microscopy and Auger elec tron spectroscopy, and its corrosion resistance was evaluated based on immersion test in salt water and electrochemical imped ance spectroscopic analysis as well. Results showed that the mi- crocracks in the cerium conversion coating could be well filled up with the silane coating. As-obtained cerium salt/silane composite coating with a thickness of 400 ~ 450 nm was continuous, com plete and compact, and had good adhesion to the steel substrate as well as gradient chemical composition. In the meantime, the electrochemical impedance values of the cerium conversion coat ing and silane coating were increased by more than one order of magnitude as compared with that of hot-dip galvanized steel sub strate, and the electrochemical impedance value of the cerium salt

  1. Effect of Cerium Chloride on Corrosion Resistance of Chromate Conversion Coatings on Aluminum Alloy 6061%氯化铈对铝合金铬酸盐转化膜防护性能的影响

    Institute of Scientific and Technical Information of China (English)

    张圣麟; 李维维; 张小麟; 马强; 遥远; 王圆圆

    2011-01-01

    The corrosion resistance of the chromate conversion coatings (CCCs) formed on AA6061 in chromate solutions with cerium chloride (0 ~ 60 mg/L) as additive was investigated by electrochemical measurement technology. The results of potentiodynamic polarization curves showed that the values of the pitting corrosion potential (Epit) and corrosion potential (Eoorr) of the CCCs raised greatly by adding a small amount of CeCl3 (20~40 rng/L). The electrochemical impedance spectroscopy (EIS) showed that the values of normalized Rp also greatly increased. The two tests indicate that an appropriate amount of CeCl3 (20~40 mg/L) can improve effectively the corrosion resistance of the CCCs, whereas an excessive CeCl3 (e. g 60 mg/L) may deteriorate the property of the CCCs.%采用电化学方法研究了6061铝合金在以CeCl3(0~60 mg/L)为添加剂的铬酸盐处理液中所得转化膜的防护性能.极化曲线测试结果表明,加入适量的CeCl3(20~40 mg/L),使电极的腐蚀电位Ecorr和点蚀电位Epit提高很多;电化学阻抗(EIS)测试结果表明,加入CeCl3后,膜层的阻抗大幅度增加.研究表明,加入适量的CeCl3可以有效改善膜层的防护性能,而过量的CeCl3(60 mg/L)却使其性能变差.

  2. 电镀钨合金镀层组织及其耐腐蚀性能研究%Coating Microstructure Characteristics and Corrosion Resistance of Electroplating W Alloy

    Institute of Scientific and Technical Information of China (English)

    侯铎; 施太和; 曾德智; 王强; 刘婉颖

    2012-01-01

    By scanning electron microscopy(SEM). Energy-dispersive X-ray spectrometry(EDX), and X-ray diffraction(XKD), strength of the coating and substrate, coating surface morphology, corrosion product film and its components were mainly analyzed. The results indicate that the strength of coating and substrate is high, the cracks distribute on the coating surface evenly, the coating surface is covered by corrosion product film, corrosion only occurs in the cracks of coating surface, the cracks provide crevice corrosion with conditions and accelerate the pace of corrosion. It is proved that quenching process is the key factors of the coating quality and corrosion resistance.%主要分析了电镀钨合金镀层质量及其耐H2S-CO2腐蚀性能.通过SEM、EDX和XRD分析发现镀层与基体结合强度较高,但镀层淬火处理时出现龟裂现象,裂纹均匀排布于镀层表面.腐蚀评价表明腐蚀作用只发生在镀层淬火所形成的裂缝部位,造成裂缝内部充满大量腐蚀产物,非裂纹表面未见腐蚀.指出镀钨合金若用于酸性环境,尚需优化配方、降低硬度、增加韧性,此外还应检测基材屈服强度85%拉应力下的镀层应力腐蚀开裂行为.

  3. AZ31B镁合金表面改性微弧氧化膜的结构及耐蚀性能%Structure and corrosion resistance of modified micro-arc oxidation coating on AZ31B magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    崔学军; 杨瑞嵩; 刘春海; 余祖孝; 林修洲

    2016-01-01

    A hydrophobic surface was fabricated on a micro-arc oxidation (MAO) treated AZ31 Mg alloys via surface modification with myristic acid. The effects of modification time on the wettability of the coatings were investigated using the contact angle measuring device. The surface morphologies and structure of the coatings were evaluated using SEM, XRD and FT-IR. The corrosion resistance was investigated by potentiodynamic polarization curves and long-term immersion test. The results showed that the water contact angle (CA) increases gradually with modification time from 0 to 5 h, the highest CA reaches 138° after being modified for 5 h, and the number and size of the micro pores are decreased. The modification method hardly alters crystalline structure of the MAO coating, but improves the corrosion resistance based on the much positive potential and low current density. Moreover, the corrosion resistance and hydrophobicity can be enhanced with increasing the alkyl chain. The wetting and spreading for the alkylcarboxylate with low surface energy become easier on the micro-porous surface, and alkylcarboxylate monolayer will be formed through bidentate bonding, which changes the surface micropores to a sealing or semi-sealing structure and makes the MAO coating dense and hydrophobic. All the results demonstrate that the modification process improves the corrosion protection ability of the MAO coating on AZ31B Mg alloy.%利用十四烷酸溶液化学浸泡的方法改性微弧氧化 AZ31B 镁合金,获得了具有疏水特性的微弧氧化膜。采用接触角测量仪检测膜层的润湿性能;利用SEM、XRD和FT-IR等方法表征膜层的形貌和结构;通过极化曲线和浸泡实验考察样品在3.5% NaCl溶液中的耐蚀性能。结果表明:改性时间从0 h增至5 h时,膜层的静态接触角从0°增加到了138°,膜层的微孔尺寸减小,微孔数量减少;化学改性未改变微弧氧化膜的晶体结构,但改性样品的自腐

  4. A durable, superhydrophobic, superoleophobic and corrosion-resistant coating with rose-like ZnO nanoflowers on a bamboo surface

    Science.gov (United States)

    Jin, Chunde; Li, Jingpeng; Han, Shenjie; Wang, Jin; Sun, Qingfeng

    2014-11-01

    Bamboo remains a vital component of modern-day society; however, its use is severely limited in certain applications because of its hydrophilic and oleophilic properties. In this work, we present a method to render bamboo surfaces superamphiphobic by combining control of ZnO nanostructures and fluoropolymer deposition while maintaining their corrosion resistance. Large-scale rose-like ZnO nanoflowers (RZN) were planted on the bamboo surface by a hydrothermal method. After fluoroalkylsilane (FAS) film deposition to lower the surface energy, the resulting surface showed superamphiphobicity toward water, oil, and even certain corrosive liquids, including salt solutions and acidic and basic solutions at all pH values. The as-prepared superamphiphobic bamboo surface was durable and maintained its superhydrophobic property with water contact angles >150° when stored under ambient condition for two months or immersed in a hydrochloric acid solution of pH 1 and a sodium hydroxide solution of pH 14 for 3 h at 50 °C.

  5. Enhanced corrosion resistance of phytic acid coated magnesium by stearic acid treatment%硬脂酸处理提高植酸包覆镁的耐腐蚀性能

    Institute of Scientific and Technical Information of China (English)

    R.K.GUPTA; K.MENSAH-DARKWA; J.SANKAR; D.KUMAR

    2013-01-01

    将镁浸泡在植酸溶液中,在其表面形成一层化学转化膜.然后再将其浸泡在硬脂酸溶液中以改善植酸转化膜的显微组织和抗腐蚀性能.经过硬脂酸溶液浸泡处理后,转化膜未出现裂纹,试样表面变得光滑.采用电化学方法研究其腐蚀行为.结果表明,经硬脂酸溶液浸泡处理的试样比未经浸泡处理的和没有转化膜的试样具有更高的耐腐蚀性能.因此,硬脂酸溶液处理能够增强镁的耐腐蚀性能.%A green chemical conversion coating for magnesium was obtained with a phytic acid solution.The microstructure and corrosion properties of phytic acid conversion coated magnesium were further improved by soaking in stearic acid solution.The phytic acid conversion coated magnesium after soaking in the stearic acid showed no micro-cracks and the surface became very smooth.The corrosion behavior of the uncoated and coated magnesium samples was studied by electrochemical methods.The corrosion resistance of the stearic acid treated sample was much higher than that of phytic acid conversion coated magnesium or uncoated magnesium.The electrochemical results indicated that the stearic acid treated coating provided effective corrosion protection to the magnesium sample.

  6. Tailoring a High Temperature Corrosion Resistant FeNiCrAl for Oxy-Combustion Application by Thermal Spray Coating and HIP

    Directory of Open Access Journals (Sweden)

    Jarkko Metsäjoki

    2015-10-01

    Full Text Available Oxy-fuel combustion combined with CCS (carbon capture and storage aims to decrease CO2 emissions in energy production using fossil fuels. Oxygen firing changes power plant boiler conditions compared to conventional firing. Higher material temperatures and harsher and more variable environmental conditions cause new degradation processes that are inadequately understood at the moment. In this study, an Fe-Ni-Cr-Al alloy was developed based on thermodynamic simulations. The chosen composition was manufactured as powder by gas atomization. The powder was sieved into two fractions: The finer was used to produce thermal spray coatings by high velocity oxy-fuel (HVOF and the coarser to manufacture bulk specimens by hot isostatic pressing (HIP. The high temperature corrosion properties of the manufactured FeNiCrAl coating and bulk material were tested in laboratory conditions simulating oxy-combustion. The manufacturing methods and the results of high temperature corrosion performance are presented. The corrosion performance of the coating was on average between the bulk steel references Sanicro 25 and TP347HFG.

  7. Microstmcture and Corrosion Resistance of Cold - Sprayed Zinc - Nickel Alloy Coatings%冷喷涂锌镍合金层的组织结构及耐蚀性

    Institute of Scientific and Technical Information of China (English)

    黄国胜; 李相波; 邢路阔; 王应发

    2013-01-01

    为了探讨冷喷涂制备锌镍合金的可行性及其制成的涂层的耐蚀性,采用机械合金化制备了不同镍含量的锌镍合金粉末,将其冷喷涂于Q235钢表面制成锌镍合金层,通过动电位极化测试、扫描电镜(SEM)、X射线衍射仪(XRD)等研究了其在海水中的腐蚀行为.结果表明:机械合金化能使部分锌镍粉末合金化,冷喷涂过程使合金化程度进一步提高;锌镍合金冷喷涂层在海水中浸泡时,锌首先被溶解生成致密产物,产物膜下形成镍的富集层,延缓了涂层的腐蚀速率;镍的加入可以提高涂层的稳定电位,降低涂层腐蚀速率,但镍含量过高会使涂层发生腐蚀微电池作用,含镍15%的冷喷涂锌镍合金层的耐蚀性最佳;镍可以稳定Zn(OH)2,抑制其向ZnO转化,使得冷喷涂层腐蚀形貌均匀致密.%Zn-Ni alloy powder with different Ni contents was prepared by mechanical alloying. Resultant Zn-Ni powder was then cold-sprayed onto the surface of Q235 steel to afford Zn-Ni alloy coatings. The corrosion resistance of Zn-Ni alloy coatings in seawater was evaluated by potentiodynamic polarization test. The morphology and microstructure of as - prepared Zn-Ni alloy powder and coatings as well as the corroded surface morphology and corroded product composition of the coatings were analyzed by means of scanning electron microscopy and X - ray diffraction. It was found that mechanical alloying led to partial alloying of Zn-Ni powder, and cold - spraying helped to promote the alloying of the Zn-Ni powder. When the Zn-Ni alloy coatings were immersed in seawater, Zn was preferentially dissolved to form a compact top layer while a Ni - rich layer was formed at the sub-surface thereby retarding the corrosion process of the alloy coatings. Incorporated Ni was able to increase the stabilization potential and reduce the corrosion rate of the alloy coatings. However , excessive incorporation of Ni led to micro - cell corrosion of the

  8. Optimizing the Hot-Corrosion Resistance-of-Novel gamma-Ni+gamma-prime-Ni3A1-Based Alloys and Coatings

    Science.gov (United States)

    2006-07-01

    15]. Chromium addition in the coating decreases the amount of aluminium required for the formation of an A120 3 scale [17]; but the development of...controlled by small additions of reactive elements such as yttrium, cerium, hafnium and zirconium [18-20]. Precious-metal additions such as platinum...predominant inward diffusion of aluminium [6]. In pack aluminizing of Ni-based alloys the phases of interest are NiAl, Ni 3AI, and Ni2AI3 . The final

  9. Effects of TiSi coating on corrosion resistance of dental Co-Cr alloy%钛硅涂层对钴铬合金耐腐蚀性能的影响

    Institute of Scientific and Technical Information of China (English)

    胡滨; 陈洁; 长富强

    2011-01-01

    目的:研究钛硅(TiSi)涂层对牙科钴铬合金(CoCr)耐腐蚀性能的影响.方法:选用临床常用的CoCr合金,制作成10mm× 10mm×3mm规格的试件,运用溶胶-凝胶法在其表面涂层钛硅.将涂层前、后的试件浸泡在人工唾液中,利用失重法计算材料的腐蚀速度,并运用ICP-AES等离子体发射光谱仪分析钴铬合金钛硅涂层前、后离子释放量的差异,采用SAS8.0软件包对数据进行统计学分析.结果:失重法实验发现,钛硅涂层前的腐蚀速度为0.163g·m-2·h-1;涂层后为0.138 g·m-2·h-1,运用AES技术分析钴铬合金的元素释放量(g.m-2),涂层前镍为7.728582657、钴为0.008801153、铬为0.306195965、硅为0.194851978;而涂层后,镍为4.745189808、钴为0.004718889、铬为0.153195362、硅为0.778406136,镍、钴、铬的元素释放量在涂层后减少.结论:硅钛涂层能提高钴铬合金的耐腐蚀性能.%PURPOSE: To investigate the effect of titanium-silicon (TiSi) coating on corrosion resistance of dental CoCr alloy. METHODS: The commonly used CoCr alloy was cast into 10mmxl0mmx3mm specimen in size. Then the specimen was coated with TiSi on the surface by sol-gel method. The specimens were immersed in artificial saliva. Weight loss method was used to analyze corrosion rate. Element analysis using Auger Electron Spectroscopy (AES) was performed to compare the content of element before and after coating of TiSi in artificial saliva. SAS8.0 software package was used for statistical analysis. RESULTS: By weight lost method, before and after coating TiSi, the corrosive rate was 0.163 g-m-2-h-1 and 0.138 g·m-2·h-' respectively. With AES, in Co-Cr alloy not coating TiSi, atomic concentration (g·m2) of Ni, Co , Cr and Si was 7.728582657,0.008801153,0.306195965 and 0.194851978,respectively. After coating Ti-Si,the content of Ni, Co , Cr and Si and 4.745189808,0.004718889, 0.153195362 and 0.778406136, respectively. The release rate of the Ni,Co, cr were decreased

  10. 感应重熔超音速火焰喷涂铁基涂层的耐蚀性%Corrosion resistance of induction remelted Fe-based coatings prepared by HVOF spraying

    Institute of Scientific and Technical Information of China (English)

    叶富明; 周洪宇; 胡舸

    2016-01-01

    Induction remelting high velocity oxy-fuel (HVOF) sprayed Fe-based coatings were conducted by using ultrasonic frequency induction device.X-ray diffraction (XRD),scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analysis,microhardness test,polarization curve and electrochemical impedance spectroscopy technique were used to examine the microstructure,microhardness and corrosion resistance of the coatings.The results show that the porosity is reduced from 5.74% to 0.43% after the induction remelting.The phases of γ-Fe,(Cr,Fe)2 B and γ-Fe/(Cr,Fe)2B eutectics are identified in the induction remelted HVOF sprayed Fe-based coatings.Electrochemical test results in simulated sea water show that the polarization curve exhibits an activepassivation charicteristic.The corrosion current density of the induction-remelted coating is lower than that of the HVOF sprayed Fe-based coating due to the reduction of porosity and oxide inclusion content in the remelted coatings,by which the penetration of chloride ions through the pores to form inner galvanic couple is impeded.Electrochemical impedance spectroscopy results show capacitive reactance arc of the induction remelted HVOF sprayed Fe-based coating is larger than that of the HVOF sprayed Fe-based coating,the corrosion resistance increases by 2.74 times.%采用超音频感应熔覆技术获得高质量具有冶金结合的感应重熔超音速火焰喷涂(HVOF)铁基涂层.借助XRD、SEN/EDS、显微硬度计、极化曲线和交流阻抗手段综合分析涂层微观形貌、物相组成、显微硬度分布以及耐蚀性能.研究结果表明,感应重熔处理后涂层孔隙率从5.74%大幅降低至0.43%,感应重熔HVOF铁基涂层由γ-Fe、硼化物(Cr,Fe)2B以及少量的共晶体γ-Fe/(Cr,Fe)2B组成.在模拟海水溶液电化学测试结果显示,感应重熔HVOF铁基涂层极化曲线呈现典型活化-钝化特征,感应重熔涂层自腐蚀电流密度比HVOF铁基涂层明显

  11. 牙用镍铬合金表面不同涂层电化学腐蚀研究%A research on the corrosion resistance of Ni-Cr alloy with different coatings

    Institute of Scientific and Technical Information of China (English)

    张丽仙; 赵铱民; 邵龙泉; 柳玉晓

    2009-01-01

    目的:通过电化学腐蚀法测试镍铬合金表面不同涂层在中性及酸性环境中的抗腐蚀性能.方法:分别以中性和酸性人工唾液为电解液,测量不同涂层的镍铬合金试件电极的自然腐蚀电位Ecorr、极化电阻Rp.结果:在中性和酸性人工唾液中,无论镀膜与否的镍铬合金的自腐蚀电位(Ecorr)均为正值,不易发生电化学腐蚀和电偶腐蚀.结论:氮化钛膜、电镀金膜、金泥涂层及金瓷涂层的镍铬合金具有较强抗腐蚀性和美观性,可提高基体金属的耐腐蚀性能.%Objective: To evaluate the corrosion resistance of Ni-Cr alloy with different coatings in neutral and acid saliva by electrochemistry method. Methods: Measured the self-corrosion potential (Ecorr) and polarization resistance(Rp) curves of Ni-Cr alloy models with different coatings in neutral and acid artificial salivas. Results: The Ecorr of the Ni-Cr alloys all showed positive values, the electrochemistry corrosion and galvanic corrosion were not detected. Conclusion: Ni-Cr alloy with titanium nitride coating, gold electroplating coating, gold-paste layer and gold-porcelain blended layer have both anti-corrosion and esthetical function without changing its own property.

  12. Double-layer chromium plating process to improve corrosion resistance of hard chromium coating%提高硬铬镀层耐蚀性的双层镀铬工艺

    Institute of Scientific and Technical Information of China (English)

    巨根利

    2013-01-01

    A double-layer chromium coating was prepared on a water pump shaft of engine by milky white chromium plating and bright chromium plating successively in the same bath and tank.The process flow is as follows:pretreatment,hanging,taking into tank,milky white corrosion-resistant chromium plating,bright wear-resistant chromium plating,taking out of tank,washing,hydrogen removal,polishing,and testing.The plating bath is composed of CrO3 200-250 g/L,H2SO4 2.2-2.6 g/L,and Cr3+2.0-3.5 g/L.The milky white chromium coating was obtained after plating at 60-65 ℃ and 15-25 A/dm2 initially for 30 min,and the milky white-bright double-layer chromium coating was then obtained after continuous plating at 55-60 ℃ and 40-50 A/dm2 for 90 min.The double-layer chromium coating has lower porosity as well as similar microhardness and wear resistance as compared with the single bright chromium coating.The practical production indicated that double-layer chromium coating has better corrosion resistance than single bright chromium coating.%以某型发动机的水泵轴为基体,在同一镀液和镀槽中电沉积制备乳白/光亮双层铬镀层.工艺流程为:前处理—装挂—入槽—镀乳白耐蚀铬—镀光亮耐磨铬—出槽—清洗—除氢—抛光—检验.镀液组成为:CrO3 200~250 g/L,H2SO4 2.2~2.6 g/L,Cr3+离子2.0~3.5 g/L.先在60 ~ 65℃、15 ~ 25 A/dm2下施镀30 min得到乳白铬镀层,随后在55~60℃、40~50 A/dm2下施镀90 min,即得乳白/光亮双层铬镀层.双层铬镀层的孔隙率比单层光亮铬镀层小,二者显微硬度相近,耐磨性优越.实际生产应用表明,双层铬镀层的耐蚀性优于单层光亮铬镀层.

  13. Oxidation behavior of nuclear graphite and the improvement of corrosion resistance and thermal shock resistance of graphite materials by compositionally graded SiC coating

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Kimio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-08-01

    relation between corrosion behavior and the total surface area in the case of air oxidation in the chemical reaction control and in-pore diffusion control regimes. (3) Taking advantage of the information obtained in (1) and (2) above, the corrosion resistance, a disadvantage of graphite materials, was improved by introducing a compositionally gradient SiC/C material using the reaction between silicon monoxide and carbon. (author)

  14. AZ91 D镁合金Mo-Mn无铬转化膜的制备与耐蚀性%Preparation and Corrosion Resistance of Mo-Mn Chromium-free Conversion Coating Formed on AZ91 D Magnesium Alloys

    Institute of Scientific and Technical Information of China (English)

    朱青; 朱明; 余勇; 张路路

    2015-01-01

    ABSTRACT:Objective To improve the surface corrosion resistance of AZ91D magnesium alloy by Mo-Mn chromium-free conver-sion coating. Methods Effects of different concentrations of NaMoO4 and KMnO4 and temperature on the transformed sample film were studied by orthogonal experimental method. After optimizing experiment parameters, the effects of the time on the conversion film was also studied. The morphology and component of conversion coatings were researched by SEM and EDS. Moreover, the po-larization curves and electrochemical impedance spectroscopy of conversion coating were tested in 3. 5%NaCl aqueous solution. Results The results showed that when the condition was 10 g/L NaMoO4 , 6 g/L KMnO4 at 50 ℃ and pH 5 for 40 min, where the morphology of the sample was relatively even and the amount of cracks was relatively low. Compared to the corrosion resistance of magnesium substrate, the corrosion potential of conversion film was increased by about 0. 075 V ,and the corrosion current density decreased by nearly 1 order of magnitude. When the condition was 20 g/L NaMoO4 , 8 g/L KMnO4 at 50 ℃ and pH 5 for 40 min, the morphology of the sample was the most even and the amount of cracks was the least. Compared to the corrosion resistance of magnesium substrate, the corrosion potential of conversion film was increased by about 0. 047 V ,and the corrosion current density decreased by nearly 2 orders of magnitude. EIS showed that the polarization resistance of the latter conversion film sample was 1450. 2 Ω, while the polarization resistance of magnesium matrix was 806. 4 Ω. Conclusion Mo-Mn chromium-free conversion coating could obviously improve the surface corrosion resistance of AZ91D magnesium alloy.%目的:通过Mo-Mn无铬转化膜提高AZ91 D镁合金的表面耐蚀性。方法采用正交实验法,研究不同浓度的NaMoO4和KMnO4以及温度对转化膜的影响。优选实验参数后,考察时间对转化膜的影响。利用SEM及EDS研究转化膜

  15. Preparation and corrosion resistance of a nanocomposite plasma electrolytic oxidation coating on Mg-1%Ca alloy formed in aluminate electrolyte containing titania nano-additives

    DEFF Research Database (Denmark)

    Daroonparvar, Mohammadreza; Yajid, M. A. M.; Yusof, N. M.

    2016-01-01

    Titania nanoparticles were utilized as suspension in alkaline aluminate electrolyte to form nanocomposite coatings on magnesium alloy containing 1 wt% calcium by plasma electrolytic oxidation process. Microhardness, wettability, potentiodynamic polarization, wettability, electrochemical impedance...

  16. Research on the Corrosion Resistance of Hot Dip Galvanized Coating in Simulated Hot and Humid Acidic Atmospheric Environment%热镀锌层在模拟湿热酸性大气环境中的耐蚀性研究

    Institute of Scientific and Technical Information of China (English)

    刘胜林; 孙亮; 袁毅; 卢才

    2015-01-01

    目的:研究Q420钢表面热镀锌工艺中,Zn和Zn-Al-Ni-RE合金镀层在酸性铜离子加速盐雾试验条件下的耐蚀性能。方法 Q420钢表面预处理后进行热镀锌,根据GB6460—1986进行铜加速醋酸盐雾腐蚀试验,对比纯Zn镀层与Zn-Al-Ni-RE合金镀层的耐蚀性。结果 Ni,RE等元素的加入使镀层表面光亮,组织更加细密。在酸性铜离子加速实验进行到192 h时,纯锌镀层的腐蚀质量损失是合金镀层的2.7倍;72 h后纯锌镀层出现红锈,120 h后合金镀层出现红锈,说明Zn-Al-Ni-RE合金镀层比纯Zn镀层更耐腐蚀。结论通过适量添加Al,Ni与稀土元素,能使Q420钢合金镀层的耐蚀性能大幅度提高。%Objective To study the corrosion resistance of hot dip galvanized pure Zn and Zn-Al-Ni-RE alloy coatings of high-strength steel Q420 under the acidic and copper accelerated salt spray corrosion condition. Methods On the basis of surface pre-treatment, the Q420 steel was treated by hot dip galvanizing. Copper accelerated acetic acid salt spray corrosion test was carried out according to GB 6460—1986, and the corrosion resistance of the pure Zn coating and Zn-Al-Ni-RE coating was compared. Results With the addition of Ni, RE and other elements, the coating surface was bright and the microstructure became finer. After 192 h, the corrosion weight loss of pure zinc coating was 2. 7 times higher than the corrosion weight loss of Zn-Al-Ni-RE alloy coatings un-der the acidic and copper accelerated salt spray corrosion condition. Pure zinc coating showed red rust after 72 h, while Zn-Al-Ni-RE alloy coating showed red rust after 120 h, so Zn-Al-Ni-RE alloy coating was more corrosion resistant than the pure Zn coating. Conclusion By means of adding nickel aluminum elements and rare earth elements, the corrosion resistance of alloy coating was greatly improved.

  17. Study on the Structure and Corrosion Resistance of Phosphoric Conversion Coatings on AZ31 Magnesium by Applying Magnetic Field%外加磁场下AZ31镁合金磷化膜结构及耐蚀性研究

    Institute of Scientific and Technical Information of China (English)

    朱亮; 赵明; 高福勇

    2011-01-01

    为了获得优良的AZ31镁合金磷化膜,采用外加磁场作用于镁合金的磷化过程.利用SEM,AFM,XRD和电化学工作站等仪器,研究转化膜的表面形貌、结构及耐蚀性.研究结果表明:磁场方向垂直于镁合金样品情况下显著促进AZ31镁合金转化膜的形成,转化膜主要由晶态Zn3(PO4)2·4H2O与A1PO4和非晶态Mn化合物组成,外加磁场作用于磷化过程能获得高耐蚀性的致密转化膜.%In order to obtain excellent phosphate conversion coatings on the surface of AZ31 magnesium alloy, a novel phosphate process for magnesium alloy by applying magnetic field was developed. The surface morphology, structure and corrosion resistance of conversion coating were studied by SEM, AFM, XRD and Electrochemistry workstation. The results show conversion coatings of AZ31 magnesium alloy can be further formed when the direction of magnetic field is vertical to the surface of magnesium alloy. Conversion coatings are mainly made up of crystal Zn3(PO4)2 ? 4H2O and AlPO4 and non-crystal Mn compounds. We can obtain the dense conversion coatings by applying magnetic fields in the phosphate process.

  18. Development of experimental apparatus for evaluating corrosion resistance of cladding materials applied for advanced power reactor. 1

    Energy Technology Data Exchange (ETDEWEB)

    Inohara, Yasuto; Ioka, Ikuo; Fukaya, Kiyoshi; Tachibana, Katsumi; Suzuki, Tomio; Kiuchi, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kuroda, Yuji; Miyamoto, Satoshi [Japan Atomic Power Co., Tokyo (Japan)

    2001-03-01

    On the development of cladding materials for advanced power reactors, it is important to clarify long performance and to control the compatibility to high temperature water at heat conducting surfaces under heavy irradiation. On the present study, the high temperature water loop with an autoclave was made for examining the corrosion behavior up to the super critical water range and for developing the simulation testing technique under irradiation in the hot cell. The loop is applicable to immersion tests in the temperature and pressure ranges up to 450degC and 25 MPa that are covered the surface temperature range of fuel claddings. One of the characteristics of this apparatus is a pair of sapphire windows of autoclave for in-situ observations, and a phase transition from water to super critical water conditions was clearly verified through these windows. In this apparatus, it is possible to control the temperature, pressure and Dissolved Oxygen (DO) within a fluctuations of few % on three phases, namely, water, steam and super critical water. (author)

  19. Improvement of corrosion resistance of magnesium metal by rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Toshihide [Department of Production Systems Engineering, Toyohashi University of Technology, Toyohashi 441-8580 (Japan)], E-mail: takenaka@pse.tut.ac.jp; Ono, Takami; Narazaki, Yuji; Naka, Yusuke; Kawakami, Masahiro [Department of Production Systems Engineering, Toyohashi University of Technology, Toyohashi 441-8580 (Japan)

    2007-11-20

    Mg metal containing rare earth metals (REs) can be electrowon directly by molten salt electrolysis. The clarification of the optimum RE content in Mg is necessary to fix the electrolytic conditions in the direct electrowinning of Mg with RE. From this point of view, effect of RE addition in Mg metal on its corrosion property was studied in detail in this study. The specimen was prepared by adding La, Nd, or Ce in melted Mg metal, and its corrosion resistance was examined by an immersion test in 3 mass%-NaCl solution at room temperature. The corrosion resistance of Mg was improved greatly by adding a small amount of RE, whereas the excess addition of RE deteriorated the corrosion resistance. The optimum RE content was about 0.5 mass%. In this study, the corrosion property of Mg with an artificial surface oxide layer was also studied to clarify the effect of surface oxide. The corrosion resistance of Mg was particularly strengthened by conversion coating in a solution including La(NO{sub 3}){sub 3}, Nd(NO{sub 3}){sub 3}, or Ce(NO{sub 3}){sub 3}, with Mg(NO{sub 3}){sub 2}. This result suggests that the surface oxide film consisting of both Mg and RE gives ideal corrosion resistance to Mg metal. Mg metal with conversion coating including RE should also be of use as a corrosion-resistant material.

  20. Corrosion Resistance of AISI 316L Coated with an Air-Cured Hydrogen Silsesquioxane Based Spin-On-Glass Enamel in Chloride Environment

    DEFF Research Database (Denmark)

    Lampert, Felix; Bruun Christiansen, Alexander; Din, Rameez Ud

    2017-01-01

    The efficiency of thin hydrogen silsesquioxane (HSQ) -based corrosion barrier coatings on 316 Lsubstrates after oxidative thermal curing at 400-550 ºC in air was investigated. Infrared spectroscopy and electrochemical impedance spectroscopy showed that an increasing curing temperature leads to pr...

  1. Formation and Corrosion Resistance of Micro-Arc Oxidation Coating on Equal-Channel Angular Pressed AZ91D Mg Alloy

    Directory of Open Access Journals (Sweden)

    Aibin Ma

    2016-12-01

    Full Text Available A commercial AZ91D Mg alloy, after bulk grain refinement by various passes of equal-channel angular pressing (ECAP, was selected for micro-arc oxidation (MAO in silicate electrolyte, corrosion testing in 3.5 wt % NaCl solution and morphology analyses. The results showed that a large number of ECAP passes resulted in the homogeneous ultrafine-grained (UFG Mg substrate with broken second-phases. The high-energy defects in the ECAPed samples lowered the anodizing potential of the MAO process, but the partial discharge was severe for those samples below eight passes. Increasing the ECAP pass, the compactness and thickness of the MAO coating first decreased and then increased. Due to the compact coating and the existence of Mg2SiO4, the coated alloy with 16 ECAP passes has a lower corrosion rate and a larger Rt value. Besides the well-known strengthening-toughening effect, grain refinement via multi-pass ECAP can improve surface protection of the MAO coating on the UFG Mg alloy.

  2. Surface Corrosion Resistance in Turning of Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2015-01-01

    Full Text Available This work addresses the issues associated with implant surface modification. We propose a method to form the oxide film on implant surfaces by dry turning to generate heat and injecting oxygen-rich gas at the turning-tool flank. The morphology, roughness, composition, and thickness of the oxide films in an oxygen-rich atmosphere were characterized using scanning electron microscopy, optical profiling, and Auger electron spectroscopy. Electrochemical methods were used to study the corrosion resistance of the modified surfaces. The corrosion resistance trends, analyzed relative to the oxide film thickness, indicate that the oxide film thickness is the major factor affecting the corrosion resistance of titanium alloys in a simulated body fluid (SBF. Turning in an oxygen-rich atmosphere can form a thick oxide film on the implant surface. The thickness of surface oxide films processed at an oxygen concentration of 80% was improved to 4.6 times that of films processed at an oxygen concentration of 21%; the free corrosion potential shifted positively by 0.357 V, which significantly improved the corrosion resistance of titanium alloys in the SBF. Therefore, the proposed method may (partially replace the subsequent surface oxidation. This method is significant for biomedical development because it shortens the process flow, improves the efficiency, and lowers the cost.

  3. Corrosion Resistance of Cordierite-Modified Light MMCs

    Science.gov (United States)

    Szewczyk-Nykiel, A.; Długosz, P.; Darłak, P.; Hebda, M.

    2017-05-01

    Composites are one of the fastest developing materials. Research is particularly intensive in case of light metal alloys due to i.a. economic and environmental aspects. One of the innovative solutions is production of the metal matrix composites (MMC) by adding the cordierite ceramics obtained from fly ashes to magnesium alloys. In addition to obtaining new-generation materials with improved mechanical properties, also the waste is utilized which has a significant environmental and economic importance. In order to select the suitable operating conditions for such alloys, their corrosion resistance must be determined. This paper presents the results of corrosion resistance tests of AM60 magnesium alloy matrix composites reinforced with cordierite ceramics. The following issues were examined: (1) impact of the volume fraction of cordierite ceramics, 2 or 4 wt.%; (2) impact of surface roughness (two variants of surface treatment); and (3) impact of heat treatment on corrosion resistance of obtained composites. The results were compared with data recorded for the base AM60 alloy (which surface treatment was identical as of the composites). Moreover, the XRD and microanalysis of the chemical compositions by EDS method were applied to determine phases occurring in the investigated composites. Furthermore, the XRD was also performed in order to identify the corrosion products on the surface of the material. The test results indicate that the alloy reinforced with 2 wt.% addition of cordierite ceramics had the best corrosion resistance. It was also presented that surface and heat treatment affect the obtained results.

  4. 医用镍钛合金表面微弧氧化膜层的显微结构及耐蚀性%Microstructure and corrosion resistance of microarc oxidation coating on surface of biomedical nickeltitanium alloy

    Institute of Scientific and Technical Information of China (English)

    徐吉林; 刘福; 罗军明

    2011-01-01

    An A12O3 ceramic coating was prepared on the surface of biomedical titanium-nickel alloy by microarc oxidation in a NaAlO2-NaH2PO2 electrolyte. As the treatment time extends during microarc oxidation, the color of the moving spark on the sample surface changes from white to orange, and the number of spark decreases while its size increases. The obtained ceramic coating is composed of γ-Al2O3 crystal. As the treatment time extends, the crystallinity of γ-Al2O3 increases, the ceramic coating surface become rougher, and the micropore distributed on the surface of ceramic coating becomes less in number but larger in size. The corrosion potential of nickel-titanium alloy is increased by 142 mV and the corrosion current density of it in Hank's solution decreased by 2 orders of magnitude after microarc oxidation for 60 min, indicating that the corrosion resistance of nickel-titanium alloy is improved markedly.%采用由NaAlO2和NaH2PO2组成的电解液,以微弧氧化技术在医用镍钛合金表面制备Al2O3陶瓷膜层,以减少合金表面Ni含量,并进一步提高其耐腐蚀性能,使其具有良好的生物相容性.随微弧氧化过程中处理时间的延长,试样表面的游动火花由白色逐渐向橙色转变,火花数减少但尺寸增大.所得陶瓷膜层由γ-Al2O3晶相组成,随着处理时间的延长,γ-Al2O3的结晶度增加,膜层表面粗糙度增大,表面微孔数逐渐减少而孔径增大.经60 min微弧氧化处理后,镍钛合金在Hank's溶液中的自腐蚀电位比基体高142mV,自腐蚀电流密度降低了近2个数量级,耐蚀性有了大幅提高.

  5. Studies on Preparation and Corrosion Resistance of Molybdate Conversion Coating Formed on AZ91 Magnesium Alloy%AZ91镁合金钼酸盐转化膜的制备及耐蚀性研究

    Institute of Scientific and Technical Information of China (English)

    王明; 邵忠财; 姜海涛

    2012-01-01

    采用化学转化法在AZ91镁合金基体表面制备一种环境友好型的钼酸盐转化膜.通过对溶液pH、温度以及Na2MoO4质量浓度等因素的控制并进行单因素试验和正交试验,确定化学转化的最佳工艺条件:30~40 g/L Na2 MoO4,pH为3.5,θ为70℃,t为50 min.采用优化后的工艺能够在镁合金表面获得微黄致密,微细裂纹的膜层,X-射线衍射测试表明,钼酸盐转化膜的主要成分Mg2Mo3O8和MgMoO4.极化曲线测试表明钼酸盐转化膜能有效提高镁合金的耐蚀性能,自腐蚀电位提高,自腐蚀电流密度降低2个数量级.%An environmental friendly molybdate conversion coating was prepared on AZ91 magnesium alloy by chemical conversion method. The factors such as pH value, temperature and mass concentration of Na2MoO4 were investigated by single factor experiment and orthogonal experiments, and the optimum conditions of chemical conversion were determined as following:pH 3.5,temperature 70℃,30 ~40g/L Na2MoO4 and chemical conversion time 50min. The macro surface morphology of as-prepared coating on Mg-based substrate was compact and yellowish, while presenting microscopic small cracks. XRD showed that main component of the molybdate conversion coating were Mg2Mo3Og and MgMoO4. Electrochemical polarization test analysis showed that the molybdate conversion coating could effectively improving the corrosion resistance of magnesium alloy and increasing the self- corrosion potential, and the self- corrosion current density was decreased by two orders of magnitude.

  6. The corrosion resistance of materials used for the manufacture of ear piercing studs

    Energy Technology Data Exchange (ETDEWEB)

    Correa, O. V.; Saiki, M.; Rogero, S. O.; Costa, I.

    2003-07-01

    Nickel containing alloy shave been widely used as substrates for the manufacture of studs used for ear piercing. Unfortunately, nickel has also been related to the development of allergic contact dermatitis caused by skin sensitization due to Ni''2+ ions. Nickel ions can be leached out into the body fluids due to corrosion reactions. Defect free coatings are very difficult to produce, and therefore nickel free materials should be used as substrates of ear piercing studs, although the commercial alloys used usually contain this element. In this study, the corrosion resistance of two kinds of commercial studs prepared with nickel containing substrates and a titanium laboratory made stud was determined in a culture medium. The corrosion resistance of the studs was investigated by means of potentiodynamic polarization tests and electrochemical impedance spectroscopy as a function of immersion time in the culture medium. The elements that leached out into the medium due to corrosion reactions were analyzed by instrumental neutron activation analysis. The surfaces of the commercial gold-coated studs were examined by scanning electron microscopy and analyzed by energy dispersive spectroscopy, both before and after exposure to the culture medium. The cytotoxicity of the tested studs was also determined in the culture medium. (Author) 10 refs.

  7. Corrosion-protective coatings from electrically conducting polymers

    Science.gov (United States)

    Thompson, Karen Gebert; Bryan, Coleman J.; Benicewicz, Brian C.; Wrobleski, Debra A.

    1991-01-01

    In a joint effort between NASA Kennedy and LANL, electrically conductive polymer coatings were developed as corrosion protective coatings for metal surfaces. At NASA Kennedy, the launch environment consist of marine, severe solar, and intermittent high acid and/or elevated temperature conditions. Electrically conductive polymer coatings were developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  8. Corrosion Resistance of Fe-Ni-Cr Alloy Coating Electroplated with Trivalent Chromium Sulphate Salt Containing Electrolyte%三价铬硫酸盐体系电镀Fe-Ni-Cr合金镀层的耐蚀性研究

    Institute of Scientific and Technical Information of China (English)

    史艳华; 陈吉

    2011-01-01

    The Fe-Ni-Cr alloy coating on carbon steel was electrodeposited on mild steel No.20 with trivalent chromium sulfate salt containing electrolyte, and the corrosion resistance in 3.5% NaCl solution of coatings deposited with different processes was investigated by means of potentiodynamical polarization and electrochemical impedance spectroscopy (EIS) measurements. The experimental results showed that the optimal deposition parameters were as following: FeSO4·7H2O 15 g/L, NiSO4·6H2O 8 g/L, Cr2(SO4)3·6H2O 200g/L, C6H8O·7H2O 70g/L, current density 4 A/dm2, temperature 55 ℃. The corrosion rate of the coating in 3.5% NaCl solution was 73.2 mg·m-2·h-1, which was 23.3% lower than that of base material.%采用三价铬硫酸盐体系在普通碳素钢基体上电镀Fe-Ni-Cr合金镀层,通过浸泡失重法研究不同工艺条件下制备的镀层在3.5% NaCl溶液中的耐蚀性能,并用电化学分析方法研究了镀层试样的耐蚀机理.结果表明,最佳电镀Fe-Ni-Cr合金工艺为:主盐浓度FeS04·7H2O 15 g/L、NiSO4·6H2O 8 g/L、Cr(SO4)3.6H2O 200g/L;络合剂柠檬酸浓度70 g/L;电流密度为4 A/dm2,电镀温度为55℃.该工艺制备的Fe-Ni-Cr 合金镀层在3.5% NaCl溶液中的腐蚀速率为73.2 mg-m-2·h-1,耐蚀性比基体提高23.3%.

  9. On the corrosion resistance of AISI 316L-type stainless steel coated with manganese and annealed with flow of oxygen

    Science.gov (United States)

    Savaloni, Hadi; Agha-Taheri, Ensieh; Abdi, Fateme

    2016-06-01

    AISI 316L-type stainless steel was coated with 300-nm-thick Mn thin films and post-annealed at 673 K with a constant flow of oxygen (250 cm3/min). The films crystallographic and morphological structures were analyzed using X-ray diffraction (XRD) and atomic force microscopy (AFM) before corrosion test and scanning electron microscopy (SEM) after corrosion test. Corrosion behavior of the samples in 0.3, 0.5 and 0.6 M NaCl solutions was investigated by means of potentiodynamic and electrochemical impedance spectroscopy (EIS) techniques. Results showed that the corrosion inhibition of annealed Mn/SS316L in all NaCl solutions with different concentrations is higher than that of bare SS316L. A correlation is achieved between the structural variation of the films with the potentiodynamic and EIS corrosion results.

  10. Microstructure and corrosion resistance of AT13/MoS2 composite coating prepared by atmospheric plasma spraying%等离子喷涂AT13/MoS2复合涂层的组织和耐腐蚀性

    Institute of Scientific and Technical Information of China (English)

    何俊波; 李春福; 姚梦佳; 孙延安

    2015-01-01

    采用等离子喷涂技术在45钢基体表面上制备了4种不同MoS2含量的AT13/MoS2复合涂层,研究MoS2含量对涂层组织和耐蚀性能的影响。结果表明,AT13/MoS2复合涂层的孔隙率随MoS2含量的增加而升高。由于较高孔隙率的原因,AT13/MoS2复合涂层在80℃的10% H2 SO4腐蚀介质中耐蚀性能下降。%AT13/MoS2 composite ceramics coatings with four different MoS2 content on 45 steel surface were prepared by atmospheric plasma spraying, and the microstructure and corrosion resistance of AT13/MoS2 composite coatings were investigated. The results show that porosity increases with the increase of MoS2 content. Because of the high porosity of coating, the corrosion resistance of AT13/MoS2 composite coatings is decreasing in the corrosion medium of 10% H2 SO4 at 80 ℃.

  11. 77 FR 14501 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Science.gov (United States)

    2012-03-12

    ... coated with corrosion-resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel- or iron-based... substances in addition to the metallic coating, in coils (whether or not in successively superimposed layers..., varnished or coated with plastics or other nonmetallic substances in addition to the metallic coating....

  12. Development of WELDABLE12CR stainless steel seamless pipe with superior weldability and corrosion resistance for linepipe application; Yosetsusei oyobi taishokusei ni sugureta linepipe yo stainless keimokumukokan WELDABLE12CR no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Y.; Kimura, M.; Toyooka, T.; Nakano, Y.; Murase, F. [Kawasaki Steel Corp., Tokyo (Japan)

    1998-06-20

    Severe corrosive circumstance of oil wells and gas wells including high temperature, high CO2 partial pressure, high chlorine ion concentration, and further H2S are becoming more and more serious in recent years. Measures to prevent CO2 corrosion and sulfide stress crack are necessary for pipelines called flowlines and gathering line for transporting oil or gas which has severe corrosivity before treatment. WELDABLE12CR steel pipe which is seamless martensite stainless steel with excellent weldability and corrosion resistance is developed by the present authors. There two kinds of such steel pipes, one is 11Cr steel (0.01C-11Cr-1.5Ni-0.5Cu-0.01N-based steel) that is superior in corrosion resistance to 13Cr steel for oil well so that it can be used in CO2 circumstance, and the other one is 12Cr steel (0.01C-12Cr-5Ni-2Mo-0.01N-based steel) that has excellent SSC-resistance thus being used in the circumstance containing CO2 and a trace quantity of H2S. 5 refs., 4 figs., 3 tabs.

  13. CORROSION RESISTANCE OF WATER-THINNABLE PAINT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2013-12-01

    Full Text Available Anticorrosion protection on the basis of water-thinnable paint systems belongs among one of ecological ways of protection of metal parts. The aim of the experiment was to test corrosion resistance of water-thinnable systems Eternal antikor speciál V9503 and Colorlak aquarex V2115 in the salt spray environment according to the norm ČSN ISO 9227. Ductility of used paint systems in complience with the norm ČSN EN ISO 1520 will be also tested, it is a test according to Erichsen. At the end of the experiment measurement, the corrosion speed depending on paint coating thickness was analyzed.

  14. Fabrication of biomimetic hydrophobic films with corrosion resistance on magnesium alloy by immersion process

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yan, E-mail: liuyan2000@jlu.edu.cn [Key Laboratory for Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Lu Guolong; Liu Jindan; Han Zhiwu; Liu Zhenning [Key Laboratory for Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer We have developed a facile and simple method of creating a hydrophobic surface on a magnesium alloy by an immersion process at room temperature. Black-Right-Pointing-Pointer The distribution of the micro-structure and the roughness of the surface play critical roles in transforming from hydrophilic to hydrophobic. Black-Right-Pointing-Pointer The hydrophobic coatings possess better corrosion resistance than magnesium alloy matrix. - Abstract: Biomimetic hydrophobic films of crystalline CeO{sub 2} were prepared on magnesium alloy by an immersion process with cerium nitrate solution and then modified with DTS (CH{sub 3}(CH{sub 2}){sub 11}Si(OCH{sub 3}){sub 3}). The CeO{sub 2} films fabricated with 20-min immersion yield a water contact angle of 137.5 {+-} 2 Degree-Sign , while 20-min DTS treatment on top of CeO{sub 2} can further enhance the water contact angle to 146.7 {+-} 2 Degree-Sign . Then corrosion-resistant property of these prepared films against NaCl solution was investigated and elucidated using electrochemical measurements.

  15. Development of intermetallic coatings for fusion power applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Domenico, T.; Dragel, G.; Clark, R.

    1994-03-01

    In the design of liquid-metal cooling systems, corrosion resistance of structural materials and magnetohydrodynamic (MHD) force and its subsequent influence on thermal hydraulics and corrosion are major concerns. The objective of this study is to develop stable corrosion-resistant electrical insulator coatings at the liquid-metal/structural-material interface, with emphasis on electrically insulating coatings that prevent adverse MHD-generated currents from passing through the structural walls. Vanadium and V-base alloys are potential materials for structural applications in a fusion reactor. Insulator coatings inside the tubing are required when the system is cooled by liquid metals. Various intermetallic films were produced on V, V-t, and V-20 Ti, V-5Cr-t and V-15Cr-t, and Ti, and Types 304 and 316 stainless steel. The intermetallic layers were developed by exposure of the materials to liquid lithium of 3--5 at.% and containing dissolved metallic solutes at temperatures of 416--880{degrees}C. Subsequently, electrical insulator coatings were produced by reaction of the reactive layers with dissolved nitrogen in liquid lithium or by air oxidation under controlled conditions at 600--1000{degrees}C. These reactions converted the intermetallic layers to electrically insulating oxide/nitride or oxy-nitride layers. This coating method could be applied to a commercial product. The liquid metal can be used over and over because only the solutes are consumed within the liquid metal. The technique can be applied to various shapes because the coating is formed by liquid-phase reaction. This paper will discuss initial results on the nature of the coatings and their in-situ electrical resistivity characteristics in liquid lithium at high temperatures.

  16. Effect of NaOH concentration on microstructure and corrosion resistance of MAO coatings fabricated on AZ91D magnesium alloy%NaOH含量对AZ91D镁合金微弧氧化膜层微观结构和耐蚀性的影响

    Institute of Scientific and Technical Information of China (English)

    王淑艳; 刘莉; 夏永平

    2013-01-01

    在由15 g/L Na2 SiO3、12 g/L NaAlO2、3 g/L Na2 B4 O7、5 mL/L C3 H8 O3、5 g/L C6 H5 Na3 O7及1~4 g/L NaOH组成的硅铝复合电解液中,利用微弧氧化技术在AZ91D镁合金基体上制备了一系列陶瓷膜层.利用扫描电镜、膜层测厚仪分别研究了陶瓷膜层的微观结构及厚度;采用全浸泡实验和交流阻抗实验测试了膜层在3.5%NaCl溶液中的耐蚀性能.结果表明:随着NaOH含量的增加,微弧氧化过程中的起弧电压和终止电压均呈线性下降;膜层的耐蚀性随着NaOH含量的增加先提高后降低,膜厚的变化趋势与其耐蚀性的变化趋势基本一致;NaOH含量的变化主要影响膜层内部致密层的耐蚀性能;当NaOH含量为2 g/L时,膜层最厚,膜层较致密,因而具有较好的耐蚀性能.%Ceramic coatings were obtained on AZ91D magnesium alloy by microarc oxidation in a silicate-alumi-nate based composite electrolyte containing 15 g/L Na2 SiO3 , 12 g/L NaAlO2 , 3 g/L Na2 B4 O7 , 5 mL/L C3 H8 O3 , 5 g/L C6 H5 Na3 O7 and 1~4 g/L NaOH.The morphology and thickness of ceramic coatings were exam-ined by scanning electron microscopy ( SEM ) and layer thickness meter .The corrosion resistance of ceramic coatings in a 3.5%NaCl neutral solution was evaluated by immersion test and electrochemical impedance spec-troscopy ( EIS) .The results show that striking voltage and final voltage during the MAO process decrease gradu-ally as the concentration of NaOH increases .With the increasing of NaOH concentration in the electrolyte , the corrosion resistance of coating increases first and then decreases gradually .The variation trend of coating thick-ness is the same as that of corrosion resistance .The concentration of NaOH in the electrolyte mainly affects the corrosion resistance of the inner dense layer .The coating obtained in the electrolyte containing 2 g/L NaOH ex-hibits a better corrosion resistance due to the relatively compact microstructure

  17. Corrosion resistant storage container for radioactive material

    Science.gov (United States)

    Schweitzer, Donald G.; Davis, Mary S.

    1990-01-01

    A corrosion resistant long-term storage container for isolating radioactive waste material in a repository. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between judxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  18. Development of biodegradable magnesium alloy stents with coating

    Directory of Open Access Journals (Sweden)

    Lorenza Petrini

    2014-07-01

    Full Text Available Biodegradable stents are attracting the attention of many researchers in biomedical and materials research fields since they can absolve their specific function for the expected period of time and then gradually disappear. This feature allows avoiding the risk of long-term complications such as restenosis or mechanical instability of the device when the vessel grows in size in pediatric patients. Up to now biodegradable stents made of polymers or magnesium alloys have been proposed. However, both the solutions have limitations. The polymers have low mechanical properties, which lead to devices that cannot withstand the natural contraction of the blood vessel: the restenosis appears just after the implant, and can be ascribed to the compliance of the stent. The magnesium alloys have much higher mechanical properties, but they dissolve too fast in the human body. In this work we present some results of an ongoing study aiming to the development of biodegradable stents made of a magnesium alloy that is coated with a polymer having a high corrosion resistance. The mechanical action on the blood vessel is given by the magnesium stent for the desired period, being the stent protected against fast corrosion by the coating. The coating will dissolve in a longer term, thus delaying the exposition of the magnesium stent to the corrosive environment. We dealt with the problem exploiting the potentialities of a combined approach of experimental and computational methods (both standard and ad-hoc developed for designing magnesium alloy, coating and scaffold geometry from different points of views. Our study required the following steps: i selection of a Mg alloy suitable for stent production, having sufficient strength and elongation capability; ii computational optimization of the stent geometry to minimize stress and strain after stent deployment, improve scaffolding ability and corrosion resistance; iii development of a numerical model for studying stent

  19. 77 FR 27438 - Certain Corrosion-Resistant Carbon Steel Flat Products From Korea: Final Results of Expedited...

    Science.gov (United States)

    2012-05-10

    ..., plated, or coated with corrosion-resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel- or... nonmetallic substances in addition to the metallic coating, in coils (whether or not in successively... other nonmetallic substances in addition to the metallic coating. Excluded from the order are...

  20. 76 FR 55004 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary...

    Science.gov (United States)

    2011-09-06

    ... rectangular shape, either clad, plated, or coated with corrosion-resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel- or iron-based alloys, whether or not corrugated or painted, varnished or coated with plastics or other nonmetallic substances in addition to the metallic coating, in...

  1. 76 FR 15291 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Science.gov (United States)

    2011-03-21

    ... rectangular shape, either clad, plated, or coated with corrosion-resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel- or iron-based alloys, whether or not corrugated or painted, varnished or coated with plastics or other nonmetallic substances in addition to the metallic coating, in...

  2. 75 FR 13490 - Certain Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Notice of...

    Science.gov (United States)

    2010-03-22

    ... with corrosion-resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel- or iron-based... substances in addition to the metallic coating, in coils (whether or not in successively superimposed layers..., varnished or coated with plastics or other nonmetallic substances in addition to the metallic coating....

  3. Assessment of corrosion resistance of Nd–Fe–B magnets by silanization for orthodontic applications

    Energy Technology Data Exchange (ETDEWEB)

    Fabiano, F., E-mail: ffabiano@unime.it [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy); Department of Experimental, Specialized Medical-Surgical and Odontostomatological Sciences, Messina (Italy); Celegato, F. [INRIM Electromagnetism Division, Torino (Italy); Giordano, A. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy); Borsellino, C. [Department of Civil Engineering, Computing, Construction, Environmental and Applied Mathematics, Messina (Italy); Bonaccorsi, L.; Calabrese, L. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy); Tiberto, P. [INRIM Electromagnetism Division, Torino (Italy); Cordasco, G.; Matarese, G. [Department of Experimental, Specialized Medical-Surgical and Odontostomatological Sciences, Messina (Italy); Fabiano, V. [Department of Civil Engineering, Computing, Construction, Environmental and Applied Mathematics, Messina (Italy); Department of Experimental, Specialized Medical-Surgical and Odontostomatological Sciences, Messina (Italy); Azzerboni, B. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy)

    2014-02-15

    Nd–Fe–B permanent magnets are characterised by excellent magnetic properties. However, being extremely vulnerable to the attack of both climate and corrosive environments, their applications are limited. This paper describes how, at different thicknesses of N-propyl-trimetoxy-silane, the coating affects the magnetic force of nickel plated magnets. We also investigate if the corrosion resistance of silanized Nd–Fe–B magnets increases in mildly corrosive environments by immersing them in a synthetic saliva solution. It was found that the silanization treatment does not affect the strength of the magnetic force and provide an enhancement of the corrosion resistance of the substrate.

  4. Assessment of corrosion resistance of Nd-Fe-B magnets by silanization for orthodontic applications

    Science.gov (United States)

    Fabiano, F.; Celegato, F.; Giordano, A.; Borsellino, C.; Bonaccorsi, L.; Calabrese, L.; Tiberto, P.; Cordasco, G.; Matarese, G.; Fabiano, V.; Azzerboni, B.

    2014-02-01

    Nd-Fe-B permanent magnets are characterised by excellent magnetic properties. However, being extremely vulnerable to the attack of both climate and corrosive environments, their applications are limited. This paper describes how, at different thicknesses of N-propyl-trimetoxy-silane, the coating affects the magnetic force of nickel plated magnets. We also investigate if the corrosion resistance of silanized Nd-Fe-B magnets increases in mildly corrosive environments by immersing them in a synthetic saliva solution. It was found that the silanization treatment does not affect the strength of the magnetic force and provide an enhancement of the corrosion resistance of the substrate.

  5. Effect of Surface Modification on Corrosion Resistance of Pure Titanium. An in Vivo Observation

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-mei; GUO Tian-wen; WANG Da-lin

    2006-01-01

    Objective: The aim of this experiment is to study the effect of three methods of surface modification on the corrosion resistance of commercial pure Titanium when used in oral environment for half a year. Method: 48 specimens of pure titanium were made and divided into four groups randomly, one group was selected randomly as Group Ⅰ(control group), the other three groups were treated by three methods of surface modification individually, Group Ⅱ: heating oxidation in air(400℃,30min.), Group Ⅲ : anodization(45 volts, 10 min.), Group Ⅳ: TiN coating(firing temperature 200℃ , total coating time 62min.). Six edentulous volunteers with healthy oral mucosa participated in the in vivo study. One testing piece from each group was selected and fixed in the polished surface of upper complete dentures. Dynamic polarization curves were traced with electrochemical method after the specimens were placed either in oral cavity or in air for 6 months. Results: After all specimens were used, Ecorr altered in every group , Ecorr from high to low were in turn: TiN coating group > heating oxidation group > anodization group >control group, no obvious passive potential Ep and Ip was found in control group.Heating oxidation in air exhibited similar Ep to anodization, but Ip was remarkably lower than that of anodization; TiN coating showed obviously different polarization curves compared with heating -oxidation group and anodization group, Ecorr was positive, and no Ep and Ip was found. Conclusion: Under present experimental condition, all the three treatment methods could enhance corrosion resistance of pure titanium in oral environment, heating oxidation in air exhibited better resistance to corrode than anodization, TiN coating possessed the most excellent corrosion resistance, even after exposed in oral condition for 6 months, there was little change of corrosion resistance. Therefore TiN coating could be adopted to improve corrosion resistance of pure titanium in

  6. Corrosion-Resistant Container for Molten-Material Processing

    Science.gov (United States)

    Stern, Theodore G.; McNaul, Eric

    2010-01-01

    In a carbothermal process, gaseous methane is passed over molten regolith, which is heated past its melting point to a temperature in excess of 1,625 C. At this temperature, materials in contact with the molten regolith (or regolith simulant) corrode and lose their structural properties. As a result, fabricating a crucible to hold the molten material and providing a method of contact heating have been problematic. Alternative containment approaches use a large crucible and limit the heat zone of the material being processed, which is inefficient because of volume and mass constraints. Alternative heating approaches use non-contact heating, such as by laser or concentrated solar energy, which can be inefficient in transferring heat and thus require higher power heat sources to accomplish processing. The innovation is a combination of materials, with a substrate material having high structural strength and stiffness and high-temperature capability, and a coating material with a high corrosion resistance and high-temperature capability. The material developed is a molybdenum substrate with an iridium coating. Creating the containment crucible or heater jacket using this material combination requires only that the molybdenum, which is easily processed by conventional methods such as milling, electric discharge machining, or forming and brazing, be fabricated into an appropriate shape, and that the iridium coating be applied to any surfaces that may come in contact with the corrosive molten material. In one engineering application, the molybdenum was fashioned into a container for a heat pipe. Since only the end of the heat pipe is used to heat the regolith, the container has a narrowing end with a nipple in which the heat pipe is snugly fit, and the external area of this nipple, which contacts the regolith to transfer heat into it, is coated with iridium. At the time of this reporting, no single material has been found that can perform the functions of this combination

  7. Pitting corrosion resistance and bond strength of stainless steel overlay by friction surfacing on high strength low alloy steel

    Directory of Open Access Journals (Sweden)

    Amit Kumar Singh

    2015-09-01

    Full Text Available Surface modification is essential for improving the service properties of components. Cladding is one of the most widely employed methods of surface modification. Friction surfacing is a candidate process for depositing the corrosion resistant coatings. Being a solid state process, it offers several advantages over conventional fusion based surfacing process. The aim of this work is to identify the relationship between the input variables and the process response and develop the predictive models that can be used in the design of new friction surfacing applications. In the current work, austenitic stainless steel AISI 304 was friction surfaced on high strength low alloy steel substrate. Friction surfacing parameters, such as mechtrode rotational speed, feed rate of substrate and axial force on mechtrode, play a major role in determining the pitting corrosion resistance and bond strength of friction surfaced coatings. Friction surfaced coating and base metal were tested for pitting corrosion by potentio-dynamic polarization technique. Coating microstructure was characterized using optical microscopy, scanning electron microscopy and X-ray diffraction. Coatings in the as deposited condition exhibited strain-induced martensite in austenitic matrix. Pitting resistance of surfaced coatings was found to be much lower than that of mechtrode material and superior to that of substrate. A central composite design with three factors (mechtrode rotational speed, substrate traverse speed, axial load on mechtrode and five levels was chosen to minimize the number of experimental conditions. Response surface methodology was used to develop the model. In the present work, an attempt has been made to develop a mathematical model to predict the pitting corrosion resistance and bond strength by incorporating the friction surfacing process parameters.

  8. Evaluating the corrosion resistance of UBM-deposited Cr/CrN multilayers

    Directory of Open Access Journals (Sweden)

    Yuri Lizbeth Chipatecua Godoy

    2011-05-01

    Full Text Available This work was aimed at evaluating the corrosion resistance of multilayer Cr/CrN coatings deposited by the unbalan-ced magnetron sputtering (UBM technique. Coatings were produced at room temperature using 400 mA discharge current, 9 sccm argon flow and 3 sccm nitrogen flow. The total thickness of coatings deposited on AISI 304 stainless steel and silicon (100 varied between 0.2 a 3 μm as bilayer period varied between 20 and 200 nm. Coating microstructure and chemical composition was stu-died through scanning electron microscopy (SEM and tex-ture and crystalline phases were analysed by X-ray diffraction (XRD before and after corrosion tests which were carried out by potentiodynamic polarisation using 0.5 M H2SO4 + 0.05M KSCN solution. Lower bilayer period coatings presented better corrosion resistance and their corrosion mechanism is discussed in this article.

  9. Corrosion resistance of Fe-based amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Botta, W.J., E-mail: wjbotta@ufscar.br [LEPMI, UMR5279 CNRS, Grenoble INP, Université de Savoie, Université Joseph Fourier, 1130, Rue de la piscine, BP 75, 38402 Saint Martin d’Hères (France); Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Berger, J.E.; Kiminami, C.S. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Roche, V.; Nogueira, R.P. [LEPMI, UMR5279 CNRS, Grenoble INP, Université de Savoie, Université Joseph Fourier, 1130, Rue de la piscine, BP 75, 38402 Saint Martin d’Hères (France); Bolfarini, C. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil)

    2014-02-15

    Highlights: ► We report corrosion properties of Fe-based amorphous alloys in different media. ► The Cr-containing alloys had corrosion resistance close to that of Pt in all media. ► The wide range of electrochemical stability is relevant in many industrial domains. -- Abstract: Fe-based amorphous alloys can be designed to present an attractive combination of properties with high corrosion resistance and high mechanical strength. Such properties are clearly adequate for their technological use as coatings, for example, in steel pipes. In this work, we studied the corrosion properties of amorphous ribbons of the following Fe-based compositions: Fe{sub 66}B{sub 30}Nb{sub 4}, [(Fe{sub 0.6}Co{sub 0.4}){sub 0.75}B{sub 0.2}Si{sub 0.05}]{sub 96}Nb{sub 4}, [(Fe{sub 0.7}Co{sub 0.3}){sub 0.75}B{sub 0.2}Si{sub 0.05}]{sub 96}Nb{sub 4}, Fe{sub 56}Cr{sub 23}Ni{sub 5.7}B{sub 16}, Fe{sub 53}Cr{sub 22}Ni{sub 5.6}B{sub 19} and Fe{sub 50}Cr{sub 22}Ni{sub 5.4}B{sub 23}. The ribbons were obtained by rapid solidification using the melt-spinning process, and were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and optical (OM) and scanning electron microscopy (SEM). The corrosion properties were evaluated by corrosion potential survey and potentiodynamic polarization. The Cr containing alloys, that is the FeCrNiB type of alloys, showed the best corrosion resistance properties with the formation of a stable passive film that ensured a very large passivation plateau.

  10. Formation and Corrosion Resistance of Mg-Al Hydrotalcite Film on Mg-Gd-Zn Alloy

    Science.gov (United States)

    Ba, Z. X.; Dong, Q. S.; Kong, S. X.; Zhang, X. B.; Xue, Y. J.; Chen, Y. J.

    2017-06-01

    An environment-friendly technique for depositing a Mg-Al hydrotalcite (HT) (Mg6Al2(OH)16-CO3ṡ4H2O) conversion film was developed to protect the Mg-Gd-Zn alloy from corrosion. The morphology and chemical compositions of the film were analyzed by scanning electronic microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and Raman spectroscopy (RS), respectively. The electrochemical test and hydrogen evolution test were employed to evaluate the biocorrosion behavior of Mg-Gd-Zn alloy coated with the Mg-Al HT film in the simulated body fluid (SBF). It was found that the formation of Mg-Al HT film was a transition from amorphous precursor to a crystalline HT structure. The HT film can effectively improve the corrosion resistance of magnesium alloy. It indicates that the process provides a promising approach to modify Mg-Gd-Zn alloy.

  11. Corrosion resistance and durability of siloxane ceramic/polymer films for aluminum alloys in marine environments

    Science.gov (United States)

    Kusada, Kentaro

    The objective of this study is to evaluate corrosion resistance and durability of siloxane ceramic/polymer films for aluminum alloys in marine environments. Al5052-H3 and Al6061-T6 were selected as substrates, and HCLCoat11 and HCLCoat13 developed in the Hawaii Corrosion Laboratory were selected for the siloxane ceramic/polymer coatings. The HCLCoat11 is a quasi-ceramic coating that has little to no hydrocarbons in its structure. The HCLCoat13 is formulated to incorporate more hydrocarbons to improve adhesion to substrate surfaces with less active functionalities. In this study, two major corrosion evaluation methods were used, which were the polarization test and the immersion test. The polarization tests provided theoretical corrosion rates (mg/dm 2/day) of bare, HCLCoat11-coated, and HCLCoat13-coated aluminum alloys in aerated 3.15wt% sodium chloride solution. From these results, the HCLCoat13-coated Al5052-H3 was found to have the lowest corrosion rate which was 0.073mdd. The next lowest corrosion rate was 0.166mdd of the HCLCoat11-coated Al5052-H3. Corrosion initiation was found to occur at preexisting breaches (pores) in the films by optical microscopy and SEM analysis. The HCLCoat11 film had many preexisting breaches of 1-2microm in diameter, while the HCLCoat13 film had much fewer preexisting breaches of less than 1microm in diameter. However, the immersion tests showed that the seawater immersion made HCLCoat13 film break away while the HCLCoat11 film did not apparently degrade, indicating that the HCLCoat11 film is more durable against seawater than the HCLCoat13. Raman spectroscopy revealed that there was some degradation of HCLCoat11 and HCLCoat13. For the HCLCoat11 film, the structure relaxation of Si-O-Si linkages was observed. On the other hand, seawater generated C-H-S bonds in the HCLCoat13 film resulting in the degradation of the film. In addition, it was found that the HCLCoat11 coating had anti-fouling properties due to its high water contact

  12. CeO2对镍基金属陶瓷复合层组织和耐腐蚀性能的影响%Effects of CeO2 on Structure and Corrosion Resistance of Ni-based Metal-Ceramic Coatings

    Institute of Scientific and Technical Information of China (English)

    赵涛; 蔡珣; 王顺兴; 郑世安

    2001-01-01

    利用5kW CO2激光器在5Cr21Mn9Ni4N不锈钢基体表面成功熔覆了含不同CeO2量的镍基金属陶瓷复合层。研究了稀土氧化物CeO2对激光熔覆金属陶瓷复合层显微组织形态和耐腐蚀性能的影响,发现稀土氧化物CeO2能加速碳化钨颗粒的溶解,促使钨与铬形成金属间化合物;激光熔覆镍基金属陶瓷复合层的耐硫酸腐蚀能力显著优于1Cr18Ni9Ti不锈钢;且含0.5%CeO2(质量分数)的激光熔覆层的耐腐蚀能力比含1.5% CeO2(质量分数)和不含CeO2的激光熔覆层都要强。%The Ni-based metal-ceramic coatings on the surface of 5Cr21Mn9Ni4N stainless steel were clad by a 5kW CO2 laser.The effects of CeO2 on structure and corrosion resistance of laser clad Ni-based metal-ceramic coatings were investigated.The studies revealed that CeO2 could accelerate the dissolution of tungsten carbide particles and made the formation of Cr-W intermetallic compound.Compared with steel 1Cr18Ni9Ti,the corrosion resistance of the laser clad Ni-based metal-ceramic coatings was raised remarkably and the corrosion resistance of the coatings with 0.5wt% CeO2 was better than that of the coatings with 1.5wt% CeO2 and without CeO2.

  13. CORROSION RESISTANCE OF ALUMINUM CANS IN CONTACT WITH BEER

    Directory of Open Access Journals (Sweden)

    Luiza Esteves

    2015-07-01

    Full Text Available Aluminum cans with an organic coating are used in Brazil as packaging for carbonated beverages (soft drinks, beer, which act as electrolyte solutions. These electrolytes, in contact with the inner metal can, initiate a corrosion process of aluminum. The presence of metallic ions can change the flavor of the beverage, compromising the product quality. This work aims to evaluate the corrosion resistance of aluminum in beer environment using the technique of Electrochemical Impedance Spectroscopy (EIS. The Scanning Electron Microscopy (SEM and the Energy Dispersive Spectroscopy (EDS were used to evaluate the metal surface. Two batches with different coating thickness were analyzed for the same date of manufacture. The electrolyte resistance and the aluminum charge transfer resistance in beer varied depending on the batch analyzed.

  14. 植酸浓度对AZ31B镁合金植酸转化膜防腐性能的影响%Influence of Phytic Acid Concentration on Corrosion Resistance of Phytic Acid Conversion Coating on AZ31B Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    高焕方; 张胜涛; 赵波; 刘益风; 邹勇

    2011-01-01

    在不同浓度的植酸溶液中制备了AZ31B镁合金植酸转化试样,并应用析氢实验及Tafel极化曲线测试其防腐性能,使用SEM,EDS,FTIR观察转化膜形貌、元素组成及官能团构成.结果表明:植酸溶液的浓度对植酸转化试样的防腐性能具有较大的影响,C=4.0g·L-1时所制备的转化试样具有最佳的防腐性能,电流密度较未处理试样降低了2个数量级.此外,植酸转化膜主要由Mg,Al,Zn,O,P等元素组成,并含有PO34-,HPO24-,OH-基团,转化膜存在一定的裂纹,且裂纹处仍有很薄的一层植酸转化膜.%The phytic acid conversion coatings on AZ31B magnesium alloy were formed in different phytic acid concentrations and the corrosion resistance of the conversion samples was studied by hydrogen evolution method and Tafel. The morphology, composition and functional groups were investigated by SEM, EDS and FTIR, respectively. The results indicate that the concentration of phytic acid has obvious influence on the corrosion resistance of the conversion samples, the conversion sample formed under C=4.0g · L-1 has the best corrosion resistance, the current density decreases about two orders than that of the untreated sample. The main elements of the coating are Mg, Al, Zn, O and P, the functional groups are PO43- , HPO42- and OH- . The conversion coating also has few cracks, and the thin coating is formed on the crack.

  15. Corrosion resistance of kolsterised austenitic 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Abudaia, F. B., E-mail: fabudaia@yahoo.com; Khalil, E. O., E-mail: ekhalil9@yahoo.com; Esehiri, A. F., E-mail: Hope-eseheri@hotmail.co.uk; Daw, K. E., E-mail: Khawladaw@yahoo.com [University of Tripoli Department of Materials and Metallurgical Eng, Tripoli-Libya P.O.Box13589 (Libya)

    2015-03-30

    Austenitic stainless suffers from low wear resistance in applications where rubbing against other surfaces is encountered. This drawback can be overcome by surface treatment such as coating by hard materials. Other treatments such as carburization at relatively low temperature become applicable recently to improve hardness and wear resistance. Carburization heat treatment would only be justified if the corrosion resistance is unaffected. In this work samples of 304 stainless steels treated by colossal supersaturation case carburizing (known as Kolsterising) carried out by Bodycote Company was examined for pitting corrosion resistance at room temperature and at 50 °C. Comparison with results obtained for untreated samples in similar testing conditions show that there is no deterioration in the pitting resistance due to the Kolsterising heat treatment. X ray diffraction patterns obtained for Kolsterising sample showed that peaks correspond to the austenite phase has shifted to lower 2θ values compared with those of the untreated sample. The shift is an indication for expansion of austenite unit cells caused by saturation with diffusing carbon atoms. The XRD of Kolsterising samples also revealed additional peaks appeared in the patterns due to formation of carbides in the kolsterised layer. Examination of these additional peaks showed that these peaks are attributed to a type of carbide known as Hagg carbide Fe{sub 2}C{sub 5}. The absence of carbides that contain chromium means that no Cr depletion occurred in the layer and the corrosion properties are maintained. Surface hardness measurements showed large increase after Kolsterising heat treatment.

  16. Corrosion resistance of kolsterised austenitic 304 stainless steel

    Science.gov (United States)

    Abudaia, F. B.; Khalil, E. O.; Esehiri, A. F.; Daw, K. E.

    2015-03-01

    Austenitic stainless suffers from low wear resistance in applications where rubbing against other surfaces is encountered. This drawback can be overcome by surface treatment such as coating by hard materials. Other treatments such as carburization at relatively low temperature become applicable recently to improve hardness and wear resistance. Carburization heat treatment would only be justified if the corrosion resistance is unaffected. In this work samples of 304 stainless steels treated by colossal supersaturation case carburizing (known as Kolsterising) carried out by Bodycote Company was examined for pitting corrosion resistance at room temperature and at 50 °C. Comparison with results obtained for untreated samples in similar testing conditions show that there is no deterioration in the pitting resistance due to the Kolsterising heat treatment. X ray diffraction patterns obtained for Kolsterising sample showed that peaks correspond to the austenite phase has shifted to lower 2θ values compared with those of the untreated sample. The shift is an indication for expansion of austenite unit cells caused by saturation with diffusing carbon atoms. The XRD of Kolsterising samples also revealed additional peaks appeared in the patterns due to formation of carbides in the kolsterised layer. Examination of these additional peaks showed that these peaks are attributed to a type of carbide known as Hagg carbide Fe2C5. The absence of carbides that contain chromium means that no Cr depletion occurred in the layer and the corrosion properties are maintained. Surface hardness measurements showed large increase after Kolsterising heat treatment.

  17. Composition and corrosion resistance of cerium conversion films on 2195Al-Li alloy

    Institute of Scientific and Technical Information of China (English)

    SONG Dong; FENG Xingguo; SUN Mingren; MA Xinxin; TANG Guangze

    2012-01-01

    The Ce conversion films on 2195Al-Li alloy without and with post-treatment were studied and the corrosion resistance was evaluated as well.The surface morphology was observed by scanning electron microscopy (SEN),and the chemical composition was characterized by X-ray photoelectron spectroscopy (XPS).The corrosion behaviors of 2195Al-Li alloy and conversion coating were assessed by means of potentiodynamic polarization curves.The experimental results indicated that after post-treatment the surface quality was improved significantly.According to XPS,the conversion coating after post-treatment was mainly composed of CeO2,Ce2O3,Ce-OH and a little MoO3 and MoO2.The results of potentiodynamic polarization curves revealed that the conversion coating with post-treatment possessed better corrosion resistance than bare alloy and Ce conversion coating without post-treatment.

  18. Facile approach in the development of icephobic hierarchically textured coatings as corrosion barrier

    Energy Technology Data Exchange (ETDEWEB)

    Momen, G., E-mail: gmomen@uqac.ca; Farzaneh, M.

    2014-04-01

    Highlights: • A superhydrophobic coating is developed via a simple environmental-friendly method. • This coating can be used on the surface of various metals such as copper, magnesium. • The superhydrophobic aluminum surface showed the excellent corrosion resistance. • The fabricated surface revealed a drastically reduction of ice adhesion strength. • Such surfaces can advantageously be used in cold climate regions. - Abstract: An anti-corrosion superhydrophobic film with water contact angle greater than 160° on aluminum alloy 6061 substrate was fabricated simply through the spin-coating method applied to Al{sub 2}O{sub 3} nanoparticles doped in silicone rubber solution. The as-obtained sample was characterized by scanning electron microscopy (SEM) and water contact angle/surface energy measurement. The corrosion behaviour of such coating in the NaCl solutions was investigated using the potentiodynamic polarization. The results show that the corrosion resistance of the developed superhydrophobic surface is improved greatly due to the composite wetting states or interfaces with numerous air pockets between its surface and the NaCl solution. This superhydrophobic coating could serve as an effective barrier against aggressive medium. Ice adhesion strength of the as-prepared superhydrophobic coating was also evaluated by measuring its ice adhesion force which was found to have reduced by 4.8 times compared to that of aluminum substrate as reference test.

  19. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  20. Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints

    Directory of Open Access Journals (Sweden)

    G. Rambabu

    2015-12-01

    Full Text Available The aluminium alloy AA2219 (Al–Cu–Mg alloy is widely used in the fabrication of lightweight structures with high strength-to-weight ratio and good corrosion resistance. Welding is main fabrication method of AA2219 alloy for manufacturing various engineering components. Friction stir welding (FSW is a recently developed solid state welding process to overcome the problems encountered in fusion welding. This process uses a non-consumable tool to generate frictional heat on the abutting surfaces. The welding parameters, such as tool pin profile, rotational speed, welding speed and axial force, play major role in determining the microstructure and corrosion resistance of welded joint. The main objective of this work is to develop a mathematical model to predict the corrosion resistance of friction stir welded AA2219 aluminium alloy by incorporating FSW process parameters. In this work a central composite design with four factors and five levels has been used to minimize the experimental conditions. Dynamic polarization testing was carried out to determine critical pitting potential in millivolt, which is a criteria for measuring corrosion resistance and the data was used in model. Further the response surface method (RSM was used to develop the model. The developed mathematical model was optimized using the simulated annealing algorithm optimizing technique to maximize the corrosion resistance of the friction stir welded AA2219 aluminium alloy joints.

  1. DIMENSIONALLY STABLE, CORROSION RESISTANT NUCLEAR FUEL

    Science.gov (United States)

    Kittel, J.H.

    1963-10-31

    A method of making a uranium alloy of improved corrosion resistance and dimensional stability is described. The alloy contains from 0-9 weight per cent of an additive of zirconium and niobium in the proportions by weight of 5 to 1 1/ 2. The alloy is cold rolled, heated to two different temperatures, air-cooled, heated to a third temperature, and quenched in water. (AEC)

  2. Pitting corrosion resistant austenite stainless steel

    Science.gov (United States)

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  3. Preparation and characterization of corrosion resistance of epoxy polysiloxane hybrid coatings cured by polyetheramines%聚醚胺固化环氧有机硅杂化涂层的制备及防腐蚀性能研究∗

    Institute of Scientific and Technical Information of China (English)

    尧华; 孙小英; 杭建忠; 金鹿江; 孙东博; 施利毅

    2014-01-01

    The organic-inorganic hybrid coatings based on epoxy polysiloxane resin were prepared by using three different polyetheramines (Jeffamine D230,D400,T403).The mechanical,adhesion and anti-corrosion proper-ties were compared with the hybrid coating cured by 3-aminopropyltriethoxysilane (APTES).Compared with the hybrid coatings cured by APTES,the impact resistance property,initial adhesion and “wet adhesion”of the hybrid coatings cured by polyetheramines were promoted,comparable hardness of the hybrid coatings cured by D230 and T403 were attained,while the hardness of hybrid coating cured by D400 was decreased.The corrosion resistance behavior of the hybrid coatings was thoroughly examined by electrochemical impedance spectroscopy (EIS)and salt spray tests.It was found that the cracking and corrosion resistance of the hybrid coatings cured by APTES were improved greatly by using polyetheramines hardeners.%使用3种不同结构的聚醚胺(Jeffamine D230,D400,T403)分别固化环氧有机硅杂化树脂制备出有机-无机杂化涂层,并与3-氨丙基三乙氧基硅烷(APTES)固化的杂化涂层在机械性能、附着力和防腐蚀性能上进行了比较。研究结果表明,与 APTES 相比,聚醚胺可以提高杂化涂层的耐冲击高度1倍以上;聚醚胺 D230和 T403没有降低杂化涂层的硬度,而D400降低了杂化涂层的硬度;聚醚胺可以明显提高杂化涂层的初始附着力,同时大幅改善了涂层在老化过程中的“湿附着力”。采用盐雾实验和交流阻抗测试研究了杂化涂层的耐腐蚀性能,结果表明聚醚胺固化剂明显改善了 APTES 固化杂化涂层的易开裂性,并提高了杂化涂层的耐腐蚀性能。

  4. Development and Testing of an Anti-Scale/Corrosion Resistant Coating for Domestic Hot Water Heat Exchangers

    Science.gov (United States)

    1990-12-01

    Fort Bragg 23 10 Closeup of Scale- Incrusted Heat Exchanger Tube Bundle from Fort Bragg 24 11 Removal of Heat Exchanger Tube Bundle from Bldg 421, Fort...or vertical cylindrical tank (Figure 3). The tube bundle is usually made of copper or a copper alloy, and the tank is usually steel with a cement ...side of the solid barrier. The fouling factor includes the effects of corrosion and scale incrustation , and also the effect of protective coatini-s such

  5. Coal Ash Corrosion Resistant Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  6. Corrosion resistance and calcium–phosphorus precipitation of micro-arc oxidized magnesium for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lichen; Cui, Chunxiang, E-mail: hutcui@hebut.edu.cn; Wang, Xin; Liu, Shuangjin; Bu, Shaojing; Wang, Qingzhou; Qi, Yumin

    2015-03-01

    Highlights: • Hydroxyapatite (HA) powders were added to the electrolyte. • The HA powders have participated in the formation reactions of MAO coating. • The growth efficiency of MAO coating was greatly enhanced owing to the HA addition. • The specimen anodized in the HA-containing electrolyte has a better corrosion resistance. • The specimen anodized in the HA-containing electrolyte can more efficiently induce Ca–P precipitation. - Abstract: To improve the corrosion resistance of magnesium, micro-arc oxidation (MAO) coatings were prepared on magnesium substrates in an aqueous solution with and without hydroxyapatite (HA) powders addition. The micrographs of scanning electron microscopy (SEM), the energy dispersive spectrometer (EDS) spectra, and X-ray diffraction (XRD) analysis show that the HA powders added into the electrolyte have participated in the formation reactions of MAO coating and the growth efficiency of MAO coating is greatly enhanced. Potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) confirm that the specimen anodized in the HA-containing electrolyte has a better corrosion resistance than the specimen anodized in the HA-free electrolyte. Immersion tests also indicate that the specimen anodized in the HA-containing electrolyte can more efficiently induce Ca–P precipitation compared with the specimen anodized in the HA-free electrolyte.

  7. Ion beam analysis, corrosion resistance and nanomechanical properties of TiAlCN/CNx multilayer grown by reactive magnetron sputtering

    OpenAIRE

    Alemon, B.; Flores, M.; Canto, C.; E. Andrade; O.G. de Lucio; M.F. Rocha; Broitman, Esteban

    2014-01-01

    A novel TiAlCN/CNx, multilayer coating, consisting of nine TiAlCN/CNx periods with a top layer 0.5 mu m of CNx, was designed to enhance the corrosion resistance of CoCrMo biomedical alloy. The multilayers were deposited by dc and RF reactive magnetron sputtering from Ti0.5Al0.5 and C targets respectively in a N-2/Ar plasma. The corrosion resistance and mechanical properties of the multilayer coatings were analyzed and compared to CoCrMo bulk alloy. Ion beam analysis (IBA) and X-ray diffractio...

  8. In vitro bioactivity and corrosion resistance of Zr incorporated TiO2 nanotube arrays for orthopaedic applications

    Science.gov (United States)

    Indira, K.; KamachiMudali, U.; Rajendran, N.

    2014-10-01

    The present investigation deals with the incorporation of zirconium (Zr) ions onto TiO2 nanotube arrays (TNT) by simple dip coating method for biomedical implants. The electrochemical behaviour of the specimens were studied with potentiodynamic polarization (Tafel plots) and electrochemical impedance spectroscopy (EIS), while surface analysis involved field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy, thin film x-ray diffraction (TF-XRD) and contact angle measurements. The FE-SEM morphology revealed that self-organised TNT was tightly arrayed with an average diameter of 110 ± 4 nm. The wall thickness and length of 15 ± 2 nm and 2.1 ± 0.3 μm respectively were developed by electrochemical anodization of titanium sheet in a mixture of ethylene glycol and NH4F electrolyte. The EDS, ATR-FTIR and TF-XRD studies were revealed the incorporation of Zr onto TNT specimens. Hydroxyapatite (HAp) was grown over Zr ions incorporated TNT (Zr-TNT) via in vitro immersion method. The HAp grown Zr-TNT exhibited higher bioactivity as well as enhanced corrosion resistance when compared to other specimen. Hence, Zr-TNT could be a viable material for the use as orthopaedic implant with good bioactivity and corrosion resistance.

  9. Estudio comparativo de la evaluación a la corrosión de recubrimientos de CrN y CrN/Cr con recubrimientos de cromo electrodepositado y pinturas tipo epoxy A comparative study of corrosion resistance in CrN and CrN/Cr coatings, electrodeposited chromium and epoxy paints

    Directory of Open Access Journals (Sweden)

    Olaya Florez Jhon Jairo

    2010-12-01

    Full Text Available En este trabajo se compara la resistencia a la corrosión de recubrimientos de CrN y CrN/Cr depositados con el sistema de sputtering con magnetrón desbalanceado (UBM con recubrimientos industriales de Cr y pinturas tipo epoxy. Los recubrimientos UBM fueron optimizados y producidos a temperatura ambiente y con una corriente de descarga de 400 mA. Se utilizó un flujo de Ar de 9 sccm y para la producción de CrN se activó el nitrógeno con un flujo de 3 sccm. Los tiempos de depósito se ajustaron para producir monocapas de CrN y multicapas a escala nanométrica manteniendo un espesor total de 1 μm y un periodo de 100 nm. A los recubrimientos obtenidos se les determinó su microestructura con icroscopia electrónica de barrido (SEM, la textura y fases cristalinas con difracción de rayos X (XRD y espectroscopia infrarroja (IR, y la resistencia a la corrosión se evaluó con ensayos de polarización potenciodinámica utilizando una solución de 0,5M H2SO4 y 0,05M KSCN. En general, las multicapas anométricas mejoraron la resistencia a la corrosión de los aceros inoxidables, además se observó que los aceros A36 recubiertos con CrN pueden ser una alternativa para reemplazar a los aceros inoxidables en ambientes ácidos.Los mecanismos de corrosión para los recubrimientos producidos son discutidos en esta investigación.This work was aimed at comparing the corrosion resistance of CrN and CrN/Cr coatings deposited through unbalanced magnetron sputtering (UBM, Cr industrial coatings and epoxy paints. UBM coatings were optimised and produced at room temperature, using 400 mA discharge current. Ar and N2 flow rates were set at 9 standard cubic centimetres per minute (SCCM and 3 SCCM, respectively. Deposition times were set to produce CrN monolayers and nanometric multilayers having 1 μm total thickness and 100 nm period. Coating icrostructure was determined through scanning electron microscopy as texture and crystalline phases were determined using

  10. Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC

    Science.gov (United States)

    Zhang, Zhe; Yu, Ting; Kovacevic, Radovan

    2017-07-01

    Metal Matrix Composites (MMC) fabricated by the laser cladding process have been widely applied as protective coatings in industries to improve the wear, erosion, and corrosion resistance of components and prolong their service life. In this study, the AISI 420/VC metal matrix composites with different weight percentage (0 wt.%-40 wt.%) of Vanadium Carbide (VC) were fabricated on a mild steel A36 by a high power direct diode laser. An induction heater was used to preheat the substrate in order to avoid cracks during the cladding process. The effect of carbide content on the microstructure, elements distribution, phases, and microhardness was investigated in detail. The erosion resistance of the coatings was tested by using the abrasive waterjet (AWJ) cutting machine. The corrosion resistance of the coatings was studied utilizing potentiodynamic polarization. The results showed that the surface roughness and crack susceptibility of the laser cladded layer were increased with the increase in VC fraction. The volume fraction of the precipitated carbides was increased with the increase in the VC content. The phases of the coating without VC consisted of martensite and austenite. New phases such as precipitated VC, V8C7, M7C3, and M23C6 were formed when the primary VC was added. The microhardness of the clads was increased with the increase in VC. The erosion resistance of the cladded layer was improved after the introduction of VC. The erosion resistance was increased with the increase in the VC content. No obvious improvement of erosion resistance was observed when the VC fraction was above 30 wt.%. The corrosion resistance of the clads was decreased with the increase in the VC content, demonstrating the negative effect of VC on the corrosion resistance of AISI 420 stainless steel

  11. STRUCTURE AND CORROSION RESISTANCE OF NANO A12O3-13 % TiO2COATINGS BY HIGH ENERGY PLASMA SPRAYING%高能等离子喷涂纳米Al203-13%TiO2涂层的组织与耐蚀性能

    Institute of Scientific and Technical Information of China (English)

    刘焱飞; 刑书明; 龚志强; 吕艳红

    2011-01-01

    本文采用高能等离子喷涂方法制备了纳米Al2O3-13%TiO2涂层.通过X射线衍射法(XRD)分析了涂层物相成分,利用电子显微镜观察涂层截面组织形貌,并检测涂层盐雾腐蚀性能与人造海水耐蚀性能.结果表明:该涂层显微组织结构不同于普通等离子喷涂的Al2O3-13%TiO2涂层;涂层在人造海水环境下平均腐蚀率为0.025g/m2.h;盐雾气氛平均腐蚀率为0.0136g/m2.h.%Nano-Al2O3-13wt% TiO2 coating was prepared by using high energy plasma spraying. The coating cross-section morphology was observed by electron microscopy. Coating plase composition was analysed by X-ray diffraction (XRD). The corrosion resistance of the coating in salt spray and artificial seawater were examined. The results show that the coating microstructure is different from that of the ordinary plasma spraying coating of A12O3-13% wt TiO2; arerage corrosion rate of coating in artificial seawater is 0.025 g/m2 · H, average corrosion rata in salt spray 0. 0136 g/m2 · H.

  12. Oxide coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.

    1995-06-01

    Monolithic SiC heat exchangers and fiber-reinforced SiC-matrix composite heat exchangers and filters are susceptible to corrosion by alkali metals at elevated temperatures. Protective coatings are currently being developed to isolate the SiC materials from the corrodants. Unfortunately, these coatings typically crack and spall when applied to SiC substrates. The purpose of this task is to determine the feasibility of using a compliant material between the protective coating and the substrate. The low-modulus compliant layer could absorb stresses and eliminate cracking and spalling of the protective coatings.

  13. Improvement of corrosion resistance and antibacterial effect of NiTi orthopedic materials by chitosan and gold nanoparticles

    Science.gov (United States)

    Ahmed, Rasha A.; Fadl-allah, Sahar A.; El-Bagoury, Nader; El-Rab, Sanaa M. F. Gad

    2014-02-01

    Biocomposite consists of gold nanoparticles (AuNPs) and a natural polymer as Chitosan (CS) was electrodeposited over NiTi alloy to improve biocompatibility, biostability, surface corrosion resistance and antibacterial effect for orthopedic implantation. The forming process and surface morphology of this biocomposite coats over NiTi alloy were studied. The results showed that the nm-scale gold particles were embedded in the composite forming compact, thick and smooth coat. Elemental analysis revealed significant less Ni ion release from the coated NiTi alloy compared with the uncoated one by 20 fold. Furthermore, the electrochemical corrosion measurements indicated that AuNPs/CS composite coat was effective for improving corrosion resistance in different immersion times and at all pH values, which suggests that the coated NiTi alloys have potential for orthopedic applications. Additionally, the efficiencies of the biocomposite coats for inhibiting bacterial growth indicate high antibacterial effect.

  14. Prediction of microsegregation and pitting corrosion resistance of austenitic stainless steel welds by modelling

    Energy Technology Data Exchange (ETDEWEB)

    Vilpas, M. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1999-07-01

    The present study focuses on the ability of several computer models to accurately predict the solidification, microsegregation and pitting corrosion resistance of austenitic stainless steel weld metals. Emphasis was given to modelling the effect of welding speed on solute redistribution and ultimately to the prediction of weld pitting corrosion resistance. Calculations were experimentally verified by applying autogenous GTA- and laser processes over the welding speed range of 0.1 to 5 m/min for several austenitic stainless steel grades. Analytical and computer aided models were applied and linked together for modelling the solidification behaviour of welds. The combined use of macroscopic and microscopic modelling is a unique feature of this work. This procedure made it possible to demonstrate the effect of weld pool shape and the resulting solidification parameters on microsegregation and pitting corrosion resistance. Microscopic models were also used separately to study the role of welding speed and solidification mode in the development of microsegregation and pitting corrosion resistance. These investigations demonstrate that the macroscopic model can be implemented to predict solidification parameters that agree well with experimentally measured values. The linked macro-micro modelling was also able to accurately predict segregation profiles and CPT-temperatures obtained from experiments. The macro-micro simulations clearly showed the major roles of weld composition and welding speed in determining segregation and pitting corrosion resistance while the effect of weld shape variations remained negligible. The microscopic dendrite tip and interdendritic models were applied to welds with good agreement with measured segregation profiles. Simulations predicted that weld inhomogeneity can be substantially decreased with increasing welding speed resulting in a corresponding improvement in the weld pitting corrosion resistance. In the case of primary austenitic

  15. 纳米TiO2/有机-无机杂化丙烯酸复合涂层机械及耐腐蚀性能的研究%Study on the mechanical properties and corrosion resistance properties of nano-TiO2/organic-inorganic hybrid acrylic composite coating

    Institute of Scientific and Technical Information of China (English)

    李婕; 孙小英; 杭建忠; 施利毅; 程银银

    2012-01-01

    The organic-inorganic hybridization acrylic resin was synthesized with sol-gel method,and the effects of the addition of nano-TiO2 on mechanical properties and corrosion resistance properties of organic-inorganic hybridization acrylic composite coatings have been investigated in detail.The result showed that,when adding 15wt% nano-TiO2,the hardness of coating was improved from 3 to 6H,the salt spray resistance time increased from 100 to 500h,and the resistance got to 106Ω·cm2.Moreover,it can be observed clearly that nano particles dispersed uniformly and densely in the coatings by SEM.The coordination of organic-inorganic hybridization acrylic resin and nano-TiO2 was a good potential method for improving the mechanical properties and corrosion resistance properties of coatings.%在采用溶胶-凝胶法合成有机-无机杂化丙烯酸树脂的基础上,研究了纳米TiO2添加量对有机-无机杂化丙烯酸复合涂层机械和耐腐蚀等性能的影响。研究表明,当纳米TiO2添加量为15%时,涂层的性能有了较大的提高,其硬度由3H提高至6H,涂层的耐盐雾时间由100h提高到500h,涂层的阻抗值也由104Ω.cm2提高至106Ω.cm2。另外,通过扫描电镜观察了复合涂层的断面,发现涂层中纳米粒子分散均匀,并且粘接紧密,形成了较为致密的复合涂层。

  16. Iron-Based Amorphous Metals:The High Performance Corrosion Resistant Materials(HPCRM) Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J

    2007-07-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  17. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings

    Science.gov (United States)

    Jones, John Eric; Chen, Meng; Yu, Qingsong

    2015-01-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20–25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH3/O2 plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O-and N-contents on the surfaces were substantially increased after NH3/O2 plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH3/O2 plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electro-chemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream. PMID:24500866

  18. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings.

    Science.gov (United States)

    Eric Jones, John; Chen, Meng; Yu, Qingsong

    2014-10-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20-25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH₃/O₂ plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O- and N-contents on the surfaces were substantially increased after NH₃/O₂ plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH₃/O₂ plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream. © 2014 Wiley Periodicals, Inc.

  19. Anticorrosive Performance of Zinc Phosphate Coatings on Mild Steel Developed Using Galvanic Coupling

    Directory of Open Access Journals (Sweden)

    M. Arthanareeswari

    2013-01-01

    Full Text Available The anticorrosive performance of zinc phosphate coatings developed by galvanic coupling technique on mild steel substrates using the cathode materials such as titanium (Ti, copper (Cu, brass (BR, nickel (Ni, and stainless steel (SS is elucidated in this study. Thermal and chemical stability tests, immersion test in 3.5% NaCl, ARE salt droplet test, and salt spray test were carried out. The study reveals that the mild steel substrates phosphated under galvanically coupled condition showed better corrosion resistance than the one coated without coupling. The open circuit potential (OCP of phosphated mild steel panels in 3.5% NaCl was found to be a function of phosphate coating weight and porosity of the coating.

  20. Corrosion resistance of high-performance materials titanium, tantalum, zirconium

    CERN Document Server

    2012-01-01

    Corrosion resistance is the property of a material to resist corrosion attack in a particular aggressive environment. Although titanium, tantalum and zirconium are not noble metals, they are the best choice whenever high corrosion resistance is required. The exceptionally good corrosion resistance of these high–performance metals and their alloys results from the formation of a very stable, dense, highly adherent, and self–healing protective oxide film on the metal surface. This naturally occurring oxide layer prevents chemical attack of the underlying metal surface. This behavior also means, however, that high corrosion resistance can be expected only under neutral or oxidizing conditions. Under reducing conditions, a lower resistance must be reckoned with. Only very few inorganic and organic substances are able to attack titanium, tantalum or zirconium at ambient temperature. As the extraordinary corrosion resistance is coupled with an excellent formability and weldability these materials are very valua...

  1. Corrosion-resistant nickel-base alloys for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.W.; Hulsizer, W.R.

    1976-08-01

    Laboratory corrosion screening procedures used during the past ten years in developing nickel-base superalloys for gas turbine applications are described. Hot salt corrosion tests have included crucible and salt shower exposures. Reproducible techniques were established and alloy composition effects defined, leading to development of M313, IN-587, a IN-792. Correlations have been made with corrosion results in burner rigs, and engine experience confirming anticipated behavior is now becoming available. During this work a number of limitations of these accelerated laboratory tests were uncovered; these are discussed. Finally, brief descriptions of the states of development of alloy MA 755E (an oxide dispersion-strengthened superalloy) and IN-939 (a cast 23 percent chromium superalloy) are outlined as examples of advanced corrosion resistant, high strength materials of the future.

  2. FY 1998 annual report on the study on development of corrosion-resistant ceramic materials for garbage incinerators; 1998 nendo gomi shori shisetsuyo taishoku ceramics zairyo no kaihatsu ni kansuru kenkyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Described herein are the FY 1988 results of development of corrosion-resistant ceramic materials for garbage incinerators. Residue released when porcelain stocks are collected is selected as the inexpensive stock for SiO{sub 2}-Al{sub 2}O{sub 3}-based refractory materials. It is incorporated with carbon black and reduced at 1,200 to 1,500 degrees C in a nitrogen atmosphere. Synthesis of the target Si-Al-C-N-O-based compound succeeds in the presence of a solid catalyst, but it is a fine powder, and hence that of the massive compound fails. The commercial ceramic materials and new refractory materials, made on a trial basis, are evaluated for their resistance to corrosion using fry ashes collected from a commercial incinerator. These ashes are higher in melting point, more viscous, holding a larger quantity of attached slag and more corrosive than synthetic ashes. These materials are corroded acceleratedly as temperature increases to 1,200 degrees C or higher, more noted with the ceramic materials than with the refractory materials. Oxidation and melting characteristics of the molten slag affect corrosion of some materials. Use of the graphite-based material shall be limited to a section below the slag surface, where graphite is oxidized to a smaller extent. The MgO-based material is promising. The Al{sub 2}O{sub 3}-Cr{sub 2}O{sub 3}-based material is more promising than any other material developed in this study. Their bending strength before and after the corrosion test is measured at normal temperature to 1,700 degrees C, to investigate their deterioration by high temperature and corrosion. (NEDO)

  3. Corrosion resistance improvement of titanium base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Popa, Mihai V.; Vasilescu, Ecaterina; Drob, Paula; Vasilescu, Cora; Drob, Silviu I., E-mail: ec_vasilescu@yahoo.co [Institute of Physical Chemistry ' Ilie Murgulescu' , Bucharest (Romania); Mareci, Daniel [Technical University ' Gh. Asachi' , Iasi (Romania); Rosca, Julia C. Mirza [Las Palmas de Gran Canaria University, Tafira (Spain). Mechanical Engineering Dept.

    2010-07-01

    The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy. (author)

  4. Corrosion resistance improvement of titanium base alloys

    Directory of Open Access Journals (Sweden)

    Mihai V. Popa

    2010-01-01

    Full Text Available The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.

  5. Preparation of novel functional Mg/O/PCL/ZnO composite biomaterials and their corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Zhongxian; Tan, Cui; Xu, Lan; Yang, Na; Li, Qing, E-mail: liqingdswu@163.com

    2015-10-01

    Highlights: • Novel functional Mg/O/PCL/ZnO composite biomaterials were prepared. • The biomaterials were prepared by anodization treatment and dip-coating technique. • The composite biomaterials were smooth and with low porosity. • The prepared biomaterials have good corrosion resistance in SBF. • The composite biomaterials can release zinc ion to promote bone formation. - Abstract: In this study, novel and functional Mg/O/PCL/ZnO (magnesium/anodic film/poly(ε-caprolactone)/zinc oxide) composite biomaterials for enhancing the bioactivity and biocompatibility of the implant was prepared by using anodization treatment and dip-coating technique. The surface morphology, microstructure, adhesion strength and corrosion resistance of the composite biomaterials were investigated using scanning electron microscopy (SEM), adhesion measurements, electrochemical tests and immersion tests respectively. In addition, the biocompatible properties of Mg (magnesium), Mg/PCL (magnesium/poly(ε-caprolactone)) and Mg/O/PCL (magnesium/anodic film/poly(ε-caprolactone)) samples were also investigated. The results show that the Mg/O/PCL/ZnO composite biomaterials were with low porosity and with the ZnO powders dispersed in PCL uniformly. The adhesion tests suggested that Mg/O/PCL/ZnO composite biomaterials had better adhesion strength than that of Mg/PCL composite biomaterials obviously. Besides, an in vitro test for corrosion demonstrated that the Mg/O/PCL/ZnO composite biomaterials had good corrosion resistance and zinc ion was released obviously in SBF.

  6. [Corrosion resistance of casted titanium by compound treatments in the artificial saliva with different fluoride concentrations].

    Science.gov (United States)

    Wang, Xian-li; Guo, Tian-wen

    2012-09-01

    To study the corrosion resistance of casted titanium by plasma nitriding and TiN-coated compound treatments in the artificial saliva with different fluoride concentrations and to investigate whether compound treatments can increase the corrosion resistance of casted titanium. Potentiodynamic polarization technique was used to depict polarization curve and to measured the current density of corrosion (Icorr) and the electric potential of corrosion (Ecorr) of casted titanium (Group A) and casted titanium by compound treatments (Group B) in the artificial saliva with different fluoride concentrations. After electrochemical experiment, the microstructure was observed by scanning electron microscope (SEM). The Icorrs of Group A and B in the artificial saliva of different fluoride concentrations were (1530.23 ± 340.12), (2290.36 ± 320.10), (4130.52 ± 230.17) nA and (2.62 ± 0.64), (7.37 ± 3.59), (10.76 ± 6.05) nA, respectively. The Ecorrs were (-0.93 ± 0.10), (-0.89 ± 0.21), (-0.57 ± 0.09) V and (-0.21 ± 0.04), (-0.17 ± 0.03), (-0.22 ± 0.03) V, respectively.The Icorrs of Group B were significantly lower (P plasma nitriding and TiN-coated compound treatments can significantly increase the corrosion resistance of casted titanium.

  7. Corrosion resistant iron aluminides exhibiting improved mechanical properties and corrosion resistance

    Science.gov (United States)

    Liu, Chain T.; McKamey, Claudette G.; Tortorelli, Peter F.; David, Stan A.

    1994-01-01

    The specification discloses a corrosion-resistant intermetallic alloy comprising, in atomic percent, an FeAl iron aluminide containing from about 30 to about 40% aluminum alloyed with from about 0.01 to 0.4% zirconium and from 0.01 to about 0.8% boron. The alloy exhibits considerably improved room temperature ductility for enhanced usefulness in structural applications. The high temperature strength and fabricability is improved by alloying with molybdenum, carbon, chromium and vanadium.

  8. Electroless Plating of Ni-Fe-P Alloy and Corrosion Resistance of the Deposit

    Institute of Scientific and Technical Information of China (English)

    Senlin WANG

    2005-01-01

    Electroless Ni-Fe-P alloys in an alkaline bath were plated. Theeffects of deposition parameters on the plating rate and the coating composition were examined. The weight loss test and the anodic polarization measurement of the deposits in 3.5 wt pct NaCl solution (pH7.0) showed that the deposits with the mole ratio of NiSO4/FeSO4 being 0.07:0.03, pH8.0 and 7.5 possess better corrosion resistance than that of the other deposits and the Ni-Fe-P deposits did not form passive films in this environment. In 5.0 wt pct NaOH solution, the Ni-Fe-P deposits have better corrosion resistance and formed passive films.

  9. Studies on Wear and Corrosion Resistances of Carbon Nitride Thin Films on Ti Alloy

    Institute of Scientific and Technical Information of China (English)

    LiJin-chai; GuoHuai-xi; LuXlan-feng; ZhangZhi-hong; YeMing-sheng

    2003-01-01

    CNx/SiCN composite films were prepared on titanium ( Ti ) alloy substrates by Radio Frequency Plasma Enhanced Chemical Vapor Deposition ( RF-PECVD ). As a buffer layer, SiCN ensured the adhesion of the CNx thin films on Ti substrates. X-ray diffraction (XRD) measurement revealed that the composite films possessed α-C3N4 structure.The microhardness of the films was 48 to 50 GPa. In or der totest the characteristics of wear and corrosion resistances, we prepared Ti alloy samples with and without CNx/SiCN composite films. Also for strengthening the effect of wear and corrosion, the wear tests were carried out under high load (12 MPa) and in 0. 9% NaCl solution. Results of the wear tests and the corrosive electrochemical measurements showed that the samples coated with CNx films had excellent charac-teristics of wear and corrosion resistances compared with Ti alloy substrate samples.

  10. Studies on Wear and Corrosion Resistances of Carbon Nitride Thin Films on Ti Alloy

    Institute of Scientific and Technical Information of China (English)

    Li Jin-chai; Guo Huai-xi; Lu Xian-feng; Zhang Zhi-hong; Ye Ming-sheng

    2003-01-01

    CNx/SiCN composite films were prepared on titanium ( Ti ) alloy substrates by Radio Frequency Plasma Enhanced Chemical Vapor Deposition ( RF-PECVD ). As a buffer layer, SiCN ensured the adhesion of the CNx thin films on Ti substrates. X-ray diffraction (XRD) measurement revealed that the composite films possessed α-C3N4 structure.The microhardness of the films was 48 to 50 GPa. In order to test the characteristics of wear and corrosion resistances, we prepared Ti alloy samples with and without CNx/SiCN composite films. Also for strengthening the effect of wear and corrosion, the wear tests were carried out under high load (12 MPa) and in 0. 9% NaCl solution. Results of the wear tests and the corrosive electrochemical measurements showed that the samples coated with CNx films had excellent characteristics of wear and corrosion resistances compared with Ti alloy substrate samples.

  11. Study on the Structure and Corrosion-resistant Performance of Phosphate/Silicon Nitride Double Composite Coating on Magnesium Alloy%镁合金磷酸盐/氮化硅双层复合膜结构及耐蚀性能研究

    Institute of Scientific and Technical Information of China (English)

    宋辉; 赵明; 何广平; 冯伟

    2014-01-01

    Objective To solve the problems of traditional chemical conversion coatings on magnesium alloy such as large micro-cracks and poor corrosion resistance, a novel phosphate/ silicon nitride compound coating was prepared in this article. Methods First traditional magnesium phosphate conversion treatment was conducted, and then plasma enhanced chemical vapor deposition technology was used to deposit silicon nitride film layer. The morphology, element distribution, surface potential and polarization curve of the composite coating were analyzed, and compared with those of the phosphate conversion coating. Results Silicon nitride film layer could be selectively priorly deposited on the cracking positions of the phosphate conversion coating, and filled the cracks on the conversion coating layer, forming dense composite coating structure. The surface potential and corrosion potential of magne-sium alloy with composite coating structure were significantly higher than those of magnesium alloy treated with traditional phosphate conversion process. Conclusion After preparation of phosphate/ silicon nitride double composite coating on the surface of magnesi-um alloy, the corrosion resistance was significantly higher than that of the magnesium alloy treated with traditional phosphate con-version.%目的:针对传统镁合金化学转化膜裂纹尺寸大、耐腐蚀性差等问题,制备一种镁合金磷酸盐/氮化硅双层结构的抗腐蚀复合膜。方法先对镁合金进行传统磷酸盐转化处理,再运用等离子体增强化学气相沉积技术沉积氮化硅膜层,分析复合膜的形貌、元素分布、表面电位及极化曲线,并与磷酸盐转化膜进行对比。结果氮化硅膜层能在磷酸盐转化膜裂纹处选择性优先沉积,从而在相当程度上填补转化膜层的裂纹,形成致密的复合膜结构。具有复合膜结构的镁合金表面电位和腐蚀电位明显高于传统磷酸盐转化处理的镁合金。结论

  12. Durable Hybrid Coatings Annual Performance Report (2009)

    Science.gov (United States)

    2009-10-01

    York, 2002. 13. F. Massines, N. Gherardi, A. Fornelli, S. Martin , “Atmospheric pressure plasma deposition of thin films by Townsend dielectric...evaluating protective merit of coatings on metals,” Ind. Eng. Chem., vol. 40, p. 161, Jan. 1948. [7] B. L. Grisso, L. A. Martin , and D. J. Inman, “A...ASTM D5894 and the Development of Corrosion Resistant Coatings,” Paint & Coatings Industry, May, 1997, 76. 8. N. D. Cremer , Polymers Paint Colour

  13. Corrosion resistance of CrN thin films produced by dc magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ruden, A. [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales (Colombia); Laboratorio de Recubrimientos Duros y Aplicaciones Industriales–RDAI, Universidad del Valle, Calle 13 N° 100-00 Ciudadela Meléndez, Cali (Colombia); Departamento de matemáticas, Universidad Tecnológica de Pereira, Pereira (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales (Colombia); Paladines, A.U.; Sequeda, F. [Laboratorio de Recubrimientos Duros y Aplicaciones Industriales–RDAI, Universidad del Valle, Calle 13 N° 100-00 Ciudadela Meléndez, Cali (Colombia)

    2013-04-01

    In this study, the electrochemical behavior of chromium nitride (CrN) coatings deposited on two steel substrates, AISI 304 and AISI 1440, was investigated. The CrN coatings were prepared using a reactive d.c. magnetron sputtering deposition technique at two different pressures (P1 = 0.4 Pa and P2 = 4 Pa) with a mixture of N{sub 2}–Ar (1.5-10). The microstructure and crystallinity of the CrN coatings were investigated using X-ray diffraction. The aqueous corrosion behavior of the coatings was evaluated using two methods. The polarization resistance (Tafel curves) and electrochemical impedance spectra (EIS) in a saline (3.5% NaCl solution) environment were measured in terms of the open-circuit potentials and polarization resistance (R{sub p}). The results indicated that the CrN coatings present better corrosion resistance and R{sub p} values than do the uncoated steel substrates, especially for the coatings produced on the AISI 304 substrates, which exhibited a strong enhancement in the corrosion resistance. Furthermore, better behavior was observed for the coatings produced at lower pressures (0.4 Pa) than those grown at 4 Pa.

  14. Ion beam analysis, corrosion resistance and nanomechanical properties of TiAlCN/CNx multilayer grown by reactive magnetron sputtering

    Science.gov (United States)

    Alemón, B.; Flores, M.; Canto, C.; Andrade, E.; de Lucio, O. G.; Rocha, M. F.; Broitman, E.

    2014-07-01

    A novel TiAlCN/CNx multilayer coating, consisting of nine TiAlCN/CNx periods with a top layer 0.5 μm of CNx, was designed to enhance the corrosion resistance of CoCrMo biomedical alloy. The multilayers were deposited by dc and RF reactive magnetron sputtering from Ti0.5Al0.5 and C targets respectively in a N2/Ar plasma. The corrosion resistance and mechanical properties of the multilayer coatings were analyzed and compared to CoCrMo bulk alloy. Ion beam analysis (IBA) and X-ray diffraction tests were used to measure the element composition profiles and crystalline structure of the films. Corrosion resistance was evaluated by means of potentiodynamic polarization measurements using simulated body fluid (SBF) at typical body temperature and the nanomechanical properties of the multilayer evaluated by nanoindentation tests were analyzed and compared to CoCrMo bulk alloy. It was found that the multilayer hardness and the elastic recovery are higher than the substrate of CoCrMo. Furthermore the coated substrate shows a better general corrosion resistance than that of the CoCrMo alloy alone with no observation of pitting corrosion.

  15. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Santa Coloma, P., E-mail: patricia.santacoloma@tecnalia.com [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Izagirre, U.; Belaustegi, Y.; Jorcin, J.B.; Cano, F.J. [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Lapeña, N. [Boeing Research & Technology Europe, S.L.U., Avenida Sur del Aeropuerto de Barajas 38, Building 4 – 3rd Floor, E-28042 Madrid (Spain)

    2015-08-01

    Highlights: • Chromium-free conversion coatings for corrosion protection of aluminum alloys. • Salt spray and potentiodynamic sweep tests to study the corrosion behavior. • Local deposits on Cu-rich intermetallic particles enhanced corrosion resistance. • Surface characterization to relate bath's composition and corrosion resistance. • Best corrosion protection with conversion baths without titanium salts. - Abstract: Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an

  16. KSC lubricant testing program. [lubrication characteristics and corrosion resistance

    Science.gov (United States)

    Lockhart, B. J.; Bryan, C. J.

    1973-01-01

    A program was conducted to evaluate the performance of various lubricants in use and considered for use at Kennedy Space Center (KSC). The overall objectives of the program were to: (1) determine the lubrication characteristics and relative corrosion resistance of lubricants in use and proposed for use at KSC; (2) identify materials which may be equivalent to or better than KELF-90 and Krytox 240 AC greases; and (3) identify or develop an improved lubricating oil suitable for use in liquid oxygen (LOX) pumps at KSC. It was concluded that: (1) earth gel thickened greases are very poor corrosion preventive materials in the KSC environment; (2) Halocarbon 25-5S and Braycote 656 were suitable substiutes for KELF-90 and Krytox 240 AC respectively; and (3) none of the oils evaluated possessed the necessary inertness, lubricity, and corrosion prevention characteristics for the KSC LOX pumping systems in their present configuration.

  17. Fabrication of TiO2-strontium loaded CaSiO3/biopolymer coatings with enhanced biocompatibility and corrosion resistance by controlled release of minerals for improved orthopedic applications.

    Science.gov (United States)

    Raj, V; Raj, R Mohan; Sasireka, A; Priya, P

    2016-07-01

    Titanium dioxide (TiO2) arrays were fabricated on Ti alloy by anodization method. Synthesis of CaSiO3 (CS) and various concentrations (1X-5X) of Sr(2+) substitutions in CS coatings on TiO2 substrate was achieved through an electrophoretic deposition technique. Fast release of mineral ions from implant surface produce over dosage effect and it is a potential hazardous factor for osteoblasts. So, in order to prevent the fast release of minerals, biopolymer coating was applied above the composite coatings. The coatings were characterized by FTIR, XRD, FE-SEM and EDX techniques. The mechanical, anticorrosion, antimicrobial properties and biocompatibility of the coatings were evaluated. Studies on the mechanical properties indicate that the addition of Sr(2+) and biopolymer increase the hardness strength of the coatings. The metal ion release from the coatings was studied by ICP-AES. The electrochemical properties of the coatings were studied in Ringer's solution, in which CS-3X/Chi-PVP coating on TiO2 exhibits good anticorrosion property and high resistivity against Escherichia coli and Staphylococcus aureus compared to CS-3X coating on TiO2. In vitro cell experiments indicate that osteoblasts show good adhesion and high growth rates for CS-3X/Chi-PVP coated TiO2 substrate, indicating that the surface cytocompatibility of CS-3X/Chi-PVP coated TiO2 substrate is significantly improved by the controlled release of mineral ions. In conclusion, the surface modification of TiO2/CS-3X/Chi-PVP coated titanium is a potential candidate for implant coating.

  18. Wear behavior and corrosion resistance of NiCrAl/TiC composite coating on aluminum alloy by laser cladding%铝合金表面激光熔覆NiCrAl/TiC复合涂层的磨损行为和耐蚀性能

    Institute of Scientific and Technical Information of China (English)

    李琦; 刘洪喜; 张晓伟; 姚爽; 张旭

    2014-01-01

    为提高铝合金的摩擦磨损和耐蚀性能,在A390铝合金基体上通过激光熔覆制备NiCrAl/TiC复合涂层。采用XRD和EDS分析了涂层的物相组成,结合SEM观察了涂层的微观组织,运用摩擦磨损试验机和电化学工作站测试了涂层的摩擦磨损和耐腐蚀性能。结果表明:复合涂层主要物相为AlNi、Al 3 Ni 2、TiC ,同时含有少量的Cr 13 Ni 5 Si 2、Cu 9 Al 4和α(Al)。涂层自下至上分别为短棒状树枝晶、胞状晶、柱状树枝晶和等轴晶。相同磨损条件下,A390基体发生了严重的磨粒磨损和剥层磨损,而激光熔覆涂层只产生了轻微的磨粒磨损,熔覆层的相对耐磨性为3.16。在3.5%NaCl溶液中的极化曲线和电化学阻抗谱(EIS)显示:熔覆层自腐蚀电位较A390基体的正移,腐蚀电流密度减小;熔覆层呈单容抗特性,而A390基体在高频区表现为容抗特性,在中低频区则为感抗特性。在Bote图中,低频区熔覆层对应的相位角和中低频段熔覆层的阻抗模值均大于A390基体的,表明熔覆层的耐蚀性远高于A390基体的。熔覆层的腐蚀形貌为局部点蚀,A390基体的腐蚀形貌为晶间腐蚀和剥蚀。%In order to improve the frictional wear behavior and corrosion resistance of aluminum alloy, NiCrAl/TiC composite coating was fabricated on A390 aluminum alloy by laser cladding. The phase constitution, microstructure, frictional wear behavior and corrosion resistance of the composite coating were analyzed using X-ray diffraction (XRD), energy dispersive spectrum (EDS), scanning electron microscope (SEM), friction and wear testing machine and electrochemical workstation. The results show that the coating is mainly composed of AlNi, Al 3 Ni 2 and TiC phases, and a small amount of Cr13Ni5Si2, Cu9Al4 and α(Al) phases. The microstructures of the coating from the bottom to top are dendrite crystal, cellular crystal, columnar dendrite crystal and equiaxed

  19. A new method to improve the corrosion resistance of titanium for hydrometallurgical applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing, E-mail: jing.liu@alumni.ubc.ca; Alfantazi, Akram; Asselin, Edouard

    2015-03-30

    Highlights: • A new method to fabricate TiO{sub 2} films on Ti by chemical oxidation with H{sub 2}O{sub 2}. • The addition of SO{sub 4}{sup 2−} ions in H{sub 2}O{sub 2} solutions promoted the formation of anatase. • The addition of of Cl{sup −} ions in H{sub 2}O{sub 2} solutions favored the formation of rutile. • 2 M H{sub 2}O{sub 2}/0.1 M HCl solution leads to TiO{sub 2} films with the highest corrosion resistance. - Abstract: The main objective of the present work was to develop a method to fabricate titanium oxide films with high corrosion resistance by controlled chemical oxidation with H{sub 2}O{sub 2} solutions at 90 °C. The prepared chemically oxidized films (COFs) were characterized by X-ray diffraction (XRD) measurements and found to be a mixture of anatase and rutile or pure rutile, depending mainly on the presence of Cl{sup −} and SO{sub 4}{sup 2−} in H{sub 2}O{sub 2} solutions. XRD results indicated that the addition of SO{sub 4}{sup 2−} ions promoted the formation of anatase; while the addition of Cl{sup −} ions favored the formation of rutile. Linear polarization resistance and electrochemical impedance spectroscopy measurements were used to evaluate the corrosion resistance of the as grown COFs for hydrometallurgical applications. Results verified that chemical oxidation with H{sub 2}O{sub 2} solutions is capable of improving the corrosion resistance of Ti for hydrometallurgical applications. Chemical oxidation with 2 M H{sub 2}O{sub 2}/0.1 M HCl solution led to the best improvement of the corrosion resistance of Ti.

  20. Development of corrosion testing equipment under heat transfer and irradiation conditions to evaluate corrosion resistance of materials used in acid recovery evaporator. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Motooka, Takafumi; Numata, Masami; Kiuchi, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-01-01

    We have been evaluated the safety for corrosion of various metals applied to acid recovery evaporators by the mock-up tests using small scaled equipment and the reference tests in laboratories with small specimens. These tests have been conducted under-radioactive environment. The environment in practical reprocessing plants has many radioactive species. Therefore, the effect of irradiation on corrosion should be evaluated in detail. In this study, we have developed the corrosion testing equipment, which is employed to simulate environments in the acid recovery evaporators. This report describes the specification of corrosion testing equipment and the results of primary, reference and hot tests. Using the equipment, the corrosion test under heat transfer and irradiation conditions have been carried out for 930 hours in safety. It is expectable that useful corrosion test data in radioactive environment are accumulated with this equipment in future, and help the adequate choice of corrosion test condition in laboratories. (author)

  1. Composite plasma electrolytic oxidation to improve the thermal radiation performance and corrosion resistance on an Al substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghyun [Department of Materials Science and Engineering, Pusan National University, Busan 46241 (Korea, Republic of); Sung, Dahye [Department of Materials Science and Engineering, Pusan National University, Busan 46241 (Korea, Republic of); Korea Institute of Industrial Technology (KITECH), Busan 46742 (Korea, Republic of); Lee, Junghoon [Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Kim, Yonghwan [Korea Institute of Industrial Technology (KITECH), Busan 46742 (Korea, Republic of); Chung, Wonsub, E-mail: wschung1@pusan.ac.kr [Department of Materials Science and Engineering, Pusan National University, Busan 46241 (Korea, Republic of)

    2015-12-01

    Highlights: • Composite plasma electrolytic oxidation was performed using dispersed CuO particles in convectional PEO electrolyte. • Thermal radiation performance and corrosion resistance were examined by FT-IR spectroscopy and electrochemical methods, respectively. • Deposited copper oxide on the surface of the Al substrate was enhanced the corrosion resistance and the emissivity compared with the conventional PEO. - Abstract: A composite plasma electrolytic oxidation (PEO) was performed for enhancing the thermal radiation performance and corrosion resistance on an Al alloy by dispersing cupric oxide (CuO) particles in a conventional PEO electrolyte. Cu-based oxides (CuO and Cu{sub 2}O) formed by composite PEO increased the emissivity of the substrate to 0.892, and made the surface being dark color, similar to a black body, i.e., an ideal radiator. In addition, the corrosion resistance was analyzed using potentio-dynamic polarization and electrochemical impedance spectroscopy tests in 3.5 wt.% NaCl aqueous solution. An optimum condition of 10 ampere per square decimeter (ASD) current density and 30 min processing time produced appropriate surface morphologies and coating thicknesses, as well as dense Cu- and Al-based oxides that constituted the coating layers.

  2. Dross formation mechanism and development of wear resistant scraper in aluminum-silicon-zinc coating bath

    Science.gov (United States)

    Varadarajan, Ashok

    Steel sheet manufacturers across the globe, face a huge loss of production due to the molten metal corrosion of the pot hardware in continuous galvanizing lines. The development of steel sheet with corrosion resistant for more than 30 years using a high aluminum content zinc coating has made an impact in the construction industry. High aluminum content bath (55 wt%) causes severe corrosion of the pot hardware and causes huge repair and replacement cost with frequent stoppages. One of the main reasons for stoppages is the severe dross formation over the submerged hardware (sink roll), which results in poor coating layer over the steel sheet. Complete understanding of the mechanism of the dross formation over the submerged hardware has not yet been completely achieved. In order to establish the dross formation mechanism, an array of tests was performed. Initial inhibition of Al attack by the silicon rich layer and further formation of Fe2Al 5 layer hindering the diffusion of the Al into the substrate were observed. Also, the effect of the hydrodynamic motion of the bathe in the dross formation mechanism was established. A series of tests for efficient removal of the dross formed over the sink roll using high hardness, corrosion resistant materials were conducted at 600°C. After these tests, an efficient scraping process with a potential for energy and cost savings was developed with a better scraper material, resulting in a reduction of 75% in line stoppages.

  3. Effect of organic additives on the corrosion resistance properties of electroless nickel deposits

    Energy Technology Data Exchange (ETDEWEB)

    Liu Haiping [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Li Ning [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: lininghit@163.com; Bi Sifu; Li Deyu; Zou Zhongli [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2008-02-29

    The effects of two organic additives, 3-S isothiuronium propyl sulfonate (UPS) and thiourea (TU) on the properties of electroless nickel (EN) deposit were investigated. The properties of EN deposits were examined by electrochemical impedance spectroscopy (EIS) and nitric acid corrosion test in combination with scanning electron microscope, X-ray fluorescence spectrometer, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy analysis. The results show that TU and UPS had different influences on the morphology of EN deposits. The two additives decreased phosphorus content and increased sulfur content in the EN deposit. XRD studies indicated that addition TU or UPS could enhance the crystallization of EN deposits. EIS studies demonstrated that the EN coating with TU or UPS has a lower corrosion resistance. However, the nitric acid test indicated that the corrosion resistance of EN deposit could be improved by adding UPS to EN bath. A cause for understanding the increase of the nitric acid corrosion resistance with UPS was indicated based on the above experiments.

  4. 金属基掺杂水滑石自修复型溶胶-凝胶膜层制备及机理研究%Preparation of metal matrix-containing hydrotalcite sol-gel self-healing coating and its corrosion resistance

    Institute of Scientific and Technical Information of China (English)

    李龙芹; 王韶音; 李青

    2013-01-01

    设计并实现了一种自修复溶胶-凝胶膜层。利用膜层中添加的水滑石颗粒的阴离子交换作用实现了自修复功能,并对其修复机理进行设想和论证。长期浸泡测试结果表明,膜层中水滑石颗粒的最佳添加量为10%(质量分数)。通过 X 射线衍射和扫描电子显微镜观察验证设想。此种膜层的自修复功能是通过膜层中添加的水滑石颗粒的阴离子交换作用实现的。%In this work,hydrotalcite (HT)powder was prepared by the classical co-precipitation method using magnesium and aluminum nitrates as precursors.Different weight percentages (5%,10% and 15wt%)of hydrotalcite were added to sols.The sol-gel coatings were deposited by spin-coating method on AZ91D magnesi-um alloy substrate.Scanning electronmicroscopy (SEM)revealed the distribution of the agglomerates.The cor-rosion performance was evaluated by electrochemical impedance spectroscopy (EIS).The results showed a marked improvement of the corrosion resistance on the sol-gel/magnesium system when hydrotalcite was added to the sol-gel coating.And the healing effects may be due to the anion exchange capacity of hydrotalcite.

  5. 铝合金表面无铬磷酸盐稀土转化膜的成膜机理及耐蚀性研究%Study on the Film Forming Mechanism and Corrosion Resistance of Non-chromium Phosphate Rare Earth Conversion Coating on Al Alloy

    Institute of Scientific and Technical Information of China (English)

    李红玲; 付小宁

    2011-01-01

    从磷化成膜过程的电化学行为和稀土对磷化膜生长过程的影响两方面,对6061铝合金表面一种不合铬的复合磷酸盐膜的成膜机理进行了研究,并利用极化曲线对其耐蚀性进行了初步探究.结果表明:磷化成膜过程主要分为4个阶段,即基体侵蚀期、晶体初步形成期、基体再溶解和晶体形成期、基体溶解和晶体生长达到平衡期;稀土化合物的引入,提高了磷化膜的耐蚀性,缩短了磷化时间,同时也促进了反应离子在金属表面的吸附,形成多个活性点,有利于新的结晶均匀增长,极大改善了磷化膜的表面质量.%The electrochemical behavior of film process and the effect of rare earth on a phosphating film's growth process were studied. The phosphating film was formed on 6061 aluminium alloy surface, it was non-chromium phosphate rare earth conv ersion coating. At the same time it's corrosion resistance was explored preliminarily by making use of the polarization curve. The results show that this bonderizing process has mainly four stages: this bonderizing process has mainly the basement corroding scheduled time, crystal first formation scheduled time, basement dissolve again and crystal formation scheduled time, basement dissolve and crystal growth equilibration scheduled time. With the help of rare earth, the corrosion-resistance of the bonderizing film is raised, and phosphating time is shortened, at the same time the reaction ion being in metal outside adsorption is boosted and many active point was formed. This is beneficial to the new crystal's incresament homogeneously. Therefore the bonderizing film surface mass is improved greatly.

  6. SiO2微球负载BTA缓蚀剂型自修复耐蚀涂层的制备及性能研究%Preparation and Properties of SiO2 Microspheres Loading with BTA Inhibitor Type Self-healing Corrosion-resistant Coating

    Institute of Scientific and Technical Information of China (English)

    董培林

    2016-01-01

    目的:研究由负载缓蚀剂多孔SiO2微球和7537聚氨酯( PU)所制备的自修复涂层的耐蚀性能和防腐机理。方法利用负压-浸渍法将苯并三氮唑( BTA )负载到 SiO2微球中,利用 X 射线衍射( XRD)、扫描电子显微镜( SEM)、热重分析( TGA)分别对SiO2的形貌与BTA负载含量进行分析检测,并利用划痕浸泡试验、电化学极化曲线及交流阻抗技术,研究SiO2、BTA以及负载有BTA的多孔SiO2微球( SiO2/BTA)对涂层耐蚀性能的影响。结果 SEM图像分析表明SiO2微球粒径约为1μm,热重分析试验表明BTA的负载含量为32.38%(质量分数)。划痕试验表明在浸泡过程中除了PU+SiO2/BTA coating试样外,其他试样的划痕处都出现了宏观腐蚀现象。电化学极化曲线和交流阻抗结果表明PU+SiO2/BTA coating试样始终具有最低的电流密度和较高的阻抗值。结论涂层中的多孔 SiO2一方面可以储存BTA,当该涂层产生缺陷时,SiO2中的BTA被释放出来并在基体的缺陷处吸附成膜,从而使该涂层对微观缺陷具有一定的自修复功能;另一方面提高了涂层的致密性;两方面协同作用使PU+SiO2/BTA coating试样具有最好的耐蚀性能和一定的自修复功能。%ABSTRACT:Objective In order to study the corrosion resistance and anti-corrosion mechanism of the self-healing coating pre-pared by adding corrosion inhibitors loaded mesoporous SiO2 microspheres into 7537 polyurethane. Methods The benzotriazole ( BTA) was loaded into SiO2 microspheres by negative pressure-impregnation method. The morphology and crystal structure of SiO2 microspheres and loading content of BTA were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric analysis ( TGA) . The effects of SiO2 , BTA, SiO2-BTA addition on the corrosion resistance of the coatings were studied by potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy ( EIS

  7. Structure and corrosion resistance of Zn-Ni alloy coatings electrodeposited from alkaline binary complexes bath%二元配合物中电镀锌镍合金的结构与抗腐蚀性

    Institute of Scientific and Technical Information of China (English)

    张秀; 龙晋明; 裴和中; 由劲博; 黄攀

    2015-01-01

    corrosion property. At last, the plating displays its highest corrosion resistance when the current density reaches 2 A/dm2 .

  8. Corrosion Resistance of Sintered NdFeB Permanent Magnet With Ni-P/TiO2 Composite Film

    Institute of Scientific and Technical Information of China (English)

    SONG Lai-zhou; YANG Zhi-yong

    2009-01-01

    The Ni-P/TiO2 composite film on sintered NdFeB permanent magnet was investigated by X-ray diffraction (XRD), environmental scanning electron microscopy (ESEM), and energy dispersive X-ray spectrometer (EDX).The corrosion resistance of Ni-P/TiO2 film coated on NdFeB magnet, in 0. 5 mol/L NaCl solution, was studied by potentiodynamic polarization, salt spray test and electrochemical impedance spectroscopy (EIS) techniques. The selfcorrosion current density (icorr) and the polarization resistance (Rp) of Ni-P/TiO2 film are 0. 22 μA/cm2 (about 14% of that of Ni-P coating), and 120 kΩ·cm2 (about 2 times of that of Ni-P coating), respectively. The anti-salt spray time of Ni-P/TiO2 film is about 2.5 times of that of the Ni-P coating. The results indicate that Ni-P/TiO2 film has a better corrosion resistance than Ni-P coating, and the composite film increases the corrosion resistance of NdFeB magnet markedly.

  9. Effect Of Heat Treatment On The Corrosion Resistance Of Aluminized Steel Strips

    Directory of Open Access Journals (Sweden)

    Żaba K.

    2015-09-01

    Full Text Available The paper presents the results of corrosion resistance of heat treated aluminized steel strips. Products coated by Al-10Si alloy are used among others in a manufacturing process of welded pipes as the elements of the car exhaust systems, working in high temperatures and different environments (eg. wet, salty. The strips and tubes high performance requirements are applied to stability, thickness and roughness of Al-Si coating, adhesion and corrosion resistance. Tubes working in elements of exhaust systems in a wide range of temperatures are exposed to the effects of many aggressive factors, such as salty snow mud. It was therefore decided to carry out research on the impact of corrosion on the environmental influence on heat treated aluminized steel strips. The heat treatment was carried out temperatures in the range 250-700°C for 30, 180, 1440 minutes. Then the coatings was subjected to cyclic impact of snow mud. Total duration of treatment was 12 months and it was divided into three stages of four months and at the end of each stage was made the assessment of factor of corrosion. The results are presented in the form of macroscopic, microscopic (using a scanning electron microscope observations and the degree and type of rusty coating.

  10. Improving the corrosion resistance of Mg–4.0Zn–0.2Ca alloy by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Y.H. [The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zhang, B.P., E-mail: zhangbp@sxicc.ac.cn [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, C.X. [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Geng, L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-12-01

    In this paper, corrosion resistance of the Mg–4.0Zn–0.2Ca alloy was modified by micro-arc oxidation (MAO) process. The microstructure and phase constituents of MAO layer were characterized by SEM, XRD and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of MAO treated Mg–4.0Zn–0.2Ca alloy in the simulated body fluid were characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure results indicated that a kind of ceramic film was composed by MgO and MgF{sub 2} was formed on the surface of Mg–4.0Zn–0.2Ca alloy after MAO treatment. The electrochemical test reveals that the corrosion resistance of MAO treated samples increase 1 order of magnitude. The mechanical intensity test showed that the MAO treated samples has suitable mechanical properties. - Highlights: • Ceramic layer which is composited by MgO and MgF{sub 2} is prepared to improve the corrosion resistance of Mg–4.0Zn–0.2Ca alloy. • MAO treatment does not affect the mechanical properties of the Mg–4.0Zn–0.2Ca alloy. • After 30-day immersion in SBF, the mechanical properties of MAO coated samples are still enough for bone fixed.

  11. New Low-Sn Zr Cladding Alloys with Excellent Autoclave Corrosion Resistance and High Strength

    Directory of Open Access Journals (Sweden)

    Ruiqian Zhang

    2017-04-01

    Full Text Available It is expected that low-Sn Zr alloys are a good candidate to improve the corrosion resistance of Zr cladding alloys in nuclear reactors, presenting excellent corrosion resistance and high strength. The present work developed a new alloy series of Zr-0.25Sn-0.36Fe-0.11Cr-xNb (x = 0.4~1.2 wt % to investigate the effect of Nb on autoclave corrosion resistance. Alloy ingots were prepared by non-consumable arc-melting, solid-solutioned, and then rolled into thin plates with a thickness of 0.7 mm. It was found that the designed low-Sn Zr alloys exhibit excellent corrosion resistances in three out of pile autoclave environments (distilled water at 633 K/18.6 MPa, 70 ppm LiOH solution at 633 K/18.6 MPa, and superheated water steam at 673 K/10.3 MPa, as demonstrated by the fact of the Zr-0.25Sn-0.36Fe-0.11Cr-0.6Nb alloy shows a corrosion weight gain ΔG = 46.3 mg/dm2 and a tensile strength of σUTS = 461 MPa following 100 days of exposure in water steam. The strength of the low-Sn Zr alloy with a higher Nb content (x = 1.2 wt % is enhanced up to 499 MPa, comparable to that of the reference high-Sn N36 alloy (Zr-1.0Sn-1.0Nb-0.25Fe, wt %. Although the strength improvement is at a slight expense of corrosion resistance with the increase of Nb, the corrosion resistance of the high-Nb alloy with x = 1.2 (ΔG = 90.4 mg/dm2 for 100-day exposure in the water steam is still better than that of N36 (ΔG = 103.4 mg/dm2.

  12. A STUDY ON THE CORROSION RESISTANCE OF BRONZES COVERED WITH ARTIFICIAL PATINA

    Directory of Open Access Journals (Sweden)

    Julieta Daniela SABĂU (CHELARU

    2011-06-01

    Full Text Available In recent years, due to increased air pollution, bronze objects exposed in urban areas suffer continuous degradation. Therefore, it is important to find efficient methods to protect them against corrosion. The present work aims to investigate the corrosion resistance of various artificial patina currently used in bronze sculpture. Once formed, the patina is relative stable and acts as a protective coating of the bronze object under many exposure conditions. The protective effect of different artificial patinas was comparatively investigated by electrochemical and non-electrochemical methods.

  13. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity

    Science.gov (United States)

    Wang, Guoyong; Liu, Shuai; Wei, Sufeng; Liu, Yan; Lian, Jianshe; Jiang, Qing

    2016-02-01

    Practical application of superhydrophobic surfaces is limited by the fragility of nanoscale asperities. Combining chemical etching and anodization, microscale pits and nanoscale pores, instead of the micro and nano protrusions on traditional superhydrophobic surfaces mimicking Lutos leaves, were fabricated on commercially pure aluminum surfaces. After modified by FDTS, the surfaces were superhydrophobic and self-cleaning. The ultrahigh hardness and electrochemical stability of Al2O3 coating endowed the surface excellent mechanical durability and good corrosion resistance. Because the method is scalable, it may find practical application on body panels of automobiles and aircrafts and so on.

  14. Corrosion resistance and its mechanism of Ni-Cu-P coating and 316L stainless steel in hot hydrochloric acid solution%Ni-Cu-P镀层和316L不锈钢在热盐酸溶液中的耐蚀性及机制

    Institute of Scientific and Technical Information of China (English)

    薛亚军

    2013-01-01

    Effect of temperature and concentration on the corrosion behavior of Ni-Cu-P coating and 316L stainless steel was studied by mass loss method.The results show that the corrosion resistance of Ni-Cu-P coating is better than that of 316L stainless steel in hot hydrochloric acid solution.The effect of hydrochloric acid concentration on the corrosive rate of 316L stainless steel is greater than that of Ni-Cu-Pcoating.The corrosive rates of 316L stainless steel and Ni-Cu-P coating increase 2.7 and 0.6 times respectively while increasing hydrochloric acid concentration from 5% to 20%.For the Ni-Cu-P coating,the uniform corrosion occurs in the hydrochloric acid solution.However,the selective corrosion mechanism is found for 316L stainless steel,and the higher temperature and concentration of corrosion medium,the more serious selective corrosion.%采用质量损失法研究了温度和浓度对化学镀Ni-Cu-P镀层和316L不锈钢在盐酸溶液中的腐蚀行为.结果表明,在高温盐酸溶液中,Ni-Cu-P镀层的耐蚀性优于316L不锈钢,盐酸浓度对316L不锈钢腐蚀速率的影响大于Ni-Cu-P镀层,盐酸浓度由5%升高到20%,316L不锈钢和Ni-Cu-P镀层的腐蚀速率分别增大了2.7倍和0.6倍;在盐酸溶液中,Ni-Cu-P镀层发生均匀腐蚀,316L不锈钢发生选择性腐蚀,且温度和浓度越高,选择性腐蚀越严重.

  15. 等离子喷涂镍基可磨耗封严涂层抗腐蚀及耐磨性能分析%Corrosion Resistance and Anti-wear Property of Nickel Based Abradable Sealing Coating Deposited by Plasma Spraying

    Institute of Scientific and Technical Information of China (English)

    于方丽; 白宇; 吴秀英; 王海军; 吴九汇

    2016-01-01

    High-efficiency supersonic atmospheric plasma spraying was used to fabricate Ni-C and NiCrAl-BN abradable seal coatings. The erosion wear, corrosion resistance and wear resistance of plasma-sprayed coatings were comparatively studied.Experimental results showed that the libricating phases were homogeneously distributed in the as-sprayed coatings while their average size of the coating was much fine compared with Ni-C coating, and the former also showed higher surface hardness than the latter. Meanwhile, it was found that the erosive mass loss increased with the increase of impingement angle from 30° to 90° and the relative erosion rate of NiCrAl-BN coating was only a half of that of Ni-C coating. Due to the formation of corrosion product around the flake graphite, the corrosion resistance of NiCrAl-BN coating was better than Ni-C coating in dilute hydrochloric acid (1vol%). However, the hydrochloric acid could permeate the NiCrAl-BN coating through the pores, which resulted in the localized corrosion of metal phases. In addition, we also observed that the friction coefficient of NiCrAl-BN coating significantly decreased from room temperature to 400℃ owing to the formation of large-scale self-lubricating film that resulted from the improvement of plasticity and fluidity of BN.%采用高效能超音速等离子喷涂沉积Ni-C及NiCrAl-BN可磨耗封严涂层,对比研究两种涂层的抗冲蚀磨损、耐腐蚀及摩擦磨损性能。结果表明:两种涂层中的润滑相均匀分布在金属连续相之中,但与 Ni-C 涂层相比, NiCrAl-BN涂层中的润滑相尺寸较为细小,表面硬度较高。当冲蚀角度由30°增加到90°后,两种涂层冲蚀磨损失重量明显提高。NiCrAl-BN涂层的相对冲蚀速率约为Ni-C涂层的50%,表明NiCrAl-BN涂层具有较为优良的抗冲蚀性能。Ni-C 涂层在稀盐酸中(1vol%)发生了明显的电化学腐蚀,在石墨片周围容易形成腐蚀产物;酸液会沿NiCrAl-BN 涂层

  16. Pulse electrodeposited nickel using sulphamate electrolyte for hardness and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Sivasakthi, P.; Sekar, R.; Bapu, G.N.K.Ramesh, E-mail: bapu2657@yahoo.com

    2015-10-15

    Highlights: • Nickel deposits from sulphamate solutions using pulse method are prepared. • Effect of duty cycle and frequency are studied. • XRD, SEM and AFM of the nickel deposits are characterized. • Corrosion characteristics of the nickel deposit are reported. - Abstract: Nickel deposits have been obtained on mild steel substrate by pulse current (PC) electrodeposition method using nickel sulphamate electrolyte. Micro hardness values increased with decreasing duty cycle and pulse frequency. X-ray diffraction studies revealed that (2 0 0) plane was predominant and the nickel deposit obtained at low duty cycle and low frequency has the smallest grain size. The surface morphology of the coatings was explored by scanning electron microscopy (SEM) and atomic force microscopy. These studies showed that the microstructure of the nickel coatings changed from pyramidal structure to homogeneous structure with increasing duty cycle and pulse frequencies. The corrosion resistance of coatings was evaluated by potentiodynamic polarization and electrochemical impedance studies in 3.5 wt% sodium chloride (NaCl) solutions. An enhancement of the corrosion resistance, charge-transfer resistance and wear resistance has been obtained at low duty cycle and low frequencies.

  17. Corrosion resistance of nickel and nickel alloys. (Latest citations from Information Services in Mechanical Engineering database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The bibliography contains citations concerning the corrosion resistance of nickel and nickel alloys used in electrical and structural materials and chemical processes. Topics include susceptibility of nickel to high temperature sulfidation, normal exposure to saline and other high chloride environments, pitting corrosion, and metal coatings. Special cases of corrosion of weld-filler metal combinations are also included. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. Optimization of the deposition process of corrosion resistant Stellite 6 coatings produced by laser cladding; Optimizacion del proceso de aporte de recubrimientos anticorrosion de Stellite 6 producidos mediante plaqueado laser

    Energy Technology Data Exchange (ETDEWEB)

    Vicario, I.; Soriano, C.; Sanz, C.; Bayon, R.; Leunda, J.

    2009-07-01

    Laser cladding is one of the most efficient surface treatment technologies in the industry. It uses a laser heat source to deposit a thin layer of a desired material on a moving substrate, whose properties have to be improved, achieving a metallurgical bonding between them with low heat affected zone and low dilution, compared to other conventional technologies such as PTA, TIG welding or thermal Spraying. In this sense, it is remarkable that there are 3 main application fields for laser cladding technology: restoration of refurbishment of damaged parts, surface coating against corrosion or wear, and rapid proto typing. the present work described a study of the optimization of the laser cladding of Co based coatings (Diamalloy 4060NS) on medium carbon steel C45 (AISI 1945). After laser treatment, the surface of the substrate materials is improved in terms of resistance against corrosion; this confirmed in the analysis performed afterwards. it is also shown that the corrosion barrier properties have direct correlation with the laser cladding variables. (Author) 10 refs.

  19. Qualification of Indigenously Developed Special Coatings for Aero-Engine Components

    Directory of Open Access Journals (Sweden)

    V. Sambasiva Rao

    1999-10-01

    that these coatings are comparable to the imported coatings.Documentation of satisfactory performance of the components coated with indigenously developed coatingsthrough successful engine tests and limited-service evaluation is also highlighted. In addition to the substitutionof the coatings recommended by the principal designers with those developed indigenously, a few coatings,such as polyimide coating for corrosion resistance and ceramic paint for thermal resistance solely appliedon various aero-engine components were successfully evaluated using above mentioned approach.

  20. Cytotoxicity study of plasma-sprayed hydroxyapatite coating on high nitrogen austenitic stainless steels.

    Science.gov (United States)

    Ossa, C P O; Rogero, S O; Tschiptschin, A P

    2006-11-01

    Stainless steel has been frequently used for temporary implants but its use as permanent implants is restricted due to its low pitting corrosion resistance. Nitrogen additions to these steels improve both mechanical properties and corrosion resistance, particularly the pitting and crevice corrosion resistance. Many reports concerning allergic reactions caused by nickel led to the development of nickel free stainless steel; it has excellent mechanical properties and very high corrosion resistance. On the other hand, stainless steels are biologically tolerated and no chemical bonds are formed between the steel and the bone tissue. Hydroxyapatite coatings deposited on stainless steels improve osseointegration, due their capacity to form chemical bonds (bioactive fixation) with the bone tissue. In this work hydroxyapatite coatings were plasma-sprayed on three austenitic stainless steels: ASTM-F138, ASTM-F1586 and the nickel-free Böhler-P558. The coatings were analyzed by SEM and XDR. The cytotoxicity of the coatings/steels was studied using the neutral red uptake method by quantitative evaluation of cell viability. The three uncoated stainless steels and the hydroxyapatite coated Böhler-P558 did not have any toxic effect on the cell culture. The hydroxyapatite coated ASTM-F138 and ASTM-F1586 stainless steels presented cytotoxicity indexes (IC50%) lower than 50% and high nickel contents in the extracts.

  1. Influence of nano-CeO2 on the structure and corrosion resistance property of Pb-WC-CeO2 composite coating%纳米CeO2对Pb-WC-CeO2复合镀层结构及耐腐蚀性的影响

    Institute of Scientific and Technical Information of China (English)

    杜重麟

    2014-01-01

    By analyzing the cathodic polarization curves,AC impedance spectroscopy,Tafel curves,surface morphology,EDS curves, and the influence of CeO2 composition on the structure and corrosion resistance property of Pb-WC-CeO2 composite coating was studied. The results show that:the addition of CeO2 can improve the cathodic polarization and promote the co-deposition of WC ef-fectively. Besides,we can obtain coating with smaller crystal uniformer surface and better binding force by adding CeO2. When the CeO2 composition in bath is 40 g·L-1 the surface micromorphology of the coating is in best properties,and the mass percentage of Ce and W are 8. 75wt%,3. 18wt%,respectively. However,the relationship between the mass percentage of the two elements and CeO2 composition in bath is non-linearity.%通过对阴极极化曲线、交流阻抗测试技术和塔菲尔曲线的测量,以及镀层微观形貌和能谱图的分析,考察了在电解液中添加不同浓度的纳米CeO2对Pb-WC-CeO2复合镀层微观结构和耐腐蚀性能的影响。结果表明:CeO2的加入,可增大阴极极化,有效促进WC的共沉积,使镀层晶粒更细,表面更均匀平整,有良好的结合力;当其浓度为40 g·L-1时,镀层表面微观形貌最均匀致密,平整有序,有最好的耐蚀性能,镀层中Ce和W含量达到最大值8.75wt%和3.18%,但W和Ce元素的含量与溶液中CeO2的浓度并不完全呈线性变化。

  2. Q235与Zn-Al涂层的耐蚀性及退化过程研究%Study on corrosion resistance and degradation processes of Q 235 and Zn-Al coatings

    Institute of Scientific and Technical Information of China (English)

    王毅; 任玉珊; 雷凯; 魏述和

    2014-01-01

    既有水工钢闸门的主要防腐方法是在钢基体上热喷涂金属涂层,本试验针对Q 235裸钢、Z n -15%Al热喷涂涂层在3.5% NaCl溶液中的腐蚀行为进行对比研究,并分析各自的腐蚀机理。结果表明:裸钢的腐蚀产物(FeOO H和Fe3 O4)随浸泡时间的增加而增厚;Zn-15% Al涂层的腐蚀产物(锌和铝的氧化物及氢氧化物)具有自封闭性,保护基体,减缓腐蚀。裸钢与Zn-Al涂层在快速腐蚀试验中的腐蚀退化过程均呈非线性规律,与自然环境下钢闸门构件锈蚀退化过程相符。%T he main anticorrosive method of existing on hydraulic steel gates is thermal spray metal coat‐ings .In this experiment ,the corrosion behaviors of the bare steel and the Zn‐15% Al thermal spray coating in 3 .5% NaCl solution are investigated ,each corrosion mechanism is analyzed .The results show that the corrosion products (FeOOH and Fe3 O4 ) of the bare steel increases with the increasing of the immersion time .The corrosion products (oxides and hydroxides of zinc and aluminum ) of the Zn‐15% Al coating has a self‐closing property to protect the substrate and reduce corrosion .The corrosion degradation processes of the bare steel and Zn‐Al coating in fast corrosion test show nonlinear law ,which matches with the corro‐sion degradation process of the steel gate components in the natural environment .

  3. [The effect of C-SiO2 composite films on corrosion resistance of dental Co-Cr alloy].

    Science.gov (United States)

    Huang, Yi; Hu, Jing-Yu; Liu, Yu-Pu; Zhao, Dong-Yuan; Yu, You-Cheng; Bi, Wei

    2016-10-01

    To study the effect of carbon-silica composite films on corrosion resistance of Co-Cr alloy in simulated oral environment and provide evidences for clinical application of this new material. Co-Cr alloy specimens were cut into appropriate size of 20 mm × 20 mm × 0.5 mm. Then, the carbon-silica composite films were spin-coated onto the specimens. Subsequently, ICP-AES was used to observe the Co, Cr, Mo ion concentrations. Finally, Tafel polarization curves of the specimens were used to measure the electrochemical corrosion resistance by electrochemical workstation. SAS8.0 software package was used for statistical analysis. The results of ICP-AES showed that the ion concentrations of Co, Cr, Mo of specimens coated with composite films in the testing liquid were significantly smaller than that of Co-Cr alloy specimens. Tafel polarization curves showed that in the specimens coated with composite films, the corrosion potential moved in the positive direction and increased from -0.261 V to -0.13 V. At the same time, the corrosion current density decreased from -5.0017μA/cm(2) to -5.3006 μA/cm(2). Carbon-silica composite films (silica=61.71wt %) can reduce the release of metal ions significantly and improve the corrosion resistance of Co-Cr alloys effectively. Carbon-silica composite films may be a promising dental material.

  4. Enhanced corrosion resistance and biocompatibility of AZ31 Mg alloy using PCL/ZnO NPs via electrospinning

    Science.gov (United States)

    Kim, Jinwoo; Mousa, Hamouda M.; Park, Chan Hee; Kim, Cheol Sang

    2017-02-01

    In the efforts to improve corrosion resistance and biocompatibility of magnesium alloys, polycarprolactone (PCL) and zinc oxide nanoparticles (ZnO NPs) composite coatings were applied onto AZ31 Mg alloys via electrospinning technique in this study. The PCL/ZnO composite coatings on Mg alloys were characterized by using FE-SEM, EDX, XPS, and FT-IR. Moreover, coating adhesion test, electrochemical corrosion test, and biocompatibility test in vitro were performed to measure coating performance. Our results revealed that the increase in the content of ZnO NPs in the composite coatings not only improved the coating adhesion of composite coatings on Mg alloys, but also increased the corrosion resistance. Furthermore, the biocompatibility of MC3T3-E1 osteoblasts of the PCL/ZnO composite coated samples was superior to the biocompatibility of the bare samples. Such data suggest that applying PCL/ZnO composite coating to the magnesium alloys has suitable potential in biomedical applications.

  5. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel.

    Science.gov (United States)

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-12-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer.

  6. 等离子喷涂工艺对锅炉管束用Fe基非晶涂层组织结构和耐蚀性能的影响%Effect of Spray Process on the Microstructure and Corrosion-resistance of Fe-based Amorphous Coatings Obtained by Plasma Spray on the Boiler Tubes

    Institute of Scientific and Technical Information of China (English)

    高振; 郝建民; 韩建军; 鲁元; 陈永楠; 李世波

    2015-01-01

    ABSTRACT:Objective To investigate the effects of plasma spray power and time on the phase, microstructure and corrosion-re-sistance of the amorphous coating on the boiler tubes. Methods XRD, SEM and electrochemical polarization research were adopt-ed. Results The coating with high fraction of amorphous phase was obtained, which had a flat and compact surface. The amorphous fraction and porosity decreased and the density increased with the increasing spray power and time. The coatings exhibited an excel-lent ability to resist corrosion with wide passive region in 0. 5 mol/L H2 SO4 and 3. 5% NaCl solutions. And the coatings exhibited wider passive region and lower corrosion current density in 0. 5 mol/L H2 SO4 and 3. 5% NaCl solutions, respectively. With in-crease of the spray power and time, the anodic polarization curves of the amorphous coatings were passivated with wider passive re-gion and lower passive current density. Conclusion The path and flow resistance that corrosive liquid permeated the substrate were increased, and the corrosion resistance of the coating was improved, owing to the decreased porosity and increased coating thick-ness with the increasing spray power and time.%目的:研究等离子喷涂功率和喷涂时间对锅炉管束用Fe基非晶涂层的相组成、微观组织结构及涂层耐蚀性能的影响。方法通过X射线衍射、扫描电子显微镜和三电极电化学研究进行分析。结果涂层主要由非晶相组成,表面较为平整致密;随着喷涂功率和喷涂时间的增加,涂层非晶相含量降低,孔隙率降低,致密性升高。非晶涂层在0.5 mol/L H2SO4溶液和在3.5%(质量分数)NaCl溶液中均表现出良好的钝化作用,在0.5 mol/L H2 SO4溶液中钝化区较宽,在3.5%NaCl溶液中自腐蚀电流密度较低。随喷涂功率和时间的增加,阳极极化曲线钝化区加宽,电流密度降低。结论喷涂功率升高会导致涂层孔隙率下降

  7. Computer Simulation and Experimental Validation on the Oxidation and Sulfate Corrosion Resistance of Novel Chromium Based High Temperature Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shizhong

    2013-02-28

    This report summarizes our recent works of ab initio molecular dynamics inter-atomic potentials development on dilute rare earth element yttrium (Y) etc. doped chromium (Cr) alloy systems, its applications in oxidation and corrosion resistance simulation, and experiment validation on the candidate systems. The simulation methods, experimental validation techniques, achievements already reached, students training, and future improvement are briefly introduced.

  8. Corrosion resistance of various bio-films deposited on austenitic cast steel casted by lost-wax process and in gypsum mould

    Directory of Open Access Journals (Sweden)

    J. Gawroński

    2010-01-01

    Full Text Available This work is the next of a series concerning the improvement of austenitic cast steel utility predicted for use in implantology for complicated long term implants casted by lost-wax process and in gypsum mould. Austenitic cast steel possess chemical composition of AISI 316L medical steel used for implants. In further part of present work investigated cast steel indicated as AISI 316L medical steel. Below a results of electrochemical corrosion resistance of carbon layer and bi-layer of carbon/HAp deposited on AISI 316L researches are presented. Coatings were manufactured by RF PACVD and PLD methods respectively. Obtained results, unequivocally indicates on the improvement of this type of corrosion resistance by substrate material with as deposited carbon layer. While bi-layer of carbon/HAp are characterized by very low corrosion resistance.

  9. 不同烧结温度的钛硅涂层对钴铬合金耐腐蚀性能的影响%Effects of TiSi coatings with different sintering temperature on corrosion resistance of dental CoCr alloy

    Institute of Scientific and Technical Information of China (English)

    邹洁; 胡滨

    2015-01-01

    目的 研究不同烧结温度下的钛硅(TiSi)涂层对牙科软质钴铬合金(CoCr)耐腐蚀性能的影响.方法 选用临床常用的软质钴铬合金,制作成10mm×10mm×1mm规格的试件18件,将试件随机分成A、B、C 3组(n=6),在B、C组试件表面运用溶胶-凝胶法涂覆钛硅薄膜,分别设定900℃和1000℃的烧结温度.将A、B、C组试件分别浸于37℃乳酸/NaCl溶液中7天,然后利用失重法计算材料的腐蚀速度,并运用等离子体发射光谱仪(ICP-AES)对溶液进行分析,以获得3种试件离子析出量的差异.结果 B、C 2组试件间腐蚀速度没有显著性差异(P>0.05),但都低于A组试件.离子析出量分析显示,B、C 2组试件的Co、Cr、Ni及总的离子析出量均少于A组试件(P0.05). The corrosion rates of group B and C were lower than that of group A (P<0.05). The specimens of group A released significantly more ions (Co、Cr、Ni,and total ions) compared with the group B and group C specimens (P<0.05). The levels of Co、Cr、Si and total ions were higher in specimens of group B than that in group C (P<0.05). Conclusion TiSi coating can significant improve the corrosion resistance of soft CoCr alloy. The TiSi coating sintered at the temperature of 1000℃showed better corrosion performance than that of 900℃.

  10. 49 CFR 179.201-5 - Postweld heat treatment and corrosion resistance.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment and corrosion resistance....201-5 Postweld heat treatment and corrosion resistance. (a) Tanks and attachments welded directly... tested to demonstrate that they possess the corrosion resistance specified in § 179.200-7(d), Footnote...

  11. 78 FR 15376 - Determinations: Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea

    Science.gov (United States)

    2013-03-11

    ... COMMISSION Determinations: Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea On the basis... Korea and the antidumping duty orders on corrosion-resistant carbon steel flat products from Germany and... Corrosion-Resistant Carbon Steel Flat Products from Germany and Korea: Investigation Nos. 701-TA-350 and...

  12. Enhanced High Temperature Corrosion Resistance in Advanced Fossil Energy Systems by Nano-Passive Layer Formation

    Energy Technology Data Exchange (ETDEWEB)

    Arnold R. Marder

    2007-06-14

    Due to their excellent corrosion resistance, iron aluminum alloys are currently being considered for use as weld claddings in fossil fuel fired power plants. The susceptibility to hydrogen cracking of these alloys at higher aluminum concentrations has highlighted the need for research into the effect of chromium additions on the corrosion resistance of lower aluminum alloys. In the present work, three iron aluminum alloys were exposed to simulated coal combustion environments at 500 C and 700 C for both short (100 hours) and long (5,000 hours) isothermal durations. Scanning electron microscopy was used to analyze the corrosion products. All alloys exhibited excellent corrosion resistance in the short term tests. For longer exposures, increasing the aluminum concentration was beneficial to the corrosion resistance. The addition of chromium to the binary iron aluminum alloy prevented the formation iron sulfide and resulted in lower corrosion kinetics. A classification of the corrosion products that developed on these alloys is presented. Scanning transmission electron microscopy (STEM) of the as-corroded coupons revealed that chromium was able to form chromium sulfides only on the higher aluminum alloy, thereby preventing the formation of deleterious iron sulfides. When the aluminum concentration was too low to permit selective oxidation of only aluminum (upon initial exposure to the corrosion environment), the formation of chromium oxide alongside the aluminum oxide led to depletion of chromium beneath the oxide layer. Upon penetration of sulfur through the oxide into this depletion layer, iron sulfides (rather than chromium sulfides) were found to form on the low aluminum alloy. Thus, it was found in this work that the role of chromium on alloy corrosion resistance was strongly effected by the aluminum concentration of the alloy. STEM analysis also revealed the encapsulation of external iron sulfide products with a thin layer of aluminum oxide, which may provide a

  13. Effect of additive on corrosion resistance of NiFe2O4 ceramics as inert anodes

    Institute of Scientific and Technical Information of China (English)

    XI Jin-hui; XIE Ying-jie; YAO Guang-chun; LIU Yi-han

    2008-01-01

    In order to improve the corrosion resistance of NiFe2O4 ceramics as inert anode, additive V2O5 was added to raw materials NiO and Fe2O3. The inert anodes of nickel-ferrite ceramics were prepared by powder metallurgic method and the static corrosion rate in Na3AlF6-Al2O3 was determined by mass loss measurement. The effect of V2O5 on sintering property and corrosion resistance was studied. The results show that V2O5 can promote the grain to develop completely and improve sintering property. EDS results show the reaction product Ni2FeVO6 distributes along the grain boundary. The corrosion tests show that V2O5 is beneficial to improving corrosion resistance remarkably. The reasons that V2O5 can improve the corrosion resistance must be V2O5 promoting the gains to develop completely and Ni2FeVO6 distributes along the grain boundary. The stable structure can control the chemical dissolution of ceramics anode and the reinforced grain boundary can control the grain-boundary corrosion rate.

  14. Corrosion Protection of AM50 Magnesium Alloy by Nafion/DMSO Organic Coatings

    Institute of Scientific and Technical Information of China (English)

    SONG Renguo; ZHENG Xiaohua; BAI Shuju; BLAWERT Carsten; DIETZEL Wolfgang

    2008-01-01

    The effectiveness of the corrosion protection of Nafion/Dimethysulfoxid (DMSO) organic coatings for AM50 magnesium alloy prepared by simple immersion and heat treatment was investigated. Its corrosion resistance and morphologies of the Nafion/DMSO organic coatings were studied by electrochemical corrosion testing and optical microscopy. The results show that Nafion/DMSO organic coatings can improve the corrosion resistance of AM50 magnesium alloy effectively. Also, the corrosion resistance increases with the surface density of the organic coatings.

  15. The corrosion resistance of materials used for the manufacture of ear piercing studs

    Directory of Open Access Journals (Sweden)

    Correa, O. V.

    2003-12-01

    Full Text Available Nickel containing alloys have been widely used as substrates for the manufacture of studs used for ear piercing. Unfortunately, nickel has also been related to the development of allergic contact dermatitis caused by skin sensitization due to Ni2+ ions. Nickel ions can be leached out into the body fluids due to corrosion reactions. Defect free coatings are very difficult to produce, and therefore nickel free materials should be used as substrates of ear piercing studs, although the commercial alloys used usually contain this element. In this study, the corrosion resistance of two kinds of commercial studs prepared with nickel containing substrates and a titanium laboratory made stud was determined in a culture medium. The corrosion resistance of the studs was investigated by means of potentiodynamic polarization tests and electrochemical impedance spectroscopy as a function of immersion time in the culture medium. The elements that leached out into the medium due to corrosion reactions were analyzed by instrumental neutron activation analysis. The surfaces of the commercial gold-coated studs were examined by scanning electron microscopy and analyzed by energy dispersive spectroscopy, both before and after exposure to the culture medium. The cytotoxicity of the tested studs was also determined in the culture medium.

    Aleaciones conteniendo níquel se han utilizado como substratos para la fabricación de aretes perforantes para orejas. Desafortunadamente, el níquel ha sido relacionado con el desarrollo de una reacción alérgica conocida como dermatitis de contacto, causada por la sensibilización debido a los iones de Ni2+. Estos iones pueden ser liberados hacia los fluidos corporales debido a las reacciones de corrosión. Los aretes, habitualmente, se revisten con películas de oro. Sin embargo, es muy difícil hacer los revestimientos libres de defectos superficiales. Por lo tanto, materiales sin níquel deber

  16. Ion beam analysis, corrosion resistance and nanomechanical properties of TiAlCN/CN{sub x} multilayer grown by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Alemón, B.; Flores, M. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jal. 45101 (Mexico); Canto, C. [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, Mexico, DF 04510 (Mexico); Andrade, E., E-mail: andrade@fisica.unam.mx [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, Mexico, DF 04510 (Mexico); Lucio, O.G. de [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, Mexico, DF 04510 (Mexico); Rocha, M.F. [ESIME-Z, Instituto Politécnico Nacional, ALM Zacatenco, Mexico, DF 07738 (Mexico); Broitman, E. [Thin Films Physics Division, IFM, Linköping University, SE-58183 Linköping (Sweden)

    2014-07-15

    A novel TiAlCN/CN{sub x} multilayer coating, consisting of nine TiAlCN/CN{sub x} periods with a top layer 0.5 μm of CN{sub x}, was designed to enhance the corrosion resistance of CoCrMo biomedical alloy. The multilayers were deposited by dc and RF reactive magnetron sputtering from Ti{sub 0.5}Al{sub 0.5} and C targets respectively in a N{sub 2}/Ar plasma. The corrosion resistance and mechanical properties of the multilayer coatings were analyzed and compared to CoCrMo bulk alloy. Ion beam analysis (IBA) and X-ray diffraction tests were used to measure the element composition profiles and crystalline structure of the films. Corrosion resistance was evaluated by means of potentiodynamic polarization measurements using simulated body fluid (SBF) at typical body temperature and the nanomechanical properties of the multilayer evaluated by nanoindentation tests were analyzed and compared to CoCrMo bulk alloy. It was found that the multilayer hardness and the elastic recovery are higher than the substrate of CoCrMo. Furthermore the coated substrate shows a better general corrosion resistance than that of the CoCrMo alloy alone with no observation of pitting corrosion.

  17. Cost-effective solutions for corrosion-resistant expandable-screen base pipe in sour/brine service

    Energy Technology Data Exchange (ETDEWEB)

    Chitwood, G. [Halliburton Energy Services, Calgary, AB (Canada); Skogsberg, L. [Shell International E and P Inc., Calgary, AB (Canada)

    2004-07-01

    In order to remain competitive, oilfield operators use the lowest-cost materials that meet the technical needs of an operation. As field development expands into deeper and more corrosive environments, there is a greater demand for corrosion-resistant alloys. The main environmental factors that affect stress corrosion cracking (SCC) behaviour of S31603 are hydrogen sulphide (H{sub 2}S) content, acidity, chloride concentration, oxygen contamination and temperature. In expandable sand control systems, new technology must compete with existing non-expandable screens that are low-cost to manufacture. The first choice for a corrosion-resistant alloy for base pipe in conventional sand screens is the low cost 13Cr which provides corrosion resistance in mild H{sub 2}S situations under a range of chloride and temperature conditions. The material, however, lacks ductility needed for 25 per cent expansion. Another option is to use 316L (UNS S31603), an alloy with sufficient ductility and strength, but with questionable corrosion resistance when it comes to chloride SCC. The potential application of S31603 in several projects was presented along with data needed to establish a performance envelope for this material which has been shown to be a cost-effective material for base pipes in sand-control screens. 3 refs., 2 tabs., 3 figs.

  18. Structure, tribocorrosion and biocide characterization of Ca, P and I containing TiO{sub 2} coatings developed by plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Sáenz de Viteri, V., E-mail: virginia.saenzdeviteri@tekniker.es [IK4-Tekniker, Polo Tecnológico de Eibar, Calle Iñaki Goenaga, 5, Eibar 20600 (Spain); Bayón, R.; Igartua, A. [IK4-Tekniker, Polo Tecnológico de Eibar, Calle Iñaki Goenaga, 5, Eibar 20600 (Spain); Barandika, G. [Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apartado 644, Bilbao E-48080 (Spain); Moreno, J. Esteban; Peremarch, C. Pérez-Jorge; Pérez, M. Martínez [Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Av. Reyes Católicos 2, Madrid 28040 (Spain)

    2016-03-30

    Graphical abstract: - Highlights: • Ca, P and I doped TiO{sub 2} coatings were developed by means of plasma electrolytic oxidation (PEO) technique. • Microstructure and chemical composition of the developed coating were in depth analyzed. • The effect of wear-corrosion synergy was studied through tribocorrosion tests. • Antibacterial efficiency of iodine as biocide agent was analyzed by means of bacterial adhesion study. • A TiO{sub 2} coating with improved wear-corrosion resistance, suitable surface for cell adhesion and biocide properties was achieved. - Abstract: In hip joint implants, in particular in the stems, wear-corrosion effects can accelerate the degradation of the biomaterial. The lack of osseointegration and the risk of contracting implant-associated infections may be other reasons for a premature failure of the implant. In this work, TiO{sub 2} coatings have been developed by means of plasma electrolytic oxidation (PEO) technique in order to achieve wear-resistant hard coatings with osseointegration ability and biocide characteristics. During the PEO process, elements that favor cell growth, like Ca and P, were introduced into the coating. With the purpose of providing the coating with antibacterial properties iodine was added like biocide agent. The microstructure and chemical composition of the developed coatings were analyzed in order to see if the surface of the films was suitable for the cell attachment. The effect of wear-corrosion synergy was studied by means of tribocorrosion tests. Finally, the biocide capacity of iodine against Staphylococcus aureus and Staphylococcus epidermidis was analyzed through bacterial adhesion tests. High wear and corrosion resistance was shown in one of the developed coatings. The achieved surface microstructures seem to be appropriate to improve the osseointegration with proper pore size and porosity index. The antibacterial capacity of iodine was confirmed for S. epidermidis.

  19. Influence of Trace Alloying Elements on Corrosive Resistance of Cast Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    DUAN Han-qiao; YAN Xiang; WEI Bo-kang; LIN Han-tong

    2005-01-01

    The influences of trace alloying elements niobium, vanadium and zirconium on the corrosive resistance of 18-8 type cast stainless steel have been studied in deta() orthogonal design experiments. The results show that zirconium is mainly in the form of compound inclusions, which is unfavorable to promote the corrosive resistance of the cast stainless steel. It can alleviate the disadvantageous influence of carbon addition on corrosive resistance when some elements such as vanadium and niobium exist in the steel, and niobium has a remarkable influence on the intergranular corrosive resistance but unobvious on the pitting corrosion, and vanadium has a slightly favorable influence on the corrosive resistance of the steel.

  20. Corrosion behaviors of arc spraying single and double layer coatings in simulated Dagang soil solution

    Institute of Scientific and Technical Information of China (English)

    LIN Bi-lan; LU Xin-ying; LI Long

    2009-01-01

    Three kinds of single layer coatings of Zn,Zn15Al,316L stainless steel and two kinds of double layer coatings with inner layer of Zn or Zn15Al and outer layer of 316L stainless steel by arc spraying were developed to protect the metal ends of prestressed high-strength concrete (PHC) pipe piles against soil corrosion.The corrosion behaviors of the coated Q235 steel samples in the simulated Dagang soil solution were investigated by potentiodynamic polarization,electrochemical impedance spectroscopy (EIS) and natural immersion tests.The results show that the corrosion of the matrix Q235 steel is effectively inhibited by Zn,Zn15Al,Zn+316L and Zn15Al+316L coatings.The corrosion rate value of Zn15Al coated samples is negative.The corrosion products on Zn and Zn15Al coated samples are compact and firm.The corrosion resistance indexes of both Zn and Zn15Al coated samples are improved significantly with corrosion time,and the latter are more outstanding than the former.But the corrosion resistance of 316L coated samples is decreased quickly with the increase in immersion time.When the coatings are sealed with epoxy resin,the corrosion resistance of the coatings will be enhanced significantly.

  1. Nafion/polypyrrole and Nafion/DMSO Organic Coatings for Magnesium Protection

    Institute of Scientific and Technical Information of China (English)

    Renguo SONG; Xiaohua ZHENG; Carsten Blawert; Wolfgang Dietzel

    2007-01-01

    Nafion/polypyrrole and Nafion/Dimethysulfoxid (DMSO) organic coatings were prepared on the surface of pure magnesium by simple immersion and heat treatment. The morphologies and corrosion resistance of the organic coatings were investigated by using optical microscopy and electrochemical corrosion testing, respectively. It is shown that Nafion/polypyrrole organic coatings resulted in the corrosion resistance of magnesium decreasing;while Nafion/DMSO organic coatings can effectively improve the corrosion resistance of magnesium. Also,the corrosion resistance increased with the thickness of the Nafion/DMSO organic coating increased.

  2. UNBALANCED MAGNETRON SPUTTERING SYSTEM FOR PRODUCING CORROSION RESISTANCE MULTILAYER COATINGS

    Directory of Open Access Journals (Sweden)

    DIANA MARULANDA

    2012-01-01

    Full Text Available En este trabajo se describe un sistema de sputtering con magnetrón desbalanceado que permite producir recubrimientos en multicapa resistentes a la corrosión. La principal ventaja de este sistema es que combina características tales como una disposición multi-cátodo, control de temperatura, control sobre la rotación del portamuestras y capacidad de intercambiar muestras sin romper el vacío. El desempeño del sistema se verificó a través de la producción de multicapas nanométricas de Cr/CrN sobre acero inoxidable 304 y silicio (100 y la evaluación de su resistencia a la corrosión. Se utilizó difracción de rayos X (DRX pare estudiar la microestructura cristalina, y microscopía electrónica de barrido (MEB para caracterizar la formación de la multicapa. Los resultados de DRX muestran las orientaciones (111 y (200 para las multicapas de CrN y los resultados de MEB muestran claramente la formación de una estructura en multicapa. La resistencia a la corrosión se evaluó a través de estudios electroquímicos y los resultados muestran que la multicapa de Cr/CrN presenta menor corriente de corrosión y un potencial de corrosión más alto en comparación al sustrato de acero inoxidable 304.

  3. Westinghouse thermal barrier coatings development

    Energy Technology Data Exchange (ETDEWEB)

    Goedjen, J.G.; Wagner, G. [Westinghouse Electric Corp., Orlando, FL (United States)

    1995-10-01

    Westinghouse, in conjunction with the Department of Energy and Oak Ridge National Laboratory, has embarked upon a program for the development of advanced thermal barrier coatings for industrial gas turbines. Development of thermal barrier coatings (TBC`s) for industrial gas turbines has relied heavily on the transfer of technology from the aerospace industry. Significant differences in the time/temperature/stress duty cycles exist between these two coating applications. Coating systems which perform well in aerospace applications may not been optimized to meet power generation performance requirements. This program will focus on development of TBC`s to meet the specific needs of power generation applications. The program is directed at developing a state-of-the-art coating system with a minimum coating life of 25,000 hours at service temperatures required to meet increasing operating efficiency goals. Westinghouse has assembled a team of university and industry leaders to accomplish this goal. Westinghouse will coordinate the efforts of all program participants. Chromalloy Turbine Technologies, Inc. and Sermatech International, Inc. will be responsible for bond coat and TBC deposition technology. Praxair Specialty Powders, Inc. will be responsible for the fabrication of all bond coat and ceramic powders for the program. Southwest Research Institute will head the life prediction modelling effort; they will also be involved in coordinating nondestructive evaluation (NDE) efforts. Process modelling will be provided by the University of Arizona.

  4. Evaluation of the corrosion resistance of latex modified concrete (LMC)

    Energy Technology Data Exchange (ETDEWEB)

    Okba, S.H.; El-Dieb, A.S.; Reda, M.M. [Ain Shams Univ., Cairo (Egypt). Dept. of Structural Engineering

    1997-06-01

    In recent years, various reinforced concrete structures worldwide have suffered rapid deterioration. Therefore, durability of concrete structures especially those exposed to aggressive environments is of great concern. Many deterioration causes and factors have been investigated. Corrosion of steel reinforcement was found to be one of the major deterioration problems. Penetration of chloride ions is one of the main causes which induces corrosion. The objective of this study is to evaluate the corrosion resistance of latex modified concrete (LMC) compared to conventional concrete using an accelerated corrosion cell. The corrosion cell proved to be a good and simple method to evaluate the durability of concretes especially with respect to chloride ion penetration, and the protection of reinforcement against corrosion. The LMC proved to be superior in its corrosion resistance compared to conventional concrete, which recommends its use in structures exposed to severe aggressive environments.

  5. Aluminum Composites With Small Nanoparticles Additions: Corrosion Resistance

    OpenAIRE

    Agureev, L.E.; Kostikov, V.I.; Eremeeva, Zh.V.; Barmin, A.A.; Savushkina, S.V.; Ivanov, B.S.

    2016-01-01

    International audience; Research of corrosion resistance of the aluminum powder composites containing microadditives (0.01 – 0.15% is executed about.) zirconium oxide nanoparticles. Extreme dependence of speed of corrosion of aluminum composites in 10-% solutions of sulfuric and nitric acid from the maintenance of nanoadditives is shown. It has been shown the dynamics of mass loss of aluminum composites with nanoparticles of ZrO2 during corrosion tests in acids solutions. The lowest corrosion...

  6. Effect of Deposition Time on the Corrosion Resistance of Ca-P Coating on the Surfaces of Mg-based Alloy Prepared by Electrodeposition Method%沉积时间对镁合金表面Ca-P生物涂层耐蚀性能的影响

    Institute of Scientific and Technical Information of China (English)

    朱明; 朱青; 余勇; 许雄

    2016-01-01

    ABSTRACT:Objective Magnesium alloy possesses a good potential application in the biomedical filed, to overcome its overly rapid degradation speed in human environment, a protective coating with good biological compatibility should be depo-sited on the surface of magnesium alloy.Methods Ca-P bioactive coatings were prepared on the surface of AZ91D magnesium alloy by electrodeposition method. The deposition conditions were: 0.1 mol/L of Ca (NO3)2, 0.06 mol/L of NH4H2PO4, pH=4.5, deposition voltage 2 V, and deposition time 1 h, 2 h, 3 h, 4 h, respectively. The phase structure, microstructure and chemical composition of Ca-P coating were analyzed by XRD and SEM/EDS, and the polarization curves of Ca-P coating in Hank’s solu-tion were tested.Results The results showed that DCPD coating was prepared on the surface of magnesium substrate by elec-trodepositon. The microstructure changed obviously with time and when the deposition time was 3 h, the particle size of the coating surface was the most uniform and fine, and the Ca-P ratio was 1.324. Polarization curve results showed that when the deposition time was 1 h the coating had produced protection for magnesium substrate. The corrosion voltage showed an in-creasing trend with prolongation of time, but the corrosion current reached the lowest. The corrosion potential of the coating was increased by 180 mV, and the corrosion current density was decreased by 3 orders of magnitude compared with the magnesium matrix.Conclusion The corrosion resistance of Ca-P coating was the best when the deposition time was 3 h in this paper.%目的:镁合金在生物医学领域具有很好的应用前景,为消除其在人体环境中降解速度过快的不足,需在镁合金表面制备一层能够降低其腐蚀速度且具有很好生物相容性的防护涂层。方法采用电沉积法在AZ91D镁合金表面制备Ca-P生物涂层,沉积条件为:在Ca(NO3)2和NH4H2PO4浓度分别为0.1 mol/L和0.06 mol

  7. Superhydrophobic copper surfaces fabricated by fatty acid soaps in aqueous solution for excellent corrosion resistance

    Science.gov (United States)

    Xu, Wenlong; Hu, Yuanyuan; Bao, Wenda; Xie, Xiaoyu; Liu, Yiran; Song, Aixin; Hao, Jingcheng

    2017-03-01

    A simple and safe one-step immersion method was developed to obtain the stable superhydrophobic copper surfaces with excellent corrosion resistance ability using fatty acids in water-medium instead of ethanol. An organic alkali, N,N-dimethylcyclohexylamine (DMCHA), was chosen to solve the poor solubility of fatty acids in water and the high Krafft point of carboxylate salts with inorganic counterions. The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol (more than 2 d), which is universally feasible for the fabrication of superhydrophobic metal surfaces in industry scale, thereby greatly increasing the safety in industrial manufacture.

  8. IBA analysis and corrosion resistance of TiAlPtN/TiAlN/TiAl multilayer films deposited over a CoCrMo using magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Canto, C.E., E-mail: carloscanto2012@yahoo.com.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F. (Mexico); Andrade, E.; Lucio, O. de; Cruz, J.; Solís, C. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F. (Mexico); Rocha, M.F. [ESIME-Z, IPN, U.P. ALM, Gustavo A. Madero, C.P. 07738 México D.F. (Mexico); Alemón, B. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jalisco 45101 (Mexico); Tecnológico de Monterrey, Av. General Ramón Corona 2514, Col. Nuevo México, Zapopan, Jalisco 45201 (Mexico); Flores, M. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jalisco 45101 (Mexico); Huegel, J.C. [Tecnológico de Monterrey, Av. General Ramón Corona 2514, Col. Nuevo México, Zapopan, Jalisco 45201 (Mexico)

    2016-03-15

    The corrosion resistance and the elemental profile of multilayer coatings of TiAlPtN/TiAlN/TiAl synthesized by Physical Vapor Deposition (PVD) reactive magnetron sputtering over a CoCrMo alloy substrate in 10 periods of 30 min each were analyzed and compared to those of the substrate alone and to that of a TiAlPtN single layer coating of the same thickness. The objective of the present work was to create multilayers with different amounts of Pt to enhance the corrosion resistance of a biomedical alloy of CoCrMo. Corrosion tests were performed using Simulated Body Fluid (SBF) using potentiodynamic polarization tests at typical body temperature. The elemental composition and thickness of the coatings were evaluated with the combination of two ion beam analysis (IBA) techniques: a Rutherford Backscattering Spectroscopy (RBS) with alpha beam and a Nuclear Reaction Analysis with a deuteron beam.

  9. Understanding particulate coating microstructure development

    Science.gov (United States)

    Roberts, Christine Cardinal

    How a dispersion of particulates suspended in a solvent dries into a solid coating often is more important to the final coating quality than even its composition. Essential properties like porosity, strength, gloss, particulate order, and concentration gradients are all determined by the way the particles come together as the coating dries. Cryogenic scanning electron microscopy (cryoSEM) is one of the most effective methods to directly visualize a drying coating during film formation. Using this method, the coating is frozen, arresting particulate motion and solidifying the sample so that it be imaged in an SEM. In this thesis, the microstructure development of particulate coatings was explored with several case studies. First, the effect of drying conditions was determined on the collapse of hollow latex particles, which are inexpensive whiteners for paint. Using cryoSEM, it was found that collapse occurs during the last stages of drying and is most likely to occur at high drying temperatures, humidity, and with low binder concentration. From these results, a theoretical model was proposed for the collapse of a hollow latex particle. CryoSEM was also used to verify a theoretical model for the particulate concentration gradients that may develop in a coating during drying for various evaporation, sedimentation and particulate diffusion rates. This work created a simple drying map that will allow others to predict the character of a drying coating based on easily calculable parameters. Finally, the effect of temperature on the coalescence and cracking of latex coatings was explored. A new drying regime for latex coatings was identified, where partial coalescence of particles does not prevent cracking. Silica was shown to be an environmentally friendly additive for preventing crack formation in this regime.

  10. Review on Improving Wear and Corrosion Resistance of Steels via Plasma Electrolytic Saturation Technology

    Science.gov (United States)

    Lin, Naiming; Xie, Ruizhen; Zhou, Peng; Zou, Jiaojuan; Ma, Yong; Wang, Zhenxia; Han, Pengju; Wang, Zhihua; Tang, Bin; Tian, Wei

    2016-03-01

    Plasma electrolytic saturation (PES) technique which holds the advantages of short treating time and limited heating influence and immediate quenching effect is conducted under high voltage power supply in some electrolyte has been extensively applied to enhance the surface performance of metallic materials. Steel is widely used in various fields thanks to its promising merits of easy workability, plasticity, toughness and weldability. It accounts for a large proportion in the application scope of the metal materials. Steel surfaces with good corrosion resistance, promising wear resistance and high hardness would be obtained by PES. Meanwhile, uniformed coatings can be formed without special requirements for substrate geometries using the PES. This paper first presents a brief introduction of the technological principle of PES. The status on studies and applications of PES for improving surface performance of steels has been reviewed.

  11. Influence of Laser Peening on Phase Transformation and Corrosion Resistance of AISI 321 steel

    Science.gov (United States)

    Karthik, D.; Swaroop, S.

    2016-07-01

    The objective of this study is to investigate the influence of laser peening without coating (LPwC) on austenitic to martensitic (γ → α') phase transformation and corrosion behavior of austenitic stainless steel AISI 321 in 3.5% NaCl environment. Results indicate that LPwC induces a large compressive residual stresses of nearly -854 MPa and γ → α' phase transformation of about 18% (volume fraction). Microstructures of peened surface confirmed the γ → α' phase transformation and showed no grain refinement. Hardness increased slightly with a case depth of 900 μm. Despite the smaller surface roughness introduced, corrosion resistance improved after peening due to compressive residual stresses.

  12. Morphological, structural, microhardness and corrosion characterisations of electrodeposited Ni-Mo and Cr coatings

    National Research Council Canada - National Science Library

    Lima-Neto, Pedro de; Correia, Adriana N; Vaz, Gustavo L; Casciano, Paulo N. S

    2010-01-01

    The corrosion resistance of electrodeposited Cr and Ni-Mo coatings and the influence of heat treatment on the crystallographic structure, morphology and microhardness properties were investigated here...

  13. Status of coal ash corrosion resistant materials test program

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, D.K.; Meisenhelter, D.K.; Sikka, V.K.

    1999-07-01

    In November of 1998, Babcock and Wilcox (B and W) began development of a system to permit testing of several advanced tube materials at metal temperatures typical of advanced supercritical steam conditions of 1100 F and higher in a boiler exhibiting coal ash corrosive conditions. The U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B and W, and First Energy's Ohio Edison jointly fund the project. CONSOL Energy Company is also participating as an advisor. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. The coal-ash corrosion resistant materials test program will provide full scale, in-situ testing of recently developed boiler superheater and reheater tube materials. These newer materials may be capable of operating at higher steam temperatures while resisting external/fire-side corrosion. For high sulfur coal applications, this is a key issue for advanced cycle pulverized coal-fired plants. Fireside corrosion is also a critical issue for many existing plants. Previous testing of high temperature materials in the United States has been based primarily on using laboratory test coupons. The test coupons did not operate at conditions representative of a high sulfur coal-fired boiler. Testing outside of the United States has been with low sulfur coal or natural gas firing and has not addressed corrosion issues. This test program takes place in an actual operating boiler and is expected to confirm the performance of these materials with high sulfur coal. The system consists of three identical sections, each containing multiple pieces of twelve different materials. They are cooled by reheater steam, and are located just above the furnace exit in Ohio Edison's Niles Unit No.1, a 110 MWe unit firing high sulfur Ohio coal. After one year of operation, the first section will be removed for thorough metallurgical evaluation. The second and third sections will operate for

  14. Corrosion resistance and biocompatibility of zirconium oxynitride thin film growth by RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cubillos, G. I.; Olaya, J. J.; Clavijo, D.; Alfonso, J. E. [Universidad Nacional de Colombia, Carrera 45 No. 26-85, AA 14490 Bogota D. C. (Colombia); Bethencourt, M., E-mail: jealfonsoo@unal.edu.co [Universidad de Cadiz, Centro Andaluz de Ciencia y Tecnologia Marinas, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Av. Republica de Saharaui, Puerto Real, E-11510 Cadiz (Spain)

    2012-07-01

    Thin films of zirconium oxynitride were grown on common glass, silicon (100) and stainless steel 316 L substrates using the reactive RF magnetron sputtering technique. The films were analyzed through structural, morphological and biocompatibility studies. The structural analysis was carried out using X-ray diffraction (XRD), and the morphological analysis was carried out using scanning electron microscopy (Sem) and atomic force microscopy (AFM). These studies were done as a function of growth parameters, such as power applied to the target, substrate temperature, and flow ratios. The corrosion resistance studies were made on samples of stainless steel 316 L coated and uncoated with Zr{sub x}N{sub y}O films, through of polarization curves. The studies of biocompatibility were carried out on zirconium oxynitride films deposited on stainless steel 316 L through proliferation and cellular adhesion. The XRD analysis shows that films deposited at 623 K, with a flow ratio {Phi}N{sub 2}/{Phi}O{sub 2} of 1.25 and a total deposit time of 30 minutes grew preferentially oriented along the (111) plane of the zirconium oxynitride monoclinic phase. The Sem analyses showed that the films grew homogeneously, and the AFM studies indicated that the average rugosity of the film was 5.9 nm and the average particle size was 150 nm. The analysis of the corrosion resistant, shows that the stainless steel coated with the film was increased a factor 10. Finally; through the analysis of the biocompatibility we established that the films have a better surface than the substrate (stainless steel 316 L) in terms of the adhesion and proliferation of bone cells. (Author)

  15. Electrolessly Plated Ni-Zn(Fe)-P Alloy and Its Corrosion Resistance Properties

    Institute of Scientific and Technical Information of China (English)

    WANG Sen-lin; WU Hui-huang

    2005-01-01

    The autocatalytic deposition of Ni-Zn(Fe)-P alloys has been carried out on substrate of carbon steel from a bath containing nickel sulfate, zinc sulfate, sodium hypophosphite, sodium citrate and boric acid. The effects of pH and the molar ratio of NiSO4/ZnSO4 on the deposition rate and the composition of deposits have been studied. It was found that the presence of zinc sulfate in the bath has an inhibitory effect on the alloy deposition. The structure and the surface morphology of Ni-Zn(Fe)-P coatings were characterized with XRD and SEM, respectively. The alloys plated under the experimental conditions consisted of an amorphous phase coexisting with a crystalline cubic Ni phase(poly-crystalline). The surface morphology of the coating is dependent on the deposition parameters. The corrosion resistance of the Ni-Zn(Fe)-P deposits was examined via mass loss tests and anodic polarization measurements, respectively. The results show that the surface morphologies of the deposits and the corrosion resistance of the deposits have been improved. The results of mass loss tests almost accord with those of anodic polarization measurements. The corrosion mechanisms of Ni-Zn(Fe)-P alloys in NaCl and NaOH solutions were investigated by means of EDX. The deposit immersed in an NaCl or an NaOH solution contains more content of oxygen and less contents of the metals(except Fe) than that placed in air, which shows that the NaCl or NaOH solution can accelerate the oxidation of the deposit.

  16. Structure adhesion and corrosion resistance study of tungsten bisulfide doped with titanium deposited by DC magnetron co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    De La Roche, J. [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al aeropuerto, Campus La Nubia, Manizales (Colombia); González, J.M. [Laboratorio de Recubrimientos Duros y Aplicaciones Industriales – RDAI, Universidad del Valle, Calle 13 N° 100-00 Ciudadela Meléndez, Cali (Colombia); Restrepo-Parra, E., E-mail: erestrepop@unal.edu.co [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al aeropuerto, Campus La Nubia, Manizales (Colombia); Sequeda, F. [Laboratorio de Recubrimientos Duros y Aplicaciones Industriales – RDAI, Universidad del Valle, Calle 13 N° 100-00 Ciudadela Meléndez, Cali (Colombia); Alleh, V.; Scharf, T.W. [The University of North Texas, Department of Materials Science and Engineering, Denton, TX 76203 (United States)

    2014-11-30

    Highlights: • Ti-doped WS{sub 2} films were grown via the magnetron co-sputtering technique. • At a high Ti percentage, the crystalline structure of WS{sub 2} coatings tends to be amorphous. • As the Ti percentage increases in WS{sub 2} coatings, nanocomposites tend to form. • Ti-doped WS{sub 2} films have elastic behavior compared with the plastic response of pure WS{sub 2} films. • A high Ti percentage increases the corrosion resistance of WS{sub 2} films. - Abstract: Titanium-doped tungsten bisulfide thin films (WS{sub 2}-Ti) were grown using a DC magnetron co-sputtering technique on AISI 304 stainless steel and silicon substrates. The films were produced by varying the Ti cathode power from 0 to 25 W. Using energy dispersive spectroscopy (EDS), the concentration of Ti in the WS{sub 2} was determined, and a maximum of 10% was obtained for the sample grown at 25 W. Moreover, the S/W ratio was calculated and determined to increase as a function of the Ti cathode power. According to transmission electron microscopy (TEM) results, at high titanium concentrations (greater than 6%), nanocomposite formation was observed, with nanocrystals of Ti embedded in an amorphous matrix of WS{sub 2}. Using the scratch test, the coatings’ adhesion was analyzed, and it was observed that as the Ti percentage was increased, the critical load (Lc) also increased. Furthermore, the failure type changed from plastic to elastic. Finally, the corrosion resistance was evaluated using the electrochemical impedance spectroscopy (EIS) technique, and it was observed that at high Ti concentrations, the corrosion resistance was improved, as Ti facilitates coating densification and generates a protective layer.

  17. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    Science.gov (United States)

    Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2014-07-15

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  18. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  19. Corrosion resistance of 15Mo3 in steam boiler pipe surfaced with Inconel 625 alloy