WorldWideScience

Sample records for corrosion protection

  1. Smart Coatings for Corrosion Protection

    Science.gov (United States)

    Calle, Luz Marina; Li, Wendy; Buhrow, Jerry W.; Johnsey, Marissa N.

    2016-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.

  2. Corrosion Protection of Aluminum

    Science.gov (United States)

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  3. Corrosion of metallic materials. Dry corrosion, aqueous corrosion and corrosion by liquid metal, methods of protection

    International Nuclear Information System (INIS)

    Helie, Max

    2015-01-01

    This book is based on a course on materials given in an engineering school. The author first gives an overview of metallurgy issues: metallic materials (pure metals, metallic alloys), defects of crystal lattices (point defects, linear defects or dislocations), equilibrium diagrams, steels and cast, thermal processing of steels, stainless steels, aluminium and its alloys, copper and its alloys. The second part addresses the properties and characterization of surfaces and interfaces: singularity of a metal surface, surface energy of a metal, energy of grain boundaries, adsorption at a material surface, metal-electrolyte interface, surface oxide-electrolyte interface, techniques of surface analysis. The third chapter addresses the electrochemical aspects of corrosion: description of the corrosion phenomenon, free enthalpy of a compound and free enthalpy of a reaction, case of dry corrosion (thermodynamic aspect, Ellingham diagram, oxidation mechanisms, experimental study, macroscopic modelling), case of aqueous corrosion (electrochemical thermodynamics and kinetics, experimental determination of corrosion rate). The fourth part addresses the different forms of aqueous corrosion: generalized corrosion (atmospheric corrosion, mechanisms and tests), localized corrosion (galvanic, pitting, cracking, intergranular, erosion and cavitation), particular cases of stress cracking (stress corrosion, fatigue-corrosion, embrittlement by hydrogen), and bi-corrosion (of non alloyed steels, of stainless steels, and of aluminium and copper alloys). The sixth chapter addresses the struggle and the protection against aqueous corrosion: methods of prevention, scope of use of main alloys, geometry-based protection of pieces, use of corrosion inhibitors, use of organic or metallic coatings, electrochemical protection. The last chapter proposes an overview of corrosion types in industrial practices: in the automotive industry, in the oil industry, in the aircraft industry, and in the

  4. Corrosion protection and control using nanomaterials

    CERN Document Server

    Cook, R

    2012-01-01

    This book covers the use of nanomaterials to prevent corrosion. The first section deals with the fundamentals of corrosion prevention using nanomaterials. Part two includes a series of case studies and applications of nanomaterials for corrosion control.$bCorrosion is an expensive and potentially dangerous problem in many industries. The potential application of different nanostructured materials in corrosion protection, prevention and control is a subject of increasing interest. Corrosion protection and control using nanomaterials explores the potential use of nanotechnology in corrosion control. The book is divided into two parts. Part one looks at the fundamentals of corrosion behaviour and the manufacture of nanocrystalline materials. Chapters discuss the impact of nanotechnology in reducing corrosion cost, and investigate the influence of various factors including thermodynamics, kinetics and grain size on the corrosion behaviour of nanocrystalline materials. There are also chapters on electrodeposition ...

  5. Accelerated Test Method for Corrosion Protective Coatings

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as...

  6. Achievments of corrosion science and corrosion protection technology

    International Nuclear Information System (INIS)

    Fontana, M.; Stehjl, R.

    1985-01-01

    Problems of corrosion-mechanical strength of metals, effect of corrosive media on creep characteristics are presented. New concepts of the mechanism of corrosion cracking and its relation to hydrogen embrittlement are described. Kinetics and mechanism of hydrogen embrittlement effect on the process of corrosion cracking of different steels and alloys are considered. The dependence of such types of failure on various structural factors is shown. Data on corrosion cracking of high-strength aluminium and titanium alloys, mechanism of the processes and protective methods are given

  7. Corrosion protected reversing heat exchanger

    International Nuclear Information System (INIS)

    Zawierucha, R.

    1984-01-01

    A reversing heat exchanger of the plate and fin type having multiple aluminum parting sheets in a stacked arrangement with corrugated fins separating the sheets to form multiple flow paths, means for closing the ends of the sheets, an input manifold arrangement of headers for the warm end of of the exchanger and an output manifold arrangement for the cold end of the exchanger with the input air feed stream header and the waste gas exhaust header having an alloy of zinc and aluminum coated on the inside surface for providing corrosion protection to the stack

  8. 49 CFR 193.2625 - Corrosion protection.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Corrosion protection. 193.2625 Section 193.2625 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine...

  9. Corrosion and protection of magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ghali, E. [Laval Univ., Quebec City, PQ (Canada). Dept. of Mining and Metallurgy

    2000-07-01

    The oxide film on magnesium offers considerable surface protection in rural and some industrial environments and the corrosion rate lies between that of aluminum and low carbon steels. Galvanic coupling of magnesium alloys, high impurity content such as Ni, Fe, Cu and surface contamination are detrimental for corrosion resistance of magnesium alloys. Alloying elements can form secondary particles which are noble to the Mg matrix, thereby facilitating corrosion, or enrich the corrosion product thereby possibly inhibiting the corrosion rate. Bimetallic corrosion resistance can be increased by fluxless melt protection, choice of compatible alloys, insulating materials, and new high-purity alloys. Magnesium is relatively insensible to oxygen concentration. Pitting, corrosion in the crevices, filiform corrosion are observed. Granular corrosion of magnesium alloys is possible due to the cathodic grain-boundary constituent. More homogeneous microstructures tend to improve corrosion resistance. Under fatigue loading conditions, microcrack initiation in Mg alloys is related to slip in preferentially oriented grains. Coating that exclude the corrosive environments can provide the primary defense against corrosion fatigue. Magnesium alloys that contain neither aluminum nor zinc are the most SCC resistant. Compressive surface residual stresses as that created by short peening increase SCC resistance. Cathodic polarization or cladding with a SCC resistant sheet alloy are good alternatives. Effective corrosion prevention for magnesium alloy components and assemblies should start at the design stage. Selective surface preparation, chemical treatment and coatings are recommended. Oil application, wax coating, anodizing, electroplating, and painting are possible alternatives. Recently, it is found that a magnesium hydride layer, created on the magnesium surface by cathodic charging in aqueous solution is a good base for painting. (orig.)

  10. Protection of welded joints against corrosion degradation

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2013-01-01

    Full Text Available Welded joints form an integral part of steel constructions. Welded joints are undetachable joints, which are however subjects of corrosion processes. The internal energy increases during the fusion welding especially in the heat affected places around the welded joint, which become initiating spot of corrosion degradation.The aim of the experiment is to put a welded joint produced by the MAG method to a test of corrosion degradation under the conditions of the norm ČSN ISO 9227 (salt-spray test. Organic and inorganic anticorrosion protections were applied on welded beads. First of all, there were prepared welded beads using the method MAG; secondly, metallographical analyses of welded metal, heat affected places and base material were processed. Further, microhardness as well as analysis of chemical composition using the EDS microscope were analysed. Based on a current trend in anticorrosion protections, there were chosen three types of protective coatings. First protective system was a double-layer synthetic system, where the base layer is formed by paint Pragroprimer S2000 and the upper layer by finishing paint Industrol S 2013. Second protective system is a duplex system formed by a combination of a base zinc coating with Zinorex paint. The last protective system was formed by zinc dipping only. Corrosion resistance of the individual tested samples was evaluated based on degradation of protective coating. The corrosion origin as well as the corrosion process were observed, the main criteria was the observation of welded bead.

  11. Materials corrosion and protection at high temperatures

    International Nuclear Information System (INIS)

    Balbaud, F.; Desgranges, Clara; Martinelli, Laure; Rouillard, Fabien; Duhamel, Cecile; Marchetti, Loic; Perrin, Stephane; Molins, Regine; Chevalier, S.; Heintz, O.; David, N.; Fiorani, J.M.; Vilasi, M.; Wouters, Y.; Galerie, A.; Mangelinck, D.; Viguier, B.; Monceau, D.; Soustelle, M.; Pijolat, M.; Favergeon, J.; Brancherie, D.; Moulin, G.; Dawi, K.; Wolski, K.; Barnier, V.; Rebillat, F.; Lavigne, O.; Brossard, J.M.; Ropital, F.; Mougin, J.

    2011-01-01

    This book was made from the lectures given in 2010 at the thematic school on 'materials corrosion and protection at high temperatures'. It gathers the contributions from scientists and engineers coming from various communities and presents a state-of-the-art of the scientific and technological developments concerning the behaviour of materials at high temperature, in aggressive environments and in various domains (aerospace, nuclear, energy valorization, and chemical industries). It supplies pedagogical tools to grasp high temperature corrosion thanks to the understanding of oxidation mechanisms. It proposes some protection solutions for materials and structures. Content: 1 - corrosion costs; macro-economical and metallurgical approach; 2 - basic concepts of thermo-chemistry; 3 - introduction to the Calphad (calculation of phase diagrams) method; 4 - use of the thermodynamic tool: application to pack-cementation; 5 - elements of crystallography and of real solids description; 6 - diffusion in solids; 7 - notions of mechanics inside crystals; 8 - high temperature corrosion: phenomena, models, simulations; 9 - pseudo-stationary regime in heterogeneous kinetics; 10 - nucleation, growth and kinetic models; 11 - test experiments in heterogeneous kinetics; 12 - mechanical aspects of metal/oxide systems; 13 - coupling phenomena in high temperature oxidation; 14 - other corrosion types; 15 - methods of oxidized surfaces analysis at micro- and nano-scales; 16 - use of SIMS in the study of high temperature corrosion of metals and alloys; 17 - oxidation of ceramics and of ceramic matrix composite materials; 18 - protective coatings against corrosion and oxidation; 19 - high temperature corrosion in the 4. generation of nuclear reactor systems; 20 - heat exchangers corrosion in municipal waste energy valorization facilities; 21 - high temperature corrosion in oil refining and petrochemistry; 22 - high temperature corrosion in new energies industry. (J.S.)

  12. 49 CFR 192.461 - External corrosion control: Protective coating.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion control...

  13. Corrosion protection with eco-friendly inhibitors

    Science.gov (United States)

    Shahid, Muhammad

    2011-12-01

    Corrosion occurs as a result of the interaction of a metal with its environment. The extent of corrosion depends on the type of metal, the existing conditions in the environment and the type of aggressive ions present in the medium. For example, CO3-2 and NO-3 produce an insoluble deposit on the surface of iron, resulting in the isolation of metal and consequent decrease of corrosion. On the other hand, halide ions are adsorbed selectively on the metal surface and prevent formation of the oxide phase on the metal surface, resulting in continuous corrosion. Iron, aluminum and their alloys are widely used, both domestically and industrially. Linear alkylbenzene and linear alkylbenzene sulfonate are commonly used as detergents. They have also been found together in waste water. It is claimed that these chemicals act as inhibitors for stainless steel and aluminum. Release of toxic gases as a result of corrosion in pipelines may lead in certain cases to air pollution and possible health hazards. Therefore, there are two ways to look at the relationship between corrosion and pollution: (i) corrosion of metals and alloys due to environmental pollution and (ii) environmental pollution as a result of corrosion protection. This paper encompasses the two scenarios and possible remedies for various cases, using 'green' inhibitors obtained either from plant extracts or from pharmaceutical compounds. In the present study, the effect of piperacillin sodium as a corrosion inhibitor for mild steel was investigated using a weight-loss method as well as a three-electrode dc electrochemical technique. It was found that the corrosion rate decreased as the concentration of the inhibitor increased up to 9×10-4 M 93% efficiency was exhibited at this concentration.

  14. Corrosion protection of reusable surgical instruments.

    Science.gov (United States)

    Shah, Sadiq; Bernardo, Mildred

    2002-01-01

    To understand the corrosion properties of surgical scissors, 416 stainless steel disks and custom electrodes were used as simulated surfaces under various conditions. These simulated surfaces were exposed to tap water and 400-ppm synthetic hard water as Ca2CO3 under different conditions. The samples were evaluated by various techniques for corrosion potential and the impact of environmental conditions on the integrity of the passive film. The electrodes were used to monitor the corrosion behavior by potentiodynamic polarization technique in water both in the presence and absence of a cleaning product. The surface topography of the 416 stainless steel disks was characterized by visual observations and scanning electron microscopy (SEM), and the surface chemistry of the passive film on the surface of the scissors was characterized by x-ray photoelectron spectroscopy (XPS). The results suggest that surgical instruments made from 416 stainless steel are not susceptible to uniform corrosion; however, they do undergo localized corrosion. The use of suitable cleaning products can offer protection against localized corrosion during the cleaning step. More importantly, the use of potentiodynamic polarization techniques allowed for a quick and convenient approach to evaluate the corrosion properties of surgical instruments under a variety of simulated-use environmental conditions.

  15. Corrosion and corrosion protection of support structures for offshore wind energy devices (OWEA)

    Energy Technology Data Exchange (ETDEWEB)

    Momber, A. [Muehlhan AG, Schlinckstrasse 3, D-21107 Hamburg (Germany)

    2011-05-15

    The paper provides a review about the corrosion and corrosion protection of offshore wind energy devices (OWEA). Firstly, special features resulting from location and operation of OWEA are being discussed. Secondly, types of corrosion and corrosion phenomena are summarized in a systematic way. Finally, practical solutions to the corrosion protection of OWEA, including steel allowances, cathodic protection and coatings and linings, are discussed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Self-Healing Corrosion Protective Sol-Gel Coatings

    NARCIS (Netherlands)

    Abdolah Zadeh, M.

    2016-01-01

    Inspired by the state of the art and the recent advances in the field of self-healing corrosion protective coatings, the thesis entitled “Self-healing corrosion protective sol-gel coatings” addresses novel routes to self-healing corrosion protective sol-gel coatings via extrinsic and intrinsic

  17. Corrosion and Protection of Metal in the Seawater Desalination

    Science.gov (United States)

    Hou, Xiangyu; Gao, Lili; Cui, Zhendong; Yin, Jianhua

    2018-01-01

    Seawater desalination develops rapid for it can solve water scarcity efficiently. However, corrosion problem in the seawater desalination system is more serious than that in normal water. So, it is important to pay attention to the corrosion and protection of metal in seawater desalination. The corrosion characteristics and corrosion types of metal in the seawater desalination system are introduced in this paper; In addition, corrosion protect methods and main influencing factors are stated, the latest new technologies about anti-corrosion with quantum energy assisted and magnetic inhibitor are presented.

  18. Molybdate Coatings for Protecting Aluminum Against Corrosion

    Science.gov (United States)

    Calle, Luz Marina; MacDowell, Louis G.

    2005-01-01

    Conversion coatings that comprise mixtures of molybdates and several additives have been subjected to a variety of tests to evaluate their effectiveness in protecting aluminum and alloys of aluminum against corrosion. Molybdate conversion coatings are under consideration as replacements for chromate conversion coatings, which have been used for more than 70 years. The chromate coatings are highly effective in protecting aluminum and its alloys against corrosion but are also toxic and carcinogenic. Hexavalent molybdenum and, hence, molybdates containing hexavalent molybdenum, have received attention recently as replacements for chromates because molybdates mimic chromates in a variety of applications but exhibit significantly lower toxicity. The tests were performed on six proprietary formulations of molybdate conversion coatings, denoted formulations A through F, on panels of aluminum alloy 2024-T3. A bare alloy panel was also included in the tests. The tests included electrochemical impedance spectroscopy (EIS), measurements of corrosion potentials, scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), and x-ray photoelectron spectroscopy (XPS).

  19. Corrosion and protection of uranium alloy penetrators

    International Nuclear Information System (INIS)

    Weirick, L.J.; Johnson, H.R.; Dini, J.W.

    1975-06-01

    Penetrators made from either a U--3/4 percent Ti alloy or a U--3/4 percent Mo--3/4 percent Zr--3/4 percent Nb--1/2 percent Ti alloy (''Quad'') corrode mildly in moist air, significantly in moist nitrogen, and severely in salt fog. Adequate protection was provided in moist air and nitrogen by coating with electroplated nickel, electroplated nickel and zinc with a chromate finish, and galvanized zinc with a chromate finish. In salt fog, electroplated nickel offered only temporary protection whereas galvanized zinc and electroplated nickel-zinc provided long-lasting protection. The resistance of uncoated penetrators was affected variously by dissimilar metal couplings. Aluminum protected the Quad alloy and adversely affected the U--3/4 percent Ti alloy, whereas steel enhanced localized corrosion in both. (U.S.)

  20. Effect of Flow Velocity on Corrosion Rate and Corrosion Protection Current of Marine Material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong Jong [Kunsan National University, Kunsan (Korea, Republic of); Han, Min Su; Jang, Seok Ki; Kim, Seong Jong [Mokpo National Maritime University, Mokpo (Korea, Republic of)

    2015-10-15

    In spite of highly advanced paint coating techniques, corrosion damage of marine metal and alloys increase more and more due to inherent micro-cracks and porosities in coatings formed during the coating process. Furthermore, flowing seawater conditions promote the breakdown of the protective oxide of the materials introducing more oxygen into marine environments, leading to the acceleration of corrosion. Various corrosion protection methods are available to prevent steel from marine corrosion. Cathodic protection is one of the useful corrosion protection methods by which the potential of the corroded metal is intentionally lowered to an immune state having the advantage of providing additional protection barriers to steel exposed to aqueous corrosion or soil corrosion, in addition to the coating. In the present investigation, the effect of flow velocity was examined for the determination of the optimum corrosion protection current density in cathodic protection as well as the corrosion rate of the steel. It is demonstrated from the result that the material corrosion under dynamic flowing conditions seems more prone to corrosion than under static conditions.

  1. Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection

    Science.gov (United States)

    Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.

    2015-01-01

    This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.

  2. Cathodic corrosion protection of steel pipes; Kathodischer Korrosionsschutz von Rohrleitungsstaehlen

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Markus [SGK Schweizerische Gesellschaft fuer Korrosionsschutz, Zuerich (Switzerland); Schoeneich, Hanns-Georg [Open Grid Europe, Essen (Germany)

    2011-07-01

    The cathodic corrosion protection has been proven excellently in the practical use for buried steel pipelines. This is evidenced statistically by a significantly less frequency of loss compared to non-cathodically protected pipelines. Based on thermodynamic considerations, the authors of the contribution under consideration describe the operation of the cathodic corrosion protection and regular adjustment of the electrochemical potential at the interface steel / soil in practical use. Subsequently, the corrosion scenarios are discussed that may occur when an incorrect setting of the potential results from an operation over several decades. This incorrect setting also can be caused by the failure of individual components of the corrosion protection.

  3. Accelerated Test Method for Corrosion Protective Coatings Project

    Science.gov (United States)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  4. Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings

    Science.gov (United States)

    Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.

    2016-01-01

    indicators, inhibitors and self-healing agents. This allows the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods.Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The release of the inhibitors from the microparticles in basic solution was studied. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed.The inhibition efficacy of the inhibitors, incorporated directly and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.

  5. Intergranular corrosion protective of austenitic stainless steel chemical equipment

    International Nuclear Information System (INIS)

    Kuzyukov, A.N.

    1994-01-01

    A complex of protective measures was developed for each concrete case of intergranular fracture of equipment, i.e.: decrease in the level of strains, surfacing with materials resistant to intergranular fracture under the conditions; permissible correction of process parameters, permitting a shift in corrosion potential towards decrease in the rate of intergranular corrosion. It is shown that even if the eguipment was subject to interfranular corrosion, but the fracture is not of catastrophic character, it proved possible to develop and apply complex methods of protection from the above types of corrosion fracture and to elongate the service life by 5-15 years

  6. The Corrosion Protection of Metals by Ion Vapor Deposited Aluminum

    Science.gov (United States)

    Danford, M. D.

    1993-01-01

    A study of the corrosion protection of substrate metals by ion vapor deposited aluminum (IVD Al) coats has been carried out. Corrosion protection by both anodized and unanodized IVD Al coats has been investigated. Base metals included in the study were 2219-T87 Al, 7075-T6 Al, Titanium-6 Al-4 Vanadium (Ti-6Al-4V), 4130 steel, D6AC steel, and 4340 steel. Results reveal that the anodized IVD Al coats provide excellent corrosion protection, but good protection is also achieved by IVD Al coats that have not been anodized.

  7. Protecting solar collector systems from corrosion

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The main cause of the reduced life of a solar heating system is corrosion of the exterior parts and the internal components. This report outlines ways of reducing the cost of solar heating by reducing the corrosion in solar heating systems, and hence increasing the system's service life. Mechanisms for corrosion are discussed: these include galvanic corrosion and crevice corrosion. Means of minimizing corrosion at the design stage are then described. Such methods, when designing the solar collector, involve ensuring proper drainage of exterior water; eliminating situations where moisture, dirt and pollutants may collect; preventing condensation inside the collector; using proper gaskets and sealants at appropriate places; and selecting optimum materials and coatings. Interior corrosion can be minimized at the design stage by choosing a good heat transfer fluid and corrosion inhibitor, in the case of systems where liquids are used; ensuring a low enough flow rate to avoid erosion; designing the system to avoid crevices; and avoiding situations where galvanic corrosion could occur. Other procedures are given for minimizing corrosion in the construction and operation of solar heating systems. 7 figs., 7 tabs.

  8. Microencapsulation Technologies for Corrosion Protective Coating Applications

    Science.gov (United States)

    Li, Wenyan; Buhrow, Jerry; Jolley, Scott; Calle, Luz; Pearman, Benjamin; Zhang, Xuejun

    2015-01-01

    Microencapsulation technologies for functional smart Coatings for autonomous corrosion control have been a research area of strong emphasis during the last decade. This work concerns the development of pH sensitive micro-containers (microparticles and microcapsules) for autonomous corrosion control. This paper presents an overview of the state-of-the-art in the field of microencapsulation for corrosion control applications, as well as the technical details of the pH sensitive microcontainer approach, such as selection criteria for corrosion indicators and corrosion inhibitors; the development and optimization of encapsulation methods; function evaluation before and after incorporation of the microcontainers into coatings; and further optimization to improve coating compatibility and performance.

  9. Corrosion protection and finishing of automobiles

    International Nuclear Information System (INIS)

    Sheikh, S.T.

    2005-01-01

    finishing of automobiles is an important aspect. There have been considerable reductions of weight in automobiles by the use of composites components replacing heavy metallic components. Fenders previously based on metal have been replaced with plastic and painted with the same colour shade as of the metallic body, this has eps for proper adhesion of the paints on the plastic fender to avoid chipping off the paint form it. This paper discusses the necessary processes required for finishing of an automobile along with the corrosion protection measures. Automobiles contains a variety of engineering materials, engine main body fuel tanks connecting rods heat radiators and other mechanical parts are made from different types of engineering alloys having varying chemical compositions. Other parts like dashboard, front panel and other are made from composites. The main body made from cold roll ed steel having various contours 'c' it due to the different designs is the potential site for corrosion attack, The main body is exposed to the hostile environment through out its life period. An automobile is given a particular finish with a view to counter the hostile environments as they are not limited for plying in a limiting conditions and are taken to different weather conditions in one day thus facing severe stresses and strain. Thus it is essential that an automobile before rolling 'out of the assembly line should properly corrosion resistant and aesthetically pleasant also. Finishing for automobiles being very specialized, the main requirement being maximum durability with minimum numbers of coats baked, at the fastest possible schedule. High gloss and range of good eye catching colours being important to increase sales appeal. In the near past the car finishes were based on alkyd-amino resins baking materials and force drying lacquers, which have excellent appearance originally and maintain it on aging. The finishing system for the synthetic baking type may consist of

  10. Corrosion and protection in reinforced concrete : Pulse cathodic protection: an improved cost-effective alternative

    NARCIS (Netherlands)

    Koleva, D.A.

    2007-01-01

    Corrosion and protection in reinforced concrete. Pulse cathodic protection: an improved cost-effective alternative. The aim of the research project was to study the possibilities for establishing a new or improved electrochemical method for corrosion prevention/protection for reinforced concrete.

  11. Evaluation of several corrosion protective coating systems on aluminum

    Science.gov (United States)

    Higgins, R. H.

    1981-01-01

    A study of several protective coating systems for use on aluminum in seawater/seacoast environments was conducted to review the developments made on protective coatings since early in the Space Shuttle program and to perform comparative studies on these coatings to determine their effectiveness for providing corrosion protection during exposure to seawater/seacoast environments. Panels of 2219-T87 aluminum were coated with 21 different systems and exposed to a 5 percent salt spray for 4000 hr. Application properties, adhesion measurements, heat resistance and corrosion protection were evaluated. For comparative studies, the presently specified Bostik epoxy system used on the SRB structures was included. Results of these tests indicate four systems with outstanding performance and four additional systems with protection almost as good. These systems are based on a chromated pretreatment, a chromate epoxy primer, and a polyurethane topcoat. Consideration for one of these systems should be included for those applications where superior corrosion protection for aluminum surfaces is required.

  12. Multilayer graphene as an effective corrosion protection coating for copper

    Science.gov (United States)

    Ravishankar, Vasumathy; Ramaprabhu, S.; Jaiswal, Manu

    2018-04-01

    Graphene grown by chemical vapor deposition (CVD) has been studied as a protective layer against corrosion of copper. The layer number dependence on the protective nature of graphene has been investigated using techniques such as Tafel analysis and Electroimpedance Spectroscopy. Multiple layers of graphene were achieved by wet transfer above CVD grown graphene. Though this might cause grain boundaries, the sites where corrosion is initiated, to be staggered, wet transfer inherently carries the disadvantage of tearing of graphene, as confirmed by Raman spectroscopy measurements. However, Electroimpedance Spectroscopy (EIS) reflects that graphene protected copper has a layer dependent resistance to corrosion. Decrease in corrosion current (Icorr) for graphene protected copper is presented. There is only small dependence of corrosion current on the layer number, Tafel plots clearly indicate passivation in the presence of graphene, whether it be single layer or multiple layers. Notwithstanding the crystallite size, defect free layers of graphene with staggered grain boundaries combined with passivation could offer good corrosion protection for metals.

  13. Corrosion and protection of aluminum alloys in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Nisancioglu Kemal [Department of Materials Technology, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2004-07-01

    The paper deals with pitting and uniform corrosion and effectiveness of cathodic protection in reducing these corrosion forms. In stagnant waters or presence of low flow rates, pitting may occur. However, pitting corrosion, driven by the Fe-rich cathodic intermetallic compounds, is often of superficial nature. The pits tend to passivate as a result of etching or passivation of the intermetallics with time. Cathodic protection is an effective way of preventing pitting. It also requires low current densities since the cathodic area, defined by the Fe-rich intermetallics, is small in contrast to steel, which is uniformly accessible to the cathodic reaction. Although thermodynamic calculations suggest possible instability of the oxide in slightly alkaline solutions, such as seawater, protective nature of the oxide in practice is attributed to the presence of alloying elements such as Mg and Mn. Thus, the passivity of both the aluminum matrix alloy (the anode) and the intermetallics (cathodes) have to be considered in evaluating the corrosion and protection of aluminum alloys. With increasing flow rate, the possibility of pitting corrosion reduces with increase in the rate of uniform corrosion, which is controlled by the flow dependent chemical dissolution of the oxide. Cathodic protection does not stop this phenomenon, and coatings have to be used. (authors)

  14. Laboratory study of reinforcement protection with corrosion inhibitors

    International Nuclear Information System (INIS)

    Stefanescu, D.; Mihalache, M.; Mogosan, S.

    2013-01-01

    Concrete is a durable material and its performance as part of the containment function in NPPs has been good. However, experience shows that degradation of the reinforced concrete structures caused by the corrosion of the reinforcing steel represents more than 80% of all damages in the world. Much effort has been made to develop a corrosion inhibition process to prolong the life of existing structures and minimize corrosion damages in new structures. Migrating Corrosion Inhibitor technology was developed to protect the embedded steel rebar/concrete structure. These inhibitors can be incorporated as an admixture or can be surface impregnated on existing concrete structures. The effectiveness of two inhibitors (ethanolamine and diethanolamine) mixed in the reinforced concrete was evaluated by gravimetric measurements. The corrosion behavior of the steel rebar and the inhibiting effects of the amino alcohol chemistry in an aggressive environment were monitored using electrochemical measurements and scanning electron microscopy (SEM) investigations. (authors)

  15. Positron annihilation in corrosion protective polymeric coatings. Pt. 2

    International Nuclear Information System (INIS)

    Szeles, C.; Vertes, A.; White, M.L.; Leidheiser, H. Jr.; Lehigh Univ., Bethlehem, PA

    1988-01-01

    Positron annihilation was studied in four commercial polymeric coatings on iron. Positron lifetime measurements were performed before and after exposure of the coatings to boiling water for 1 h. A correlation was observed between the effect of water exposure on the lifetime spectra and the protective properties of the coatings when exposed to 0.1M sulfuric acid at 60 0 C for 1010 h. The coatings that provided good corrosion protection in the acid showed minor changes in the positron lifetime spectra upon exposure to water. The spectra of coatings that showed poor corrosion protection in the acid showed minor changes in the positron lifetime spectra upon exposure to water. The spectra of coatings that showed poor corrosion protection, on the other hand, exhibited considerable changes in the positron lifetime spectra upon exposure to water. (orig.)

  16. Wire-Arc-Sprayed Aluminum Protects Steel Against Corrosion

    Science.gov (United States)

    Zimmerman, Frank R.; Poorman, Richard; Sanders, Heather L.; Mckechnie, Timothy N.; Bonds, James W., Jr.; Daniel, Ronald L., Jr.

    1995-01-01

    Aluminum coatings wire-arc sprayed onto steel substrates found effective in protecting substrates against corrosion. Coatings also satisfy stringent requirements for adhesion and flexibility, both at room temperature and at temperatures as low as liquid hydrogen. Developed as alternatives to corrosion-inhibiting primers and paints required by law to be phased out because they contain and emit such toxic substances as chromium and volatile organic compounds.

  17. Protection against deposits and corrosion in water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lehmkuhl, J

    1978-11-01

    Industry generally, including mining and coal preparation, are in the habit of using large amounts of untreated service water. The service water can be softened or treated with hardness stabilisers in order to prevent deposit formation and corrosion. As often as not, deposits of dirt and attack by microorganisma also have to be eliminated. The article puts forward some suggestions for practical assistance in protecting water systems against the dangers of deposits and corrosion.

  18. Characterisation of corrosion products on pipeline steel under cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Lanarde, Lise [Gaz de France Research and Development Division, 361 avenue du President Wilson, BP33, 93211 Saint Denis La Plaine (France)]|[UPR15 du CNRS, Laboratoire des Interfaces et Systemes Electrochimiques, Universite Pierre et Marie Curie, C.P. 133, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Campaignolle, Xavier; Karcher, Sebastien; Meyer, Michel [Gaz de France Research and Development Division, 361 avenue du President Wilson, BP33, 93211 Saint Denis La Plaine (France); Joiret, Suzanne [UPR15 du CNRS, Laboratoire des Interfaces et Systemes Electrochimiques, Universite Pierre et Marie Curie, C.P. 133, 4 Place Jussieu 75252 Paris Cedex 05 (France)

    2004-07-01

    Onshore gas transmission lines are conjointly protected against external corrosion by cathodic protection (CP) and organic coatings. If both protection systems are simultaneously faulty, the pipe may be subjected to local loss of protection criteria. Consequently, the development of a corrosion due to the ground intrinsic corrosiveness may occur. To guarantee an optimal and safe use of its 31000 km buried gas transmission network, Gaz de France regularly inspects its pipelines. When indications of metal damage are suspected, excavations are realized to carry out a finer diagnosis and, if necessary, to repair. Whenever, corrosions are encountered, although it occurs very scarcely, it is necessary to evaluate its degree of gravity: activity, mechanism, and kinetics. Among corrosion defects, it is indeed essential to differentiate those active, from those older inactive at the time of excavation, since those last ones may possibly have been annihilated, by a PC reinforcement for instance. Eventually, the identification of the corrosion mechanism and its associated rate will provide an assessment of the risks encountered by other sections of the pipeline similar to that excavated. This study investigates to what extent the degree of gravity (activity, kinetics) of a corrosion can be determined by the characterization and identification of its associated corrosion products. Moreover, it will attempt to relate it to the close environment features as well as to the operating conditions of the pipe. The preliminary results presented in this paper consist in a laboratory study of the time evolution of corrosion products formed on the surface of ordinary low carbon steel samples. The specimens have been previously subjected to various polarization conditions in various aqueous media. The selected solutions are characteristic of ground waters. The main parameters considered for the definition of the media were its initial chemical composition, pH and dissolved gas composition

  19. Applications of cathodic protection for the protection of aqueous and soil corrosion of power plant components

    International Nuclear Information System (INIS)

    Sinha, A.K.; Mitra, A.K.; Bhakta, U.C.; Sanyal, S.K.

    2000-01-01

    Power plant components exposed to environments such as water and soil are susceptible to severe corrosion. Many times the effect of corrosion in power plant components can be catastrophic. The problem is aggravated for underground pipelines due to additional factors such as large network of pipelines, proximity to earth mat, high voltage transmission lines, corrosive chemicals, inadequate approach etc. Other components such as condenser water boxes, internals of pipelines, clarifier bridge structures, cooling water inlet gates and pipes etc. which are in continuous contact with water, are subjected to severe corrosion. The nature and locations of all such components are at places which are not accessible for routine maintenance and hence they require long term reliable protection against corrosion. Experience has shown that anti-corrosive coatings are inadequate in preventing corrosion and due to their location regular maintenance coatings are also not feasible. Under such circumstances the applications of cathodic protection provides a long term solution the design of cathodic protection, for such applications differs from the commonly employed cathodic protection for cross-country pipelines and submerged structures due to other complexities in the plant region and maintenance of the applied system. The present paper intends to discuss the applications of cathodic protection with suitable anti-corrosive coatings for protection of various power plant components and the specific features of each type of application. (author)

  20. Chemical conversion coating for protecting magnesium alloys from corrosion

    Science.gov (United States)

    Bhargava, Gaurang; Allen, Fred M.; Skandan, Ganesh; Hornish, Peter; Jain, Mohit

    2016-01-05

    A chromate-free, self-healing conversion coating solution for magnesium alloy substrates, composed of 10-20 wt. % Mg(NO.sub.3).sub.2.6H.sub.2O, 1-5 wt. % Al(NO.sub.3).sub.3.9H.sub.2O, and less than 1 wt. % of [V.sub.10O.sub.28].sup.6- or VO.sub.3.sup.- dissolved in water. The corrosion resistance offered by the resulting coating is in several hundreds of hours in salt-spray testing. This prolonged corrosion protection is attributed to the creation of a unique structure and morphology of the conversion coating that serves as a barrier coating with self-healing properties. Hydroxoaluminates form the backbone of the barrier protection offered while the magnesium hydroxide domains facilitate the "slow release" of vanadium compounds as self-healing moieties to defect sites, thus providing active corrosion protection.

  1. The corrosion protection of aluminum by various anodizing treatments

    Science.gov (United States)

    Danford, Merlin D.

    1989-01-01

    Corrosion protection to 6061-T6 aluminum, afforded by both teflon-impregnated anodized coats (Polylube and Tufram) and hard-anodized coats (water sealed and dichromate sealed), was studied at both pH 5.5 and pH 9.5, with an exposure period of 28 days in 3.5 percent NaCl solution (25 C) for each specimen. In general, corrosion protection for all specimens was better at pH 9.5 than at pH 5.5. Protection by a Tufram coat proved superior to that afforded by Polylube at each pH, with corrosion protection by the hard-anodized, water-sealed coat at pH 9.5 providing the best protection. Electrochemical work in each case was corroborated by microscopic examination of the coats after exposure. Corrosion protection by Tufram at pH 9.5 was most comparable to that of the hard-anodized samples, although pitting and some cracking of the coat did occur.

  2. The corrosion protection of 2219-T87 aluminum by anodizing

    Science.gov (United States)

    Danford, M. D.

    1991-01-01

    Various types of anodizing coatings were studied for 2219-T87 aluminum. These include both type II and type III anodized coats which were water sealed and a newly developed and proprietary Magnaplate HCR (TM) coat. Results indicate that type II anodizing is not much superior to type II anodizing as far as corrosion protection for 2219-T87 aluminum is concerned. Magnaplate HCR (TM) coatings should provide superior corrosion protection over an extended period of time using a coating thickness of 51 microns (2.0 mils).

  3. Boron nitride nanosheets as oxygen-atom corrosion protective coatings

    International Nuclear Information System (INIS)

    Yi, Min; Shen, Zhigang; Zhao, Xiaohu; Liang, Shuaishuai; Liu, Lei

    2014-01-01

    The research of two-dimensional nanomaterials for anticorrosion applications is just recently burgeoning. Herein, we demonstrate the boron nitride nanosheets (BNNSs) coatings for protecting polymer from oxygen-atom corrosion. High-quality BNNSs, which are produced by an effective fluid dynamics method with multiple exfoliation mechanisms, can be assembled into coatings with controlled thickness by vacuum filtration. After exposed in atom oxygen, the naked polymer is severely corroded with remarkable mass loss, while the BNNSs-coated polymer remains intact. Barrier and bonding effects of the BNNSs are responsible for the coating's protective performance. These preliminary yet reproducible results pave a way for resisting oxygen-atom corrosion

  4. Erosion Corrosion and Protection of Recycle System with Seawater

    Directory of Open Access Journals (Sweden)

    Xue Jin

    2016-01-01

    Full Text Available In order to investigate the corrosion of recycle system with seawater in rights of power plant, the erosion behavior and mechanism of erosion corrosion in this system constructed with several corrosionresistance alloys have been studied and tested in the condition of high speed fluid with a sand particles. Both special protection technologies and results, one designed by high temperature epoxy resin powder coating and another of the associating method of anode protection together with such same coating, have been discussed as well in this case.

  5. Corrosion Protection of Steels by Conducting Polymer Coating

    Directory of Open Access Journals (Sweden)

    Toshiaki Ohtsuka

    2012-01-01

    Full Text Available The corrosion protection of steels by conducting polymer coating is reviewed. The conducting polymer such as polyaniline, polypyrrole, and polythiophen works as a strong oxidant to the steel, inducing the potential shift to the noble direction. The strongly oxidative conducting polymer facilitates the steel to be passivated. A bilayered PPy film was designed for the effective corrosion protection. It consisted of the inner layer in which phosphomolybdate ion, PMo12O3−40 (PMo, was doped and the outer layer in which dodecylsulfate ion (DoS was doped. The inner layer stabilized the passive oxide and the outer possessed anionic perm-selectivity to inhibit the aggressive anions such as chloride from penetrating through the PPy film to the substrate steel. By the bilayered PPy film, the steel was kept passive for about 200 h in 3.5% sodium chloride solution without formation of corrosion products.

  6. Pitting corrosion protection of low nickel stainless steel

    Indian Academy of Sciences (India)

    The corrosion protective properties of PANi and PoPD coatings on LN SS in 0.5 M NaCl were evaluated using potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) techniques. The potentiodynamic polarization and electrochemical impedance spectroscopic results indicate that the PoPD ...

  7. High performance polypyrrole coating for corrosion protection and biocidal applications

    Science.gov (United States)

    Nautiyal, Amit; Qiao, Mingyu; Cook, Jonathan Edwin; Zhang, Xinyu; Huang, Tung-Shi

    2018-01-01

    Polypyrrole (PPy) coating was electrochemically synthesized on carbon steel using sulfonic acids as dopants: p-toluene sulfonic acid (p-TSA), sulfuric acid (SA), (±) camphor sulfonic acid (CSA), sodium dodecyl sulfate (SDS), and sodium dodecylbenzene sulfonate (SDBS). The effect of acidic dopants (p-TSA, SA, CSA) on passivation of carbon steel was investigated by linear potentiodynamic and compared with morphology and corrosion protection performance of the coating produced. The types of the dopants used were significantly affecting the protection efficiency of the coating against chloride ion attack on the metal surface. The corrosion performance depends on size and alignment of dopant in the polymer backbone. Both p-TSA and SDBS have extra benzene ring that stack together to form a lamellar sheet like barrier to chloride ions thus making them appropriate dopants for PPy coating in suppressing the corrosion at significant level. Further, adhesion performance was enhanced by adding long chain carboxylic acid (decanoic acid) directly in the monomer solution. In addition, PPy coating doped with SDBS displayed excellent biocidal abilities against Staphylococcus aureus. The polypyrrole coatings on carbon steels with dual function of anti-corrosion and excellent biocidal properties shows great potential application in the industry for anti-corrosion/antimicrobial purposes.

  8. Inorganic coatings on stainless steel for protection against crevice corrosion

    International Nuclear Information System (INIS)

    Henrikson, Sture

    1989-12-01

    In order to create protection against crevice corrosion stainless steel test specimens of type 316 steel with various inorganic coatings applied on crevice surfaces were tested for 3-50 months at 25 and 30 degree C in natural seawater containing 0.2-1.5 ppm free chlorine. Various metallic coatings, Ni base alloys with Cr and Mo, Ni with W, pure Ag and pure Mo, as well as ceramic coatings - Cr 2 O 3 , TiO 2 and Al 2 O 3 - were studied. All the coatings tested, except pure Molybdenum applied by plasma spraying in a max 0.1 mm thick layer were found to promote crevice corrosion of the stainless steel. A significant reduction of the crevice corrosion susceptibility was obtained with Molybdenum. The result is considered promising enough to justify full scale tests in seawater on flange joints of pipes, valves or pumps. (author)

  9. ''Ftorlon'' coats for corrosion protection of electrodialysis units

    International Nuclear Information System (INIS)

    Shigorina, I.I.; Egorov, B.N.; Kalinkin, A.V.; Kapustin, A.F.; Shigorin, V.G.; Smirnova, N.M.

    1983-01-01

    This article examines the coats for protecting components of electrodialysis units (housing, frames, etc.) with respect to chemical stability, electric insulation properties, and with reference to atomic power station (APS) decontamination and radiation resistance. The physicomechanical properties of the coats were investigated by the standard methods. The radiation resistance of the coats was judged from the change in their physicomechanical and protective properties in corrosive media by placing the coat samples in the gamma-field of a Co 60 source at an intensity of 3.5-4 Gr/sec. Recommends the coat SP-CSPE-31 based on chlorosulfonated polythylene (TU-11-118-74) for corrosion protection of the EDU bulky equipment designed for desalination of sea water for industrial and household purposes

  10. Benchmarking of Zinc Coatings for Corrosion Protection: A Detailed Characterization of Corrosion and Electrochemical Properties of Zinc Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, Sudesh L; Zixi, Tan [Singapore Institute of Manufacturing Technology, Nanyang Drive (Singapore)

    2017-02-15

    Due to various types of Zn coatings for many decades for various applications, it is imperative to study and compare their corrosion resistance properties of some of these. Here, we introduce a systematic methodology for evaluation and validation of corrosion protection properties of metallic coatings. According to this methodology, samples are were exposed in an advanced cyclic corrosion test chamber according to ISO 14993, and removed at the end of each withdrawal for respective corrosion and electrochemical characterization to evaluate both barrier and galvanic protection properties. Corrosion protection properties of coatings were evaluated by visual examination according to ISO 10289, mass loss and subsequent corrosion rate measurements, electrochemical properties, and advanced electrochemical scanning techniques. In this study, corrosion protection properties of a commercial zinc rich coating (ZRC) on AISI 1020 mild steel substrates were evaluated and benchmarked against hot dip galvanized (HDG). Results were correlated, and corrosion protection capabilities of the two coatings were compared. The zinc rich coating performed better than hot dip galvanized coating in terms of overall corrosion protection properties, according to the exposure and experimental conditions used in this study. It proved to be a suitable candidate to replace hot dip galvanized coatings for desired applications.

  11. Experiences of corrosion and corrosion protection in seawater systems in the Nordic countries

    International Nuclear Information System (INIS)

    Henrikson, S.

    1985-01-01

    A summary is given of the experience of the corrosion resistance of pumps, heat exchangers, valves and pipings in different seawater cooling systems in Scandinavia, including power reactor cooling systems in Finland and Sweden. For pumps and heat exchangers the experience has been so extensive that a clear picture of today's standing can be given. Owing to scanty data concerning valves and pipes, the survey of the corrosion in these components is less well supported. Vertically extended centrifugal pumps are the pumps in general use in power plant cooling systems. To counteract corrosion on pump riser and pump casing having an organic surface coating, and on stainless steel shafts and impellers, these components should be provided with internal and external cathodic protection. For tube and plate type heat exchangers, titanium has proved to be the best material choice. Rubber-enclosed carbon steel pipings, or pipings having a thick coating of epoxy plastic, have shown very strong corrosion resistance in power plant seawater cooling systems. Valves in seawater systems have primarily been affected by corrosion due to poorly executed or damaged organic coating on cast iron. Different seawater-resistant bronzes (red bronze, tin bronze and aluminium bronze) are therefore preferable as valve materials

  12. Corrosion protection method by neutral treatment for boilers

    International Nuclear Information System (INIS)

    Ishikawa, Hisashige

    1978-01-01

    The corrosion protection method by neutral treatment has been applied in Europe mainly for boilers and nuclear reactors instead of existing all volatile treatment. The cause of corrosion of steel and copper in water and the effect of neutral treatment, that is the effect of protection film of magnetite in steel and cuprous oxide in copper alloy, are explained with the characteristic figure of PH, electromotive force and chemical formula. The experience of applying this neutral treatment to the Wedel thermal power plant and the system flow sheet, the water treatment equipment, relating instrumentations and the water examination are described in detail. Hydrogen peroxide is injected in this neutral treatment. The comparison between the existing water treatment and the neutral treatment and their merits and demerits are explained. (Nakai, Y.)

  13. Bilayers Polypyrrole Coatings for Corrosion Protection of SAE 4140 Steel

    OpenAIRE

    Lehr, I.L.; Saidman, S.B.

    2014-01-01

    In this study polypyrrole (PPy) bilayers films were electrodeposited onto SAE 4140 steel. The inner layer was electropolymerized in the presence of molibdate and nitrate and the outer layer in a solution containing sodium bis (2-ethylhexyl) sulfosuccinate (AOT). The electrosynthesis was done under potentiostatic conditions. The corrosion protection properties of the films were examined in sodium chloride solution by open circuit measurements, linear polarization and electrochemical impedance ...

  14. Corrosion protection performance of palm and mineral oil media

    International Nuclear Information System (INIS)

    Wan Nik Sani, W.B.; Ani, F.N.; Masjuki, H.H.

    2002-01-01

    In European forest, especially Scandinavian, almost all forest machines are filled with biodegradable fluid. The fluid is of synthetic type. The ratio between the lowest cost of mineral oil and the synthetic fluid is about 1:4. The high cost of this biodegradable fluid can be a major obstacle to be used in developing countries. Malaysia and South East Asia are known for its natural beauties. However, a spill of mineral based oils to their land and seas may result in long term water and soil contamination. Thus crop or agricultural based oil product can provide the solution to this problem. However, considering the demand placed on the oil in service, the service performance such as relation to component compatibility with the crop based oil is crucial to be investigated. The ability of crop based oils to protect and reduce corrosion formation is still unexplored. It is important for each oil to preserve its oxidation stability and remain non-corrosive during service. This paper reports the results of copper corrosion tests. The test includes mass change monitoring, oxide scales and microscopic analysis using Scanning Electron Microscope (SEM). Relative Increase of total acid number and weight loss during copper immersion has proved that metal corrosion in contact with oil was caused by oil degradation that produces acidic compounds. Coppers that were immersed in oil temperature of 60 0 C show that increase of temperature in presence of transition metal induces oil degradation. (Author)

  15. Corrosion protection pays off for coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T.

    2006-11-15

    Zinc has long been used to hot-dip galvanise steel to deliver protection in harsh environments. Powder River Basin or eastern coal-fired plants benefit from using galvanized steel for conveyors, vibratory feeders, coal hoppers, chutes, etc. because maintenance costs are essentially eliminated. When life cycle costs for this process are compared to an alternative three-coal paint system for corrosion protection, the latter costs 5-10 times more than hot-dip galvanizing. An AEP Power Plant in San Juan, Puerto Rico and the McDuffie Coal Terminal in Mobile, AL, USA have both used hot-dip galvanized steel. 1 fig., 1 tab.

  16. Investigation of Corrosion and Cathodic Protection in Reinforced Concrete. II : Properties of Steel Surface Layers

    NARCIS (Netherlands)

    Koleva, D.A.; De Wit, J.H.W.; Van Breugel, K.; Lodhi, Z.F.; Ye, G.

    2007-01-01

    The present study explores the formation of corrosion products on the steel surface (using as-received low carbon construction steel) in reinforced concrete in conditions of corrosion and subsequent transformation of these layers in conditions of cathodic protection (CP).

  17. Corrosion Protection Systems and Fatigue Corrosion in Offshore Wind Structures: Current Status and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Seth J. Price

    2017-02-01

    Full Text Available Concerns over reducing CO2 emissions associated with the burning of fossil fuels in combination with an increase in worldwide energy demands is leading to increased development of renewable energies such as wind. The installation of offshore wind power structures (OWS is one of the most promising approaches for the production of renewable energy. However, corrosion and fatigue damage in marine and offshore environments are major causes of primary steel strength degradation in OWS. Corrosion can reduce the thickness of structural components which may lead towards fatigue crack initiation and buckling. These failure mechanisms affect tower service life and may result in catastrophic structural failure. Additionally, environmental pollution stemming from corrosion’s by-products is possible. As a result, large financial investments are made yearly for both the prevention and recovery of these drawbacks. The corrosion rate of an OWS is dependent on different characteristics of attack which are influenced by access to oxygen and humidity. Structural degradation can occur due to chemical attack, abrasive action of waves, and microorganism attacks. Inspired by technological and scientific advances in recent years, the purpose of this paper is to discuss the current protective coating system technologies used to protect OWS as well as future perspectives.

  18. Passive films and corrosion protection due to phosphonic acid inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.L.; Liu, Q. (Nanjing Univ. (China)); Li, Y.; Wang, Z.W. (Nanjing Inst. of Chemical Tech. (China))

    1993-04-01

    For protecting mild steel from corrosion, aminotrimethylidenephosphonic acid (ATMP) was more effective than 1-hydroxyethylidene diphosphonic acid (HEDP), N.N-dimethylidenediphosphonic acid (EEDP), and ethylenediaminetetramethylidenephosphonic acid (EDTMP). A 20-min treatment in 1.0 mol/l of ATMP with a pH 0.23 at 45 C formed an anti-corrosive complex film that was composed of 48.4% O, 28.6% P, 7.0% Fe, 4.3% N, and 11.7% C, based on x-ray photoelectron spectroscopy and Auger electron spectroscopy. From differences in binding energies of Fe, N, and O, in the shift of C-N and P-O vibration, in the reflection FTIR spectra, and in the change of P-OH and Fe-N vibration before and after film formation, it was deduced that N and O in ATMP were coordinated with Fe[sub 2+] in the film.

  19. Modified corrosion protection coatings for Concrete tower of Transmission line

    Science.gov (United States)

    Guo, Kai; Jing, Xiangyang; Wang, Hongli; Yue, Zengwu; Wu, Yaping; Mi, Xuchun; Li, Xingeng; Chen, Suhong; Fan, Zhibin

    2017-12-01

    By adding nano SiO2 particles, an enhanced K-PRTV anti-pollution flashover coating had been prepared. Optical profile meter (GT-K), atomic force microscopy (AFM) and infrared spectrometer (FT-IR) characterization were carried out on the coating surface analysis. With the use of modified epoxy resin as the base material, the supplemented by phosphate as a corrosion stabilizer, to achieve a corrosion of steel and galvanized steel with rust coating. Paint with excellent adhesion, more than 10MPa (1), resistant to neutral salt spray 1000h does not appear rust point. At the same time coating a large amount of ultra-fine zinc powder can be added for the tower galvanized layer zinc repair function, while the paint in the zinc powder for the tower to provide sacrificial anode protection, to achieve self-repair function of the coating. Compared to the market with a significant reduction in the cost of rust paint, enhance the anti-corrosion properties.

  20. Experiencies of corrosion and corrosion protection in seawater-cooling systems in the Nordic countries

    International Nuclear Information System (INIS)

    Henriksson, S.

    1984-10-01

    This report summarizes the experience of the corrosion resistance of pumps, heat exchangers, valves, and pipings in different seawater-cooling system. For pumps and heat exchangers the experience has been so extensive that a clear picture of todays status can be given. Owing to more scanty data concerning valves and pipes the survey of the corrosion in these components is less well substantiated. The most common pumps in the cooling systems of power stations are vertically extended shaft pumps. To counteract corrosion on column and casing with organic surface coating and on stainless steel shafts and impellers under shutdown conditions, these should be provided with internal and external cathodic protection. The experience of tin and aluminium bronzes in impellers and shafts in such pumps has been so poor - erosion and cavitaion damage - that a change has usually been made to preferentially ferritic-austenitic Mo-alloyd stainless steels. The combination of stainless steel/Ni-Resist 2 D has been found unsatisfactory owing to the occurrence of galvanic corrosion on the latter material. For heat exchangers, titanium has proved to be far and away the best choice. In the optimal blanket solution for a titanium heat exchangers the tubes are seal-welded to tube sheets of explosion-bonded titanium clad steel. For retubing of old condensers a similar procedure with tubes of high-alloy stainless steel in tube sheets of stainless clad steel is of economic interest. The effect of chlorination of the cooling water, however, remains to be clarified before such a procedure can be unreservedly recommended. Pipings of rubber-lined carbon steel or with thick coatings of solvent-free opoxy resin have shown very good corrosion resistance. Tar-epoxy-resin-coated pipes, however, should usually be provided with internal cathodic protection. Cement-lined carbon steel pipes are used with varying results in the offshore industry. Recently, however, pipes of the high slloy stainless steel

  1. Coatings for Oxidation and Hot Corrosion Protection of Disk Alloys

    Science.gov (United States)

    Nesbitt, Jim; Gabb, Tim; Draper, Sue; Miller, Bob; Locci, Ivan; Sudbrack, Chantal

    2017-01-01

    Increasing temperatures in aero gas turbines is resulting in oxidation and hot corrosion attack of turbine disks. Since disks are sensitive to low cycle fatigue (LCF), any environmental attack, and especially hot corrosion pitting, can potentially seriously degrade the life of the disk. Application of metallic coatings are one means of protecting disk alloys from this environmental attack. However, simply the presence of a metallic coating, even without environmental exposure, can degrade the LCF life of a disk alloy. Therefore, coatings must be designed which are not only resistant to oxidation and corrosion attack, but must not significantly degrade the LCF life of the alloy. Three different Ni-Cr coating compositions (29, 35.5, 45wt. Cr) were applied at two thicknesses by Plasma Enhanced Magnetron Sputtering (PEMS) to two similar Ni-based disk alloys. One coating also received a thin ZrO2 overcoat. The coated samples were also given a short oxidation exposure in a low PO2 environment to encourage chromia scale formation. Without further environmental exposure, the LCF life of the coated samples, evaluated at 760C, was less than that of uncoated samples. Hence, application of the coating alone degraded the LCF life of the disk alloy. Since shot peening is commonly employed to improve LCF life, the effect of shot peening the coated and uncoated surface was also evaluated. For all cases, shot peening improved the LCF life of the coated samples. Coated and uncoated samples were shot peened and given environmental exposures consisting of 500 hrs of oxidation followed by 50 hrs of hot corrosion, both at 760C). The high-Cr coating showed the best LCF life after the environmental exposures. Results of the LCF testing and post-test characterization of the various coatings will be presented and future research directions discussed.

  2. Corrosion Protection of Al Alloys for Aircraft by Coatings With Advanced Properties and Enhanced Performance

    National Research Council Canada - National Science Library

    Bierwagen, Gordon; Croll, Stuart; Webster, Dean; Tallman, Dennis; Huo, Qun; Allahar, Brian; Su, Quan; Bonitz, Verena; Fernando, Dilhan; Wang, Duhua

    2007-01-01

    The report presents research that addresses research performed at NDSU for environmentally compliant corrosion protection in coatings systems of greatly extended lifetimes for present and future aircraft...

  3. Zinc/manganese multilayer coatings for corrosion protection

    International Nuclear Information System (INIS)

    Muenz, R.; Wolf, G.K.; Guzman, L.; Adami, M.

    2004-01-01

    Zn alloys are able to surpass the performance of electrogalvanised or hot-dip Zn (at same thickness) for corrosion protection of car bodies. In particular, vacuum deposited Zn alloy layers have higher protection power on non-painted steel surfaces as compared with pure Zn layers. In the present work the Zn-Mn system was investigated: Zn/Mn alloys of different compositions as well as Zn/Mn multilayers of 5-6 μm total thickness were prepared on low alloy steel by ion beam assisted deposition (IBAD). The equipment contained two electron beam evaporators and a slit extraction ion source, delivering ions of 100-1500 eV energy. The corrosion behaviour of the samples was evaluated by standard salt spray tests (SST). The composition and microstructure of the coatings was studied by scanning electron microscopy (SEM) and EDX-depth profiling. The behaviour of the coating/substrate system is discussed in comparison with 'state of the art' Zn-coatings (EZ) produced by electrogalvanizing. Generally speaking, the performance of the optimised coatings is as good or better than the reference standard

  4. Corrosion protection of galvanized steels by silane-based treatments

    Science.gov (United States)

    Yuan, Wei

    The possibility of using silane coupling agents as replacements for chromate treatments was investigated on galvanized steel substrates. In order to understand the influence of deposition parameters on silane film formation, pure zinc substrates were first used as a model for galvanized steel to study the interaction between silane coupling agents and zinc surfaces. The silane films formed on pure zinc substrates from aqueous solutions were characterized by ellipsometry, contact angle measurements, reflection absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscopy. The deposition parameters studied include solution concentration, solution dipping time and pH value of the applied solution. It appears that silane film formation involved a true equilibrium of hydrolysis and condensation reactions in aqueous solutions. It has been found that the silane film thickness obtained depends primarily on the solution concentration and is almost independent of the solution dipping time. The molecular orientation of applied silane films is determined by the pH value of applied silane solutions and the isoelectric point of metal substrates. The deposition window in terms of pH value for zinc substrates is between 6.0 and 9.0. The total surface energy of the silane-coated pure zinc substrates decreases with film aging time, the decrease rate, however, is determined by the nature of silane coupling agents. Selected silane coupling agents were applied as prepaint or passivation treatments onto galvanized steel substrates. The corrosion protection provided by these silane-based treatments were evaluated by salt spray test, cyclic corrosion test, electrochemical impedance spectroscopy, and stack test. The results showed that silane coupling agents can possibly be used to replace chromates for corrosion control of galvanized steel substrates. Silane coatings provided by these silane treatments serve mainly as physical barriers. Factors that

  5. Electrodeposited Reduced Graphene Oxide Films on Stainless Steel, Copper, and Aluminum for Corrosion Protection Enhancement

    OpenAIRE

    Abdulkareem Mohammed Ali Al-Sammarraie; Mazin Hasan Raheema

    2017-01-01

    The enhancement of corrosion protection of metals and alloys by coating with simple, low cost, and highly adhered layer is still a main goal of many workers. In this research graphite flakes converted into graphene oxide using modified Hammers method and then reduced graphene oxide was electrodeposited on stainless steel 316, copper, and aluminum for corrosion protection application in seawater at four temperatures, namely, 20, 30, 40, and 50°C. All corrosion measurements, kinetics, and therm...

  6. Recent Developments on Autonomous Corrosion Protection Through Encapsulation

    Science.gov (United States)

    Li, W.; Buhrow, J. W.; Calle, L. M.; Gillis, M.; Blanton, M.; Hanna, J.; Rawlins, J.

    2015-01-01

    This paper concerns recent progress in the development of a multifunctional smart coating, based on microencapsulation, for the autonomous detection and control of corrosion. Microencapsulation has been validated and optimized to incorporate desired corrosion control functionalities, such as early corrosion detection and inhibition, through corrosion-initiated release of corrosion indicators and inhibitors, as well as self-healing agent release triggered by mechanical damage. While proof-of-concept results have been previously reported, more recent research and development efforts have concentrated on improving coating compatibility and synthesis procedure scalability, with a targeted goal of obtaining easily dispersible pigment-grade type microencapsulated materials. The recent progress has resulted in the development of pH-sensitive microparticles as a corrosion-triggered delivery system for corrosion indicators and inhibitors. The synthesis and early corrosion indication results obtained with coating formulations that incorporate these microparticles are reported. The early corrosion indicating results were obtained with color changing and with fluorescent indicators.

  7. The corrosion protection of several aluminum alloys by chromic acid and sulfuric acid anodizing

    Science.gov (United States)

    Danford, M. D.

    1994-01-01

    The corrosion protection afforded 7075-T6, 7075-T3, 6061-T6, and 2024-T3 aluminum alloys by chromic acid and sulfuric acid anodizing was examined using electrochemical techniques. From these studies, it is concluded that sulfuric acid anodizing provides superior corrosion protection compared to chromic acid anodizing.

  8. The corrosion and protection of less carbon containing steel in subsoil

    International Nuclear Information System (INIS)

    Kazimov, A. M; Mamedyarova, I. F; Selimkhanova, G. G; Bskhishova, D. A; Ibragimova, S. G.

    2007-01-01

    Full text: The protection and corrosion resistance of steel in subsoil waters of Baku subway were investigated. Kinetic curves were drawn. The results obtained from the experiment coincide with calculated results. There have been revealed and proposed hudron and fuel oil mixture protecting steel from corrosion in subsoil waters (97.8%) for the internal surface of steel pipes

  9. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  10. Corrosion protection of ENIG surface finishing using electrochemical methods

    International Nuclear Information System (INIS)

    Bui, Q.V.; Nam, N.D.; Choi, D.H.; Lee, J.B.; Lee, C.Y.; Kar, A.; Kim, J.G.; Jung, S.B.

    2010-01-01

    Four types of thin film coating were carried out on copper for electronic materials by the electroless plating method at a pH range from 3 to 9. The coating performance was evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization testing in a 3.5 wt.% NaCl solution. In addition, atomic force microscopy and X-ray diffraction were also used to analyze the coating surfaces. The electrochemical behavior of the coatings was improved using the electroless nickel plating solution of pH 5. The electroless nickel/immersion gold on the copper substrate exhibited high protective efficiency, charge transfer resistance and very low porosity, indicating an increase in corrosion resistance. Atomic force microscopy and X-ray diffraction analyses confirmed the surface uniformity and the formation of the crystalline-refined NiP {1 2 2} phase at pH 5.

  11. Bacterial corrosion in marine sediments: influence of cathodic protection

    International Nuclear Information System (INIS)

    Therene, Martine

    1988-01-01

    In order to protect offshore structures from marine corrosion, cathodic protection is widely applied via sacrificial anodes (for example zinc or aluminium) or impressed current. In aerated seawater, steel is considered to be protected when a potential of -8050 mV/Cu.CuSO 4 is achieved. In many cases, however this potential must be lowered, due to the activity of microorganisms and more specially sulfate-reducing bacteria (SRB). SRB are obligate anaerobes using sulphate as electron acceptor with resultant production of sulphide. Some of them are also able to use hydrogen as energy source, causing cathodic depolarization of steel surfaces. An experiment was performed to analyze the relation between SRB activity and use of different cathodic potentials applied to mild steel samples in marine sediments. Analytical techniques employed included lipid bio-markers and electrochemical methods. Results indicated an evolution of the bacterial community structure both on the steel and in the sediment, as a function of time and potential. The results also show that cathodically produced hydrogen promotes the growth of SRB (author) [fr

  12. Recent Developments on Microencapsulation for Autonomous Corrosion Protection

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Fitzpatrick, Lilliana; Jolley, Scott T.; Surma, Jan M.; Pearman, Benjamin P.; Zhang, Xuejun

    2014-01-01

    This work concerns recent progress in the development of a multifunctional smart coating based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of desired corrosion control functionalities, such as early corrosion detection and inhibition through corrosion controlled release of corrosion indicators and inhibitors, as well as self-healing agent release when mechanical damage occurs.While proof-of-concept results have been reported previously, more recent efforts have been concentrated in technical developments to improve coating compatibility, synthesis procedure scalability, as well as fine tuning the release property of encapsulated active agents.

  13. Protective effect of KhOSP-10 inhibitor during corrosion, hydrogenadsorption and corrosion cracking of a steel in sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Mindyuk, A K; Svist, E I; Savitskaya, O P; Goyan, E B; Gopanenko, A N [AN Ukrainskoj SSR, Lvov. Fiziko-Mekhanicheskij Inst.

    1975-01-01

    The protective propeties of inhibitor KhOSP-10 in the time of corrosion and corrosive cracking of steel 40Kh are higher then those of inhibitors KPI-1, KI-1, I-I-V etc. Its ability to reduce steel hydrogenation is the same as in the case of KPI-1 inhibitor i.e. below that of KI-1. HCl additives enhance the efficiency of inhibitors KPI-1, KI-1, I-1-V etc. up to the protective ability of KhOSP-10. Kinetics of the electrode processes was estimated from polarization curves.

  14. Prospects of ion implantation and ion beam mixing for corrosion protection

    International Nuclear Information System (INIS)

    Wolf, G.K.; Munn, P.; Ensinger, W.

    1985-01-01

    Ion implantation is very useful new low temperature treatment for improving the mechanical surface properties of materials without any dimensional changes. In addition also the corrosion properties of metals can be modified considerably by this technique. The long term corrosion behaviour of implanted metals, however, has been studied only for a very limited number of cases. In this contribution a survey of attempts to do this will be presented. As examples of promising systems for corrosion protection by ion beams iron, steel and titanium were examined with and without pretreatment by ion implantation and ion beam mixing. The corrosion rates of the systems have been obtained by neutron activation analysis and by electrochemical methods. Experimental results are presented on: Palladium implanted in titanium - crevice corrosion in salt solution; Palladium implanted in and deposited on titanium -corrosion in sulfuric acid; Platinum implanted in stainless steel -corrosion in sulfuric acid. (author)

  15. Investigation of parameters governing the corrosion protection efficacy of fusion bonded epoxy coatings

    OpenAIRE

    Ramniceanu, Andrei

    2007-01-01

    The primary cause of corrosion in transportation structures is due to chlorides which are applied to bridge decks as deicing salts. The direct cost of corrosion damage to the countryâ s infrastructure is approximately $8.3 billion per year. One of the most common corrosion abatement methods in the United States is the barrier protection implemented through the application of fusion bonded epoxy coatings. The purpose of this study was to investigate various coating and exposure param...

  16. Effect of molybdate on phosphating of Nd-Fe-B magnets for corrosion protection

    Directory of Open Access Journals (Sweden)

    Adonis Marcelo Saliba-Silva

    2005-06-01

    Full Text Available Nd-Fe-B magnets are highly susceptible to corrosion and need protection against environment attack. The use of organic coatings is one of the main methods of corrosion protection of these materials. Data related to the effect of conversion coatings, such as phosphating, on corrosion performance of these magnets is still scarce. Studies about the effect of phosphating on the corrosion resistance of a commercial Nd-Fe-B sintered magnet indicated that it increases the corrosion resistance of these magnets, compared to non-phosphated magnets. In this study, the solution chemistry of a phosphating bath was altered with the addition of molybdate and its effect on the corrosion resistance of magnets investigated. Sintered magnet specimens were phosphated in solutions of 10 g/L NaH2PO4 (pH 3.8, either with or without molybdate [10-3 M MoO4(2-], to improve their corrosion resistance. The effect of phosphating time was also evaluated, and specimens were phosphated for 4 and 18 hours. To evaluate the corrosion performance of phosphated and unphosphated specimens, a corrosion test based on monitoring hydrogen evolution on the surface of the magnets was used. This technique revealed that the addition of molybdate to the phosphating solution improved the corrosion resistance of the magnets phosphated by immersion for short periods but had no beneficial effect if phosphated by immersion for longer periods.

  17. Recommandations pour la protection des fonds de réservoirs contre la corrosion externe et interne Recommendations for Protecting Tank Bottoms Against External and Internal Corrosion

    Directory of Open Access Journals (Sweden)

    Chambre Syndicale du Pétrole

    2006-11-01

    Full Text Available Ce document analyse le sprincipales causes de corrosion externe et inerne des réservoirs de stockage à axe vertical et recommande diverses mesures de prévention. Pour la protection externe, ces mesures concernent la conception des fondations et des fonds et la protection cathodique our la protection interne, elles concernet l'inhibition chimique, la protection cathodique et surtout les revêtements. This article analyzes the leading causes of external ant internal corrosion of vertical-axis storage tanks ant reccomends different prevention measures to protect the outside these measures have to do with the design of the foundations and bottom as well as with cathodic protection. t protect the inside they have to do with chemical inhibition, cathodic production and espacially coatings.

  18. The Corrosion Protection of Magnesium Alloy AZ31B

    Science.gov (United States)

    Danford, M. D.; Mendrek, M. J.; Mitchell, M. L.; Torres, P. D.

    1997-01-01

    Corrosion rates for bare and coated Magnesium alloy AZ31B have been measured. Two coatings, Dow-23(Trademark) and Tagnite(Trademark), have been tested by electrochemical methods and their effectiveness determined. Electrochemical methods employed were the scanning reference electrode technique (SRET), the polarization resistance technique (PR) and the electrochemical impedance spectroscopy technique (EIS). In addition, general corrosion and stress corrosion methods were employed to examine the effectiveness of the above coatings in 90 percent humidity. Results from these studies are presented.

  19. Methanogens predominate in natural corrosion protective layers on metal sheet piles.

    NARCIS (Netherlands)

    Kip, Nardy; Jansen, S.; Leite, M.F.A.; De Hollander, M.; Afanasyev, M.; Kuramae, E.E.; van Veen, J.A.

    2017-01-01

    Microorganisms are able to cause, but also to inhibit or protect against corrosion. Corrosion inhibition by microbial processes may be due to the formation of mineral deposition layers on metal objects. Such deposition layers have been found in archaeological studies on ancient metal objects, buried

  20. Mechanism of pitting corrosion protection of metals and alloys in new-generation water treatment plants

    Directory of Open Access Journals (Sweden)

    Grachev Vladimir

    2017-01-01

    Full Text Available In this article authors set out a principle of pitting corrosion protection, suggested a new class of multilayer materials with high corrosion resistance. They substantiated the choice of the layers for the multilayer material designed for exploitation in oxidizing and non-oxidizing environment. The sphere of application of the multilyer materials was defined.

  1. Dictionary corrosion and corrosion control

    International Nuclear Information System (INIS)

    1985-01-01

    This dictionary has 13000 entries in both languages. Keywords and extensive accompanying information simplify the choice of word for the user. The following topics are covered: Theoretical principles of corrosion; Corrosion of the metals and alloys most frequently used in engineering. Types of corrosion - (chemical-, electro-chemical, biological corrosion); forms of corrosion (superficial, pitting, selective, intercrystalline and stress corrosion; vibrational corrosion cracking); erosion and cavitation. Methods of corrosion control (material selection, temporary corrosion protection media, paint and plastics coatings, electro-chemical coatings, corrosion prevention by treatment of the corrosive media); Corrosion testing methods. (orig./HP) [de

  2. Corrosion protection of steel in ammonia/water heat pumps

    Science.gov (United States)

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  3. Corrosion protection by organic coatings in gas and oil industry

    International Nuclear Information System (INIS)

    Hussain, A.

    2008-01-01

    The drive to improve performance of coatings as protection against corrosion for automotive, aerospace and oil and gas industries is a never-ending story. Surface preparation is the most important single factor when a substrate surface e.g. steel is to be protected with a coating. This implies an extremely accurate and reliable characterisation of the substrate-surface prior to coating process and the investigation of polymeric coating materials. In order to have a durable adhesive bonding between the polymeric coating materials and the substrate i.e. to ensure prolonged life time and fewer maintenance intervals of coated products, a pre-treatment of the substrate is required in many cases. Sand blasting, corona /plasma pre.treatment of the substrate and the use of coupling agents like organo silanes are well accepted recent methods. Advanced surface analytical techniques like ESCA and TOFSIMS are proving to be extremely helpful in the chemical characterisation of the substrate surface. Contamination e.g. fat residues, tensides etc. on the substrate is one of the most serious enemies of adhesive bonding and the above mentioned techniques are playing a vital role in combating the enemy. Modern thermal analytical methods have made tremendous contribution to the development and quality control of high-performance polymeric coatings. MDSC, DMA and DETA are proving to be very useful tools for the characterisation of high-performance coating materials. An in-depth understanding of the structure-property relationship of these materials, predominantly epoxy and polyurethane coating systems, is a pre-requisite for their successful application and subsequent Quality Control. (author)

  4. Possibilities for improving corrosion protection of reinforced concrete by modified hydrotalcites: a literature review

    NARCIS (Netherlands)

    Yang, Z.; Fischer, H.R.; Polder, R.B.

    2012-01-01

    Modified Hydrotalcites (MHTs) represent a group of technologically promising materials for improving corrosion protection in concrete owing to their low cost, relative simplicity of preparation, and plenty of composition variables. Numerous academic and commercial studies on MHTs have been carried

  5. Development and characterization of oxalate coatings for the corrosion protection of metallic zinc

    International Nuclear Information System (INIS)

    Oliveira, M.; Ferreira Junior, J.M.; Baker, M.A.; Rossi, J.; Costa, I.

    2016-01-01

    This work aims to develop and characterize surface treatments for corrosion protection of zinc. Oxalic acid (OA) was used and the concentration range selected was from 10"-"1 M to 1 M. The chemical composition of the layers formed was evaluated by XPS, and the morphology and thickness, by FIB and EDS, respectively. The corrosion resistance was monitored by Electrochemical Impedance Spectroscopy (EIS). The results showed that a zinc oxalate layer had been formed in both concentrations but of different thickness and crystal sizes but similar morphology. The EIS results showed that the layer formed in the lower concentration solution provided corrosion protection for long periods whereas the one obtained at higher concentration did not protect the surface. The results led to conclude that one of the treatments tested is highly indicated for corrosion protection of zinc. (author)

  6. Investigation of Corrosion and Cathodic Protection in Reinforced Concrete. I : Application of Electrochemical Techniques

    NARCIS (Netherlands)

    Koleva, D.A.; De Wit, J.H.W.; Van Breugel, K.; Lodhi, Z.F.; Van Westing, E.

    2007-01-01

    The electrochemical behavior of steel reinforcement in conditions of corrosion and cathodic protection was studied, using electrochemical impedance spectroscopy (EIS) and compared to reference (noncorroding) conditions. Polarization resistance (PR) method and potentiodynamic polarization (PDP) were

  7. Hybrid epoxy–silane coatings for improved corrosion protection of Mg alloy

    International Nuclear Information System (INIS)

    Brusciotti, Fabiola; Snihirova, Darya V.; Xue, Huibin; Montemor, M. Fatima; Lamaka, Svetlana V.; Ferreira, Mario G.S.

    2013-01-01

    Highlights: ► Hybrid epoxy–silane coatings for corrosion protection of Mg alloy AZ31. ► Electrochemical impedance spectroscopy to study the corrosion behavior. ► Very good corrosion protection after 1 month immersion in 0.05 M NaCl. ► Surface and chemical characterization to understand corrosion processes. ► Influence of organic structure in coatings corrosion performance. - Abstract: New hybrid epoxy–silane coatings, with added functionalities for improved performance and durability, were designed to increase the corrosion protection of magnesium alloys. The corrosion behavior of the coated AZ31 was studied through electrochemical impedance spectroscopy (EIS) in 0.05 M NaCl. The morphology and surface chemistry of the samples were also investigated through scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) before and after immersion in the electrolyte. The new hybrid silane coatings showed a high resistance to corrosion that persisted throughout one-month immersion in a pH-neutral NaCl solution.

  8. Corrosion Protection of Launch Infrastructure and Hardware Through the Space Shuttle Program

    Science.gov (United States)

    Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, has been a challenging and costly problem that has affected NASA's launch operations since the inception of the Space Program. Corrosion studies began at NASA's Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. NASA's KSC Beachside Corrosion Test Site, which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive natural conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. In the years that followed, numerous efforts at KSC identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosiye environment at the launch pads. Knowledge on materials degradation, obtained by facing the highly corrosive conditions of the Space Shuttle launch environment, as well as limitations imposed by the environmental impact of corrosion control, have led researchers at NASA's Corrosion Technology Laboratory to establish a new technology development capability in the area of corrosion prevention, detection, and mitigation at KSC that is included as one of the "highest priority" technologies identified by NASA's integrated technology roadmap. A historical perspective highlighting the challenges encountered in protecting launch infrastructure and hardware from corrosion during the life of the Space Shuttle program and the new technological advances that have resulted from facing the unique and highly corrosive conditions of the Space Shuttle launch environment will be presented.

  9. An Electrochemical Investigation into the Corrosion Protection Properties of Coatings for the Active Metal Copper

    OpenAIRE

    Carragher, Ursula

    2013-01-01

    In the research presented in this thesis, corrosion protection films were synthesised and characterised. The films were based on polypyrrole (PPy) coatings doped with combinations of tartrate, oxalate and dodecylbenzene sulfonate (DBS) along with the incorporation of multiwalled carbon nanotubes (MWCNT), and viologen films adsorbed at copper. The corrosion protective properties of these films were studied and compared to the uncoated copper substrate. They were assessed and stu...

  10. Corrosion protection of Mg-5Li alloy with epoxy coatings containing polyaniline

    International Nuclear Information System (INIS)

    Shao Yawei; Huang Hui; Zhang Tao; Meng Guozhe; Wang Fuhui

    2009-01-01

    The protective ability of epoxy coating containing polyaniline (PANI coating) on Mg-5Li alloy in 3.5% NaCl aqueous solution has been studied by means of EIS and electrochemical noise measurements (EN). The results of EN and EIS revealed that the PANI coating protected Mg-5Li alloy from corrosion perfectly. XPS results indicated that the presence of polyaniline changed the chemical structure of the corrosion film on the alloy surface. An analysis of the electrochemical noise data based on stochastic analysis indicated that the corrosion growth probability of Mg-5Li alloy beneath the coating was decreased by the addition of polyaniline.

  11. Corrosion Protection Performance of Polyester-Melamine Coating with Natural Wood Fiber Using EIS Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shin, PyongHwa; Shon, MinYoung [Pukyong National University, Busan (Korea, Republic of); Jo, DuHwan [POSCO, Gwangyang (Korea, Republic of)

    2016-04-15

    In the present study, polyester-melamine coating systems with natural wood fiber (NWF) were prepared and the effects of NWF on the corrosion protectiveness of the polyester-melamine coating were examined using EIS analysis. From the results, higher average surface roughness was observed with increase of NWF content. Water diffusivity and water uptake into the polyester-melamine coatings with NWF were much higher than that into the pure polyester-melamine coating. The decrease in the impedance modulus |Z| was associated with the localized corrosion on carbon steel, confirming that corrosion protection of the polyester-melamine coatings with NWF well agrees with its water transport behavior.

  12. Long term corrosion protection sleeve for tightly closed barrels with highly radioactive contents

    International Nuclear Information System (INIS)

    Koester, R.; Smailos, E.; Schwarzkopf, W.; Kiesow, A.

    1986-01-01

    The application of the corrosion resistant layer on the container body is achieved by blasting plating and by a special design of weld seams on the lid or floor stopper. The corrosion protection layer completely surrounds the container, is additionally applied to the layers in the area of the lid and bottom surface of one floor or lid plate, which consists of another material as corrosion protection layer and which has a diameter a little greater than the hollow cylinder container body. (orig./PW) [de

  13. Smart Coatings for Launch Site Corrosion Protection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Corrosion is a serious problem that has enormous costs for the nation (4.2% GDP in 2007) and worldwide. Kennedy Space Center is located in one of the most naturally...

  14. Electrodeposition of zinc-doped silane films for corrosion protection of mild steels

    International Nuclear Information System (INIS)

    Wu Liankui; Hu Jiming; Zhang Jianqing

    2012-01-01

    Highlights: ► Metallic zinc is doped into organosilane films by one-step electrodeposition. ► The composite films exhibit the improved corrosion resistance of mild steels. ► Zinc-doping provides additional cathodic protection to the mild steels. - Abstract: Organosilane/zinc composite films are prepared by one-step electrodeposition onto cold-rolled steels for corrosion protection. Electrochemical impedance spectroscopy measurement, bulk solution immersion and wet heat tests all show that the composite films have improved corrosion performance. X-ray photoelectron spectroscopy measurement suggests the successful encapsulation of metallic zinc. The embedding of metallic zinc results in negative shift in open-circuit potential of the film-covered electrodes. Such cathodic protection effect given by the metallic zinc provides the improved corrosion resistance of the composite films.

  15. Multilayered Zn-Ni alloy coatings for better corrosion protection of mild steel

    Directory of Open Access Journals (Sweden)

    Sadananda Rashmi

    2017-06-01

    Full Text Available A simple aqueous electrolyte for the deposition of anti-corrosive Zn-Ni alloy coatings was optimized using conventional Hull cell method. The corrosion protection value of the electrodeposited coatings at a current density (c.d. range of 2.0–5.0 A dm−2 has been testified in 5 wt% NaCl solution, as representative corrosion medium. The electrochemical behavior of the coatings towards corrosion was related to its surface topography, elemental composition and phase structure using scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS and X-ray diffraction (XRD analyses, respectively. Among the monolithic coatings developed at different c.d.’s, the coating obtained at 3.0 A dm−2 was found to be the best with least corrosion current (icorr value. Further, the corrosion protection efficacy of the monolayer coatings were improved to many folds through multilayer coating approach, by modulating the cyclic cathode current densities (CCCD’s. The composition modulated multilayer (CMM Zn-Ni alloy coating with 60 layers, developed from the combination of CCCD’s 3.0 and 5.0 A dm−2 was found to be the best with 3 fold enhancement in corrosion protection efficiency. The formation of multilayer coatings was confirmed using cross-sectional SEM, and the experimental results are discussed with tables and figures.

  16. Development of a phosphating process for corrosion protection in NdFeB magnets

    International Nuclear Information System (INIS)

    Silva, Adonis Marcelo Saliba

    2001-01-01

    NdFeB magnets are important materials, which produce better energy efficiency in electrical devices, but they are rather vulnerable to corrosion. In this study, a phosphating treatment for protection against corrosion of NdFeB magnets has been investigated. Phosphating is generally used as a pretreatment in the application of protective coatings. This treatment increases the corrosion assistance in defective areas of the coating as well as improves the adhesion between coating and substrate. A commercial NdFeB magnet produced by powder metallurgy has been used and the effect of the following parameters on phosphating was studied: time of phosphating; pH of phosphating solution; anodic polarization and molybdate addition to the phosphating solution. The results showed a significant increase in the corrosion resistance of magnets phosphated in a solution concentrated between 10-20 g/L NaH 2 PO 4 , pH in the range of 3 to 4.6, acidulated preferably with H 3 PO 4 at room temperature (20±1) deg C. Conversion coatings formed at solutions of pH 3.8 showed better corrosion resistance. Phosphating times longer than 4 hours increased the magnet corrosion resistance 10 to 20 times. This resistance improves with higher immersion times. Anodic polarization of the magnet in the range 200-400 mV SCE accelerated phosphating. Results indicated that molybdate interacts preferentially with Nd rich phase of the magnet. In addition to the newly developed technology in this work for NdFeB corrosion protection, two methodologies have been introduced to facilitate electrochemical analyses: selection of samples of similar electrochemical behavior, based on the current density after 200s of constant anodic polarization; and evaluation of the corrosion protection provided by conversion coatings by monitoring of gas evolution during corrosion in acid solution. (author)

  17. Complete long-term corrosion protection with chemical vapor deposited graphene

    DEFF Research Database (Denmark)

    Yu, Feng; Camilli, Luca; Wang, Ting

    2018-01-01

    Despite numerous reports regarding the potential of graphene for corrosion protection, examples of chemical vapor deposited (CVD) graphene-based anticorrosive coatings able to provide long-term protection (i.e. several months) of metals have so far been absent. Here, we present a polymer-graphene......Despite numerous reports regarding the potential of graphene for corrosion protection, examples of chemical vapor deposited (CVD) graphene-based anticorrosive coatings able to provide long-term protection (i.e. several months) of metals have so far been absent. Here, we present a polymer......-graphene hybrid coating, comprising two single layers of CVD graphene sandwiched by three layers of polyvinyl butyral, which provides complete corrosion protection of commercial aluminum alloys even after 120 days of exposure to simulated seawater. The essential role played by graphene in the hybrid coating...

  18. Protection of HCl dew point corrosion in municipal incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, S.; Tsuruta, T.; Maeda, N.

    1976-12-01

    HCl dew point corrosion is often observed on the components of municipal incinerators used for burning wastes which contain polyvinyl chloride. In order to solve the problem, the relation between concentrations of gaseous HCl and the corresponding dew points as well as concentrations of condensed HCl, was investigated. A series of HCl dipping tests for the materials concerned was performed and the dip test results were compared with in-plant tests. As a result it was concluded that HCl dew point corrosion can be reliably predicted from measurements of HCl concentrations in the water and in the gas and the partial pressure of the saturated steam at the dew point.

  19. Thin Glass Coatings for the Corrosion Protection of Metals

    DEFF Research Database (Denmark)

    Lampert, Felix

    in corrosion sensitive applications. Since the deposition of SiOx thin films is a well-established technology, the SOG technology was directly benchmarked to PVD-based SiO2 coatings. The coating adhesion was assessed by cross cut testing and increasing load scratch testing and the efficiency of the sub...... with localized corrosion and do not impact the heat transfer or the component performance. The herein presented approach focuses primarily on the formation of SiOx-like thin films from Hydrogen Silsesquioxane (HSQ) –based “spin-on-glass” (SOG) precursor. The technology is well known for the deposition...

  20. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability

    Science.gov (United States)

    Feliu, S.; Llorente, I.

    2015-08-01

    This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS.

  1. The corrosion protection of 6061-T6 aluminum by a polyurethane-sealed anodized coat

    Science.gov (United States)

    Danford, M. D.

    1990-01-01

    The corrosion protection of 6061-T6 anodized aluminum afforded by a newly patented polyurethane seal was studied using the ac impedance technique. Values of the average corrosion rates over a 27-day exposure period in 3.5 percent NaCl solutions at pH 5.2 and pH 9.5 compared very favorably for Lockheed-prepared polyurethane-sealed and dichromate-sealed coats of the same thickness. Average corrosion rates for both specimens over the first 7 days of exposure compared well with those for a hard anodized, dichromate-sealed coat, but rose well above those for the hard anodized coat over the entire 27-day period. This is attributed both to the greater thickness of the hard anodized coat, and possibly to its inherently better corrosion protective capability.

  2. Emeraldine base as corrosion protective layer on aluminium alloy AA5182, effect of the surface microstructure

    DEFF Research Database (Denmark)

    Cecchetto, L; Ambat, Rajan; Davenport, A.J.

    2007-01-01

    AA5182 aluminium alloy cold rolled samples were coated by thin Wlms of emeraldine base (EB) obtained from a 5% solution in N-methylpyrrolidinone. Accelerated corrosion tests prove this coating very eVective for corrosion protection of aluminium alloys in neutral environment. This study underlines......: • a weak redox activity of the polymer which passivate the metal, • a proton involving self-healing process taking place at the polymer–metal interface, which contributes to delay local acidiWcation in Wrst steps of corrosion on EB coated aluminium surfaces....

  3. Numerical simulation of a metal corrosion for a point defect for a organic protection layer

    International Nuclear Information System (INIS)

    Vautrin-Ul, Ch.; Chausse, A.; Stafiej, J.; Badiali, J.P.

    2005-01-01

    The safety of radioactive wastes disposal requires a big knowledge on their aging facing a corrosive environment. The corrosion is a complex phenomenon which implies many processes bound to the physic and the chemistry of the system. This approach proposes, from a little number of simple processes, numerical simulation which will define theses complex phenomenon. The presented model is a 2 dimension model at a mesoscopic scale and based on cellular automates. It allows the simulation of a metal evolution, protected by a polymer layer and in contact at one point with a corrosive media at a defect of the layer. (A.L.B.)

  4. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    Science.gov (United States)

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  5. State of the art in protection of erosion-corrosion on vertical axis tidal current turbine

    Science.gov (United States)

    Musabikha, Siti; Utama, I. Ketut Aria Pria; Mukhtasor

    2018-05-01

    Vertical axis tidal current turbine is main part of ocean energy devices which converts the tidal current energy into electricity. Its development is arising too due to increased interest research topic concerning climate change mitigation. Due to its rotating movement, it will be induced mechanical forces, such as shear stress and/or particle impact. Because of its natural operations, vertical axis turbine is also being exposed to harsh and corroding marine environment itself. In order to secure the vertical tidal turbine devices from mechanical wear and corrosion effects which is lead to a material loss, an appropriate erosion-corrosion protection needs to be defined. Its protection actionscan be derived such as design factors, material selections, inhibitors usage, cathodic protections, and coatings. This paper aims to analyze protection method which is necessary to control erosion-corrosion phenomenon that appears to the vertical axis tidal current turbine.

  6. Influence of Silane modified nano silica on the corrosion protection of zinc rich coating

    International Nuclear Information System (INIS)

    Nguyen Thuy Duong; To Thi Xuan Hang; Trinh Anh Truc; Pham Gia Vu; Bui Van Truoc; Thai Hoang

    2015-01-01

    Zinc rich coatings are the best effective primers for corrosion protection of carbon steel in aggressive conditions. For traditional zinc rich primer the zinc content is very high, more than 90 wt.%. The coating adhesion is decreased with the increase of zinc content, so that it is necessary to decrease the zinc content by using additives. In this study the nano silica modified by N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane was prepared and incorporated in zinc rich epoxy coatings containing 85 wt.% zinc powder. The corrosion protection performance of coatings was evaluated by electrochemical impedance spectroscopy. The results obtained show that the presence of nano silica improved corrosion protection of zinc rich epoxy coating and the best protection was obtained with 3 wt.% nano silica. (author)

  7. Critical Factors for the Transition from Chromate to Chromate-Free Corrosion Protection

    Science.gov (United States)

    2005-06-15

    ascorbate, glutathione, and L-cystine that lead to DNA damage [15, 16]. One mechanistic hypothesis for Cr6+-induced DNA damage entails a Fenton -type...to damage of DNA [17]. Alternative mechanisms to the Fenton -type interaction have been proposed by Lay et al. [18], who suggest that the DNA...underlying 2024-T3 core in maintenance operations where grinding-out of cosmetic corrosion surfaces is routine. Corrosion protection of the 2024-T3

  8. Protection of Steel Corrosion in Concrete Members by the Combination of Galvanic Anode and Nitrite Penetration

    Directory of Open Access Journals (Sweden)

    Minobu Aoyama

    2014-01-01

    Full Text Available Chloride induced-corrosion of steel bars in concrete can make cracks and exfoliation in near-surface regions in reinforced concrete structures. In this paper, we described the basic concept and practice of steel bars corrosion protection method by the combination of galvanic anode (zinc wire and the penetration of nitrite ions from mortar layers containing a large amount of lithium nitrite.

  9. 49 CFR 195.581 - Which pipelines must I protect against atmospheric corrosion and what coating material may I use?

    Science.gov (United States)

    2010-10-01

    ... corrosion and what coating material may I use? 195.581 Section 195.581 Transportation Other Regulations... Corrosion Control § 195.581 Which pipelines must I protect against atmospheric corrosion and what coating... atmosphere, except pipelines under paragraph (c) of this section. (b) Coating material must be suitable for...

  10. Low Temperature Curing of Hydrogen Silsesquioxane Surface Coatings for Corrosion Protection of Aluminum

    DEFF Research Database (Denmark)

    Lampert, Felix; Jensen, Annemette Hindhede; Møller, Per

    2016-01-01

    Hydrogen Silsesquioxane (HSQ) has shown to be a promising precursor for corrosion protective glass coatings for metallic substrates due to the excellent barrier properties of the films, especially in the application of protective coatings for aluminum in the automotive industry where high chemica...

  11. Corrosion and cathodic protection of buried pipes: study, simulation and application of solar energy

    International Nuclear Information System (INIS)

    Laoun, Brahim; Serir, Lazhar; Niboucha, Karima

    2006-01-01

    Cathodic protection is intensively used on steel pipes in petroleum and gas industries. It is a technique used to prevent corrosion which transforms the whole pipe into a cathode of a corrosion cell. Two types of cathodic protection systems are usually used: 1) the galvanic protection systems which use galvanic anodes, also called sacrificial anodes being electrochemically more electronegative than the structure to be protected and 2) the imposed current systems, which through a current generator will deliver a direct current from the anode to the structure to be protected. The aim of this work is to design a cathodic protection system of a pipe by imposed current with auxiliary electric solar energy. (O.M.)

  12. Corrosion Protection of Steel by Epoxy-Organoclay Nanocomposite Coatings

    OpenAIRE

    Domna Merachtsaki; Panagiotis Xidas; Panagiotis Giannakoudakis; Konstantinos Triantafyllidis; Panagiotis Spathis

    2017-01-01

    The purpose of the present work was to study the corrosion behavior of steel coated with epoxy-(organo) clay nanocomposite films. The investigation was carried out using salt spray exposures, optical and scanning electron microscopy examination, open circuit potential, and electrochemical impedance measurements. The mechanical, thermomechanical, and barrier properties of pristine glassy epoxy polymer and epoxy-clay nanocomposites were examined. The degree of intercalation/exfoliation of clay ...

  13. Criteria for Corrosion Protection of Aluminum-Clad Spent Nuclear Fuel in Interim Wet Storage

    International Nuclear Information System (INIS)

    Howell, J.P.

    1999-01-01

    Storage of aluminum-clad spent nuclear fuel at the Savannah River Site (SRS) and other locations in the U. S. and around the world has been a concern over the past decade because of the long time interim storage requirements in water. Pitting corrosion of production aluminum-clad fuel in the early 1990''s at SRS was attributed to less than optimum quality water and corrective action taken has resulted in no new pitting since 1994. The knowledge gained from the corrosion surveillance testing and other investigations at SRS over the past 8 years has provided an insight into factors affecting the corrosion of aluminum in relatively high purity water. This paper reviews some of the early corrosion issues related to aluminum-clad spent fuel at SRS, including fundamentals for corrosion of aluminum alloys. It updates and summarizes the corrosion surveillance activities supporting the future storage of over 15,000 research reactor fuel assemblies from countries over the world during the next 15-20 years. Criteria are presented for providing corrosion protection for aluminum-clad spent fuel in interim storage during the next few decades while plans are developed for a more permanent disposition

  14. Chemically activated nanodiamonds for aluminum alloy corrosion protection and monitoring

    Science.gov (United States)

    Hannstein, Inga; Adler, Anne-Katrin; Lapina, Victoria; Osipov, Vladimir; Opitz, Jörg; Schreiber, Jürgen; Meyendorf, Norbert

    2009-03-01

    In the present study, a smart coating for light metal alloys was developed and investigated. Chemically activated nanodiamonds (CANDiT) were electrophoretically deposited onto anodized aluminum alloy AA2024 substrates in order to increase corrosion resistance, enhance bonding properties and establish a means of corrosion monitoring based on the fluorescence behavior of the particles. In order to create stable aqueous CANDiT dispersions suitable for electrophoretic deposition, mechanical milling had to be implemented under specific chemical conditions. The influence of the CANDiT volume fraction and pH of the dispersion on the electrochemical properties of the coated samples was investigated. Linear voltammetry measurements reveal that the chemical characteristics of the CANDiT dispersion have a distinct influence on the quality of the coating. The fluorescence spectra as well as fluorescence excitation spectra of the samples show that corrosion can be easily detected by optical means. Furthermore, an optimization on the basis of "smart" - algorithms for the data processing of a surface analysis by the laser-speckle-method is presented.

  15. Corrosion protection performance of single and dual Plasma Electrolytic Oxidation (PEO) coating for aerospace applications

    International Nuclear Information System (INIS)

    Madhan Kumar, A.; Kwon, Sun Hwan; Jung, Hwa Chul; Shin, Kwang Seon

    2015-01-01

    Plasma Electrolytic Oxidation (PEO) coatings are known to be one of the most appropriate method for corrosion protection of magnesium (Mg) alloy. The improvement of PEO coatings and the optimization of their surface aspects are of major importance. In this current work, the influence of dual PEO coating on strip-cast AZ31 Mg alloy substrate has been evaluated with the aim of improving the surface and corrosion protection aspects. For this purpose, AZ31 Mg substrates are subjected to single and dual PEO processing in silicate and phosphate electrolyte under similar condition. Scanning electron microscopy (SEM) analysis confirmed that the number of pores in PEO coating processed in silicate electrolyte is higher than others. X-ray diffraction analysis of PEO coatings showed that the surface coating is mainly comprised of Mg 2 SiO 4 , Mg 3 (PO 4 ) 2 and MgO with different quantity based on PEO processing. Compared with the AZ31 Mg, the corrosion potential (E corr ) of both type PEO coatings was positively shifted about 250–400 mV and the corrosion current density (i corr ) was lowered by 3-4 orders of magnitude as result of adequate corrosion protection to the Mg alloy in 3.5% NaCl solution. All of the observation obviously showed that the dual PEO coating provides better corrosion protection performance than their respective single due to its synergistic beneficial effect. - Highlights: • Influence of dual PEO coating on AZ31 Mg alloy substrate was evaluated. • XRD confirmed formation of thin MgO inner, Mg 3 (PO 4 ) 2 and Mg 2 SiO 4 outer layer. • SEM results showed uniform coating with no cracks and relatively less micro pores. • Micro hardness of dual PEO coatings is higher than single PEO coatings. • Dual coating provides superior corrosion performance due to its synergistic effect

  16. Environmentally friendly hybrid coatings for corrosion protection: silane based pre-treatments and nanostructured waterborne coatings

    OpenAIRE

    Fedel, Michele

    2009-01-01

    This thesis considers a nanotechnology approach based on the production of metals pre-treatments and organic coatings (a complete protection system at all) designed from the nanoscale. The final aim is to develop protection systems with improved corrosion protection properties and a low environmental impact. In particular, multifunctional silane hybrid molecules were used to design sol-gel pre-treatments for metals and to modify the inner structure of UV curable waterborne organic coatings...

  17. Corrosion and protection of spent Al-clad research reactor fuel during extended wet storage

    International Nuclear Information System (INIS)

    Ramanathan, Lalgudi V.

    2009-01-01

    A variety of spent research reactor fuel elements with different fuel meats, geometries and 235 U enrichments are presently stored under water in basins throughout the world. More than 90% of these fuels are clad in aluminum (Al) or its alloy and are susceptible to corrosion. This paper presents an overview of the influence of Al alloy composition, galvanic effects (Al alloy/stainless steel), crevice effects, water parameters and synergism between these parameters as well as settled solids on the corrosion of typical Al alloys used as fuel element cladding. Pitting is the main form of corrosion and is affected by water conductivity, chloride ion content, formation of galvanic couples with rack supports and settled solid particles. The extent to which these parameters influence Al corrosion varies. This paper also presents potential conversion coatings to protect the spent fuel cladding. (author)

  18. Surface Modification of Zinc with an Oxime for Corrosion Protection in Chloride Medium

    Directory of Open Access Journals (Sweden)

    Ganesha Achary

    2013-01-01

    Full Text Available The surface treatment of zinc was done with different concentrations of an oxime (2E-2-(hydroxylamino-1,2-diphenylethanol molecule by the immersion method. The electrochemical corrosion studies of surface-treated zinc specimens were performed in aqueous sodium chloride solution (1 M, pH 5.0 at different temperatures in order to study the corrosion mechanism. The recorded electrochemical data indicated a basic modification of the cathodic corrosion behavior of the treated zinc resulting in a decrease of the electron transfer rate. The zinc samples treated by immersion in the inhibiting organic solution presented good corrosion resistance. Using scanning electron microscopy (SEM, it was found that a protective film was formed on the surface of zinc.

  19. Multiscale numerical modeling of Ce3+-inhibitor release from novel corrosion protection coatings

    International Nuclear Information System (INIS)

    Trenado, Carlos; Wittmar, Matthias; Veith, Michael; Strauss, Daniel J; Rosero-Navarro, Nataly C; Aparicio, Mario; Durán, Alicia; Castro, Yolanda

    2011-01-01

    A novel hybrid sol–gel coating has recently been introduced as an alternative to high toxic chromate-based corrosion protection systems. In this paper, we propose a multiscale computational model to estimate the amount and time scale of inhibitor release of the active corrosion protection coating. Moreover, we study the release rate under the influence of parameters such as porosity and viscosity, which have recently been implicated in the stability of the coating. Numerical simulations obtained with the model predicted experimental release tests and recent findings on the compromise between inhibitor concentration and the stability of the coating

  20. The influence of time-variable cathodic corrosion protection on a.c. corrosion; Einfluss von zeitlich variierendem kathodischem Korrosionsschutz auf die Wechselstromkorrosion

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Markus; Voute, Carl-Heinz; Joos, David [SGK Schweizerische Gesellschaft fuer Korrosionsschutz, Zuerich (Switzerland)

    2011-07-01

    The current limiting values for corrosion of pipelines under a.c. current stress may be difficult to apply to pipelines, owing to the very heterogeneous bedding of the pipeline, poor jacket quality, or high short-term a.c. voltages. In principle, periodic alternation between very high and very low protective currents may optimize cathodic corrosion protection. This pulsed current strategy was found to be effective in laboratory tests if the operating parameters are set accurately.

  1. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability

    International Nuclear Information System (INIS)

    Feliu, S.; Llorente, I.

    2015-01-01

    Highlights: • Surface chemistry of the corrosion product layers on magnesium alloys. • Influence of the type of alloy on the carbonate surface enrichment. • Relation between surface composition and protection properties. - Abstract: This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS

  2. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, S., E-mail: sfeliu@cenim.csic.es; Llorente, I.

    2015-08-30

    Highlights: • Surface chemistry of the corrosion product layers on magnesium alloys. • Influence of the type of alloy on the carbonate surface enrichment. • Relation between surface composition and protection properties. - Abstract: This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS.

  3. Nanoscale coatings for erosion and corrosion protection of copper microchannel coolers for high powered laser diodes

    Science.gov (United States)

    Flannery, Matthew; Fan, Angie; Desai, Tapan G.

    2014-03-01

    High powered laser diodes are used in a wide variety of applications ranging from telecommunications to industrial applications. Copper microchannel coolers (MCCs) utilizing high velocity, de-ionized water coolant are used to maintain diode temperatures in the recommended range to produce stable optical power output and control output wavelength. However, aggressive erosion and corrosion attack from the coolant limits the lifetime of the cooler to only 6 months of operation. Currently, gold plating is the industry standard for corrosion and erosion protection in MCCs. However, this technique cannot perform a pin-hole free coating and furthermore cannot uniformly cover the complex geometries of current MCCs involving small diameter primary and secondary channels. Advanced Cooling Technologies, Inc., presents a corrosion and erosion resistant coating (ANCERTM) applied by a vapor phase deposition process for enhanced protection of MCCs. To optimize the coating formation and thickness, coated copper samples were tested in 0.125% NaCl solution and high purity de-ionized (DIW) flow loop. The effects of DIW flow rates and qualities on erosion and corrosion of the ANCERTM coated samples were evaluated in long-term erosion and corrosion testing. The robustness of the coating was also evaluated in thermal cycles between 30°C - 75°C. After 1000 hours flow testing and 30 thermal cycles, the ANCERTM coated copper MCCs showed a corrosion rate 100 times lower than the gold plated ones and furthermore were barely affected by flow rates or temperatures thus demonstrating superior corrosion and erosion protection and long term reliability.

  4. Electrodeposited Reduced Graphene Oxide Films on Stainless Steel, Copper, and Aluminum for Corrosion Protection Enhancement

    Directory of Open Access Journals (Sweden)

    Abdulkareem Mohammed Ali Al-Sammarraie

    2017-01-01

    Full Text Available The enhancement of corrosion protection of metals and alloys by coating with simple, low cost, and highly adhered layer is still a main goal of many workers. In this research graphite flakes converted into graphene oxide using modified Hammers method and then reduced graphene oxide was electrodeposited on stainless steel 316, copper, and aluminum for corrosion protection application in seawater at four temperatures, namely, 20, 30, 40, and 50°C. All corrosion measurements, kinetics, and thermodynamics parameters were established from Tafel plots using three-electrode potentiostat. The deposited films were examined by FTIR, Raman, XRD, SEM, and AFM techniques; they revealed high percentages of conversion to the few layers of graphene with confirmed defects.

  5. Anion embedded sol-gel films on Al for corrosion protection

    International Nuclear Information System (INIS)

    Sheffer, Mari; Groysman, Alec; Starosvetsky, David; Savchenko, Natali; Mandler, Daniel

    2004-01-01

    We report here on the successful incorporation of organic anions into a sol-gel film on Al as a means of enhancing the protection against corrosion. Following our previous study where we showed that hydrophobic sol-gel films provided pronounced corrosion inhibition, we studied the corrosion inhibition that phenylphosphonic acid (PPA) has when embedded inside a thin sol-gel coating on Al. The anion of this organic anion tends to stay inside a phenyltrimethoxysilane (PTMOS) based sol-gel film due to π-interactions. Our findings, which are derived primarily from potentiodynamic polarization measurements, electrochemical noise, scanning electron microscopy measurements and Auger electron spectroscopy (AES), clearly show that the organic phosphonate adds to the protection efficiency of the sol-gel film

  6. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Science.gov (United States)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-12-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO2 implanted AISI 304 - examined for different implantation and annealing parameters - is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 1016 cm-2 (Ti+) and 1 × 1017 cm-2 (O+) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 1015 cm-2 (Ti+) and 1 × 1016 cm-2 (O+). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  7. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    International Nuclear Information System (INIS)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-01-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO 2 implanted AISI 304 – examined for different implantation and annealing parameters – is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 10 16 cm −2 (Ti + ) and 1 × 10 17 cm −2 (O + ) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 10 15 cm −2 (Ti + ) and 1 × 10 16 cm −2 (O + ). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO 2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  8. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H., E-mail: helmut.karl@physik.uni-augsburg.de

    2015-12-15

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO{sub 2} implanted AISI 304 – examined for different implantation and annealing parameters – is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 10{sup 16} cm{sup −2} (Ti{sup +}) and 1 × 10{sup 17} cm{sup −2} (O{sup +}) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 10{sup 15} cm{sup −2} (Ti{sup +}) and 1 × 10{sup 16} cm{sup −2} (O{sup +}). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO{sub 2} inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  9. Scratch, wear and corrosion resistant organic inorganic hybrid materials for metals protection and barrier

    International Nuclear Information System (INIS)

    Barletta, M.; Gisario, A.; Puopolo, M.; Vesco, S.

    2015-01-01

    Highlights: • Polysiloxane coatings as protective barriers to delay erosion/corrosion of Fe 430 B metal substrates. • Methyl groups feature a very small steric hindrance and confer ductility to the Si–O–Si backbone. • Phenyl groups feature a larger steric hindrance, but they ensure stability and high chemical inertness. • Remarkable adhesion to the substrate, good scratch resistance and high wear endurance. • Innovative ways to design of long lasting protective barriers against corrosion and aggressive chemicals. - Abstract: Polysiloxanes are widely used as protective barriers to delay erosion/corrosion and increase chemical inertness of metal substrates. In the present work, a high molecular weight methyl phenyl polysiloxane resin was designed to manufacture a protective coating for Fe 430 B structural steel. Methyl groups feature very small steric hindrance and confer ductility to the Si–O–Si backbone of the organic inorganic hybrid resin, thus allowing the achievement of high thickness. Phenyl groups feature larger steric hindrance, but they ensure stability and high chemical inertness. Visual appearance and morphology of the coatings were studied by field emission scanning electron microscopy and contact gauge surface profilometry. Micro-mechanical response of the coatings was analyzed by instrumented progressive load scratch, while wear resistance by dry sliding linear reciprocating tribological tests. Lastly, chemical inertness and corrosion endurance of the coatings were evaluated by linear sweep voltammetry and chronoamperometry in aggressive acid environment. The resulting resins yielded protective materials, which feature remarkable adhesion to the substrate, good scratch resistance and high wear endurance, thus laying the foundations to manufacture long lasting protective barriers against corrosion and, more in general, against aggressive chemicals

  10. Fault-tolerant epoxy-silane coating for corrosion protection of magnesium alloy AZ31

    NARCIS (Netherlands)

    Lamaka, S.V.; Xue, H.B.; Meis, N.N.A.H.; Esteves, A.C.C.; Ferreira, M.G.S.

    2015-01-01

    In this work, a hybrid epoxy-silane coating was developed for corrosion protection of magnesium alloy AZ31. The average thickness of the film produced by dip-coating procedure was 14 µm. The adhesion strength of the epoxy-silane coating to the Mg substrate was evaluated by pull-off tests and was

  11. Electrochemical investigation of powder coatings and their application to magnesium-rich primers for corrosion protection

    Science.gov (United States)

    Orgon, Casey Roy

    Corrosion is the decomposition of metal and metal alloys which threatens the integrity of man-made structures. One of the more efficient methods of delaying the corrosion process in metals is by coatings. In this work, the durability of two polyester powder coatings were investigated for corrosion protection of AA-2024-T3. Polyester powder coatings crosslinked by either triglycidyl isocyanurate (TGIC) or beta-hydroxyalkyl amide (HAA) compounds were prepared and investigated for barrier protection of metal substrates by electrochemical impedance spectroscopy (EIS). Polyester-TGIC coatings were found to provide better long-term protection, which can be attributed to the increased mechanical strength and higher concentration of crosslinking in the coating films. Additionally, the polyester powder coatings, along with a fusion bonded epoxy (FBE) were investigated for their compatibility as a topcoat for magnesium-rich primers (MgRP). Under proper application conditions, powder topcoats were successfully applied to cured MgRP while corrosion protection mechanisms of each system were maintained.

  12. Modern methods of overlay welding for corrosion protection of power generating equipment

    International Nuclear Information System (INIS)

    Ershov, A.V.; Shul'man, I.E.; Potapov, N.N.

    1989-01-01

    Methods for overlay welding of inner surfaces of power equipment for corrosion protection are analysed. Various methods of electroslag overlay welding by a band electrode (overlay welding by two-electrode bands by a wide band with magnetic control, by an electrode band with high melting velocity) are marked to be the most perspective for cladding of NPP vessel equipment

  13. Study of ion plating parameters, coating structure, and corrosion protection for aluminum coatings on uranium

    International Nuclear Information System (INIS)

    Egert, C.M.; Scott, D.G.

    1987-01-01

    A study of ion-plating parameters (primarily deposition rate and substrate bias voltage), coating structure, and the corrosion protection provided by aluminum coatings on uranium is presented. Ion plating at low temperatures yields a variety of aluminum coating structures on uranium. For example, aluminum coatings produced at high deposition rates and low substrate bias voltages are columnar with voids between columns, as expected for high-rate vapor deposition at low temperatures. On the other hand, low deposition rate and high bias voltage produce a modified coating with a dense, noncolumnar structure. These results are not in agreement with other studies that have found no relationship between deposition rate and coating structure in ion plating. This discrepancy is probably due to the high deposition rates used in these studies. An accelerated, water vapor corrosion test indicates that the columnar aluminum coatings provide some corrosion protection despite their porous nature; however, the dense noncolumnar coatings provide significantly greater protection. These results indicate that ion-plated aluminum coatings produced at low deposition rates and high substrate bias voltages creates dense coating structures that are most effective in protecting uranium from corrosion

  14. Studies on yttrium oxide coatings for corrosion protection against molten uranium

    International Nuclear Information System (INIS)

    Chakravarthy, Y.; Bhandari, Subhankar; Pragatheeswaran; Thiyagarajan, T.K.; Ananthapadmanabhan, P.V.; Das, A.K.; Kumar, Jay; Kutty, T.R.G.

    2012-01-01

    Yttrium oxide is resistant to corrosion by molten uranium and its alloys. Yttrium oxide is recommended as a protective oxide layer on graphite and metal components used for melting and processing uranium and its alloys. This paper presents studies on the efficacy of plasma sprayed yttrium oxide coatings for barrier applications against molten uranium

  15. Corrosion and corrosion control

    International Nuclear Information System (INIS)

    Khanna, A.S.; Totlani, M.K.

    1995-01-01

    Corrosion has always been associated with structures, plants, installations and equipment exposed to aggressive environments. It effects economy, safety and product reliability. Monitoring of component corrosion has thus become an essential requirement for the plant health and safety. Protection methods such as appropriate coatings, cathodic protection and use of inhibitors have become essential design parameters. High temperature corrosion, especially hot corrosion, is still a difficult concept to accommodate in corrosion allowance; there is a lack of harmonized system of performance testing of materials at high temperatures. In order to discuss and deliberate on these aspects, National Association for Corrosion Engineers International organised a National Conference on Corrosion and its Control in Bombay during November 28-30, 1995. This volume contains papers presented at the symposium. Paper relevant to INIS is indexed separately. refs., figs., tabs

  16. Spectroscopic study of the final protective corrosion product on weathering steel

    International Nuclear Information System (INIS)

    Yamashita, M.; Misawa, T.

    1998-01-01

    Recent progress in understanding the structure and properties of final protective rust layer on weathering steel and its application for structural steels is shown based on the data obtained mainly by spectroscopic characterization. The main constituent of the weathering steel rust layer is changed with exposure period from γ- FeOOH (less than a few years) via, amorphous substance (several years), to α-FeOOH goethite phase (decades). The corrosion rate of the weathering steel decreased with this phase transformation. The final protective rust layer possesses the structure of α- (Fe 1 - X p Cr x)O OH, Cr substitute goethite; the crystal size decreases with its Cr-content. It is shown that the Cr content in the Cr-substituted goethite increases gradiently with reaching the rust/steel interface. This increase in the Cr content and resultant aggregation of fine crystals lead a densely packed Cr-substituted goethite rust layers which provides higher protective ability for atmospheric corrosives. It is found that the Cr-substituted goethite possesses the cation selective ability at the vicinity of the rust/steel interface where the Cr content can be estimated approximately 5-10 mass %. Thus, the final protective rust layer of the Cr-substituted goethite impedes the penetration of aggressive corrosive anions such as Cl - and SO 4 2- , besides the physically prevention effect of its densely aggregated structure for corrosive penetration. It is found that Cr 2 (SO 4 ) 3 is effective for obtaining the final protective rust layer in a short period. SO 4 2 accelerates rust formation and Cr 3- substitutes goethite crystal lattice point at the initial stage of corrosion; resultantly the rust layer formed suppresses dissolution of the steel even in the severe environment. (Author)

  17. Molybdate/phosphate composite conversion coating on magnesium alloy surface for corrosion protection

    International Nuclear Information System (INIS)

    Yong Zhiyi; Zhu Jin; Qiu Cheng; Liu Yali

    2008-01-01

    In this paper, a new conversion coating-molybdate/phosphate (Mo/P) coating on magnesium alloy was prepared and investigated by electrochemical impedance spectra (EIS), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and salt-water immersion experiments, respectively. The results demonstrated that the Mo/P coating contained composite phases, which were consisted of metaphosphate as well as molybdate oxide with an 'alveolate-crystallized' structure. The composite Mo/P conversion coating had better corrosion resistance performance than molybdate (Mo) coating, and even had almost comparable corrosion protection for Mg alloy to the traditional chromate-based coating.

  18. Determining localized anode condition to maintain effective corrosion protection.

    Science.gov (United States)

    2010-01-01

    Thermal sprayed zinc anodes used for impressed current cathodic protection of reinforced concrete deteriorate over time. : Two different technologies, ultrasound and electrical circuit resistance combined with water permeability, were : investigated ...

  19. Nanotechnology based surface treatments for corrosion protection and deposit control of power plant equipment. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-05-15

    Nanotechnology can provide possibilities for obtaining new valuable information regarding performance and corrosion protection in power plants. In general the desired performance of the contact surfaces is an easy-to-release effect. This is in order to prolong the time interval between cleaning periods or make the cleaning procedures easier and less expensive. Corrosion protection is also desired in order to extend the life time of various parts in the power plants and thus optimize the energy output and overall efficiency of the plant. Functional sol-gel coating based on nanotechnology is tested in a variety of conditions. Applications of functional sol-gel coatings were performed in the condenser and on seven air preheaters at Fynsvaerket, Odense, with corrosion protection as the main issue. Coatings with easy-to-clean effects were tested in the Flue Gas Desulphurization plant at Nordjyllandsvaerket, Aalborg, with the aim of reducing gipsum deposit. Thermo stabilized coatings were tested on tube bundles between in the passage from the 1st to 2end pass and on the wall between 1st and 2end pass at Amagervaerket, Copenhagen, and in the boiler at Haderslev CHP plant. The objective of this test were reducing deposits and increasing corrosion protection. The tested coatings were commercial available coatings and coatings developed in this project. Visual inspections have been performed of all applications except at Nordjyllandsvaerket. Corrosion assessment has been done at DTU - Mechanical Engineering. The results range from no difference between coated and uncoated areas to some improvements. At Amagervaerket the visual assessment showed in general a positive effect with a sol-gel hybrid system and a commercial system regarding removal of deposits. The visual assessment of the air preheaters at Fynsvaerket indicates reduced deposits on a sol-gel nanocomposite coated air preheater compared to an uncoated air preheater. (Author)

  20. Corrosion monitoring of iron, protected by an organic coating, with the aid of impedance measurements

    International Nuclear Information System (INIS)

    Hubrecht, J.; Piens, M.; Vereecken, J.

    1984-01-01

    The ac impedance measurement has proved to be a useful electrochemical technique for mainly qualitative studies of electrochemical and corrosion systems. Even for complicated systems such as coated metals in corrosive environments this technique has been used with success. The system chosen for the present study is an ARMCO iron plate, coated with a SrCrO 4 -pigmented styrene acrylic polymer, and immersed for several weeks in an aqueous NaCl solution. Impedance measurements analyze a system under test into its constituting phenomena. The dependence of system parameters on coating layer thickness, NaCl concentration, and pigmentation of the coating during the immersion time provides insight into the corrosion and protection mechanisms at the coating/metal interface, besides the behavior of the coating itself

  1. Chitosan coatings crosslinked with genipin for corrosion protection of AZ31 magnesium alloy sheets.

    Science.gov (United States)

    de Y Pozzo, Ludmila; da Conceição, Thiago F; Spinelli, Almir; Scharnagl, Nico; Pires, Alfredo T N

    2018-02-01

    In this study, coatings of chitosan crosslinked with genipin were prepared on sheets of AZ31 magnesium alloy and their corrosion protection properties were characterized by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The coatings were also characterized by means of FTIR and XPS. It was observed that the crosslinking process decreases the corrosion current and shifts the corrosion potential of the alloy to less negative values. The EIS analysis demonstrated that the crosslinking process increases the maximum impedance after short and long exposure times. The superior performance of the crosslinked coatings is related to a lower degree of swelling, as observed in the swelling tests carried out on free-standing films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Cerium oxide as conversion coating for the corrosion protection of aluminum

    Directory of Open Access Journals (Sweden)

    JELENA GULICOVSKI

    2013-11-01

    Full Text Available CeO2 coatings were formed on the aluminum after Al surface preparation, by dripping the ceria sol, previously prepared by forced hydrolysis of Ce(NO34. The anticorrosive properties of ceria coatings were investigated by the electrochemical impedance spectroscopy (EIS during the exposure to 0.03 % NaCl. The morphology of the coatings was examined by the scanning electron microscopy (SEM. EIS data indicated considerably larger corrosion resistance of CeO2-coated aluminum than for bare Al. The corrosion processes on Al below CeO2 coating are subjected to more pronounced diffusion limitations in comparison to the processes below passive aluminum oxide film, as the consequence of the formation of highly compact protective coating. The results show that the deposition of ceria coatings is an effective way to improve corrosion resistance for aluminum.

  3. Corrosion protection performance of waterborne epoxy coatings containing self-doped polyaniline nanofiber

    International Nuclear Information System (INIS)

    Qiu, Shihui; Chen, Cheng; Cui, Mingjun; Li, Wei; Zhao, Haichao; Wang, Liping

    2017-01-01

    Highlights: • Self-dopedpolyaniline (SPANi) with good conductivity and dispersibility in water was copolymerized by aniline and its derivative. • Environmental friendly SPANi/epoxy composite coating with remarkable anti-corrosion performance was prepared. • The corrosion product of pure epoxy or composite coating was characterized by X-ray diffraction pattern and scanning electron microscope (SEM). - Abstract: Self-doped sulfonated polyaniline (SPANi) nanofiber was synthesized by the copolymerization of 2-aminobenzenesulfonic acid (ASA) and aniline via a rapid mixing polymerization approach. The chemical structure of SPANi was investigated by the Fourier-transform infrared (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), UV–vis spectra and X-ray diffraction (XRD) pattern. The as-prepared SPANi nanofibers had 45 nm average diameter and length up to 750 nm as measured by scanning electron microscope (SEM) and transmission electron microscope (TEM). The self-doped SPANi nanofiber possessed excellent aqueous solubility, good conductivity (0.11 S/cm) and reversible redox activity, making it suitable as a corrosion inhibitor for waterborne coatings. The prepared SPANi/waterborne epoxy composite coatings exhibited remarkably improved corrosion protection compared with pure waterborne epoxy coating as proved by the polarization curves and electrochemical impedance spectroscopy (EIS). The passivation effect of SPANi nanofiber and the corrosion products beneath the epoxy coatings immersed in 3.5% NaCl solution as a function of time were also investigated in this study.

  4. Corrosion protection performance of waterborne epoxy coatings containing self-doped polyaniline nanofiber

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Shihui [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China); Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211 (China); Chen, Cheng; Cui, Mingjun [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China); Li, Wei [Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211 (China); Zhao, Haichao, E-mail: zhaohaichao@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China); Wang, Liping, E-mail: wangliping@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China)

    2017-06-15

    Highlights: • Self-dopedpolyaniline (SPANi) with good conductivity and dispersibility in water was copolymerized by aniline and its derivative. • Environmental friendly SPANi/epoxy composite coating with remarkable anti-corrosion performance was prepared. • The corrosion product of pure epoxy or composite coating was characterized by X-ray diffraction pattern and scanning electron microscope (SEM). - Abstract: Self-doped sulfonated polyaniline (SPANi) nanofiber was synthesized by the copolymerization of 2-aminobenzenesulfonic acid (ASA) and aniline via a rapid mixing polymerization approach. The chemical structure of SPANi was investigated by the Fourier-transform infrared (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), UV–vis spectra and X-ray diffraction (XRD) pattern. The as-prepared SPANi nanofibers had 45 nm average diameter and length up to 750 nm as measured by scanning electron microscope (SEM) and transmission electron microscope (TEM). The self-doped SPANi nanofiber possessed excellent aqueous solubility, good conductivity (0.11 S/cm) and reversible redox activity, making it suitable as a corrosion inhibitor for waterborne coatings. The prepared SPANi/waterborne epoxy composite coatings exhibited remarkably improved corrosion protection compared with pure waterborne epoxy coating as proved by the polarization curves and electrochemical impedance spectroscopy (EIS). The passivation effect of SPANi nanofiber and the corrosion products beneath the epoxy coatings immersed in 3.5% NaCl solution as a function of time were also investigated in this study.

  5. Thermal Spray Coatings for High-Temperature Corrosion Protection in Biomass Co-Fired Boilers

    Science.gov (United States)

    Oksa, M.; Metsäjoki, J.; Kärki, J.

    2015-01-01

    There are over 1000 biomass boilers and about 500 plants using waste as fuel in Europe, and the numbers are increasing. Many of them encounter serious problems with high-temperature corrosion due to detrimental elements such as chlorides, alkali metals, and heavy metals. By HVOF spraying, it is possible to produce very dense and well-adhered coatings, which can be applied for corrosion protection of heat exchanger surfaces in biomass and waste-to-energy power plant boilers. Four HVOF coatings and one arc sprayed coating were exposed to actual biomass co-fired boiler conditions in superheater area with a probe measurement installation for 5900 h at 550 and 750 °C. The coating materials were Ni-Cr, IN625, Fe-Cr-W-Nb-Mo, and Ni-Cr-Ti. CJS and DJ Hybrid spray guns were used for HVOF spraying to compare the corrosion resistance of Ni-Cr coating structures. Reference materials were ferritic steel T92 and nickel super alloy A263. The circulating fluidized bed boiler burnt a mixture of wood, peat and coal. The coatings showed excellent corrosion resistance at 550 °C compared to the ferritic steel. At higher temperature, NiCr sprayed with CJS had the best corrosion resistance. IN625 was consumed almost completely during the exposure at 750 °C.

  6. Thermal spraying of corrosion protection layers in biogas plants; Erzeugung von Korrosionsschutzschichten fuer Bioenergieanlagen mittels Thermischen Spritzens

    Energy Technology Data Exchange (ETDEWEB)

    Crimmann, P.; Dimaczek, G.; Faulstich, M. [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany)

    2004-07-01

    Corrosion in plants for the energetic conversion of biomass is a severe problem that often causes premature damage of components. Thermal spraying is a process for the creation of corrosion protection layer. An advantage of thermal spraying is that as well as each material can be used as layer material. First practical results demonstrated that thermal spraying has the potential to create coatings to protect components against high temperature corrosion as well as biocorrosion. Layer materials are for example nickel base alloys (high temperature corrosion) and titan alloys (biocorrosion). Further investigations are necessary in order to examine whether cost-efficient coatings also contribute to the corrosion protection (e.g. polymer materials against biocorrosion). (orig.)

  7. Corrosion protection of metals by phosphate coatings and ecologically beneficial alternatives. Properties and mechanisms

    International Nuclear Information System (INIS)

    Weng Duan.

    1995-01-01

    The corrosion and protection characteristics of inorganic zinc and manganese phosphate coatings in aqueous solution have been examined by physical methods, accelerated corrosion tests and electrochemical polarization and impedance measurements. Some water-soluble organic films have been evaluated for the temporary protection of metal parts as the ecologically beneficial alternatives to phosphate coatings. The results show that zinc phosphate is a better insulator than manganese phosphate, but the porosity of the former is inferior to that of the latter. In neutral and alkaline solutions the anodic current of both zinc and manganese phosphates decreases and their open potential moves in a positive direction. In acidic medium both the polarization current and the open potential are close to those of the substrate. Confirmed by the impedance measurements, the corrosion of phosphated steel in acidic solution is controlled by a dissolution reaction, in neutral medium is first reaction controlled then diffusion controlled, and in alkaline environment only diffusion controlled. The insulation of acrylate+copolymer, epoxy and inhibitor+bonding materials is superior to that of zinc or manganese phosphates. In general, most of the alternatives can afford a better temporary protection for metal parts compared to inorganic phosphate coatings. The corrosion failure of inorganic phosphate coatings is mainly induced by the electrochemical dissolution of the substrate. This electrochemical process initiates at the bottom of the pores within the coating. In neutral solution, the hydrolysis of corrosion products decrease the pH value of the solution in the anodic zone, resulting in an acidic dissolution of phosphate coatings. At the same time, the depolarization of oxygen increases the pH value in the cathodic zone, causing an alkaline hydrolysis of phosphates. (author) figs., tabs., 149 refs

  8. Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Lamaka, S.V.; Montemor, M.F.; Galio, A.F.; Zheludkevich, M.L.; Trindade, C.; Dick, L.F.; Ferreira, M.G.S.

    2008-01-01

    This work aims to develop and study new anticorrosion films for AZ31B magnesium alloy based on the sol-gel coating approach. Hybrid organic-inorganic sols were synthesized by copolymerization of epoxy-siloxane and titanium or zirconium alkoxides. Tris(trimethylsilyl) phosphate was also used as additive to confer additional corrosion protection to magnesium-based alloy. A sol-gel coating, about 5-μm thick, shows good adhesion to the metal substrate and prevents corrosion attack in 0.005 M NaCl solution for 2 weeks. The sol-gel coating system doped with tris(trimethylsilyl)-phosphate revealed improved corrosion protection of the magnesium alloy due to formation of hydrolytically stable Mg-O-P chemical bonds. The structure and the thickness of the sol-gel film were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The corrosion behaviour of AZ31B substrates pre-treated with the sol-gel derived hybrid coatings was tested by electrochemical impedance spectroscopy (EIS). The chemical composition of the silylphosphate-containing sol-gel film at different depths was investigated by X-ray photoelectron spectroscopy (XPS) with depth profiling

  9. The Many Faces of Graphene as Protection Barrier. Performance under Microbial Corrosion and Ni Allergy Conditions

    Science.gov (United States)

    Gentil, Dana; del Campo, Valeria; Henrique Rodrigues da Cunha, Thiago; Henríquez, Ricardo; Garín, Carolina; Ramírez, Cristian; Flores, Marcos; Seeger, Michael

    2017-01-01

    In this work we present a study on the performance of CVD (chemical vapor deposition) graphene coatings grown and transferred on Ni as protection barriers under two scenarios that lead to unwanted metal ion release, microbial corrosion and allergy test conditions. These phenomena have a strong impact in different fields considering nickel (or its alloys) is one of the most widely used metals in industrial and consumer products. Microbial corrosion costs represent fractions of national gross product in different developed countries, whereas Ni allergy is one of the most prevalent allergic conditions in the western world, affecting around 10% of the population. We found that grown graphene coatings act as a protective membrane in biological environments that decreases microbial corrosion of Ni and reduces release of Ni2+ ions (source of Ni allergic contact hypersensitivity) when in contact with sweat. This performance seems not to be connected to the strong orbital hybridization that Ni and graphene interface present, indicating electron transfer might not be playing a main role in the robust response of this nanostructured system. The observed protection from biological environment can be understood in terms of graphene impermeability to transfer Ni2+ ions, which is enhanced for few layers of graphene grown on Ni. We expect our work will provide a new route for application of graphene as a protection coating for metals in biological environments, where current strategies have shown short-term efficiency and have raised health concerns. PMID:29292763

  10. Methods for protection of high-strength welded stainless steel from corrosion cracking

    International Nuclear Information System (INIS)

    Lashchevskij, V.B.; Gurvich, L.Ya.; Batrakov, V.P.; Kozheurova, N.S.; Molotova, V.A.; Shvarts, M.M.

    1978-01-01

    The efficiency of protection from corrosion cracking under a bending stress of 100 kgf/mm 2 in a salt mist and in a sulphur dioxide atmosphere, of welded joints of steel 08Kh15N5D2T with metallizing, galvanic and varnish coatings and lubricants, and of steel 1Kh15N4AM3 with sealing compounds has been investigated. Metallization of welded joints with aluminium and zinc efficiently increases corrosion resistance in a salt mist. Galvanic coatings of Cd, Zn, and Cr increase the time to cracking in a salt mist from 2-3 to 60-80 days. The protective properties of varnishes under the effect of a salt mist decrease in the following sequence: epoxy-polyamide enamel EP-140, acrylic enamel C-38, silicone enamels KO-834, KO-811, and KO-814. In an atmosphere containing SO 2 0.15 vol.% at 100% relative humidity, the varnishes investigated, with the exception of the inhibited coating XC-596, show lower protective properties than in a salt mist. The high efficiency of protection from corrosion cracking in a salt mist of slots of steel 1Kh15N4AM3 when using organic sealing compounds U4-21 and U5-21, and also slushing lubricants and oils PVK, TsIATIM-201, K17, and AMS3 was established

  11. The Many Faces of Graphene as Protection Barrier. Performance under Microbial Corrosion and Ni Allergy Conditions

    Directory of Open Access Journals (Sweden)

    Carolina Parra

    2017-12-01

    Full Text Available In this work we present a study on the performance of CVD (chemical vapor deposition graphene coatings grown and transferred on Ni as protection barriers under two scenarios that lead to unwanted metal ion release, microbial corrosion and allergy test conditions. These phenomena have a strong impact in different fields considering nickel (or its alloys is one of the most widely used metals in industrial and consumer products. Microbial corrosion costs represent fractions of national gross product in different developed countries, whereas Ni allergy is one of the most prevalent allergic conditions in the western world, affecting around 10% of the population. We found that grown graphene coatings act as a protective membrane in biological environments that decreases microbial corrosion of Ni and reduces release of Ni2+ ions (source of Ni allergic contact hypersensitivity when in contact with sweat. This performance seems not to be connected to the strong orbital hybridization that Ni and graphene interface present, indicating electron transfer might not be playing a main role in the robust response of this nanostructured system. The observed protection from biological environment can be understood in terms of graphene impermeability to transfer Ni2+ ions, which is enhanced for few layers of graphene grown on Ni. We expect our work will provide a new route for application of graphene as a protection coating for metals in biological environments, where current strategies have shown short-term efficiency and have raised health concerns.

  12. Corrosion Potential Profile Simulation in a Tube under Cathodic Protection

    Directory of Open Access Journals (Sweden)

    Mauricio Ohanian

    2014-01-01

    Full Text Available The potential distribution in tubes of a heat exchanger is simulated when applying cathodic polarization to its extremes. The comparison of two methods to achieve this goal is presented: a numeric solution based on boundary elements carried out with the commercial software Beasy-GID and a semianalytical method developed by the authors. The mathematical model, the simplifications considered, and the problem solving are shown. Since both approaches use polarization curves as a boundary condition, experimental polarization curves (voltage versus current density were determined in the laboratory under flow conditions and cylindrical cell geometry. The results obtained suggest the impossibility of extending the protection along the whole tube length; therefore, other protection methods are considered.

  13. Corrosion and wear protective composition modulated alloy coatings based on ternary Ni-P-X alloys

    DEFF Research Database (Denmark)

    Leisner, P.; Benzon, M. E.; Christoffersen, Lasse

    1996-01-01

    Scattered reporting in the litterature describes a number of ternary Ni-P-X alloyes (where X can be Co, Cr, Cu, Mo, Pd, Re or W) with promising corrosin and wear protective performance. Based on a systematic study of Ni-P-X alloys it is the intention to produce coatings with improved corrosion...... and wear performance compared with conventional coatings like electroless nickel, hard chromioum and anodised aluminium....

  14. The effect of surface treatment and gaseous rust protection paper on the atmospheric corrosion stability of aluminium alloy

    International Nuclear Information System (INIS)

    Gao Guizhong

    1992-03-01

    The experimental results of atmospheric corrosion of 166 aluminium alloy of Al-Mg-Si-Cu system and 167 aluminium alloy of Al-Mg-Si-Cu-Fe-Ni system for different surface treatment and different wrapping papers used are introduced. The results show: 1. The composition of aluminium alloy has some effect on the performance of atmospheric corrosion stability and the local corrosion depth for 167 aluminium alloy specimen is considerable. 2. After 8 years storage, the 167 aluminium alloy tubular specimen, which was treated with surface treatment in deionized water at 100 ∼ 230 C degree, has no spot of atmospheric corrosion found. 3. Within the test period, the performance of atmospheric corrosion stability by sulphuric-acid anodization film is remarkable. 4. The No. 19 gaseous rust protection paper has no effect of atmospheric corrosion stability on the 166 and 167 aluminium alloys which were treated with quenching and natural ageing method

  15. On the protective effect of KhOSP-10 inhibitor during corrosion, hydrogenadsorption and corrosion cracking of a steel in sulfuric acid

    International Nuclear Information System (INIS)

    Mindyuk, A.K.; Svist, E.I.; Savitskaya, O.P.; Goyan, E.B.; Gopanenko, A.N.

    1975-01-01

    The protective propeties of inhibitor KhOSP-10 in the time of corrosion and corrosive cracking of steel 40Kh are higher then those of inhibitors KPI-1, KI-1, I-I-V etc. Its ability to reduce steel hydrogenation is the same as in the case of KPI-1 inhibitor i.e. below that of KI-1. HCl additives enhance the efficiency of inhibitors KPI-1, KI-1, I-1-V etc. up to the protective ability of KhOSP-10. Kinetics of the electrode processes was estimated from polarization curves

  16. Effects of surface modification with hydroxyl terminated polydimethylsiloxane on the corrosion protection of polyurethane coating

    International Nuclear Information System (INIS)

    Jeon, Jae Hong; Shon, Min Young

    2014-01-01

    Polyurethane coating was designed to give a hydrophobic property on its surface by modifying it with hydroxyl terminated polydimethylsiloxane and then effects of surface hydrophobic tendency, water transport behavior and hence corrosion protectiveness of the modified polyurethane coating were examined using FT-IR/ATR spectroscopy, contact angle measurement and electrochemical impedance test. As results, the surface of polyurethane coating was changed from hydrophilic to hydrophobic property due primarily to a phase separation tendency between polyurethane and modifier by the modification. The phase separation tendency is more appreciable when modified by polydimethylsiloxane with higher content. Water transport behavior of the modified polyurethane coating decreased more in that with higher hydrophobic surface property. The decrease in the impedance modulus ⅠZⅠ at low frequency region in immersion test for polyurethane coatings was associated with the water transport behavior and surface hydrophobic properties of modified polyurethane coatings. The corrosion protectiveness of the modified polyurethane coated carbon steel generally increased with an increase in the modifier content, confirming that corrosion protectiveness of the modified polyurethane coating is well agreed with its water transport behavior

  17. Corrosion behavior and protective ability of Zn and Zn-Co electrodeposits with embedded polymeric nanoparticles

    International Nuclear Information System (INIS)

    Boshkov, N.; Tsvetkova, N.; Petrov, P.; Koleva, D.; Petrov, K.; Avdeev, G.; Tsvetanov, Ch.; Raichevsky, G.; Raicheff, R.

    2008-01-01

    The anodic behavior, corrosion resistance and protective ability of Zn and alloyed Zn-Co (∼3 wt.%) nanocomposite coatings were investigated in a model corrosion medium of 5% NaCl solution. The metallic matrix of the layers incorporates core-shell nano-sized stabilized polymeric micelles (SPMs) obtained from poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) block co-polymers. The protective properties of the composite coatings were evaluated using potentiodynamic polarization technique, polarization resistance measurements and powder X-ray diffraction. The sizes and distribution of the stabilized polymeric micelles in the starting electrolytes used as well as in the metal matrices of the layers were investigated using scanning and transmission electron microscopy. The results obtained are compared to those of electrodeposited Zn and Zn-Co (∼3 wt.%) alloy coatings at identical conditions and demonstrate the enhanced protective characteristics of the Zn nanocomposites during the investigating period. The influence of the SPMs on the corrosion resistance of the nanocomposite layers is commented and discussed

  18. Cerium-loaded algae exoskeletons for active corrosion protection of coated AA2024-T3

    International Nuclear Information System (INIS)

    Denissen, Paul J.; Garcia, Santiago J.

    2017-01-01

    Highlights: •Nanoporous diatom algae exoskeletons allow for local inhibitor loading. •Cerium loaded exoskeletons show diffusion controlled release from coatings. •In-situ opto-electrochemical analysis allows for accurate corrosion evaluation. •Raman spectroscopy allows for precise identification of Ce at IMs in a scribe. •High levels of protection were obtained with the Ce-diatom coatings. -- Abstract: The use of micron sized nanoporous diatom algae exoskeletons for inhibitor storage and sustained corrosion protection of coated aluminium structures upon damage is presented. In this concept the algae exoskeleton allows local inhibitor loading, limits the interaction between the cerium and the epoxy/amine coating and allows for diffusion-controlled release of the inhibitor when needed. The inhibitor release and corrosion protection by loaded exoskeletons was evaluated by UV/Vis spectrometry, a home-built optical-electrochemical setup, and Raman spectroscopy. Although this concept has been proven for a cerium-epoxy-aluminium alloy system the main underlying principle can be extrapolated to other inhibitor-coating-metal systems.

  19. Electrochemical corrosion protection of storage water heaters in the building services; Elektrochemischer Korrosionsschutz von Speicher-Wassererwaermern in der Gebaeudetechnik

    Energy Technology Data Exchange (ETDEWEB)

    Bytyn, Wilfried [MAGONTEC GmbH, Bottrop (Germany)

    2012-06-15

    Storage water heaters currently experience a new consideration as a central thermal energy storage with an energy buffer characteristics. The contribution under consideration presents the principles and conditions of use for the cathodic corrosion protection of storage water heaters.

  20. An assessment of thermal spray coating technologies for high temperature corrosion protection

    International Nuclear Information System (INIS)

    Heath, G.R.; Heimgartner, P.; Gustafsson, S.; Irons, G.; Miller, R.

    1997-01-01

    The use of thermally sprayed coatings in combating high temperature corrosion continues to grow in the major industries of chemical, waste incineration, power generation and pulp and paper. This has been driven partially by the development of corrosion resistant alloys, improved knowledge and quality in the thermal spray industry and continued innovation in thermal spray equipment. There exists today an extensive range of thermal spray process options, often with the same alloy solution. In demanding corrosion applications it is not sufficient to just specify alloy and coating method. For the production of reliable coatings the whole coating production envelope needs to be considered, including alloy selection, spray parameters, surface preparation, base metal properties, heat input etc. Combustion, arc-wire, plasma, HVOF and spray+fuse techniques are reviewed and compared in terms of their strengths and limitations to provide cost-effective solutions for high temperature corrosion protection. Arc wire spraying, HP/HVOF and spray+fuse are emerging as the most promising techniques to optimise both coating properties and economic/practical aspects. (orig.)

  1. Effect of corrosion protective coatings on compressor blades affected by different erosive exposures

    International Nuclear Information System (INIS)

    Happle, T.W.

    1989-01-01

    It was the task of this dissertation to examine and to classify the inorganically bonded aluminum coatings with regard to their suitability as a coating for compressor blades for stationary gas turbines and aerojet engines. Industrial aluminum coatings bonded inorganically were used for the tests. Comparative examinations were done with diffusion-deposited aluminum layers as well as with aluminum layers precipitated electrolytically, and with modified inorganically bonded aluminum coatings (with additional TiN protective coating). The examination program was subdivided into two main tasks: Suitability tests and examination of corrosion fatigue. The suitability tests covered corrosion examinations (with salt spray and intermittent immersion tests), electrochemically controlled corrosion assessments (pitting corrosion behavior) and erosion assessments (erosive and abrasive wear tests). Experimental material was mainly the commercial compressor blade steel X20Cr13, and sample tests were carried out with the higher-strength steel X10CrNiMoV12 2 2. For the practical examination of the erosion resistance of the aluminum coatings, it was required to develop an erosion testing method. It was designed as an erosive and abrasive wear testing method with solid-face fluidized bed. The testing method makes it possible to pre-set all relevant quantities which influence the erosive and abrasive wear. (orig./MM) [de

  2. Improvement on the corrosion protection of conductive polymers in PEMFC environments by adhesives

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rodriguez, J.G.; Lucio-Garcia, M.A.; Nicho, M.E.; Cruz-Silva, R. [UAEM-CIICAP, Av. Universidad 1001, Col. Chamilpa, 62209-Cuernavaca, Morelos (Mexico); Casales, M. [Universidad Nacional Autonoma de Mexico, Instituto de Ciencicas Fisicas, Av. Universidad s/n, Col. Chamilpa, 62210-Cuernavaca, Morelos (Mexico); Valenzuela, E. [Universidad Politecnica de Chiapas, Cuerpo Academico de Energia y Sustentabilidad Eduardo J. Selvas S/N, Col. Magisterial, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-05-25

    The corrosion protection of polypyrrol (PPY) and polyaniline (PANI) coatings electrochemically deposited with and without polyvinyl alcohol (PVA) as adhesive onto 304 type stainless steel has been evaluated using electrochemical techniques. Environment included 0.5 M H{sub 2}SO{sub 4} at 60 C whereas employed techniques included potentiodynamic polarization curves (PC), linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) measurements. Results showed that the free corrosion potential, of the substrate, E{sub corr}, was made more noble up to 500 mV with the polymeric coatings. The corrosion rate was lowered by using the polymers, but with the addition of PVA, it was decreased further, one order of magnitude for PPY and up to three orders of magnitude for PANI. Impedance spectra showed that the corrosion mechanism is under a Warburgh-type diffusional process of the electrolyte throughout the coating, and that the uptake of the environment causes the eventual failure of the coating corroding the substrate. (author)

  3. Synthesis and corrosion protection properties of poly(o-phenylenediamine nanofibers

    Directory of Open Access Journals (Sweden)

    P. Muthirulan

    2013-07-01

    Full Text Available The present study shows a novel method for the synthesis of uniformly-shaped poly(othophenylediamine (PoPD nanofibers by chemical oxidative polymerization method for application towards smart corrosion resistance coatings. Transmission Electron Microscopy (TEM and Scanning Electron Microscopy (SEM studies confirm morphology of PoPD with three dimensional (3D networked dendritic superstructures having average diameter of 50–70 nm and several hundred meters of length. UV–vis and FTIR spectral results shows the formation of PoPD nanofibers containing phenazine ring ladder-structure with benzenoid and quinoid imine units. Thermogravimetric analyses (TGA of PoPD nanofibers possess good thermal stability. The anti-corrosion behavior of PoPD nanofibers on 316L SS was investigated in 3.5% NaCl solution using potentiodynamic polarization and electrochemical impedance spectroscopic (EIS measurements. The PoPD coated 316L SS exhibits higher corrosion potential when compared to uncoated specimen. EIS studies, clearly ascertain that PoPD nanofiber coatings exhibits excellent potential barrier to protect the 316L SS against corrosion in 3.5% NaCl.

  4. Hybrid organic-inorganic coatings including nanocontainers for corrosion protection of magnesium alloy ZK30

    Science.gov (United States)

    Kartsonakis, I. A.; Koumoulos, E. P.; Charitidis, C. A.; Kordas, G.

    2013-08-01

    This study is focused on the fabrication, characterization, and application of corrosion protective coatings to magnesium alloy ZK30. Hybrid organic-inorganic coatings were synthesized using organic-modified silicates together with resins based on bisphenol A diglycidyl ether. Cerium molybdate nanocontainers (ncs) with diameter 100 ± 20 nm were loaded with corrosion inhibitor 2-mercaptobenzothiazole and incorporated into the coatings in order to improve their anticorrosion properties. The coatings were investigated for their anticorrosion and nanomechanical properties. The morphology of the coatings was examined by scanning electron microscopy. The composition was estimated by energy-dispersive X-ray analysis. The mechanical integrity of the coatings was studied through nanoindentation and nanoscratch techniques. Scanning probe microscope imaging of the coatings revealed that the addition of ncs creates surface incongruity; however, the hardness to modulus ratio revealed significant strengthening of the coating with increase of ncs. Studies on their corrosion behavior in 0.5 M sodium chloride solutions at room temperature were made using electrochemical impedance spectroscopy. Artificial defects were formatted on the surface of the films in order for possible self-healing effects to be evaluated. The results showed that the coated magnesium alloys exhibited only capacitive response after exposure to corrosive environment for 16 months. This behavior denotes that the coatings have enhanced barrier properties and act as an insulator. Finally, the scratched coatings revealed a partial recovery due to the increase of charge-transfer resistance as the immersion time elapsed.

  5. Use of Extracted Green Inhibitors as a Friendly Choice in Corrosion Protection of Low Alloy Carbon Steel

    Directory of Open Access Journals (Sweden)

    Jano, A.

    2012-11-01

    Full Text Available Mitigation of corrosion impact on environment is an important step in environmental protection. Use of environmentally friendly corrosion protection methods is very important. It is smart to choose cheap and safe to handle compounds as corrosion inhibitors. The use of green inhibitors (extracted inexpensively, from the seed endosperm of some Leguminosae plants, and investigation of their efficiency in corrosion protection is the aim of this study. As green inhibitor one kind of polysaccharides (galactomannan from locust bean gum (also known as carob gum, carob bean gum extracted from the seed of carob tree is used. Corrosion protection efficiency of these extracted green inhibitors was tested for carbon steel marked as: steel 39, steel 44, and iron B 500 (usually applied as reinforcing bars to concrete. Sulfuric acid solution in the presence of chloride ions was used as corrosion media. The composition of corrosion acid media used was 1 mol L-1 H2SO4 and 10-3 mol L-1 Cl- (in the form of NaCl. Electrochemical techniques such as potentiodynamic polarization methods were used for inhibitor efficiency testing.

  6. The Cost Analysis of Corrosion Protection Solutions for Steel Components in Terms of the Object Life Cycle Cost

    Directory of Open Access Journals (Sweden)

    Kowalski Dariusz

    2017-09-01

    Full Text Available Steel materials, due to their numerous advantages - high availability, easiness of processing and possibility of almost any shaping are commonly applied in construction for carrying out basic carrier systems and auxiliary structures. However, the major disadvantage of this material is its high corrosion susceptibility, which depends strictly on the local conditions of the facility and the applied type of corrosion protection system. The paper presents an analysis of life cycle costs of structures installed on bridges used in the road lane conditions. Three anti-corrosion protection systems were considered, analyzing their essential cost components. The possibility of reducing significantly the costs associated with anti-corrosion protection at the stage of steel barriers maintenance over a period of 30 years has been indicated. The possibility of using a new approach based on the life cycle cost estimation in the anti-corrosion protection of steel elements is presented. The relationship between the method of steel barrier protection, the scope of repair, renewal work and costs is shown. The article proposes an optimal solution which, while reducing the cost of maintenance of road infrastructure components in the area of corrosion protection, allows to maintain certain safety standards for steel barriers that are installed on the bridge.

  7. The Cost Analysis of Corrosion Protection Solutions for Steel Components in Terms of the Object Life Cycle Cost

    Science.gov (United States)

    Kowalski, Dariusz; Grzyl, Beata; Kristowski, Adam

    2017-09-01

    Steel materials, due to their numerous advantages - high availability, easiness of processing and possibility of almost any shaping are commonly applied in construction for carrying out basic carrier systems and auxiliary structures. However, the major disadvantage of this material is its high corrosion susceptibility, which depends strictly on the local conditions of the facility and the applied type of corrosion protection system. The paper presents an analysis of life cycle costs of structures installed on bridges used in the road lane conditions. Three anti-corrosion protection systems were considered, analyzing their essential cost components. The possibility of reducing significantly the costs associated with anti-corrosion protection at the stage of steel barriers maintenance over a period of 30 years has been indicated. The possibility of using a new approach based on the life cycle cost estimation in the anti-corrosion protection of steel elements is presented. The relationship between the method of steel barrier protection, the scope of repair, renewal work and costs is shown. The article proposes an optimal solution which, while reducing the cost of maintenance of road infrastructure components in the area of corrosion protection, allows to maintain certain safety standards for steel barriers that are installed on the bridge.

  8. Development and application of corrosion and protection database using intranet; Intoranetto wo riyo shita zairyo fushoku detabesu no kochiku to katsuyo

    Energy Technology Data Exchange (ETDEWEB)

    Futatsugi, Takashi.; Baba, Fumio.; Suzuki, Tsuguo. [Ajinomoto Co., Inc., Tokyo (Japan). Technology and Engineering Laboratories

    1999-05-15

    A new corrosion and protection database system, which stores a large amount of documents and informations about corrosion and protection, such as case histories, materials data, fabrication methods and repairing methods, has been developed. Users of the database system can be accessed using WWW browser via Intranet. This database can be operated by easy handling with only click and drug. The database system is expected to offer a wide knowledge for corrosion related engineers and to decrease corrosion troubles. (author)

  9. Electrodeposition of Ni(OH)2 reinforced polyaniline coating for corrosion protection of 304 stainless steel

    Science.gov (United States)

    Jiang, Li; Syed, Junaid Ali; Gao, Yangzhi; Lu, Hongbin; Meng, Xiangkang

    2018-05-01

    In the present paper, polyaniline (PANI) coating was electropolymerized in the presence of phosphoric acid with subsequent deposition of Ni(OH)2 particles. The Ni(OH)2 reinforced PANI coating significantly enhances the corrosion resistance of 304 stainless steel (304SS) in comparison with the pristine PANI coating. The galvanostatically deposited Ni(OH)2 particles fill the pores of the pristine PANI coating and improves the coatings hydrophobicity which decreases the diffusion of aggressive media. Importantly, the Rp values of Ni(OH)2 reinforced PANI coating is much higher than that of pristine PANI coating and the Ni(OH)2 reinforced PANI coating presents a long-term anti-corrosive ability (360 h) in 3.5 wt% NaCl solution. The prolonged corrosion protection of Ni(OH)2 reinforced PANI coating is attributed to the improved physical barrier as well as the facile formation of passive oxide film that sustain the anodic protection of the coating.

  10. The study of the corrosion protection of the low-carbon steel using film-products

    International Nuclear Information System (INIS)

    Aiancului, L.; Millet, Jean-Pierre

    2001-01-01

    The paper reports studies on the efficiency of the film-inhibitors that covered low-carbon steel placed in a humid medium, and also, the optimization of the working conditions to improve the resistance to corrosion. The analyzes were done in the Industrial Physical - Chemical Laboratories of INSA - Lyon by electrochemical stationary techniques. The experimental device was a potentiometer of type EGG PAR (Princeton Applied Research). It was connected with a computer and three potential electrodes introduced in a cell with NaCl 30 g/l solution to acquire the data and to process the information. The film-products used were organic hydrosoluble polymers with diphosphonic 'heads' that permit a very good absorption at the metallic surface. This research is used to protect the installations of low-carbon steel against the atmospheric and high temperature corrosion. (authors)

  11. Interaction of Benzimidazoles and Benzotriazole: Its Corrosion Protection Properties on Mild Steel in Hydrochloric Acid

    Science.gov (United States)

    Ramya, K.; Mohan, Revathi; Joseph, Abraham

    2014-11-01

    Synergistic hydrogen-bonded interaction of alkyl benzimidazoles and 1,2,3-benzotrizole and its corrosion protection properties on mild steel in hydrochloric acid at different temperatures have been studied using polarization, EIS, adsorption, surface studies, and computational methods. The extent of synergistic interaction increases with temperature. Quantum chemical approach is used to calculate some electronic properties of the molecules and to ascertain the synergistic interaction, inhibitive effect, and molecular structures. The corrosion inhibition efficiencies and the global chemical reactivity relate to some parameters, such as total energy, E HOMO, E LUMO, and gap energy (Δ E). 1,2,3-Benzotrizole interacts with benzimidazoles derivatives up to a bond length of approximately 1.99 Å. This interaction represents the formation of a hydrogen bond between the 1,2,3-benzotrizole and benzimidazoles. This synergistic interaction of 1,2,3-benzotrizole and benzimidazole derivatives offers extended inhibition efficiency toward mild steel in hydrochloric acid.

  12. Corrosion inhibition with different protective layers in tinplate cans for food preservation.

    Science.gov (United States)

    Grassino, Antonela Ninčević; Grabarić, Zorana; Pezzani, Aldo; Squitieri, Giuseppe; Berković, Katarina

    2010-11-01

    In this work the influence of essential onion oil (EOO) on the protection of tinplates was compared with dioctyl sebacate oil (DOS) and epoxy phenolic lacquers, which are frequently used in the food canning industry. When EOO as the protective layer instead of DOS oil was used, tinplate porosity, measured electrochemically (7.58 ± 1.97 µA cm(-2) and 23.0 ± 1.3 µA cm(-2), respectively), and iron coating mass, calculated from AAS data (1.52 ± 0.15 mg m(-2) and 3.14 ± 0.42, respectively), was much lower indicating better corrosion protection. At higher storing temperature (36 °C) the addition of EOO to canned tomato purée enhanced the formation of hydrogen with time. The increasing volume fraction of H(2) (from 34.0 to 90.9% for cans without nitrates, and from 33.8 to 89.2% for cans with nitrates) is an indicator that corrosion takes place. As the use of EOO improves the protection of tinplate compared with DOS oil, and is almost as effective as epoxy phenolic lacquer, the addition of EOO can be recommended due to lower cost of canned food production and enhanced organoleptic properties, but the storage temperature has to be lower then 36 °C. 2010 Society of Chemical Industry

  13. Evaluation of the protection behaviour of reinforcement steel against corrosion induced by chlorides in reinforced mortar specimens

    International Nuclear Information System (INIS)

    Crivelaro, Marcos

    2002-01-01

    In this work various treatments for protecting reinforcing steels against corrosion induced by chlorides have been evaluated. Additives to mortars and surface treatments given to reinforcing steels were evaluated as corrosion protection measures. In the preliminary tests the corrosion resistance of a CA 50 steel treated by immersion in nearly 50 different solutions, was determined. The solutions were prepared with tannins (from various sources) and/or benzotriazole, and during immersion, a surface film formed on the steel. The corrosion resistance of the coated steels was evaluated in a saturated Ca(OH) 2 solution with 5% (wt) NaCl. Preliminary tests were also carried out with mortars reinforced with uncoated steel to which tannin or lignin was added. Two organic coatings, a monocomponent and a bicomponent type, formulated specially for this investigation, with both tannin and benzotriazole, were also tested in the preliminary tests to select the coating with better corrosion protection property. The bicomponent type (epoxy coating) showed better performance than the monocomponent type coating, and the former was therefore chosen to investigate the corrosion performance on CA 50 steel inside mortar specimens. From the preliminary tests, two solutions with tannin from two sources, Black Wattle (Acacia mearnsii) and Brazilian tea (Ilex paraguariensis St. Hill), to which benzotriazole and phosphoric acid were added, were chosen. Mortar specimens reinforced with CA50 steel treated by immersion in these two solutions were prepared. Also, epoxy coated CA50 steel was tested as reinforcement inside mortar specimens. Mortars reinforced with uncoated CA50 steel were also prepared and corrosion tested for comparison. The effect of tannin and lignin as separate additives to the mortar on the corrosion resistance of uncoated steel was also studied. The reinforced mortar specimens were tested with various cycles of immersion for 2 days in 3.5% (wt) NaCl followed by with air

  14. Characterization of the corrosion protection mechanism of cerium-based conversion coatings on high strength aluminum alloys

    Science.gov (United States)

    Pinc, William Ross

    The aim of the work presented in this dissertation is to investigate the corrosion protection mechanism of cerium-based conversion coatings (CeCCs) used in the corrosion protection of high strength aluminum alloys. The corrosion resistance of CeCCs involves two general mechanisms; barrier and active. The barrier protection mechanism was influenced by processing parameters, specifically surface preparation, post-treatment, and the use of gelatin. Post-treatment and the addition of gelatin to the coating solution resulted in fewer cracks and transformation of the coating to CePO4, which increased the corrosion resistance by improving the barrier aspect of CeCCs. CeCCs were found to best act as barriers when crack size was limited and CePO4 was present in the coating. CeCCs were found to protect areas of the substrate that were exposed in the coating, indicating that the coatings were more than simple barriers. CeCCs contained large cracks, underneath which subsurface crevices were connected to the surface by the cracks. Despite the observation that no cerium was present in crevices, coatings with crevices exhibited significant corrosion protection. The impedance of post-treated coatings with crevices increased during salt spray exposure. The increase in impedance was associated with the formation of protective oxides / hydroxides; however, crevice-free coatings also exhibited active protection leading to the conclusion that the formation of interfacial layers between the CeCC and the substrate also contributed to the active protection. Based on the overall results of the study, the optimal corrosion protection of CeCCs occurred when processing conditions produced coatings with morphologies and compositions that facilitated both the barrier and active protection mechanisms.

  15. Astrakhan-Mangyshlak water main (pipeline): corrosion state of the inner surface, and methods for its corrosion protection. Part III. The effects of KW2353 inhibitor. Part IV. Microbiological corrosion

    International Nuclear Information System (INIS)

    Reformatskaya, I.I.; Ashcheulova, I.I.; Barinova, M.A.; Kostin, D.V.; Prutchenko, S.G.; Ivleva, G.A.; Taubaldiev, T.S.; Murinov, K.S.; Tastanov, K.Kh.

    2003-01-01

    The effect of the KW2353 corrosion inhibitor, applied on the Astrakhan-Mangyshlak water main (pipeline) since 1997, on the corrosion processes, occurring on the 17G1S steel surface, is considered. The properties of the surface sediments are also considered. The role of the microbiological processes in the corrosion behavior of the water main (pipeline) inner surface is studied. It is shown, that application of the polyphosphate-type inhibitors, including the KW2353 one, for the anticorrosive protection of the inner surface of the extended water main (pipelines) is inadmissible: at the temperature of ∼20 deg C this corrosion inhibitor facilitates the development of the local corrosion processes on the water main (pipeline) inner surface. At the temperature of ∼8 deg C the above inhibitor discontinues to effect the corrosive stability of the 17G1S steel. The optimal way of the anticorrosive protection of the steel equipment, contacting with the water media, is the increase in the oxygen content therein [ru

  16. Corrosion protection of Arctic offshore structures: Final report. [Effects of temperature and salinity on required cathodic protection current

    Energy Technology Data Exchange (ETDEWEB)

    Sackinger, W.M.; Rogers, J.C.; Feyk, C.; Theuveny, B.

    1985-10-01

    Results are presented for a research program on corrosion prevention for Arctic offshore structures which are in contact with sea ice for a significant portion of the year. The electrical method most adaptable for structure protection involves the injection of impressed current from several remote anodes buried just beneath the sea floor. The electrical resistivity of annual sea ice as a function of temperature and salinity is presented. Details of the interface layers formed between sea ice and steel in the presence of current injection are shown. A computer program was developed to enable the calculation of protective current density into the structure, in the presence of ice rubble and ridges around the structure. The program and the results of an example calculation are given for a caisson- retained island structure. 81 refs., 103 figs., 3 tabs.

  17. Effective corrosion protection of AA6061 aluminum alloy by sputtered Al-Ce coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez-Crespo, M.A., E-mail: mdominguezc@ipn.m [Instituto Politecnico Nacional, GIPMAT CICATA-Altamira, km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Torres-Huerta, A.M. [Instituto Politecnico Nacional, GIPMAT CICATA-Altamira, km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Rodil, S.E. [Instituto de Investigacion en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, Ciudad Universitaria, Del. Coyoacan, C.P. 04510 Mexico, D.F. (Mexico); Ramirez-Meneses, E. [Instituto Politecnico Nacional, GIPMAT CICATA-Altamira, km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Suarez-Velazquez, G.G. [Alumna del PTA del CICATA-Altamira IPN, km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Hernandez-Perez, M.A. [Instituto Politecnico Nacional, ESIQIE, C.P. 07738 Mexico, D.F. (Mexico)

    2009-12-30

    Al-Ce coatings were deposited on silicon and AA6061 aluminum alloy substrates by DC magnetron sputtering using aluminum in combination with pure cerium targets. The materials were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and electrochemical impedance spectroscopy (EIS) in order to consider their application as high corrosion resistance coatings. The corrosion behavior of the films was studied using a NaCl aqueous solution (3.5 wt%). As for the characterization results, an apparent amorphous phase of aluminum oxide with small cerium compounds embedded in the matrix was detected by the X-ray diffraction patterns and HRTEM on the deposited films at 200 W and 4 Pa. At these conditions, AFM and SEM images evidenced crack-free coatings with low-roughness nanometric structures and columnar growth. EIS and Tafel results converged to indicate an inhibition of the corrosion reactions. The film displayed good stability in the aggressive medium and after 1 day of exposure underwent very little degradation. The variations in the impedance and Tafel characteristics were found to occur as a function of cerium content, which provokes important changes in the film protective properties.

  18. Effective corrosion protection of AA6061 aluminum alloy by sputtered Al-Ce coatings

    International Nuclear Information System (INIS)

    Dominguez-Crespo, M.A.; Torres-Huerta, A.M.; Rodil, S.E.; Ramirez-Meneses, E.; Suarez-Velazquez, G.G.; Hernandez-Perez, M.A.

    2009-01-01

    Al-Ce coatings were deposited on silicon and AA6061 aluminum alloy substrates by DC magnetron sputtering using aluminum in combination with pure cerium targets. The materials were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and electrochemical impedance spectroscopy (EIS) in order to consider their application as high corrosion resistance coatings. The corrosion behavior of the films was studied using a NaCl aqueous solution (3.5 wt%). As for the characterization results, an apparent amorphous phase of aluminum oxide with small cerium compounds embedded in the matrix was detected by the X-ray diffraction patterns and HRTEM on the deposited films at 200 W and 4 Pa. At these conditions, AFM and SEM images evidenced crack-free coatings with low-roughness nanometric structures and columnar growth. EIS and Tafel results converged to indicate an inhibition of the corrosion reactions. The film displayed good stability in the aggressive medium and after 1 day of exposure underwent very little degradation. The variations in the impedance and Tafel characteristics were found to occur as a function of cerium content, which provokes important changes in the film protective properties.

  19. Protection of copper surface with phytic acid against corrosion in chloride solution.

    Science.gov (United States)

    Peca, Dunja; Pihlar, Boris; Ingrid, Milošev

    2014-01-01

    Phytic acid (inositol hexaphosphate) was tested as a corrosion inhibitor for copper in 3% sodium chloride. Phytic acid is a natural compound derived from plants, it is not toxic and can be considered as a green inhibitor. Electrochemical methods of linear polarization and potentiodynamic polarization were used to study the electrochemical behaviour and evaluate the inhibition effectiveness. To obtain the optimal corrosion protection the following experimental conditions were investigated: effect of surface pre-treatment (abrasion and three procedures of surface roughening), pre-formation of the layer of phytic acid, time of immersion and concentration of phytic acid. To evaluate the surface pre-treatment procedures the surface roughness and contact angle were measured. Optimal conditions for formation of phytic layer were selected resulting in the inhibition effectiveness of nearly 80%. Morphology and composition of the layer were further studied by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The layer of phytic acid with thickness in the nanometer range homogeneously covers the copper surface. The obtained results show that this natural compound can be used as a mildly effective corrosion inhibitor for copper in chloride solution.

  20. Corrosion Protection of Carbon Steel Using Poly aniline Composite with Inorganic Pigments

    International Nuclear Information System (INIS)

    Al-Dulaimi, A.A.; Shahrir Hashim; Khan, M.I.

    2011-01-01

    Two inorganic pigments (TiO 2 and SiO 2 ) were used to prepare composites with poly aniline (PANI) by situ polymerization method. PANI and PANI composites with SiO 2 and TiO 2 were characterized using Fourier transform infrared spectroscopy and X-ray diffraction. The morphology of the synthesized pigments (PANI , PANI-SiO 2 and PANI-TiO 2 ) was examined using scanning electron microscopy. Samples were then used as pigments through blending them with acrylic paint and applied on the surface of carbon steel panels. Corrosion was evaluated for coating of carbon steel panels through full immersion test up to standard ASTMG 31. Mass loss was calculated after they have been exposed in acidic media. A digital camera was also used for monitoring corrosion visually on the surface of carbon steel specimens. The results revealed that acrylic paint pigmented by PANI-SiO 2 composite was more efficient in corrosion protection for carbon steel compared with the other synthesized pigments. (author)

  1. The Corrosion Protection of 2219-T87 Aluminum by Organic and Inorganic Zinc-Rich Primers

    Science.gov (United States)

    Danford, M. D.; Mendrek, M. J.; Walsh, D. W.

    1995-01-01

    The behavior of zinc-rich primer-coated 2219-T87 aluminum in a 3.5-percent Na-Cl was investigated using electrochemical techniques. The alternating current (ac) method of electrochemical impedance spectroscopy (EIS), in the frequency range of 0.001 to 40,000 Hz, and the direct current (dc) method of polarization resistance (PR) were used to evaluate the characteristics of an organic, epoxy zinc-rich primer and an inorganic, ethyl silicate zinc-rich primer. A dc electrochemical galvanic corrosion test was also used to determine the corrosion current of each zinc-rich primer anode coupled to a 2219-T87 aluminum cathode. Duration of the EIS/PR and galvanic testing was 21 days and 24 h, respectively. The galvanic test results demonstrated a very high galvanic current between the aluminum cathode and both zinc-rich primer anodes (37.9 pA/CM2 and 23.7 pA/CM2 for the organic and inorganic primers, respectively). The PR results demonstrated a much higher corrosion rate of the zinc in the inorganic primer than in the organic primer, due primarily to the higher porosity in the former. Based on this investigation, the inorganic zinc-rich primer appears to provide superior galvanic protection and is recommended for additional study for application in the solid rocket booster aft skirt.

  2. Electrodeposition and Characterization of Mn-Cu-Zn Alloys for Corrosion Protection Coating

    Science.gov (United States)

    Tsurtsumia, Gigla; Gogoli, David; Koiava, Nana; Kakhniashvili, Izolda; Jokhadze, Nunu; Lezhava, Tinatin; Nioradze, Nikoloz; Tatishvili, Dimitri

    2017-12-01

    Mn-Cu-Zn alloys were electrodeposited from sulphate bath, containing citrate or EDTA and their mixtures as complexing ligands. The influence of bath composition and deposition parameters on alloys composition, cathodic current efficiency and structural and electrochemical properties were studied. At a higher current density (≥ 37.5 A dm-2) a uniform surface deposit of Mn-Cu-Zn was obtained. Optimal pH of electrolyte (0.3 mol/dm3Mn2+ + 0.6 mol/dm3 (NH4)2SO4 +0.1 mol/dm3Zn2++0.005 mol/dm3 Cu2++ 0.05mol/dm3Na3Cit + 0.15mol/dm3 EDTA; t=300C; τ=20 min) for silvery, nonporous coating of Mn-Cu-Zn alloy was within 6.5-7.5; coating composition: 71-83% Mn, 6-7.8% Cu, 11.5-20% Zn, current efficiency up to 40%. XRD patterns revealed BCT (body centred tetragonal) γ-Mn solid phase solution (lattice constants a=2.68 Å c=3.59 Å). Corrosion measurements of deposited alloys were performed in aerated 3.5% NaCl solution. The corrosion current density (icorr) of the electrodeposited alloys on carbon steel was 10 times lower than corrosion rate of pure zinc and manganese coatings. Triple alloy coatings corrosion potential (Ecorr = -1140 mV vs. Ag/AgCl) preserved negative potential value longer (more than three months) compared to carbon steel substrate (Ecorr = -670 mV vs. Ag/AgCl). Tafel polarization curves taken on Mn-Cu-Zn alloy coating in aerated 3.5% NaCl solution did not show a typical passivation behaviour which can be explained by formation oflow solubility of adherent corrosion products on the alloy surface. Corrosion test of Mn-Cu-Zn electrocoating in chlorine environment shows that it is the best cathodic protective coating for a steel product.

  3. Corrosion protection and antifouling properties of varnish-coated steel containing natural additive

    Directory of Open Access Journals (Sweden)

    Abd-El-Nabey Besheir Ahmed A.

    2017-01-01

    Full Text Available The corrosion protection and antifouling properties of varnish-coated steel panels containing different amounts of cannabis extracts were investigated using electrochemical impedance spectroscopy (EIS, salt spray and immersion tests in 0.5 M NaCl solution and subjected to a field test in seawater. Analysis of the experimental data showed that the presence of cannabis extract resisted the deterioration (peeling off tendency of the varnish-coated steel panels exposed to aggressive environments. Visual inspection showed that the cannabis extract also provided good antifouling properties.

  4. DEVELOPMENT OF TREAD ON THE BASIS OF COLOR ALLOYS RECYCLED IRON-CARBON ALLOYS PROTECTION FROM CORROSION

    Directory of Open Access Journals (Sweden)

    A. A. Pivovarchyk

    2016-01-01

    Full Text Available The results of development of the compositions of protectors for the corrosion protection low-carbon alloys used in the automotive industry, using as the raw material of the secondary aluminum raw materials. The results of research on the effectiveness of the tread designed to protect the alloy composition.

  5. Indium oxide thin film as potential photoanodes for corrosion protection of stainless steel under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan [Key Laboratory of New Fiber Materials and Modern Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Yu, Jianqiang, E-mail: jianqyu@qdu.edu.cn [Key Laboratory of New Fiber Materials and Modern Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Sun, Kai; Zhu, Yukun [Key Laboratory of New Fiber Materials and Modern Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Bu, Yuyu; Chen, Zhuoyuan [National Engineering Center of Marine Corrosion Protection, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071 (China)

    2014-05-01

    Graphical abstract: If the conduction band potential of In{sub 2}O{sub 3} is more negative than the corrosion potential of stainless steel, photo-induced electrons will be transferred from In{sub 2}O{sub 3} to the steel, thus shifting the potential of the steel into a corrosion immunity region and preventing the steel from the corrosion. - Highlights: • Indium oxide performed novel application under visible light. • Indium oxide by sol–gel method behaved better photoelectrochemical properties. • Electrons were transferred to stainless steel from indium oxide once light on. - Abstract: This paper reports the photoelectrochemical cathodic protection of 304 stainless steel by In{sub 2}O{sub 3} thin-film under visible-light. The films were fabricated with In{sub 2}O{sub 3} powders, synthesized by both sol–gel (In{sub 2}O{sub 3}-sg) and solid-state (In{sub 2}O{sub 3}-ss) processes. The photo-induced open circuit potential and the photo-to-current efficiency measurements suggested that In{sub 2}O{sub 3} could be a promising candidate material for photoelectrochemical cathodic protection of metallic alloys under visible light. Moreover, the polarization curve experimental results indicated that In{sub 2}O{sub 3}-sg thin-film can mitigate the corrosion potential of 304 stainless steel to much more negative values with a higher photocurrent density than the In{sub 2}O{sub 3}-ss film under visible-light illumination. All the results demonstrated that the In{sub 2}O{sub 3}-sg thin-film provides a better photoelectrochemical cathodic protection for 304 stainless steel than In{sub 2}O{sub 3}-ss thin-film under visible-light illumination. The higher photoelectrochemical efficiency is possibly due to the uniform thin films produced with the smaller particle size of In{sub 2}O{sub 3}-sg, which facilitates the transfer of the photo-induced electrons from bulk to the surface and suppresses the charge recombination of the electrons and holes.

  6. THE USE OF COATINGS FOR HOT CORROSION AND EROSION PROTECTION IN TURBINE HOT SECTION COMPONENTS

    Directory of Open Access Journals (Sweden)

    Hayrettin AHLATCI

    1999-01-01

    Full Text Available High pressure turbine components are subjected to a wide variety of thermal and mechanical loading during service. In addition, the components are exposed to a highly oxidizing atmosphere which may contain contaminants such as sulphates, chlorides and sulphuorous gases along with erosive media. So the variety of surface coatings and deposition processes available for the protection of blade and vane components in gas turbines are summarised in this study. Coating types range from simple diffusion aluminides to modified aluminides and a CoCrAlY overlayer. The recommendations for corrosion-resistant coatings (for low temperature and high temperature hot corrosion environments are as follows: silicon aluminide and platinumchromium aluminide for different gas turbine section superalloys substrates. Platinum metal additions are used to improve the properties of coatings on turbine components. Inorganic coatings based on ceramic films which contain aluminium or aluminium and silicon are very effective in engines and gas turbines. Diffusion, overlayer and thermal barrier coatings which are deposited on superalloys gas turbine components by pack cementation, plasma spraying processes and a number of chemical vapour deposition, physical vapour deposition processes (such as electron beam, sputtering, ion plating are described. The principles underlying the development of protective coatings serve as a useful guide in the choice of coatings for other high temperature applications.

  7. Silica doped with lanthanum sol–gel thin films for corrosion protection

    International Nuclear Information System (INIS)

    Abuín, M.; Serrano, A.; Llopis, J.; García, M.A.; Carmona, N.

    2012-01-01

    We present here anticorrosive silica coatings doped with lanthanum ions for the protection of metallic surfaces as an alternative to chromate (VI)-based conversion coatings. The coatings were synthesized by the sol–gel method starting from silicon alkoxides and two different lanthanum precursors: La (III) acetate hydrate and La (III) isopropoxide. Artificial corrosion tests in acid and alkaline media showed their effectiveness for the corrosion protection of AA2024 aluminum alloy sheets for coating prepared with both precursors. The X-ray absorption Near Edge Structure and X-ray Absorption Fine Structure analysis of the coatings confirmed the key role of lanthanum in the structural properties of the coating determining its anticorrosive properties. - Highlights: ► Silica sol–gel films doped with lanthanum ions were synthesized. ► Films from lanthanum-acetate and La-alkoxide were prepared for comparison purposes. ► La-acetate is an affordable chemical reactive preferred for the industry. ► Films properties were explored by scanning electron microscopy and X-Ray absorption spectroscopy. ► An alternative to anticorrosive pre-treatments for metallic surfaces is suggested.

  8. Silica doped with lanthanum sol-gel thin films for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Abuin, M. [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain); Serrano, A. [Glass and Ceramic Institute, CSIC, C. Kelsen 5, 28049 Madrid (Spain); Llopis, J. [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain); Garcia, M.A. [Glass and Ceramic Institute, CSIC, C. Kelsen 5, 28049 Madrid (Spain); IMDEA Nanoscience, Fco. Tomas y Valiente 7, 28049 Madrid (Spain); Carmona, N., E-mail: n.carmona@fis.ucm.es [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain)

    2012-06-01

    We present here anticorrosive silica coatings doped with lanthanum ions for the protection of metallic surfaces as an alternative to chromate (VI)-based conversion coatings. The coatings were synthesized by the sol-gel method starting from silicon alkoxides and two different lanthanum precursors: La (III) acetate hydrate and La (III) isopropoxide. Artificial corrosion tests in acid and alkaline media showed their effectiveness for the corrosion protection of AA2024 aluminum alloy sheets for coating prepared with both precursors. The X-ray absorption Near Edge Structure and X-ray Absorption Fine Structure analysis of the coatings confirmed the key role of lanthanum in the structural properties of the coating determining its anticorrosive properties. - Highlights: Black-Right-Pointing-Pointer Silica sol-gel films doped with lanthanum ions were synthesized. Black-Right-Pointing-Pointer Films from lanthanum-acetate and La-alkoxide were prepared for comparison purposes. Black-Right-Pointing-Pointer La-acetate is an affordable chemical reactive preferred for the industry. Black-Right-Pointing-Pointer Films properties were explored by scanning electron microscopy and X-Ray absorption spectroscopy. Black-Right-Pointing-Pointer An alternative to anticorrosive pre-treatments for metallic surfaces is suggested.

  9. Enhanced corrosion protective PANI-PAA/PEI multilayer composite coatings for 316SS by spin coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Syed, Junaid Ali; Lu, Hongbin; Tang, Shaochun; Meng, Xiangkang, E-mail: mengxk@nju.edu.cn

    2015-01-15

    Highlights: • PANI-PAA/PEI multilayers with controllable thickness were fabricated by spin assembly. • PAA matrix results in the homogeneous dispersion of PANI in the composite coatings. • Spin coating combined with heating assures the linear increase in thickness with n. • The corrosion protection property of PANI-PAA/PEI coatings were optimized at n = 20. • Enhanced protection owing to multilayer structure that lengthens the diffusion pathway of ions. - Abstract: In the present study, polyaniline-polyacrylic acid/polyethyleneimine (PANI-PAA/PEI) composite coatings with a multilayer structure for corrosion protection of 316 stainless steels (316SS) were prepared by an alternate deposition. Spin coating combined with heating assists removal of residual water that result in a linear increase in thickness with layer number (n). The combination of PANI-PAA composite with PEI and their multilayer structure provides a synergistic enhancement of corrosion resistance properties as determined by electrochemical measurements in 3.5% NaCl solution. Importantly, the PANI-PAA/PEI coating with an optimized layer number of n = 20 shows improved corrosion protection. The superior performance was attributed to the formation of an interfacial oxide layer as well as the multilayer structure that extend the diffusion pathway of corrosive ions.

  10. Synthesis, characterization, and corrosion protection properties of poly(N-(methacryloyloxymethyl) benzotriazole-co-methyl methacrylate) on mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth, A.P. [Department of Applied Sciences and Humanities, MIT Campus, Anna University, Chennai 600044 (India); Lavanya, A. [Department of Chemistry, CEG Campus, Anna University, Chennai 600025 (India); Nanjundan, S. [Department of Chemistry, CEG Campus, Anna University, Chennai 600025 (India); Rajendran, N. [Department of Applied Sciences and Humanities, MIT Campus, Anna University, Chennai 600044 (India)]. E-mail: nrajendran@annauniv.edu

    2006-12-15

    The copolymers from different feed ratios of N-(methacryloyloxymethyl) benzotriazole (MMBT) and methyl methacrylate (MMA) has been synthesised using free radical solution polymerization technique and characterized using FT-IR and {sup 13}C NMR spectroscopy. The thermal stability of the polymers was studied using theremogravimetrtic analysis (TGA). The corrosion behaviors of mild steel specimens dip coated with different composition of copolymers have been evaluated by potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) method. These electrochemical properties were observed in 0.1 M HCl medium. The polarization and impedance measurements showed different corrosion protection efficiency with change in composition of the copolymers. It was found that the corrosion protection properties are owing to the barrier effect of the polymer layer covered on the mild steel surfaces. However, it was observed that the copolymer obtained from 1:1 mole ratio of MMBT and MMA exhibited better protection efficiency than other combinations.

  11. Synthesis, characterization, and corrosion protection properties of poly( N-(methacryloyloxymethyl) benzotriazole- co-methyl methacrylate) on mild steel

    Science.gov (United States)

    Srikanth, A. P.; Lavanya, A.; Nanjundan, S.; Rajendran, N.

    2006-12-01

    The copolymers from different feed ratios of N-(methacryloyloxymethyl) benzotriazole (MMBT) and methyl methacrylate (MMA) has been synthesised using free radical solution polymerization technique and characterized using FT-IR and 13C NMR spectroscopy. The thermal stability of the polymers was studied using theremogravimetrtic analysis (TGA). The corrosion behaviors of mild steel specimens dip coated with different composition of copolymers have been evaluated by potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) method. These electrochemical properties were observed in 0.1 M HCl medium. The polarization and impedance measurements showed different corrosion protection efficiency with change in composition of the copolymers. It was found that the corrosion protection properties are owing to the barrier effect of the polymer layer covered on the mild steel surfaces. However, it was observed that the copolymer obtained from 1:1 mole ratio of MMBT and MMA exhibited better protection efficiency than other combinations.

  12. The role of surface preparation in corrosion protection of copper with nanometer-thick ALD alumina coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mirhashemihaghighi, Shadi; Światowska, Jolanta [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Maurice, Vincent, E-mail: vincent.maurice@chimie-paristech.fr [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Seyeux, Antoine; Klein, Lorena H. [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Salmi, Emma; Ritala, Mikko [Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Marcus, Philippe [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France)

    2016-11-30

    Highlights: • 10–50 nm thick alumina coatings were grown on copper by atomic layer deposition. • Surface smoothening by substrate annealing was studied as pre-deposition treatment. • Corrosion protection is promoted by pre-treatment for 10 nm but not for thicker films. • Local adhesion failure is assigned to the stresses accumulated in the thicker films. • Surface smoothening decreases the interfacial strength bearing the film stresses. - Abstract: Surface smoothening by substrate annealing was studied as a pre-treatment for improving the corrosion protection provided to copper by 10, 20 and 50 nm thick alumina coatings deposited by atomic layer deposition. The interplay between substrate surface state and deposited film thickness for controlling the corrosion protection provided by ultrathin barrier films is demonstrated. Pre-annealing at 750 °C heals out the dispersed surface heterogeneities left by electropolishing and reduces the surface roughness to less than 2 nm independently of the deposited film thickness. For 10 nm coatings, substrate surface smoothening promotes the corrosion resistance. However, for 20 and 50 nm coatings, it is detrimental to the corrosion protection due to local detachment of the deposited films. The weaker adherence of the thicker coatings is assigned to the stresses accumulated in the films with increasing deposited thickness. Healing out the local heterogeneities on the substrate surface diminishes the interfacial strength that is bearing the stresses of the deposited films, thereby increasing adhesion failure for the thicker films. Pitting corrosion occurs at the local sites of adhesion failure. Intergranular corrosion occurs at the initially well coated substrate grain boundaries because of the growth of a more defective and permeable coating at grain boundaries.

  13. A Survey of Corrosion and Conditions of Corrosion Protection Systems in Civil Works Structures of the U.S. Army Corps of Engineers

    Science.gov (United States)

    2014-09-01

    corrosion: coatings and cathodic protection (CP). Coatings consist of paints, epoxies, enamels , metalizing, and other coatings. CP is a chem- ical means...environmental factors such as water quality and resistivity. One of the major problems associated with lock gates is structural cracking in the...One of the problems described by Mr. Davis is fatigue crack growth resulting from the poor welding usually associated with stress risers and

  14. Electrosynthesis of Polyaniline-TiO2 Nanocomposite Films on Aluminum Alloy 3004 Surface and its Corrosion Protection Performance

    Directory of Open Access Journals (Sweden)

    M. Shabani-Nooshabadi

    2013-03-01

    Full Text Available The direct synthesis of polyaniline-TiO2 nanocomposite coatings on aluminum alloy 3004 (AA3004 surface has been investigated by using the galvanostatic method. The synthesized coatings were characterized by FT-IR, SEM-EDX, SEM and AFM. Optical absorption spectroscopy reveals the formation of the emeraldine oxidation state form of polyaniline-TiO2 nanocomposite. The corrosion performances of polyaniline-TiO2 nanocomposite coatings were investigated in 3.5% NaCl solution by Tafel polarization and Electrochemical Impedance Spectroscopy (EIS methods. The corrosion rate of polyaniline-TiO2 nanocomposite coating on AA3004 was found ∼260 times lower than bare AA3004 and corrosion potentials of these coatings have shifted to more positive potentials (105 mV. The results of this study clearly ascertain that the polyaniline-TiO2 nanocomposite coating has outstanding potential to protect the AA3004 against corrosion in a chloride environment.

  15. Replacement of corrosion protection chromate primers and paints used in cryogenic applications on the Space Shuttle with wire arc sprayed aluminum coatings

    Science.gov (United States)

    Daniel, R. L.; Sanders, H. L.; Zimmerman, F. R.

    1995-01-01

    With the advent of new environmental laws restricting volatile organic compounds and hexavalent chrome emissions, 'environmentally safe' thermal spray coatings are being developed to replace the traditional corrosion protection chromate primers. A wire arc sprayed aluminum coating is being developed for corrosion protection of low pressure liquid hydrogen carrying ducts on the Space Shuttle Main Engine. Currently, this hardware utilizes a chromate primer to provide protection against corrosion pitting and stress corrosion cracking induced by the cryogenic operating environment. The wire are sprayed aluminum coating has been found to have good potential to provide corrosion protection for flight hardware in cryogenic applications. The coating development, adhesion test, corrosion test and cryogenic flexibility test results will be presented.

  16. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  17. Corrosion surface protection by using titanium carbon nitride/titanium-niobium carbon nitride multilayered system

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo, J.C., E-mail: jcesarca@calima.univalle.edu.co [Grupo de Peliculas Delgadas, Universidad del Valle, Cali (Colombia); Amaya, C. [Grupo de Peliculas Delgadas, Universidad del Valle, Cali (Colombia); Laboratorio de Recubrimientos Duros, CDT-ASTIN SENA, Cali (Colombia); Cabrera, G. [Grupo de Peliculas Delgadas, Universidad del Valle, Cali (Colombia); Esteve, J. [Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain); Aperador, W. [Universidad Militar Nueva Granada Bogota D.C (Colombia); Gomez, M.E. [Grupo de Peliculas Delgadas, Universidad del Valle, Cali (Colombia); Prieto, P. [Grupo de Peliculas Delgadas, Universidad del Valle, Cali (Colombia); Centro de Excelencia en Nuevos Materiales, CENM, Calle 13 100-00 Edificio 320, espacio 1026, Cali (Colombia)

    2011-07-29

    The aim of this work is the improvement of the electrochemical behavior of 4140 steel substrate using TiCN/TiNbCN multilayered system as a protective coating. We have grown [TiCN/TiNbCN]{sub n} multilayered via reactive r.f. magnetron sputtering technique in which was varied systematically the bilayer period ({Lambda}), and the bilayer number (n), maintaining constant the total thickness of the coatings ({approx} 3 {mu}m). The coatings were characterized by X-ray diffraction (XRD), optical microscopy, electron microscopy and transmission electron microscopy assisted with selected area electron diffraction. The electrochemical properties were studied by Electrochemical Impedance Spectroscopy and Tafel curves. XRD results showed a preferential growth in the face-centered cubic (111) crystal structure for [TiCN/TiNbCN]{sub n} multilayered coatings [1]. In this work was obtained the maximum corrosion resistance for the coating with ({Lambda}) equal to 15 nm, corresponding to n = 200 bilayered. The polarization resistance and corrosion rate were around 8.6 kOhm cm{sup 2} and 7.59 . 10{sup -4} mm/year, these values were 8.6 and 0.001 times better than those showed by the uncoated 4140 steel substrate (1.0 kOhm and 0.57 mm/year), respectively. The improvement of the electrochemical behavior of the 4140 coated with this TiCN/TiNbCN multilayered system can be attributed to the presence of several interfaces that act as obstacles for the inward and outward diffusions of Cl{sup -} ion species, generating an increment in the energy or potential required for translating the corrosive ions across the coating/substrate interface. Moreover, the interface systems affect the means free path on the ions toward the metallic substrate, due to the decreasing of the defects presented in the multilayered coatings.

  18. Corrosion surface protection by using titanium carbon nitride/titanium-niobium carbon nitride multilayered system

    International Nuclear Information System (INIS)

    Caicedo, J.C.; Amaya, C.; Cabrera, G.; Esteve, J.; Aperador, W.; Gomez, M.E.; Prieto, P.

    2011-01-01

    The aim of this work is the improvement of the electrochemical behavior of 4140 steel substrate using TiCN/TiNbCN multilayered system as a protective coating. We have grown [TiCN/TiNbCN] n multilayered via reactive r.f. magnetron sputtering technique in which was varied systematically the bilayer period (Λ), and the bilayer number (n), maintaining constant the total thickness of the coatings (∼ 3 μm). The coatings were characterized by X-ray diffraction (XRD), optical microscopy, electron microscopy and transmission electron microscopy assisted with selected area electron diffraction. The electrochemical properties were studied by Electrochemical Impedance Spectroscopy and Tafel curves. XRD results showed a preferential growth in the face-centered cubic (111) crystal structure for [TiCN/TiNbCN] n multilayered coatings [1]. In this work was obtained the maximum corrosion resistance for the coating with (Λ) equal to 15 nm, corresponding to n = 200 bilayered. The polarization resistance and corrosion rate were around 8.6 kOhm cm 2 and 7.59 . 10 -4 mm/year, these values were 8.6 and 0.001 times better than those showed by the uncoated 4140 steel substrate (1.0 kOhm and 0.57 mm/year), respectively. The improvement of the electrochemical behavior of the 4140 coated with this TiCN/TiNbCN multilayered system can be attributed to the presence of several interfaces that act as obstacles for the inward and outward diffusions of Cl - ion species, generating an increment in the energy or potential required for translating the corrosive ions across the coating/substrate interface. Moreover, the interface systems affect the means free path on the ions toward the metallic substrate, due to the decreasing of the defects presented in the multilayered coatings.

  19. Protection of a PWR nuclear power stations against corrosion using hydrogen molecules to capture oxygen molecules

    International Nuclear Information System (INIS)

    Nahili, M.

    2004-01-01

    A protection method for the primary loops metals of nuclear power plants from corrosion was investigated. Hydrogen molecules were added to the primary circuit to eliminate oxygen molecules produced by radiolysis of coolant at the reactor core. The hydrogen molecules were produced by electrolyses of water and then added when the coolant water was passing through the primary coolant circuit. Thermodynamical process and the protection methods from corrosion were discussed, the discussion emphasized on the removal of oxygen molecules as one of the protection methods, and compared with other methods. The amount of hydrogen molecules needed for complete removal of oxygen was estimated in two cases: in the case without passing the water through the oxygen removal system, and in the case of passing water through the system. A pressurized water reactor VVER was chosen to be investigated in this study. The amount of hydrogen molecules was estimated so as to eliminate completely the oxygen molecules from coolant water. The estimated value was found to be less than the permissible range for coolant water for such type of reactors. A simulation study for interaction mechanism between hydrogen and oxygen molecules as water flowing in a tube similar to that of coolant water was performed with different water flow velocities. The interaction between the molecules of hydrogen and oxygen was described. The gas diffusion at the surface of the tube was found to play a major role in the interaction. A mathematical model was found to give full description of the change of oxygen concentration through the tube, as well as, to calculate the length of the tube where the concentration of oxygen reduced to few order of magnitude. (Author)

  20. On the development of polypyrrole coatings with self-healing properties for iron corrosion protection

    International Nuclear Information System (INIS)

    Paliwoda-Porebska, G.; Stratmann, M.; Rohwerder, M.; Potje-Kamloth, K.; Lu, Y.; Pich, A.Z.; Adler, H.-J.

    2005-01-01

    This paper presents studies on the efficacy and on the limits of polypyrrole (Ppy) doped with either MoO 4 2- or [PMo 12 O 40 ] 3- as self-healing corrosion protecting coatings. The kinetics of the cathodic delamination were studied by means of the Scanning Kelvin Probe (SKP). This method, in combination with cyclic voltammetry, UV-visible spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS), shows a potential driven anion release from the Ppy coating that results in an inhibition of the corrosion process taking place in the defect. Thus, an intelligent release of inhibitor occurs only when the potential at the interface decreases. Inhibitor anions are released only due to an active defect. However, the release mechanism can be easily negatively affected by the presence of small cations and/or by too high pH values at the buried interface. Hence, such a self-healing coating has to be carefully designed in order to ensure an effective performance

  1. Improvement in the corrosion protection and bactericidal properties of AZ91D magnesium alloy coated with a microstructured polypyrrole film

    Directory of Open Access Journals (Sweden)

    A.D. Forero López

    2018-03-01

    Full Text Available In this work hollow rectangular microtubes of polypyrrole (PPy films were potentiostatically electrodeposited on magnesium alloy AZ91D in salicylate solution. The substrate was previously anodized under potentiostatic conditions in a molybdate solution in order to improve the adherence of polymer. Finally the duplex film was modified by the incorporation of silver species. The obtained coatings were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD and X-ray photoelectron spectroscopies (XPS and the antimicrobial activity against the bacteria Escherichia coli was evaluated. The corrosion protection properties of the coatings were examined in Ringer solution by monitoring the open circuit potential, polarization techniques and electrochemical spectroscopy (EIS. The duplex coating presents an improved anticorrosive performance with respect to the PPy film. The best results concerning corrosion protection and antibacterial activity were obtained for the silver-modified composite coating. Keywords: Polypyrrole, Duplex coating, AZ91D alloy, Corrosion resistance, Antibacterial properties

  2. Corrosion protection on superheaters of waste to energy plants. Experience with material and application; Korrosionsschutz im Ueberhitzerbereich. Erfahrungen mit Werkstoff und Applikation aus Qualitaetsbegleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidl, Werner; Herzog, Thomas; Magel, Gabi; Mueller, Wolfgang; Spiegel, Wolfgang [CheMin GmbH, Augsburg (Germany)

    2011-07-01

    Corrosion induced by chlorine at high temperatures and corrosion by salt melts sometimes cause severe risk and loss of operational availability in waste- and biomass-fired power plants. This corrosion very often affects the superheater. Due to high maintenance needs, several approaches to anti-corrosion coating have been developed. Nickel-based alloys such as alloy 625 are chosen to be applied as cladding or by thermal spraying. Operation periods have been considerably increased by these methods. But still there are some shortcomings in corrosion protection due to application and/or material. (orig.)

  3. Silver deposition on polypyrrole films electrosynthesised onto Nitinol alloy. Corrosion protection and antibacterial activity.

    Science.gov (United States)

    Saugo, M; Flamini, D O; Brugnoni, L I; Saidman, S B

    2015-11-01

    The electrosynthesis of polypyrrole films onto Nitinol from sodium salicylate solutions of different concentrations is reported. The morphology and corrosion protection properties of the resulting coatings were examined and they both depend on the sodium salicylate concentration. The immobilisation of silver species in PPy films constituted by hollow rectangular microtubes was studied as a function of the polymer oxidation degree. The highest amount of silver was deposited when the coated electrode was prepolarised at -1.00V (SCE) before silver deposition, suggesting an increase in the amount of non-oxidised segments in the polymer. Finally, the antibacterial activity of the coating against the Gram positive Staphylococcus aureus and Staphylococcus epidermidis bacteria was evaluated. Both strains resulted sensitive to the modified coatings, obtaining a slightly better result against S. aureus. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Corrosion protection and steel-concrete bond improvement of prestressing strand.

    Science.gov (United States)

    2012-12-01

    Corrosion can lead to the premature deterioration and failure of transportation structures. In pre-stressed bridge structures corrosion is more severe, : leading to sudden failures when cracking is induced at pitting sites by tensile or compressive s...

  5. The use of odd random phase electrochemical impedance spectroscopy to study lithium-based corrosion inhibition by active protective coatings

    NARCIS (Netherlands)

    Meeusen, M.; Visser, P.; Fernández Macía, L.; Hubin, A.; Terryn, H.A.; Mol, J.M.C.

    2018-01-01

    In this work, the study of the time-dependent behaviour of lithium carbonate based inhibitor technology for the active corrosion protection of aluminium alloy 2024-T3 is presented. Odd random phase electrochemical impedance spectroscopy (ORP-EIS) is selected as the electrochemical tool to study

  6. Electrochemical Study of Polymer and Ceramic-Based Nanocomposite Coatings for Corrosion Protection of Cast Iron Pipeline

    Directory of Open Access Journals (Sweden)

    Ameen Uddin Ammar

    2018-02-01

    Full Text Available Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two major applications of ferrous materials are in marine environments and in the oil and gas industry. Knowing the corroding behavior of ferrous-based materials during exposure to these aggressive applications, an effort has been made to protect the material by using polymeric and ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline material was investigated during corrosion resistance by employing EIS (electrochemical impedance spectroscopy and electrochemical DC corrosion testing using the “three electrode system”. Cast iron pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene and TiO2/GO (graphene oxide nanocomposite by dip-coating. The EIS data indicated better capacitance and higher impedance values for coated samples compared with the bare metal, depicting enhanced corrosion resistance against seawater and “produce water” of a crude oil sample from a local oil rig; Tafel scans confirmed a significant decrease in corrosion rate of coated samples.

  7. Protecting with nature (PwN) PwN concept (bio-) corrosion prevention

    NARCIS (Netherlands)

    Mijle Meijer, van der H.; Foekema, E.M.; Leon, F.

    2014-01-01

    Harbour infrastructures, civil engineering structures and offshore structures are exposed to a very aggressive maritime environment. The local corrosion mechanism bio-corrosion or microbial influenced corrosion (MIC) seems to be the life determining failure mechanism for these structures. There is a

  8. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides

    Science.gov (United States)

    Corrosion is one of the most serious and challenging problems faced worldwide by industry. This research investigates the inhibition of corrosive behavior of SAE1010 steel by bacterial exopolysaccharides. Electrochemical Impedance Spectroscopy was used to evaluate the corrosion inhibition of diffe...

  9. Corrosion protection products as a source of bisphenol A and toxicity to the aquatic environment.

    Science.gov (United States)

    Vermeirssen, Etiënne L M; Dietschweiler, Conrad; Werner, Inge; Burkhardt, Michael

    2017-10-15

    Steel components are typically treated with anti-corrosion coatings like epoxy or polyurethane resins to protect the integrity and functioning of steel. Such resins may contain substances, such as bisphenol A (BPA), that have caused concern in a human and environmental toxicological context. We investigated the release of toxicity from four anti-corrosion coatings used in hydraulic and civil engineering. Resins were applied onto glass plates and leachate samples produced by horizontally shaking the plates in water for 7 days. Two experiments were conducted, one with a 1 day and one with a 7 day curing period. Using a suite of bioassays, we tested samples for: agonistic and antagonistic effects on various mammalian nuclear receptors; inhibition of photosynthesis and growth in algae; inhibition of bacterial bioluminescence; and inhibition of water flea reproduction. Concentrations of BPA, bisphenol F and various BPA transformation products were determined by chemical analysis (LC-MS/MS). Bioassay results were evaluated using a scheme developed by DIBt (Centre of Competence for Construction, Berlin, Germany). Three products induced responses in one or more of the measured endpoints and toxicity profiles varied markedly in intensity across products. One product released high amounts of BPA which was associated with effects on nuclear receptor transactivation, requiring a more than 700-fold dilution for effect induction to fall below 20%. The same product was also the most toxic to water flea reproduction, requiring ca. 70-fold dilution for effects to fall below 20%. Another product was highly toxic in terms of bacterial bioluminescence, particularly after a shorter curing time, requiring a ca. 1'300-fold dilution for effects to fall below 20%. The third product required a 22-fold dilution for inhibition of water flea reproduction to drop below 20%. Results show that anti-corrosion coatings based on epoxy resins can be a source of toxicity to the aquatic environment

  10. Fabrication of multifunctional CaP-TC composite coatings and the corrosion protection they provide for magnesium alloys.

    Science.gov (United States)

    Tan, Cui; Zhang, Xiaoxu; Li, Qing

    2017-08-28

    Two major problems with magnesium (Mg) alloy biomaterials are the poor corrosion resistance and infection associated with implantation. In this study, a novel calcium phosphate (CaP)/tetracycline (TC) composite coating for Mg implants that can both improve the corrosion resistance of Mg and release a drug in a durable way is reported. Scanning electron microscope (SEM) images showed that TC additives make the CaP coating more compact and uniform. Electrochemical tests indicated CaP/TC coatings can provide excellent corrosion protection for Mg alloy substrates. Besides, TC additives can also provide effective prevention of bone infection and inflammation due to its broad-spectrum antibacterial properties. The one-step hydrothermal process reported here greatly simplified the multi-step fabrication of smart coatings reported previously.

  11. Influence of nanoclay particles modification by polyester-amide hyperbranched polymer on the corrosion protective performance of the epoxy nanocomposite

    International Nuclear Information System (INIS)

    Ganjaee Sari, M.; Ramezanzadeh, B.; Shahbazi, M.; Pakdel, A.S.

    2015-01-01

    Highlights: • Nanoclay particles were modified with polyester-amide hyperbranched polymer. • Epoxy/clay nanocomposites were prepared using modified clay particles. • Surface modification enhanced the clay particles exfoliation properties. • Surface modified clay particles enhanced corrosion resistance of the epoxy coating. - Abstract: Surface modification of nanoclay particles was carried out by various amounts of polyester-amide hyperbranched polymer (HBP). Thermal gravimetric analysis and X-ray diffraction analysis were performed to estimate the efficiency of the HPB grafting on the clay particles. Epoxy/clay nanocomposites were prepared by addition of 1 wt.% unmodified and modified clays. The corrosion protection properties of the nanocomposites were evaluated by electrochemical impedance spectroscopy (EIS). Results revealed that surface modification of the clay particles by HBP caused significant enhancement of the epoxy coating corrosion resistance especially when the ‘polymer/clay’ ratios were 10/1 and 5/1

  12. Ni-P/Zn-Ni compositionally modulated multilayer coatings - Part 2: Corrosion and protection mechanisms

    Science.gov (United States)

    Bahadormanesh, Behrouz; Ghorbani, Mohammad

    2018-06-01

    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the deposition current density. The corrosion resistance of the deposits was studied and compared with that of monolayers of Ni-P and Zn-Ni alloys via Tafel polarization, EIS and salt spray tests. Characterization of corrosion products by means of EDS and XRD revealed more details from the corrosion mechanism of the monolayers and multilayers. The corrosion current density of Ni-P/Zn-Ni CMMCs were around one tenth of Zn-Ni monolayer. The CMMC with incomplete layers performed lower polarization resistance and higher corrosion current density compared to the CMMC with complete layers. The electrical circuit that was proposed for modeling the corrosion process based on the EIS spectrum, proved that layering reduces the porosity and consequently improves the barrier properties. Although, layering of Zn-Ni layers with Ni-P deposits increased the time to red rust in salt spray test, the time for white rust formation decreased. The corrosion mechanism of both Zn-Ni and Ni-P (containing small amount of Zn) was preferential dissolution of Zn and the corrosion products were comprised of mainly Zn hydroxychloride and Zn hydroxycarbonate. Also, Ni and P did not take part in the corrosion products. Based on the electrochemical character of the layers and the morphology of the corroded surface, the corrosion mechanism of multilayers was discussed.

  13. Electrophoretic deposition of hybrid coatings on aluminum alloy by combining 3-aminopropyltrimethoxysilan to silicon–zirconium sol solutions for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mei; Xue, Bing; Liu, Jianhua, E-mail: yumei@buaa.edu.cn; Li, Songmei; Zhang, You

    2015-09-01

    Electrophoretic deposition (EPD) silicon–zirconium organic–inorganic hybrid coatings were applied on LC4 aluminum alloy for corrosion protection. 3-Glycidoxypropyl-trimethoxysilane (GTMS) and Zirconium (IV) n-propoxide (TPOZ) were used as precursors. 3-Aminopropyl-trimethoxysilane (APS) was added to enhance the corrosion protective performance of the coatings. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) were employed to characterize morphology, microstructure and component. The results show that the addition of APS leads to the enhanced migration and deposition of positively charged colloidal particles on the surface of metal substrate, which results in the thickness increasing of coatings. However, loading an excessive amount of APS gives a heterogeneous coating surface. The corrosion protective performance of coatings were measured by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The results indicate that the addition of APS improves corrosion protective performance of coatings. The optimal addition content of APS is about 15%. The 15% APS coating is uniform and dense, as well as has good corrosion protective performance. The impedance value (1.58 × 10{sup 5} Ω·cm{sup 2}, at the lowest frequency) of 15% APS coating is half order of magnitude higher than that of coating without APS, and 15% APS coating always keeps the best corrosion protective performance with prolonged immersion time. This kind of coating is identified with “double-structure” properties based on the analysis of EIS and potentiodynamic polarization. Furthermore, the equivalent circuit results indicate that the intermediate oxide layer plays a main role in corrosion protection. - Highlights: • Electrophoretic deposition hybrid coatings are prepared on LC4 aluminum alloy. • 3-Aminopropyl-trimethoxysilane (APS) enhances the corrosion protective performance. • The

  14. Electrophoretic deposition of hybrid coatings on aluminum alloy by combining 3-aminopropyltrimethoxysilan to silicon–zirconium sol solutions for corrosion protection

    International Nuclear Information System (INIS)

    Yu, Mei; Xue, Bing; Liu, Jianhua; Li, Songmei; Zhang, You

    2015-01-01

    Electrophoretic deposition (EPD) silicon–zirconium organic–inorganic hybrid coatings were applied on LC4 aluminum alloy for corrosion protection. 3-Glycidoxypropyl-trimethoxysilane (GTMS) and Zirconium (IV) n-propoxide (TPOZ) were used as precursors. 3-Aminopropyl-trimethoxysilane (APS) was added to enhance the corrosion protective performance of the coatings. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) were employed to characterize morphology, microstructure and component. The results show that the addition of APS leads to the enhanced migration and deposition of positively charged colloidal particles on the surface of metal substrate, which results in the thickness increasing of coatings. However, loading an excessive amount of APS gives a heterogeneous coating surface. The corrosion protective performance of coatings were measured by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The results indicate that the addition of APS improves corrosion protective performance of coatings. The optimal addition content of APS is about 15%. The 15% APS coating is uniform and dense, as well as has good corrosion protective performance. The impedance value (1.58 × 10 5 Ω·cm 2 , at the lowest frequency) of 15% APS coating is half order of magnitude higher than that of coating without APS, and 15% APS coating always keeps the best corrosion protective performance with prolonged immersion time. This kind of coating is identified with “double-structure” properties based on the analysis of EIS and potentiodynamic polarization. Furthermore, the equivalent circuit results indicate that the intermediate oxide layer plays a main role in corrosion protection. - Highlights: • Electrophoretic deposition hybrid coatings are prepared on LC4 aluminum alloy. • 3-Aminopropyl-trimethoxysilane (APS) enhances the corrosion protective performance. • The coating

  15. Corrosion/95 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The papers in this conference represent the latest technological advances in corrosion control and prevention. The following subject areas are covered: cathodic protection in natural waters; materials for fossil fuel combustion and conversion systems; modern problems in atmospheric corrosion; innovative ideas for controlling the decaying infrastructure; deposits and their effects on corrosion in industry; volatile high temperature and non aqueous corrosion inhibitors; corrosion of light-weight and precoated metals for automotive application; refining industry corrosion; corrosion in pulp and paper industry; arctic/cold weather corrosion; materials selection for waste incinerators and associated equipment; corrosion measurement technology; environmental cracking of materials; advancing technology in the coating industry; corrosion in gas treating; green inhibition; recent advances in corrosion control of rail equipment; velocity effects and erosion corrosion in oil and gas production; marine corrosion; corrosion of materials in nuclear systems; underground corrosion control; corrosion in potable and industrial water systems in buildings and its impact on environmental compliance; deposit related boiler tube failures; boiler systems monitoring and control; recent developments and experiences in reactive metals; microbiologically influenced corrosion; corrosion and corrosion control for steel reinforced concrete; international symposium on the use of 12 and 13 Cr stainless steels in oil and gas production environments; subsea corrosion /erosion monitoring in production facilities; fiberglass reinforced pipe and tubulars in oilfield service; corrosion control technology in power transmission and distribution; mechanisms and methods of scale and deposit control; closing the loop -- results oriented cooling system monitoring and control; and minimization of aqueous discharge

  16. Cathodic corrosion protection in a gas distribution grid. Operational experience in five years of operation; Kathodischer Korrosionsschutz in einem Gasverteilungsnetz. Betriebserfahrung nach fuenf Jahren

    Energy Technology Data Exchange (ETDEWEB)

    Poka, Werner [Stadtwerke Straubing (Germany); Gaugler, Hans; Steiger, Oliver [Stadtwerke Muenchen (Germany)

    2011-07-01

    In late 2001, Stadtwerke Straubing in Bavaria decided on cathodic corrosion protection of the Straubing low-pressure grid, with about 120 km of steel pipes. Planning started in early 2002 in cooperation with Stadtwerke Munich (SWM). Three years later, in December 2005, the last of the 25 grid sections was integrated in the cathodic corrosion protection system. This was followed by two years of monitoring, documentation, and measurements. The effectiveness of the cathodic corrosion protection system was proved for the whole low-pressure grid. Cost was reduced and availability enhanced. The project is discussed in detail, including economic efficiency, leak frequency and condition monitoring on the basis of measurements.

  17. Electrochemical synthesis of bilayer coatings of poly(N-methylaniline) and polypyrrole on mild steel and their corrosion protection performances

    Energy Technology Data Exchange (ETDEWEB)

    Zeybek, Buelent [Ankara University, Faculty of Science, Department of Chemistry, Ankara (Turkey); Dumlupinar University, Faculty of Arts and Sciences, Department of Chemistry, Kuetahya (Turkey); Ozcicek Pekmez, Nuran, E-mail: npekmez@hacettepe.edu.t [Hacettepe University, Faculty of Science, Department of Chemistry, Ankara (Turkey); Kilic, Esma [Ankara University, Faculty of Science, Department of Chemistry, Ankara (Turkey)

    2011-10-30

    Highlights: > The bilayers of poly(N-methylaniline) and polypyrrole-dodecylsulfate were synthesized. > These films on mild steel were characterized by cyclic voltammetry, FTIR and FESEM. > DS dopant allows permeation to cations and decreases the ingress of chloride ions. > The PNMA/PPy-DS bilayer coating exhibited the best corrosion resistance in 0.5 M HCl. > The protective properties of polymers was developed by preparing their bilayer coatings. - Abstract: Homopolymer and bilayer coatings of poly(N-methylaniline) (PNMA) and polypyrrole-dodecylsulfate (PPy-DS) have been electropolymerized on a mild steel (MS) surface by the potentiodynamic method in aqueous oxalic acid solutions. In order to include dodecylsulfate ion as dopant in the polypyrrole, sodium dodecylsulfate was also added to the polymerization solution of pyrrole. Characterization of coatings was carried out by the cyclic voltammetry, Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FESEM). Corrosion behavior of the polymer coated MS electrodes was investigated in highly aggressive 0.5 M HCl solution by the Tafel test and electrochemical impedance spectroscopy (EIS) techniques. Corrosion test revealed that among the protective coatings obtained, the PNMA/PPy-DS bilayer exhibited the best corrosion resistance at all immersion times.

  18. Corrosion protection and improved cytocompatibility of biodegradable polymeric layer-by-layer coatings on AZ31 magnesium alloys.

    Science.gov (United States)

    Ostrowski, Nicole; Lee, Boeun; Enick, Nathan; Carlson, Benjamin; Kunjukunju, Sangeetha; Roy, Abhijit; Kumta, Prashant N

    2013-11-01

    Composite coatings of electrostatically assembled layer-by-layer anionic and cationic polymers combined with an Mg(OH)2 surface treatment serve to provide a protective coating on AZ31 magnesium alloy substrates. These ceramic conversion coating and layer-by-layer polymeric coating combinations reduced the initial and long-term corrosion progression of the AZ31 alloy. X-ray diffraction and Fourier transform infrared spectroscopy confirmed the successful application of coatings. Potentiostatic polarization tests indicate improved initial corrosion resistance. Hydrogen evolution measurements over a 2 week period and magnesium ion levels over a 1 week period indicate longer range corrosion protection and retention of the Mg(OH)2 passivation layer in comparison to the uncoated substrates. Live/dead staining and DNA quantification were used as measures of biocompatibility and proliferation while actin staining and scanning electron microscopy were used to observe the cellular morphology and integration with the coated substrates. The coatings simultaneously provided improved biocompatibility, cellular adhesion and proliferation in comparison to the uncoated alloy surface utilizing both murine pre-osteoblast MC3T3 cells and human mesenchymal stem cells. The implementation of such coatings on magnesium alloy implants could serve to improve the corrosion resistance and cellular integration of these implants with the native tissue while delivering vital drugs or biological elements to the site of implantation. Copyright © 2013. Published by Elsevier Ltd.

  19. Lithium salts as leachable corrosion inhibitors and potential replacement for hexavalent chromium in organic coatings for the protection of aluminum alloys

    NARCIS (Netherlands)

    Visser, P; Liu, Y; Terryn, H.A.; Mol, J.M.C.

    2016-01-01

    Lithium salts are being investigated as leachable corrosion inhibitor and potential replacement for hexavalent chromium in organic coatings. Model coatings loaded with lithium carbonate or lithium oxalate demonstrated active corrosion inhibition and the formation of a protective layer in a

  20. Composition and Morphology of Product Layers in the Steel/Cement Paste Interface in Conditions of Corrosion and Cathodic Protection in Reinforced Concrete

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.; De Wit, J.H.W.; Fraaij, A.L.A.; Boshkov, N.

    2007-01-01

    The present study explores the formation of corrosion products on the steel surface in reinforced concrete in conditions of corrosion and subsequent transformation of these layers in conditions of cathodic protection (CP). Of particular interest was to investigate if the introduced pulse CP (as

  1. Heavy duty glassflake coatings for corrosion protection use in bitumous oil extraction service

    Energy Technology Data Exchange (ETDEWEB)

    Watkinson, C.J. [Corrocoat/Glassflake Ltd., Leeds (United Kingdom)

    2008-07-01

    New technologies developed to optimize glass flakes in the organic resinous materials used for corrosion protection were presented. The flakes improve the properties of unsaturated polyester and polypropylene as well as paper and cement. Coatings produced using glass flake technology are increasingly being used in oil and gas applications. Glass flakes are chemical-resistant and inert in most environments. However, the flakes do not present a continuous barrier in resin matrices. Larger glass flake diameters cause surface disruption and roughness on the layers to which they are applied. Glass flake coating formulations use flakes of differing thicknesses and diameters with differing particle distributions. This paper discussed experiments conducted to evaluate the fire resistance qualities of the glass flake coatings, reductions in smoke emissions, heat distortion and creep; and improvements in shrinkage rates during polymerization. Experiments were also conducted on non-coating applications and engineering thermoplastics. Tests included moisture vapour transmission (MVT); water absorption; modified Atlas cold wall testing; cathodic disbondment; and fire and flame resistance. The tests were conducted to evaluate the mechanical performance of a glass flake-filled polyester system. Particle size distribution was altered in order to evaluate changes in performance. The viscosity and thixotropic properties of the formulations were also assessed. Glass flakes were then optimized based on the results of the tests. The coatings are now being used in a variety of different oil and gas applications. 13 refs., 6 figs.

  2. Effect of Chemical Environment and pH on AC Corrosion of Cathodically Protected Structures

    DEFF Research Database (Denmark)

    Junker-Holst, Andreas; Vendelbo Nielsen, Lars; Møller, Per

    2017-01-01

    and corrosion products is made using scanning electron microscopy and energy dispersive x-ray spectroscopy (SEM/EDS) and x-ray diffraction (XRD). The findings suggest an AC corrosion mechanism highly dependent on the build-up and break-down of calcareous deposits at high CP, which is clearly reflected...

  3. Corrosion Protection of Steel by Thin Coatings of Starch-oil Emulsions

    Science.gov (United States)

    Corrosion of materials is one of the most serious and challenging problems faced worldwide by industry. This research investigated the inhibition of corrosive behavior by jet-cooked starch-soybean oil composites on SAE 1010 steel. Electrochemical Impedance Spectroscopy (EIS) was used to evaluate t...

  4. Corrosion protection of steel by thin coatings of starch-oil dry lubricants

    Science.gov (United States)

    Corrosion of materials is one of the most serious and challenging problems faced worldwide by industry. Dry lubricants reduce friction between two metal surfaces. This research investigated the inhibition of corrosive behavior a dry lubricant formulation consisting of jet-cooked corn starch and soyb...

  5. Corrosion and protection of metals in the rural atmosphere of "El Pardo" Spain (PATINA / CYTED project

    Directory of Open Access Journals (Sweden)

    Simancas, J.

    2003-12-01

    Full Text Available Atmospheric corrosion tests of metallic and organic coatings on steel, zinc and aluminium have been conducted in "El Pardo" (Spain as part of the PATINA/CYTED project "Anticorrosive Protection of Metals in the Atmosphere". This is a rural atmosphere with the following ISO corrosivity categories: C2 (Fe, C2 (Zn, C3 (Cu and Cl (Al. Its average temperature and relative humidity is 13 °C and 62.8 %, respectively, and it has low SO2 and Cl- contents. Results of 42 months exposure are discussed. Atmospheric exposure tests were carried out for the following types of coatings: conventional paint coatings for steel and hot-dip galvanized steel (group 1, new painting technologies for steel and galvanized steel (group 2, zinc-base metallic coatings (group 3, aluminium-base metallic coatings (group 4, coatings on aluminium (group 5 and coil-coatings on steel, hot-dip galvanized steel and 55 % Al-Zn coated steel (group 6.

    Como parte del proyecto PATINA/CYTED "Protección anticorrosiva de metales en la atmósfera" se han llevado a cabo en la estación de ensayo de "El Pardo" (España, ensayos de corrosión atmosférica de recubrimientos metálicos y orgánicos sobre acero, zinc y aluminio. Se trata de una atmósfera rural según la clasificación ISO de grado de corrosividad: C2 (Fe, C2 (Zn, C3 (Cu y Cl (Al. La temperatura y humedad relativa media es de 13 °C y 62,8 %, respectivamente, y tiene bajos contenidos de SO2 y Cl-. Se discuten los resultados obtenidos después de 42 meses de exposición. Los ensayos de corrosión atmosférica se llevaron a cabo para tres tipos de recubrimientos: recubrimientos de pintura convencional sobre acero y acero zincado (grupo 1, nuevas tecnologías en pinturas para acero y acero galvanizado (grupo 2, recubrimientos metálicos base zinc (grupo 3, recubrimientos metálicos base aluminio (grupo 4, recubrimientos sobre aluminio (grupo 5 y recubrimientos de banda en continuo

  6. Corrosion/94 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The approximately 500 papers from this conference are divided into the following sections: Rail transit systems--stray current corrosion problems and control; Total quality in the coatings industry; Deterioration mechanisms of alloys at high temperatures--prevention and remediation; Research needs and new developments in oxygen scavengers; Computers in corrosion control--knowledge based system; Corrosion and corrosivity sensors; Corrosion and corrosion control of steel reinforced concrete structures; Microbiologically influenced corrosion; Practical applications in mitigating CO 2 corrosion; Mineral scale deposit control in oilfield-related operations; Corrosion of materials in nuclear systems; Testing nonmetallics for life prediction; Refinery industry corrosion; Underground corrosion control; Mechanisms and applications of deposit and scale control additives; Corrosion in power transmission and distribution systems; Corrosion inhibitor testing and field application in oil and gas systems; Decontamination technology; Ozone in cooling water applications, testing, and mechanisms; Corrosion of water and sewage treatment, collection, and distribution systems; Environmental cracking of materials; Metallurgy of oil and gas field equipment; Corrosion measurement technology; Duplex stainless steels in the chemical process industries; Corrosion in the pulp and paper industry; Advances in cooling water treatment; Marine corrosion; Performance of materials in environments applicable to fossil energy systems; Environmental degradation of and methods of protection for military and aerospace materials; Rail equipment corrosion; Cathodic protection in natural waters; Characterization of air pollution control system environments; and Deposit-related problems in industrial boilers. Papers have been processed separately for inclusion on the data base

  7. Effect of ortho-substituted aniline on the corrosion protection of aluminum in 2 mol/L H2SO4 solution

    KAUST Repository

    El-Deeb, Mohamed M.; Alshammari, Hamed M.; Abdel-Azeim, Safwat

    2017-01-01

    Corrosion protection of aluminum in 2 mol/L HSO solution is examined in the presence of ortho-substituted aniline derivatives using potentiodynamic polarization and electrochemical impedance spectroscopy measurements. Density function theory (DFT

  8. Corrosion resistance and protection mechanism of hot-dip Zn-Al-Mg alloy coated steel sheet under accelerated corrosion environment; Yoyu Zn-Al-Mg kei gokin mekki koban no sokushin fushoku kankyoka ni okeru taishokusei toi boshoku kiko

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, A.; Izutani, H.; Tsujimura, T.; Ando, A.; Kittaka, T. [NKK Corp., Tokyo (Japan)

    2000-08-01

    Corrosion behavior of hot-dip Zn-6%Al 0-3%Mg alloy coated steel sheets in cyclic corrosion test (CCT) has been investigated. The corrosion resistance was improved with increasing Mg content in the coating layer, and the highest corrosion resistance was observed at 3% Mg. In Zn-6%Al-3%Mg alloy coated steel sheet, the formations of zinc carbonate hydroxide and zinc oxide were suppressed for longer duration compared with Zn-0.2%Al and Zn-4.5%Al-0.l%Mg alloy coated steel sheets. As a result, zinc chloride hydroxide existed stable on the surface of the coating layer. From the polarization behaviors in 5% NaCl aqueous solution after CCT, it was found that the corrosion current density of Zn-6%At-3%Mg alloy coated steel sheet was much smaller than those of Zn-0.2%Al and Zn-4.5%Al-0.1%Mg alloy coated steel sheets. As zinc carbonate hydroxide and zinc oxide had poor adhesion to the coating layer and had porous structures, these corrosion products were considered to have little protective action for the coating layer. Therefore, it was concluded that Mg suppressed the formation of such nonprotective corrosion products. resulting in the remarkable improvement of corrosion resistance. (author)

  9. Corrosion Protection Of Mild Steel In Sea Water Using Chemical Inhibitor

    Science.gov (United States)

    Araoyinbo, Alaba O.; Salleh, Mohd Arif Anuar Mohd; Zulerwan Jusof, Muhammad

    2018-03-01

    The effect of sodium nitrite as a corrosion inhibitor of mild steel in sea water (i.e ASTM standard prepared sea water and sea water obtained from a local river) was investigated, using the weight loss technique. Different amount of sodium nitrite were prepared (i.e 2 % to 10 %) in the inhibition of the mild steel corrosion in sea water exposed to irradiation condition from sunlight exposure. The cut samples of mild steel were exposed to these corrosive media and the corresponding weight loss subsequently obtained was recorded at intervals of 1 to 4 weeks. It was observed that corrosion rate increases with the time of exposure to the corrosive medium exposed to sunlight and that sodium nitrite that was used at the chemical inhibitor was able to retard the corrosion rate of mild steel if the appropriate concentration is applied. The results obtained from the weight loss analysis shows that the optimum percentage of sodium nitrate in sea water that gives the optimum corrosion inhibition of mild steel is 4 %.

  10. Dealloying, Microstructure and the Corrosion/Protection of Cast Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sieradzki, Karl [Arizona State Univ., Mesa, AZ (United States); Aiello, Ashlee [Arizona State Univ., Mesa, AZ (United States); McCue, Ian [Arizona State Univ., Mesa, AZ (United States)

    2017-12-15

    The purpose of this project was to develop a greater understanding of micro-galvanic corrosion effects in cast magnesium alloys using both experimental and computational methods. Experimental accomplishments have been made in the following areas of interest: characterization, aqueous free-corrosion, atmospheric corrosion, ionic liquid dissolution, rate kinetics of oxide dissolution, and coating investigation. Commercial alloys (AZ91D, AM60, and AZ31B), binary-phase alloys (αMg-2at.%Al, αMg-5at.%Al, and Mg-8at.%Al), and component phases (Mg, Al, β-Mg, β-1%Zn, MnAl3) were obtained and characterized using energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Full immersion in aqueous chloride was used to characterize the corrosion behavior of alloys. Rotating disc electrodes (RDEs) were used to observe accelerated long-term corrosion behavior. Al surface redistribution for freely corroded samples was analyzed using SEM, EDS, and lithium underpotential deposition (Li UPD). Atmospheric corrosion was observed using contact angle evolution, overnight pH monitoring, and surface pH evolution studies. Ionic liquid corrosion characterization was performed using linear sweep voltammetry and potentiostatic dissolution in 150° choline chloride-urea (cc-urea). Two surface coatings were investigated: (1) Li-carbonate and (2) cc-urea. Li-carbonate coatings were characterized using X-ray photoelectron spectroscopy (XPS), SEM, and aqueous free corrosion potential monitoring. Hydrophobic cc-urea coatings were characterized using contact angle measurements and electrochemical impedance spectroscopy. Oxide dissolution rate kinetics were studied using inductively coupled plasma mass spectroscopy (ICP-MS). Computational accomplishments have been made through the development of Kinetic Monte Carlo (KMC) simulations which model time- and composition-dependent effects on the microstructure due to spatial redistribution of alloying

  11. Interface control of atomic layer deposited oxide coatings by filtered cathodic arc deposited sublayers for improved corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, Emma, E-mail: emma.harkonen@helsinki.fi [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Tervakangas, Sanna; Kolehmainen, Jukka [DIARC-Technology Inc., Espoo (Finland); Díaz, Belén; Światowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe [Laboratoire de Physico-Chimie des Surfaces, CNRS (UMR 7075) – Chimie ParisTech (ENSCP), F-75005 Paris (France); Fenker, Martin [FEM Research Institute, Precious Metals and Metals Chemistry, D-73525 Schwäbisch Gmünd (Germany); Tóth, Lajos; Radnóczi, György [Research Centre for Natural Sciences HAS, (MTA TKK), Budapest (Hungary); Ritala, Mikko [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland)

    2014-10-15

    Sublayers grown with filtered cathodic arc deposition (FCAD) were added under atomic layer deposited (ALD) oxide coatings for interface control and improved corrosion protection of low alloy steel. The FCAD sublayer was either Ta:O or Cr:O–Ta:O nanolaminate, and the ALD layer was Al{sub 2}O{sub 3}–Ta{sub 2}O{sub 5} nanolaminate, Al{sub x}Ta{sub y}O{sub z} mixture or graded mixture. The total thicknesses of the FCAD/ALD duplex coatings were between 65 and 120 nm. Thorough analysis of the coatings was conducted to gain insight into the influence of the FCAD sublayer on the overall coating performance. Similar characteristics as with single FCAD and ALD coatings on steel were found in the morphology and composition of the duplex coatings. However, the FCAD process allowed better control of the interface with the steel by reducing the native oxide and preventing its regrowth during the initial stages of the ALD process. Residual hydrocarbon impurities were buried in the interface between the FCAD layer and steel. This enabled growth of ALD layers with improved electrochemical sealing properties, inhibiting the development of localized corrosion by pitting during immersion in acidic NaCl and enhancing durability in neutral salt spray testing. - Highlights: • Corrosion protection properties of ALD coatings were improved by FCAD sublayers. • The FCAD sublayer enabled control of the coating-substrate interface. • The duplex coatings offered improved sealing properties and durability in NSS. • The protective properties were maintained during immersion in a corrosive solution. • The improvements were due to a more ideal ALD growth on the homogeneous FCAD oxide.

  12. A systematic multiscale modeling and experimental approach to protect grain boundaries in magnesium alloys from corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Horstemeyer, Mark R. [Mississippi State Univ., Mississippi State, MS (United States); Chaudhuri, Santanu [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2015-09-30

    A multiscale modeling Internal State Variable (ISV) constitutive model was developed that captures the fundamental structure-property relationships. The macroscale ISV model used lower length scale simulations (Butler-Volmer and Electronics Structures results) in order to inform the ISVs at the macroscale. The chemomechanical ISV model was calibrated and validated from experiments with magnesium (Mg) alloys that were investigated under corrosive environments coupled with experimental electrochemical studies. Because the ISV chemomechanical model is physically based, it can be used for other material systems to predict corrosion behavior. As such, others can use the chemomechanical model for analyzing corrosion effects on their designs.

  13. Synthesis of hybrid sol-gel coatings for corrosion protection of we54-ae magnesium alloy

    International Nuclear Information System (INIS)

    Hernández-Barrios, C A; Peña, D Y; Coy, A E; Duarte, N Z; Hernández, L M; Viejo, F

    2013-01-01

    The present work shows some preliminary results related to the synthesis, characterization and corrosion evaluation of different hybrid sol-gel coatings applied on the WE54-AE magnesium alloy attending to the two experimental variables, i.e. the precursors ratio and the aging time, which may affect the quality and the electrochemical properties of the coatings resultant. The experimental results confirmed that, under some specific experimental conditions, it was possible to obtain homogeneous and uniform, porous coatings with good corrosion resistance that also permit to accommodate corrosion inhibitors

  14. Studies on corrosion protection of laser hybrid welded AISI 316 by laser remelting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Ambat, Rajan; Rasmussen, A.J.

    2005-01-01

    laser surface melting on microstructure and corrosion behaviour of AISI 316L welds. Welding and laser treatment parameters were varied. General corrosion behaviour of the weld and laser treated surface was characterised using a gel visualization test. The local electrochemistry of the weld and laser......Unlike in autogenous laser welding, hybrid laser welding of stainless steel could introduce grain boundary carbides due to low cooling rates. Formation of grain boundary carbides leads to reduced corrosion properties. Studies have initially been carried out on hybrid laser welding and subsequent...... treated surface was investigated using a novel micro electrochemical technique with a tip resolution of ~1 mm. Results show that hybrid laser welding of 316L has increased corrosion susceptibility probably as a result of grain boundary carbide formation. However a suitable post laser treatment could...

  15. Self-Assembled Films as Corrosion Protective Coatings for Metal Surfaces

    National Research Council Canada - National Science Library

    Robinson, Gary

    1996-01-01

    ...) of stearic acid and 10,12-pentacosadiynoic acid (10,12-PDA) on aluminum. Infrared (IR) and X-ray photoelectron spectroscopy, in addition to wetting measurements, were employed to study the corrosion process...

  16. Biocompatibility and Corrosion Protection Behaviour of Hydroxyapatite Sol-Gel-Derived Coatings on Ti6Al4V Alloy

    Science.gov (United States)

    El Hadad, Amir A.; Peón, Eduardo; García-Galván, Federico R.; Barranco, Violeta; Parra, Juan; Jiménez-Morales, Antonia; Galván, Juan Carlos

    2017-01-01

    The aim of this work was to prepare hydroxyapatite coatings (HAp) by a sol-gel method on Ti6Al4V alloy and to study the bioactivity, biocompatibility and corrosion protection behaviour of these coatings in presence of simulated body fluids (SBFs). Thermogravimetric/Differential Thermal Analyses (TG/DTA) and X-ray Diffraction (XRD) have been applied to obtain information about the phase transformations, mass loss, identification of the phases developed, crystallite size and degree of crystallinity of the obtained HAp powders. Fourier Transformer Infrared Spectroscopy (FTIR) has been utilized for studying the functional groups of the prepared structures. The surface morphology of the resulting HAp coatings was studied by Scanning Electron Microscopy (SEM). The bioactivity was evaluated by soaking the HAp-coatings/Ti6Al4V system in Kokubo’s Simulated Body Fluid (SBF) applying Inductively Coupled Plasma (ICP) spectrometry. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and Alamar blue cell viability assays were used to study the biocompatibility. Finally, the corrosion behaviour of HAp-coatings/Ti6Al4V system was researched by means of Electrochemical Impedance Spectroscopy (EIS). The obtained results showed that the prepared powders were nanocrystalline HAp with little deviations from that present in the human bone. All the prepared HAp coatings deposited on Ti6Al4V showed well-behaved biocompatibility, good bioactivity and corrosion protection properties. PMID:28772455

  17. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    Science.gov (United States)

    Pham, Gia Vu; Truc Trinh, Anh; To, Thi Xuan Hang; Duong Nguyen, Thuy; Trang Nguyen, Thu; Hoan Nguyen, Xuan

    2014-09-01

    In this study Fe3O4/CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe3O4) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe3O4/CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe3O4/CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe3O4/CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe3O4/CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe3O4/CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe3O4/CNTs composite in the epoxy matrix.

  18. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    International Nuclear Information System (INIS)

    Pham, Gia Vu; Trinh, Anh Truc; Hang To, Thi Xuan; Nguyen, Thuy Duong; Nguyen, Thu Trang; Nguyen, Xuan Hoan

    2014-01-01

    In this study Fe 3 O 4 /CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe 3 O 4 ) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe 3 O 4 /CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe 3 O 4 /CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe 3 O 4 /CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe 3 O 4 /CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe 3 O 4 /CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe 3 O 4 /CNTs composite in the epoxy matrix. (paper)

  19. Biocompatibility and Corrosion Protection Behaviour of Hydroxyapatite Sol-Gel-Derived Coatings on Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Amir A. El Hadad

    2017-01-01

    Full Text Available The aim of this work was to prepare hydroxyapatite coatings (HAp by a sol-gel method on Ti6Al4V alloy and to study the bioactivity, biocompatibility and corrosion protection behaviour of these coatings in presence of simulated body fluids (SBFs. Thermogravimetric/Differential Thermal Analyses (TG/DTA and X-ray Diffraction (XRD have been applied to obtain information about the phase transformations, mass loss, identification of the phases developed, crystallite size and degree of crystallinity of the obtained HAp powders. Fourier Transformer Infrared Spectroscopy (FTIR has been utilized for studying the functional groups of the prepared structures. The surface morphology of the resulting HAp coatings was studied by Scanning Electron Microscopy (SEM. The bioactivity was evaluated by soaking the HAp-coatings/Ti6Al4V system in Kokubo’s Simulated Body Fluid (SBF applying Inductively Coupled Plasma (ICP spectrometry. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT and Alamar blue cell viability assays were used to study the biocompatibility. Finally, the corrosion behaviour of HAp-coatings/Ti6Al4V system was researched by means of Electrochemical Impedance Spectroscopy (EIS. The obtained results showed that the prepared powders were nanocrystalline HAp with little deviations from that present in the human bone. All the prepared HAp coatings deposited on Ti6Al4V showed well-behaved biocompatibility, good bioactivity and corrosion protection properties.

  20. The development of chemically vapor deposited mullite coatings for the corrosion protection of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.; Hou, P.; Sengupta, A.; Basu, S.; Sarin, V. [Boston Univ., MA (United States)

    1998-05-01

    Crystalline mullite coatings have been chemically vapor deposited onto SiC substrates to enhance the corrosion and oxidation resistance of the substrate. Current research has been divided into three distinct areas: (1) Development of the deposition processing conditions for increased control over coating`s growth rate, microstructure, and morphology; (2) Analysis of the coating`s crystal structure and stability; (3) The corrosion resistance of the CVD mullite coating on SiC.

  1. Corrosion protection of SiC-based ceramics with CVD mullite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.L.; Sarin, V.K. [Boston Univ., MA (United States). Dept. of Mfg. Engineering

    1997-12-01

    For the first time, crystalline mullite coatings have been chemically vapor deposited on SiC substrates to enhance its corrosion and oxidation resistance. Thermodynamic and kinetic considerations have been utilized to produce mullite coatings with a variety of growth rates, compositions, and morphologies. The flexibility of processing can be exploited to produce coated ceramics with properties tailored to specific applications and varied corrosive environments.

  2. Plasma source ion implantation process for corrosion protection of 6061 aluminum

    International Nuclear Information System (INIS)

    Zhang, L.; Booske, J.H.; Shohet, J.L.; Jacobs, J.R.; Bernardini, A.J.

    1995-01-01

    This paper describes results of an investigation of the feasibility of using nitrogen plasma source ion implantation (PSII) treatment to improve corrosion resistance of 6061 aluminum to salt water. Flat Al samples were implanted with various doses of nitrogen. The surface microstructures and profiles of Al and N in the flat samples were examined using transmission electron microscopy (TEM), scanning Auger microprobe, x-ray diffraction. Corrosion properties of the samples and the components were evaluated using both a 500 hour salt spray field test and a laboratory electrochemical corrosion system. The tested samples were then analyzed by scanning electron microscopy. Corrosion measurements have demonstrated that PSII can significantly improve the pitting resistance of 6061 aluminum. By correlating the analytical results with the corrosion test results, it has been verified that the improved corrosion resistance in PSII-treated coupons is due to the formation of a continuous AlN layer. It was also identified that the formation of a continuous AlN layer. It was also identified that the formation of a continuous AlN layer is mainly determined by the bias voltage and the total integrated implantation dose, and relatively insensitive to factors such as the plasma source, pulse length, or frequency

  3. Protection of type 316 austenitic stainless steel from intergranular stress corrosion cracking by thermo-mechanical treatment

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi; Tsuji, Hirokazu; Kondo, Tatsuo

    1980-03-01

    Thermomechanical treatment that causes carbide stabilizing aging of cold worked material followed by recrystallization heating made standard stainless steels highly resistant to intergranular corrosion and stress corrosion cracking in different test environments. After a typical thermal history of simulated welding, several IGSCC susceptibility tests were made. The results showed that the treatment was successful in type 316 steel in wide range of conditions, while type 304 was protected only to a small extent even by closely controlled treatment. Response of the materials to the sensitizing heating in terms of impurity segregation at grain boundaries was also examined by means of microchemical analysis. Advantage of method is that no special care is required in selecting heats of material, so that conventional type 316 is usable by improving the mechanical properties substantially through the treatment. In some optimized cases the mechanical property improvement was typically recognized by the yield strength by about 20% higher at room temperature, compared with the material mill annealed. (author)

  4. A corrosion-protective coating based on a solution-processable polymer-grafted graphene oxide nanocomposite

    International Nuclear Information System (INIS)

    Qi, Kai; Sun, Yimin; Duan, Hongwei; Guo, Xingpeng

    2015-01-01

    Highlights: • Solution-processable polymer-grafted graphene nanocomposite is synthesized. • The nanocomposite exhibits synergistic properties of both building blocks. • The nanocomposite can be easily applied to form a protective coating on metals. • The coating can effectively prevent corrosion of copper substrate. - Abstract: A new type of solution-processable graphene coating has been synthesized by grafting polymethylmethacrylate (PMMA) brushes on graphene oxide (GO) via surface-initiated atom transfer radical polymerization (ATRP). One major finding is that the PMMA-grafted GO nanocomposite exhibits synergistic properties of both building blocks, i.e., permeation inhibition of GO and solubility of PMMA in a variety of solvents, which makes it compatible with commonly used coating methods to form uniform coatings with controlled thickness. Our results demonstrate that PMMA-grafted GO coating can effectively block charge transfer at the metal–electrolyte interface and prevent corrosion of the copper substrate under aggressive saline conditions

  5. Corrosion Protection of Phenolic-Epoxy/Tetraglycidyl Metaxylediamine Composite Coatings in a Temperature-Controlled Borax Environment

    Science.gov (United States)

    Xu, Wenhua; Wang, Zhenyu; Han, En-Hou; Liu, Chunbo

    2017-12-01

    The failure behavior for two kinds of phenolic-epoxy/tetraglycidyl metaxylediamine composite coatings in 60 °C borax aqueous solution was evaluated using electrochemical methods (EIS) combined with scanning electron microscopy, confocal laser scanning microscope, water immersion test, and Raman spectrum. The main focus was on the effect of curing agent on the corrosion protection of coatings. Results revealed that the coating cured by phenolic modified aromatic amine possessed more compact cross-linked structure, better wet adhesion, lower water absorption (0.064 mg h-1 cm-2) and its impedance values was closed to 108 Ω cm2 after immersion for 576 h, while the coating cured by modified aromatic ring aliphatic amine was lower than 105 Ω cm2. The corrosion mechanism of the two coatings is discussed.

  6. Lubricant for corrosion protection of the inner chambers of internal combustion engines. Schutzschmiermittel zum Korrosionsschutz der Innenraeume von Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Ettig, A.; Ferke, M.; Fueloep, J.; Gal, L.; Gyoengyoessy, L.; Horvath, R.; Keresztessy, Z.; Keresztessy, M.; Papp, I.

    1987-09-17

    The invention is concerned with lubricants for corrosion protecion in internal combustion engines which contain (a) 85 to 99 weight-% of a base oil and/or engine oil, (b) 0.1 to 1.0 weight-% of a corrosion and simultaneously emulsification inhibitor from a monoester, diester or triester of fatty acids with a double bond, (c) 0.1 to 6.0 weight-% of an additive improving the viscosity index and adhesiveness, from a polyolefin or olefin copolymer or a polyacrylic or polymethacrylic acid ester and also, if necessary (d) 0.1 to 8.0 weight-% of a detergent additive with neutralizing effect. The effect of these protective lubricants is by far better as of those known up to now.

  7. Argon Shrouded Plasma Spraying of Tantalum over Titanium for Corrosion Protection in Fluorinated Nitric Acid Media

    Science.gov (United States)

    Vetrivendan, E.; Jayaraj, J.; Ningshen, S.; Mallika, C.; Kamachi Mudali, U.

    2018-02-01

    Argon shrouded plasma spraying (ASPS) was used to deposit a Ta coating on commercially pure Ti (CP-Ti) under inert argon, for dissolver vessel application in the aqueous spent fuels reprocessing plant with high plutonium content. Oxidation during plasma spraying was minimized by shrouding argon system. Porosity and oxide content were controlled by optimizing the spraying parameters, to obtain a uniform and dense Ta coating. The Ta particle temperature and velocity were optimized by judiciously controlling the spray parameters, using a spray diagnostic charge-coupled device camera. The corrosion resistance of the Ta coatings developed by ASPS was investigated by electrochemical studies in 11.5 M HNO3 and 11.5 M HNO3 + 0.05 M NaF. Similarly, the durability of the ASPS Ta coating/substrate was evaluated as per ASTM A262 Practice-C test in boiling nitric acid and fluorinated nitric acid for 240 h. The ASPS Ta coating exhibited higher corrosion resistance than the CP-Ti substrate, as evident from electrochemical studies, and low corrosion rate with excellent coating stability in boiling nitric, and fluorinated nitric acid. The results of the present study revealed that tantalum coating by ASPS is a promising strategy for improving the corrosion resistance in the highly corrosive reprocessing environment.

  8. Evaluation of the Corrosion Protection Coating in Accordance with Burn Damage

    International Nuclear Information System (INIS)

    Seo, ChangHo; Park, JinHwan

    2016-01-01

    This study was conducted in order to examine the effect of burn damage and the resultant anti-corrosion performance. The breakdown and defect of the paint film caused by burn damage are considered to affect not only the macroscopic appearance but also the adhesive force and the anti-corrosion performance of the paint film. The material of the paint film was epoxy paint that is used most widely for heavy-duty coating, and in order to induce burn damage, heat treatment with a torch was applied to the other side of the paint film. Surface and chemical structure changes according to aging were analyzed using FE-SEM and infrared absorption spectroscopy, and variation in the anti-corrosion performance was analyzed through the AC impedance test.

  9. Electrochemical deposition of Mg(OH2/GO composite films for corrosion protection of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Fengxia Wu

    2015-09-01

    Full Text Available Mg(OH2/graphene oxide (GO composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential. The characteristics of the Mg(OH2/GO composite film were investigated by scanning electron microscope (SEM, energy-dispersive X-ray spectrometry (EDS, X-ray diffractometer (XRD and Raman spectroscopy. It was shown that the flaky GO randomly distributed in the composite film. Compared with the Mg(OH2 film, the Mg(OH2/GO composite film exhibited more uniform and compact structure. Potentiodynamic polarization tests revealed that the Mg(OH2/GO composite film could significantly improve the corrosion resistance of Mg(OH2 film with an obvious positive shift of corrosion potential by 0.19 V and a dramatic reduction of corrosion current density by more than one order of magnitude.

  10. Corrosion Behaviour of a Silane Protective Coating for NdFeB Magnets in Dentistry

    Directory of Open Access Journals (Sweden)

    Luigi Calabrese

    2015-01-01

    Full Text Available The corrosion behavior of coated and uncoated Ni/Cu/Ni rare earth magnets was assessed at increasing steps with a multilayering silanization procedure. Magnets’ durability was analyzed in Fusayama synthetic saliva solution in order to evaluate their application in dental field. Corrosion performance was evaluated by using polarization and electrochemical impedance spectroscopy in synthetic saliva solution up to 72 hours of continuous immersion. The results show that the addition of silane layers significantly improved anticorrosion properties. The coating and aging effects, in synthetic saliva solution, on magnetic field were evaluated by means of cyclic force-displacement curves.

  11. IMPROVEMENT OF CORROSION PROTECTION OF PETROLEUM FACILITIES BY THE DEVELOPMENT OF A NEW HIGH-POTENTIAL COATING

    Energy Technology Data Exchange (ETDEWEB)

    Allaoua-Nazef, M.; Daouadji, M.

    2007-07-01

    Corrosion affects many oil and gas facilities. It is the principal cause of leaks of products and rupture of storage tanks and pipelines, resulting sometimes in catastrophic damages (human damages, pollution of the natural environment, additional costs for repair, prolonged stop of pumping). Growing environmental concerns regarding the use of heavy metals in anti-corrosion coating formulations led to a new coating strategy using intrinsically conducting polymers (ICPs) as key components. (ICPs) as a new materials class provides a unique set of new properties and coatings based on these polymers are able to meet high demands and are outperforming even the best conventional anti-corrosion coating systems. This new generation of high-potential coatings can provide a significant cost reduction for the oil and gas industry, due to the specific properties of the ICPs which can work indefinitely as a redox catalysts and provide continuous protection as long as the mechanical integrity of the polymer films remains intact. Our paper focuses on the development of a nonconventional coating based on a specific conducting polymer which is never used before in any coating formulations. The developed coating is able to provide high anticorrosion performances with safety, environmental benefits and costs reduction. (auth)

  12. Evaluation of the mechanical and corrosion protection performance of electrodeposited hydroxyapatite on the high energy electron beam treated titanium alloy

    International Nuclear Information System (INIS)

    Gopi, D.; Sherif, El-Sayed M.; Rajeswari, D.; Kavitha, L.; Pramod, R.; Dwivedi, Jishnu; Polaki, S.R.

    2014-01-01

    Graphical abstract: - Highlights: • Ti–6Al–4V alloy was surface treated by high energy low current DC electron beam. • Successful electrodeposition of HAP was achieved on surface treated Ti–6Al–4V. • The as-formed coating possessed improved surface wettability and adhesion strength. • Maximum corrosion protection performance was exhibited by the as-formed coating. - Abstract: In our present study, the Ti–6Al–4V alloy surface was modified by irradiating with the high energy low current DC electron beam (HELCDEB) using 700 keV DC accelerator. Following this, the HELCDEB treated surface was coated with hydroxyapatite by adopting electrodeposition method. The microstructure and hardness of HELCDEB treated Ti–6A1–4V alloy with and without electrodeposited hydroxyapatite were investigated. Also, the electrochemical corrosion characteristics of the samples in simulated body fluid (SBF) was studied by potentiodynamic polarisation and electrochemical impedence techniques (EIS) which showed an enhanced corrosion resistance and revealed an improved life time for the hydroxyapatite coating developed on the HELCDEB treated Ti–6A1–4V alloy than the untreated sample

  13. The electrochemical synthesis of poly(pyrrole-co-o-anisidine) on 3102 aluminum alloy and its corrosion protection properties

    International Nuclear Information System (INIS)

    Mert, B. Dogru; Yazici, B.

    2011-01-01

    Research highlights: → The electrochemical synthesis of strongly adherent, uniform polypyrrole (PPy) and poly(pyrrole-co-o-anisidine) coatings were successfully achieved on 3102 aluminum alloy from 0.1 M monomer (pyrrole and pyrrole:o-anisidine, 8:2) containing oxalic acid by means of the cyclic voltammetry technique. → The results were showed that the water permeation of copolymer coating is lower than PPy. → This study was showed that copolymer is suitable coating for protection of 3102 Al alloy against corrosion. - Abstract: The electrochemical syntheses of polypyrrole (PPy) and poly(pyrrole-co-o-anisidine) were achieved on 3102 aluminum alloy (Al) from 0.1 M monomer (pyrrole:o-anisidine, 8:2) containing 0.4 M oxalic acid solution using the cyclic voltammetry technique. The synthesized films were characterized by FT-IR spectroscopy. The thermal stability of films was determined by thermogravimetric analysis (TGA) technique. Surface morphologies were characterized by scanning electron microscope (SEM) images. The potential of zero charge (pzc) of Al was determined using electrochemical impedance spectroscopy (EIS). The corrosion behavior of samples was investigated with open circuit potential (E ocp )-time, EIS, and anodic polarization techniques. It was found that copolymer coated Al provides better barrier property against of corrosion in 3.5% NaCl solution.

  14. Enhancement of the corrosion protection of electroless Ni–P coating by deposition of sonosynthesized ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sharifalhoseini, Zahra [Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of); Entezari, Mohammad H., E-mail: entezari@um.ac.ir [Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of); Environmental Chemistry Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of)

    2015-10-01

    Graphical abstract: Enhancement of the corrosion protection of electroless Ni–P layer by ZnO nanoparticles deposition and the comparison with the classical and sonochemical Ni–P coatings. - Highlights: • Unique effects of ultrasound were investigated on the anticorrosive performance of electroless Ni–P coating. • Sonoynthesis of ZnO NPs and its deposition were performed on the surface of Ni–P coating. • ZnO as an anticorrosive has a critical role in the multifunctional surfaces. • Electrochemical properties of all fabricated samples were compared with each other. - Abstract: Ni–P coatings were deposited through electroless nickel plating in the presence and absence of ultrasound. The simultaneous synthesis of ZnO nanoparticle and its deposition under ultrasound were also carried out on the surface of Ni–P layer prepared by the classical method. The morphology of the surfaces and the chemical composition were determined by scanning electron microscopy(SEM) and energy dispersive spectroscopy (EDS), respectively. Electrochemical techniques were applied for the corrosion behavior studies. The Ni–P layer deposited by ultrasound showed a higher anticorrosive property than the layer deposited by the classical method. The ZnO nanoparticles deposited on the surface of Ni–P layer significantly improved the corrosion resistance.

  15. Development and evaluation of two PVD-coated β-titanium orthodontic archwires for fluoride-induced corrosion protection.

    Science.gov (United States)

    Krishnan, Vinod; Krishnan, Anand; Remya, R; Ravikumar, K K; Nair, S Asha; Shibli, S M A; Varma, H K; Sukumaran, K; Kumar, K Jyothindra

    2011-04-01

    The present research was aimed at developing surface coatings on β titanium orthodontic archwires capable of protection against fluoride-induced corrosion. Cathodic arc physical vapor deposition PVD (CA-PVD) and magnetron sputtering were utilized to deposit thin films of titanium aluminium nitride (TiAlN) and tungsten carbide/carbon (WC/C) coatings on β titanium orthodontic archwires. Uncoated and coated specimens were immersed in a high fluoride ion concentration mouth rinse, following a specially designed cycle simulating daily use. All specimens thus obtained were subjected to critical evaluation of parameters such as electrochemical corrosion behaviour, surface analysis, mechanical testing, microstructure, element release, and toxicology. The results confirm previous research that β titanium archwires undergo a degradation process when in contact with fluoride mouth rinses. The study confirmed the superior nature of the TiAlN coating, evident as many fewer changes in properties after fluoride treatment when compared with the WC/C coating. Thus, coating with TiAlN is recommended in order to reduce the corrosive effects of fluorides on β titanium orthodontic archwires. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Active corrosion protection performance of an epoxy coating applied on the mild steel modified with an eco-friendly sol-gel film impregnated with green corrosion inhibitor loaded nanocontainers

    Science.gov (United States)

    Izadi, M.; Shahrabi, T.; Ramezanzadeh, B.

    2018-05-01

    In this study the corrosion resistance, active protection, and cathodic disbonding performance of an epoxy coating were improved through surface modification of steel by a hybrid sol-gel system filled with green corrosion inhibitors loaded nanocontainer as intermediate layer on mild steel substrate. The green inhibitor loaded nanocontainers (GIN) were used to induce active inhibition performance in the protective coating system. The corrosion protection performance of the coated panels was investigated by electrochemical impedance spectroscopy (EIS), salt spray, and cathodic disbonding tests. It was observed that the corrosion inhibition performance of the coated mild steel panels was significantly improved by utilization of active multilayer coating system. The inhibitor release from nanocontainers at the epoxy-silane film/steel interface resulted in the anodic and cathodic reactions restriction, leading to the lower coating delamination from the substrate and corrosion products progress. Also, the active inhibition performance of the coating system was approved by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and energy dispersive X-ray (EDS) analysis on the panels with artificial defects. The inhibitive agents were released to the scratch region and blocked the active sites on the metal surface.

  17. Microstructure characteristic and excellent corrosion protection properties of sealed Zn-TiO{sub 2} composite coating for sintered NdFeB magnet

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiaokui [School of Materials Science and Engineering, Southwest University, Chongqing 400715 (China); Li Qing, E-mail: liqingd@swu.edu.c [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang Shiyan; Liu Fang; Wang Shaoyin; Zhang Haixiao [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2010-04-09

    In this paper, a protective sealed Zn-TiO{sub 2} composite coating (SCC) was prepared on sintered NdFeB magnet by electrodeposition and sol-gel combined technique. For a comparison, unsealed Zn-TiO{sub 2} composite coating (UCC) was also studied. The surface morphologies of composite coating were studied using scanning electron microscope (SEM). The microstructure of composite coatings and structure of sealing layer were studied by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectrum, respectively. The anticorrosive properties of composite coatings in neutral 3.5 wt.% NaCl solutions were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) technique. The results of corrosion tests showed that due to the blocking effect of sealing layer, SCC could suppress the corrosion process by holding back the transfer or diffusion of corrosive medium, and therefore showed the excellent corrosion protection properties for sintered NdFeB magnet.

  18. Corrosion principles and surface modification

    International Nuclear Information System (INIS)

    Kruger, J.

    1982-01-01

    This chapter examines the important strategies provided by the newer ideas of corrosion science and engineering that surface modification techniques must utilize to help prevent corrosion, especially the most damaging kind of aqueous corrosion, localized corrosion. Provides a brief introduction to the principles underlying the phenomenon of corrosion in order to use them to discuss surface modification strategies to combat corrosion. Discusses the electrochemistry of corrosion; the thermodynamics of corrosion; the kinetics of corrosion; thermodynamic strategies; and kinetic strategies (formation of more protective passive films; resistance to breakdown; ductility; repassivation)

  19. Polystyrene films as barrier layers for corrosion protection of copper and copper alloys.

    Science.gov (United States)

    Románszki, Loránd; Datsenko, Iaryna; May, Zoltán; Telegdi, Judit; Nyikos, Lajos; Sand, Wolfgang

    2014-06-01

    Dip-coated polystyrene layers of sub-micrometre thickness (85-500nm) have been applied on copper and copper alloys (aluminium brass, copper-nickel 70/30), as well as on stainless steel 304, and produced an effective barrier against corrosion and adhesion of corrosion-relevant microorganisms. According to the dynamic wettability measurements, the coatings exhibited high advancing (103°), receding (79°) and equilibrium (87°) contact angles, low contact angle hysteresis (6°) and surface free energy (31mJ/m(2)). The corrosion rate of copper-nickel 70/30 alloy samples in 3.5% NaCl was as low as 3.2μm/a (44% of that of the uncoated samples), and in artificial seawater was only 0.9μm/a (29% of that of the uncoated samples). Cell adhesion was studied by fluorescence microscopy, using monoculture of Desulfovibrio alaskensis. The coatings not only decreased the corrosion rate but also markedly reduced the number of bacterial cells adhered to the coated surfaces. The PS coating on copper gave the best result, 2×10(3)cells/cm(2) (1% of that of the uncoated control). © 2013 Elsevier B.V. All rights reserved.

  20. Modified Hydrotalcites as Smart Additives for Improved Corrosion Protection of Reinforced Concrete

    NARCIS (Netherlands)

    Yang, Z.

    2015-01-01

    Corrosion of reinforcing steel is a major culprit to durability and serviceability of concrete structures. This problem is highly relevant for civil engineering structures in the transport sector, such as bridges, tunnels, harbour quays and parking structures. The dominant aggressive external

  1. Chromate-free Hybrid Coating for Corrosion Protection of Electrogalvanized Steel Sheets

    International Nuclear Information System (INIS)

    Jo, Duhwan; Kwon, Moonjae; Kim, Jongsang

    2012-01-01

    Both electrogalvanized and hot-dip galvanized steel sheets have been finally produced via organic-inorganic surface coating process on the zinc surface to enhance corrosion resistance and afford additional functional properties. Recently, POSCO has been developed a variety of chromate-free coated steels that are widely used in household, construction and automotive applications. New organic-inorganic hybrid coating solutions as chromate alternatives are comprised of surface modified silicate with silane coupling agent and inorganic corrosion inhibitors as an aqueous formulation. In this paper we have prepared new type of hybrid coatings and evaluated quality performances such as corrosion resistance, spot weldability, thermal tolerance, and paint adhesion property etc. The electrogalvanized steels with these coating solutions exhibit good anti-corrosion property compared to those of chromate coated steels. Detailed components composition of coating solutions and experimental results suggest that strong binding between organic-inorganic hybrid coating layer and zinc surface plays a key role in the advanced quality performances

  2. Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors

    International Nuclear Information System (INIS)

    Montemor, M.F.; Snihirova, D.V.; Taryba, M.G.; Lamaka, S.V.; Kartsonakis, I.A.; Balaskas, A.C.; Kordas, G.C.; Tedim, J.; Kuznetsova, A.; Zheludkevich, M.L.; Ferreira, M.G.S.

    2012-01-01

    Nowadays, there is a strong demand on the search of thinner, but more effective organic coatings for corrosion protection of metallic substrates, like galvanised steel, used in the automotive industry. In order to guarantee effective corrosion protection of these coatings, and because chromate-based pigments cannot be used, one of the most attractive strategies consists on the modification of the organic matrix with nano-additives filled with corrosion inhibitors, which can be released to the active sites. In this work, two different nano-additives are explored as potential self-healing materials for the development of active protective coatings. These additives are layered double hydroxides and cerium molybdate hollow nanospheres loaded with mercaptobenzothiazole, as a corrosion inhibitor. These additives were added to epoxy primers, individually, or combining the two nanoadditives in the same layer. The electrochemical behaviour and the potential of self-healing ability were studied by electrochemical impedance spectroscopy, scanning vibrating electrode technique and scanning ion-selective electrode technique. The results reveal that both types of nanocontainers can provide effective corrosion inhibition on artificial induced defects, at different stages of the degradation process. Moreover, the results also show that there is a synergistic effect concerning corrosion inhibition and self-healing potential when a mixture of the two nanocontainers is used. The mechanism of self healing is presented and discussed in terms of effect of organic inhibitor and role of the nanocontainers, including effect of cerium ions released from cerium molibdate nanoparticles.

  3. Fiftieth Anniversary of the Foundation of Postgraduate Study on Corrosion and Protection of Materials at the Faculty of Technology, University of Zagreb

    Directory of Open Access Journals (Sweden)

    Martinez, S.

    2011-07-01

    Full Text Available The first postgraduate study at the Department for Chemical Technology of the Faculty of Technology (nowadays: Faculty of Chemical Engineering and Technology of the University of Zagreb concerning the field "Corrosion and Protection of Materials" was founded in the academic year of 1960/61 on the initiative of academician Miroslav Karšulin. The study comprised three semesters and finished by defending a master's thesis. During two decades, 19 generations of attendants were registered and 108 of them reached the scientific degree of MSc. In this period, several new postgraduate studies were introduced that were indispensable, but provoked organizational difficulties. Therefore, in 1980 reorganization took place by merging all postgraduate studies into "Engineering Chemistry" with 11 sections. Thus, the postgraduate study "Corrosion and Protection of Materials" transformed into the section "Structural Materials and Corrosion Control". After the establishment of the "Faculty of Chemical Engineering and Technology" from the Department for Chemical Technology of the Faculty of Technology in 1992, the "Chemical Engineering" section of former postgraduate study "Engineering Chemistry" separated as an autonomous study that also enabled receiving the Master's degree in the field of "Corrosion and Protection of Materials" by choice of adequate optional courses. At the beginning of the new millennium, changes of curricula in accordance with the Bologna process of reforms took place at the Faculty of Chemical Engineering and Technology as well as in the entire system of high educationin Croatia. All postgraduate studies leading to MSc degree were eliminated in 2003. Simultaneously, doctoral and specialists postgraduate studies were introduced. Doctoral studies lasting three years lead to PhD degree. Today, the knowledge from the field of corrosion and material protection is mainly included into programs of actual doctoral studies "Engineering Chemistry

  4. Improvement of corrosion protection property of Mg-alloy by DLC and Si-DLC coatings with PBII technique and multi-target DC-RF magnetron sputtering

    International Nuclear Information System (INIS)

    Masami, Ikeyama; Setsuo, Nakao; Tsutomu, Sonoda; Junho, Choi

    2009-01-01

    Magnesium alloys have been considered as one of the most promising light weight materials with potential applications for automobile and aircraft components. Their poor corrosion resistance, however, has to date prevented wider usage. Diamond-like carbon (DLC) and silicon-incorporated DLC (Si-DLC) coatings are known to provide a high degree of corrosion protection, and hold accordingly promise for enhancing the corrosion resistance of the magnesium alloys. In this work we have studied the effect of coating conditions of DLC coatings as well as Si incorporation into coating on corrosion resistance, deposited onto AZ91 magnesium alloy substrates by plasma based ion implantation (PBII). The influences of a Ti interlayer beneath the DLC, Si-DLC and Ti incorporated DLC (Ti-DLC) coatings fabricated by multi-target direct-current radio-frequency (DC-RF) magnetron sputtering were also examined on both the adhesion strength and corrosion resistance of the materials. We have also examined the effect of the Si content in the Si-DLC coatings made by magnetron sputtering on the alloys' corrosion resistance. The results of potentiodynamic polarization measurements demonstrate that Si-DLC coating deposited by PBII exhibits the highest corrosion resistance in an aqueous 0.05 M NaCl solution. Although Ti layer is helpful in increasing adhesion between DLC coating and AZ91 substrate, it also influences adversely corrosion protection. The ozone treatment of the magnesium alloy's surface before the formation of coatings has been found to improve both adhesion strength and corrosion resistance.

  5. Improvement of corrosion protection property of Mg-alloy by DLC and Si-DLC coatings with PBII technique and multi-target DC-RF magnetron sputtering

    Science.gov (United States)

    Masami, Ikeyama; Setsuo, Nakao; Tsutomu, Sonoda; Junho, Choi

    2009-05-01

    Magnesium alloys have been considered as one of the most promising light weight materials with potential applications for automobile and aircraft components. Their poor corrosion resistance, however, has to date prevented wider usage. Diamond-like carbon (DLC) and silicon-incorporated DLC (Si-DLC) coatings are known to provide a high degree of corrosion protection, and hold accordingly promise for enhancing the corrosion resistance of the magnesium alloys. In this work we have studied the effect of coating conditions of DLC coatings as well as Si incorporation into coating on corrosion resistance, deposited onto AZ91 magnesium alloy substrates by plasma based ion implantation (PBII). The influences of a Ti interlayer beneath the DLC, Si-DLC and Ti incorporated DLC (Ti-DLC) coatings fabricated by multi-target direct-current radio-frequency (DC-RF) magnetron sputtering were also examined on both the adhesion strength and corrosion resistance of the materials. We have also examined the effect of the Si content in the Si-DLC coatings made by magnetron sputtering on the alloys' corrosion resistance. The results of potentiodynamic polarization measurements demonstrate that Si-DLC coating deposited by PBII exhibits the highest corrosion resistance in an aqueous 0.05 M NaCl solution. Although Ti layer is helpful in increasing adhesion between DLC coating and AZ91 substrate, it also influences adversely corrosion protection. The ozone treatment of the magnesium alloy's surface before the formation of coatings has been found to improve both adhesion strength and corrosion resistance.

  6. Corrosion protection of the reinforcing steels in chloride-laden concrete environment through epoxy/polyaniline–camphorsulfonate nanocomposite coating

    International Nuclear Information System (INIS)

    Pour-Ali, Sadegh; Dehghanian, Changiz; Kosari, Ali

    2015-01-01

    Highlights: • Epoxy/polyaniline–camphorsulfonate nanocomposite coating well protects steel rebar. • Coating performance is evaluated by impedance measurements up to 1 year. • Ultimate bond strength between the coated rebars and concrete is measured. • Self-compacting concrete shows better anticorrosive property compared to normal one. - Abstract: In this study, an epoxy/polyaniline–camphorsulfonate nanocomposite (epoxy/PANI–CSA) is employed to protect reinforcing steels in chloride-laden concrete environment. The synthesized nanocomposite was characterized using Fourier transform infrared spectroscopy and transmission electron microscopy. Bare, epoxy-coated and epoxy/PANI–CSA nanocomposite-coated steel rebars were embedded in normal and self-compacting concretes. To evaluate their corrosion behaviors, open circuit potential and impedance measurements were performed for the duration of 1 year. Ultimate bond strength of concrete with the reinforcement bars were measured in corroded and uncorroded conditions. It was found that epoxy/PANI–CSA coating provides good corrosion resistance and durable bond strength with concrete for steel rebars

  7. Restraint deformation and corrosion protection of gold deposited aluminum mirrors for cold optics of mid-infrared instruments

    Science.gov (United States)

    Uchiyama, Mizuho; Miyata, Takashi; Sako, Shigeyuki; Kamizuka, Takafumi; Nakamura, Tomohiko; Asano, Kentaro; Okada, Kazushi; Onaka, Takashi; Sakon, Itsuki; Kataza, Hirokazu; Sarugaku, Yuki; Kirino, Okiharu; Nakagawa, Hiroyuki; Okada, Norio; Mitsui, Kenji

    2014-07-01

    We report the restraint deformation and the corrosion protection of gold deposited aluminum mirrors for mid-infrared instruments. To evaluate the deformation of the aluminum mirrors by thermal shrinkage, monitoring measurement of the surface of a mirror has been carried out in the cooling cycles from the room temperature to 100 K. The result showed that the effect of the deformation was reduced to one fourth if the mirror was screwed with spring washers. We have explored an effective way to prevent the mirror from being galvanically corroded. A number of samples have been prepared by changing the coating conditions, such as inserting an insulation layer, making a multi-layer and overcoating water blocking layer, or carrying out precision cleaning before coating. Precision cleaning before the deposition and protecting coat with SiO over the gold layer seemed to be effective in blocking corrosion of the aluminum. The SiO over-coated mirror has survived the cooling test for the mid-infrared use and approximately 1 percent decrease in the reflectance has been detected at 6-25 microns compared to gold deposited mirror without coating.

  8. Hydrothermal synthesis and corrosion behavior of the protective coating on Mg-2Zn-Mn-Ca-Ce alloy

    Directory of Open Access Journals (Sweden)

    Dan Song

    2016-12-01

    Full Text Available Protective coatings were synthesized on the Mg-2Zn-Mn-Ca-Ce Mg alloy through the hydrothermal method with de-ionized water as the reagent. The coatings were composed of Mg hydroxide, generally uniform and compact. Hydrogen evolution tests and electrochemical tests in the Hanks’ solution demonstrated that the Mg(OH2 coatings effectively decreased the bio-degradation rate of the Mg alloy substrate. Microstructure observation showed that the coating formation on the secondary phases was more difficult than that on the α-Mg matrix, which led to micro cracks and pores on the secondary phases after drying. Over synthesizing time, the coating layer on secondary phases gradually becomes more compact and uniform. Meanwhile, owing to the thicker and more compact coatings, the corrosion resistance and protective efficiency were significantly improved with longer synthesizing time as well.

  9. Characterization of organic-inorganic hybrid coatings for corrosion protection of galvanized steel and electroplated ZnFe steel

    Directory of Open Access Journals (Sweden)

    Maria Eliziane Pires de Souza

    2006-03-01

    Full Text Available The development of hybrids materials has been extensively investigated in recent years. The combination of a wide variety of compositions and production processes had permitted the use of these materials in different applications like coatings for corrosion protection of metals. In this work organic-inorganic hybrid materials have been prepared from the hydrolysis of tetraethylorthosilicate and silanol-terminated polidymetilmetoxysilane using a sol-gel process. These materials have been applied on galvanized steel and on steel electroplated with a ZnFe. In order to evaluate the degradation behavior of these coatings, electrochemical techniques (Electrochemical Impedance Spectroscopy and Potentiodynamic Polarization were used. EIS data was fitted to an equivalent circuit from which the electrochemical parameters were obtained. Results show a good protective character of the hybrid films, when compared with uncovered specimens. The overall performance of the coating systems appears to be highly dependent on the kind of metallic coating applied to the steel.

  10. Practical applications of ion beam and plasma processing for improving corrosion and wear protection

    CERN Document Server

    Klingenberg, M L; Wei, R; Demaret, J; Hirvonen, J

    2002-01-01

    A multi-year project for the US Army has been investigating the use of various ion beam and plasma-based surface treatments to improve the corrosion and wear properties of military hardware. These processes are intended to be complementary to, rather than competing with, other promising macro scale coating processes such high velocity oxy-fuel (HVOF) deposition, particularly in non-line-of- sight and flash chrome replacement applications. It is believed that these processes can improve the tribological and corrosion behavior of parts without significantly altering the dimensions of the part, thereby eliminating the need for further machining operations and reducing overall production costs. The ion beam processes chosen are relatively mature, low-cost processes that can be scaled-up. The key methods that have been considered under this program include nitrogen ion implantation into electroplated hard chrome, ion beam assisted chromium and chromium nitride coatings, and plasma-deposited diamond- like carbon an...

  11. Corrosion protection of SiC-based ceramics with CVDMullite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sarin, V.; Auger, M. [Boston Univ., MA (United States)

    1997-05-01

    Silicon carbide ceramics are the leading candidate materials for use as heat exchangers in advanced combined cycle power plants because of their unique combination of high temperature strength, high thermal conductivity, excellent thermal shock resistance, and good high temperature stability and oxidation resistance. Ceramic coatings are being considered for diesel engine cylinder liners, piston caps, valve faces and seats, piston rings, and for turbine components such as combustors, blades, stators, seals, and bearings. Under such conditions ceramics are better suited to high temperature environments than metals. For the first time, adherent crystalline mullite coatings have been chemically vapor deposited onto SiC substrates to enhance its corrosion/oxidation resistance. Thermodynamic and kinetic considerations have been utilized to produce mullite coatings with a variety of growth rates, compositions, and morphologies. The flexibility of processing can be exploited to produce coated ceramics with properties tailored to specific applications and varied corrosive environments. These corrosive environments include thermal, Na{sub 2}SO{sub 4}, O{sub 2} and coal slag.

  12. Galvanic Liquid Applied Coating System For Protection of Embedded Steel Surfaces from Corrosion

    Science.gov (United States)

    Curran, Joseph; Curran, Jerome; Voska, N. (Technical Monitor)

    2002-01-01

    Corrosion of reinforcing steel in concrete is an insidious problem facing Kennedy Space Center (KSC), other Government Agencies, and the general public. These problems include KSC launch support structures, highway bridge infrastructure, and building structures such as condominium balconies. Due to these problems, the development of a Galvanic Liquid Applied Coating System would be a breakthrough technology having great commercial value for the following industries: Transportation, Infrastructure, Marine Infrastructure, Civil Engineering, and the Construction Industry. This sacrificial coating system consists of a paint matrix that may include metallic components, conducting agents, and moisture attractors. Similar systems have been used in the past with varying degrees of success. These systems have no proven history of effectiveness over the long term. In addition, these types of systems have had limited success overcoming the initial resistance between the concrete/coating interface. The coating developed at KSC incorporates methods proven to overcome the barriers that previous systems could not achieve. Successful development and continued optimization of this breakthrough system would produce great interest in NASA/KSC for corrosion engineering technology and problem solutions. Commercial patents on this technology would enhance KSC's ability to attract industry partners for similar corrosion control applications.

  13. Microbiological corrosion of metals

    International Nuclear Information System (INIS)

    Vladislavlev, V.V.

    1992-01-01

    Problems is considered of development of the microbiological corrosion of the NPP equipment. The main attention is paid to the selective character of microbiological corrosion in zones of welded joints of austenitic steels. It is noted that the presence of technological defects promotes growth of corrosional damages. Methods for microbiological corrosion protection are discussed

  14. Evaluation results on the effectiveness of the corrosion protection system for underground pipelines, using the DC-voltage gradient technique

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Antonio Carlos [Petroquimica Uniao S.A., Santo Andre, SP (Brazil)

    2003-07-01

    A pipeline of diameter 6'' with 17.694 km of extension was evaluated how much to the integrity of its external covering and the effectiveness of the system of cathodic protection, using the method DC-Voltage Gradient. The Cathodic Protection in this pipeline is made by seven rectifiers. The gotten data indicate that the potential pipe-ground registered in some check points to the long one of the pipeline is extremely negative, what has led to a super protection of the pipeline for the CP. This if explains for the great proximity between the anodes and the pipeline. For km had been identified 917 failures with a mean density of 50,1 per Km. Beyond the analysis of the data, this work includes conclusions and recommendations detailed for the repairs of the covering of the pipeline and for improvement of the effectiveness of the CP. One sends regards to a combination of repairs in the covering and reevaluation of the CP, in way to improve the protection level and to assure the reduction of the risk of external corrosion. (author)

  15. Evaluation results on the effectiveness of the corrosion protection system for underground pipelines, using the DC-voltage gradient technique

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Antonio Carlos [Petroquimica Uniao S.A., Santo Andre, SP (Brazil)

    2003-07-01

    A pipeline of diameter 6'' with 17.694 km of extension was evaluated how much to the integrity of its external covering and the effectiveness of the system of cathodic protection, using the method DC-Voltage Gradient. The Cathodic Protection in this pipeline is made by seven rectifiers. The gotten data indicate that the potential pipe-ground registered in some check points to the long one of the pipeline is extremely negative, what has led to a super protection of the pipeline for the CP. This if explains for the great proximity between the anodes and the pipeline. For km had been identified 917 failures with a mean density of 50,1 per Km. Beyond the analysis of the data, this work includes conclusions and recommendations detailed for the repairs of the covering of the pipeline and for improvement of the effectiveness of the CP. One sends regards to a combination of repairs in the covering and reevaluation of the CP, in way to improve the protection level and to assure the reduction of the risk of external corrosion. (author)

  16. A synergistic combination of tetraethylorthosilicate and multiphosphonic acid offers excellent corrosion protection to AA1100 aluminum alloy

    Science.gov (United States)

    Dalmoro, Viviane; dos Santos, João H. Z.; Armelin, Elaine; Alemán, Carlos; Azambuja, Denise S.

    2013-05-01

    This work describes a new mechanism for the incorporation of organophosphonic acid into silane self-assembly monolayers, which has been used to protect AA1100 aluminum alloy. The protection improvement has been attributed to the fact that phosphonic structures promote the formation of strongly bonded and densely packed monolayer films, which show higher surface coverage and better adhesion than conventional silane systems. In order to evaluate the linking chemistry offered by phosphonic groups, two functionalized organophosphonic groups have been employed, 1,2-diaminoethanetetrakis methylenephosphonic acid (EDTPO) and aminotrimethylenephosphonic acid (ATMP), and combined with tetraethylorthosilicate (TEOS) films prepared by sol-gel synthesis. Results suggest that phosphonic acids may interact with the surface through a monodentate and bidentate coordination mode and, in addition, form one or more strong and stable linkages with silicon through non-hydrolysable bonds. Therefore, the incorporation of a very low concentration of phosphonic acids on TEOS solutions favors the complete coverage of the aluminum substrate during the silanization process, which is not possible using TEOS alone. The linking capacity of phosphonic acid has been investigated by FTIR-RA spectroscopy, SEM and EDX analysis, X-ray photoelectron spectroscopy (XPS), and quantum mechanical calculations. Finally, electrochemical impedance spectroscopy has been used to study the corrosion protection revealing that EDTPO-containing films afforded more protection to the AA1100 substrate than ATMP-containing films.

  17. A synergistic combination of tetraethylorthosilicate and multiphosphonic acid offers excellent corrosion protection to AA1100 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dalmoro, Viviane [Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS) Av. Bento Gonçalves 9500 - CEP 91501-970, Porto Alegre, RS (Brazil); Departament d’Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, Barcelona E-08028 (Spain); Center for Research in Nano-Engineering (CRnE), Universitat Politècnica de Catalunya (UPC), Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona E-08028 (Spain); Santos, João H.Z. dos [Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS) Av. Bento Gonçalves 9500 - CEP 91501-970, Porto Alegre, RS (Brazil); Armelin, Elaine, E-mail: elaine.armelin@upc.edu [Departament d’Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, Barcelona E-08028 (Spain); Center for Research in Nano-Engineering (CRnE), Universitat Politècnica de Catalunya (UPC), Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona E-08028 (Spain); Alemán, Carlos, E-mail: carlos.aleman@upc.edu [Departament d’Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, Barcelona E-08028 (Spain); Center for Research in Nano-Engineering (CRnE), Universitat Politècnica de Catalunya (UPC), Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona E-08028 (Spain); and others

    2013-05-15

    This work describes a new mechanism for the incorporation of organophosphonic acid into silane self-assembly monolayers, which has been used to protect AA1100 aluminum alloy. The protection improvement has been attributed to the fact that phosphonic structures promote the formation of strongly bonded and densely packed monolayer films, which show higher surface coverage and better adhesion than conventional silane systems. In order to evaluate the linking chemistry offered by phosphonic groups, two functionalized organophosphonic groups have been employed, 1,2-diaminoethanetetrakis methylenephosphonic acid (EDTPO) and aminotrimethylenephosphonic acid (ATMP), and combined with tetraethylorthosilicate (TEOS) films prepared by sol–gel synthesis. Results suggest that phosphonic acids may interact with the surface through a monodentate and bidentate coordination mode and, in addition, form one or more strong and stable linkages with silicon through non-hydrolysable bonds. Therefore, the incorporation of a very low concentration of phosphonic acids on TEOS solutions favors the complete coverage of the aluminum substrate during the silanization process, which is not possible using TEOS alone. The linking capacity of phosphonic acid has been investigated by FTIR-RA spectroscopy, SEM and EDX analysis, X-ray photoelectron spectroscopy (XPS), and quantum mechanical calculations. Finally, electrochemical impedance spectroscopy has been used to study the corrosion protection revealing that EDTPO-containing films afforded more protection to the AA1100 substrate than ATMP-containing films.

  18. A synergistic combination of tetraethylorthosilicate and multiphosphonic acid offers excellent corrosion protection to AA1100 aluminum alloy

    International Nuclear Information System (INIS)

    Dalmoro, Viviane; Santos, João H.Z. dos; Armelin, Elaine; Alemán, Carlos

    2013-01-01

    This work describes a new mechanism for the incorporation of organophosphonic acid into silane self-assembly monolayers, which has been used to protect AA1100 aluminum alloy. The protection improvement has been attributed to the fact that phosphonic structures promote the formation of strongly bonded and densely packed monolayer films, which show higher surface coverage and better adhesion than conventional silane systems. In order to evaluate the linking chemistry offered by phosphonic groups, two functionalized organophosphonic groups have been employed, 1,2-diaminoethanetetrakis methylenephosphonic acid (EDTPO) and aminotrimethylenephosphonic acid (ATMP), and combined with tetraethylorthosilicate (TEOS) films prepared by sol–gel synthesis. Results suggest that phosphonic acids may interact with the surface through a monodentate and bidentate coordination mode and, in addition, form one or more strong and stable linkages with silicon through non-hydrolysable bonds. Therefore, the incorporation of a very low concentration of phosphonic acids on TEOS solutions favors the complete coverage of the aluminum substrate during the silanization process, which is not possible using TEOS alone. The linking capacity of phosphonic acid has been investigated by FTIR-RA spectroscopy, SEM and EDX analysis, X-ray photoelectron spectroscopy (XPS), and quantum mechanical calculations. Finally, electrochemical impedance spectroscopy has been used to study the corrosion protection revealing that EDTPO-containing films afforded more protection to the AA1100 substrate than ATMP-containing films.

  19. Protection of Mild Steel Against Sulphides Corrosion In Petroleum Oil Industry

    International Nuclear Information System (INIS)

    Soliman, A.M.H.

    2004-01-01

    The aggressive properties of the media encountered when drilling for oil derive from the fact that they contain an abundance of mineralized water, as well as hydrogen sulphide and carbon dioxide. Particularly vulnerable to corrosion and installation of old deposits, where highly mineralized water or sometimes even sea water, is pumped into the bed so as to increase the oil yield, and where acid treatment is also carried out, the injection of such water into the bed creates favourable conditions for the development of microbiological processes promoting the life activity of sulphate-reducing bacteria and contributing to the appearance of hydrogen sulphide in the system

  20. Corrosion and protection of metals in the rural atmosphere of El Pardo Spain (PATINA/CYTED project)

    International Nuclear Information System (INIS)

    Simancas, J.; Castano, J. G.; Morcillo, M.

    2003-01-01

    Atmospheric corrosion tests of metallic and organic coatings on steel, zinc and aluminium have been conducted in el Pardo (Spain) as part of the PATINA/CYTED project Anticorrosive Protection of Metals in the Atmosphere. This is a rural atmosphere with the following ISO corrosivity categories: C2 (Fe), C'' (Zn), Cu (Cu) and C1 (Al). Its average temperature and relative humidity is 13 degree centigrade and 62.8, respectively, and it has low SO 2 and C1''- contents. Results of 42 months exposure are discussed. Atmospheric exposure tests were carried out for the following types of coatings: conventional paint coatings for steel and hot-dip galvanized steel (group 1), new painting technologies for steel and galvanized steel (group 2), zinc-base metallic coatings (group 3), aluminium-base metallic coatings (group 4), coatings on aluminium (group 5) and coil-coatings on steel, hot-dip galvanized steel and 55% Al-Zn coated steel (group 6). (Author) 9 refs

  1. Arc-Sprayed Fe-Based Coatings from Cored Wires for Wear and Corrosion Protection in Power Engineering

    Directory of Open Access Journals (Sweden)

    Korobov Yury

    2018-02-01

    Full Text Available High wear and corrosion of parts lead to an increase in operating costs at thermal power plants. The present paper shows a possible solution to this problem through the arc spraying of protective coatings. Cored wires of the base alloying system Fe-Cr-C were used as a feedstock. Rise of wear- and heat-resistance of the coatings was achieved by additional alloying with Al, B, Ti, and Y. The wear and heat resistance of the coatings were tested via a two-body wear test accompanied by microhardness measurement and the gravimetric method, respectively. A high-temperature corrosion test was performed at 550 °C under KCl salt deposition. The porosity and adhesion strengths of the coatings were also evaluated. The microstructure was investigated with a scanning electron microscope (SEM unit equipped with an energy dispersive X-ray (EDX microanalyzer, and the phase composition was assessed by X-ray diffractometry. The test results showed the positive influence of additional alloying with Y on the coating properties. A comparison with commercial boiler materials showed that the coatings have the same level of heat resistance as austenite steels and are an order of magnitude higher than that of pearlite and martensite-ferrite steels. The coatings can be applied to wear- and heat-resistant applications at 20–700 °C.

  2. Corrosion/96 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Topics covered by this conference include: cathodic protection in natural waters; cleaning and repassivation of building HVAC systems; worldwide opportunities in flue gas desulfurization; advancements in materials technology for use in oil and gas service; fossil fuel combustion and conversion; technology of corrosion inhibitors; computers in corrosion control--modeling and information processing; recent experiences and advances of austenitic alloys; managing corrosion with plastics; corrosion measurement technology; corrosion inhibitors for concrete; refining industry; advances in corrosion control for rail and tank trailer equipment; CO 2 corrosion--mechanisms and control; microbiologically influenced corrosion; corrosion in nuclear systems; role of corrosion in boiler failures; effects of water reuse on monitoring and control technology in cooling water applications; methods and mechanisms of scale and deposit control; corrosion detection in petroleum production lines; underground corrosion control; environmental cracking--relating laboratory results and field behavior; corrosion control in reinforced concrete structures; corrosion and its control in aerospace and military hardware; injection and process addition facilities; progress reports on the results of reinspection of deaerators inspected or repaired per RP0590 criteria; near 100% volume solids coating technology and application methods; materials performance in high temperature environments containing halides; impact of toxicity studies on use of corrosion/scale inhibitors; mineral scale deposit control in oilfield related operations; corrosion in gas treating; marine corrosion; cold climate corrosion; corrosion in the pulp and paper industry; gaseous chlorine alternatives in cooling water systems; practical applications of ozone in recirculating cooling water systems; and water reuse in industry. Over 400 papers from this conference have been processed separately for inclusion on the data base

  3. Preparation of Crosslinked Amphiphilic Silver Nanogel as Thin Film Corrosion Protective Layer for Steel

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2014-07-01

    Full Text Available Monodisperse silver nanoparticles were synthesized by a new developed method via reaction of AgNO3 and oleic acid with the addition of a trace amount of Fe3+ ions. Emulsion polymerization at room temperature was employed to prepare a core-shell silver nanoparticle with controllable particle size. N,N'-methylenebisacrylamide (MBA and potassium peroxydisulfate (KPS were used as a crosslinker, and as redox initiator system, respectively for crosslinking polymerization. The structure and morphology of the silver nanogels were characterized by Fourier transform infrared spectroscopy (FTIR, transmission and scanning electron microscopy (TEM and SEM. The effectiveness of the synthesized compounds as corrosion inhibitors for steel in 1 M HCl was investigated by various electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS. Monolayers of silver nanoparticle were self-assembled on the fresh active surface of the steel electrode and have been tested as a corrosion inhibitor for steel in 1 M HCl solution. The results of polarization measurements showed that nanogel particles act as a mixed type inhibitor.

  4. Oceanic corrosion test of bare and zinc-protected aluminum alloys for seawater heat exchangers

    Science.gov (United States)

    Sasscer, D. S.; Morgan, T. O.; Rivera, C.; Ernst, R.; Scott, A. C.; Summerson, T. J.

    1982-01-01

    Bare 3004 tubes, 7072 Alclad 3004 tubes, and bare and zinc diffusion treated 3003 extrusions from a brazed aluminum, plate-fin heat exchanger were exposed to 1.8 m/sec flowing seawater aboard an open ocean test facility moored 3.4 km off the southeast coast of Puerto Rico. After six months exposure, the average corrosion rates for most varieties of aluminum materials converged to a low value of 0.015 mm/yr (0.6 mils/yr). Pitting did not occur in bare 3003 and 3004 samples during the six month test. Pitting did occur to varying degrees in the Alclad and zinc diffusion treated material, but did not penetrate to the base metal. Biofouling countermeasures (intermittent chlorination and brushing) did not affect the corrosion rates to any significant extent. Intermittent chlorination at a level of 0.5 ppm for 28 minutes daily controlled microbiofouling of the samples but did not prevent the development of a macrobiofouling community in areas of the plumbing with low flow.

  5. Alternating current corrosion of cathodically protected pipelines: Discussion of the involved processes and their consequences on the critical interference values

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, M. [SGK Swiss Society for Corrosion Protection, Technoparkstr. 1, CH-8005 Zuerich (Switzerland)

    2012-12-15

    Based on laboratory studies and model concepts, a profound understanding of the involved processes in ac corrosion and the required limits has been obtained in the last years. But there was no information whether these thresholds can be effectively applied to pipelines or whether operational constraints make their implementation impossible. Therefore, an extensive field test was carried out. Thereby, the relevance of the laboratory tests for field application could be demonstrated and all threshold values were confirmed. Detailed analysis made it possible to explain the observed threshold values based on thermodynamic and kinetic considerations. The results summarized in the present work are the basis for the normative work defining the thresholds for the operation conditions of cathodically protected pipelines. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. SYNTHESIS AND CORROSION PROTECTION BEHAVIOR OF EPOXYTiO2-MICACEOUS IRON OXIDE NANO - COMPOSITE COATING ON St-37

    Directory of Open Access Journals (Sweden)

    M. R. Khorram

    2016-03-01

    Full Text Available The micro layers micaceous iron oxide and nano-TiO 2 were incorporated into the epoxy resin by mechanical mixing and sonication process. Optical micrographs showed that the number and diameter size of nanoparticle agglomerates were decreased by sonication. The structure and composition of the nanocomposite was determined using transmission electron microscopy which showed the presence of dispersed nano-TiO 2 in the polymer matrix. The anticorrosive properties of the synthesized nano-composites coating were investigated using salt spray, electrochemical impedance spectroscopy and polarization measurement. The EIS results showed that coating resistance increased by addition of micaceous iron oxide micro layers and nano-TiO 2 particles to the epoxy coatings. It was observed that higher corrosion protection of nanocomposite coatings obtained by the addition of 3 %wt micaceous iron oxide and 4%wt nano-TiO 2 into epoxy resin.

  7. Influence de la protection cathodique sur le comportement électrochimique des couches de corrosion d'acier au carbone

    OpenAIRE

    Tran Tron Long , Mai; Sutter , Eliane; Tribollet , Bernard

    2013-01-01

    11 pages, www.mattech-journal.org; International audience; Les propriétés électrochimiques de la couche de dépôts de corrosion formée à la surface des coupons d'acier E24 immergés pendant plusieurs années dans l'eau de mer sous différentes conditions de protection cathodique ont éteé'tudiées à l'aide de la spectroscopie d'impédance électrochimique et de mesures globale et locale de courant. Les résultats obtenus montrent que la couche de dépôts dont le comportement est déterminé par sa sous-c...

  8. Study of the Effect of Sol pH and Nanoclay Incorporation on the Corrosion Protection Performance of a Silane Sol-Gel Coating

    Directory of Open Access Journals (Sweden)

    Najmeh Asadi

    2014-06-01

    Full Text Available This work is aimed to evaluate the role of nanoclay in the protective performance of an eco-friendly silane sol-gel layer applied on mild steel substrate in 0.1M sodium chloride solution. At the first step, the effect of pH of the silane solution, consisting of a mixture of γ-glycidoxypropiltrimethoxysilane and methyltriethoxysilane and tetraethoxysilane, on the coating performance was evaluated through electrochemical noise measurements. The values of characteristic charge as a parameter extracted from shot noise theory revealed that the sol pH determining the rate of hydrolysis can play an important role in the corrosion protection behavior of silane coatings. Then, the influence of clay nanoparticles on the corrosion protective performance of the hybrid silane film was studied through taking advantage of electrochemical techniques, including electrochemical impedance spectroscopy and polarization curves, as well as surface analysis methods. The obtained electrochemical data including the values of charge transfer resistance, coating resistance, low frequency impedance and corrosion current density showed that the silane sol gel film in the presence of clay nanoparticles can present an improved corrosion protection. The behavior was connected to an enhancement in the coating barrier properties. Moreover, FESEM and water contact angle confirmed the higher reticulation in case of the coating incorporating nanoclay.

  9. Cathodic corrosion protection for the inside areas of metallic plants (KKS-I); Kathodischer Korrosionsschutz fuer die Innenflaechen von metallischen Anlagen (KKS-I)

    Energy Technology Data Exchange (ETDEWEB)

    Tenzer, Norbert [TZ-International Corrosion Consulting, Hagen (Germany)

    2012-07-01

    Cathodic corrosion protection for the inside areas of metallic plants (KKS-I) is a worldwide used technology in order to afford a safe protection of metallic plans against corrosion. This technology is used for plants in the treatment and storage of drinking water, for containers and reaction vessels in the chemical industry, for plants in the oil and gas industry as well as for containers and large-dimension pipelines containing seawater for the cooling of air liquefaction plants, power plants and seawater desalination plants, for examples. Furthermore, there exist further special applications for wastewater systems and biogas plants. The general description of the KKS-I shall supply the information to the operators of appropriate plants, that the cathodic corrosion protection also offers a wide range of applications for the protection of the inside areas of the plants against corrosion. Beside the previously mentioned standard areas of application there exist manifold further possibilities of application for metallic plants. It has to be emphasized that there are application possibilities not only for unalloyed or low alloy steels but also for stainless steels, aluminium, lead, copper, titanium and zinc. The regulation DIN EN 12499 firstly edited in 2003 contains the fundamentals, areas of application and specifications.

  10. The repair and protection of reinforced concrete with migrating corrosion inhibitors

    International Nuclear Information System (INIS)

    Stefanescu, D.

    2016-01-01

    The concrete is a very durable construction material and his use is based on the principle that concrete is an ideal environment for steel if properly proportioned and placed. In general, reinforced concrete has proved to be successful in terms of both structural performance and durability. However, there are instances of premature failure of reinforced concrete components due to corrosion of the reinforcement. Experience has shown that there are certain portions of exposed concrete structures more vulnerable than others. Methodology for concrete repair it addresses to suggestions of the types of repair methods and materials and a detailed description of the uses, limitations, materials, and procedures for Repair of Concrete. At same the time the methodology presents recommendation on materials, methods of mixing, application, curing and precautions to be exercised during placement. This work presents guidelines for managing reinforced concrete components and specifies the repair strategy with inhibitors incorporating. (authors)

  11. Fabricated super-hydrophobic film with potentiostatic electrolysis method on copper for corrosion protection

    International Nuclear Information System (INIS)

    Wang Peng; Qiu Ri; Zhang Dun; Lin Zhifeng; Hou Baorong

    2010-01-01

    A novel one-step potentiostatic electrolysis method was proposed to fabricate super-hydrophobic film on copper surface. The resulted film was characterized by contact angle tests, Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), Field emission scanning electron microscopy (FE-SEM) and electrochemical measurements. It could be inferred that the super-hydrophobic property resulted from the flower-like structure of copper tetradecanoate film. In the presence of super-hydrophobic film, the anodic and cathodic polarization current densities are reduced for more than five and four orders of magnitude, respectively. The air trapped in the film is the essential contributor of the anticorrosion property of film for its insulation, the copper tetradecanoate film itself acts as a 'frame' to trap air as well as a coating with inhibition effect. The super-hydrophobic film presents excellent inhibition effect to the copper corrosion and stability in water containing Cl - .

  12. Aspects regarding the safety improvement by corrosion protection on a GS heavy water plant

    International Nuclear Information System (INIS)

    Nicolaescu, G.V.; Nicolaescu, G.I.; Ohai, D.; Pavelescu, M.

    1995-01-01

    A new procedure to form a protective iron sulfide film in heavy water production columns is described and the results obtained are compared with an older procedure, showing the characteristics of protective film in both cases and the advantages of the new method. (Author)

  13. Significant Corrosion Resistance in an Ultrafine-Grained Al6063 Alloy with a Bimodal Grain-Size Distribution through a Self-Anodic Protection Mechanism

    Directory of Open Access Journals (Sweden)

    Mahdieh Shakoori Oskooie

    2016-12-01

    Full Text Available The bimodal microstructures of Al6063 consisting of 15, 30, and 45 vol. % coarse-grained (CG bands within the ultrafine-grained (UFG matrix were synthesized via blending of high-energy mechanically milled powders with unmilled powders followed by hot powder extrusion. The corrosion behavior of the bimodal specimens was assessed by means of polarization, steady-state cyclic polarization and impedance tests, whereas their microstructural features and corrosion products were examined using optical microscopy (OM, scanning transmission electron microscopy (STEM, field emission scanning electron microscopy (FE-SEM, electron backscattered diffraction (EBSD, energy dispersive spectroscopy (EDS, and X-ray diffraction (XRD techniques. The bimodal Al6063 containing 15 vol. % CG phase exhibits the highest corrosion resistance among the bimodal microstructures and even superior electrochemical behavior compared with the plain UFG and CG materials in the 3.5% NaCl solution. The enhanced corrosion resistance is attributed to the optimum cathode to anode surface area ratio that gives rise to the formation of an effective galvanic couple between CG areas and the UFG matrix. The operational galvanic coupling leads to the domination of a “self-anodic protection system” on bimodal microstructure and consequently forms a uniform thick protective passive layer over it. In contrast, the 45 vol. % CG bimodal specimen shows the least corrosion resistance due to the catastrophic galvanic corrosion in UFG regions. The observed results for UFG Al6063 suggest that metallurgical tailoring of the grain structure in terms of bimodal microstructures leads to simultaneous enhancement in the electrochemical behavior and mechanical properties of passivable alloys that are usually inversely correlated. The mechanism of self-anodic protection for passivable metals with bimodal microstructures is discussed here for the first time.

  14. “In-vitro” corrosion behaviour of the magnesium alloy with Al and Zn (AZ31) protected with a biodegradable polycaprolactone coating loaded with hydroxyapatite and cephalexin

    International Nuclear Information System (INIS)

    Zomorodian, A.; Santos, C.; Carmezim, M.J.; Silva, T.Moura e; Fernandes, J.C.S.; Montemor, M.F.

    2015-01-01

    Mg alloys are very susceptible to corrosion in physiological media. This behaviour limits its widespread use in biomedical applications as bioresorbable implants, but it can be controlled by applying protective coatings. On one hand, coatings must delay and control the degradation process of the bare alloy and, on the other hand, they must be functional and biocompatible. In this study a biocompatible polycaprolactone (PCL) coating was functionalised with nano hydroxyapatite (HA) particles for enhanced biocompatibility and with an antibiotic, cephalexin, for anti-bacterial purposes and applied on the AZ31 alloy. The chemical composition and the surface morphology of the coated samples, before and after the corrosion tests, were studied by scanning electron microscopy (SEM) coupled with energy dispersive x-ray analysis (EDX) and Raman. The results showed that the presence of additives induced the formation of agglomerates and defects in the coating that resulted in the formation of pores during immersion in Hanks' solution. The corrosion resistance of the coated samples was studied in Hank's solution by electrochemical impedance spectroscopy (EIS). The results evidenced that all the coatings can provide corrosion protection of the bare alloy. However, in the presence of the additives, corrosion protection decreased. The wetting behaviour of the coating was evaluated by the static contact angle method and it was found that the presence of both hydroxyapatite and cephalexin increased the hydrophilic behaviour of the surface. The results showed that it is possible to tailor a composite coating that can store an antibiotic and nano hydroxyapatite particles, while allowing to control the in-vitro corrosion degradation of the bioresorbable Mg alloy AZ31.

  15. Development of low-temperature galvanizing and its application for corrosion protection of high-strength steels; Entwicklung einer niedrigschmelzenden Legierung und deren Applikation zum Korrosionsschutz hochfester Staehle

    Energy Technology Data Exchange (ETDEWEB)

    Wielage, B.; Lampke, T.; Steinhaeuser, S. [Technische Universitaet Chemnitz (Germany). Institut fuer Werkstoffwissenschaft und Werkstofftechnik; Strobel, C. [Fachhochschule Ingolstadt (Germany); Merklinger, V.

    2008-12-15

    Apart from reliability and quality, vehicle safety and cost efficiency are the decisive criteria for automobile manufacturers. Corrosion protection plays a decisive role because it increases the service life. The ultra-high-strength steels are materials which exhibit high lightweight potential as well as a very good energy absorption capacity because of their mechanical properties. In connection with the possibility of hot forming, they are predestined for the fabrication of complicated, load-compatible shapes in the crash-relevant frame and body construction. The application of these steel qualities has been carried out in structural parts which are protected from corrosion by a hot-dip coat of FeAl7 - the so-called Usibor. However, at the moment there is no ready-for-production solution for later corrosion protection of already hot-formed parts. Therefore, a corrosion protection system on the basis of conventional low-temperature galvanizing processes has been developed and utilized. First, the softening behavior of the highly-resistant 22MnB5 substrate was analyzed. Afterwards, a galvanizing system was developed and applied. The corrosion protection coatings were characterized with regard to their structure and corrosion protection potential. As a result, a significant improvement of the corrosion behaviour has occurred. (Abstract Copyright [2008], Wiley Periodicals, Inc.) [German] Neben Zuverlaessigkeit und Qualitaet sind vor allem Fahrzeugsicherheit und Wirtschaftlichkeit entscheidende Kriterien fuer den Automobilhersteller. Der Korrosionsschutz spielt dabei eine herausragende Rolle, da hierdurch die Lebens- und Gebrauchsdauer erhoeht wird. Mit der Bereitstellung hoechstfester Stahlqualitaeten stehen Werkstoffe zur Verfuegung, die auf Grund ihrer mechanischen Eigenschaften ein hohes Leichtbaupotenzial sowie ein sehr gutes Energieabsorptionsvermoegen aufweisen. In Verbindung mit der Moeglichkeit der Warmformgebung sind sie damit praedestiniert fuer die

  16. Development of Nb2O5|Cu composite as AISI 1020 steel thermal spray coating for protection against corrosion by soil in buried structures

    International Nuclear Information System (INIS)

    Regis Junior, Oscar; Silva, Jose Maurilio da; Portella, Kleber Franke; Paredes, Ramon Sigifredo Cortes

    2012-01-01

    An Nb 2 O|Cu corrosion-resistant coating was developed and applied onto AISI 1020 steel substrate by Powder Flame Spray. A galvanostatic electrochemical technique was employed, with and without ohmic drop, in four different soils (two corrosively aggressive and two less aggressive). Behavior of coatings in different soils was compared using a cathodic hydrogen reduction reaction (equilibrium potential, overvoltage and exchange current density) focusing on the effect of ohmic drop. Results allow recommendation of Nb 2 O 5 |Cu composite for use in buried structure protection. (author)

  17. Combined Effect of Alternating Current Interference and Cathodic Protection on Pitting Corrosion and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in Near-Neutral pH Environment

    Directory of Open Access Journals (Sweden)

    Liwei Wang

    2018-03-01

    Full Text Available Influence of alternating current (AC on pitting corrosion and stress corrosion cracking (SCC behavior of X70 pipeline steel in the near-neutral pH environment under cathodic protection (CP was investigated. Both corrosion and SCC are inhibited by −0.775 VSCE CP without AC interference. With the superimposition of AC current (1–10 mA/cm2, the direct current (DC potential shifts negatively under the CP of −0.775 VSCE and the cathodic DC current decreases and shifts to the anodic direction. Under the CP potential of −0.95 VSCE and −1.2 VSCE, the applied AC current promotes the cathodic reaction and leads to the positive shift of DC potential and increase of cathodic current. Local anodic dissolution occurs attributing to the generated anodic current transients in the positive half-cycle of the AC current, resulting in the initiation of corrosion pits (0.6–2 μm in diameter. AC enhances the SCC susceptibility of X70 steel under −0.775 VSCE CP, attributing to the promotion of anodic dissolution and hydrogen evolution. Even an AC current as low as 1 mA/cm2 can enhance the SCC susceptibility.

  18. One-step method for the fabrication of superhydrophobic surface on magnesium alloy and its corrosion protection, antifouling performance

    International Nuclear Information System (INIS)

    Zhao, Lin; Liu, Qi; Gao, Rui; Wang, Jun; Yang, Wanlu; Liu, Lianhe

    2014-01-01

    Highlights: •The myristic acid iron superhydrophobic surface was formatted on AZ31. •Two procedures to build a super-hydrophobic were simplified to one step. •The superhydrophobic surface shows good anticorrosion, antifouling properties. •We report a new approach for the superhydrophobic surface protection on AZ31. -- Abstract: Inspired by the lotus leaf, various methods to fabricate artificial superhydrophobic surfaces have been developed. Our purpose is to create a simple, one-step and environment-friendly method to construct a superhydrophobic surface on a magnesium alloy substrate. The substrate was immersed in a solution containing ferric chloride (FeCl 3 ·6H 2 O), deionized water, tetradecanoic acid (CH 3 (CH 2 ) 12 COOH) and ethanol. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transformed infrared (FT-IR) were employed to characterize the substrate surface. The obtained surface showed a micron rough structure, a high contact angle (CA) of 165° ± 2° and desirable corrosion protection and antifouling properties

  19. Comparative evaluation of coating techniques for the corrosion protection of disposal container for spent nuclear fuel

    International Nuclear Information System (INIS)

    Chun, Kwan Sik; Kim, Sung Soo; Park, Chong Mook; Choi, Jong Won

    2005-02-01

    To propose a suitable coating technique to prevent corrosion on metal or metal alloys of a waste container to be used for the disposal of spent nuclear fuel, several methods related to spray coating and vapor deposition techniques have been comparatively evaluated, based on some major factors recommended. From these comparative results, it can be suggested that the best coating methods among the existing techniques in Korea would be HVOF and low pressure plasma spray. Even though the surface of the container coated by these methods would be coated, pores could be remained in the coated film. And therefore post-treatment methods for eliminating the pores have been briefly introduced to keep the life time of the container. The other techniques, the cold spray and hollow cathode discharge, may become excellent coating methods in the future if they are extensively researched to apply for coating on the container. An optimal process among the recommended methods should be selected by considering the state of container, such as an empty or a loaded container, and also related coating materials. For the support to this, the characteristics of the coating materials and the coated films and the durability of this film under a repository condition should be analyzed in detail

  20. Study by acoustic emission and electrochemical methods of the corrosion and the protection of the copper-zinc alloy (60/40) in neutral and alkaline media

    International Nuclear Information System (INIS)

    Assouli, B.

    2002-12-01

    The aim of this work is to study and characterize, by electrochemical methods and acoustic emission, the corrosion and the protection of the copper-zinc alloy (60/40) having a metallographic structure αβ'. The electrochemical measurements, in neutral, chlorinated or alkaline medium have allowed, to study the corrosion resistance of the copper-zinc and to show that the corrosion of this alloy, in the used media, is determined by a diffusional mechanism. The observations to the optical and scanning electron microscopes and the EDX analyzes have confirmed that this corrosion phenomenon is mainly due to the selective dissolution of the β' phase. The acoustic emission has shown, during this corrosion, the presence of two emissive sources whose initiation has been attributed to the relaxation of the micro- and macro- residual stresses of the α phase. These stresses have been characterized by X-ray diffraction and the salvoes emitted during the relaxation of these stresses have been discriminated by the characteristic frequencies and by the barycenter of their spectral density. The protection of this alloy has been carried out by the 2-mercapto-benzimidazole (MBI). This last compound has been tested both as inhibitor added directly in the corrosive medium and/or as polymer film previously deposited by an electrochemical way (p-MBI). The MBI is very efficient for an inhibition in a chlorinated alkaline medium. It is an interphase inhibitor. The p-MBI is efficient too in a neutral chlorinated medium and is moreover non pollutant for the environment. (O.M.)

  1. Comparative Study of Cladding Corrosion with a Protective Film of Silicon Carbide

    International Nuclear Information System (INIS)

    Lee, Dong Hee; Park, Kwang Heon; Noh, Seon Ho

    2013-01-01

    After the Fukushima nuclear accident, development of accident-tolerant nuclear fuel is being required as a solution for suppression of reaction between nuclear fuel cladding tubes and vapor as well as prevention of hydrogen explosion. This research has been conducted to prove the oxidation resistivity of protective coats in the situation of a critical accident by producing SiC composites coated nuclear as per two types of coating methods; formula of composites using precursor under low temperature process and formula of composites using a transcritical CO 2 . To observe the changes of oxide layer thickness according to thickness of SiC fiber cover for both coating methods, specimens covered with 1 layer and 4 layers were prepared. Suppression rate of protective coating-oxidation As the suppression rate of protective coating -oxidation is low, it has better ability of suppression of oxidization

  2. Optimal design of galvanic corrosion protection systems for offshore wind turbine support structures

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Abrahamsen, Asger Bech; Stolpe, Mathias

    2018-01-01

    the optimized anodes on the support structure, and finally evaluating the protective potential on the structure during the lifetime by calling the finite element (FE) software COMSOL. An algorithm based on Sequential Quadratic Programming (SQP) is used for optimizing the number and dimensions of the anodes...... the electrical isolation degradation of the structure coating as well as the mass reduction of the anodes during the CP lifetime. The performance of the proposed optimization process is examined on a mono bucket inspired (with some simplifications) by the Dogger Bank metrological mast in England. The optimized......The current work addresses a mass/cost optimization procedure for galvanic anode cathodic protection (GACP) systems based on both cathodic protection (CP) standards and numerical simulation. An approach is developed for optimizing the number and dimensions of the galvanic anodes, distributing...

  3. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete

    International Nuclear Information System (INIS)

    Simescu, Florica; Idrissi, Hassane

    2008-01-01

    We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 . After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.

  4. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete

    Directory of Open Access Journals (Sweden)

    Florica Simescu and Hassane Idrissi

    2008-01-01

    Full Text Available We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca10(PO46(OH2. After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.

  5. Protection against corrosion to high temperature by means of rich silicon coatings; Proteccion contra corrosion a alta temperatura por medio de recubrimientos ricos en silicio

    Energy Technology Data Exchange (ETDEWEB)

    Porcayo Calderon, Jesus [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    1999-07-01

    In this research work the study of the process of corrosion by molten salts of sodium sulphate-vanadium pentoxide and its prevention by means of metallic coatings rich in silicon was contemplated. The research encompassed the development of the coating system, the chemical and thermochemical analysis of the system sodium sulphate - vanadium pentoxide, the evaluation of the resistance to the corrosion of the coating system by gravimetric and electrochemistry techniques, and the study of the stability of the coating system - substrate. [Spanish] En este trabajo de investigacion se contempla el estudio del proceso de corrosion por sales fundidas de sulfato de sodio - pentoxido de vanadio y su prevencion por medio de recubrimientos metalicos ricos en silicio. La investigacion abarca el desarrollo del sistema de recubrimientos, el analisis quimico y termoquimico del sistema sulfato de sodio - pentoxido de vanadio, la evaluacion de la resistencia a la corrosion del sistema de recubrimientos por tecnicas gravimetricas y electroquimicas, y el estudio de la estabilidad del sistema recubrimiento - sustrato.

  6. Developments in national and international regulation in the field of ''corrosion protection of buried pipes''; Entwicklung im Bereich nationaler und internationaler Regelsetzung im Fachgebiet ''Korrosionsschutz erdverlegter Rohrleitungen''

    Energy Technology Data Exchange (ETDEWEB)

    Schoeneich, H.G. [E.ON Ruhrgas AG, Essen (Germany). Kompetenz-Center Korrosionsschutz

    2007-06-15

    This article summarizes the most important national and international rules for cathodic anti-corrosion protection of buried installations. The codes examined are those published by DIN (German Standardization Institute), the DVGW (German Association of Gas and Water Engineers) and AfK (Corrosion Protection Work Group). DIN publishes the results achieved by ISO (International Standardisation Organisation), CEN (Comite Europeen de Normalisation) and CENELEC (Comite Europeen de Normalisation Electrotechnique). The guidelines published by CEOCOR (European Committee for the Study of Corrosion and Protection of Pipes) are also briefly examined. Details of technical significance of a number of selected standards and revision projects are also stated and discussed. (orig.)

  7. Investigation on the Effect of Green Inhibitors for Corrosion Protection of Mild Steel in 1 M NaOH Solution

    Directory of Open Access Journals (Sweden)

    Premjith Jayakumar Ramakrishnan

    2014-01-01

    Full Text Available Alkaline corrosion is one of the main issues faced by the industries. The main chemicals abundantly used in industries are NaOH, H3PO4, HCl, and H2SO4. Corrosion control of metals has technical, economical, environmental, and aesthetical importance. The use of inhibitors is one of the best options to protect metals and alloys against corrosion. The corrosion protection of mild steel in 1 M NaOH solution by mix of Henna/Zeolite powder was studied at different temperatures by weight loss technique. Adsorption, activation, and statistical studies were addressed in this work. Adsorption studies showed that inhibitor adsorbed on metal surface according to Langmuir isotherm. Surface studies were performed by using UV-spectra and SEM. The adsorption of inhibitor on the steel surface was found to obey Langmuir’s adsorption isotherm. The inhibition efficiency increased with increasing concentration of the inhibitor in NaOH medium. Inhibition mechanism is deduced from the concentration and temperature dependence of the inhibition efficiency, Langmuir’s adsorption isotherm, SEM, and UV spectroscopic results.

  8. Development of improved lacv-30 propeller blade coatings for protection against sand and rain erosion and marine environment corrosion. Final report 4 Jan 1982-4 Mar 1983

    Energy Technology Data Exchange (ETDEWEB)

    Malone, G.A.

    1983-05-10

    An investigation was conducted of candidate systems offering potential erosion and corrosion protection when applied as coatings to Aluminum 7075 alloy propeller blades used to propel air cushioned vehicles operating in severe environments. This work focused on (1) special hard anodized and (2) hard nickel electroplated coatings as candidate protective systems with sand/rain erosion testing to evaluate their merits. Attributes of the coating systems developed and studied included: For (1) Ways and means to produce and control deposit hardness for optimum erosion resistance, methods of bonding to blades for high integrity adhesion, and inclusion of sacrificial corrosion protection electroplates in the coating systems (zinc and zinc-nickel alloy). For (2) Incorporation of dry film lubricant systems on sealed hardcoats of various anodic coating thicknesses to enhance erosion performance. Study results indicated that anodized coatings did not provide suitable erosion protection to Aluminum 7075 in sand/rain environments, even with dry film lubricant supplemental films. Electroplated hard nickel coatings, Vickers hardnesses in the range of 380 to 440, appeared better for combined sand/rain erosion resistance based on comparisons with prior work. Dilute phosphoric anodizing the aluminum substrates led to excellent bonds and improved corrosion resistance when subsequently plated with ductile nickel from a low pH bath, followed by hard nickel electroplate.

  9. Electrochemical, atomic force microscopy and infrared reflection absorption spectroscopy studies of pre-formed mussel adhesive protein films on carbon steel for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan, E-mail: fanzhang@kth.se [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Div. of Surface and Corrosion Science, Drottning Kristinas vaeg.51, SE-100 44 Stockholm (Sweden); Pan, Jinshan [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Div. of Surface and Corrosion Science, Drottning Kristinas vaeg.51, SE-100 44 Stockholm (Sweden); Claesson, Per Martin [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Div. of Surface and Corrosion Science, Drottning Kristinas vaeg.51, SE-100 44 Stockholm (Sweden); Institute for Surface Chemistry, P.O. Box 5607, SE-114 86 Stockholm (Sweden); Brinck, Tore [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Physical Chemistry, Division of Physical Chemistry, Teknikringen 36, SE-10044 Stockholm (Sweden)

    2012-10-01

    Electrochemical measurements, in situ and ex situ atomic force microscopy (AFM) experiments and infrared reflection absorption spectroscopy (IRAS) analysis were performed to investigate the formation and stability as well as corrosion protection properties of mussel adhesive protein (Mefp-1) films on carbon steel, and the influence of cross-linking by NaIO{sub 4} oxidation. The in situ AFM measurements show flake-like adsorbed protein aggregates in the film formed at pH 9. The ex situ AFM images indicate multilayer-like films and that the film becomes more compact and stable in NaCl solution after the cross-linking. The IRAS results reveal the absorption bands of Mefp-1 on carbon steel before and after NaIO{sub 4} induced oxidation of the pre-adsorbed protein. Within a short exposure time, a certain corrosion protection effect was noted for the pre-formed Mefp-1 film in 0.1 M NaCl solution. Cross-linking the pre-adsorbed film by NaIO{sub 4} oxidation significantly enhanced the protection efficiency by up to 80%. - Highlights: Black-Right-Pointing-Pointer Mussel protein was tested as 'green' corrosion protection strategy for steel. Black-Right-Pointing-Pointer At pH 9, the protein adsorbs on carbon steel and forms a multilayer-like film. Black-Right-Pointing-Pointer NaIO{sub 4} leads to structural changes and cross-linking of the protein film. Black-Right-Pointing-Pointer Cross-linking results in a dense and compact film with increased stability. Black-Right-Pointing-Pointer Cross-linking of preformed film significantly enhances the corrosion protection.

  10. Electrosynthesized polyaniline for the corrosion protection of aluminum alloy 2024-T3

    Directory of Open Access Journals (Sweden)

    Huerta-Vilca Domingo

    2003-01-01

    Full Text Available Adherent polyaniline films on aluminum alloy 2024-T3 have been prepared by electrodeposition from aniline containing oxalic acid solution. The most appropriate method to prepare protective films was a successive galvanostatic deposition of 500 seconds. With this type of film, the open circuit potential of the coating shifted around 0.065V vs. SCE compared to the uncoated alloy. The polyaniline coatings can be considered as candidates to protect copper-rich (3 - 5% aluminum alloys by avoiding the galvanic couple between re-deposited copper on the surface and the bulk alloy. The performance of the polyaniline films was verified by immersion tests up to 2.5 months. It was good with formation of some aluminum oxides due to electrolyte permeation so, in order to optimize the performance a coating formulation would content an isolation topcoat.

  11. THE USE OF COATINGS FOR HOT CORROSION AND EROSION PROTECTION IN TURBINE HOT SECTION COMPONENTS

    OpenAIRE

    Hayrettin AHLATCI

    1999-01-01

    High pressure turbine components are subjected to a wide variety of thermal and mechanical loading during service. In addition, the components are exposed to a highly oxidizing atmosphere which may contain contaminants such as sulphates, chlorides and sulphuorous gases along with erosive media. So the variety of surface coatings and deposition processes available for the protection of blade and vane components in gas turbines are summarised in this study. Coating types range from simple diff...

  12. corrosion response of low carbon steel in tropical road mud

    African Journals Online (AJOL)

    Dr Obe

    Corrosion Mitigation efforts using readily available anti- corrosion coatings to protect low carbon steel test coupons against the ... The following protective coating devices were effective: ..... 2 West, J.M (1986): Basic Corrosion and Oxidation,.

  13. Real-time corrosion control system for cathodic protection of buried pipes for nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Ki Tae; Kim, Hae Woong; Kim, Young Sik; Chang, Hyun Young; Lim, Bu Taek; Park, Heung Bae

    2015-01-01

    Since the operation period of nuclear power plants has increased, the degradation of buried pipes gradually increases and recently it seems to be one of the emerging issues. Maintenance on buried pipes needs high quality of management system because outer surface of buried pipe contacts the various soils but inner surface reacts with various electrolytes of fluid. In the USA, USNRC and EPRI have tried to manage the degradation of buried pipes. However, there is little knowledge about the inspection procedure, test and manage program in the domestic nuclear power plants. This paper focuses on the development and build-up of real-time monitoring and control system of buried pipes. Pipes to be tested are tape-coated carbon steel pipe for primary component cooling water system, asphalt-coated cast iron pipe for fire protection system, and pre-stressed concrete cylinder pipe for sea water cooling system. A control system for cathodic protection was installed on each test pipe which has been monitored and controlled. For the calculation of protection range and optimization, computer simulation was performed using COMSOL Multiphysics (Altsoft co.)

  14. Real-time corrosion control system for cathodic protection of buried pipes for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Tae; Kim, Hae Woong; Kim, Young Sik [School of Materials Science and Engineering, Andong National University, Andong (Korea, Republic of); Chang, Hyun Young; Lim, Bu Taek; Park, Heung Bae [Power Engineering Research Institute, KEPCO Engineering and Construction Company, Seongnam (Korea, Republic of)

    2015-02-15

    Since the operation period of nuclear power plants has increased, the degradation of buried pipes gradually increases and recently it seems to be one of the emerging issues. Maintenance on buried pipes needs high quality of management system because outer surface of buried pipe contacts the various soils but inner surface reacts with various electrolytes of fluid. In the USA, USNRC and EPRI have tried to manage the degradation of buried pipes. However, there is little knowledge about the inspection procedure, test and manage program in the domestic nuclear power plants. This paper focuses on the development and build-up of real-time monitoring and control system of buried pipes. Pipes to be tested are tape-coated carbon steel pipe for primary component cooling water system, asphalt-coated cast iron pipe for fire protection system, and pre-stressed concrete cylinder pipe for sea water cooling system. A control system for cathodic protection was installed on each test pipe which has been monitored and controlled. For the calculation of protection range and optimization, computer simulation was performed using COMSOL Multiphysics (Altsoft co.)

  15. Aircraft Corrosion

    Science.gov (United States)

    1981-08-01

    attribud au choix de traitements et de rev~tements spproprids. Au contrairo, dens d’sutros structures des corrosions iirportsntea se sont msnifestdes...au traitement . micaniqus qui provoque une compression de surface - h1l’spplication i1’une double protection comportant oxydation snodique et...chlore mais dans une proportion semblable b cells d’une eau de vil)e ; - lea solides, d’aprbs lea analyses chimique et criatallographique, paraissaiont

  16. Corrosion and anticorrosion. Industrial practice

    International Nuclear Information System (INIS)

    Beranger, G.; Mazille, H.

    2002-01-01

    This book comprises 14 chapters written with the collaboration of about 50 French experts of corrosion. It is complementary to another volume entitled 'corrosion of metals and alloys' and published by the same editor. This volume comprises two parts: part 1 presents the basic notions of corrosion phenomena, the properties of surfaces, the electrochemical properties of corrosion etc.. Part 2 describes the most frequent forms of corrosion encountered in industrial environments and corresponding to specific problems of protection: marine environment, atmospheric corrosion, galvanic corrosion, tribo-corrosion, stress corrosion etc.. The first 8 chapters (part 1) treat of the corrosion problems encountered in different industries and processes: oil and gas production, chemical industry, phosphoric acid industry, PWR-type power plants, corrosion of automobile vehicles, civil engineering and buildings, corrosion of biomaterials, non-destructive testing for the monitoring of corrosion. The other chapters (part 2) deal with anticorrosion and protective coatings and means: choice of materials, coatings and surface treatments, thick organic coatings and enamels, paints, corrosion inhibitors and cathodic protection. (J.S.)

  17. Dictionary corrosion and corrosion control. English-German/German-English. Fachwoerterbuch Korrosion und Korrosionsschutz. Englisch-Deutsch/Deutsch-Englisch

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This dictionary has 13000 entries in both languages. Keywords and extensive accompanying information simplify the choice of word for the user. The following topics are covered: Theoretical principles of corrosion; Corrosion of the metals and alloys most frequently used in engineering. Types of corrosion - (chemical-, electro-chemical, biological corrosion); forms of corrosion (superficial, pitting, selective, intercrystalline and stress corrosion; vibrational corrosion cracking); erosion and cavitation. Methods of corrosion control (material selection, temporary corrosion protection media, paint and plastics coatings, electro-chemical coatings, corrosion prevention by treatment of the corrosive media); Corrosion testing methods.

  18. An experimental estimation of the resistance against a high-temperature gas corrosion of C/C composite materials with protective plasma coating

    International Nuclear Information System (INIS)

    Babin, S.V.; Khripakov, E.V.

    2007-01-01

    Materials with well-defined structure has been proposed as corrosion- and erosion-resistant coating from the carbon-carbon composite. Experiments on heat and erosion resistance of plasma coatings at carbon-carbon composite materials demonstrate availability of multilayer with upper erosion resistant layer on the basis of aluminium oxide, intermediate layer on the basis of boron-containing components with aluminium additions and damping layer of silicon carbide. Multilayer protective coats offer demand service characteristics of details [ru

  19. Fiftieth Anniversary of the Foundation of Postgraduate Study on Corrosion and Protection of Materials at the Faculty of Technology, University of Zagreb

    OpenAIRE

    Martinez, S.; Stupnišek-Lisac, E.; Esih, I.

    2011-01-01

    The first postgraduate study at the Department for Chemical Technology of the Faculty of Technology (nowadays: Faculty of Chemical Engineering and Technology) of the University of Zagreb concerning the field "Corrosion and Protection of Materials" was founded in the academic year of 1960/61 on the initiative of academician Miroslav Karšulin. The study comprised three semesters and finished by defending a master's thesis. During two decades, 19 generations of attendants were registered and 108...

  20. Smart pigging - a contribution to the monitoring of the anti-corrosion protection systems on pig-inspectable high-pressure gas transmission pipelines; Intelligente Molchung - ein Beitrag zur Ueberwachung des Korrosionsschutzes molchbarer Gashochdruckleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, M.; Schoeneich, H.G. [Ruhrgas AG, Essen (Germany). Kompetenz-Center Korrosionsschutz

    2000-07-01

    High-pressure gas transmission pipelines installed underground are exposed to the risk of external corrosion. The application of a sheathing (passive protection) and, since the 1950s, the installation of a cathodic anti-corrosion protection system, provide pipelines with effective protection against this danger. In the past, the effectiveness of cathodic anti-corrosion protection systems was verified by means of intensive measuring and re-measuring cycles. It became apparent that points of damage to the sheathing were protected in the majority of cases against corrosion by the cathodic anti-corrosion protection system. There are, however, particular design circumstances and ambient conditions which can make this anti-corrosion protection concept either partially or completely ineffective. The use of smart pigs for inspection of pig-inspectable gas transmission pipelines makes it possible to detect and eliminate these weak points. (orig.) [German] Gashochdruckleitungen, die im Erdboden verlegt werden, unterliegen einer Gefaehrdung durch Aussenkorrosion. Durch eine Umhuellung (passiver Schutz) und seit den 50er Jahren durch die Einrichtung des kathodischen Korrosionsschutzes (aktiver Schutz) sind die Leitungen gegen diese Gefaehrdung wirkungsvoll geschuetzt. In der Vergangenheit wurde die Ueberpruefung der Wirksamkeit des kathodischen Korrosionsschutzes durch Intensivmessungen und Nachmessungen sichergestellt. Dabei zeigte sich, dass in der ueberwiegenden Zahl Umhuellungsbeschaedigungen durch den kathodischen Korrosionsschutz gegen Korrosion geschuetzt sind. Es gibt jedoch besondere konstruktive oder Umgebungsbedingungen, die dieses Korrosionsschuzkonzept teilweise oder vollstaendig unwirksam werden lassen. Mit dem Einsatz von intelligenten Molchen zur Inspektion molchbarer Gastransportleitungen koennen diese Schwachstellen erkannt und beseitigt werden. (orig.)

  1. Refractory Materials for Flame Deflector Protection System Corrosion Control: Coatings Systems Literature Survey

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Sampson, Jeffrey W.; Coffman, Brekke E.; Coffman, Brekke E.; Curran, Jerome P.; Kolody, Mark R.; Whitten, Mary; Perisich, Steven; hide

    2009-01-01

    When space vehicles are launched, extreme heat, exhaust, and chemicals are produced and these form a very aggressive exposure environment at the launch complex. The facilities in the launch complex are exposed to this aggressive environment. The vehicle exhaust directly impacts the flame deflectors, making these systems very susceptible to high wear and potential failure. A project was formulated to develop or identify new materials or systems such that the wear and/or damage to the flame deflector system, as a result of the severe environmental exposure conditions during launches, can be mitigated. This report provides a survey of potential protective coatings for the refractory concrete lining on the steel base structure on the flame deflectors at Kennedy Space Center (KSC).

  2. An Auger and XPS survey of cerium active corrosion protection for AA2024-T3 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Uhart, A. [IPREM-ECP-UMR CNRS 5254, Université de Pau et des Pays de l' Adour, Technopole Hélioparc, 2 Avenue Président Pierre Angot, 64053 Pau Cedex 09 (France); Ledeuil, J.B. [IPREM-ECP-UMR CNRS 5254, Université de Pau et des Pays de l' Adour, Technopole Hélioparc, 2 Avenue Président Pierre Angot, 64053 Pau Cedex 09 (France); Université de Toulouse, UPS-INP-CNRS, Institut Carnot CIRIMAT, 118 Route de Narbonne, 31062 Toulouse Cedex 09 (France); Gonbeau, D. [IPREM-ECP-UMR CNRS 5254, Université de Pau et des Pays de l' Adour, Technopole Hélioparc, 2 Avenue Président Pierre Angot, 64053 Pau Cedex 09 (France); Dupin, J.C., E-mail: dupin@univ-pau.fr [IPREM-ECP-UMR CNRS 5254, Université de Pau et des Pays de l' Adour, Technopole Hélioparc, 2 Avenue Président Pierre Angot, 64053 Pau Cedex 09 (France); Bonino, J.P.; Ansart, F. [Université de Toulouse, UPS-INP-CNRS, Institut Carnot CIRIMAT, 118 Route de Narbonne, 31062 Toulouse Cedex 09 (France); Esteban, J. [Messier-Bugatti-Dowty, Etablissement de Molsheim, 3, rue Antoine de St Exupéry, 67129 Molsheim (France)

    2016-12-30

    Graphical abstract: Coupled SAM/SEM survey of cerium inhibitor migration towards corrosion pits in a conversion coating over AA2024-T3 substrate. - Highlights: • XPS evidenced the proximity of the inhibitor with the surface AA2024 alloy. • Cerium conversion coatings with [Ce] = 0.1 M offer the best corrosion resistance. • SAM shown the migration of Ce + III entities towards the corrosion pits or crevices. • High resolution analyses (Auger) connecting the nano-scale order with the chemical distribution.

  3. An evaluation of corrosion protection by two epoxy primers on 2219-T87 and 7075-T73 aluminum

    Science.gov (United States)

    Mendrek, M. J.

    1992-01-01

    A comparison of the corrosion protection provided by two amine epoxy primers was made using salt fog, alternate immersion, and total immersion as exposure media. The study is the result of a request to use an unqualified low volatile organic carbon (VOC) primer (AKZO 463-6-78) in place of the current primer (AKZO 463-6-3) because environmental regulations have eliminated use of the current primer in many states. Primed, scribed samples of 2219-T87 and 7075-T73 aluminum were exposed to 5-percent NaCl salt fog and 3.5-percent NaCl alternate immersion for a period of 90 days. In addition, electrode samples immersed in 3.5-percent NaCl were tested using electrochemical impedance spectroscopy (EIS). The EG&G model 368 ac impedance measurement system was used to monitor changing properties of AKZO 463-6-78 and AKZO 463-6-3 primed 2219-T87 aluminum for a period of 30 days. The response of the corroding system of a frequency scan can be modeled in terms of an equivalent circuit consisting of resistors and capacitors in a specific arrangement. Each resistor/capacitor combination represents physical processes taking place within the electrolyte, at the electrolyte/primer surface, within the coating, and at the coating/substrate surface. Values for the resistors and capacitors are assigned following a nonlinear least squares fit of the data to the equivalent circuit. Changes in the values of equivalent circuit parameters during the 30-day exposure allow assessment of the time to and mechanism of coating breakdown.

  4. A novel coating material that uses nano-sized SiO2 particles to intensify hydrophobicity and corrosion protection properties

    International Nuclear Information System (INIS)

    Ammar, Sh.; Ramesh, K.; Vengadaesvaran, B.; Ramesh, S.; Arof, A.K.

    2016-01-01

    Highlights: • Hybrid SiO 2 nanocomposite coatings were fabricated on mild steel. • Highest coating resistance were exhibited by coatings with 3 wt.% SiO 2 nanoparticles. • Long-term stability measurement, together with hydrophobic surface measurements, were obtained. - Abstract: The influence of SiO 2 nanoparticles on hydrophobicity and the corrosion protection capabilities of hybrid acrylic-silicone polymeric matrix have been investigated. Contact angle measurements (CA), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (EDX) were used to study the hydrophobicity, morphology, and topography of the coatings. In addition, electrochemical impedance spectroscopy (EIS) and salt spray techniques were employed to evaluate the corrosion protection performance. A coating with 3 wt.% SiO 2 , AS 3, demonstrates significant improvement in corrosion resistance with the highest measured CA of 97.3°. Morphology and topography studies clarify the influence of nano-sized SiO 2 fillers on the surface topography and demonstrated the uniform and good distribution of the embedded SiO 2 nanoparticles within the polymeric matrix.

  5. Examples illustrating the effects of high-temperature corrosion and protective coatings on the creep-to-rupture behaviour of materials resistant to very high temperatures

    International Nuclear Information System (INIS)

    Sachova, E.; Hougardy, H.P.; Granacher, J.

    1989-01-01

    Assessing the creep stress, it is assumed in general that the sub-surface effects in a specimen correspond to those at the surface. Particularly in very high temperature environments, however, oxidation is an additional effect to be taken into account, and there are other operational stresses to be reckoned with, as e.g. hot gas corrosion of gas turbine blades. The reduction of the effective cross section due to corrosion for instance of the material affected by long-term creep leads to an increase in stresses and thus shortens the period up to rupture. Protective coatings will prevent or at least delay corrosion. The paper reports the performance of various protective coatings. Pt-Al coatings have have been found to remain intact even on specimens with the longest testing periods up to rupture, to an extent that there was no oxidation at the grain boundaries proceeding from the surface to the sub-surface material. The same applies to the plasma-sprayed coatings, although in some cases pores had developed in the coating. The chromium alitizations were used up irregularly over the surface of some specimens tested at 1000deg C. Chromizing layers have been found to be more strongly damaged than the other coatings tested under comparable conditions. (orig./RHM) [de

  6. Architectural optimization of an epoxy-based hybrid sol–gel coating for the corrosion protection of a cast Elektron21 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Murillo-Gutiérrez, N.V., E-mail: murillo@chimie.ups-tlse.fr [Université de Toulouse UPS-INP-CNRS, Institut Carnot CIRIMAT, Toulouse (France); Ansart, F.; Bonino, J-P. [Université de Toulouse UPS-INP-CNRS, Institut Carnot CIRIMAT, Toulouse (France); Kunst, S.R.; Malfatti, C.F. [Universidade Federal do Rio grande do Sul, Laboratory of Corrosion Research (LAPEC), Porto Alegre (Brazil)

    2014-08-01

    An epoxy-based hybrid sol–gel coating was prepared in various architectural configurations has been studied for the corrosion protection of a cast Elektron21 magnesium alloy. The creation of a single layer of this coating presents defects consisting of macro-pores and protuberances, which opens access for corrosive species to reach the metallic substrate. These defects are suspected to result from the high reactivity of the substrate, as well as to the irregular topography of the substrate disrupted by the microstructure of the own magnesium alloy. Hence, a sol–gel coating in bilayer architecture is proposed, where the first layer would “inert” the surface of the magnesium substrate, and the second layer would cover the defects of the first layer and also thickening the coating. The morphological characteristics of the sol–gel coatings were analyzed by scanning electron microscopy (SEM), and their corrosion behavior was evaluated by OCP (open circuit potential) monitoring and electrochemical impedance spectroscopy (EIS) in chloride media. It is shown that both the architectural arrangement and the individual thickness of the first and second layers have an important influence on the anticorrosion performances of the protective system, just as much as its global thickness.

  7. Architectural optimization of an epoxy-based hybrid sol-gel coating for the corrosion protection of a cast Elektron21 magnesium alloy

    Science.gov (United States)

    Murillo-Gutiérrez, N. V.; Ansart, F.; Bonino, J.-P.; Kunst, S. R.; Malfatti, C. F.

    2014-08-01

    An epoxy-based hybrid sol-gel coating was prepared in various architectural configurations has been studied for the corrosion protection of a cast Elektron21 magnesium alloy. The creation of a single layer of this coating presents defects consisting of macro-pores and protuberances, which opens access for corrosive species to reach the metallic substrate. These defects are suspected to result from the high reactivity of the substrate, as well as to the irregular topography of the substrate disrupted by the microstructure of the own magnesium alloy. Hence, a sol-gel coating in bilayer architecture is proposed, where the first layer would “inert” the surface of the magnesium substrate, and the second layer would cover the defects of the first layer and also thickening the coating. The morphological characteristics of the sol-gel coatings were analyzed by scanning electron microscopy (SEM), and their corrosion behavior was evaluated by OCP (open circuit potential) monitoring and electrochemical impedance spectroscopy (EIS) in chloride media. It is shown that both the architectural arrangement and the individual thickness of the first and second layers have an important influence on the anticorrosion performances of the protective system, just as much as its global thickness.

  8. Architectural optimization of an epoxy-based hybrid sol–gel coating for the corrosion protection of a cast Elektron21 magnesium alloy

    International Nuclear Information System (INIS)

    Murillo-Gutiérrez, N.V.; Ansart, F.; Bonino, J-P.; Kunst, S.R.; Malfatti, C.F.

    2014-01-01

    An epoxy-based hybrid sol–gel coating was prepared in various architectural configurations has been studied for the corrosion protection of a cast Elektron21 magnesium alloy. The creation of a single layer of this coating presents defects consisting of macro-pores and protuberances, which opens access for corrosive species to reach the metallic substrate. These defects are suspected to result from the high reactivity of the substrate, as well as to the irregular topography of the substrate disrupted by the microstructure of the own magnesium alloy. Hence, a sol–gel coating in bilayer architecture is proposed, where the first layer would “inert” the surface of the magnesium substrate, and the second layer would cover the defects of the first layer and also thickening the coating. The morphological characteristics of the sol–gel coatings were analyzed by scanning electron microscopy (SEM), and their corrosion behavior was evaluated by OCP (open circuit potential) monitoring and electrochemical impedance spectroscopy (EIS) in chloride media. It is shown that both the architectural arrangement and the individual thickness of the first and second layers have an important influence on the anticorrosion performances of the protective system, just as much as its global thickness.

  9. HVOF Thermal Spray TiC/TiB2 Coatings for AUSC Boiler/Turbine Components for Enhanced Corrosion Protection

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Kanchan [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes; Koc, Rasit [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes; Fan, Chinbay [Gas Technology Inst., Des Plaines, IL (United States)

    2016-12-07

    The high temperatures of operations still pose significant risk of degradation and fatigue from oxidizing, corroding and eroding environment. In addition to unused O2, water from combustion and SOx from the coal sulfur oxidation that result in highly corrosive environment, acid gases such as HCl and other sulfur compounds may also be present. These adverse effects are further accelerated due to the elevated temperatures. In addition, ash particulates and unburnt carbon and pyritic sulfur can cause erosion of the surface and thus loss of material. Unburnt carbon and pyritic sulfur may also cause localized reduction sites. Thus, fireside corrosion protection and steam oxidation protection alternatives to currently used Ni-Cr overlays need to be identified and evaluated. Titanium carbide (TiC) is a suitable alternative on account of the material features such as the high hardness, the high melting point, the high strength and the low density for the substitution or to be used in conjunction with NiCr for enhancing the fireside corrosion and erosion of the materials. Another alternative is the use of titanium boride as a coating for chemical stability required for long-term service and high erosion resistance over the state-of-the-art, high fracture toughness (K1C ~12 MPam1/2) and excellent corrosion resistance (kp~1.9X10-11 g2/cm4/s at 800°C in air). The overarching aim of the research endeavor was to synthesize oxidation, corrosion and wear resistant TiC and TiB2 coating powders, apply thermal spray coating on existing boiler materials and characterize the coated substrates for corrosion resistance for applications at high temperatures (500 -750 °C) and high pressures (~350 bars) using the HVOF process and to demonstrate the feasibility of these coating to be used in AUSC boilers and turbines.

  10. Niobium–niobium oxide multilayered coatings for corrosion protection of proton-irradiated liquid water targets for ["1"8F] production

    International Nuclear Information System (INIS)

    Skliarova, Hanna; Renzelli, Marco; Azzolini, Oscar; Felicis, Daniele de; Bemporad, Edoardo; Johnson, Richard R.; Palmieri, Vincenzo

    2015-01-01

    Chemically inert coatings on Havar"® entrance foils of the targets for ["1"8F] production via proton irradiation of enriched water at pressurized conditions are needed to decrease the amount of ionic contaminants released from Havar"®. During current investigation, magnetron sputtered niobium and niobium oxide were chosen as the candidates for protective coatings because of their superior chemical resistance. Aluminated quartz substrates allowed us to verify the protection efficiency of the desirable coatings as diffusion barriers. Two modeling corrosion tests based on the extreme susceptibility of aluminum to liquid gallium and acid corrosion were applied. As far as niobium coatings obtained by magnetron sputtering are columnar, the grain boundaries provide a fast diffusion path for active species of corrosive media to penetrate and to corrode the substrate. Amorphous niobium oxide films obtained by reactive magnetron sputtering showed superior barrier properties according to the corrosion tests performed. In order to prevent degrading of brittle niobium oxide at high pressures, multilayers combining high ductility of niobium with superior diffusion barrier efficiency of niobium oxide were proposed. The intercalation of niobium oxide interlayers was proved to interrupt the columnar grain growth of niobium during sputtering, resulting in improved diffusion barrier efficiency of obtained multilayers. The thin layer multilayer coating architecture with 70 nm bi-layer thickness was found preferential because of higher thermal stability. - Highlights: • Diffusion barrier efficiency of niobium, niobium oxide and their multilayers was studied. • The intercalation of niobium oxide layers interrupted the columnar grain growth of niobium. • The bilayer architectures influenced the stability of the multilayer coatings. • The thin layer multilayer coating with 70 nm double-layer was found superior.

  11. Niobium–niobium oxide multilayered coatings for corrosion protection of proton-irradiated liquid water targets for [{sup 18}F] production

    Energy Technology Data Exchange (ETDEWEB)

    Skliarova, Hanna, E-mail: Hanna.Skliarova@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell' Università, 2, 35020 Legnaro, Padua (Italy); University of Ferrara, Ferrara (Italy); Renzelli, Marco, E-mail: marco.renzelli@uniroma3.it [University of Rome “Roma TRE”, Via della Vasca Navale, 79, 00146 Rome (Italy); Azzolini, Oscar, E-mail: Oscar.Azzolini@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell' Università, 2, 35020 Legnaro, Padua (Italy); Felicis, Daniele de, E-mail: daniele.defelicis@uniroma3.it [University of Rome “Roma TRE”, Via della Vasca Navale, 79, 00146 Rome (Italy); Bemporad, Edoardo, E-mail: edoardo.bemporad@uniroma3.it [University of Rome “Roma TRE”, Via della Vasca Navale, 79, 00146 Rome (Italy); Johnson, Richard R., E-mail: richard.johnson@teambest.com [BEST Cyclotron Systems Inc., 8765 Ash Street Unit 7, Vancouver BC V6P 6T3 (Canada); Palmieri, Vincenzo, E-mail: Vincenzo.Palmieri@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell' Università, 2, 35020 Legnaro, Padua (Italy); University of Padua, Padua (Italy)

    2015-09-30

    Chemically inert coatings on Havar{sup ®} entrance foils of the targets for [{sup 18}F] production via proton irradiation of enriched water at pressurized conditions are needed to decrease the amount of ionic contaminants released from Havar{sup ®}. During current investigation, magnetron sputtered niobium and niobium oxide were chosen as the candidates for protective coatings because of their superior chemical resistance. Aluminated quartz substrates allowed us to verify the protection efficiency of the desirable coatings as diffusion barriers. Two modeling corrosion tests based on the extreme susceptibility of aluminum to liquid gallium and acid corrosion were applied. As far as niobium coatings obtained by magnetron sputtering are columnar, the grain boundaries provide a fast diffusion path for active species of corrosive media to penetrate and to corrode the substrate. Amorphous niobium oxide films obtained by reactive magnetron sputtering showed superior barrier properties according to the corrosion tests performed. In order to prevent degrading of brittle niobium oxide at high pressures, multilayers combining high ductility of niobium with superior diffusion barrier efficiency of niobium oxide were proposed. The intercalation of niobium oxide interlayers was proved to interrupt the columnar grain growth of niobium during sputtering, resulting in improved diffusion barrier efficiency of obtained multilayers. The thin layer multilayer coating architecture with 70 nm bi-layer thickness was found preferential because of higher thermal stability. - Highlights: • Diffusion barrier efficiency of niobium, niobium oxide and their multilayers was studied. • The intercalation of niobium oxide layers interrupted the columnar grain growth of niobium. • The bilayer architectures influenced the stability of the multilayer coatings. • The thin layer multilayer coating with 70 nm double-layer was found superior.

  12. Environmental Friendly Coatings and Corrosion Prevention For Flight Hardware Project

    Science.gov (United States)

    Calle, Luz

    2014-01-01

    Identify, test and develop qualification criteria for environmentally friendly corrosion protective coatings and corrosion preventative compounds (CPC's) for flight hardware an ground support equipment.

  13. Evaluation of the protection behaviour of reinforcement steel against corrosion induced by chlorides in reinforced mortar specimens; Avaliacao do comportamento frente a corrosao pelo ataque de cloreto de argamassa armada apos varios tratamentos protetores

    Energy Technology Data Exchange (ETDEWEB)

    Crivelaro, Marcos

    2002-07-01

    In this work various treatments for protecting reinforcing steels against corrosion induced by chlorides have been evaluated. Additives to mortars and surface treatments given to reinforcing steels were evaluated as corrosion protection measures. In the preliminary tests the corrosion resistance of a CA 50 steel treated by immersion in nearly 50 different solutions, was determined. The solutions were prepared with tannins (from various sources) and/or benzotriazole, and during immersion, a surface film formed on the steel. The corrosion resistance of the coated steels was evaluated in a saturated Ca(OH){sub 2} solution with 5% (wt) NaCl. Preliminary tests were also carried out with mortars reinforced with uncoated steel to which tannin or lignin was added. Two organic coatings, a monocomponent and a bicomponent type, formulated specially for this investigation, with both tannin and benzotriazole, were also tested in the preliminary tests to select the coating with better corrosion protection property. The bicomponent type (epoxy coating) showed better performance than the monocomponent type coating, and the former was therefore chosen to investigate the corrosion performance on CA 50 steel inside mortar specimens. From the preliminary tests, two solutions with tannin from two sources, Black Wattle (Acacia mearnsii) and Brazilian tea (Ilex paraguariensis St. Hill), to which benzotriazole and phosphoric acid were added, were chosen. Mortar specimens reinforced with CA50 steel treated by immersion in these two solutions were prepared. Also, epoxy coated CA50 steel was tested as reinforcement inside mortar specimens. Mortars reinforced with uncoated CA50 steel were also prepared and corrosion tested for comparison. The effect of tannin and lignin as separate additives to the mortar on the corrosion resistance of uncoated steel was also studied. The reinforced mortar specimens were tested with various cycles of immersion for 2 days in 3.5% (wt) NaCl followed by with air

  14. Synthesis of Ceramic Protective Coatings for Chemical Plant Parts Operated in Hi-temperature and Corrosive/Erosive Environment

    International Nuclear Information System (INIS)

    Son, M. C.; Park, J. R.; Hong, K. T.; Seok, H. K.

    2005-01-01

    Some feasibility studies are conducted to produce an advanced ceramic coating, which reveals superior chemical and mechanical strength, on metal base structure used in chemical plant. This advanced coating on metallic frame can replace ceramic delivery pipe and reaction chamber used in chemical plant, which are operated in hi-temperature and corrosive/erosive environment. An dual spraying is adopted to reduce the residual stress in order to increase the coating thickness and the residual stress is estimated by in-situ manner. Then new methodology is tried to form special coating of yttrium aluminum garnet(YAG), which reveals hi-strength and low-creep rates at hi-temperature, superior anti-corrosion property, hi-stability against Alkali-Vapor corrosion, and so on, on iron base structure. To verify the formation of YAG during thermal spraying, XRD(X ray diffraction) technique was used

  15. Evaluation of atomic layer deposited alumina as a protective layer for domestic silver articles: Anti-corrosion test in artificial sweat

    Science.gov (United States)

    Park, Suk Won; Han, Gwon Deok; Choi, Hyung Jong; Prinz, Fritz B.; Shim, Joon Hyung

    2018-05-01

    This study evaluated the effectiveness of alumina fabricated by atomic layer deposition (ALD) as a protective coating for silver articles against the corrosion caused by body contact. An artificial sweat solution was used to simulate body contact. ALD alumina layers of varying thicknesses ranging from 20 to 80 nm were deposited on sputtered silver samples. The stability of the protective layer was evaluated by immersing the coated samples in the artificial sweat solution at 25 and 35 °C for 24 h. We confirmed that a sufficiently thick layer of ALD alumina is effective in protecting the shape and light reflectance of the underlying silver, whereas the uncoated bare silver is severely degraded by the artificial sweat solution. Inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy were used for in-depth analyses of the chemical stability of the ALD-coated silver samples after immersion in the sweat solution.

  16. Corrosion control. 2. ed.

    International Nuclear Information System (INIS)

    Bradford, S.A.

    2001-01-01

    The purpose of this text is to train engineers and technologists not just to understand corrosion but to control it. Materials selection, coatings, chemical inhibitors, cathodic and anodic protection, and equipment design are covered in separate chapters. High-temperature oxidation is discussed in the final two chapters ne on oxidation theory and one on controlling oxidation by alloying and with coatings. This book treats corrosion and high-temperature oxidation separately. Corrosion is divided into three groups: (1) chemical dissolution including uniform attack, (2) electrochemical corrosion from either metallurgical or environmental cells, and (3) stress-assisted corrosion. Corrosion is logically grouped according to mechanisms rather than arbitrarily separated into different types of corrosion as if they were unrelated. For those university students and industry personnel who approach corrosion theory very hesitantly, this text will present the electrochemical reactions responsible for corrosion summed up in only five simple half-cell reactions. When these are combined on a polarization diagram, which is also explained in detail, the electrochemical processes become obvious. For those who want a text stripped bare of electrochemical theory, several noted sections can be omitted without loss of continuity. However, the author has presented the material in such a manner that these sections are not beyond the abilities of any high school graduate who is interested in technology

  17. The effect of cerium-based conversion treatment on the cathodic delamination and corrosion protection performance of carbon steel-fusion-bonded epoxy coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Ramezanzadeh, B., E-mail: ramezanzadeh@aut.ac.ir [Department of Surface Coatings and Corrosion, Institute for Color Science and Technology (ICST), 16765-654, Tehran (Iran, Islamic Republic of); Rostami, M. [Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology (ICST), 16765-654, Tehran (Iran, Islamic Republic of)

    2017-01-15

    Highlights: • Steel surface was treated by Ce and acid phosphoric solutions. • Ce treatment considerably enhanced the surface energy and produce nanoscale roughness. • Ce treated samples showed enhanced adhesion to FBE coating. • Ce treatment of steel significantly reduced the FBE cathodic delamination rate. • Ce treated sample showed enhanced corrosion resistance. - Abstract: The effect of surface pre-treatment of pipe surface by green cerium compound and phosphoric acid solution on the fusion-bonded epoxy (FBE) coating performance was studied. The composition and surface morphology of the steel samples treated by acid and Ce solutions were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), equipped with energy dispersive spectroscopy (EDS). Also, the surface free energy was evaluated on these samples through contact angle measurements. In addition, the effect of Ce and acid washing procedures on the adhesion properties and corrosion protection performance of the FBE was examined by pull-off, salt spray and electrochemical impedance spectroscopy (EIS) tests. Results showed that compared to acid washing, the chemical treatment by Ce solution noticeably increased the surface free energy of steel, improved the adhesion properties of FBE, decreased the cathodic delamination rate of FBE, and enhanced the coating corrosion resistance compared to the acid washed samples.

  18. LongerLife products increase the sustainability. Is corrosion protection ecologically useful for steel components?; LongerLife-Produkte erhoehen die Nachhaltigkeit. Ist Korrosionsschutz von Stahlbauteilen oekologisch sinnvoll?

    Energy Technology Data Exchange (ETDEWEB)

    Rogall, Armin Dietmar [Fachhochschule Dortmund (Germany). Fachbereich Architektur

    2011-07-01

    The installation of hot-dip galvanized construction units means sustainable acting. Since corrosion protection by hot-dip galvanizing can be particularly named sustainable due to its longevity, its environmental careful production, its recycling ability and life extension of steel components. Particularly the reduction of the maintenance cycles and utilization costs accompanying with a slightly higher initial investment makes the hot-dip galvanizing a sustainable system. Steel components which are treated with galvanization and colour coating, have a maintenance-free life span of more than 80 years.

  19. Microencapsulation Technology for Corrosion Mitigation by Smart Coatings

    Science.gov (United States)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.

    2011-01-01

    A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain

  20. Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate

    Directory of Open Access Journals (Sweden)

    B. Bobic

    2010-03-01

    Full Text Available The corrosion behaviour of MMCs with aluminium alloy matrix was presented. The corrosion characteristics of boron-, graphite-, silicon carbide-, alumina- and mica- reinforced aluminium MMCs were reviewed. The reinforcing phase influence on MMCs corrosion rate as well as on various corrosion forms (galvanic, pitting, stress corrosion cracking, corrosion fatique, tribocorrosion was discussed. Some corrosion protection methods of aluminium based MMCs were described

  1. Aluminide slurry coatings for protection of ferritic steel in molten nitrate corrosion for concentrated solar power technology

    Science.gov (United States)

    Audigié, Pauline; Bizien, Nicolas; Baráibar, Ignacio; Rodríguez, Sergio; Pastor, Ana; Hernández, Marta; Agüero, Alina

    2017-06-01

    Molten nitrates can be employed as heat storage fluids in solar concentration power plants. However molten nitrates are corrosive and if operating temperatures are raised to increase efficiencies, the corrosion rates will also increase. High temperature corrosion resistant coatings based on Al have demonstrated excellent results in other sectors such as gas turbines. Aluminide slurry coated and uncoated P92 steel specimens were exposed to the so called Solar Salt (industrial grade), a binary eutectic mixture of 60 % NaNO3 - 40 % KNO3, in air for 2000 hours at 550°C and 580°C in order to analyze their behavior as candidates to be used in future solar concentration power plants employing molten nitrates as heat transfer fluids. Coated ferritic steels constitute a lower cost technology than Ni based alloy. Two different coating morphologies resulting from two heat treatment performed at 700 and 1050°C after slurry application were tested. The coated systems exhibited excellent corrosion resistance at both temperatures, whereas uncoated P92 showed significant mass loss from the beginning of the test. The coatings showed very slow reaction with the molten Solar Salt. In contrast, uncoated P92 developed a stratified, unprotected Fe, Cr oxide with low adherence which shows oscillating Cr content as a function of coating depth. NaFeO2 was also found at the oxide surface as well as within the Fe, Cr oxide.

  2. Multilayer graphene for long-term corrosion protection of stainless steel bipolar plates for polymer electrolyte membrane fuel cell

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Spiegelhauer, Susie Ann

    2015-01-01

    Abstract Motivated by similar investigations recently published (Pu et al., 2015), we report a comparative corrosion study of three sets of samples relevant as bipolar plates for polymer electrolyte fuel cells: stainless steel, stainless steel with a nickel seed layer (Ni/SS) and stainless steel...

  3. Sodium alginate: A promising biopolymer for corrosion protection of API X60 high strength carbon steel in saline medium.

    Science.gov (United States)

    Obot, I B; Onyeachu, Ikenna B; Kumar, A Madhan

    2017-12-15

    Sodium alginate (SA), a polysaccharide biopolymer, has been studied as an effective inhibitor against the corrosion of API X60 steel in neutral 3.5% NaCl using gravimetric and electrochemical techniques (OCP, EIS and EFM). The inhibition efficiency of the SA increased with concentration but was lower at higher temperature (70°C). Electrochemical measurements showed that the SA shifted the steel corrosion potential to more positive value and reduced the kinetics of corrosion by forming an adsorbed layer which mitigated the steel surface wetting, based on contact angle measurement. SEM-EDAX was used to confirm the inhibition of SA on API X60 steel surfaces. The SA adsorbs on the steel surface through a physisorption mechanism using its carboxylate oxygen according to UV-vis and ATR-IR measurements, respectively. This phenomena result in decreased localized pitting corrosion of the API X60 steel in 3.5% NaCl solution. Theoretical results using quantum chemical calculations and Monte Carlo simulations provide further atomic level insights into the interaction of SA with steel surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations

    Czech Academy of Sciences Publication Activity Database

    Deshpande, P. P.; Vathare, S. S.; Vagge, S. T.; Tomšík, Elena; Stejskal, Jaroslav

    2013-01-01

    Roč. 67, č. 8 (2013), s. 1072-1078 ISSN 0366-6352 R&D Projects: GA ČR GA202/09/1626 Institutional support: RVO:61389013 Keywords : corrosion * polyaniline * conducting polymer Subject RIV: JI - Composite Materials Impact factor: 1.193, year: 2013

  5. Co-sputtered amorphous Nb–Ta, Nb–Zr and Ta–Zr coatings for corrosion protection of cyclotron targets for [{sup 18}F] production

    Energy Technology Data Exchange (ETDEWEB)

    Skliarova, Hanna, E-mail: Hanna.Skliarova@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell’Università, 2, 35020 Legnaro, Padua (Italy); University of Ferrara, Ferrara (Italy); Azzolini, Oscar, E-mail: Oscar.Azzolini@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell’Università, 2, 35020 Legnaro, Padua (Italy); Johnson, Richard R., E-mail: richard.johnson@teambest.com [BEST Cyclotron Systems Inc., 8765 Ash Street Unit 7, Vancouver, BC V6P 6T3 (Canada); Palmieri, Vincenzo, E-mail: Vincenzo.Palmieri@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell’Università, 2, 35020 Legnaro, Padua (Italy); University of Padua, Padua (Italy)

    2015-08-05

    Highlights: • Nb–Ta, Nb–Zr and Ta–Zr alloy films were deposited by co-sputtering. • Co-sputtered Nb–Zr and Nb–Ta alloy coatings had crystalline microstructures. • Diffusion barrier efficiency of Nb–Zr and Nb–Ta decreased with the increase of Nb %. • Co-sputtered Ta–Zr films with 30–73 at.% Ta were amorphous. • Sputtered amorphous Ta–Zr films showed superior diffusion barrier efficiency. - Abstract: Protective corrosion resistant coatings serve for decreasing the amount of ionic contaminants from Havar® entrance foils of the targets for [{sup 18}F] production. The corrosion damage of coated entrance foils is caused mainly by the diffusion of highly reactive products of water radiolysis through the protective film toward Havar® substrate. Since amorphous metal alloys (metallic glasses) are well-known to perform a high corrosion resistance, the glass forming ability, microstructure and diffusion barrier efficiency of binary alloys containing chemically inert Nb, Ta, Zr were investigated. Nb–Ta, Nb–Zr and Ta–Zr films of different alloy composition and ∼1.5 μm thickness were co-deposited by magnetron sputtering. Diffusion barrier efficiency tests used reactive aluminum underlayer and protons of acid solution and gallium atoms at elevated temperature as diffusing particles. Though co-sputtered Nb–Ta and Nb–Zr alloy films of different contents were crystalline, Ta–Zr alloy was found to form dense amorphous microstructures in a range of composition with 30–73% atomic Ta. The diffusion barrier efficiency of Nb–Zr and Nb–Ta alloy coatings decreased with increase of Nb content. The diffusion barrier efficiency of sputtered Ta–Zr alloy coatings increased with the transition from nanocrystalline columnar microstructure to amorphous for coatings with 30–73 at.% Ta.

  6. Quantitative measures of corrosion and prevention: application to corrosion in agriculture

    NARCIS (Netherlands)

    Schouten, J.C.; Gellings, P.J.

    1987-01-01

    The corrosion protection factor (c.p.f.) and the corrosion condition (c.c.) are simple instruments for the study and evaluation of the contribution and efficiency of several methods of corrosion prevention and control. The application of c.p.f. and c.c. to corrosion and prevention in agriculture in

  7. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  8. Triboelectric Charging at the Nanostructured Solid/Liquid Interface for Area-Scalable Wave Energy Conversion and Its Use in Corrosion Protection.

    Science.gov (United States)

    Zhao, Xue Jiao; Zhu, Guang; Fan, You Jun; Li, Hua Yang; Wang, Zhong Lin

    2015-07-28

    We report a flexible and area-scalable energy-harvesting technique for converting kinetic wave energy. Triboelectrification as a result of direct interaction between a dynamic wave and a large-area nanostructured solid surface produces an induced current among an array of electrodes. An integration method ensures that the induced current between any pair of electrodes can be constructively added up, which enables significant enhancement in output power and realizes area-scalable integration of electrode arrays. Internal and external factors that affect the electric output are comprehensively discussed. The produced electricity not only drives small electronics but also achieves effective impressed current cathodic protection. This type of thin-film-based device is a potentially practical solution of on-site sustained power supply at either coastal or off-shore sites wherever a dynamic wave is available. Potential applications include corrosion protection, pollution degradation, water desalination, and wireless sensing for marine surveillance.

  9. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  10. Properties and performance of spin-on-glass coatings for the corrosion protection of stainless steels in chloride media

    DEFF Research Database (Denmark)

    Lampert, Felix; Jensen, Annemette H.; Din, Rameez U.

    2018-01-01

    Spin-on-glass deposition was investigated as viable alternative to increase the durability and performance of 316L steel in chloride environment. The buildup of a detrimental interface oxide was prevented by non-oxidative thermal curing of the coatings, which leads to a transformation...... silica. Electrochemical analysis by cyclic polarization indicated that the coatings behave as imperfect barrier coatings, which may enhance the passive properties of the substrates; however, there is still some statistical scatter in the quality of the coatings. While there is a tendency for an increase...... of the upper limit of the breakdown potential, there is also a decrease of the lower limit. It was found that such lower quality coatings showed, in association with substrate defects, unevenly distributed coating flaws, which may act as initiation points of pitting corrosion and decrease the corrosion...

  11. MECHANICAL PROPERTIES AND CORROSION PROTECTION OF CARBON STEEL COATED WITH AN EPOXY BASED POWDER COATING CONTAINING MONTMORILONITE FUNCTIONALIZED WITH SILANE

    OpenAIRE

    Paula Tibola Bertuoli; Veronica Perozzo Frizzo; Diego Piazza; Lisete Cristine Scienza; Ademir José Zattera

    2014-01-01

    In the present work the MMT-Na+ clay was functionalized with 3-aminopropyltriethoxysilane (γ-APS) and incorporated in a commercial formulation epoxy-based powder coating in a proportion of 8 wt% and applied on 1008 carbon steel panels by electrostatic spray. Adhesion, flexibility, impact and corrosion performance in salt spray chamber tests were performed to evaluate the coatings. The presence of clay did not affect the mechanical properties of the film, however greater subcutaneo...

  12. Corrosion protection of AISI 1018 steel using Co-doped TiO_2/polypyrrole nanocomposites in 3.5% NaCl solution

    International Nuclear Information System (INIS)

    Ladan, Magaji; Basirun, Wan Jeffrey; Kazi, Salim Newaz; Rahman, Fariza Abdul

    2017-01-01

    A polypyrrole nanocomposites (PPy NTCs) have been effectively synthesized in the presence of TiO_2 and Co-doped TiO_2 nanoparticles (NPs) by an in situ chemical oxidative polymerization. Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy revealed a tube shape structure of the PPy. The TEM results confirmed that the nanocomposite size of Co-doped TiO_2/PPy NTCs was smaller than TiO_2/PPy NTCs thereby increasing the interaction between the PPy nanotube and the AISI steel surface. The corrosion performance of the coatings was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements in 3.5% NaCl solution. The EIS results show that the log |Z| of AISI 1018 coated with Co-doped TiO_2/PPy NTCs and TiO_2/PPy NTCs reached about 8.2 and 6.0 respectively after 30 days of exposure in 3.5% NaCl solution. This is likely due to the increased surface area of the PPy synthesized in the presence of Co-doped TiO_2 NPs. The EIS results are confirmed by the potentiodynamic polarization and open circuit potential values of the Co-doped TiO_2/PPy which indicated little changes between 1 and 30 days of exposure which confirms the protection ability of this coating. . It is evident that the presence of Co-doped TiO_2 NPs can enhance the resistance against corrosion at the steel/electrolyte interface. - Highlights: • Polymerization of pyrrole monomer in the presence of Co-doped TiO_2 decreases the size of the polypyrrole nanotube (PPy NT). • The corrosion protection increases with the increase in PPy NT dispersion. • The corrosion resistance of steel coated with Co-doped TiO_2/PPy NTCs is considerably higher. • TiO_2/PPy with Co doping reduces the charge transfer across the electrolyte/AISI 1018 steel interface.

  13. Corrosion protection of AISI 1018 steel using Co-doped TiO{sub 2}/polypyrrole nanocomposites in 3.5% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Ladan, Magaji, E-mail: ladanmagaji@yahoo.com [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Department of Pure and Industrial Chemistry, Bayero University Kano (Nigeria); Basirun, Wan Jeffrey, E-mail: jeff@um.edu.my [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Institute of Nanotechnology and Catalysis (NanoCat), University of Malaya, Kuala Lumpur, 50603 (Malaysia); Kazi, Salim Newaz; Rahman, Fariza Abdul [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia)

    2017-05-01

    A polypyrrole nanocomposites (PPy NTCs) have been effectively synthesized in the presence of TiO{sub 2} and Co-doped TiO{sub 2} nanoparticles (NPs) by an in situ chemical oxidative polymerization. Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy revealed a tube shape structure of the PPy. The TEM results confirmed that the nanocomposite size of Co-doped TiO{sub 2}/PPy NTCs was smaller than TiO{sub 2}/PPy NTCs thereby increasing the interaction between the PPy nanotube and the AISI steel surface. The corrosion performance of the coatings was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements in 3.5% NaCl solution. The EIS results show that the log |Z| of AISI 1018 coated with Co-doped TiO{sub 2}/PPy NTCs and TiO{sub 2}/PPy NTCs reached about 8.2 and 6.0 respectively after 30 days of exposure in 3.5% NaCl solution. This is likely due to the increased surface area of the PPy synthesized in the presence of Co-doped TiO{sub 2} NPs. The EIS results are confirmed by the potentiodynamic polarization and open circuit potential values of the Co-doped TiO{sub 2}/PPy which indicated little changes between 1 and 30 days of exposure which confirms the protection ability of this coating. . It is evident that the presence of Co-doped TiO{sub 2} NPs can enhance the resistance against corrosion at the steel/electrolyte interface. - Highlights: • Polymerization of pyrrole monomer in the presence of Co-doped TiO{sub 2} decreases the size of the polypyrrole nanotube (PPy NT). • The corrosion protection increases with the increase in PPy NT dispersion. • The corrosion resistance of steel coated with Co-doped TiO{sub 2}/PPy NTCs is considerably higher. • TiO{sub 2}/PPy with Co doping reduces the charge transfer across the electrolyte/AISI 1018 steel interface.

  14. Corrosion Evaluation and Corrosion Control of Steam Generators

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M.

    2008-06-01

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants

  15. Corrosion Evaluation and Corrosion Control of Steam Generators

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M

    2008-06-15

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants.

  16. Microbial corrosion and cracking in steel. A concept for evaluation of hydrogen-assisted stress corrosion cracking in cathodically protected high-pressure gas transmission pipelines

    DEFF Research Database (Denmark)

    Nielsen, Lars Vendelbo

    An effort has been undertaken in order to develop a concept for evaluation of the risk of hydrogen-assisted cracking in cathodically protected gas transmission pipelines. The effort was divided into the following subtasks: A. Establish a correlation between the fracture mechanical properties...... crack propagation. This resulted in threshold curves that can be used for assessment of the risk of hydrogen-assisted cracking as a function of operating pressure and hydrogen content - having the flaw size as discrete parameter. The results are to be used mainly on a conceptual basis......, but it was indicated that the requirements for crack propagation include an overprotective CP-condition, a severe sulphate-reducing environment, as well as a large flaw (8 mm or a leak in the present case). A 1 mm flaw (which may be the maximum realistic flaw size) is believed to be unable to provoke crack propagation...

  17. Corrosion engineering

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, M.G.

    1986-01-01

    This book emphasizes the engineering approach to handling corrosion. It presents corrosion data by corrosives or environments rather than by materials. It discusses the corrosion engineering of noble metals, ''exotic'' metals, non-metallics, coatings, mechanical properties, and corrosion testing, as well as modern concepts. New sections have been added on fracture mechanics, laser alloying, nuclear waste isolation, solar energy, geothermal energy, and the Statue of Liberty. Special isocorrosion charts, developed by the author, are introduced as a quick way to look at candidates for a particular corrosive.

  18. Fabrication of nanoporous Sr incorporated TiO{sub 2} coating on 316L SS: Evaluation of bioactivity and corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Anne Pauline, S. [Department of Chemistry, Anna University, Chennai 600025 (India); Kamachi Mudali, U. [Corrosion Science and Technology Section, IGCAR, Kalpakkam 603102 (India); Rajendran, N., E-mail: nrajendran@annauniv.edu [Department of Chemistry, Anna University, Chennai 600025 (India)

    2013-10-01

    In this paper, nanoporous TiO{sub 2} and Sr-incorporated TiO{sub 2} coated 316L SS were prepared by sol–gel methodology. The effect of Sr incorporation into TiO{sub 2} coating on bioactivity and corrosion resistance was investigated. Attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy, X-ray diffraction analysis (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) results obtained after in vitro bioactivity test confirm the excellent growth of crystalline hydroxyapatite (HAp) over nanoporous Sr-incorporated TiO{sub 2} coated 316L SS which may be attributed to the slow and steady release of Sr ions from the coatings. The electrochemical evaluation of the coatings confirms that Sr-incorporated TiO{sub 2} coating offer excellent protection to 316L SS by acting as a barrier layer. The results showed that the incorporation of Sr enhanced both bioactivity and corrosion resistance of 316L SS. Hence Sr-incorporated TiO{sub 2} coated 316L SS is a promising material for orthopaedic implant applications. - Highlights: • Nanoporous Sr-incorporated TiO{sub 2} coatings were successfully fabricated on 316L SS. • The coatings have excellent adhesion to the substrate and appreciable Vickers micro hardness value. • Sr-incorporated TiO{sub 2} coated specimens exhibited excellent hydroxyapatite growth due to slow release of Sr from the coating. • Sr incorporation enhances the corrosion resistance of TiO{sub 2} coating.

  19. Optimum thickness evaluation of ZrO2 coating on type 304L stainless steel for corrosion protection

    International Nuclear Information System (INIS)

    Garg, Nidhi; Bera, Santanu; Velmurugan, S.; Tripathi, V.S.; Karki, Vijay

    2015-01-01

    Nano-crystalline ZrO 2 coatings of different thickness have been grown on pre-oxidized stainless steel (SS) surface by hydrothermal method in an autoclave. Thickness of the coating has been enhanced by repeating the deposition process several times using same precursor concentration. Several cycles of the deposition process lead to the increase of the coating thickness from 200 nm to ∼1 μm after the fourth round of deposition. The samples after different rounds of the coating have been extensively characterized by SEM-EDS technique to find the surface topography, coating thickness and composition. Corrosion resistance properties of the plain SS, pre-oxidized SS and all the ZrO 2 coated samples were studied by potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS). Corrosion current densities (I corr /cm 2 ) of the coated samples are found to reduce significantly with the increase in thickness. After a certain critical thickness, the corrosion resistance properties found to deteriorate due to the formation of coating defects caused by lattice strain. The coating was found to be continuous but porous after the first cycle but porosity of zirconia coating have been reduced drastically after the second cycle itself. EIS analysis confirms that the zirconia coated samples show insulating, barrier like characteristics in terms of high charge transfer resistance after the second cycle of zirconia deposition. The role of pre-oxidized surface composition and the interface between the pre-oxidized surface and the coating has been discussed in details by showing the depth distribution of Zr in the coating. (author)

  20. MECHANICAL PROPERTIES AND CORROSION PROTECTION OF CARBON STEEL COATED WITH AN EPOXY BASED POWDER COATING CONTAINING MONTMORILONITE FUNCTIONALIZED WITH SILANE

    Directory of Open Access Journals (Sweden)

    Paula Tibola Bertuoli

    2014-06-01

    Full Text Available In the present work the MMT-Na+ clay was functionalized with 3-aminopropyltriethoxysilane (γ-APS and incorporated in a commercial formulation epoxy-based powder coating in a proportion of 8 wt% and applied on 1008 carbon steel panels by electrostatic spray. Adhesion, flexibility, impact and corrosion performance in salt spray chamber tests were performed to evaluate the coatings. The presence of clay did not affect the mechanical properties of the film, however greater subcutaneous migration was assessed after the completion of salt spray testing, which can compromise the use of paints obtained as primers.

  1. Erosion-corrosion and surface protection of A356 Al/ZrO2 composites produced by vortex and squeeze casting

    International Nuclear Information System (INIS)

    El-Khair, M.T. Abou; Aal, A. Abdel

    2007-01-01

    Erosive-corrosive wear behavior of Al-Si-Mg (A356 Al) alloy and its composite reinforced by ZrO 2 and produced by vortex and squeeze techniques has been studied in water containing 40% sand slurry. The worn surfaces of investigated alloys have been studied and the mechanism of material removal from the specimen surface was examined to be associated with number of subsequent and repetitive stages. The possibility of Ni coating for Al composites by electrochemical deposition is investigated. The surface layer was characterized by microhardness measurements, optical microscope, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) analysis. The electrochemical results obtained from polarization studies for Ni-coated, A356 Al alloy and composites in 3.5% sodium chloride solution indicated higher protection exhibited by Ni coatings due to the nickel properties. The squeezed cast composite is characterized by high corrosion and wear resistance comparing the composite produced by vortex process. This study revealed that the Ni-coated materials provide higher abrasive resistance and therefore a longer service life compared to A356 Al-ZrO 2

  2. Analysis of electrochemical noise data in both time and frequency domains to evaluate the effect of ZnO nanopowder addition on the corrosion protection performance of epoxy coatings

    Directory of Open Access Journals (Sweden)

    H. Ashassi-Sorkhabi

    2016-11-01

    Full Text Available Epoxy–ZnO nanocomposite coatings have been developed for corrosion protection of steel. Structural characterization of the prepared nanocomposites was performed using scanning electron microscopy (SEM. The anti-corrosive properties of the coatings were evaluated by electrochemical noise (EN. On the basis of the EN results in both time and frequency domains, the nanocomposite material with low ZnO concentration (0.1% wt.% was found to be much superior in corrosion protection when tested in aqueous NaCl electrolyte. Finally, EIS measurements were carried out and the data fitted with suitable equivalent circuit. Resistance parameters obtained by both techniques were found to be in relatively good agreement.

  3. Corrosion of beryllium

    International Nuclear Information System (INIS)

    Mueller, J.J.; Adolphson, D.R.

    1987-01-01

    The corrosion behavior of beryllium in aqueous and elevated-temperature oxidizing environments has been extensively studied for early-intended use of beryllium in nuclear reactors and in jet and rocket propulsion systems. Since that time, beryllium has been used as a structural material in les corrosive environments. Its primary applications include gyro systems, mirror and reentry vehicle structures, and aircraft brakes. Only a small amount of information has been published that is directly related to the evaluation of beryllium for service in the less severe or normal atmospheric environments associated with these applications. Despite the lack of published data on the corrosion of beryllium in atmospheric environments, much can be deduced about its corrosion behavior from studies of aqueous corrosion and the experiences of fabricators and users in applying, handling, processing, storing, and shipping beryllium components. The methods of corrosion protection implemented to resist water and high-temperature gaseous environments provide useful information on methods that can be applied to protect beryllium for service in future long-term structural applications

  4. In situ synthesis, electrochemical and quantum chemical analysis of an amino acid-derived ionic liquid inhibitor for corrosion protection of mild steel in 1M HCl solution

    International Nuclear Information System (INIS)

    Kowsari, E.; Arman, S.Y.; Shahini, M.H.; Zandi, H.; Ehsani, A.; Naderi, R.; PourghasemiHanza, A.; Mehdipour, M.

    2016-01-01

    Highlights: • Electrochemical analysis of effectiveness of an amino acid-derived ionic liquid inhibitor. • Quantum chemical analysis of effectiveness of an amino acid-derived ionic liquid inhibitor. • Finding correlation between electrochemical analysis and quantum chemical analysis. - Abstract: In this study, an amino acid-derived ionic liquid inhibitor, namely tetra-n-butyl ammonium methioninate, was synthesized and the role this inhibitor for corrosion protection of mild steel exposed to 1.0 M HCl was investigated using electrochemical, quantum and surface analysis. By taking advantage of potentiodynamic polarization, the inhibitory action of tetra-n-butyl ammonium methioninate was found to be mainly mixed-type with dominant anodic inhibition. The effectiveness of the inhibitor was also indicated using electrochemical impedance spectroscopy (EIS). Moreover, to provide further insight into the mechanism of inhibition, electrochemical noise (EN) and quantum chemical calculations of the inhibitor were performed.

  5. Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines

    Science.gov (United States)

    Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.

    2012-12-01

    Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.

  6. Protection by high velocity thermal spraying coatings on thick walled permanent and interim store components for the diminution of repairs, corrosion and costs 'SHARK'. Overview at the end of the project

    International Nuclear Information System (INIS)

    Behrens, Sabine; Hassel, Thomas; Bach, Friedrich-Wilhelm

    2012-01-01

    The corrosion protection of the internal space of thick-walled interim and permanent storage facility components, such as Castor copyright containers, are ensured nowadays by a galvanic nickel layer. The method has proved itself and protects the base material of the containers at the underwater loading in the Nuclear power station from a corrosive attack. Although, the galvanic nickel plating is a relatively time consuming method, it lasts for several days for each container, and is with a layer thickness of 1,000 μm also expensive. To develop an alternative, faster and more economical method, a BMBF research project named - 'SHARK - protection by high velocity thermal spraying layers on thick-walled permanent and interim store components for the diminution of repairs, corrosion and costs' in cooperation between Siempelkamp Nukleartechnik GmbH and the Institute of Materials Science of the Leibniz University of Hanover was established to investigate the suitability of the high velocity oxy fuel spraying technology (HVOF) for the corrosion protective coating of thickwalled interim and permanent storage facility components. Since the permanent storage depot components are manufactured from cast iron with globular graphite, this material was exclusively used as a base material in this project. The evaluation of the economical features of the application of different nickel base spraying materials on cast iron substratum was in focus, as well as the scientific characterization of the coating systems with regard to the corrosion protective properties. Furthermore, the feasibility of the transfer of the laboratory results on a large industrial setup as well as a general suitability of the coating process for a required repair procedure was to be investigated. The preliminary examination program identified chromium containing spraying materials as successful. Results of the preliminary examination program have been used for investigations with the CASOIK demonstration

  7. Development of novel protective high temperature coatings on heat exchanger steels and their corrosion resistance in simulated coal firing environment

    OpenAIRE

    Rohr, Valentin

    2005-01-01

    Afin d'augmenter leur rendement, les centrales thermiques sont amenées à élever leur température de fonctionnement. Ceci nécessite une amélioration de la résistance à la corrosion des matériaux constitutifs des échangeurs de chaleur. Ainsi, l'objet de cette étude est de développer des revêtements anticorrosion à partir du procédé de cémentation activée. Deux types d'aciers pour échangeurs de chaleur ont été étudiés : un acier austénitique contenant 17% Cr et 13% Ni, et trois aciers ferrito-ma...

  8. Stress corrosion and corrosion fatigue crack growth monitoring in metals

    International Nuclear Information System (INIS)

    Senadheera, T.; Shipilov, S.A.

    2003-01-01

    Environmentally assisted cracking (including stress corrosion cracking and corrosion fatigue) is one of the major causes for materials failure in a wide variety of industries. It is extremely important to understand the mechanism(s) of environmentally assisted crack propagation in structural materials so as to choose correctly from among the various possibilities-alloying elements, heat treatment of steels, parameters of cathodic protection, and inhibitors-to prevent in-service failures due to stress corrosion cracking and corrosion fatigue. An important step towards understanding the mechanism of environmentally assisted crack propagation is designing a testing machine for crack growth monitoring and that simultaneously provides measurement of electrochemical parameters. In the present paper, a direct current (DC) potential drop method for monitoring crack propagation in metals and a testing machine that uses this method and allows for measuring electrochemical parameters during stress corrosion and corrosion fatigue crack growth are described. (author)

  9. Corrosion '98: 53. annual conference and exposition, proceedings

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    This conference was divided into the following sections: Corrosion in Gas Treating; Problems and Solutions in Commercial Building Water Systems; Green Corrosion/Scale Inhibitors; Atmospheric Corrosion; AIRPOL Update/98; Rubber Lining--Answers to Many Problems; Interference Problems; Environmental Assisted Cracking: Fundamental Research and Industrial Applications; Corrosion in Nuclear Systems; New Developments in Scale and Deposit Control; Corrosion and Corrosion Protection in the Transportation Industries; What's All the Noise About--Electrochemical That Is; Refining Industry Corrosion; Corrosion Problems in Military Hardware: Case Histories, Fixes and Lessons Learned; Cathodic Protection Test Methods and Instrumentation for Underground and On-grade Pipelines and Tanks; Recent Developments in Volatile Corrosion Inhibitors; Corrosion in Supercritical Fluids; Microbiologically Influenced Corrosion; Advances in Understanding and Controlling CO 2 Corrosion; Managing Corrosion with Plastics; Material Developments for Use in Exploration and Production Environments; Corrosion in Cold Regions; The Effect of Downsizing and Outsourcing on Cooling System Monitoring and Control Practices; New Developments in Mechanical and Chemical Industrial Cleaning; Mineral Scale Deposit Control in Oilfield Related Operations; Biocides in Cooling Water; Corrosion and Corrosion Control of Reinforced Concrete Structures; Materials Performance for Fossil Energy Conversion Systems; Marine corrosion; Thermal Spray--Coating and Corrosion Control; Flow Effects on Corrosion in Oil and Gas Production; Corrosion Measurement Technologies; Internal Pipeline Monitoring--Corrosion Monitoring, Intelligent Pigging and Leak Detection; Cathodic Protection in Natural Waters; Corrosion in Radioactive Liquid Waste Systems; On-line Hydrogen Permeation Monitoring Equipment and Techniques, State of the Art; Water Reuse and Recovery; Performance of Materials in High Temperature Environments; Advances in Motor

  10. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  11. EUROCORR 2007 - The European corrosion congress - Progress by corrosion control. Book of Abstracts

    International Nuclear Information System (INIS)

    2007-01-01

    This book of abstracts contains lectures, workshops and posters which were held on the European Corrosion Congress 2007 in Freiburg (Germany). The main topics of the sessions and posters are: 1. Corrosion and scale inhibition; 2. Corrosion by hot gases and combustion products; 3. Nuclear corrosion; 4. Environment sensitive fracture; 5. Surface Science; 6. Physico-chemical methods of corrosion testing; 7. Marine corrosion; 8. Microbial corrosion; 9. Corrosion of steel in concrete; 10. Corrosion in oil and gas production; 11. Coatings; 12. Corrosion in the refinery industry; 13. Cathodic protection; 14. Automotive Corrosion; 15. Corrosion of polymer materials. The main topics of the workshops are: 1. High temperature corrosion in the chemical, refinery and petrochemical industries; 2. Bio-Tribocorrosion; 3. Stress corrosion cracking in nuclear power plants; 4. Corrosion monitoring in nuclear systems; 5. Cathodic protection for marine and offshore environments; 6. Self-healing properties of new surface treatments; 7. Bio-Tribocorrosion - Cost 533/Eureka-ENIWEP-Meeting; 8. Drinking water systems; 9. Heat exchangers for seawater cooling

  12. Ultrathin protective films of two-dimensional polymers on passivated iron against corrosion in 0.1M NaCl

    International Nuclear Information System (INIS)

    Aramaki, Kunitsugu; Shimura, Tadashi

    2005-01-01

    Prevention of iron corrosion in an aerated 0.1M NaCl solution was investigated by polarization and mass-loss measurements of a passivated iron electrode covered with ultrathin and ordered films of two-dimensional polymers. The films were prepared on the passivated electrode by modification of a 16-hydroxyhexadecanoate ion HO(CH 2 ) 15 CO 2 - self-assembled monolayer with 1,2-bis(triethoxysilyl)ethane (C 2 H 5 O) 3 Si(CH 2 ) 2 Si(OC 2 H 5 ) 3 and alkyltriethoxysilane C n H 2n+1 Si(OC 2 H 5 ) 3 (n=8 or 18). Because crevice corrosion occurred at the initial stage of immersion in the solution preferentially, the edge of electrode covered with the polymer film was coated with epoxy resin. The open-circuit potentials of the covered electrodes in the solution were maintained high, more than -0.2V/SCE for several hours, indicating that no breakdown of the passive film occurred on the surface. The protective efficiencies of the films were extremely high, more than 99.9% unless the passive film was broken down. The efficiencies after immersion for 24h almost agreed with those obtained by mass-loss measurements. X-ray photoelectron spectroscopy and electron-probe microanalysis of the passivated surface covered with the polymer film after immersion in the solution for 4h revealed that pit initiation on the passive film was suppressed by coverage with the polymer film completely

  13. Effect of ortho-substituted aniline on the corrosion protection of aluminum in 2 mol/L H2SO4 solution

    KAUST Repository

    El-Deeb, Mohamed M.

    2017-02-13

    Corrosion protection of aluminum in 2 mol/L HSO solution is examined in the presence of ortho-substituted aniline derivatives using potentiodynamic polarization and electrochemical impedance spectroscopy measurements. Density function theory (DFT) calculations are performed to investigate the aluminum-electrolyte interface relationship in the absence and presence of both ortho-substituted aniline derivatives and sulphate anions, as well as their roles in the protection efficiency at the atomic level. Our results show that ortho-aniline derivatives are good inhibitors and that their efficiencies improved as the concentration increased. SEM-EDX analysis is used to confirm the adsorption thermodynamics of the studied compounds on the aluminum surface. The best inhibitory effect is exhibits in the presence of the methyl group in ortho-position followed by ortho-carboxilic compared to aniline. The adsorption of these compounds on the aluminum surface is well described by Langmuir adsorption isotherm as well as the experimental and the theoretical adosrption energies are in a good agreement. DFT calculations also show that the interaction between the inhibitors and the aluminum surface is mainly electrostatic and depends on the type of the ortho-substituted group in addition to the sulphate anions.

  14. Evaluation of soil corrosivity and aquifer protective capacity using geoelectrical investigation in Bwari basement complex area, Abuja

    Science.gov (United States)

    Adeniji, A. E.; Omonona, O. V.; Obiora, D. N.; Chukudebelu, J. U.

    2014-04-01

    Bwari is one of the six municipal area councils of the Federal Capital Territory (FCT), Abuja with its attendant growing population and infrastructural developments. Groundwater is the main source of water supply in the area, and urbanization and industrialization are the predominant contributors of contaminants to the hydrological systems. In order to guarantee a continuous supply of potable water, there is a need to investigate the vulnerability of the aquifers to contaminants emanating from domestic and industrial wastes. A total of 20 vertical electrical soundings using Schlumberger electrode array with a maximum half current electrodes separation of 300 m was employed. The results show that the area is characterized by 3-6 geoelectric subsurface layers. The measured overburden thickness ranges from 1.0 to 24.3 m, with a mean value of 7.4 m. The resistivity and longitudinal conductance of the overburden units range from 18 to 11,908 Ωm and 0.047 to 0.875 mhos, respectively. Areas considered as high corrosivity are the central parts with ρ constitute part of the tools for groundwater development and management and structural/infrastructural development planning of the area.

  15. Protection of Petroleum Pipeline Carbon Steel Alloys with New Modified Core-Shell Magnetite Nanogel against Corrosion in Acidic Medium

    Directory of Open Access Journals (Sweden)

    Gamal A. El Mahdy

    2013-01-01

    Full Text Available New method was used to prepare magnetite nanoparticle based on reduction of Fe(III ions with potassium iodide to produce Fe3O4 nanoparticle. The prepared magnetite was stabilized with cross-linked polymer based on 2-acrylamido-2-methylpropane sulfonic acid (AMPS to prepare novel core-shell nanogel. In this respect, Fe3O4/poly(2-acrylamido-2-methylpropane sulfonic acid (PAMPS magnetic nanogels with controllable particle size produced via free aqueous polymerization at 65°C have been developed for the first time. The polymer was crosslinked in the presence of N,N-methylenebisacrylamide (MBA as a crosslinker and potassium peroxydisulfate (KPS as redox initiator system. The structure and morphology of the magnetic nanogel were characterized by Fourier transform infrared spectroscopy (FTIR and transmission and scanning electron microscopy (TEM and SEM. The effectiveness of the synthesized compounds as corrosion inhibitors for carbon steel in 1 M HCl was investigated by various electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS. The results showed enhancement in inhibition efficiencies with increasing the inhibitor concentrations. The results showed that the nanogel particles act as mixed inhibitors. EIS data revealed that Rct increases with increasing inhibitor concentration.

  16. Corrosion problems and solutions in oil refining and petrochemical industry

    CERN Document Server

    Groysman, Alec

    2017-01-01

    This book addresses corrosion problems and their solutions at facilities in the oil refining and petrochemical industry, including cooling water and boiler feed water units. Further, it describes and analyzes corrosion control actions, corrosion monitoring, and corrosion management. Corrosion problems are a perennial issue in the oil refining and petrochemical industry, as they lead to a deterioration of the functional properties of metallic equipment and harm the environment – both of which need to be protected for the sake of current and future generations. Accordingly, this book examines and analyzes typical and atypical corrosion failure cases and their prevention at refineries and petrochemical facilities, including problems with: pipelines, tanks, furnaces, distillation columns, absorbers, heat exchangers, and pumps. In addition, it describes naphthenic acid corrosion, stress corrosion cracking, hydrogen damages, sulfidic corrosion, microbiologically induced corrosion, erosion-corrosion, and corrosion...

  17. Investigating the Crevice Corrosion Behavior of Coated Stainless Steel in Seawater

    National Research Council Canada - National Science Library

    Kain, Robert

    2000-01-01

    .... austenitic stainless steel. Testing in natural seawater has demonstrated that coatings can protect susceptible stainless steel from barnacle related crevice corrosion and localized corrosion at weldments...

  18. Corrosion resistant composite materials

    International Nuclear Information System (INIS)

    Ul'yanin, E.A.

    1986-01-01

    Foundations for corrosion-resistant composite materials design are considered with account of components compatibility. Fibrous and lamellar composites with metal matrix, dispersion-hardened steels and alloys, refractory metal carbides-, borides-, nitrides-, silicides-based composites are described. Cermet compositions and fields of their application, such as protective coatings for operation in agressive media at high temperatures, are presented

  19. 49 CFR 193.2631 - Internal corrosion control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Internal corrosion control. 193.2631 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2631 Internal corrosion control. Each component that is subject to internal corrosive attack must be protected from internal corrosion by— (a...

  20. Self-protective powder wire for semiautomatic welding of corrosion resistant chromium-nickel type 18-10 steels

    International Nuclear Information System (INIS)

    Lipodaev, V.N.; Kakhovskij, N.I.; Fadeeva, G.V.

    1977-01-01

    Self-protecting NP-ANV1 powder wire has been developed for welding 18-10 type stainless steels. The use of the wire provides for the same running properties of the welds as the TsL-11 electrodes, the welding being 3-5 times more efficient

  1. Effect of Annealing Temperature on the Corrosion Protection of Hot Swaged Ti-54M Alloy in 2 M HCl Pickling Solutions

    Directory of Open Access Journals (Sweden)

    El-Sayed M. Sherif

    2017-01-01

    Full Text Available The corrosion of Ti-54M titanium alloy processed by hot rotary swaging and post-annealed to yield different grain sizes, in 2 M HCl solutions is reported. Two annealing temperatures of 800 °C and 940 °C, followed by air cooling and furnace cooling were used to give homogeneous grain structures of 1.5 and 5 μm, respectively. It has been found that annealing the alloy at 800 °C decreased the corrosion of the alloy, with respect to the hot swaged condition, through increasing its corrosion resistance and decreasing the corrosion current and corrosion rate. Increasing the annealing temperature to 940 °C further decreased the corrosion of the alloy.

  2. Corrosion potential analysis system

    Science.gov (United States)

    Kiefer, Karl F.

    1998-03-01

    Many cities in the northeastern U.S. transport electrical power from place to place via underground cables, which utilize voltages from 68 kv to 348 kv. These cables are placed in seamless steel pipe to protect the conductors. These buried pipe-type-cables (PTCs) are carefully designed and constantly pressurized with transformer oil to prevent any possible contamination. A protective coating placed on the outside diameter of the pipe during manufacture protects the steel pipe from the soil environment. Notwithstanding the protection mechanisms available, the pipes remain vulnerable to electrochemical corrosion processes. If undetected, corrosion can cause the pipes to leak transformer oil into the environment. These leaks can assume serious proportions due to the constant pressure on the inside of the pipe. A need exists for a detection system that can dynamically monitor the corrosive potential on the length of the pipe and dynamically adjust cathodic protection to counter local and global changes in the cathodic environment surrounding the pipes. The northeastern United States contains approximately 1000 miles of this pipe. This milage is critical to the transportation and distribution of power. So critical, that each of the pipe runs has a redundant double running parallel to it. Invocon, Inc. proposed and tested a technically unique and cost effective solution to detect critical corrosion potential and to communicate that information to a central data collection and analysis location. Invocon's solution utilizes the steel of the casing pipe as a communication medium. Each data gathering station on the pipe can act as a relay for information gathered elsewhere on the pipe. These stations must have 'smart' network configuration algorithms that constantly test various communication paths and determine the best and most power efficient route through which information should flow. Each network station also performs data acquisition and analysis tasks that ultimately

  3. Development of novel protective high temperature coatings on heat exchanger steels and their corrosion resistance in simulated coal firing environment; Developpement de revetements pour les aciers d'echangeurs thermiques et amelioration de leur resistance a la corrosion en environnement simulant les fumees de combustion et de charbon

    Energy Technology Data Exchange (ETDEWEB)

    Rohr, V.

    2005-10-15

    Improving the efficiencies of thermal power plants requires an increase of the operating temperatures and thus of the corrosion resistance of heat exchanger materials. Therefore, the present study aimed at developing protective coatings using the pack cementation process. Two types of heat exchanger steels were investigated: a 17% Cr-13% Ni austenitic steel and three ferritic-martensitic steels with 9 (P91 and P92) and 12% Cr (HCM12A). The austenitic steel was successfully aluminized at 950 C. For the ferritic-martensitic steels, the pack cementation temperature was decreased down to 650 C, in order to maintain their initial microstructure. Two types of aluminides, made of Fe{sub 2}Al{sub 5} and FeAl, were developed. A mechanism of the coating formation at low temperature is proposed. Furthermore, combining the pack cementation with the conventional heat treatment of P91 allowed to take benefit of higher temperatures for the deposition of a two-step Cr+Al coating. The corrosion resistance of coated and uncoated steels is compared in simulated coal firing environment for durations up to 2000 h between 650 and 700 C. It is shown that the coatings offer a significant corrosion protection and, thus, an increase of the component lifetime. Finally, the performance of coated 9-12% Cr steels is no longer limited by corrosion but by interdiffusion between the coating and the substrate. (author)

  4. Synthesize and characterization of a novel anticorrosive cobalt ferrite nanoparticles dispersed in silica matrix (CoFe2O4-SiO2) to improve the corrosion protection performance of epoxy coating

    International Nuclear Information System (INIS)

    Gharagozlou, M.; Ramezanzadeh, B.; Baradaran, Z.

    2016-01-01

    Highlights: • An anticorrosive cobalt ferrite nanopigment dispersed in silica matrix was synthesized. • The nanopigment showed proper inhibition performance in solution study. • The nanopigment significantly improved the corrosion resistance of the epoxy coating. - Abstract: This study aimed at studying the effect of an anticorrosive nickel ferrite nanoparticle dispersed in silica matrix (NiFe 2 O 4 -SiO 2 ) on the corrosion protection properties of steel substrate. NiFe 2 O 4 and NiFe 2 O 4 -SiO 2 nanopigments were synthesized and then characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscope (TEM). Then, 1 wt.% of nanopigments was dispersed in an epoxy coating and the resultant nanocomposites were applied on the steel substrates. The corrosion inhibition effects of nanopigments were tested by an electrochemical impedance spectroscopy (EIS) and salt spray test. Results revealed that dispersing nickel ferrite nanoparticles in a silica matrix (NiFe 2 O 4 -SiO 2 ) resulted in the enhancement of the nanopigment dispersion in the epoxy coating matrix. Inclusion of 1 wt.% of NiFe 2 O 4 -SiO 2 nanopigment into the epoxy coating enhanced its corrosion protection properties before and after scratching.

  5. Corrosion Engineering.

    Science.gov (United States)

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  6. Effect of menthol coated craft paper on corrosion of copper in HCl ...

    Indian Academy of Sciences (India)

    Administrator

    The effect of menthol on copper corrosion was studied by gravimetric and ... lable for temporary protection of metals and alloys from corrosion, the use of volatile .... The corrosion kinetic parameters were obtained from the anodic and cathodic.

  7. Corrosion Control in the Aerospace Industry

    Science.gov (United States)

    Calle, Luz Marina; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.

    2016-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it..

  8. Recent Natural Corrosion Inhibitors for Mild Steel: An Overview

    Directory of Open Access Journals (Sweden)

    Marko Chigondo

    2016-01-01

    Full Text Available Traditionally, reduction of corrosion has been managed by various methods including cathodic protection, process control, reduction of the metal impurity content, and application of surface treatment techniques, as well as incorporation of suitable alloys. However, the use of corrosion inhibitors has proven to be the easiest and cheapest method for corrosion protection and prevention in acidic media. These inhibitors slow down the corrosion rate and thus prevent monetary losses due to metallic corrosion on industrial vessels, equipment, or surfaces. Inorganic and organic inhibitors are toxic and costly and thus recent focus has been turned to develop environmentally benign methods for corrosion retardation. Many researchers have recently focused on corrosion prevention methods using green inhibitors for mild steel in acidic solutions to mimic industrial processes. This paper provides an overview of types of corrosion, corrosion process, and mainly recent work done on the application of natural plant extracts as corrosion inhibitors for mild steel.

  9. Drywell corrosion stopped at Oyster Creek

    International Nuclear Information System (INIS)

    Lipford, B.L.; Flynn, J.C.

    1993-01-01

    This article describes the detection of corrosion on the drywell containment vessel of Oyster Creek Nuclear Plant and the application of a protective coating to repair the drywell. The topics of the article include drywell design features, identification of the problem, initial action, drywell corrosion, failure of cathodic protection, long-term repair, and repair results

  10. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon

    2004-10-01

    The waste package design for the License Application is a double-wall waste package underneath a protective drip shield (BSC 2004 [DIRS 168489]; BSC 2004 [DIRS 169480]). The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating waste package performance. The WPOB is constructed of Alloy 22 (UNS N06022), a highly corrosion-resistant nickel-based alloy. The inner vessel of the waste package is constructed of Stainless Steel Type 316 (UNS S31600). Before it fails, the Alloy 22 WPOB protects the Stainless Steel Type 316 inner vessel from exposure to the external environment and any significant degradation. The Stainless Steel Type 316 inner vessel provides structural stability to the thinner Alloy 22 WPOB. Although the waste package inner vessel would also provide some performance for waste containment and potentially decrease the rate of radionuclide transport after WPOB breach before it fails, the potential performance of the inner vessel is far less than that of the more corrosion-resistant Alloy 22 WPOB. For this reason, the corrosion performance of the waste package inner vessel is conservatively ignored in this report and the total system performance assessment for the license application (TSPA-LA). Treatment of seismic and igneous events and their consequences on waste package outer barrier performance are not specifically discussed in this report, although the general and localized corrosion models developed in this report are suitable for use in these scenarios. The localized corrosion processes considered in this report are pitting corrosion and crevice corrosion. Stress corrosion cracking is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]).

  11. Electrochemical Characterisation of Filiform Corrosion on Aluminium Rolled Products

    NARCIS (Netherlands)

    Huisert, M.

    2001-01-01

    When aluminium is protected by an organic coating a special form of corrosion can occur underneath the organic coating; filiform corrosion. This form of corrosion manifests itself as threadlike filaments under the coating, it causes local delamination of the coating and the coating cannot protect

  12. Corrosion and Wear Analysis in Marine Transport Constructions

    OpenAIRE

    Urbahs, A; Savkovs, K; Rijkuris, G; Andrejeva, D

    2018-01-01

    Corrosion is one of the most common naturally occurring processes studied by thermodynamics, which includes oxidation process, metal disruption, and its chemical and electrochemical effects under environmental influence. Corrosion of metal and equipment accounts for a considerable proportion of total corrosion losses, thus providing the impetus for further investigation and developments related to corrosion protection in order to provide transport systems and industry with corrosion preventiv...

  13. A new approach for enhancement of the corrosion protection properties and interfacial adhesion bonds between the epoxy coating and steel substrate through surface treatment by covalently modified amino functionalized graphene oxide film

    International Nuclear Information System (INIS)

    Parhizkar, N.; Shahrabi, T.; Ramezanzadeh, B.

    2017-01-01

    Highlights: •The steel substrate was treated by a covalently modified amino functionalized graphene oxide (fGO) film. •Deposition of fGO film at the interface of steel and epoxy could effectively improve the adhesion strength and corrosion protection properties. •More stable and stronger interfacial bonds was obtained when treating the interface by fGO film. -- Abstract: This study introduces a novel surface treatment approach of steel substrate by covalent modification of graphene oxide (fGO) nanosheets with 3-aminopropyltriethoxysilane to improve the adhesion and corrosion protection properties of an epoxy coating. The effect of fGO film on the epoxy coating performance was studied by field-emission scanning electron microscopy (FE-SEM), X-Ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), Pull-off adhesion, salt spray and cathodic delamination tests. Results revealed that deposition of fGO film on steel surface can effectively improve the adhesion strength and corrosion protection properties and reduce the cathodic delamination rate of the epoxy coating.

  14. Corrosion in seawater systems

    International Nuclear Information System (INIS)

    Henrikson, S.

    1988-01-01

    Highly alloyed stainless steels have been exposed to natural chlorinated and chlorine-free seawater at 35 deg. C. Simulated tube-tubesheet joints, weld joints and galvanic couples with titanium, 90/10 CuNi and NiAl bronze were tested and evaluated for corrosion. The corrosion rates of various anode materials - zinc, aluminium and soft iron - were also determined. Finally the risk of hydrogen embrittlement of tubes of ferritic stainless steels and titanium as a consequence of cathodic protection was studied. An attempt was also made to explain the cracking mechanism of the ferritic steels by means of transmission electron microscopy. One important conclusion of the project is that chlorinated seawater is considerably more corrosive to stainless steels than chlorine-free water, whereas chlorination reduces the rate of galvanic corrosion of copper materials coupled to stainless steels. Hydrogen embrittlement of ferritic stainless steels and titanium as a consequence of cathodic protection of carbon steel or cast iron in the same structure can be avoided by strict potentiostatic control of the applied potential. (author)

  15. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    Science.gov (United States)

    Calle, Luz Marina

    2015-01-01

    The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in North America. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the highly corrosive hydrochloric acid (HCl) generated by the solid rocket boosters (SRBs). Numerous failures at the launch pads are caused by corrosion. The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. NASA has over fifty years of experience dealing with unexpected failures caused by corrosion and has developed expertise in corrosion control in the launch and other environments. The Corrosion Technology Laboratory at KSC evolved, from what started as an atmospheric exposure test site near NASAs launch pads, into a capability that provides technical innovations and engineering services in all areas of corrosion for NASA, external partners, and customers.This paper provides a chronological overview of NASAs role in anticipating, managing, and preventing corrosion in highly corrosive environments. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  16. A Review of Field Corrosion Control and Monitoring Techniques of ...

    African Journals Online (AJOL)

    OLUWASOGO

    corrosion attack and eventual failure of pipelines within oil and gas industry has been classified ... pipelines' commissioning which include design, material selection, protective ..... analyses after certain period to obtain corrosion information.

  17. A Review of Field Corrosion Control and Monitoring Techniques of ...

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... to make informed decision and timely respond to corrosion threat before failures. Keywords: cathodic protection, corrosion mechanism, control and monitoring, ...

  18. Chemical treatment of zinc surface and its corrosion inhibition studies

    Indian Academy of Sciences (India)

    WINTEC

    Department of PG Studies and Research in Chemistry, School of Chemical Sciences, Kuvempu University, ... cations and is mainly used for the corrosion protection of ... provide a greater resistance to corrosion, but when exposed to humid ...

  19. New technologies - new corrosion problems

    International Nuclear Information System (INIS)

    Heitz, E.

    1994-01-01

    Adequate resistance of materials to corrosion is equally important for classical and for new technologies. This article considers the economic consequences of corrosion damage and, in addition to the long-known GNP orientation, presents a new approach to the estimation of the costs of corrosion and corrosion protection via maintenance and especially corrosion-related maintenance. The significance of ''high-tech'', ''medium-tech'' and ''low-tech'' material and corrosion problems is assessed. Selected examples taken from new technologies in the areas of power engineering, environmental engineering, chemical engineering, and biotechnology demonstrate the great significance of the problems. It is concluded that corrosion research and corrosion prevention technology will never come to an end but will constantly face new problems. Two technologies are of particular interest since they focus attention on new methods of investigation: microelectronics and final disposal of radioactive wastes. The article closes by considering the importance of the transfer of experience and technology. Since the manufacturs and operators of machines and plant do not generally have access to the very latest knowledge, they should be kept informed through advisory services, experimental studies, databases, and further education. (orig.) [de

  20. Emerging Corrosion Inhibitors for Interfacial Coating

    Directory of Open Access Journals (Sweden)

    Mona Taghavikish

    2017-12-01

    Full Text Available Corrosion is a deterioration of a metal due to reaction with environment. The use of corrosion inhibitors is one of the most effective ways of protecting metal surfaces against corrosion. Their effectiveness is related to the chemical composition, their molecular structures and affinities for adsorption on the metal surface. This review focuses on the potential of ionic liquid, polyionic liquid (PIL and graphene as promising corrosion inhibitors in emerging coatings due to their remarkable properties and various embedment or fabrication strategies. The review begins with a precise description of the synthesis, characterization and structure-property-performance relationship of such inhibitors for anti-corrosion coatings. It establishes a platform for the formation of new generation of PIL based coatings and shows that PIL corrosion inhibitors with various heteroatoms in different form can be employed for corrosion protection with higher barrier properties and protection of metal surface. However, such study is still in its infancy and there is significant scope to further develop new structures of PIL based corrosion inhibitors and coatings and study their behaviour in protection of metals. Besides, it is identified that the combination of ionic liquid, PIL and graphene could possibly contribute to the development of the ultimate corrosion inhibitor based coating.

  1. Corrosion mechanism applicable to biodegradable magnesium implants

    Energy Technology Data Exchange (ETDEWEB)

    Atrens, Andrej, E-mail: Andrejs.Atrens@uq.edu.au [University of Queensland, Division of Materials, Brisbane, Qld 4072 (Australia); Liu Ming; Zainal Abidin, Nor Ishida [University of Queensland, Division of Materials, Brisbane, Qld 4072 (Australia)

    2011-12-15

    Much of our understanding of the Mg corrosion mechanism is based on research using aggressive chloride based solutions like 3% NaCl, which are appropriate for understand the corrosion for applications such as auto construction. The chloride ions tend to cause break down of the partly protective surface film on the Mg alloy surface. The corrosion rate increases with exposure time until steady state is reached, which may take several weeks. An overview is provided of the aspects which determine the corrosion of Mg alloys: (i) measurement details; (ii) impurity elements Fe, Ni, Cu and Co; (iii) second phases; (iv) surface films and surface condition and (v) stress corrosion cracking (SCC). This understanding is used to help understand Mg corrosion for Mg as a biodegradable implant for medical applications. Solutions that elucidate these applications tend to form surface films and the corrosion rate tends to decrease with immersion time.

  2. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.; Ennis, P.J.

    1988-08-01

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  3. Corrosion in airframes

    OpenAIRE

    PETROVIC ZORAN C.

    2016-01-01

    The introductory chapter provides a brief reference to the issue of corrosion and corrosion damage to aircraft structures. Depending on the nature and dimensions of this non uniformity, three different categories of corrosion are defined: uniform, selective and localized corrosion. The following chapters present the forms of corrosion that can occur in three defined categories of corrosion. Conditions that cause certain types of corrosion in various corrosive environments are discussed. Examp...

  4. An environment-friendly phosphate chemical conversion coating on novel Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn alloys with remarkable corrosion protection

    Science.gov (United States)

    Maurya, Rita; Siddiqui, Abdul Rahim; Balani, Kantesh

    2018-06-01

    An environment-friendly phosphate chemical conversion (PCC) coating has been deposited on novel LAT971 (Mg-9 wt%Li-7 wt%Al-1 wt%Sn) and LATZ9531 (Mg-9 wt%Li-5 wt%Al-3 wt%Sn-1 wt%Zn) alloys for improving their corrosion resistance. A dense and homogeneous flower like morphology (∼30 μm thick) was observed on the PCC coated Mg-Li based alloys. The presence of calcium hydrogen phosphate hydrate, tricalcium phosphate and trimagnesium phosphate were confirmed from the X-ray diffraction and X-ray photoelectron spectroscopy analysis. A lower corrosion current density of 6.74 × 10-7 mA/cm2 and 5.39 × 10-7 mA/cm2 was obtained for PCC coated alloys in 3.5% NaCl aqueous solution than that of uncoated LAT971 (0.82 mA/cm2) and LATZ9531 (0.34 mA/cm2) alloys, respectively, which offers corrosion protection efficiency of >99%. Electrochemical impedance spectroscopy (EIS) has revealed that the inner PCC coating (at coating/substrate interface) delay the direct contact between electrolyte and substrate, which offered higher charge transfer resistance (>4 orders of magnitude) than that of uncoated alloys. Thus, the PCC coating provides an effective corrosion protection to the ultra-lightweight LAT971 and LATZ9531 alloys surface and may be helpful in proving good anchoring with the top organic coatings or paints.

  5. Cathodic Protection Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs Navy design and engineering of ship and submarine impressed current cathodic protection (ICCP) systems for underwater hull corrosion control and...

  6. Corrosion inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A O

    1965-12-29

    An acid corrosion-inhibiting composition consists essentially of a sugar, and an alkali metal salt selected from the group consisting of iodides and bromides. The weight ratio of the sugar to the alkali metal salt is between 2:1 and about 20,000:1. Also, a corrosion- inhibited phosphoric acid composition comprising at least about 20 wt% of phosphoric acid and between about 0.1 wt% and about 10 wt% of molasses, and between about 0.0005 wt% and about 1 wt% of potassium iodide. The weight ratio of molasses to iodide is greater than about 2:1. (11 claims)

  7. Glove corrosive liquid immersion and permeability study

    International Nuclear Information System (INIS)

    Middleton, H.W.

    1977-01-01

    The Occupational Safety and Health Administration's requirement for protective equipment for personnel working with chemical hazards resulted in a study of gloves used in work with corrosive liquids. Gloves of different materials and weights were tested using ASTM methods, in various corrosive liquids. Results show the best material for gloves used for different lengths of time in the liquids

  8. Fabrication of FDTS-modified PDMS-ZnO nanocomposite hydrophobic coating with anti-fouling capability for corrosion protection of Q235 steel.

    Science.gov (United States)

    Arukalam, Innocent O; Oguzie, Emeka E; Li, Ying

    2016-12-15

    Perfluorodecyltrichlorosilane-based poly(dimethylsiloxane)-ZnO (FDTS-based PDMS-ZnO) nanocomposite coating with anti-corrosion and anti-fouling capabilities has been prepared using a one-step fabrication technique. XPS analysis and contact angle measurements showed the fluorine content to increase, while the hydrophobicity of the coatings decreased with addition of FDTS. XRD analysis revealed existence of ZnO nanoparticles of dimensions ranging from 11.45 to 93.01nm on the surface of coatings, with the mean particle size decreasing with FDTS addition, and was confirmed by SEM and TEM observations. Interestingly, the anti-corrosion performance and mechanical properties of the coatings increased remarkably on addition of FDTS. Indeed, the observed low adhesion strength, surface energies and the outstanding anti-corrosive properties imply that the obtained coating would be useful in anti-fouling applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Some observations on phosphate based corrosion inhibitors in preventing carbon steel corrosion

    International Nuclear Information System (INIS)

    Anupkumar, B.; Satpathy, K.K.

    2000-01-01

    Among the various types of phosphonic acid based inhibitors assayed, namely HEDP, ATMP and a commercial corrosion inhibitor (code named Betz), it was found that Betz has the maximum amount of organic phosphate followed by HEDP and ATMP. The corrosion rate studies show that Betz gives the highest inhibition efficiency followed by HEDP and ATMP. This shows that organic phosphate plays a significant role in corrosion protection. However, it was observed that due to synergestic effect, HEDP in the presence of Zn 2+ gave a better corrosion protection than Betz. The results are discussed in the light of available literature. (author)

  10. Influence of Ce{sup 3+} doping on molecular organization of Si-based organic/inorganic sol-gel layers for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Fedel, Michele, E-mail: michele.fedel@unitn.it [Department of Industrial Engineering, University of Trento, via Sommarive 9, Povo (Italy); Callone, Emanuela [Department of Industrial Engineering, University of Trento, via Sommarive 9, Povo (Italy); “K. Müller” Magnetic Resonance Lab, University of Trento, via Sommarive 9, Povo (Italy); Fabbian, Matias; Deflorian, Flavio [Department of Industrial Engineering, University of Trento, via Sommarive 9, Povo (Italy); Dirè, Sandra [Department of Industrial Engineering, University of Trento, via Sommarive 9, Povo (Italy); “K. Müller” Magnetic Resonance Lab, University of Trento, via Sommarive 9, Povo (Italy)

    2017-08-31

    Highlights: • Ce{sup 3+} ions promote a decrease of the degree of condensation of the silsesquioxane network. • Ce{sup 3+} ions affect ladder and cages like structures formation in the silsesquioxane network. • Ce{sup 3+} ions do not significantly affect the barrier properties of the coatings. • [Ce{sup 3+}] ≈ 5·10{sup −4} M provides the sol-gel film with an effective passivating potential. - Abstract: In this work, organosilane-derived sol-gel films containing different amounts of cerium ions applied on AA 1050 were investigated. The sol-gel coatings were prepared from 3-glycidoxypropyltrimethoxysilane (GPTMS) and methyltriethoxysilane (MTES) mixtures with the addition of cerium nitrate in order to achieve different concentrations of Ce ions (from 10{sup −5} M to 10{sup −2} M). The effect of the cerium load on the structure of the cured sol-gel films was investigated by means of solid state NMR and FT-IR spectroscopy. The corrosion protection properties of the different sol-gel layers were investigated mainly by means potentiodynamic curves and electrochemical impedance spectroscopy (EIS). FT-IR and solid state NMR suggested a significant influence of the Ce cations on the network structure: not only the degree of condensation decreases with Ce addition but also the structural modification of the silsesquioxane network is observed with preferential formation of ladder-like species for low Ce{sup 3+} content and cages predominance for Ce/Si molar ratio greater than 0.039, i.e. [Ce{sup 3+}] = 1·10{sup −4} M. Electrochemical tests revealed that the effect of Ce ions on the structure of the coatings does not lead to remarkable changes in the barrier properties. Moreover, it was found that the Ce ions seems to be present in the cured films and are able to migrate towards the metal/coating interface thus providing a stabilization of the metal interface.

  11. Corrosion inhibitors

    International Nuclear Information System (INIS)

    El Ashry, El Sayed H.; El Nemr, Ahmed; Esawy, Sami A.; Ragab, Safaa

    2006-01-01

    The corrosion inhibition efficiencies of some triazole, oxadiazole and thiadiazole derivatives for steel in presence of acidic medium have been studied by using AM1, PM3, MINDO/3 and MNDO semi-empirical SCF molecular orbital methods. Geometric structures, total negative charge on the molecule (TNC), highest occupied molecular energy level (E HOMO ), lowest unoccupied molecular energy level (E LUMO ), core-core repulsion (CCR), dipole moment (μ) and linear solvation energy terms, molecular volume (V i ) and dipolar-polarization (π *), were correlated to corrosion inhibition efficiency. Four equations were proposed to calculate corrosion inhibition efficiency. The agreement with the experimental data was found to be satisfactory; the standard deviations between the calculated and experimental results ranged between ±0.03 and ±4.18. The inhibition efficiency was closely related to orbital energies (E HOMO and E LUMO ) and μ. The correlation between quantum parameters and experimental inhibition efficiency has been validated by single point calculations for the semi-empirical AM1 structures using B3LYP/6-31G** as a higher level of theory. The proposed equations were applied to predict the corrosion inhibition efficiency of some related structures to select molecules of possible activity from a presumable library of compounds

  12. Comparative studies on the corrosion protection effect of DBSA-doped polyaniline prepared from in situ emulsion polymerization in the presence of hydrophilic Na+-MMT and organophilic organo-MMT clay platelets

    International Nuclear Information System (INIS)

    Chang, K.-C.; Lai, M.-C.; Peng, C.-W.; Chen, Y.-T.; Yeh, J.-M.; Lin, C.-L.; Yang, J.-C.

    2006-01-01

    A series of polyaniline (PANI)/Na + -montmorillonite (MMT) clay and PANI/organo-MMT nanocomposite materials have been successfully prepared by in situ emulsion polymerization in the presence of inorganic nanolayers of hydrophilic Na + -MMT clay or organophilic organo-MMT clay with DBSA and KPS as surfactant and initiator, respectively. The as-synthesized Na + -PCN and organo-PCN materials were characterized and compared by Fourier transformation infrared (FTIR) spectroscopy, wide-angle powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Na + -PCN materials in the form of coatings with low loading of Na + -MMT clay (e.g., 3 wt.%, CLAN3) on cold-rolled steel (CRS) were found much superior in corrosion protection over those of organo-PCN materials with same clay loading based on a series of electrochemical measurements of corrosion potential, polarization resistance, corrosion current and impedance spectroscopy in 5 wt.% aqueous NaCl electrolyte. The molecular weights of PANI extracted from PCN materials and neat PANI were determined by gel permeation chromatography (GPC) with NMP as eluant. Effects of material composition on the gas permeability, optical properties and electrical conductivity of neat PANI and a series of PCN materials, in the form of free-standing film, solution and powder-pressed pellet, were also studied by gas permeability analyzer (GPA), ultraviolet-vis spectra and four-point probe technique, respectively

  13. 40 CFR 141.42 - Special monitoring for corrosivity characteristics.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Special monitoring for corrosivity characteristics. 141.42 Section 141.42 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... Regulations and Prohibition on Lead Use § 141.42 Special monitoring for corrosivity characteristics. (a)-(c...

  14. Cathodic corrosion protection in jacket tube steel pipes. Practical experience after five years of operation, a summary; Kathodischer Korrosionsschutz von Stahlrohrleitungen in Mantelrohren. Praxishinweise nach 5 Jahren - eine Zusammenfassung

    Energy Technology Data Exchange (ETDEWEB)

    Lemkemeyer, Marc [RWE Westfalen-Weser-Ems Netz-service GmbH, Dortmund (Germany)

    2011-07-01

    In november 2006, the completely revised AfK recommendation No. 1 came into force. It was the first of its kind to contain concrete calculation methods for calculating the effects of cathodic corrosion protection in jacket tubes. In the five years that followed, a large number of jacket tubes was investigated by this method. It was found that some input parameters that are only estimated still require further specification. Further, some further calculation algorithms have been defined. Some of the specifications are described in more detail in this article.

  15. Kinetics of steel corrosion in water

    International Nuclear Information System (INIS)

    Vettegren', V.I.; Bashkarev, A.Ya.; Danchukov, K.G.; Morozov, G.I.

    2003-01-01

    Kinetics of corrosion damage accumulation in steels of different composition (Cr-Ni-Mo-Ti, Cr-Ni-Mn-N-V, Cr-Ni-N-Mn-Mo, Cr-Ni-Nb, Cr-Ni-Ti, Cr-Mn-Ni, Mn-Al-Nb-Si, Mn-Cr-Al-Si and Mn-Al-Si) in NaCl solution and in sea water was studied. It is shown that degree of corrosion damage relates to time according to the first order reaction expression. The values of corrosion activation energy and of parameter characterizing protection properties of corrosion film are determined [ru

  16. Formation and Role of Gel Fractions in the Corrosion Layer of Zirconium Cladding as the First-stage Protection of the Nuclear Power Plant Fuel

    Czech Academy of Sciences Publication Activity Database

    Weishauptová, Zuzana; Vrtílková, V.; Bláhová, O.; Maixner, J.

    -, č. 16 (2007), s. 29-38 ISSN 1214-9691 R&D Projects: GA ČR GA106/04/0043 Institutional research plan: CEZ:AV0Z30460519 Keywords : zirconium alloys * corrosion layer * hydrated ZrO2 Subject RIV: CF - Physical ; Theoretical Chemistry

  17. Steam generator corrosion 2007; Dampferzeugerkorrosion 2007

    Energy Technology Data Exchange (ETDEWEB)

    Born, M. (ed.)

    2007-07-01

    Between 8th and 9th November, 2007, SAXONIA Standortentwicklungs- und -verwertungsgesellschaft GmbH (Freiberg, Federal Republic of Germany) performed the 3rd Freiberger discussion conference ''Fireside boiler corrosion''. The topics of the lectures are: (a) Steam generator corrosion - an infinite history (Franz W. Alvert); (b) CFD computations for thermal waste treatment plants - a contribution for the damage recognition and remedy (Klaus Goerner, Thomas Klasen); (c) Experiences with the use of corrosion probes (Siegfried R. Horn, Ferdinand Haider, Barbara Waldmann, Ragnar Warnecke); (d) Use of additives for the limitation of the high temperature chlorine corrosion as an option apart from other measures to the corrosion protection (Wolfgang Spiegel); (e) Current research results and aims of research with respect to chlorine corrosion (Ragnar Warnecke); (f) Systematics of the corrosion phenomena - notes for the enterprise and corrosion protection (Thomas Herzog, Wolfgang Spiegel, Werner Schmidl); (g) Corrosion protection by cladding in steam generators of waste incinerators (Joerg Metschke); (h) Corrosion protection and wear protection by means of thermal spraying in steam generators (Dietmar Bendix); (i) Review of thick film nickelized components as an effective protection against high-temperature corrosion (Johann-Wilhelm Ansey); (j) Fireproof materials for waste incinerators - characteristics and profile of requirement (Johannes Imle); (k) Service life-relevant aspects of fireproof linings in the thermal recycling of waste (Till Osthoevener and Wolfgang Kollenberg); (l) Alternatives to the fireproof material in the heating space (Heino Sinn); (m) Cladding: Inconal 625 contra 686 - Fundamentals / applications in boiler construction and plant construction (Wolfgang Hoffmeister); (n) Thin films as efficient corrosion barriers - thermal spray coating in waste incinerators and biomass firing (Ruediger W. Schuelein, Steffen Hoehne, Friedrich

  18. Corrosion, haemocompatibility and bacterial adhesion behaviour of ...

    Indian Academy of Sciences (India)

    Abstract. TiZrN coating was deposited on 316L stainless steel (SS) by the reactive magnetron co-sputtering tech- nique. .... Uncoated 316L SS exhibited poor corrosion protection ... depletion of native oxide layer present on uncoated substrate.

  19. On the application of thermodynamics of corrosion for service life design of concrete structures

    DEFF Research Database (Denmark)

    Küter, Andre; Geiker, Mette Rica; Møller, Per

    2010-01-01

    There are unexploited possibilities in the application of thermodynamics of corrosion for service life design (SLD) of concrete structures. Thermodynamics provides means for insightful descriptions of corrosion mechanisms and of corrosion protection mechanisms. Strategies for corrosion protection...... of the application of thermodynamics for SLD and gives examples of two applications: description of corrosion processes and design of countermeasures. Emphasis is set on chloride induced corrosion....... can be based on thermodynamically consistent corrosion mechanisms and evaluation of existing and design of new countermeasures can be performed using thermodynamics. Similarly, materials concepts for embedded electrodes can be designed using thermodynamics. The present paper provides a brief outline...

  20. A Multifunctional Smart Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.

    2012-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This

  1. Corrosion behaviour of non-ferrous metals in sea water

    Energy Technology Data Exchange (ETDEWEB)

    Birn, Jerzy; Skalski, Igor [Ship Design and Research Centre, Al. Rzeczypospolitej 8, 80-369 Gdansk (Poland)

    2004-07-01

    caused by a significant difference of corrosion potentials of aluminium alloy and most of metals used in technical applications. Exfoliation is observed mainly in case of Al-Zn-Mg alloys after welding. Corrosion in the presence of OH- ions occurs usually as an effect of application of cathodic protection of aluminium alloys in the over-protected zone. For most of the above mentioned alloys models of corrosion phenomena are presented. Furthermore, the long term prediction of applied alloys life in sea water is discussed. At the end of the paper areas of future studies are presented. (authors)

  2. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    Science.gov (United States)

    Calle, Luz Marina

    2014-01-01

    Corrosion is the degradation of a material that results from its interaction with the environment. The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the United States. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the 70 tons of highly corrosive hydrochloric acid that were generated by the solid rocket boosters. Numerous failures at the launch pads are caused by corrosion.The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. As a result of fifty years of experience with launch and ground operations in a natural marine environment that is highly corrosive, NASAs Corrosion Technology Laboratory at KSC is a major source of corrosion control expertise in the launch and other environments. Throughout its history, the Laboratory has evolved from what started as an atmospheric exposure facility near NASAs launch pads into a world-wide recognized capability that provides technical innovations and engineering services in all areas of corrosion for NASA and external customers.This presentation will provide a historical overview of the role of NASAs Corrosion Technology in anticipating, managing, and preventing corrosion. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  3. Graphene: corrosion-inhibiting coating.

    Science.gov (United States)

    Prasai, Dhiraj; Tuberquia, Juan Carlos; Harl, Robert R; Jennings, G Kane; Rogers, Bridget R; Bolotin, Kirill I

    2012-02-28

    We report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction. Electrochemical impedance spectroscopy measurements suggest that while graphene itself is not damaged, the metal under it is corroded at cracks in the graphene film. Finally, we use Tafel analysis to quantify the corrosion rates of samples with and without graphene coatings. These results indicate that copper films coated with graphene grown via chemical vapor deposition are corroded 7 times slower in an aerated Na(2)SO(4) solution as compared to the corrosion rate of bare copper. Tafel analysis reveals that nickel with a multilayer graphene film grown on it corrodes 20 times slower while nickel surfaces coated with four layers of mechanically transferred graphene corrode 4 times slower than bare nickel. These findings establish graphene as the thinnest known corrosion-protecting coating.

  4. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  5. Features investigation of corrosion-electrochemical behaviour of Al-alloys for engineering an effective protection of the water-distillings setups

    International Nuclear Information System (INIS)

    Fokin, M.N.; Lomakina, S.V.; Tselykh, O.G.; Shatova, T.S.; Trubetskaya, L.F.

    1993-01-01

    The problem of aluminium alloy application in distilling setups is studied. Investigation into the features of corrosion and electrochemical behaviour of aluminium alloys under sea water distillation allows one to reveal the main control factors and to propose optimal alloy compositions capable of providing the safe setup operation on their base. Preliminary treatment in tungsten and molybdenum isopolycompound solutions is proposed which reduces sedimentation which in its turn is very important for distilling setups

  6. Evaluation of protective effect of deposits formed by naphthenic corrosion and sulfidation on carbon steel and steel 5Cr-0.5Mo exposed in atmospheric distillation fractions

    Directory of Open Access Journals (Sweden)

    Gloria Duarte

    2017-05-01

    Full Text Available Refining of so-called opportunity crude oils with a high level of naphthenic acids and sulfur compounds has been increasing interest due to limited availability of light crude oils, however, considerable corrosive effects in the processing to high temperature on pipes and distillation towers mainly by the attack of naphthenic acids and sulfur compounds; sulfur compounds could be corrosive or can reduce the attack of naphthenic acids due to the formation of sulfides layers on the metal surface. In this work was evaluated the performance of deposits formed on the surface of carbon steel AISI SAE 1020 and 5% Cr-0.5% Mo steel exposed in crude oil fractions obtained from atmospheric distillation tower. For this, gravimetric tests were performed in dynamic autoclave using metal samples pre-treated in a crude oil fraction obtained from the atmospheric distillation tower of the Crude Distillation Unit (CDU # 1 in order to form layers of sulfides on the surface of the two materials and subsequently to expose pre-treated and non-pretreated samples in two different crude oil fractions obtained from atmospheric distillation tower of Crude Distillation Unit (CDU # 2. The evaluation showed that the samples pretreated decreased tendency to corrosion by naphthenic acids and sulfidation compared to untreated samples.

  7. Corrosion technology. V. 1

    International Nuclear Information System (INIS)

    Khan, I.H.

    1989-01-01

    This book has been produced for dissemination of information on corrosion technology, corrosion hazards and its control. Chapter one of this book presents an overall view of the subject and chapter 2-5 deals with electrochemical basics, types of corrosion, pourbaix diagrams and form of corrosion. The author explains polarization/kinetics of corrosion, passivity, aqueous corrosion and corrosion testing and monitoring in 6-11 chapters. The author hopes it will provide incentive to all those interested in the corrosion technology. (A.B.)

  8. Corrosion behavior of corrosion resistant alloys in stimulation acids

    Energy Technology Data Exchange (ETDEWEB)

    Cheldi, Tiziana [ENI E and P Division, 20097 San Donato Milanese Milano (Italy); Piccolo, Eugenio Lo; Scoppio, Lucrezia [Centro Sviluppo Materiali, via Castel Romano 100, 00128 Rome (Italy)

    2004-07-01

    In the oil and gas industry, selection of CRAs for downhole tubulars is generally based on resistance to corrosive species in the production environment containing CO{sub 2}, H{sub 2}S, chloride and in some case elemental sulphur. However, there are non-production environments to which these materials must also be resistant for either short term or prolonged duration; these environments include stimulation acids, brine and completion fluids. This paper reports the main results of a laboratory study performed to evaluate the corrosion and stress corrosion behaviour to the acidizing treatments of the most used CRAs for production tubing and casing. Laboratory tests were performed to simulate both 'active' and 'spent' acids operative phases, selecting various environmental conditions. The selected steel pipes were a low alloyed steel, martensitic, super-martensitic, duplex 22 Cr, superduplex 25 Cr and super-austenitic stainless steels (25 Cr 35 Ni). Results obtained in the 'active' acid environments over the temperature range of 100-140 deg. C, showed that the blend acids with HCl at high concentration and HCl + HF represented too much severe conditions, where preventing high general corrosion and heavy localised corrosion by inhibition package becomes very difficult, especially for duplex steel pipe, where, in some case, the specimens were completely dissolved into the solution. On the contrary, all steels pipes were successfully protected by inhibitor when organic acid solution (HCOOH + CH{sub 3}COOH) were used. Furthermore, different effectiveness on corrosion protection was showed by the tested inhibitors packages: e.g. in the 90% HCl at 12% + 10 CH{sub 3}COOH acid blend. In 'spent' acid environments, all steel pipes showed to be less susceptible to the localised and general corrosion attack. Moreover, no Sulphide Stress Corrosion Cracking (SSC) was observed. Only one super-austenitic stainless steel U-bend specimen showed

  9. General Corrosion and Localized Corrosion of the Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua

    2004-09-16

    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847]).

  10. General Corrosion and Localized Corrosion of the Drip Shield

    International Nuclear Information System (INIS)

    F. Hua

    2004-01-01

    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847])

  11. Method for inhibiting corrosion of nickel-containing alloys

    Science.gov (United States)

    DeVan, J.H.; Selle, J.E.

    Nickel-containing alloys are protected against corrosion by contacting the alloy with a molten alkali metal having dissolved therein aluminum, silicon or manganese to cause the formation of a corrosion-resistant intermetallic layer. Components can be protected by applying the coating after an apparatus is assembled.

  12. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    International Nuclear Information System (INIS)

    BOOMER, K.D.

    2007-01-01

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed

  13. CORROSION RATE OF STEELS DX51D AND S220GD IN DIFFERENT CORROSION ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Alina Crina CIUBOTARIU

    2016-06-01

    Full Text Available Corrosion in the marine environment is an important issue because the costs causes by marine corrosion increased year upon year. It is necessary a correctly approach to materials selection, protection and corrosion control to reduce this burden of wasted materials, wasted energy and wasted money. Many different types of corrosion attack can be observed to structures, ships and other equipment used in sea water service. Shipping containers are exposed to various corrosive mediums like as airborne salt, industrial pollutants, rain and saltwater. Transport damage during loading onto and unloading off trucks, train beds and ships breaches the paint coating which further contributes to corrosion. The result is shortened container life and high costs for container repair or replacement. The paper intends to evaluate, by gravimetric method, the corrosion rate and corrosion penetration rate of two types of carbon steel DX51D and S220GD. Carbon steel DX51D and hot-dip galvanized steel S220GD are used in marine and industrial applications for buildings cargo vessels, container ships and oil tankers. For testing it was used different corrosive environments: 5% NaOH solution; 5% HCL solution and 0.5M NaCl solution. The samples were immersed in 400mL of testing solution for exposure period of 28 days. Periodically at 3 days, 7 days, 14 days, 21 days and 28 days was measured de mass loss and evaluate the corrosion rate and corrosion stability coefficient. The steel DX51D was stable in 5% NaOH solution for 28 days, the values of corrosion stability coefficient was 7 after 3 days and 6 after 28 days of immersion in corrosive medium. In 5% HCL solution steels DX51D and S220GD was completely corroded in 21 days with a corrosion stability coefficient equal with 9 for 7 days and 8 for 21 days of immersion in corrosive solution. It was observed a good resistance for 3 days in 0.5M NaCl solution with a corrosion stability coefficient equal with 5, but after that

  14. Isomers of Poly Aminophenol: Chemical Synthesis, Characterization, and Its Corrosion Protection Aspect on Mild Steel in 1 M HCl

    OpenAIRE

    Thenmozhi, G.; Arockiasamy, P.; Santhi, R. Jaya

    2014-01-01

    The oxidative chemical polymerizations of three isomers of aminophenol, ortho, meta, and para (PoAP, PmAP, and PpAP), were performed in aqueous HCl using ammonium persulfate as an oxidant at 0–3°C. The synthesized polymers were characterized by employing elemental analysis, GPC, UV-VIS-NIR, FT-IR, XRD, and TGA. The corrosion inhibition effect of these three polymers on mild steel in 1 M HCl solution was studied by using electrochemical techniques such as potentiodynamic polarization and elect...

  15. Corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by a sol-gel based silane coating filled with amino and isocyanate silane functionalized graphene oxide nanosheets

    Science.gov (United States)

    Parhizkar, Nafise; Ramezanzadeh, Bahram; Shahrabi, Taghi

    2018-05-01

    This research has focused on the effect of graphene oxide (GO) nano-fillers embedded in the sol-gel based silane coating on the corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by silane coatings. For this purpose, a mixture of Methyltriethoxysilane (MTES) and Tetraethylorthosilicate (TEOS) silane precursors was used for preparation of composite matrix and the GO nanosheets, which are covalently functionalized with 3-(Triethoxysilyl)propyl isocyanate (TEPI, IGO nano-fillers) and 3-aminopropyltriethoxysilane (APTES, AGO nano-fillers), were used as filler. The GO, AGO and IGO nanosheets were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), UV-Visible analysis and field emission-scanning electron microscopy techniques. The performance of the silane/epoxy coatings was investigated by pull-off adhesion, cathodic delamination, salt spray and electrochemical impedance spectroscopy (EIS) tests. Results revealed that AGO and IGO nano-fillers significantly improved the corrosion resistance and adhesion properties of the top epoxy coating due to better compatibility with silane matrix, excellent barrier properties and the formation of covalent bonds with the top epoxy coating.

  16. Corrosion and Environmental Degradation, 2 Volume Set

    Science.gov (United States)

    Schütze, Michael; Cahn, Robert W.; Haasen, Peter; Kramer, E. J.

    2001-06-01

    Corrosion and corrosion protection is one of most important topics in applied materials science. Corrosion science is not only important from an economic point of view, but, due to its interdisciplinary nature combining metallurgy, materials physics and electrochemistry, it is also of high scientific interest. Nowadays corrosion science even gets new impetus from surface science and polymer chemistry. This two-volume reference work belonging to the well renown series Materials Science and Tehcnology provides the reader with a sound and broad survey on the whole subject - from the fundamentals to the latest research results. Written by a team of international top-experts it will become an indispensable reference for any materials scientist, physicist or chemist involved in corrosion science.

  17. Water side corrosion prevention in boilers

    International Nuclear Information System (INIS)

    Zeid, A.

    1993-01-01

    Corrosion may be defined as a naturally occurring physical and chemical deterioration of a material due to reaction with the environment or surrounding atmosphere. In boilers the material is subjected on both sides to two different media which may cause severe corrosion. At the water side the content of O 2 considered one of the principal factors which determine the extent of corrosion in the boiler tubes. This paper deals with certain conditions that result in the increase of O 2 in the boiler water and hence increase the corrosion rate, to minimize the effect of these conditions a chemical treatment was carried out the results obtained indicated the success of the treatment procedure in corrosion prevention and boiler material protection. The treatment is traditional. But the study indicates how a simple mean could be applied to solve a serious problem. 4 tab

  18. Inhibition of aluminum corrosion using Opuntia extract

    International Nuclear Information System (INIS)

    El-Etre, A.Y.

    2003-01-01

    The inhibitive action of the mucilage extracted from the modified stems of prickly pears, toward acid corrosion of aluminum, is tested using weight loss, thermometry, hydrogen evolution and polarization techniques. It was found that the extract acts as a good corrosion inhibitor for aluminum corrosion in 2.0 M HCl solution. The inhibition action of the extract was discussed in view of Langmuir adsorption isotherm. It was found that the adsorption of the extract on aluminum surface is a spontaneous process. The inhibition efficiency (IE) increases as the extract concentration is increased. The effect of temperature on the IE was studied. It was found that the presence of extract increases the activation energy of the corrosion reaction. Moreover, the thermodynamic parameters of the adsorption process were calculated. It was found also that the Opuntia extract provides a good protection to aluminum against pitting corrosion in chloride ion containing solutions

  19. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  20. Corrosion processes of alloyed steels in salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Bernhard [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Institut fuer Nukleare Entsorgung

    2018-02-15

    A summary is given of the corrosion experiments with alloyed Cr-Ni steels in salt solutions performed at Research Centre Karlsruhe (today KIT), Institute for Nuclear Waste Disposal (INE) in the period between 1980 and 2004. Alloyed steels show significantly lower general corrosion in comparison to carbon steels. However, especially in salt brines the protective Cr oxide layers on the surfaces of these steels are disturbed and localized corrosion takes place. Data on general corrosion rates, and findings of pitting, crevice and stress corrosion cracking are presented.

  1. Corrosion of Steel in Concrete, Part I – Mechanisms

    DEFF Research Database (Denmark)

    Küter, André; Møller, Per; Geiker, Mette Rica

    2006-01-01

    prematurely. Reinforcement corrosion is identified to be the foremost cause of deterioration. Steel in concrete is normally protected by a passive layer due the high alkalinity of the concrete pore solution; corrosion is initiated by neutralization through atmospheric carbon dioxide and by ingress...... of depassivation ions, especially chloride ions. The background and consequences of deterioration of reinforced concrete structures caused by steel corrosion are summarized. Selected corrosion mechanisms postulated in the literature are briefly discussed and related to observations. The key factors controlling...... initiation and propagation of corrosion of steel in concrete are outlined....

  2. Monitoring corrosion of steel bars in reinforced concrete structures.

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  3. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar Verma

    2014-01-01

    Full Text Available Corrosion of steel bars embedded in reinforced concrete (RC structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP method. This paper also presents few techniques to protect concrete from corrosion.

  4. Isomers of Poly Aminophenol: Chemical Synthesis, Characterization, and Its Corrosion Protection Aspect on Mild Steel in 1 M HCl

    Directory of Open Access Journals (Sweden)

    G. Thenmozhi

    2014-01-01

    Full Text Available The oxidative chemical polymerizations of three isomers of aminophenol, ortho, meta, and para (PoAP, PmAP, and PpAP, were performed in aqueous HCl using ammonium persulfate as an oxidant at 0–3°C. The synthesized polymers were characterized by employing elemental analysis, GPC, UV-VIS-NIR, FT-IR, XRD, and TGA. The corrosion inhibition effect of these three polymers on mild steel in 1 M HCl solution was studied by using electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy. These measurements reveal that the inhibition efficiency obtained by these polymers increased by increasing their concentration. The inhibition efficiency follows the order PpAP > PoAP > PmAP. The results further revealed that PpAP at a concentration of 250 mg/L furnishes maximum inhibition efficiency (96.5%. Polarization studies indicated that these three polymers act as the mixed type corrosion inhibitors.

  5. Corrosion protective performance of amino trimethylene phosphonic acid-metal complex layers fabricated on the cold-rolled steel substrate via one-step assembly

    Science.gov (United States)

    Yan, Ru; He, Wei; Zhai, Tianhua; Ma, Houyi

    2018-06-01

    Seeing that amino trimethylene phosphonic acid (ATMP) possesses very strong complexation ability to metal ions and the phosphonic acid group has good affinity for the oxidized iron surface, herein a simple and rapid film-forming method (one-step assembly method) was developed to construct the ATMP-Zn complex conversion layers (ATMP-Zn layers for short) on the cold-rolled steel (CRS) substrate. Zinc ions were found to participate in the formation process of ATMP-based composite film, which made the Zn-containing ATMP film significantly different in appearance, thickness, microstructure and film-forming mechanisms from the Zn-free ATMP film. There was mainly iron (ш) phosphonate in the Zn-free ATMP film, whereas there were Zn2+-ATMP complex and a certain amount of ZnO in the ATMP-Zn composite film. In addition, electrochemical test results clearly indicate that corrosion resistance of ATMP-Zn composite film was greatly enhanced due to the presence of Zn component. Moreover, the corrosion resistance performance could be controlled by adjusting film-forming time, pH and ATMP concentration in the film-forming solutions. The present study provides a new method for the design and fabrication of high-quality environmentally-friendly conversion layers.

  6. A study on the N-, S- and Cl-modified nano-TiO2 coatings for corrosion protection of stainless steel

    International Nuclear Information System (INIS)

    Yun, Hong; Li, Jing; Chen, Hong-Bo; Lin, Chang-Jian

    2007-01-01

    Nano-titania coatings doped with anions of nitrogen, sulfur and chlorine have been supplied on the surface of 316L stainless steel by a sol-gel process and dip-coating technique. The measurements of XRD, SEM, ATR-IR, Raman and XPS were carried out to characterize the chemical composition and structure for the prepared samples. The corrosion performances of the coating in 0.5 M NaCl were evaluated by electrochemical impedance spectroscopy (EIS) and polarization measurements. According to the measurements of EIS and electrochemical polarization, the N-modified TiO 2 nano-coatings show a highest corrosion resistance among the prepared coatings. It is revealed, from the SEM, XRD and Raman characterizations, that the surface of N-modified TiO 2 nano-coatings are more compact and uniform, relatively well-crystallized and able to act as an optimal barrier layer to metallic substrates. The XPS analysis confirms the presence of low concentration of N element in two forms, atomic β-N (interstitial state) and chemisorbed γ-N 2 on the surface of TiO 2 nano-coatings. It is suggested that the addition of nitrogen is beneficial to improve the compact structure and enhance the hydrophobic property

  7. Accelerated Corrosion Testing

    Science.gov (United States)

    1982-12-01

    Treaty Organization, Brussels, 1971), p. 449. 14. D. 0. Sprowls, T. J. Summerson, G. M. Ugianski, S. G. Epstein, and H. L. Craig , Jr., in Stress...National Association of Corrosion Engineers Houston, TX, 1972). 22. H. L. Craig , Jr. (ed.), Stress Corrosion-New Approaches, ASTM-STP- 610 (American...62. M. Hishida and H. Nakada, Corrosion 33 (11) 403 (1977). b3. D. C. Deegan and B. E. Wilde, Corrosion 34 (6), 19 (1978). 64. S. Orman, Corrosion Sci

  8. Corrosion, inspection and other problems associated with Heat exchangers in the heavy water industry

    International Nuclear Information System (INIS)

    Twigg, R.J.

    1980-01-01

    Corrosion, fabrication and inspection problems encountered in the heavy water industry Heat exchangers are discussed. Among the problems examined are erosion/corrosion of two pass exchangers, rolling of tubes, pitting, fretting and protection for long term storage. (auth)

  9. Launch Pad Coatings for Smart Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability

  10. Steel corrosion in radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Giordano, Celia M.; Saenz, E.; Weier, Dennis R.

    2004-01-01

    A collaborative study is being conducted by CNEA and USDOE (Department of Energy of the United States of America) to investigate the effects of tank waste chemistry on radioactive waste storage tank corrosion. Radioactive waste is stored in underground storage tanks that contain a combination of salts, consisting primarily of sodium nitrate, sodium nitrite and sodium hydroxide. The USDOE, Office of River Protection at the Hanford Site, has identified a need to conduct a laboratory study to better understand the effects of radioactive waste chemistry on the corrosion of waste storage tanks at the Hanford Site. The USDOE science need (RL-WT079-S Double-Shell Tanks Corrosion Chemistry) called for a multi year effort to identify waste chemistries and temperatures within the double-shell tank (DST) operating limits for corrosion control and operating temperature range that may not provide the expected corrosion protection and to evaluate future operations for the conditions outside the existing corrosion database. Assessment of corrosion damage using simulated (non-radioactive) waste is being made of the double-shell tank wall carbon steel alloy. Evaluation of the influence of exposure time, and electrolyte composition and/or concentration is being also conducted. (author) [es

  11. Experimental application of design principles in corrosion research

    International Nuclear Information System (INIS)

    Smyrl, W.H.; Pohlman, S.L.

    1977-01-01

    Experimental design criteria for corrosion investigations are based on established principles for systems that have uniform, or nearly uniform, corrosive attack. Scale-up or scale-down may be accomplished by proper use of dimensionless groups that measure the relative importance of interfacial kinetics, solution conductivity, and mass transfer. These principles have been applied to different fields of corrosion which include materials selection testing and protection; and to a specific corrosion problem involving attack of a substrate through holes in a protective overplate

  12. Corrosion control in electric power plants

    International Nuclear Information System (INIS)

    Syrett, B.C.

    1992-01-01

    This paper reports that corrosion of components in power plants costs the US electric power utility industry billions of dollars each year. Through the Electric Power Research Institute's (EPRI) research and development, several approaches have been developed to reduce these huge costs. They include improved materials selection procedures, coatings, cathodic protection, inhibitors, removal of aggressive species from the environment, and on-line corrosion monitoring. In addition, as part of an on-going technology transfer effort, EPRI is developing databases and expert systems that will help utilities obtain corrosion information and guide them in materials selection and failure analysis

  13. Protection by high velocity thermal spraying coatings on thick walled permanent and interim store components for the diminution of repairs, corrosion and costs 'SHARK'. Overview at the end of the project; Schutz durch Hochgeschwindigkeitsflammspritzschichten auf dickwandigen End- und Zwischenlagerbauteilen zur Reduktion von Reparaturen, Korrosion und Kosten 'SHARK'. Ein Ueberblick zum Abschluss des Projektes

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Sabine; Hassel, Thomas; Bach, Friedrich-Wilhelm [Unterwassertechnikum Hannover, Garbsen (Germany). Inst. fuer Werkstoffkunde; Steinwarz, Wolfgang; Dyllong, Nobert; Tragsdorf, Inga Maren [Siempelkamp Nukleartechnik GmbH, Krefeld (Germany)

    2012-04-15

    The corrosion protection of the internal space of thick-walled interim and permanent storage facility components, such as Castor {sup copyright} containers, are ensured nowadays by a galvanic nickel layer. The method has proved itself and protects the base material of the containers at the underwater loading in the Nuclear power station from a corrosive attack. Although, the galvanic nickel plating is a relatively time consuming method, it lasts for several days for each container, and is with a layer thickness of 1,000 {mu}m also expensive. To develop an alternative, faster and more economical method, a BMBF research project named - 'SHARK - protection by high velocity thermal spraying layers on thick-walled permanent and interim store components for the diminution of repairs, corrosion and costs' in cooperation between Siempelkamp Nukleartechnik GmbH and the Institute of Materials Science of the Leibniz University of Hanover was established to investigate the suitability of the high velocity oxy fuel spraying technology (HVOF) for the corrosion protective coating of thickwalled interim and permanent storage facility components. Since the permanent storage depot components are manufactured from cast iron with globular graphite, this material was exclusively used as a base material in this project. The evaluation of the economical features of the application of different nickel base spraying materials on cast iron substratum was in focus, as well as the scientific characterization of the coating systems with regard to the corrosion protective properties. Furthermore, the feasibility of the transfer of the laboratory results on a large industrial setup as well as a general suitability of the coating process for a required repair procedure was to be investigated. The preliminary examination program identified chromium containing spraying materials as successful. Results of the preliminary examination program have been used for investigations with the CASOIK

  14. Protection of stainless-steels against corrosion in sulphidizing environments by Ce oxide coatings: X-ray absorption and thermogravimetric studies

    NARCIS (Netherlands)

    Fransen, T.; Gellings, P.J.; Fuggle, J.C.; van der Laan, G.; Esteva, J.-M.; Karnatak, R.C.

    1985-01-01

    In this paper a study is reported concerning ceramic coatings containing cerium oxide, prepared by the sol-gel method, used to protect Incoloy 800H against sulphidation. When the coating is sintered in air at 850°C good protection is obtained. In an X-ray absorption spectroscopic study of the

  15. Surface treatment and history-dependent corrosion in lead alloys

    International Nuclear Information System (INIS)

    Li Ning; Zhang Jinsuo; Sencer, Bulent H.; Koury, Daniel

    2006-01-01

    In oxygen-controlled lead and lead-bismuth eutectic (LBE), steel corrosion may be strongly history dependent. This is due to the competition between liquid metal dissolution corrosion and oxidation as a 'self-healing' protection barrier. Such effects can be observed from corrosion testing of a variety of surface-treated materials, such as cold working, shot peening, pre-oxidation, etc. Shot peening of austenitic steels produces surface-layer microstructural damages and grain compression, which could contribute to increased Cr migration to the surface and enhance the protection through an impervious oxide. Pre-oxidation under conditions different from operating ones may form more protective oxides, reduce oxygen and metal ion migration through the oxides, and achieve better protection for longer durations. Corrosion and oxidation modeling and analysis reveal the potential for significantly reducing long-term corrosion rates by initial and early-stage conditioning of steels for Pb/LBE services

  16. Surface treatment and history-dependent corrosion in lead alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li Ning [Los Alamos National Laboratory, Los Alamos, NM (United States)]. E-mail: ningli@lanl.gov; Zhang Jinsuo [Los Alamos National Laboratory, Los Alamos, NM (United States); Sencer, Bulent H. [Los Alamos National Laboratory, Los Alamos, NM (United States); Koury, Daniel [University of Nevada, Las Vegas, NV (United States)

    2006-06-23

    In oxygen-controlled lead and lead-bismuth eutectic (LBE), steel corrosion may be strongly history dependent. This is due to the competition between liquid metal dissolution corrosion and oxidation as a 'self-healing' protection barrier. Such effects can be observed from corrosion testing of a variety of surface-treated materials, such as cold working, shot peening, pre-oxidation, etc. Shot peening of austenitic steels produces surface-layer microstructural damages and grain compression, which could contribute to increased Cr migration to the surface and enhance the protection through an impervious oxide. Pre-oxidation under conditions different from operating ones may form more protective oxides, reduce oxygen and metal ion migration through the oxides, and achieve better protection for longer durations. Corrosion and oxidation modeling and analysis reveal the potential for significantly reducing long-term corrosion rates by initial and early-stage conditioning of steels for Pb/LBE services.

  17. An evaluation of corrosion resistant alloys by field corrosion test in Japanese refuse incineration plants

    International Nuclear Information System (INIS)

    Kawahara, Yuuzou; Nakamura, Masanori; Shibuya, Eiichi; Yukawa, Kenichi

    1995-01-01

    As the first step for development of the corrosion resistant superheater tube materials of 500 C, 100 ata used in high efficient waste-to-energy plants, field corrosion tests of six conventional alloys were carried out at metal temperatures of 450 C and 550 C for 700 and 3,000 hours in four typical Japanese waste incineration plants. The test results indicate that austenitic alloys containing approximately 80 wt% [Cr+Ni] show excellent corrosion resistance. When the corrosive environment is severe, intergranular corrosion of 40∼200 microm depth occurs in stainless steel and high alloyed materials. It is confirmed quantitatively that corrosion behavior is influenced by environmental corrosion factors such as Cl concentration and thickness of deposits on tube surface, metal temperature, and flue gas temperature. The excellent corrosion resistance of high [Cr+Ni+Mo] alloys such as Alloy 625 is explained by the stability of its protective oxide, such that the time dependence of corrosion nearly obeys the parabolic rate law

  18. Stress corrosion cracking prevention using solar electricity

    International Nuclear Information System (INIS)

    Harijan, K.; Uqaaili, M.A; Mirani, M.

    2004-01-01

    Metallic structures exposed to soil and water naturally experience corrosion due to electrolytic action. These structures are also subjected to sustained tensile stresses. The combined effects of corrosion and stress results stress corrosion cracking (SCC). Removal of either of these i.e. stress or corrosion prevents SCC. The cathodic protection (CP) prevents corrosion, and hence prevents stress corrosion. Solar Photo voltaic (PV) generated electricity can be best external power source for CP systems especially in remote areas. This paper presents CP system using solar PV generated electricity as an external power source for prevention of SCC of metallic structures. The paper also compares CP systems using solar electricity with those of CP systems using conventional electricity. The paper concludes that a solar electricity power system provides a reliable solution for powering CP stations especially in remote areas, enables the placing of CP units in any location, and thus ensures optimal current distribution for the exact protection requirements. The paper also concludes that solar electricity CP systems are well suited for SCC protection of metallic structures especially in remote areas of an energy deficit country like Pakistan. (author)

  19. The corrosion and corrosion mechanical properties evaluation for the LBB concept in VVERs

    Energy Technology Data Exchange (ETDEWEB)

    Ruscak, M.; Chvatal, P.; Karnik, D.

    1997-04-01

    One of the conditions required for Leak Before Break application is the verification that the influence of corrosion environment on the material of the component can be neglected. Both the general corrosion and/or the initiation and, growth of corrosion-mechanical cracks must not cause the degradation. The primary piping in the VVER nuclear power plant is made from austenitic steels (VVER 440) and low alloy steels protected with the austenitic cladding (VVER 1000). Inspection of the base metal and heterogeneous weldments from the VVER 440 showed that the crack growth rates are below 10 m/s if a low oxygen level is kept in the primary environment. No intergranular cracking was observed in low and high oxygen water after any type of testing, with constant or periodic loading. In the framework of the LBB assessment of the VVER 1000, the corrosion and corrosion mechanical properties were also evaluated. The corrosion and corrosion mechanical testing was oriented predominantly to three types of tests: stress corrosion cracking tests corrosion fatigue tests evaluation of the resistance against corrosion damage. In this paper, the methods used for these tests are described and the materials are compared from the point of view of response on static and periodic mechanical stress on the low alloyed steel 10GN2WA and weld metal exposed in the primary circuit environment. The slow strain rate tests and static loading of both C-rings and CT specimens were performed in order to assess the stress corrosion cracking characteristics. Cyclic loading of CT specimens was done to evaluate the kinetics of the crack growth under periodical loading. Results are shown to illustrate the approaches used. The data obtained were evaluated also from the point of view of comparison of the influence of different structure on the stress corrosion cracking appearance. The results obtained for the base metal and weld metal of the piping are presented here.

  20. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS might be used for detection of MIC. EN is a suitable technique to characterise the type of corrosion attack, but is unsuitable for corrosion rate estimation. The concentric electrodes galvanic probe arrangement......Abstract Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC...... of carbon steel must be monitored on-line in order to provide an efficient protection and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic...

  1. GCR dismantling: corrosion of vessel internals during decay storage

    International Nuclear Information System (INIS)

    Gras, J.M.

    1991-06-01

    Gas-cooled reactor decommissioning confronts EDF with the problem of the corrosion resistance of vessel internals over a decay storage period fixed at 50 years. The layer of magnetite previously formed in the C0 2 should protect structural steelwork from atmospheric corrosion. In any case, estimated steel corrosion after 50 years may be put at below or equal to 0.1 mm and the corresponding swelling induced by corrosion products at 0.2 mm. There should be no risk of hydrogen embrittlement or stress corrosion cracking of threaded fasteners. Corrosion tests aimed at providing further insight into the effects of the magnetite layer and a program for the surveillance of post-decommissioning structural corrosion should nevertheless be envisaged

  2. Development of Nb{sub 2}O{sub 5}|Cu composite as AISI 1020 steel thermal spray coating for protection against corrosion by soil in buried structures; Desenvolvimento e uso do composito de Nb{sub 2}O{sub 5}|Cu como revestimento aplicado por aspersao termica sobre o aco AISI 1020 para protecao contra a corrosao pelo solo em estruturas enterradas

    Energy Technology Data Exchange (ETDEWEB)

    Regis Junior, Oscar [Universidade Tecnologica Federal do Parana, Ponta Grossa, PR (Brazil). Dept. de Mecanica; Silva, Jose Maurilio da; Portella, Kleber Franke [Instituto de Tecnologia para o Desenvolvimento, Curitiba, PR (Brazil). Dept. de Pesquisa em Engenharia Civil; Paredes, Ramon Sigifredo Cortes, E-mail: regis@utfpr.edu.br [Universidade Federal do Parana, Curitiba, PR (Brazil). Dept. de Mecanica

    2012-07-01

    An Nb{sub 2}O|Cu corrosion-resistant coating was developed and applied onto AISI 1020 steel substrate by Powder Flame Spray. A galvanostatic electrochemical technique was employed, with and without ohmic drop, in four different soils (two corrosively aggressive and two less aggressive). Behavior of coatings in different soils was compared using a cathodic hydrogen reduction reaction (equilibrium potential, overvoltage and exchange current density) focusing on the effect of ohmic drop. Results allow recommendation of Nb{sub 2}O{sub 5}|Cu composite for use in buried structure protection. (author)

  3. Electrochemical corrosion behavior of MSIP Ni coating on depleted uranium surface

    International Nuclear Information System (INIS)

    Chen Lin; Li Kexue; Wang Qingfu; Wang Xiaohong; Guan Weijun

    2014-01-01

    The Ni film was prepared by magnetron sputtering ion plating to improve the corrosion resistance of depleted uranium. The corrosion resistance of the Ni film was examined by electrochemical corrosion station. The results show that the Ni film corrosion potential is -100.8 mV, whereas it is -641.2 mV for depleted uranium in 50 μg/g KCl solution. The Ni film is a barrier to protect the depleted uranium substrate avoiding the corrosive media attack. The Ni film polarization resistance and impedance are much higher, while the corrosion current density is much lower contrast with depleted uranium. None crack or flake is found through 70 h corrosion. The corrosion resistance and corrosion current keep stable. It is indicated that the corrosion resistance of depleted uranium is effectively improved after deposited Ni film by magnetron sputtering ion plating. (authors)

  4. Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn-Al-Mg coatings on steel

    International Nuclear Information System (INIS)

    Volovitch, P.; Vu, T.N.; Allely, C.; Abdel Aal, A.; Ogle, K.

    2011-01-01

    Highlights: → Origins of better corrosion resistance of ZnAlMg coatings than galvanized steel. → Comparative study of corrosion products formed on ZnAlMg, ZnMg and Zn coatings. → Modeling of dissolution and precipitation stages of corrosion. → At early stages Mg stabilizes protective zinc basic salts during dry-wet cycling. → At later stages Al dissolves at high pH forming protective layered double hydroxides. - Abstract: Corrosion products are identified on Zn, ZnMg and ZnAlMg coatings in cyclic corrosion tests with NaCl or Na 2 SO 4 containing atmospheres. For Mg-containing alloys the improved corrosion resistance is achieved by stabilization of protective simonkolleite and zinc hydroxysulfate. At later stages, the formation of layered double hydroxides (LDH) is observed for ZnAlMg. According to thermodynamic modeling, Mg 2+ ions bind the excess of carbonate or sulfate anions preventing the formation of soluble or less-protective products. A preferential dissolution of Zn and Mg at initial stages of corrosion is confirmed by in situ dissolution measurement. The physicochemical properties of different corrosion products are compared.

  5. Galvanic corrosion of beryllium welds

    International Nuclear Information System (INIS)

    Hill, M.A.; Butt, D.P.; Lillard, R.S.

    1997-01-01

    Beryllium is difficult to weld because it is highly susceptible to cracking. The most commonly used filler metal in beryllium welds is Al-12 wt.% Si. Beryllium has been successfully welded using Al-Si filler metal with more than 30 wt.% Al. This filler creates an aluminum-rich fusion zone with a low melting point that tends to backfill cracks. Drawbacks to adding a filler metal include a reduction in service temperature, a lowering of the tensile strength of the weld, and the possibility for galvanic corrosion to occur at the weld. To evaluate the degree of interaction between Be and Al-Si in an actual weld, sections from a mock beryllium weldment were exposed to 0.1 M Cl - solution. Results indicate that the galvanic couple between Be and the Al-Si weld material results in the cathodic protection of the weld and of the anodic dissolution of the bulk Be material. While the cathodic protection of Al is generally inefficient, the high anodic dissolution rate of the bulk Be during pitting corrosion combined with the insulating properties of the Be oxide afford some protection of the Al-Si weld material. Although dissolution of the Be precipitate in the weld material does occur, no corrosion of the Al-Si matrix was observed

  6. Protective

    Directory of Open Access Journals (Sweden)

    Wessam M. Abdel-Wahab

    2013-10-01

    Full Text Available Many active ingredients extracted from herbal and medicinal plants are extensively studied for their beneficial effects. Antioxidant activity and free radical scavenging properties of thymoquinone (TQ have been reported. The present study evaluated the possible protective effects of TQ against the toxicity and oxidative stress of sodium fluoride (NaF in the liver of rats. Rats were divided into four groups, the first group served as the control group and was administered distilled water whereas the NaF group received NaF orally at a dose of 10 mg/kg for 4 weeks, TQ group was administered TQ orally at a dose of 10 mg/kg for 5 weeks, and the NaF-TQ group was first given TQ for 1 week and was secondly administered 10 mg/kg/day NaF in association with 10 mg/kg TQ for 4 weeks. Rats intoxicated with NaF showed a significant increase in lipid peroxidation whereas the level of reduced glutathione (GSH and the activity of superoxide dismutase (SOD, catalase (CAT, glutathione S-transferase (GST and glutathione peroxidase (GPx were reduced in hepatic tissues. The proper functioning of the liver was also disrupted as indicated by alterations in the measured liver function indices and biochemical parameters. TQ supplementation counteracted the NaF-induced hepatotoxicity probably due to its strong antioxidant activity. In conclusion, the results obtained clearly indicated the role of oxidative stress in the induction of NaF toxicity and suggested hepatoprotective effects of TQ against the toxicity of fluoride compounds.

  7. Mortar fights acid corrosion

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-14

    The burning of coal or oil to produce heat required to operate a power boiler also generates a severe corrosion problem within the interior of the duct and stacks used to emit the flue gas into the atmosphere. How can concrete and steel be protected from the effects of acid attack, when the acids are carried in a gas form, or come into direct contact with the steel or concrete from spillage or immersion conditions. Industry in North America has found that the solution to this problem is to build an outside concrete column, in this case of Portland cement, and inside that column, build a totally independent brick liner bonded with Sauereisen mortar.

  8. Nontoxic corrosion inhibitors for N80 steel in hydrochloric acid

    OpenAIRE

    M. Yadav; Debasis Behera; Usha Sharma

    2016-01-01

    The purpose of this paper is to evaluate the protective ability of 1-(2-aminoethyl)-2-oleylimidazoline (AEOI) and 1-(2-oleylamidoethyl)-2-oleylimidazoline (OAEOI) as corrosion inhibitors for N80 steel in 15% hydrochloric acid, which may find application as eco-friendly corrosion inhibitors in acidizing processes in petroleum industry. Different concentrations of synthesized inhibitors AEOI and OAEOI were added to the test solution (15% HCl) and the corrosion inhibition of N80 steel in hydroch...

  9. Corrosion of carbon steel under waste disposal conditions

    International Nuclear Information System (INIS)

    Marsh, G.

    1990-01-01

    The corrosion of carbon steel has been studied in the United Kingdom under granitic groundwater conditions, with pH between 5 and 10 and possibly substantial amounts of Cl - , SO 4 2- and HCO 3 - /CO 3 2- . Corrosion modes considered include uniform corrosion under both aerobic and anaerobic conditions; passive corrosion; localized attack in the form of pitting or crevice corrosion; and environmentally assisted cracking - hydrogen embrittlement or stress corrosion cracking. Studies of these processes are being carried out in order to predict the metal thicknesses required to give container lifetimes of 500 to 1000 years. A simple uniform corrosion model predicts a corrosion rate of around 13.4 μm/a at 20C, rising to 69 μm/a at 50C and 208 μm/a at 90C. A radiation dose of 10 5 rad/h and a G-value of 2.8 for the production of oxidizing species would account for an increase in corrosion rate of 7 μm/a. This model overestimates slightly the results actually achieved for experimental samples exposed for two years, the difference being due to a protective film formed on the samples. These corrosion rates predict that the container must be 227 mm thick to withstand uniform corrosion; however, they predict very high levels of hydrogen production. Conditions will be favourable for localized or pitting corrosion for about 125 years, leading to a maximum penetration of 160 mm. Since the exposure environment cannot be predicted precisely, one cannot state that stress corrosion cracking is impossible. Thus the container must be stress relieved. Other corrosion mechanisms such as microbial corrosion and hydrogen embrittlement are not considered significant

  10. Catastrophes caused by corrosion

    OpenAIRE

    PETROVIC ZORAN C.

    2016-01-01

    For many years, huge attention has been paid to the problem of corrosion damage and destruction of metallic materials. Experience shows that failures due to corrosion problems are very important, and statistics at the world level shows that the damage resulting from the effects of various forms of corrosion is substantial and that, for example, in industrialized countries it reaches 4-5% of national incomes. Significant funds are determined annually for the prevention and control of corrosion...

  11. Modelling of Corrosion Cracks

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed.......Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed....

  12. Erosion-corrosion

    International Nuclear Information System (INIS)

    Aghili, B.

    1999-05-01

    A literature study on erosion-corrosion of pipings in the nuclear industry was performed. Occurred incidents are reviewed, and the mechanism driving the erosion-corrosion is described. Factors that influence the effect in negative or positive direction are treated, as well as programs for control and inspection. Finally, examples of failures from databases on erosion-corrosion are given in an attachment

  13. Management of Reinforcement Corrosion

    DEFF Research Database (Denmark)

    Küter, André; Geiker, Mette Rica; Møller, Per

    Reinforcement corrosion is the most important cause for deterioration of reinforced concrete structures, both with regard to costs and consequences. Thermodynamically consistent descriptions of corrosion mechanisms are expected to allow the development of innovative concepts for the management...... of reinforcement corrosion....

  14. NASA's Beachside Corrosion Test Site and Current Environmentally Friendly Corrosion Control Initiatives

    Science.gov (United States)

    Russell, Richard W.; Calle, Luz Marina; Johnston, Frederick; Montgomery, Eliza L.; Curran, Jerome P.; Kolody, Mark R.

    2013-01-01

    NASA began corrosion studies at the Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term corrosion protective coatings for carbon steel. KSC's Beachside Corrosion Test Site (BCTS), which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring, environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acid ic exhaust from the solid rocket boosters. In the years that followed, numerous studies have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. This paper presents a historical overview of over 45 years of corrosion and coating evaluation studies and a description of the BCTS's current capabilities. Additionally, current research and testing programs involving chromium free coatings, environmentally friendly corrosion preventative compounds, and alternates to nitric acid passivation will be discussed.

  15. The study of epoxy polyamide and polyvinyl resins as corrosion ...

    African Journals Online (AJOL)

    The corrosion resistance of two commonly used protective coatings (epoxy polyamide and polyvinyl resins) in the Niger Delta area of Nigeria has been assessed. The coatings on low carbon steel were subjected to varying conditions of pH, temperature and exposure time and the corrosion rates calculated. At a pH of 2, 3, 4, ...

  16. Inhibition Effect of Deanol on Mild Steel Corrosion in Dilute ...

    African Journals Online (AJOL)

    NICOLAAS

    2014-06-23

    Jun 23, 2014 ... The influence of deanol on the corrosion behaviour of mild steel in dilute sulphuric acid with sodium ... the formation of a complex precipitate of protective film, which ... silicon carbide abrasive papers of 80, 120, 220, 800 and 1000 grit ...... ions in sulphuric acid on the corrosion behaviour of stainless steel,.

  17. Metal corrosion inhibitors and ecology

    International Nuclear Information System (INIS)

    Krasts, H.; Svarce, J.; Berge, B.

    1999-01-01

    The use of metal corrosion inhibitors in water is one of the cheapest method to protect metals against corrosion. However, the used inhibitors can come to surface water in the course of time and can become as source of environmental pollution. It is important to co-ordinate amount of substances in the elaborated inhibitors not only with demands for metal protection, but also with demands for quality of surface water and drinking water according to normative statements: 3.5 mg/l (as PO 4 ) for hexametaphosphate, tripolyphosphate and phosphonate; 40 mg/l (as SiO 2 for silicate, up to 1 mg/l for CU 2+ ; up to 5 mg/l for Zn 2+ ; up to 1 mg/l for B; up to 0.5 mg/l for Mo 2+ . The examples of the elaborated inhibitors are given. Many organic substances can be used as corrosion inhibitors, but there is shortage of standard methods for their analysis in water in Latvia. Removing of salt's deposits from boilers needs elaboration of a separate normative statement for dispersing waste water which content chloride at high concentration and heavy metals. (authors)

  18. Corrosion of steel in concrete

    International Nuclear Information System (INIS)

    Preece, C.M.

    1982-10-01

    A comparative study has been made of those properties of Massiv and Standard cements which are considered to determine their ability to protect steel reinforcement from corroding. Saturated Massiv cement has a higher evaporabel water content, but a significantly finer pore structure than has saturated Standard cement. This fine structure resulted in an electrical resistivity ten times higher and chloride diffusivity ten times lower than those of Standard cement. Electrochemical measurements have shown that the passive current density of steel in Massiv mortar is higher than that of steel in Standard mortar, but the higher current should lead to a more rapid decrease in potential to a level at which neither chloride attack of hydrogen evolution will occur. Whereas steel in Standard mortar was found to be highly susceptible to crevice corrosion, no such attack has been observed in Massiv mortar. Moreover, the initiation of chloride induced corrosion and the subsequent rates of corrosion were both lower in Massiv mortar than in Standard mortar. Thus, it may be predicted that Massiv cement would provide greater protection for steel reinforcement in underground structures exposed to chloride containing ground water than would Standard cement. (author)

  19. Fighting corrosion in India

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, K S; Rangaswamy, N S

    1979-03-01

    A survey covers the cost of corrosion in India; methods of preventing corrosion in industrial plants; some case histories, including the prevention of corrosion in pipes through which fuels are pumped to storage and the stress-corrosion cracking of evaporators in fertilizer plants; estimates of the increase in demand in 1979-89 for anticorrosion products and processes developed by the Central Electrochemical Research Institute (CECRI) at Karaikudi, India; industries that may face corrosion problems requiring assistance from CECRI, including the light and heavy engineering structural, and transport industries and the chemical industry; and some areas identified for major efforts, including the establishment of a Corrosion Advisory Board with regional centers and the expansion of the Tropical Corrosion Testing Station at Mandapam Camp, Tamil Nadu.

  20. Corrosion of titanium: Part 1: aggressive environments and main forms of degradation.

    Science.gov (United States)

    Prando, Davide; Brenna, Andrea; Diamanti, Maria Vittoria; Beretta, Silvia; Bolzoni, Fabio; Ormellese, Marco; Pedeferri, MariaPia

    2017-11-11

    Titanium has outstanding corrosion resistance due to the external natural oxide protective layer formed when it is exposed to an aerated environment. Despite this, titanium may suffer different forms of corrosion in severe environments: uniform corrosion, pitting and crevice corrosion, hydrogen embrittlement, stress-corrosion cracking, fretting corrosion and erosion. In this first review, forms of corrosion affecting titanium are analyzed based on a wide literature review. For each form of corrosion, the mechanism and most severe environment are reported according to the current understanding.In the second part, this review will address the possible surface treatments that can increase corrosion resistance on commercially pure titanium: Electrochemical anodizing, thermal oxidation, chemical oxidation and bulk treatments such as alloying will be considered, highlighting the advantages of each technique.

  1. An electrochemical study of the corrosion behavior of primer coated 2219-T87 aluminum

    Science.gov (United States)

    Danford, M. D.; Higgins, R. H.

    1985-01-01

    The corrosion behavior for 2219-T87 aluminum coated with various primers, including those used for the external tank and solid rocket boosters of the Space Shuttle Transportation System, were investigated using electrochemical techniques. Corrosion potential time, polarization resistance time, electrical resistance time, and corrosion rate time measurements were all investigated. It was found that electrical resistance time and corrosion rate time measurement were most useful for studying the corrosion behavior of painted aluminum. Electrical resistance time determination give useful information concerning the porosity of paint films, while corrosion rate time curves give important information concerning overall corrosion rates and corrosion mechanisms. In general, the corrosion rate time curves all exhibited at least one peak during the 30 day test period, which was attributed, according to the proposed mechanisms, to the onset of the hydrogen evolution reaction and the beginning of destruction of the protective properties of the paint film.

  2. The use of electrochemical measurement techniques towards quality control and optimisation of corrosion properties of thermal spray coatings

    NARCIS (Netherlands)

    Vreijling, M.P.W.; Hofman, R.; Westing, E.P.M. van; Ferrari, G.M.; Wit, J.H.W. de

    1998-01-01

    Metal spray coatings are ever more recognised as a possible superior means of corrosion protection in many environments. Extended service life combined with little or no maintenance provides interesting opportunities for both environmentalists and corrosion engineers. Although many successful

  3. Influence of heat treatment on corrosive resistance of concrete steels

    International Nuclear Information System (INIS)

    Woldan, A.; Suliga, I.; Kusinski, J.; Jazowy, R.

    1998-01-01

    The reinforcing bars are essential elements of ferro-concrete structures. During the building structure service the reinforcing bars should co-operate with surrounding concrete. Any bonding defects as well as corrosion induced strength reduction may result in construction failure. The reinforcing steel working environment is determined by concrete chemical and phase composition and surrounding environmental properties. The aggressive corrosive activity of the letter implies necessity of effective ways development to protect elements against corrosion. The effect of heat treatment, increased Si content in steel on corrosion resistance of reinforcing steel in concrete was studied in the current work. Corrosion tests and metallographic examinations proved a positive influence of hardening and Si enrichment on corrosion resistance of reinforcing bars in ferro-concrete structures. (author)

  4. Corrosion resistance of high-performance materials titanium, tantalum, zirconium

    CERN Document Server

    2012-01-01

    Corrosion resistance is the property of a material to resist corrosion attack in a particular aggressive environment. Although titanium, tantalum and zirconium are not noble metals, they are the best choice whenever high corrosion resistance is required. The exceptionally good corrosion resistance of these high–performance metals and their alloys results from the formation of a very stable, dense, highly adherent, and self–healing protective oxide film on the metal surface. This naturally occurring oxide layer prevents chemical attack of the underlying metal surface. This behavior also means, however, that high corrosion resistance can be expected only under neutral or oxidizing conditions. Under reducing conditions, a lower resistance must be reckoned with. Only very few inorganic and organic substances are able to attack titanium, tantalum or zirconium at ambient temperature. As the extraordinary corrosion resistance is coupled with an excellent formability and weldability these materials are very valua...

  5. Corrosion of aluminum components and remedial measures

    International Nuclear Information System (INIS)

    Sheikh, S.T.; Khalique, A.; Malik, F.A.

    2006-01-01

    Aluminum has versatile physical properties, mechanical strength, corrosion resistance, and is used in special applications like aerospace, automobiles and other strategic industries. The outdoor exposed structural components of aluminum have very good corrosion resistance due to the thick oxide layer (0.2 -0.4 micro). This study involves the corrosion of aluminum based components, though aluminum is protected by an oxide layer but due to extreme weather and environmental conditions the oxide layer was damaged. The corroded product was removed, pits or cavities formed due to the material removal were filled with epoxy resins and acrylic-based compounds containing fibreglass as reinforcement. Optimum results were obtained with epoxy resins incorporated with 5% glass fibers. The inner surface of the components was provided further protection with a cellulose nitrate compound. (author)

  6. PIPELINE CORROSION CONTROL IN OIL AND GAS INDUSTRY: A ...

    African Journals Online (AJOL)

    user

    protection technique as a method of controlling corrosion in oil and gas pipelines is effective and efficient when compared to ... In the field of crude oil production and associated engineering .... Industrial/Mechanical Systems, Joen Printing and.

  7. Corrosion performance of prestressing strands in contact with dissimilar grouts.

    Science.gov (United States)

    2013-01-01

    To improve the corrosion protection provided to prestressing strands, anti-bleed grouts are used to fill voids in post-tensioning : ducts that result from bleeding and shrinkage of older Portland Cement grouts. Environmental differences caused by exp...

  8. Investigation of Corrosion of Buried Oil Pipeline by the Electrical ...

    African Journals Online (AJOL)

    MICHAEL

    ABSTRACT: The delineation of possible areas of corrosion along an underground oil pipeline in Ubeji, ... prevention of pipeline failure with its attendant environmental, human and economic consequences. @ JASEM .... Cathodic protection as.

  9. Influence of preoxidation on high temperature corrosion of a Ni-based alloy under conditions relevant to biomass firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2017-01-01

    . Complementary characterization methods were employed to study samples after preoxidation as well as after corrosion exposure. The oxides obtained by the preoxidation treatments protected the alloy during corrosion exposure at 560 °C for a period of 168 h. In contrast, non-preoxidized samples suffered corrosion...... attack and formed porous non-protective oxides containing the alloying elements, Ni, Cr, Ti and Al. The influence of the preoxidation layers on the corrosion mechanism is discussed....

  10. Hot corrosion of pack cementation aluminized carbon steel

    International Nuclear Information System (INIS)

    Waheed, A.F.; Mohamed, K.E.; Abd El-Azim, M.E.; Soliman, H.M.

    1998-01-01

    Low carbon steel was aluminized by the pack cementation technique at various aluminizing temperatures and times in or der to have different aluminide coatings. The aluminized specimens were sprayed at the beginning of the hot corrosion experiments with Na C 1+Na 2 SO 4 solution. The hot corrosion tests were carried out by thermal cycling at 850 degree C in air. The results were evaluated by, corrosion kinetics based on weight change measurements, scanning electron microscopy and energy dispersive X-ray analysis. It was found that the maximum corrosion resistance to this corrosive environment is achieved by aluminizing at 900 degree C for 19 h or 950 degree C for >4 h. These aliminizing conditions lead to formation of thick aluminide coatings with sufficient aluminium concentration (>15 wt%) at their outer surface necessary for continuous formation of protective Al 2 O 3 scale. The tested materials are used in protection of some components used in electric power stations (conventional or nuclear)

  11. Corrosion of carbon steel in neutral water

    International Nuclear Information System (INIS)

    Kawai, Noboru; Iwahori, Toru; Kurosawa, Tatsuo

    1983-01-01

    The initial corrosion behavior of materials used in the construction of heat exchanger and piping system of BWR nuclear power plants and thermal power plants have been examined in neutral water at 30, 50, 100, 160, 200, and 285 deg C with two concentrations of dissolved oxygen in the water. In air-saturated water, the corrosion rate of carbon steel was so higher than those in deaerated conditions and the maximum corrosion rate was observed at 200 deg C. The corrosion rate in deaerated water gradually increased with increasing the water temperature. Low alloy steel (2.25 Cr, 1Mo) exhibited good corrosion resistance compared with the corrosion of carbon steel under similar testing conditions. Oxide films grown on carbon steel in deaerated water at 50, 100, 160, 200, and 285 deg C for 48 and 240 hrs were attacked by dissolved oxygen in room temperature water respectively. However the oxide films formed higher than about 160 deg C showed more protective. The electrochemical behavior of carbon steel with oxide films was also similar to the effect of temperature on the stability of oxide films. (author)

  12. Corrosion processes on weathering steel railway bridge in Prague

    OpenAIRE

    Urban, Viktor; Křivý, Vít; Buchta, Vojtěch

    2016-01-01

    This contribution deals with experimental corrosion tests carried out on the weathering steel railway bridge in Prague. The basic specific property of the weathering steel is an ability to create in favourable environment a protective patina layer on its surface. Since 1968 weathering steel is used under the name “Atmofix” in the Czech Republic and can be used as a standard structural material without any corrosion protection. The weathering steel Atmofix is mostly used for bridge structures ...

  13. Monitoring Microbially Influenced Corrosion

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    and diffusional effects and unreliable corrosion rates, when biofilm and ferrous sulphide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 by electrochemical techniques. Weight loss coupons and ER are recommended as necessary basic monitoring techniques......Abstract Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria (SRB). The applicability and reliability of a number of corrosion monitoring techniques for monitoring MIC has been evaluated in experiments....... EIS might be used for detection of MIC as the appearance of very large capacitances can be attributed to the combined ferrous sulphide and biofilm formation. Capacitance correlates directly with sulphide concentration in sterile sulphide media. Keywords: Corrosion monitoring, carbon steel, MIC, SRB...

  14. SRB seawater corrosion project

    Science.gov (United States)

    Bozack, M. J.

    1991-01-01

    The corrosion behavior of 2219 aluminum when exposed to seawater was characterized. Controlled corrosion experiments at three different temperatures (30, 60 and 100 C) and two different environments (seawater and 3.5 percent salt solution) were designed to elucidate the initial stages in the corrosion process. It was found that 2219 aluminum is an active catalytic surface for growth of Al2O3, NaCl, and MgO. Formation of Al2O3 is favored at lower temperatures, while MgO is favored at higher temperatures. Visible corrosion products are formed within 30 minutes after seawater exposure. Corrosion characteristics in 3.5 percent salt solution are different than corrosion in seawater. Techniques utilized were: (1) scanning electron microscopy, (2) energy dispersive x-ray spectroscopy, and (3) Auger electron spectroscopy.

  15. Effect of chlorides on the corrosion behaviour of mild steel

    International Nuclear Information System (INIS)

    Harada, Kazuyuki; Shimada, Minoru

    1980-01-01

    In PWR's steam generators, ''denting'' resulted from corrosion of support plate material, carbon steel is an important problem. The role of chlorides in corrosion acceleration of mild steel was studied. Corrosion tests were conducted at temperature from 100 0 C to 280 0 C in deaerated solutions of NaCl and MgCl 2 which are main content of sea water. 1) Solution of MgCl 2 was more corrosive than that of NaCl. The more increased in concentration of each chloride solution, the more corrosive in MgCl 2 soln. but the less corrosive in NaCl soln. 2) The rate of corrosion in the mixed solution of NaCl and MgCl 2 was governed by the concentration of MgCl 2 soln. The corrosion behaviour in sea water was suggested to be not controlled by NaCl but by MgCl 2 . 3) Acidification of MgCl 2 soln. could be evaluated by experiment at 100 0 C, the degree of acidification increased with increasing the concentration. However, the value of pH during corrosion was kept constant by the concentration of dissolved Fe 2+ ions. 4) The corrosion acceleration by MgCl 2 soln. was arised not only from acidification by the solution itself but from continuous supplementation of H + ions with the hydrolysis of dissolved Fe 2+ ions. This autocatalytic corrosion process not exhausting acid was characterized with the corrosion in closed system such as in crevice. In addition to acidification of MgCl 2 soln., the formation of non-protective magnetite film by Mg 2+ ion was estimated to be a reason of accelerated corrosion. (author)

  16. Corrosion performance of inorganic coatings in seawater

    NARCIS (Netherlands)

    Zhang, X.; Buter, S.J.; Ferrari, G.M.; Westing, E. van; Kowalski, L.

    2011-01-01

    Inorganic coatings are widely used to protect carbon steel hydraulic cylinder rods from wear and corrosion in aggressive offshore environment. Different types of lay-ers such as Ni/Cr, Al2O3, Cr2O3, TiO2, and Inconel 625 layers were applied to the carbon steels by plasma, High Velocity Oxygen Fuel

  17. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation

    Science.gov (United States)

    Gąsiorek, Jolanta; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-01

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented. PMID:29373540

  18. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation

    Directory of Open Access Journals (Sweden)

    Jolanta Gąsiorek

    2018-01-01

    Full Text Available Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented.

  19. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation.

    Science.gov (United States)

    Gąsiorek, Jolanta; Szczurek, Anna; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-26

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented.

  20. Coatings and Corrosion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Coatings and Corrosion Laboratory is to develop and analyze the effectiveness of innovative coatings test procedures while evaluating the...