WorldWideScience

Sample records for corrosion monitoring cabinet

  1. Acceptance Test Plan for Fourth-Generation Corrosion Monitoring Cabinet

    International Nuclear Information System (INIS)

    NORMAN, E.C.

    2000-01-01

    This Acceptance Test Plan (ATP) will document the satisfactory operation of the third-generation corrosion monitoring cabinet (Hiline Engineering Part No.0004-CHM-072-C01). This ATP will be performed by the manufacturer of the cabinet prior to delivery to the site. The objective of this procedure is to demonstrate and document the acceptance of the corrosion monitoring cabinet. The test will consist of a continuity test of the cabinet wiring from the end of cable to be connected to corrosion probe, through the appropriate intrinsic safety barriers and out to the 15 pin D-shell connectors to be connected to the corrosion monitoring instrument. Additional testing will be performed using a constant current and voltage source provided by the corrosion monitoring hardware manufacturer to verify proper operation of corrosion monitoring instrumentation

  2. Acceptance Test Report for Fourth-Generation Hanford Corrosion Monitoring Cabinet

    International Nuclear Information System (INIS)

    NORMAN, E.C.

    2000-01-01

    This Acceptance Test Plan (ATP) will document the satisfactory operation of the third-generation corrosion monitoring cabinet (Hiline Engineering Part No.0004-CHM-072-C01). This ATP will be performed by the manufacturer of the cabinet prior to delivery to the site. The objective of this procedure is to demonstrate and document the acceptance of the corrosion monitoring cabinet. The test will consist of a continuity test of the cabinet wiring from the end of cable to be connected to corrosion probe, through the appropriate intrinsic safety barriers and out to the 15 pin D-shell connectors to be connected to the corrosion monitoring instrument. Additional testing will be performed using a constant current and voltage source provided by the corrosion monitoring hardware manufacturer to verify proper operation of corrosion monitoring instrumentation

  3. Engineering Task Plan for Fourth Generation Hanford Corrosion Monitoring System

    International Nuclear Information System (INIS)

    NORMAN, E.C.

    2000-01-01

    This Engineering Task Plan (ETP) describes the activities associated with the installation of cabinets containing corrosion monitoring equipment on tanks 241-AN-102 and 241-AN-107. The new cabinets (one per tank) will be installed adjacent to existing corrosion probes already installed in riser WST-RISER-016 on both tanks. The corrosion monitoring equipment to be installed utilizes the technique of electrochemical noise (EN) for monitoring waste tank corrosion. Typically, EN consists of low frequency (4 Hz) and small amplitude signals that are spontaneously generated by electrochemical reactions occurring at corroding or other surfaces. EN analysis is well suited for monitoring and identifying the onset of localized corrosion, and for measuring uniform corrosion rates. A typical EN based corrosion-monitoring system measures instantaneous fluctuations in corrosion current and potential between three nominally identical electrodes of the material of interest immersed in the environment of interest. Time-dependent fluctuations in corrosion current are described by electrochemical current noise, and time-dependent fluctuations of corrosion potential are described by electrochemical noise. The corrosion monitoring systems are designed to detect the onset of localized corrosion phenomena if tank conditions should change to allow these phenomena to occur. In addition to the EN technique, the systems also facilitate the use of the Linear Polarization Resistance (LPR) technique to collect uniform corrosion rate information. LPR measures the linearity at the origin of the polarization curve for overvoltages up to a few millivolts away from the rest potential or natural corrosion potential. The slope of the current vs. voltage plot gives information on uniform corrosion rates

  4. On-line Monitoring Device for High-voltage Switch Cabinet Partial Discharge Based on Pulse Current Method

    Science.gov (United States)

    Y Tao, S.; Zhang, X. Z.; Cai, H. W.; Li, P.; Feng, Y.; Zhang, T. C.; Li, J.; Wang, W. S.; Zhang, X. K.

    2017-12-01

    The pulse current method for partial discharge detection is generally applied in type testing and other off-line tests of electrical equipment at delivery. After intensive analysis of the present situation and existing problems of partial discharge detection in switch cabinets, this paper designed the circuit principle and signal extraction method for partial discharge on-line detection based on a high-voltage presence indicating systems (VPIS), established a high voltage switch cabinet partial discharge on-line detection circuit based on the pulse current method, developed background software integrated with real-time monitoring, judging and analyzing functions, carried out a real discharge simulation test on a real-type partial discharge defect simulation platform of a 10KV switch cabinet, and verified the sensitivity and validity of the high-voltage switch cabinet partial discharge on-line monitoring device based on the pulse current method. The study presented in this paper is of great significance for switch cabinet maintenance and theoretical study on pulse current method on-line detection, and has provided a good implementation method for partial discharge on-line monitoring devices for 10KV distribution network equipment.

  5. Monitoring Microbially Influenced Corrosion

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    and diffusional effects and unreliable corrosion rates, when biofilm and ferrous sulphide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 by electrochemical techniques. Weight loss coupons and ER are recommended as necessary basic monitoring techniques......Abstract Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria (SRB). The applicability and reliability of a number of corrosion monitoring techniques for monitoring MIC has been evaluated in experiments....... EIS might be used for detection of MIC as the appearance of very large capacitances can be attributed to the combined ferrous sulphide and biofilm formation. Capacitance correlates directly with sulphide concentration in sterile sulphide media. Keywords: Corrosion monitoring, carbon steel, MIC, SRB...

  6. Monitoring corrosion rates and localised corrosion in low conductivity water

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2006-01-01

    Monitoring of low corrosion rates and localised corrosion in a media with low conductivity is a challenge. In municipal district heating, quality control may be improved by implementing on-line corrosion monitoring if a suitable technique can be identified to measure both uniform and localised...... corrosion. Electrochemical techniques (LPR, EIS, crevice corrosion current) as well as direct measurement techniques (high-sensitive electrical resistance, weight loss) have been applied in operating plants. Changes in the corrosion processes are best monitored in non-aggressive, low conductivity media...

  7. Evaluation of seismic characteristics and structural integrity for the cabinet of HANARO seismic monitoring analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2003-06-01

    The HANARO SMAS(Seismic Monitoring Analysis System) is classified as Non-Nuclear Safety(NNS), seismic category I, and quality class T. It is required that this system can perform required functions, which are to preserve its structural integrity during and after an OBE or SSE. In this work, the structural integrity and seismic characteristics of the cabinet of the newly developed SMAS have been estimated. The most parts of the cabinet are identically designed with those of Yonggwhang and Gori Nuclear Power Plants(NPPs), unit 1 that successfully completed the required seismic qualification tests. The structure of the cabinet of the SMAS is manufactured by the manufacturer of the cabinet of Yonggwhang and Gori NPPs. To evaluate the seismic characteristics of the SMAS, the RRS(Required Response Spectra) of the newly developed cabinet are compared with those of Yonggwhang and Gori NPPs, unit 1. In addition, natural frequencies of the cabinet of HANARO, Yonggwhang, and Gori NPPs were measured for the comparison of the seismic characteristics of the installed cabinets. In case of HANARO, the bottom of the cabinet is welded to the base plate. The base plate is fixed to the concrete foundation by using anchor bolts. For the evaluation of the structural integrity of the welding parts and the anchor bolts, the maximum stresses and forces of the welding parts and the anchor bolts due to seismic loading are estimated. The analysis results show that maximum stresses and forces are less than the allowable limits. This new SMAS is operating at HANARO instrument room to acquire and analyze the signal of earthquake.

  8. Corrosion strength monitoring of NPP component residual lifetime

    International Nuclear Information System (INIS)

    Denisov, V.G.; Belous, V.N.; Arzhaev, A.I.; Shuvalov, V.A.

    1994-01-01

    Importance of corrosion and fatigue monitoring; types of corrosion determine the NPP equipment life; why automated on-line corrosion and fatigue monitoring is preferable; major stages of lifetime monitoring system development; major groups of sensors for corrosion and strength monitoring system; high temperature on-line monitoring of water chemistry and corrosion; the RBMK-1000 NPP unit automatic water chemistry and corrosion monitoring scheme; examples of pitting, crevice and general corrosion forecast calculations on the basis of corrosion monitoring data; scheme of an experimental facility for water chemistry and corrosion monitoring sensor testing. 2 figs., 4 tabs

  9. Corrosion Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Russ Braunling

    2004-10-31

    The Corrosion Monitoring System (CMS) program developed and demonstrated a continuously on-line system that provides real-time corrosion information. The program focused on detecting pitting corrosion in its early stages. A new invention called the Intelligent Ultrasonic Probe (IUP) was patented on the program. The IUP uses ultrasonic guided waves to detect small defects and a Synthetic Aperture Focusing Technique (SAFT) algorithm to provide an image of the pits. Testing of the CMS demonstrated the capability to detect pits with dimensionality in the sub-millimeter range. The CMS was tested in both the laboratory and in a pulp and paper industrial plant. The system is capable of monitoring the plant from a remote location using the internet.

  10. Corrosion Rate Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Nielsen, Lars Vendelbo; Andersen, A.

    2005-01-01

    be applicable, and if on-line monitoring could improve the quality control. Water quality monitoring was applied as well as corrosion rate monitoring with linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), electrical resistance (ER) technique, mass loss and a crevice corrosion......Quality control in district heating systems to keep uniform corrosion rates low and localized corrosion minimal is based on water quality control. Side-stream units equipped with carbon steel probes for online monitoring were mounted in district heating plants to investigate which techniques would...... cell for localized corrosion risk estimation. Important variations in corrosion rate due to changes in make-up water quality were detected with the continuous monitoring provided by ER and crevice cell, while LPR gave unreliable corrosion rates. The acquisition time of two-three days for EIS...

  11. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Internal corrosion control: Monitoring. 192.477... Control § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported, coupons... internal corrosion. Each coupon or other means of monitoring internal corrosion must be checked two times...

  12. Corrosion Monitors for Embedded Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alex L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pfeifer, Kent B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Casias, Adrian L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorensen, Neil R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    We have developed and characterized novel in-situ corrosion sensors to monitor and quantify the corrosive potential and history of localized environments. Embedded corrosion sensors can provide information to aid health assessments of internal electrical components including connectors, microelectronics, wires, and other susceptible parts. When combined with other data (e.g. temperature and humidity), theory, and computational simulation, the reliability of monitored systems can be predicted with higher fidelity.

  13. Surface characterization of a corroded bronze-leaded alloy in a salt spray cabinet

    International Nuclear Information System (INIS)

    Cura D'Ars de Figueiredo Junior, Joao; Freitas Cunha Lins, Vanessa de; Bellis, Vito Modesto de

    2007-01-01

    The corrosion products of a TM 23 bronze-leaded alloy (Cu 72%, Pb 15%, Zn 8% and Sn 5%) were obtained in a salt spray cabinet after exposition during 120 h and 1000 h. The products obtained were studied using scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The major products of bronze-leaded corrosion were oxides and basic salts of Cu, CuCl 2 .3Cu(OH) 2 , and Pb, Pb(OH)Cl. The results can be attributed to a kinetic control of the corrosion reactions

  14. Stress corrosion and corrosion fatigue crack growth monitoring in metals

    International Nuclear Information System (INIS)

    Senadheera, T.; Shipilov, S.A.

    2003-01-01

    Environmentally assisted cracking (including stress corrosion cracking and corrosion fatigue) is one of the major causes for materials failure in a wide variety of industries. It is extremely important to understand the mechanism(s) of environmentally assisted crack propagation in structural materials so as to choose correctly from among the various possibilities-alloying elements, heat treatment of steels, parameters of cathodic protection, and inhibitors-to prevent in-service failures due to stress corrosion cracking and corrosion fatigue. An important step towards understanding the mechanism of environmentally assisted crack propagation is designing a testing machine for crack growth monitoring and that simultaneously provides measurement of electrochemical parameters. In the present paper, a direct current (DC) potential drop method for monitoring crack propagation in metals and a testing machine that uses this method and allows for measuring electrochemical parameters during stress corrosion and corrosion fatigue crack growth are described. (author)

  15. On-line corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Richter, Sonja; Thorarinsdottir, R.I.; Hilbert, Lisbeth Rischel

    2004-01-01

    ), Electrochemical Noise (EN) and Zero Resistance Ammetry (ZRA). Electrochemical Resistance (ER) has also been used to measure corrosion. The method traditionally only measures corrosion off-line but with newly developed high-sensitive ER technique developed by MetriCorr in Denmark, on-line monitoring is possible...... complicates the chemistry of the environment. Hydrogen sulphide is present in geothermal systems and can be formed as a by-product of sulphate-reducing-bacteria (SRB). The application of electrochemical methods makes on-line monitoring possible. These methods include: Linear Polarization Resistance (LPR....... In order to assess both general corrosion and localized corrosion, it is necessary to apply more than one monitoring technique simultaneously, ZRA or EN for measuring localized corrosion and LPR or ER for measuring general corrosion rate. The advantage of monitoring localized corrosion is indisputable...

  16. A new corrosion monitoring technique

    International Nuclear Information System (INIS)

    Brown, Gerald K.

    2000-01-01

    Internal Corrosion Monitoring has relied upon 5 basic techniques. Little improvement in performance has been achieved in any of these. Many newer internal corrosion monitoring techniques have proved of little value in the field although some have instances of success in the laboratory. Industry has many high value hydrocarbon applications requiring corrosion rate monitoring for real-time problem solving and control. The high value of assets and the cost of asset replacement makes it necessary to practice cost effective process and corrosion control with sensitivity beyond the 5 basic techniques. This new metal loss technology offers this sensitivity. Traditional metal loss technology today provides either high sensitivity with short life, or conversely, long life but with substantially reduced sensitivity. The new metal loss technology offers an improved working life of sensors without significantly compromising performance. The paper discusses the limitations of existing on-line technologies and describes the performance of a new technology. This new metal loss technology was introduced at NACE Corrosion 99'. Since that time several field projects have been completed or are ongoing. This paper will discuss the new metal loss technology and report on some of the data that has been obtained.(author)

  17. Events as Power Source: Wireless Sustainable Corrosion Monitoring

    OpenAIRE

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-01-01

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is ...

  18. Corrosion monitoring using FSM technology

    International Nuclear Information System (INIS)

    Strommen, R.; Horn, H.; Gartland, P.O.; Wold, K.; Haroun, M.

    1995-01-01

    FSM is a non-intrusive monitoring technique based on a patented principle, developed for the purpose of detection and monitoring of both general and localized corrosion, erosion, and cracking in steel and metal structures, piping systems, and vessels. Since 1991, FSM has been used for a wide range of applications, including for buried and open pipelines, process piping offshore, subsea pipelines and flowlines, applications in the nuclear power industry, and in materials, research in general. This paper describes typical applications of the FSM technology, and presents operational experience from some of the land-based and subsea installations. The paper also describes recent enhancements in the FSM technology and in the analysis of FSM readings, allowing for monitoring and detailed quantification of pitting and mesa corrosion, and of corrosion in welds

  19. Electrochemical noise based corrosion monitoring: FY 2001 final report

    International Nuclear Information System (INIS)

    EDGAR, C.

    2001-01-01

    Underground storage tanks made of mild steel are used to contain radioactive waste generated by plutonium production at the Hanford Site. Corrosion of the walls of these tanks is a major issue. Corrosion monitoring and control are currently provided at the Hanford Site through a waste chemistry sampling and analysis program. In this process, tank waste is sampled, analyzed and compared to a selection of laboratory exposures of coupons in simulated waste. Tank wall corrosion is inferred by matching measured tank chemistries to the results of the laboratory simulant testing. This method is expensive, time consuming, and does not yield real-time data. Corrosion can be monitored through coupon exposure studies and a variety of electrochemical techniques. A small number of these techniques have been tried at Hanford and elsewhere within the DOE complex to determine the corrosivity of nuclear waste stored in underground tanks [1]. Coupon exposure programs, linear polarization resistance (LPR), and electrical resistance techniques have all been tried with limited degrees of success. These techniques are most effective for monitoring uniform corrosion, but are not well suited for early detection of localized forms of corrosion such as pitting and stress corrosion cracking (SCC). Pitting and SCC have been identified as the most likely modes of corrosion failure for Hanford Double Shell Tanks (DST'S) [2-3]. Over the last 20 years, a new corrosion monitoring system has shown promise in detecting localized corrosion and measuring uniform corrosion rates in process industries [4-20]. The system measures electrochemical noise (EN) generated by corrosion. The term EN is used to describe low frequency fluctuations in current and voltage associated with corrosion. In their most basic form, EN-based corrosion monitoring systems monitor and record fluctuations in current and voltage over time from electrodes immersed in an environment of interest. Laboratory studies and field

  20. Corrosion monitoring during a chemical cleaning

    International Nuclear Information System (INIS)

    Delepine, J.; Feron, D.; Roy, M.

    1994-01-01

    In order to estimate the possible corrosion induced by the chemical cleaning, a corrosion monitoring has been realized during the cleaning of the secondary circuit (including the model boiler) of ORION loop. It included coupons and electrodes and has required a preliminary setting in laboratory. The electrochemical device which was used during the chemical cleaning included two reference electrodes (Ag/AgCl) and eight metallic electrodes (carbon steel, stainless steel, Alloy 600 and Alloy 690) for free corrosion potential monitoring, three other carbon steel electrodes for instantaneous corrosion rate measurements by polarization resistance and three coupling devices with different surface ratios between carbon steel and Alloy 600. The results showed a good agreement between corrosion rates measured by weight losses on coupons or by electrochemistry (polarization resistance), and an increase of the carbon steel corrosion rate when it was coupled with Alloy 600. (authors). 5 figs., 2 tabs., 3 refs

  1. Preliminary Seismic Performance Evaluation of RPS Cabinet in a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwag, Shinyoung; Oh, Jinho; Lee, Jongmin; Kim, Youngki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    This RPS cabinet mainly provides the operators with the physical interface to monitor and handle the RPS. The objective of this paper is to perform seismic analyses and evaluate the preliminary structural integrity and seismic capacity of the RPS cabinet. For this purpose, a 3-D finite element model of the RPS cabinet is developed and its modal analyses are carried out for analyzing the dynamic characteristics. Response time history analyses and related safety evaluation are performed for the RPS cabinet subjected to seismic loads. Finally, the seismic margin and seismic fragility of the RPS cabinet are investigated. The seismic analysis, and preliminary structural integrity and seismic margin of the RPS cabinet under self weight and seismic load have been evaluated. For this purpose, 3-D finite element models of the RPS cabinet were developed. A modal analysis, response time history analysis, and seismic fragility analysis were then performed. From the structural analysis results, the RPS cabinet is below the structural design limit under PGA 0.3g (hor.) and 0.2g (ver.) and structurally withstands until PGA 3g (hor.) and 2g (ver.)

  2. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS might be used for detection of MIC. EN is a suitable technique to characterise the type of corrosion attack, but is unsuitable for corrosion rate estimation. The concentric electrodes galvanic probe arrangement......Abstract Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC...... of carbon steel must be monitored on-line in order to provide an efficient protection and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic...

  3. Corrosion potential monitoring in nuclear power environments

    International Nuclear Information System (INIS)

    Molander, A.

    2004-01-01

    Full text of publication follows: corrosion monitoring. The corrosion potential is usually an important parameter or even the prime parameter for many types of corrosion processes. One typical example of the strong influence of the corrosion potential on corrosion performance is stress corrosion of sensitized stainless steel in pure high temperature water corresponding to boiling water conditions. The use of in-plant monitoring to follow the effect of hydrogen addition to mitigate stress corrosion in boiling water reactors is now a well-established technique. However, different relations between the corrosion potential of stainless steel and the oxidant concentration have been published and only recently an improved understanding of the electrochemical reactions and other conditions that determine the corrosion potential in BWR systems have been reached. This improved knowledge will be reviewed in this paper. Electrochemical measurements has also been performed in PWR systems and mainly the feedwater system on the secondary side of PWRs. The measurements performed so far have shown that electrochemical measurements are a very sensitive tool to detect and follow oxygen transients in the feedwater system. Also determinations of the minimum hydrazine dosage to the feedwater have been performed. However, PWR secondary side monitoring has not yet been utilized to the same level as BWR hydrogen water chemistry surveillance. The future potential of corrosion potential monitoring will be discussed. Electrochemical measurements are also performed in other reactor systems and in other types of reactors. Experiences will be briefly reviewed. In a BWR on hydrogen water chemistry and in the PWR secondary system the corrosion potentials show a large variation between different system parts. To postulate the material behavior at different locations the local chemical and electrochemical conditions must be known. Thus, modeling of chemical and electrochemical conditions along

  4. Monitoring on corrosion behavior of steam generator tubings

    International Nuclear Information System (INIS)

    Takamatsu, H.; Isobe, S.; Sato, M.; Arioka, K.; Tsuruta, T.

    1988-01-01

    The importance of chemistry in high temperature aqueous solutions is widely recognized for understanding corrosion phenomena in PWR SG crevice environments. Potential and pH are two important parameters, among other environmental factors affecting localized corrosion processes, such as IGA and/or SCC in SG crevices. In this article, we discuss the potential-pH-IGA/SCC diagram of Alloy 600 as a basis for evaluating the corrosion behavior of SG tubings, and two examples of monitoring, corrosion potential monitoring in the bulk secondary water and pH monitoring in simulated SG crevices. (author)

  5. Non-destructive elecrochemical monitoring of reinforcement corrosion

    DEFF Research Database (Denmark)

    Nygaard, Peter Vagn

    been widely accepted as a non-destructive ”state of the art” technique for detection of corrosion in concrete structures. And, over the last decade, the trend in corrosion monitoring has moved towards quantitative non-destructive monitoring of the corrosion rate of the steel reinforcement. A few...... corrosion rate measurement instruments have been developed and are commercially available. The main features of these instruments are the combined use of an electrochemical technique for determining the corrosion rate and a so-called ”confinement technique”, which in principle controls the polarised surface...... area of the reinforcement, i.e. the measurement area. Both on-site investigations and laboratory studies have shown that varying corrosion rates are obtained when the various commercially available instruments are used. And in the published studies, conflicting explanations are given illustrating...

  6. Ultrasonic guided wave for monitoring corrosion of steel bar

    Science.gov (United States)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  7. Work cabinet

    International Nuclear Information System (INIS)

    Hornby, L.

    1981-01-01

    A simple work cabinet is described for handling materials such as radiopharmaceuticals. The cabinet includes a perforated working surface to which an operator can gain hand and forearm access through an aperture. Clean air is supplied through a high efficiency particulate air filter and withdrawn through the perforated surface. (U.K.)

  8. Optimising corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.; Andersen, A.

    2002-01-01

    A three-year project - financially supported by the Nordic Industrial Fund - on monitoring of corrosion in district heating systems has been initiated with participation of researchers and industrial partners in Denmark, Finland, Iceland, Norway and Sweden. The primary objective of the project...... is to improve the quality control in district heating systems by corrosion monitoring. In Danish systems electrochemical impedance spectroscopy (EIS), linear polarisation resistance (LPR), high-sensitive electrical resistance (ER) technology, crevice corrosion probes, as well as weight loss coupons...

  9. Comparative Evaluation of In-cabinet Amplification Factor for Devices Mounted in Electrical Cabinets

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Gook; So, Gihwan; Han, Min Soo [Innose Tech Co. LTD., Incheon (Korea, Republic of); Kim, Dookie [Kunsan National University, Kunsan (Korea, Republic of)

    2016-10-15

    This study estimated the in-cabinet amplification factors by using various methods. Comparative results are presented in this paper. These instruments must continue to operate during an earthquake and are seismically qualified by a shake table test in which the earthquake input is defined in terms of an in-cabinet response spectrum (ICRS). The ICRS should be estimated prior to seismic qualification of devices mounted in electrical cabinets. EPRI report introduces a simple method to estimate seismic demand on relays mounted on or within such cabinets (in-cabinet seismic demand). If the ICRS generated by amplifying floor response spectra through a constant factor of EPRI report is found to be much higher than the vendor’s test data for relay then a more accurate method is used for generating ICRS. The more accurate methods can range from using finite element analysis, in-situ testing and analysis, and shake table testing of similar cabinets. This study compares the differences of the in-cabinet response spectra estimated by a simple method and a rigorous method. A simple method of EPRI yields larger amplification factors by 4 times than the rigorous method for the same cabinet. If the ICRS generated by amplifying floor response spectra through a constant factor is found to be much higher than the vendor’s test data for relay then a more accurate method is used for generating ICRS.

  10. Performace Of Multi-Probe Corrosion Monitoring Systems At The Hanford Site

    International Nuclear Information System (INIS)

    Carothers, K.D.; Boomer, K.D.; Anda, V.S.; Dahl, M.M.; Edgemon, G.L.

    2010-01-01

    Between 2007 and 2009, several different multi-probe corrosion monitoring systems were designed and installed in high-level nuclear waste tanks at the U.S. Department of Energy's Hanford Site in WaShington State. The probe systems are being monitored to ensure waste tanks operate in regions that minimize localized corrosion (i.e., pitting) and stress corrosion cracking. The corrosion monitoring systems have been installed in wastes with different chemistry types. An ongoing effort during the same time period has generated non-radioactive simulants that are tested in the laboratory to establish baseline corrosion monitoring system performance and characterize data to allow interpretation of readings from the multiple corrosion monitoring systems. Data collection from these monitoring systems has reached the point where the results allow comparison with the laboratory testing. This paper presents analytical results from the corrosion monitoring system development program.

  11. On-line electrochemical monitoring of microbially influenced corrosion

    International Nuclear Information System (INIS)

    Dowling, N.J.E.; Stansbury, E.E.; White, D.C.; Borenstein, S.W.; Danko, J.C.

    1989-01-01

    Newly emerging electrochemical measurement techniques can provide on-line, non-destructive monitoring of the average corrosion rate and indications of localized pitting corrosion together with insight into fundamental electrochemical mechanisms responsible for the corrosion process. This information is relevant to evaluating, monitoring, understanding and controlling microbially influenced corrosion (MIC). MIC of coupons exposed in sidestream devices on site or in laboratory-based experiments, where the corrosion response is accelerated by exposure to active consortia of microbes recovered from specific sites, can be utilized to evaluate mitigation strategies. The average corrosion rates can be determined by small amplitude cyclic voltametry (SACV), and AC impedance spectroscopy (EIS). EIS can also give insight into the mechanisms of the MIC and indications of localized corrosion. Pitting corrosion can be detected non-destructively with open circuit potential monitoring (OCP). OCP also responds to bacterial biofilm activities such as oxygen depletion and other electrochemical activities. Utilizing these methods, accelerated tests can be designed to direct the selection of materials, surface treatments of materials, and welding filler materials, as well as the optimization of chemical and mechanical countermeasures with the microbial consortia recovered and characterized from the specific sites of interest

  12. Corrosion monitoring using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  13. Experimental comparison of the different methods for seismic qualification of electrical cabinets

    International Nuclear Information System (INIS)

    Buland, P.; Gauthier, G.; Simon, D.

    1993-01-01

    This paper presents the results of an experimental seismic study performed on a cabinet equipped with 96 acceleration sensitive relays located in four racks. The aim of this study is to verify the validity of the seismic qualification method proposed in the IEC 980 standard. The cabinet was primarily tested on a shaking table and the relay chatter was monitored. The interactions between the racks and the cabinet frame induce shocks which were correlated with some of the contact openings. The racks were afterwards tested individually with the accelerations recorded during the cabinet test. A comparison of relay chatter was performed for both test phases. An important reduction of relay chatter was noticed during the racks test. This is due to the fact that it is not possible to fully represent on shaking table the complex vibration environment (shocks) sustained by a rack in a cabinet

  14. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  15. Monitoring corrosion of steel bars in reinforced concrete structures.

    Science.gov (United States)

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  16. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar Verma

    2014-01-01

    Full Text Available Corrosion of steel bars embedded in reinforced concrete (RC structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP method. This paper also presents few techniques to protect concrete from corrosion.

  17. Events as Power Source: Wireless Sustainable Corrosion Monitoring

    Directory of Open Access Journals (Sweden)

    Guodong Sun

    2013-12-01

    Full Text Available This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source, which monitors the corrosion events in reinforced concrete (RC structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  18. Events as power source: wireless sustainable corrosion monitoring.

    Science.gov (United States)

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-12-17

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf) energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  19. Status of Database for Electrochemical Noise Based Corrosion Monitoring

    International Nuclear Information System (INIS)

    EDGEMON, G.L.

    1999-01-01

    Underground storage tanks made of mild steel are used to contain radioactive waste generated by plutonium production at the Hanford Site. Corrosion of the walls of these tanks is a major issue. Corrosion-related failure of waste tank walls could lead to the leakage of radioactive contaminants to the soil and groundwater. It is essential to monitor corrosion conditions of the tank walls to determine tank integrity and ensure safe waste storage until retrieval and final waste disposal can be accomplished. Corrosion monitoring/control is currently provided at the Hanford Site through a waste chemistry sampling and analysis program. In this process, tank waste is sampled, analyzed and compared to a selection of laboratory exposures of coupons in simulated waste. Tank wall corrosion is inferred by matching measured tank chemistries to the results of the laboratory simulant testing. This method is expensive, time consuming, and does not yield real-time data. A project to improve the Hanford Site's corrosion monitoring strategy was started in 1995

  20. Corrosion monitoring using high-frequency guided waves

    Science.gov (United States)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  1. Variation of Modal Characteristics of Electrical Cabinet According to the Excitation Level in Impact Hammer Test

    International Nuclear Information System (INIS)

    Cho, Sung Gook; So, Gi Hwan; Kim, Doo Kie

    2010-01-01

    There are many electrical cabinets in nuclear power plants. Safety-related equipment is typically seismic qualified before installation. Seismic qualification of equipment is possible when identifying the accurate dynamic characteristics of the equipment. According to the nature of the cabinet, the dynamic characteristics of the electrical cabinet vary nonlinearly with excitation level. This study analyzed the nonlinear variation of the dynamic properties of an actual cabinet. For the purpose of this study, a seismic monitoring system cabinet was selected as a specimen. The impact hammer tests were conducted to identify a variation of the dynamic characteristics of the specimen by increasing the impulse level. Modal identification technique was used to extract the modal properties of the cabinet from the measurements

  2. Amplified OTDR Systems for Multipoint Corrosion Monitoring

    Science.gov (United States)

    Nascimento, Jehan F.; Silva, Marcionilo J.; Coêlho, Isnaldo J. S.; Cipriano, Eliel; Martins-Filho, Joaquim F.

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations. PMID:22737017

  3. Review of Artificial Neural Networks (ANN) applied to corrosion monitoring

    International Nuclear Information System (INIS)

    Mabbutt, S; Picton, P; Shaw, P; Black, S

    2012-01-01

    The assessment of corrosion within an engineering system often forms an important aspect of condition monitoring but it is a parameter that is inherently difficult to measure and predict. The electrochemical nature of the corrosion process allows precise measurements to be made. Advances in instruments, techniques and software have resulted in devices that can gather data and perform various analysis routines that provide parameters to identify corrosion type and corrosion rate. Although corrosion rates are important they are only useful where general or uniform corrosion dominates. However, pitting, inter-granular corrosion and environmentally assisted cracking (stress corrosion) are examples of corrosion mechanisms that can be dangerous and virtually invisible to the naked eye. Electrochemical noise (EN) monitoring is a very useful technique for detecting these types of corrosion and it is the only non-invasive electrochemical corrosion monitoring technique commonly available. Modern instrumentation is extremely sensitive to changes in the system and new experimental configurations for gathering EN data have been proven. In this paper the identification of localised corrosion by different data analysis routines has been reviewed. In particular the application of Artificial Neural Network (ANN) analysis to corrosion data is of key interest. In most instances data needs to be used with conventional theory to obtain meaningful information and relies on expert interpretation. Recently work has been carried out using artificial neural networks to investigate various types of corrosion data in attempts to predict corrosion behaviour with some success. This work aims to extend this earlier work to identify reliable electrochemical indicators of localised corrosion onset and propagation stages.

  4. 40 CFR 141.42 - Special monitoring for corrosivity characteristics.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Special monitoring for corrosivity characteristics. 141.42 Section 141.42 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... Regulations and Prohibition on Lead Use § 141.42 Special monitoring for corrosivity characteristics. (a)-(c...

  5. Corrosion penetration monitoring of advanced ceramics in hot aqueous fluids

    Directory of Open Access Journals (Sweden)

    Klaus G. Nickel

    2004-03-01

    Full Text Available Advanced ceramics are considered as components in energy related systems, because they are known to be strong, wear and corrosion resistant in many environments, even at temperatures well exceeding 1000 °C. However, the presence of additives or impurities in important ceramics, for example those based on Silicon Nitride (Si3N4 or Al2O3 makes them vulnerable to the corrosion by hot aqueous fluids. The temperatures in this type of corrosion range from several tens of centigrade to hydrothermal conditions above 100 °C. The corrosion processes in such media depend on both pH and temperature and include often partial leaching of the ceramics, which cannot be monitored easily by classical gravimetric or electrochemical methods. Successful corrosion penetration depth monitoring by polarized reflected light optical microscopy (color changes, Micro Raman Spectroscopy (luminescence changes and SEM (porosity changes will be outlined. The corrosion process and its kinetics are monitored best by microanalysis of cross sections, Raman spectroscopy and eluate chemistry changes in addition to mass changes. Direct cross-calibrations between corrosion penetration and mechanical strength is only possible for severe corrosion. The methods outlined should be applicable to any ceramics corrosion process with partial leaching by fluids, melts or slags.

  6. 24 CFR 3280.204 - Kitchen cabinet protection.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Kitchen cabinet protection. 3280... Kitchen cabinet protection. (a) The bottom and sides of combustible kitchen cabinets over cooking ranges... is designed for the future installation of a cooking range, the metal hood and cabinet protection...

  7. Phototherapy cabinet for ultraviolet radiation therapy

    International Nuclear Information System (INIS)

    Horwitz, S.N.; Frost, P.

    1981-01-01

    A newly designed cabinet can be used for the treatment of psoriasis with fluorescent ultraviolet (UV) lamps. the new design provides more uniform distribution of UV radiation in both the horizontal and vertical axes, and several safety features have been added. The distribution and uniformity of UV output in this and in a previously described cabinet are compared. The UV output at the vertical center of the older UV light cabinet was six times greater than that at either the top or bottom, while the design of the present cabinet provides uniform UV radiation except for a slight increase at head height and at the level of the lower legs compared with the middle third of the cabinet. The variation in output of the older cabinet may, in part, explain the commonly encountered difficulty in the phototherapy of psoriasis of the scalp and lower extremities

  8. Acoustic monitoring techniques for corrosion degradation in cemented waste canisters

    International Nuclear Information System (INIS)

    Naish, C.C.; Buttle, D.; Wallace-Sims, R.; O'Brien, T.M.

    1991-01-01

    This report describes work to investigate acoustic emission as a non-intrusive monitor of corrosion and degradation of cemented wasteforms where the waste is a potentially reactive metal. The acoustic data collected shows good correlation with the corrosion rate as measured by hydrogen gas evolution rates and the electrochemically measured corrosion rates post cement hardening. The technique has been shown to be sensitive in detecting stress caused by expansive corrosion product within the cemented wasteform. The attenuation of the acoustic signal by the wasteform reduced the signal received by the monitoring equipment by a factor of 10 over a distance of approximately 150-400 mm, dependent on the water level in the cement. Full size packages were successfully monitored. It is concluded that the technique offers good potential for monitoring cemented containers of the more reactive metals, for example Magnox and aluminium. (author)

  9. Monitoring Cathodic Shielding and Corrosion under Disbonded Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Varela, F.; Tan, M. Y. J.; Hinton, B.; Forsyth, M. [Deakin University, Victoria (Australia)

    2017-06-15

    Monitoring of corrosion is in most cases based on simulation of environmental conditions on a large and complex structure such as a buried pipeline using a small probe, and the measurement of thermodynamics and kinetics of corrosion processes occurring on the probe surface. This paper presents a hybrid corrosion monitoring probe designed for simulating deteriorating conditions wrought by disbonded coatings and for measuring current densities and distribution of such densities on a simulated pipeline surface. The concept of the probe was experimentally evaluated using immersion tests under cathodic protection (CP) in high resistivity aqueous solution. Underneath the disbonded area, anodic currents and cathodic currents were carefully measured. Anodic current densities were used to calculate metal loss according to Faraday’s law. Calculated corrosion patterns were compared with corrosion damage observed at the surface of the probe after a series of stringent tests. The capability of the probe to measure anodic current densities under CP, without requiring interruption, was demonstrated in high resistivity aqueous solution. The pattern of calculated metal loss correlated well with corrosion products distribution observed at the array surface. Working principles of the probe are explained in terms of electrochemistry.

  10. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  11. On-line Corrosion Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Richter, Sonja; Thorarinsdottir, R.I.; Hilbert, Lisbeth Rischel

    2005-01-01

    The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress, ......, precipitation of deposits or crevices. The authors describe methods used for on-line monitoring of corrosion, cover the complications and the main results of a Nordic project.......The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress...

  12. Engineering Task Plan for the 241-AN-105 Multi-Function Corrosion Monitoring System

    International Nuclear Information System (INIS)

    EDGEMON, G.L.

    1999-01-01

    This Engineering Task Plan (ETP) describes the activities associated with the installation of the corrosion probe assembly into riser WST-RISER-016 (formerly 15B) of tank 241-AN-105. The corrosion monitoring system utilizes the technique of electrochemical noise (EN) for monitoring waste tank corrosion. Typically, EN consists of low frequency (4 Hz) and small amplitude signals that are spontaneously generated by electrochemical reactions occurring at corroding or other surfaces. EN analysis is well suited for monitoring and identifying the onset of localized corrosion, and for measuring uniform corrosion rates. A typical EN based corrosion-monitoring system measures instantaneous fluctuations in corrosion current and potential between three nominally identical electrodes of the material of interest immersed in the environment of interest. Time-dependent fluctuations in corrosion current are described by electrochemical current noise, and time-dependent fluctuations of corrosion potential are described by electrochemical noise. The corrosion monitoring system is designed to detect the onset of localized corrosion phenomena if tank conditions should change to allow these phenomena to occur. In addition to the EN technique, the system also facilitates the use of the Linear Polarization Resistance (LPR) technique to collect uniform corrosion rate information. LPR measures the linearity at the origin of the polarization curve for overvoltages up to a few millivolts away from the rest potential or natural corrosion potential. The slope of the current vs. voltage plot gives information on uniform corrosion rates

  13. Hanford double shell tank corrosion monitoring instrument trees

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1995-03-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks - (DSTs and SSTS). Westinghouse Hanford Company is considering installation of a prototype corrosion monitoring instrument tree in at least one DST in the summer of 1995. The instrument tree will have the ability to detect and discriminate between uniform corrosion, stress corrosion cracking (SCC), and pitting. Additional instrument trees will follow in later years. Proof-of-technology testing is currently underway for the use of commercially available electric field pattern (EFP) analysis and electrochemical noise (EN) corrosion monitoring equipment. Creative use and combinations of other existing technologies is also being considered. Successful demonstration of these technologies will be followed by the development of a Hanford specific instrument tree. The first instrument tree will incorporate one of these technologies. Subsequent trees may include both technologies, as well as a more standard assembly of corrosion coupons. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other U.S. Department of Energy (DOE) sites

  14. Sensor Systems for Corrosion Monitoring in Concrete Structures

    Directory of Open Access Journals (Sweden)

    K.Kumar

    2006-05-01

    Full Text Available It is a need of permanently embedded corrosion monitoring devices to monitor the progress of corrosion problems on a new or existing reinforced concrete structures before embarking on repair or rehabilitation of the structures. Numerous devices are available for investigating corrosion problems, because no single technique exists which tells an engineer what he needs to know, namely how much damage there is on a structure now and how rapidly the damage will grow with time. In this investigation the studies on the sensors systems based on the measurements of half cell potential of rebars inside the concrete, resistivity of concrete, corrosion rate of rebars by eddy current measurements and sensing of chloride ions are reported. An integrated system consists of above sensors are fabricated and embedded into concrete. The response from each sensor was acquired and analyzed by NI hardware through LabVIEW software.

  15. Engineering considerations for corrosion monitoring of gas gathering pipeline systems

    Energy Technology Data Exchange (ETDEWEB)

    Braga, T.G.; Asperger, R.G.

    1987-01-01

    Proper corrosion monitoring of gas gathering pipelines requires a system review to determine the appropriate monitor locations and types of monitoring techniques. This paper develops and discusses a classification of conditions such as flow regime and gas composition. Also discussed are junction categories which, for corrosion monitoring, need to be considered from two points of view. The first is related to fluid flow in the line and the second is related corrosion inhibitor movement along the pipeline. The appropriate application of the various monitoring techniques such as coupons, hydrogen detectors, electrical resistance probe and linear polarization probes are discussed in relation to flow regime and gas composition. Problems caused by semi-conduction from iron sulfide are considered. Advantages and disadvantages of fluid gathering methods such as pots and flow-through drips are discussed in relation to their reliability as on-line monitoring locations.

  16. Plant applications of online corrosion monitoring: CO2 capture amine plant case study

    NARCIS (Netherlands)

    Kane, R.D.; Srinivasan, S.; Khakharia, P.M.; Goetheer, E.L.V.; Mertens, J.; Vroey, S. de

    2015-01-01

    Over the past several years, there has been a significant effort to bring corrosion monitoring into the realm of online, real-time management with plant process control technology. As part of this new direction in corrosion monitoring, corrosion data (e.g. information on corrosion rate, measured

  17. All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring

    Directory of Open Access Journals (Sweden)

    Cong Du

    2018-04-01

    Full Text Available This article presents an application of an active all-optical photoacoustic sensing system with four elements for steel rebar corrosion monitoring. The sensor utilized a photoacoustic mechanism of gold nanocomposites to generate 8 MHz broadband ultrasound pulses in 0.4 mm compact space. A nanosecond 532 nm pulsed laser and 400 μm multimode fiber were employed to incite an ultrasound reaction. The fiber Bragg gratings were used as distributed ultrasound detectors. Accelerated corrosion testing was applied to four sections of a single steel rebar with four different corrosion degrees. Our results demonstrated that the mass loss of steel rebar displayed an exponential growth with ultrasound frequency shifts. The sensitivity of the sensing system was such that 0.175 MHz central frequency reduction corresponded to 0.02 g mass loss of steel rebar corrosion. It was proved that the all-optical photoacoustic sensing system can actively evaluate the corrosion of steel rebar via ultrasound spectrum. This multipoint all-optical photoacoustic method is promising for embedment into a concrete structure for distributed corrosion monitoring.

  18. Data Analysis and reduction in Hanford's corrosion monitoring systems

    International Nuclear Information System (INIS)

    EDGEMON, G.L.

    1999-01-01

    A project to improve the Hanford Site's corrosion monitoring strategy was started in 1995. The project is designed to integrate EN-based corrosion monitoring into the site's corrosion monitoring strategy. In order to monitor multiple tanks, a major focus of this project has been to automate the data collection and analysis process. Data collection and analysis from the early EN corrosion monitoring equipment (241-AZ-101 and 241-AN-107) was primarily performed manually by a trained operator skilled in the analysis of EN data. Thousands of raw data files were collected, manually sorted and stored. Further statistical analysis of these files was performed by manually stripping out data from thousands of raw data files and calculating statistics in a spreadsheet format. Plotting and other graphical display analyses were performed by manually exporting data from the data files or spreadsheet into another plotting or presentation software package. In 1999, an Amulet/PRP system was procured and employed on the 241-AN-102 corrosion monitoring system. A duplicate system was purchased for use on the upcoming 241-AN-105 system. A third system has been procured and will eventually be used to upgrade the 241-AN-107 system. The Amulet software has greatly improved the automation of waste tank EN data analysis. In contrast with previous systems, the Amulet operator no longer has to manually collect, sort, store, and analyze thousands of raw EN data files. Amulet writes all data to a single database. Statistical analysis, uniform corrosion rate, and other derived parameters are automatically calculated in Amulet from the raw data while the raw data are being collected. Other improvements in plotting and presentation make inspection of the data a much quicker and relatively easy task. These and other improvements have greatly improved the speed at which EN data can be analyzed in addition to improving the quality of the final interpretation. The increase in data automation offered

  19. Aspects regarding the hygienic-sanitary conditions at the level of certain dental medicine cabinets in Iasi County.

    Science.gov (United States)

    Cernei, E R; Maxim, Dana Cristiana; Indrei, L L

    2013-01-01

    This baseline study aims to find out the evaluation of hygienic-sanitary conditions at the level of dental medicine cabinets through the verification of certain hygienic aspects. The study conducted consists in monitoring the hygienic/sanitary conditions at the level of 68 dental medicine cabinets (40 private cabinets and 28 school/university dental cabinets in Iasi county), using sheets for the assessment of the hygienic/sanitary conditions adapted from the control sheets of existing dental medicine cabinets at the level of DSP (Public Health Department) Iasi. The sheets for the assessment of the hygienic/sanitary conditions were evaluated by a specialized team and the results were i llustrated in the specific charts. At the level of all the dental cabinets the study revealed nonconformities regarding the means to carry out cleaning, disinfection operations, including the management of perilous waste, the control of medical personnel. An optimization of the hygienic-sanitary conditions at the level of dental medicine cabinets is still necessary, through participation to the activity of personnel training, who is directly involved in dental medical assistance.

  20. A corrosion monitoring system for existing reinforced concrete structures.

    Science.gov (United States)

    2015-05-01

    This study evaluated a multi-parameter corrosion monitoring system for existing reinforced concrete structures in chloride-laden service environments. The system was fabricated based on a prototype concrete corrosion measurement system that : had bee...

  1. Real Time Corrosion Monitoring in Lead and Lead-Bismuth Systems

    Energy Technology Data Exchange (ETDEWEB)

    James F. Stubbins; Alan Bolind; Ziang Chen

    2010-02-25

    The objective of this research program is to develop a real-time, in situ corrosion monitoring technique for flowing liquid Pb and eutectic PbBi (LBE) systems in a temperature range of 400 to 650 C. These conditions are relevant to future liquid metal cooled fast reactor operating parameters. THis program was aligned with the Gen IV Reactor initiative to develp technologies to support the design and opertion of a Pb or LBE-cooled fast reactor. The ability to monitor corrosion for protection of structural components is a high priority issue for the safe and prolonged operation of advanced liquid metal fast reactor systems. In those systems, protective oxide layers are intentionally formed and maintained to limit corrosion rates during operation. This program developed a real time, in situ corrosion monitoring tecnique using impedance spectroscopy (IS) technology.

  2. Real time nanogravimetric monitoring of corrosion in radioactive environments

    OpenAIRE

    Tzagkaroulakis, Ioannis; Boxall, Colin

    2017-01-01

    Monitoring and understanding the mechanism of metal corrosion throughout the nuclear fuel cycle play a key role in the safe asset management of facilities. They also provide information essential for making an informed choice regarding the selection of decontamination methods for steel plant and equipment scheduled for decommissioning. Recent advances in Quartz Crystal Nanobalance (QCN) technology offer the means of monitoring corrosion in-situ, in radiologically harsh environments, in real t...

  3. System for corrosion monitoring in pipeline applying fuzzy logic mathematics

    Science.gov (United States)

    Kuzyakov, O. N.; Kolosova, A. L.; Andreeva, M. A.

    2018-05-01

    A list of factors influencing corrosion rate on the external side of underground pipeline is determined. Principles of constructing a corrosion monitoring system are described; the system performance algorithm and program are elaborated. A comparative analysis of methods for calculating corrosion rate is undertaken. Fuzzy logic mathematics is applied to reduce calculations while considering a wider range of corrosion factors.

  4. Alternating current techniques for corrosion monitoring in water reactor systems

    International Nuclear Information System (INIS)

    Isaacs, H.S.; Weeks, J.R.

    1977-01-01

    Corrosion in both nuclear and fossil fueled steam generators is generally a consequence of the presence of aggressive impurities introduced into the coolant system through condenser leakage. The impurities concentrate in regions of the steam generator protected from coolant flow, in crevices or under deposited corrosion products and adjacent to heat transfer surfaces. These three factors, the aggressive impurity, crevice type areas and heat transfer surfaces appear to be the requirements for the onset of rapid corrosion. Under conditions where coolant impurities do not concentrate the corrosion rates are low, easily measured and can be accounted for by allowances in the design of the steam generator. Rapid corrosion conditions cannot be designed for and must be suppressed. The condition of the surfaces when rapid corrosion develops must be markedly different from those during normal operation and these changes should be observable using electrochemical techniques. This background formed the basis of a design of a corrosion monitoring device, work on which was initiated at BNL. The basic principles of the technique are described. The object of the work is to develop a corrosion monitoring device which can be operated with PWR steam generator secondary coolant feed water

  5. Online, real-time corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.

    2005-01-01

    The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress, ......, precipitation of deposits or crevices. The authors describe methods used for on-line monitoring of corrosion, cover the complications and the main results of a Nordic project.......The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress...

  6. 21 CFR 890.5250 - Moist steam cabinet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Moist steam cabinet. 890.5250 Section 890.5250...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5250 Moist steam cabinet. (a) Identification. A moist steam cabinet is a device intended for medical purposes that delivers...

  7. Monitoring corrosion and biofilm formation in nuclear plants using electrochemical methods

    International Nuclear Information System (INIS)

    Licina, G.J.; Nekoksa, G.; Ward, G.L.; Howard, R.L.; Cubicciotti, D.

    1993-01-01

    During the 1980's, degradation of piping, heat exchangers, and other components in raw water cooled systems by a variety of corrosion mechanisms became an important in the reliability and cost effectiveness of U.S. nuclear plants. General and localized corrosion, including pitting and crevice corrosion, have all been shown to be operative in nuclear plant cooling systems. Microbiologically influenced corrosion (MIC) also afflicts nuclear cooling water and service water systems. The prediction of locations to be inspected, selection of mitigation measures, and control of water treatments and maintenance planning rely upon the accuracy and sensitivity of monitoring techniques. Electrochemical methods can provide rapid measurements of corrosion and biological activity on line. The results from a corrosion monitoring study in a service water system at a fresh water cooled nuclear plant are presented. This study utilized determinations of open circuit potential and reversed potentiodynamic scans on carbon steels, Admiralty, and stainless steels (Types 304 and 316 as well as high chromium, high molybdenum ferritic and austenitic grades) to evaluate the rate and form of corrosion to be anticipated in typical service. An electrochemical method that permits the monitoring of biofilm activity on-line has been developed. Results from laboratory and in-plant exposure in a nuclear power plant system are presented

  8. A Review of Field Corrosion Control and Monitoring Techniques of ...

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... to make informed decision and timely respond to corrosion threat before failures. Keywords: cathodic protection, corrosion mechanism, control and monitoring, ...

  9. Monitoring reinforcement corrosion and corrosion-induced cracking using non-destructive x-ray attenuation measurements

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Geiker, Mette Rica

    2011-01-01

    To test the applicability of the x-ray attenuation method to monitor the movement of corrosion products as well as the formation and propagation of cracks in cementitious materials reinforced mortar samples were prepared and tested under accelerated corrosion conditions. It is evident from the ex...... of the corrosion products averaged through the specimen thickness. The total mass loss of steel, obtained by the x-ray attenuation method, was found to be in very good agreement with the mass loss obtained by gravimetric method as well as Faraday's law....

  10. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    OpenAIRE

    Chew, D.; Fromme, P.

    2014-01-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along...

  11. Modified laminar flow biological safety cabinet.

    Science.gov (United States)

    McGarrity, G J; Coriell, L L

    1974-10-01

    Tests are reported on a modified laminar flow biological safety cabinet in which the return air plenum that conducts air from the work area to the high efficiency particulate air filters is under negative pressure. Freon gas released inside the cabinet could not be detected outside by a freon gas detection method capable of detecting 10(-6) cc/s. When T3 bacteriophage was aerosolized 5 cm outside the front opening in 11 tests, no phage could be detected inside the cabinet with the motor-filter unit in operation. An average of 2.8 x 10(5) plaque-forming units (PFU)/ft(3) (ca. 0.028 m(3)) were detected with the motor-filter unit not in operation, a penetration of 0.0%. Aerosolization 5 cm inside the cabinet yielded an average of 10 PFU/ft(3) outside the cabinet with the motor-filter unit in operation and an average of 4.1 x 10(5) PFU/ft(3) with the motor-filter unit not in operation, a penetration of 0.002%. These values are the same order of effectiveness as the positive-pressure laminar flow biological safety cabinets previously tested. The advantages of the negative-pressure return plenum design include: (i) assurance that if cracks or leaks develop in the plenum it will not lead to discharge of contaminated air into the laboratory; and (ii) the price is lower due to reduced manufacturing costs.

  12. Electromagnetic Interference Analysis of Cabinet for Wireless HART Communication

    International Nuclear Information System (INIS)

    Choo, Jaeyul; Jeong, Sang Yong; Kim, Hyung Tae; Yu, Yeong Jin; Park, Hyun Shin; Jeong, Choong Heui

    2015-01-01

    Among the protocols of the wireless communication, the wireless HART communication using the carrier frequency of 2.4 GHz has attracted a lot of interest due to the convenient monitoring and measurement of the variables of nuclear power plants. However the application of the wireless communication to nuclear power plants poses an ongoing challenge due to the unwanted electromagnetic interference (EMI) caused by wireless devices, which would cause the detrimental malfunctioning to adjacent equipment. Especially the EMI problem in the cabinet containing digital instrument and control (I and C) devices is crucial to safety functions and should thus be treated electromagnetically before the use of the wireless communication in nuclear power plants is approved. The mode-matching method has been widely used in electromagnetic analysis due to the reduced computing time by the fast convergence in series solutions. Inspired by this, we perform the electromagnetic scattering analyses of an open cabinet using the modematching method. The resulting information of the electric (E) and magnetic (H) fields enables us to estimate how much the digital I and C in the cabinet is influenced by the external electromagnetic source. The mode-matching method was applied to the scattering analysis of the open cabinet for the digital I and C in nuclear power plants. The mathematical expressions with the unknown modal coefficients for electromagnetic field distributions were formulated based on Helmholtz's equation in conjunction with both the separation of variables and the Fourier transforms. We then determined the modal coefficients from the boundary conditions for electric and magnetic field continuities

  13. Electromagnetic Interference Analysis of Cabinet for Wireless HART Communication

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Jaeyul; Jeong, Sang Yong; Kim, Hyung Tae; Yu, Yeong Jin; Park, Hyun Shin; Jeong, Choong Heui [Korea Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    Among the protocols of the wireless communication, the wireless HART communication using the carrier frequency of 2.4 GHz has attracted a lot of interest due to the convenient monitoring and measurement of the variables of nuclear power plants. However the application of the wireless communication to nuclear power plants poses an ongoing challenge due to the unwanted electromagnetic interference (EMI) caused by wireless devices, which would cause the detrimental malfunctioning to adjacent equipment. Especially the EMI problem in the cabinet containing digital instrument and control (I and C) devices is crucial to safety functions and should thus be treated electromagnetically before the use of the wireless communication in nuclear power plants is approved. The mode-matching method has been widely used in electromagnetic analysis due to the reduced computing time by the fast convergence in series solutions. Inspired by this, we perform the electromagnetic scattering analyses of an open cabinet using the modematching method. The resulting information of the electric (E) and magnetic (H) fields enables us to estimate how much the digital I and C in the cabinet is influenced by the external electromagnetic source. The mode-matching method was applied to the scattering analysis of the open cabinet for the digital I and C in nuclear power plants. The mathematical expressions with the unknown modal coefficients for electromagnetic field distributions were formulated based on Helmholtz's equation in conjunction with both the separation of variables and the Fourier transforms. We then determined the modal coefficients from the boundary conditions for electric and magnetic field continuities.

  14. Design of multi-function Hanford tank corrosion monitoring system

    International Nuclear Information System (INIS)

    EDGEMON, G.L.

    1999-01-01

    A multi-fiction corrosion monitoring system has been designed for installation into DST 241-AN-105 at the Hanford Site in fiscal year 1999. The 241-AN-105 system is the third-generation corrosion monitoring system described by TTP RLO-8-WT-21. Improvements and upgrades from the second-generation system (installed in 241-AN-102) that have been incorporated into the third-generation system include: Gasket seating surfaces utilize O-rings instead of a washer type gasket for improved seal; Probe design contains an equally spaced array of 22 thermocouples; Probe design contains an adjustable verification thermocouple; Probe design contains three ports for pressure/gas sampling; Probe design contains one set of strain gauges to monitor probe flexure if flexure occurs; Probe utilizes an adjustable collar to allow depth adjustment of probe during installation; System is capable of periodically conducting LPR scans; System is housed in a climate controlled enclosure adjacent to the riser containing the probe; System uses wireless Ethernet links to send data to Hanford Local Area Network; System uses commercial remote access software to allow remote command and control; and Above ground wiring uses driven shields to reduce external electrostatic noise in the data. These new design features have transformed what was primarily a second-generation corrosion monitoring system into a multi-function tank monitoring system that adds a great deal of functionality to the probe, provides for a better understanding of the relationship between corrosion and other tank operating parameters, and optimizes the use of the riser that houses the probe in the tank

  15. In plant corrosion potential monitoring

    International Nuclear Information System (INIS)

    Rosborg, B.; Molander, A.

    1997-01-01

    Examples of in plant redox and corrosion potential monitoring in light water reactors are given. All examples are from reactors in Sweden. The measurements have either been performed in side-stream autoclaves connected to the reactor systems by sampling lines, or in-situ in the system piping itself. Potential monitoring can give quite different results depending upon the experimental method. For environments with small concentrations of oxidants sampling lines can introduce large errors. During such circumstances in-situ measurements are necessary. Electrochemical monitoring is a valuable technique as a complement to conventional water chemistry follow-up in plants. It can be used for water chemistry surveillance and can reveal unintentional and harmful water chemistry transients. (author). 15 figs

  16. In plant corrosion potential monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, B; Molander, A [Studsvik Material AB, Nykoeping (Sweden)

    1997-02-01

    Examples of in plant redox and corrosion potential monitoring in light water reactors are given. All examples are from reactors in Sweden. The measurements have either been performed in side-stream autoclaves connected to the reactor systems by sampling lines, or in-situ in the system piping itself. Potential monitoring can give quite different results depending upon the experimental method. For environments with small concentrations of oxidants sampling lines can introduce large errors. During such circumstances in-situ measurements are necessary. Electrochemical monitoring is a valuable technique as a complement to conventional water chemistry follow-up in plants. It can be used for water chemistry surveillance and can reveal unintentional and harmful water chemistry transients. (author). 15 figs.

  17. Failure cause analysis and improvement for magnetic component cabinet

    International Nuclear Information System (INIS)

    Ge Bing

    1999-01-01

    The magnetic component cabinet is an important thermal control device fitted on the nuclear power. Because it used a self-saturation amplifier as a primary component, the magnetic component cabinet has some boundness. For increasing the operation safety on the nuclear power, the author describes a new scheme. In order that the magnetic component cabinet can be replaced, the new type component cabinet is developed. Integrate circuit will replace the magnetic components of every function parts. The author has analyzed overall failure cause for magnetic component cabinet and adopted some measures

  18. In situ corrosion measurements by electrochemical method (IC experiment) at Mont Terri

    International Nuclear Information System (INIS)

    Dewonck, S.; Bataillon, C.; Crusset, D.; Schwyn, B.; Nakayama, N.; Kwong, G.

    2010-01-01

    Document available in extended abstract form only. The study of the interactions of steel pieces with an argillaceous rock is the aim of the IC experiment carried out in the Mont Terri Rock Laboratory (Switzerland). More precisely, the IC experiment consists in monitoring the corrosion rate of various steel (Inconel 690, 316L stainless steel, 2 carbon steels one representative of Andra concept and another of Nagra concept) at 80 deg. C, in anaerobic condition, in contact with the Opalinus clay formation. The corrosion rate monitoring is based on Electrochemical Impedance Spectroscopy (EIS). This method is not disturbing for the corrosion process i.e. the corrosion rate doesn't change during the electrochemical measurement. The main drawback of this method is that the corrosion process must be in stationary or quasi stationary state: EIS can only measure corrosion rates which do not change quickly with time. This method is well adapted for long term corrosion monitoring because long term corrosion rate evolves slowly. A special design of the experimental setup was developed to allow optimal interactions between rock and steel samples. It consists in mounting the steel samples inside of a bore-core section. This section is then placed at the extremity of the borehole equipment. The equipment is inserted in a vertical descending borehole and sealed by a large packer. Another particularity of the experimental setup is the possibility of heating the experimental section up to 80 deg. C. Finally, the equipment was built in such a way that such that it will be retrievable from the borehole after several years of experiment, in order to perform further analyses on the reacting materials (core and steel samples). A circulation loop links the experimental interval to the sampling, measuring various parameters (pH, Eh, electrical conductivity, dissolved oxygen and hydrogen) and control equipment installed in a cabinet, in the gallery of the underground laboratory. At the

  19. A wireless embedded passive sensor for monitoring the corrosion potential of reinforcing steel

    International Nuclear Information System (INIS)

    Bhadra, Sharmistha; Thomson, Douglas J; Bridges, Greg E

    2013-01-01

    Corrosion of reinforcing steel, which results in premature deterioration of reinforced concrete structures, is a worldwide problem. Most corrosion sensing techniques require some type of wired connection between the sensor and monitoring electronics. This causes significant problems in their installation and long-term use. In this paper we describe a new type of passive embeddable wireless sensor that is based on an LC coil resonator where the resonant frequency is changed by the corrosion potential of the reinforcing steel. The resonant frequency can be monitored remotely by an interrogator coil inductively coupled to the sensor coil. The sensor unit comprises an inductive coil connected in parallel with a voltage dependent capacitor (varactor) and a pair of corrosion electrodes consisting of a reinforcing steel sensing electrode and a stainless steel reference electrode. Change of potential difference between the electrodes due to variation of the corrosion potential of the reinforcing steel changes the capacitance of the varactor and shifts the resonant frequency of the sensor. A time-domain gating method was used for the interrogation of the inductively coupled corrosion sensor. Results of an accelerated corrosion test using the sensor indicate that the corrosion potential can be monitored with a resolution of less than 10 mV. The sensor is simple in design and requires no power source, making it an inexpensive option for long-term remote monitoring of the corrosion state of reinforcing steel. (paper)

  20. Monitoring the corrosion process of Al alloys through pH induced fluorescence

    International Nuclear Information System (INIS)

    Pidaparti, R M; Neblett, E B; Miller, S A; Alvarez, J C

    2008-01-01

    A sensing and monitoring set-up based on electrochemical pH induced fluorescence to systematically control the electrochemical corrosion process has been developed for possible applications in the field of localized corrosion. The sensing and monitoring concept is based on exposing the corroding metal surface to solutions that contain selected redox chemicals which will react in local regions where anodic or cathodic polarizations occur. Redox couples that produce or consume protons in their electrochemical reactions were used so that local pH gradients can indicate electrochemical activity by inducing fluorescence in dyes. This approach has been applied to study the corrosion initiation in aircraft aluminum metal 2024-T3 in a controlled electrochemical cell. Preliminary results obtained suggest that monitoring of localized corrosion based on pH can be achieved for field applications

  1. Microbiologically influenced corrosion monitoring: Real world failures and how to avoid them

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.J.B.

    2000-01-01

    Monitoring for microbiologically influenced corrosion in industry commonly is practiced, but too often has failed to predict corrosion damage. Reports of failed monitoring seldom appear in the published literature, but hands-on experience and word-of-mouth communication indicate that the problem is widespread. The question of why so many monitoring programs are unsuccessful is investigated, and remedies for common problems are suggested. Failures can be attributed to three main causes: confusion over the goals of the monitoring program, inappropriate monitoring methods, and inadequate execution of the monitoring program.

  2. Structural Analysis of Cabinet Support under Static and Seismic Loads

    International Nuclear Information System (INIS)

    Jung, Kwangsub; Lee, Sangjin; Oh, Jinho

    2014-01-01

    The cabinet support consists of frames including steel channels and steel square tubes. Four tap holes for screw bolts are located on the support frame of a steel channel to fix the cabinet on the support. The channels and square tubes are assembled by welded joints. The cabinet supports are installed on the outer walls of the reactor concrete island. The KEPIC code, MNF, is used for the design of the cabinet support. In this work, the structural integrity of the cabinet support is analyzed under consideration of static and seismic loads. A 3-D finite element model of the cabinet support was developed. The structural integrity of the cabinet support under postulated service loading conditions was evaluated through a static analysis, modal analysis, and response spectrum analysis. From the structural analysis results, it was concluded that the structural integrity of the cabinet support is guaranteed

  3. Human Factors Support in the Design and Evaluation of the Reactor Protection System Cabinet Operator Module

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Lee, Jung Woon

    2005-01-01

    A Korean project group, KNICS, is developing a new digitalized reactor protection system (RPS) and the developed system will be packaged into a cabinet with several racks. The cabinet of the RPS is used for the RPS function testing and monitoring by maintenance operators and is equipped with a flat panel display (FPD) with a touch screen capability as a main user interface for the RPS operation. This paper describes the human factors activities involved in the development process of the RPS: conceptual design, design guidance, and evaluation. The activities include a functional requirements analysis and task analysis, user interface style guide for the RPS cabinet operator module (COM), and a human factors evaluation through an experiment and questionnaires

  4. Ultrasonic monitoring of pitting corrosion

    Science.gov (United States)

    Jarvis, A. J. C.; Cegla, F. B.; Bazaz, H.; Lozev, M.

    2013-01-01

    Exposure to corrosive substances in high temperature environments can cause damage accumulation in structural steels, particularly in the chemical and petrochemical industries. The interaction mechanisms are complex and varied; however initial damage propagation often manifests itself in the form of localized areas of increased material loss. Recent development of an ultrasonic wall thickness monitoring sensor capable of withstanding temperatures in excess of 500°C has allowed permanent monitoring within such hostile environments, providing information on how the shape of a pulse which has reflected from a corroding surface can change over time. Reconstructing localized corrosion depth and position may be possible by tracking such changes in reflected pulse shape, providing extra information on the state of the backwall and whether process conditions should be altered to increase plant life. This paper aims to experimentally investigate the effect certain localized features have on reflected pulse shape by `growing' artificial defects into the backwall while wall thickness is monitored using the sensor. The size and complexity of the three dimensional scattering problem lead to the development of a semi-analytical simulation based on the distributed point source method (DPSM) which is capable of simulating pulse reflection from complex surfaces measuring approximately 17×10λ Comparison to experimental results show that amplitude changes are predicted to within approximately 1dB and that pulse shape changes are accurately modelled. All experiments were carried out at room temperature, measurements at high temperature will be studied in the future.

  5. Design of second generation Hanford tank corrosion monitoring system

    International Nuclear Information System (INIS)

    Edgemon, G.L.

    1998-01-01

    The Hanford Site has 177 underground waste tanks that store approximately 253 million liters of radioactive waste from 50 years of plutonium production. Twenty-eight tanks have a double shell and are constructed of welded ASTM A537-Class 1 (UNS K02400), ASTM A515-Grade 60 (UNS K02401), or ASTM A516-Grade 60 (UNS K02100) material. The inner tanks of the double-shell tanks (DSTS) were stress relieved following fabrication. One hundred and forty-nine tanks have a single shell, also constructed of welded mild steel, but not stress relieved following fabrication. Tank waste is in liquid, solid, and sludge forms. Tanks also contain a vapor space above the solid and liquid waste regions. The composition of the waste varies from tank to tank but generally has a high pH (>12) and contains sodium nitrate, sodium hydroxide, sodium nitrite, and other minor radioactive constituents resulting from plutonium separation processes. Leaks began to appear in the single-shell tanks shortly after the introduction of nitrate-based wastes in the 1950s. Leaks are now confirmed or suspected to be present in a significant number of single-shell tanks. The probable modes of corrosion failures are reported as nitrate stress corrosion cracking (SCC) and pitting. Previous efforts to monitor internal corrosion of waste tank systems have included linear polarization resistance (LPR) and electrical resistance techniques. These techniques are most effective for monitoring uniform corrosion, but are not well suited for detection of localized corrosion (pitting and SCC). The Savannah River Site (SRS) investigated the characterization of electrochemical noise (EN) for monitoring waste tank corrosion in 1993, but the tests were not conclusive. The SRS effort has recently been revived and additional testing is underway. For many years, EN has been observed during corrosion and other electrochemical reactions, and the phenomenon is well established. Typically, EN consists of low frequency (< 1 Hz) and

  6. Corrosion monitoring along infrastructures using distributed fiber optic sensing

    Science.gov (United States)

    Alhandawi, Khalil B.; Vahdati, Nader; Shiryayev, Oleg; Lawand, Lydia

    2016-04-01

    Pipeline Inspection Gauges (PIGs) are used for internal corrosion inspection of oil pipelines every 3-5 years. However, between inspection intervals, rapid corrosion may occur, potentially resulting in major accidents. The motivation behind this research project was to develop a safe distributed corrosion sensor placed inside oil pipelines continuously monitoring corrosion. The intrinsically safe nature of light provided motivation for researching fiber optic sensors as a solution. The sensing fiber's cladding features polymer plastic that is chemically sensitive to hydrocarbons within crude oil mixtures. A layer of metal, used in the oil pipeline's construction, is deposited on the polymer cladding, which upon corrosion, exposes the cladding to surrounding hydrocarbons. The hydrocarbon's interaction with the cladding locally increases the cladding's refractive index in the radial direction. Light intensity of a traveling pulse is reduced due to local reduction in the modal capacity which is interrogated by Optical Time Domain Reflectometery. Backscattered light is captured in real-time while using time delay to resolve location, allowing real-time spatial monitoring of environmental internal corrosion within pipelines spanning large distances. Step index theoretical solutions were used to calculate the power loss due changes in the intensity profile. The power loss is translated into an attenuation coefficient characterizing the expected OTDR trace which was verified against similar experimental results from the literature. A laboratory scale experiment is being developed to assess the validity of the model and the practicality of the solution.

  7. Acoustic monitoring techniques for corrosion degradation in cemented waste canisters

    International Nuclear Information System (INIS)

    Naish, C.C.; Buttle, D.; Wallace-Sims, R.; O'Brien, T.M.

    1991-01-01

    This report describes work carried out to investigate acoustic emission as a monitor of corrosion and degradation of wasteforms where the waste is potentially reactive metal. Electronic monitoring equipment has been designed, built and tested to allow long-term monitoring of a number of waste packages simultaneously. Acoustic monitoring experiments were made on a range of 1 litre cemented Magnox and aluminium samples cast into canisters comparing the acoustic events with hydrogen gas evolution rates and electrochemical corrosion rates. The attenuation of the acoustic signals by the cement grout under a range of conditions has been studied to determine the volume of wasteform that can be satisfactorily monitored by one transducer. The final phase of the programme monitored the acoustic events from full size (200 litre) cemented, inactive, simulated aluminium swarf wastepackages prepared at the AEA waste cementation plant at Winfrith. (Author)

  8. Preliminary Seismic Response and Fragility Analysis for DACS Cabinet

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jinho; Kwag, Shinyoung; Lee, Jongmin; Kim, Youngki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A DACS cabinet is installed in the main control room. The objective of this paper is to perform seismic analyses and evaluate the preliminary structural integrity and seismic capacity of the DACS cabinet. For this purpose, a 3-D finite element model of the DACS cabinet was developed and its modal analyses are carried out to analyze the dynamic characteristics. The response spectrum analyses and the related safety evaluation are then performed for the DACS cabinet subject to seismic loads. Finally, the seismic margin and seismic fragility of the DACS cabinet are investigated. A seismic analysis and preliminary structural integrity of the DACS cabinet under self weight and SSE load have been evaluated. For this purpose, 3-D finite element models of the DACS cabinet were developed. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. Therefore, it is concluded that the DACS cabinet was safely designed in that no damage to the preliminary structural integrity and sufficient seismic margin is expected.

  9. Preliminary Seismic Response and Fragility Analysis for DACS Cabinet

    International Nuclear Information System (INIS)

    Oh, Jinho; Kwag, Shinyoung; Lee, Jongmin; Kim, Youngki

    2013-01-01

    A DACS cabinet is installed in the main control room. The objective of this paper is to perform seismic analyses and evaluate the preliminary structural integrity and seismic capacity of the DACS cabinet. For this purpose, a 3-D finite element model of the DACS cabinet was developed and its modal analyses are carried out to analyze the dynamic characteristics. The response spectrum analyses and the related safety evaluation are then performed for the DACS cabinet subject to seismic loads. Finally, the seismic margin and seismic fragility of the DACS cabinet are investigated. A seismic analysis and preliminary structural integrity of the DACS cabinet under self weight and SSE load have been evaluated. For this purpose, 3-D finite element models of the DACS cabinet were developed. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. Therefore, it is concluded that the DACS cabinet was safely designed in that no damage to the preliminary structural integrity and sufficient seismic margin is expected

  10. Rectifier cabinet static breaker

    International Nuclear Information System (INIS)

    Costantino, R.A. Jr; Gliebe, R.J.

    1992-01-01

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload. 7 figs

  11. Rectifier cabinet static breaker

    Science.gov (United States)

    Costantino, Jr, Roger A.; Gliebe, Ronald J.

    1992-09-01

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.

  12. Corrosion monitoring in insulated pipes using x-ray radiography

    International Nuclear Information System (INIS)

    Azali Muhammad; Abd Razak Hamzah; Abd Aziz Mohamed; Abd Nasir Ibrahim; Suffian Saad; Shaharuddin Sayuti; Shukri Ahmad

    2000-01-01

    In engineering plants, detection of corrosion and evaluation of deposit in insulated pipes using radiography method are considered as very challenging tasks. In general, this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is the wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method was studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Besides the thickness, types of corrosion can also be identified easily. Result of this study is presented and discussed in this paper. (Author)

  13. Steel Bar corrosion monitoring based on encapsulated piezoelectric sensors

    Science.gov (United States)

    Xu, Ying; Tang, Tianyou

    2018-05-01

    The durability of reinforced concrete has a great impact on the structural bearing capacity, while the corrosion of steel bars is the main reason for the degradation of structural durability. In this paper, a new type of encapsulated cement based piezoelectric sensor is developed and its working performance is verified. The consistency of the finite element simulation and the experimental results shows the feasibility of monitoring the corrosion of steel bars using encapsulated piezoelectric sensors. The research results show that the corrosion conditions of the steel bars can be determined by the relative amplitude of the measured signal through the encapsulated piezoelectric sensor.

  14. Investigation of the cut-edge corrosion of organically-coated galvanized steel after accelerated atmospheric corrosion test

    Directory of Open Access Journals (Sweden)

    Reşit Yıldız

    2015-11-01

    Full Text Available The cut edge corrosion of organically coated (epoxy, polyurethane and polyester galvanized steel was investigated using electrochemical impedance spectroscopy (EIS. Measurements were performed on specimens that had been tested in an accelerated atmospheric corrosion test. The samples were subjected to 10 s fogging and 1 h awaiting cycles in an exposure cabinet (120 and 180 days with artificial acid rain solution. According to the investigation, the coatings were damaged from the cut edge into the sheet, this distance was about 0.8 cm. These defects were more pronounced at after 180 days in proportion to after 120 days.

  15. Monitoring corrosion in reinforced concrete structures

    Science.gov (United States)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Many defects can cause deterioration and cracks in concrete; these are results of poor concrete mix, poor workmanship, inadequate design, shrinkage, chemical and environmental attack, physical or mechanical damage, and corrosion of reinforcing steel (RS). We want to develop a suite of sensors and systems that can detect that corrosion is taking place in RS and inform owners how serious the problem is. By understanding the stages of the corrosion process, we can develop special a sensor that detects each transition. First, moisture ingress can be monitored by a fiber optics humidity sensor, then ingress of Chloride, which acts as a catalyst and accelerates the corrosion process by converting iron into ferrous compounds. We need a fiber optics sensor which can quantify Chloride ingress over time. Converting ferric to ferrous causes large volume expansion and cracks. Such pressure build-up can be detected by a fiber optic pressure sensor. Finally, cracks emit acoustic waves, which can be detected by a high frequency sensor made with phase-shifted gratings. This paper will discuss the progress in our development of these special sensors and also our plan for a field test by the end of 2014. We recommend that we deploy these sensors by visually inspecting the affected area and by identifying locations of corrosion; then, work with the designers to identify spots that would compromise the integrity of the structure; finally, drill a small hole in the concrete and insert these sensors. Interrogation can be done at fixed intervals with a portable unit.

  16. Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions

    Directory of Open Access Journals (Sweden)

    Arpith Siddaiah

    2017-09-01

    Full Text Available Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the “byproduct effects” in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear–corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint.

  17. Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions.

    Science.gov (United States)

    Siddaiah, Arpith; Khan, Zulfiqar Ahmad; Ramachandran, Rahul; Menezes, Pradeep L

    2017-09-28

    Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the "byproduct effects" in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear-corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint.

  18. Evaluation of alternatives for upgrading double shell tank corrosion monitoring at Hanford

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1996-01-01

    Recent discovery of low hydroxide conditions in Double Shell Tanks have demonstrated that the current corrosion control system of waste sampling and analysis is inadequate to monitor and maintain specified chemistries for dilute and low volume waste tanks. Moreover, waste sampling alone cannot provide adequate information to resolve the questions raised regarding tank corrosion. This report evaluates available technologies which could be used to improve on the existing corrosion control system. The evaluation concludes that a multi-technique corrosion monitoring system is necessary, utilizing ultrasonic and visual examinations for direct evaluation of tank liner condition, probes for rapid detection (alarm) of corrosive conditions, and waste sampling and analysis for determination of corrective action. The probes would incorporate electrochemical noise and linear polarization resistance techniques. When removed from the waste tank, the probe electrodes would be physically examined as corrosion coupons. The probes would be used in addition to a modified regimen of waste sampling and the existing schedule for ultrasonic examination of the tank liners. Supporting information would be obtained by examination of in-tank equipment as it is removed

  19. Component wall thinning and a corrosion-erosion monitoring system

    International Nuclear Information System (INIS)

    Bogard, T.; Batt, T.; Roarty, D.

    1989-01-01

    Since a 1986 incident involving failure of a piping elbow due to erosion-corrosion, the electric utility industry has been actively developing technology for implementing long term programs to address corrosion-erosion. This paper describes a typical corrosion-erosion monitoring program, the types of non-destructive examinations (NDE) performed on components, and the extensive NDE data obtained when the program is applied to components in a power plant. To facilitate evaluation of the NDE data on components, an automated NDE data manipulation and data display system is advisable and perhaps necessary due to the large amounts of NDE data typically obtained during a program. Such a comprehensive corrosion-erosion monitoring system (CEMS) needs to be integral with methods for selection of inspection locations and perform NDE data analysis to help in replace, repair, or run decisions. The structure for one CEMS is described which uses IBM PC compatible hardware and a set of software addressing most data evaluation and decision making needs. CEMS features include automated input/output for typical NDE devices, database structuring, graphics outputs including color 2-D or 3-D contour plots of components, trending and predictive evaluations for future inspection planning, EC severity determination, integration of piping isometrics and component properties, and desktop publishing capabilities

  20. Early corrosion monitoring of prestressed concrete piles using acoustic emission

    Science.gov (United States)

    Vélez, William; Matta, Fabio; Ziehl, Paul H.

    2013-04-01

    The depassivation and corrosion of bonded prestressing steel strands in concrete bridge members may lead to major damage or collapse before visual inspections uncover evident signs of damage, and well before the end of the design life. Recognizing corrosion in its early stage is desirable to plan and prioritize remediation strategies. The Acoustic Emission (AE) technique is a rational means to develop structural health monitoring and prognosis systems for the early detection and location of corrosion in concrete. Compelling features are the sensitivity to events related to micro- and macrodamage, non-intrusiveness, and suitability for remote and wireless applications. There is little understanding of the correlation between AE and the morphology and extent of early damage on the steel surface. In this paper, the evidence collected from prestressed concrete (PC) specimens that are exposed to salt water is discussed vis-à-vis AE data from continuous monitoring. The specimens consist of PC strips that are subjected to wet/dry salt water cycles, representing portions of bridge piles that are exposed to tidal action. Evidence collected from the specimens includes: (a) values of half-cell potential and linear polarization resistance to recognize active corrosion in its early stage; and (b) scanning electron microscopy micrographs of steel areas from two specimens that were decommissioned once the electrochemical measurements indicated a high probability of active corrosion. These results are used to evaluate the AE activity resulting from early corrosion.

  1. Real-time monitoring of copper corrosion at the Aespoe HRL

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, Bo; Pan, Jinshan [Div. Corrosion Science, Royal Institute of Technology, Drottning Kristinas vaeg 51, SE - 100 44 Stockholm (Sweden); Eden, David [InterCorr International, Inc., 14503 Bammel-N Houston, Suite 300, Houston, TX 77014 (United States); Karnland, Ola [Clay Technology AB, Ideon Research Center, SE - 223 70 Lund (Sweden); Werme, Lars [Svensk Kaernbraenslehantering AB, P.O. Box 5864, SE - 102 40 Stockholm (Sweden)

    2004-07-01

    In Sweden the principal strategy for high-level radioactive waste disposal is to enclose the spent nuclear fuel in tightly sealed copper canisters that are embedded in bentonite clay about 500 m down in the Swedish bed-rock. Initially, a limited amount of air will be left in a repository after emplacement. The entrapped oxygen will be consumed through reactions with minerals in the rock and the bentonite and also through microbial activity. After the oxygen has been consumed in the repository, after a few hundred years at the very most, corrosion will be controlled completely by the supply of dissolved sulphide to the canister. The present work concerns the oxic period after emplacement. The main hypothesis is that the average corrosion rate of the canister under oxic conditions will be less than 7 {mu}m/year, and that pitting will only be possible under these conditions. The Aespoe Hard Rock Laboratory offers a realistic environment for different experiments and tests under the conditions that will prevail in a deep repository. Real-time monitoring of copper corrosion is presently performed with polarization resistance, harmonic distortion analysis and electrochemical noise techniques. The first two techniques are used to derive information regarding the general corrosion rate and the third to derive information regarding localized corrosion. In order to support these measurements at Aespoe, laboratory work is also performed at the Royal Institute of Technology in Stockholm using the very same corrosion monitoring equipment and also other equipment and techniques. Copper coupons are also exposed at Aespoe. Results from the work at Aespoe and in Stockholm are presented with an emphasis on the gained information concerning localized corrosion. The recorded corrosion rates at Aespoe are well below the value given above, and the recorded localization factors are interpreted as indicating only a slight tendency to local attack. (authors)

  2. Real-time monitoring of copper corrosion at the Aespoe HRL

    International Nuclear Information System (INIS)

    Rosborg, Bo; Pan, Jinshan; Eden, David; Karnland, Ola; Werme, Lars

    2004-01-01

    In Sweden the principal strategy for high-level radioactive waste disposal is to enclose the spent nuclear fuel in tightly sealed copper canisters that are embedded in bentonite clay about 500 m down in the Swedish bed-rock. Initially, a limited amount of air will be left in a repository after emplacement. The entrapped oxygen will be consumed through reactions with minerals in the rock and the bentonite and also through microbial activity. After the oxygen has been consumed in the repository, after a few hundred years at the very most, corrosion will be controlled completely by the supply of dissolved sulphide to the canister. The present work concerns the oxic period after emplacement. The main hypothesis is that the average corrosion rate of the canister under oxic conditions will be less than 7 μm/year, and that pitting will only be possible under these conditions. The Aespoe Hard Rock Laboratory offers a realistic environment for different experiments and tests under the conditions that will prevail in a deep repository. Real-time monitoring of copper corrosion is presently performed with polarization resistance, harmonic distortion analysis and electrochemical noise techniques. The first two techniques are used to derive information regarding the general corrosion rate and the third to derive information regarding localized corrosion. In order to support these measurements at Aespoe, laboratory work is also performed at the Royal Institute of Technology in Stockholm using the very same corrosion monitoring equipment and also other equipment and techniques. Copper coupons are also exposed at Aespoe. Results from the work at Aespoe and in Stockholm are presented with an emphasis on the gained information concerning localized corrosion. The recorded corrosion rates at Aespoe are well below the value given above, and the recorded localization factors are interpreted as indicating only a slight tendency to local attack. (authors)

  3. Improved hydrogen monitoring helps control corrosion

    International Nuclear Information System (INIS)

    Strauss, S.D.

    1985-01-01

    Hydrogen analyzers have long been used for corrosion monitoring in both fossil-fired boilers and nuclear steam generators. The most recent stimulus for hydrogen monitoring has been provided by cracking of recirculation piping in water reactors. This paper examines the Hydran 202N, which represents an adaption of one instrument that has been used to monitor the degradation of transformer oils and fiberoptic cables. The sensing probe consists of a flow-through cell, an isolating membrane, and a miniature hydrogen/air fuel cell. The use of Hydran 202N at several fossil-fired and nuclear plants is described and the fossilplant application related to the effectiveness of water-chemistry control for a 400 psig oil-fired boiler is examined at a refinery

  4. Seismic qualification of multiple interconnected safety-related cabinets in a high seismic zone

    International Nuclear Information System (INIS)

    Khan, M.R.; Chen, W.H.W.; Wang, T.Y.

    1993-01-01

    Certain safety-related multiple, interconnected electrical cabinets and the devices contained therein are required to perform their intended safety functions during and after a design basis seismic event. In general, seismic testing is performed to ensure the structural integrity of the cabinets and the functionality of their associated devices. Constrained by the shake table capacity, seismic testing is usually performed only for a limited number of interconnected cabinets. Also, original shake table tests performed usually did not provide detailed response information at various locations inside the cabinets. For operational and maintenance purposes, doors and panels of some cabinets may need to be opened while the adjacent cabinets are required to remain functional. In addition, in-cabinet response spectra need to be generated for the seismic qualification of new devices and the replacement parts. Consequently, seismic analysis of safety-related multiple, interconnected cabinets is frequently required for configurations which are different from the original tested conditions. This paper presents results of seismic tests of three interconnected safety-related cabinets and finite element analyses performed to compare the analytical results with those obtained from the cabinet seismic tests. Parametric analyses are performed to determine how many panels and doors can be opened while the adjacent cabinets still remain functional. The study indicates that for cabinets located in a high seismic zone, the critical damping of the cabinet is significantly higher than 5% to 7% typically used in qualifying electrical equipment. For devices mounted on the cabinet doors to performed their intended safety function, it requires stiffening of doors and that these doors be properly bolted to the cabinet frame. It also shows that even though doors and panels bolted to the cabinet frame are the primary seismic resistant element of the cabinet, opening of a limited number of them

  5. Monitoring internal corrosion in natural gas pipelines; Monitoracao da corrosao interna em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Ana C.V.; Silva, Djalma R.; Pimenta, Gutemberg S. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil); Barbosa, Andrea F.F. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2003-07-01

    For susceptibilities to the corrosion of the pipelines and equipment made in carbon steel and used by the natural gas, it makes be necessary to identify the acting corrosive agents and monitoring them along time, controlling failures for internal corrosion. Also, of that process it origins the black powder (solid particles) that can not commit the structural integrity of the equipment, but it can also bring the company other implications very serious, like quality of the sold product, as well as stops due to blockages and wastes for erosion of the equipment. The monitoring methodology and control of the corrosion in field consisted of the use of corrosion test equipment, chemical characterization of samples of black powder and liquids and analysis of the operational data of processes and plants. Like this, it was identified for the gas pipeline in analysis the most responsible parameters for the corrosive action of the fluid, establishing a controlling methodology and operational actions to maintain the corrosion rates at safe levels and structural warranty of the same. (author)

  6. On-line internal corrosion monitoring and data management for remote pipelines: a technology update

    Energy Technology Data Exchange (ETDEWEB)

    Wold, Kjell; Stoen, Roar; Jenssen, Hallgeir [Roxar Flow Measurement AS, Stavanger (Norway); Carvalho, Anna Maria [Roxar do Brasil Ltda., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Internal corrosion monitoring of remote pipelines can be costly and demanding on resources. Online and non-intrusive monitoring directly on the pipe wall can improve the quality of measurements, make installation more convenient and allow more efficient communication of data. The purpose of this paper is to describe a non-intrusive technology, and show examples on field installations of the system. Furthermore, the non-intrusive technology data can be stored, interpreted and combined with conventional (intrusive) system information, in order to get a full picture of internal corrosion profile, corrosion rate and trends regarding the pipeline being monitored. (author)

  7. Corrosion monitoring of insulated pipe using radiographic technique

    International Nuclear Information System (INIS)

    Azali Muhammad; Abd Aziz Mohamed; Abd Razak Hamzah; Mohd Pauzi Ismail; Abd Nassir Ibrahim; Shaharudin Sayuti; Shukri Ahmad

    2001-01-01

    In petrochemical and power plants, detection of corrosion and evaluation of deposit in insulated pipes using radiographic technique are considered as very challenging tasks. In general this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is he wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most common technique is that based on the A-Scan, using either a normal flaw detector or some form of dedicated equipment. However, with recent development of ultrasonic technology, more advance method, namely B-Scan and C-scan techniques are also available. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method was studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Result of this study is presented and discussed in this paper. (Author)

  8. Proceedings: On-line monitoring of corrosion an water chemistry for the electric power utility industry: An EPRI workshop held during the 12th International Corrosion Congress

    International Nuclear Information System (INIS)

    Licina, G.

    1994-03-01

    A two-day EPRI workshop on On-line Monitoring of Corrosion and Water Chemistry for the Electric Power Utility Industry included discussions on a variety of methods for the online monitoring of corrosion and water chemistry in a power plant environment. The workshop was held September 22 and 23, 1993 in Houston, Texas, as a part of the 12th International Corrosion Congress sponsored by NACE International. Methods in various stages of development, from laboratory demonstrations to in-plant monitoring, were presented by authors from all over the world. Recent developments in corrosion monitoring and the detection of specific chemical species in power plant environments have utilized a variety of electrochemical methods (both AC and DC), electrical resistance techniques, and potential drop techniques to evaluate crack extension. Other approaches, such as Raman spectroscopy of corroding surfaces, Specific ion detectors, and X-ray fluorescence and ion chromatography to analyze corrosion products have been demonstrated in the laboratory. Techniques that were described in the twenty-three technical papers included: Electrochemical noise, Electrical resistance, Field signature method, Linear polarization resistance, Neutron activation, Corrosion potential monitoring, Electrochemical detection of biofilm activity, Analysis of corrosion products by X-ray fluorescence, Potential drop method for assessing environmentally assisted crack growth, Harmonic impedance spectroscopy, Contact electric resistance, Conductivity and hydrogen sensors, Solid state methods for tracking oxygen and pH, and Raman spectroscopy. Individual papers are indexed separately

  9. Methods of qualifying electrical cabinets for the load case earthquake

    International Nuclear Information System (INIS)

    Henkel, F.-O.; Kennerknecht, H.; Haefeli, T.; Jorgensen, F.

    2005-01-01

    With the qualification of electrical system cabinets for the load case earthquake it is differentiated between the two objectives: a) stability of the cabinet, and b) functionality of the built-in electrical modules during and after the earthquake. There are three methods to attain these goals: analyses, tests and proof by analogy. A common method is the shaking of a complete cabinet on a shaking table, with the advantage that stability and functionality can be proved at the same time, but with the disadvantage that quite expensive test equipment, especially a multi-axle shaking table, is necessary and that generally a cabinet which was proved for SSE is pre-affected and thus may not be incorporated into the plant offhand, i.e. the extreme example would be that the cabinet must be built twice. As a rule, analyses are currently carried out by means of Finite-Element-Models of the supporting structure with consideration of the electrical components at least with their masses. This analysis can prove the stability and pursue the excitation until the anchoring point of the electrical components (Henkel et al., 1987). The combination of the aforementioned two methods often constitutes the best way. The stability of the cabinet is proved by calculations, the functionality of the safety-relevant modules by tests. Once tested, modules identical in construction can be used for cabinets without further testing for earthquakes of similar or lower levels. Proof by analogy is possible only if tests or analyses of similar cabinets were done in advance. By means of the comparison of supporting structure, mass allocation and distribution, level and shape of the earthquake excitation it can be shown that the cabinet planned is covered by cabinets already tested or analysed (Katona et al., 1995). All facets of the various methods with advantages and disadvantages are discussed and explained on the basis of numerous examples. (authors)

  10. Hanford double shell tank corrosion monitoring instrument tree prototype

    International Nuclear Information System (INIS)

    Nelson, J.L.; Edgemon, G.L.; Ohl, P.C.

    1995-11-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks (DSTs and SSTs). The installation of a prototype corrosion monitoring instrument tree into DST 241-A-101 was completed in December 1995. The instrument tree has the ability to detect and discriminate between uniform corrosion, pitting, and stress corrosion cracking (SCC) through the use of electrochemical noise measurements and a unique stressed element, three-electrode probe. The tree itself is constructed of AISI 304L stainless steel (UNS S30403), with probes in the vapor space, vapor/liquid interface and liquid. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other US Department of Energy (DOE) sites. Keywords: Hanford, radioactive waste, high-level waste tanks, electrochemical noise, probes, double-shell tanks, single-shell tanks, corrosion

  11. A demonstration of on-line plant corrosion monitoring using thin layer activation

    International Nuclear Information System (INIS)

    Asher, J.; Webb, J.W.; Wilkins, N.J.M.; Lawrence, P.F.; UKAEA Atomic Energy Research Establishment, Harwell. Materials Development Div.)

    1981-12-01

    The corrosion of a 1 inch water pipe in an evaporative cooling system has been monitored over three periods of plant operation using thin layer activation (TLA). The corrosion rate was followed at a sensitivity of about 1 μm and clearly reflected changes in plant operation. Examination of the test section after removal, both by autoradiography and metallography revealed the extent of corrosion and pitting over the active area. (author)

  12. Control and monitoring of the localized corrosion of zirconium in acidic chloride solutions

    International Nuclear Information System (INIS)

    Fahey, J.; Holmes, D.; Yau, T.L.

    1995-01-01

    Zirconium in acidic chloride solutions which are contaminated with ferric or cupric cations is prone to localized corrosion. This tendency can be reduced by ensuring that the zirconium surface is clean and smooth. In this paper, the effect of surface condition on the localized corrosion of zirconium in acidic chloride solutions is predicted with potentiodynamic scans. These predictions are confirmed by weight loss tests on various combinations of surface finish and acid concentrations. A real time indication of localized corrosion is seen by monitoring the electrochemical noise produced between two similar electrodes immersed in an acidic chloride solutions. Electrochemical noise monitoring correlates well with the predictions from potentiodynamic and weight loss experiments. The electrochemical noise results show that while an elevated (more anodic) potential caused by ferric ion contamination may be a necessary condition for localized corrosion, it is not a sufficient condition: A smooth, clean zirconium surface reduces the localized corrosion of zirconium

  13. EMBEDDED CAPACITOR SENSOR FOR MONITORING CORROSION OF REINFORCEMENT IN CONCRETE

    Directory of Open Access Journals (Sweden)

    SITI FATIMAH ABDUL RAHMAN

    2012-04-01

    Full Text Available Corrosion of reinforcement can affect durability and integrity of reinforced concrete structures. Repair cost for a badly corroded structure can be very costly and time consuming. In this paper, several capacitor sensors were developed to monitor corrosion potential of reinforcement in concrete. The impedance capacitive of sensors was tested in various acid and alkali solutions using Agilent 4284A Precision LCR meter. The other sensors were tied to reinforcements and embedded in concrete specimen contaminated with 5% chloride to measure corrosion potential. The specimens were exposed to the corrosion chamber and indoor environments. From the research, it was found that the sensor can measure the impedance capacitive at different frequencies in the aggressive solutions. Besides, it was observed that the patterns of corrosion potential shown by the embedded sensors were similar to the SRI sensor. The output values from embedded sensor are in a range of recommendation by the ASTM-C876. Eventually, the bars were found corroded from the broken specimens that confirmed the detection of corrosion activities as recorded by the sensors.

  14. Remote erosion and corrosion monitoring of subsea pipelines using acoustic telemetry and wet-mate connector technology

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Howard; Barlow, Stewart [Teledyne ODI, Thousand Oaks, CA (United States); Clarke, Daniel [Teledyne Cormon, Thousand Oaks, CA (United States); Green, Dale [Teledyne Benthos, North Falmouth, MA (United States)

    2009-07-01

    This paper will present a novel approach for monitoring erosion and corrosion using proven sub sea technologies: intrusive erosion and corrosion monitoring, acoustic telemetry and wet-mateable connector technology. Intrusive metal loss based monitoring systems on sub sea pipelines are increasingly being used because of their ability to directly measure erosion and corrosion. These systems are integrated with the sub sea production control system or located close to the platform and hard-wired. However, locations remote from a sub sea control system or platform requires a dedicated communication system and long lengths of cable that can be cost prohibitive to procure and install. The system presented consists of an intrusive erosion or corrosion monitor with pressure and temperature transmitters, a retrievable electronics module with an acoustic modem, a data storage module, and a replaceable power module. Time-stamped erosion and corrosion data can be transmitted via an acoustic link to a surface platform, a vessel of opportunity or to a relaying modem. Acoustic signals can be transmitted up to 6 km from the monitoring location. The power module along with data module and acoustic modem are mounted on the erosion and corrosion module using wet-mateable connectors, allowing retrieval by remotely operated vehicles. The collected data can be used to assess the cumulative erosion and corrosion as well as use the real-time metal loss rate data to correlate with operational parameters. Benefits include optimization of corrosion inhibitor dosage rates, mitigation of damage caused by solids production, and increased flow assurance. (author)

  15. Membrane-Coated Electrochemical Sensor for Corrosion Monitoring in Natural Gas Pipelines

    Directory of Open Access Journals (Sweden)

    J. Beck

    2017-07-01

    Full Text Available Electrochemical sensors can be used for a wide range of online in- situ process monitoring applications. However, the lack of a consistent electrolyte layer has previously limited electrochemical monitoring in gas and supercritical fluid streams. A solid state sensor is being designed that uses an ion conducting membrane to perform conductivity and corrosion measurements in natural gas pipelines up to 1000 psi. Initial results show that membrane conductivity measurements can be correlated directly to water content down to dew points of 1°C with good linearity. Corrosion monitoring can also be performed using methods such as linear polarization resistance and electrochemical impedance spectroscopy (EIS, though care must be taken in the electrode design to minimize deviation between sensors.

  16. Atmospheric corrosion monitoring at the US Department of Energy's Oak Ridge K-25 Site

    International Nuclear Information System (INIS)

    Rao, M.

    1995-01-01

    Depleted uranium hexafluoride (UF 6 ) at the US Department of Energy's K-25 Site at Oak Ridge, TN has been stored in large steel cylinders which have undergone significant atmospheric corrosion damage over the last 35 years. A detailed experimental program to characterize and monitor the corrosion damage was initiated in 1992. Large amounts of corrosion scale and deep pits are found to cover cylinder surfaces. Ultrasonic wall thickness measurements have shown uniform corrosion losses up to 20 mils (0.5 mm) and pits up to 100 mils (2.5 mm) deep. Electrical resistance corrosion probes, time-of-wetness sensors and thermocouples have been attached to cylinder bodies. Atmospheric conditions are monitored using rain gauges, relative humidity sensors and thermocouples. Long-term (16 years) data are being obtained from mild steel corrosion coupons on test racks as well as attached directly to cylinder surfaces. Corrosion rates have been found to intimately related to the times-of-wetness, both tending to be higher on cylinder tops due to apparent sheltering effects. Data from the various tests are compared, discrepancies are discussed and a pattern of cylinder corrosion as a function of cylinder position and location is described

  17. Seismic qualification of safety-related instrumentation cabinets for nuclear generating stations

    International Nuclear Information System (INIS)

    Sauve, R.G.; Bell, R.P.; Cuttler, J.M.

    1979-06-01

    The problem of seismically qualifying different electrical instruments mounted in cabinets of a standard design is discussed and the following economical approach is described in detail. An analytical model of the cabinet structure is developed and validated by comparison with the results of shake table tests on a prototype cabinet. Modal analysis is then used to calculate the input spectra for shake table tests to qualify the individual instruments that are mounted at the required elevations in the cabinet. The worst input spectrum, appropriate to qualify each instrument, is then specified to the suppliers. This approach avoids the need to test each cabinet configuration in an assembled state in order to qualify it. (auth)

  18. Photonic crystal fiber based chloride chemical sensors for corrosion monitoring

    Science.gov (United States)

    Wei, Heming; Tao, Chuanyi; Krishnaswamy, Sridhar

    2016-04-01

    Corrosion of steel is one of the most important durability issues in reinforced concrete (RC) structures because aggressive ions such as chloride ions permeate concrete and corrode steel, consequently accelerating the destruction of structures, especially in marine environments. There are many practical methods for corrosion monitoring in RC structures, mostly focusing on electrochemical-based sensors for monitoring the chloride ion which is thought as one of the most important factors resulting in steel corrosion. In this work, we report a fiber-optic chloride chemical sensor based on long period gratings inscribed in a photonic crystal fiber (PCF) with a chloride sensitive thin film. Numerical simulation is performed to determine the characteristics and resonance spectral response versus the refractive indices of the analyte solution flowing through into the holes in the PCF. The effective refractive index of the cladding mode of the LPGs changes with variations of the analyte solution concentration, resulting in a shift of the resonance wavelength, hence providing the sensor signal. This fiber-optic chemical sensor has a fast response, is easy to prepare and is not susceptible to electromagnetic environment, and can therefore be of use for structural health monitoring of RC structures subjected to such aggressive environments.

  19. Lamb-Wave-Based Tomographic Imaging Techniques for Hole-Edge Corrosion Monitoring in Plate Structures

    Directory of Open Access Journals (Sweden)

    Dengjiang Wang

    2016-11-01

    Full Text Available This study presents a novel monitoring method for hole-edge corrosion damage in plate structures based on Lamb wave tomographic imaging techniques. An experimental procedure with a cross-hole layout using 16 piezoelectric transducers (PZTs was designed. The A0 mode of the Lamb wave was selected, which is sensitive to thickness-loss damage. The iterative algebraic reconstruction technique (ART method was used to locate and quantify the corrosion damage at the edge of the hole. Hydrofluoric acid with a concentration of 20% was used to corrode the specimen artificially. To estimate the effectiveness of the proposed method, the real corrosion damage was compared with the predicted corrosion damage based on the tomographic method. The results show that the Lamb-wave-based tomographic method can be used to monitor the hole-edge corrosion damage accurately.

  20. High Efficancy Integrated Under-Cabinet Phosphorescent OLED

    Energy Technology Data Exchange (ETDEWEB)

    Michael Hack

    2001-10-31

    In this two year program Universal Display Corporation (UDC) together with the University of Michigan, Teknokon, developed and delivered an energy efficient phosphorescent OLED under cabinet illumination system. Specifically the UDC team goal was in 2011 to deliver five (5) Beta level OLED under cabinet lighting fixtures each consisting of five 6-inch x 6-inch OLED lighting panels, delivering over 420 lumens, at an overall system efficacy of >60 lm/W, a CRI of >85, and a projected lifetime to 70% of initial luminance to exceed 20,000 hours. During the course of this program, the Team pursued the commercialization of these OLED based under cabinet lighting fixtures, to enable the launch of commercial OLED lighting products. The UDC team was ideally suited to develop these novel and efficient solid state lighting fixtures, having both the technical experience and commercial distribution mechanisms to leverage work performed under this contract. UDC's business strategy is to non-exclusively license its PHOLED technology to lighting manufacturers, and also supply them with our proprietary PHOLED materials. UDC is currently working with several licensees who are manufacturing OLED lighting panels using our technology. During this 2 year program, we further developed our high efficiency white Phosphorescent OLEDs from the first milestone, achieving a 80 lm/W single pixel to the final milestone, achieving an under-cabinet PHOLED lighting system that operates at 56 lm/W at 420 lumens. Each luminaire was comprised of ten 15cm x 7.5cm lighting modules mounted in outcoupling enhancement lenses and a control module. The lamps modules are connected together using either plugs or wires with plugs on each end, allowing for unlimited configurations. The lamps are driven by an OLED driver mounted in an enclosure which includes the AC plug. As a result of advancements gained under this program, the path to move OLED lighting panels from development into manufacturing has been

  1. Monitoring the corrosion process of reinforced concrete using BOTDA and FBG sensors.

    Science.gov (United States)

    Mao, Jianghong; Chen, Jiayun; Cui, Lei; Jin, Weiliang; Xu, Chen; He, Yong

    2015-04-15

    Expansion and cracking induced by the corrosion of reinforcement concrete is the major factor in the failure of concrete durability. Therefore, monitoring of concrete cracking is critical for evaluating the safety of concrete structures. In this paper, we introduce a novel monitoring method combining Brillouin optical time domain analysis (BOTDA) and fiber Bragg grating (FBG), based on mechanical principles of concrete expansion cracking. BOTDA monitors concrete expansion and crack width, while FBG identifies the time and position of cracking. A water-pressure loading simulation test was carried out to determine the relationship between fiber strain, concrete expansion and crack width. An electrical accelerated corrosion test was also conducted to evaluate the ability of this novel sensor to monitor concrete cracking under practical conditions.

  2. On-line water chemistry monitoring for corrosion prevention in ageing nuclear power plants

    International Nuclear Information System (INIS)

    Aaltonen, P.; Jaernstroem, R.; Kvarnstroem, R.; Chanfreau, E.

    1991-01-01

    General corrosion and consequently radiation buildup in nuclear power plants are controlled by the selection of material and the chemical environment. In power plants useful information concerning the kinetics of chemical reactions can be obtained by using high temperature, high pressure measurements for pH, conductivity and electrochemical potentials (ECP) of construction materials or redox-potential. The rates of general or uniform corrosion of materials in contact with the primary coolant are quite low and do not compromise the integrity of the primary circuit. Chemistry control should be applied in the first hand to minimize the dissolution and the transport and subsequent deposition of activated corrosion products to out-of-core regions. A computerized monitoring system for high temperature high pressure pH and electrochemical potential (ECP) has been in continuous use at the Loviisa power plant since 1988. Special emphasis has been put on learning the effect of pH and ECP control during cooldown process in order to further reduce background radiation buildup. During the shutdown for refueling outage in summer 1989 the high temperature water chemistry parameters were monitored. In addition to the high temperature water chemistry parameters concentrations of dissolved corrosion products as well as the activities of the corrosion products were measured. In this paper the results obtained through simultaneous monitoring of water chemistry parameters and concentrations of dissolved corrosion products as well as the activity measurements are presented and discussed. (author)

  3. Extremely high resolution corrosion monitoring of pipelines: retrofittable, non-invasive and real-time

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, Oeystein; Tveit, Edd [Sensorlink AS, Trondheim (Norway); Verley, Richard [StatoilHydro ASA, Stockholm (Sweden)

    2009-07-01

    The Ultramonit unit is a clamp-on tool (removable) that uses an array of sensors to provide online, real-time, reliable and repeatable high accuracy ultrasonic wall thickness measurements and corrosion monitoring at selected locations along the pipeline. The unit can be installed on new or existing pipelines by diver or ROV. The system is based on the well-established ultrasonic pulse-echo method (A-scan). Special processing methods, and the fact that the unit is fixed to the pipeline, enable detection of changes in wall thickness in the micro-meter range. By utilizing this kind of resolution, it is possible to project corrosion rates in hours or days. The tool is used for calibration of corrosion inhibitor programs, verification and calibration of inspection pig data and general corrosion monitoring of new and existing pipelines. (author)

  4. Corrosion induced strain monitoring through fibre optic sensors

    International Nuclear Information System (INIS)

    Grattan, S K T; Basheer, P A M; Taylor, S E; Zhao, W; Sun, T; Grattan, K T V

    2007-01-01

    The use of strain sensors is commonplace within civil engineering. Fibre optic strain sensors offer a number of advantages over the current electrical resistance type gauges. In this paper the use of fibre optic strain sensors and electrical resistance gauges to monitor the production of corrosion by-products has been investigated and reported

  5. Sound Radiation from a Loudspeaker Cabinet using the Boundary Element Method

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    had been reported, based on subjective testing. This study aims to detect the reported problem. The radiation from the cabinet is calculated using the Boundary Element Method. The analysis examines both the frequency domain and the time domain characteristics (in other words, the steady state response......, in some cases becoming clearly audible. The aim of this study is to provide a tool that can evaluate the contribution from the cabinet to the overall sound radiated by a loudspeaker. The specific case of a B&O Beolab 9 early prototype has been investigated. An influence by the cabinet of this prototype...... and the impulse response) of the loudspeaker and the cabinet. A significant influence of the cabinet has been detected, which becomes especially apparent in the time domain, during the sound decay process....

  6. CORROSION MONITORING IN HANFORD NUCLEAR WASTE STORAGE TANKS, DESIGN AND DATA FROM 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM

    International Nuclear Information System (INIS)

    ANDA, V.S.; EDGEMON, G.L.; HAGENSEN, A.R.; BOOMER, K.D.; CAROTHERS, K.G.

    2009-01-01

    In 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was installed in double-shell tank 241-AN-102 on the U.S. Department of Energy's Hanford Site in Washington State. Developmental design work included laboratory testing in simulated tank 241-AN-102 waste to evaluate metal performance for installation on the MPCMS as secondary metal reference electrodes. The MPCMS design includes coupon arrays as well as a wired probe which facilitates measurement of tank potential as well as corrosion rate using electrical resistance (ER) sensors. This paper presents the MPCMS design, field data obtained following installation of the MPCMS in tank 241-AN-102, and a comparison between laboratory potential data obtained using simulated waste and tank potential data obtained following field installation

  7. 49 CFR 195.573 - What must I do to monitor external corrosion control?

    Science.gov (United States)

    2010-10-01

    ... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.573 What must I do to... 49 Transportation 3 2010-10-01 2010-10-01 false What must I do to monitor external corrosion control? 195.573 Section 195.573 Transportation Other Regulations Relating to Transportation (Continued...

  8. 49 CFR 195.583 - What must I do to monitor atmospheric corrosion control?

    Science.gov (United States)

    2010-10-01

    ... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.583 What must I do to... 49 Transportation 3 2010-10-01 2010-10-01 false What must I do to monitor atmospheric corrosion control? 195.583 Section 195.583 Transportation Other Regulations Relating to Transportation (Continued...

  9. Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Zeng, Qiang; Pan, Congyuan; Li, Chaoyang; Fei, Teng; Ding, Xiaokang; Du, Xuewei; Wang, Qiuping

    2018-04-01

    The corrosion behavior of structure materials in direct contact with molten metals is widespread in metallurgical industry. The corrosion of casting equipment by molten metals is detrimental to the production process, and the corroded materials can also contaminate the metals being produced. Conventional methods for studying the corrosion behavior by molten metal are offline. This work explored the application of laser-induced breakdown spectroscopy (LIBS) for online monitoring of the corrosion behavior of molten metal. The compositional changes of molten aluminum in crucibles made of 304 stainless steel were obtained online at 1000 °C. Several offline techniques were combined to determine the corrosion mechanism, which was highly consistent with previous studies. Results proved that LIBS was an efficient method to study the corrosion mechanism of solid materials in molten metal.

  10. 21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... required to remove residual ethylene oxide (ETO) from wrapped medical devices that have undergone ETO...

  11. Hire or Fire? : The Link between Cabinet Investiture and Removal in Parliamentary Democracies

    OpenAIRE

    Sieberer, Ulrich

    2015-01-01

    Cabinet investiture and cabinet removal are conceptually distinct mechanisms linking the parliamentary majority and the cabinet. The chapter presents the first comparative analysis of the relationship between these mechanisms. Based on principal‐agent theory, it argues that both serve the same purpose of ensuring successful delegation from the parliamentary majority to the cabinet. As such, both rules can be seen as substitutes. This substitutability thesis is contrasted with a complementarit...

  12. The wood household furniture and kitchen cabinet industries: a contrast in fortune

    Science.gov (United States)

    William G. Luppold; Matthew S. Bumgardner

    2009-01-01

    In 1977, the value of wood household furniture shipments from domestic manufacturers exceeded kitchen cabinet shipments by 170 percent; conversely, in 2006 shipments of cabinets exceeded shipments of furniture by 78 percent. The most apparent reason for the decrease in domestic furniture shipments is the increase in furniture imports, whereas cabinet demand has...

  13. In situ corrosion monitoring of PC structures with distributed hybrid carbon fiber reinforced polymer sensors

    Science.gov (United States)

    Yang, C. Q.; Wu, Z. S.

    2007-08-01

    Firstly, the fabrication and sensing properties of hybrid carbon fiber reinforced polymer (HCFRP) composite sensors are addressed. In order to provide a distributed sensing manner, the HCFRP sensors were divided into multi-zones with electrodes, and each zone was regarded as a separate sensor. Secondly, their application is studied to monitor the steel corrosion of prestressed concrete (PC) beams. The HCFRP sensors with different gauge lengths were mounted on a PC tendon, steel bar and embedded in tensile and compressive sides of the PC beam. The experiment was carried out under an electric accelerated corrosion and a constant load of about 54 kN. The results reveal that the corrosion of the PC tendon can be monitored through measuring the electrical resistance (ER) change of the HCFRP sensors. For the sensors embedded in tensile side of the PC beam, their ER increases as the corrosion progresses, whereas for the sensors embedded in compressive side, their ER decreases with corrosion time. Moreover, the strains due to the corrosion can be obtained based on the ER change and calibration curves of HCFRP sensors. The strains measured with traditional strain gauges agree with the strains calculated from the ER changes of HCFRP sensors. The electrical behavior of the zones where the corrosion was performed is much different from those of the other zones. In these zones, either there exist jumps in ER, or the ER increases with a much larger rate than those of the other zones. Distributed corrosion monitoring for PC structures is thus demonstrated with the application of HCFRP sensors through a proper installation of multi-electrodes.

  14. Characterisation of open-door electrical cabinet fires in compartments

    Energy Technology Data Exchange (ETDEWEB)

    Coutin, M., E-mail: mickael.coutin@irsn.fr; Plumecocq, W.; Zavaleta, P.; Audouin, L.

    2015-05-15

    Highlights: • Heat release rate of electrical cabinet fire source in a vitiated atmosphere. • Experimental database for proper validation the combustible modelling, taking into account the oxygen depletion in an enclosure. • New model for complex fire source. - Abstract: The study of electrical fires is a major concern for fire safety in the industry and more particularly for fire safety in nuclear facilities. To investigate this topic, IRSN conducted a large number of real-scale experiments involving open-door electrical cabinets burning firstly under a calorimetric hood and then inside a mechanically-ventilated compartment. The main challenges are to determine accurately the heat release rate of such a complex fire source in a vitiated atmosphere and to provide an experimental database for validating properly the combustible modelling, taking into account the oxygen depletion in an enclosure. After providing a detailed description of the fire scenarios and of the experimental apparatus, this paper focuses on the characteristic stages of the cabinet fire development, essentially based on the heat release rate time evolution of the fire. The effects of the confinement, of the outlet branch location, of the ventilation management and of the fire barrier on the fire source were then investigated. The reproducibility of electrical cabinet fires is also studied. A new model for complex fire source (applied in this study for open-door electrical cabinet fires) was then developed. This model was introduced in the zone code SYLVIA and the major features of the compartment fire experiments, such as characteristic heat release rate with effect of oxygen depletion and over-pressure peak were then calculated with a rather good agreement for this complex fire source (i.e. electrical cabinet)

  15. Monitoring corrosion and chemistry phenomena in supercritical aqueous systems

    International Nuclear Information System (INIS)

    Macdonald, D.D.; Pang, J.; Liu, C.; Kriksunov, L.; Medina, E.; Villa, J.; Bueno, J.

    1994-01-01

    The in situ monitoring of the chemistry and electrochemistry of aqueous heat transport fluids in thermal (nuclear and fossil) power plants is now considered essential if adequate assessment and close control of corrosion and mass transfer phenomena are to be achieved. Because of the elevated temperatures and pressures involved. new sensor technologies are required that are able to measure key parameters under plant operating conditions for extended periods of time. In this paper, the authors outline a research and development program that is designed to develop practical sensors for use in thermal power plants. The current emphasis is on sensors for measuring corrosion potential, pH, the concentrations of oxygen and hydrogen, and the electrochemical noise generated by corrosion processes at temperatures ranging from ∼250 C to 500 C. The program is currently at the laboratory stage, but testing of prototype sensors in a coal-fired supercritical power plant in Spain will begin shortly

  16. Experimental and numerical investigation on thermal management of an outdoor battery cabinet

    International Nuclear Information System (INIS)

    Meng, X.Z.; Lu, Z.; Jin, L.W.; Zhang, L.Y.; Hu, W.Y.; Wei, L.C.; Chai, J.C.

    2015-01-01

    Many forms of electronic equipment such as battery packs and telecom equipment must be stored in harsh outdoor environment. It is essential that these facilities be protected from a wide range of ambient temperatures and solar radiation. Temperature extremes greatly reduce lead-acid based battery performance and shorten battery life. Therefore, it is important to maintain the cabinet temperature within the optimal values between 20 °C and 30 °C to ensure battery stability and to extend battery lifespan. To this end, cabinet enclosures with proper thermal management have been developed to house such electronic equipment in a highly weather tight manner, especially for battery cabinet. In this paper, the flow field and temperature distribution inside an outdoor cabinet are studied experimentally and numerically. The battery cabinets house 24 batteries in two configurations namely, two-layer configuration and six-layer configuration respectively. The cabinet walls are maintained at a constant temperature by a refrigeration system. The cabinet's ability to protect the batteries from an ambient temperature as high as 50 °C is studied. An experimental facility is developed to measure the battery surface temperatures and to validate the numerical simulations. The differences between the experimental and computational fluid dynamic (CFD) results are within 5%. - Highlights: • Battery placement has significant effect on temperature field in battery cabinet. • The six-layer configuration achieves better temperature uniformity. • Internal air circulation depends on battery configuration. • Natural convection could be an effective solution satisfying safety concerns.

  17. Application of thin layer activation technique for monitoring corrosion of carbon steel in hydrocarbon processing environment.

    Science.gov (United States)

    Saxena, R C; Biswal, Jayashree; Pant, H J; Samantray, J S; Sharma, S C; Gupta, A K; Ray, S S

    2018-05-01

    Acidic crude oil transportation and processing in petroleum refining and petrochemical operations cause corrosion in the pipelines and associated components. Corrosion monitoring is invariably required to test and prove operational reliability. Thin Layer Activation (TLA) technique is a nuclear technique used for measurement of corrosion and erosion of materials. The technique involves irradiation of material with high energy ion beam from an accelerator and measurement of loss of radioactivity after the material is subjected to corrosive environment. In the present study, TLA technique has been used to monitor corrosion of carbon steel (CS) in crude oil environment at high temperature. Different CS coupons were irradiated with a 13 MeV proton beam to produce Cobalt-56 radioisotope on the surface of the coupons. The corrosion studies were carried out by subjecting the irradiated coupons to a corrosive environment, i.e, uninhibited straight run gas oil (SRGO) containing known amount of naphthenic acid (NA) at high temperature. The effects of different parameters, such as, concentration of NA, temperature and fluid velocity (rpm) on corrosion behaviour of CS were studied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Automated energy conserving cover for refrigerated cabinet access openings

    International Nuclear Information System (INIS)

    Ibrahim, F.F.

    1984-01-01

    An automatically operated flexible barrier cover for the access openings of refrigerated display cabinets. The barrier cover limits the contact between the refrigerated air within the cabinet and the ambient air. The barrier cover can be moved over the access opening during non-customer use time periods when the retail food outlet is closed. The barrier cover can be arranged as a unitary assembly which can be manufactured and sold separately from the display cabinet as a retrofit device to effect energy savings. The flexible barrier cover can be stored in a reeled-up position or can be arranged as a folded flexible barrier which can be fanned out across the access opening. Various traction means are provided for moving the flexible barrier across the access opening

  19. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    International Nuclear Information System (INIS)

    Macdonald, D. D.; Lvov, S. N.

    2000-01-01

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system

  20. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, D. D.; Lvov, S. N.

    2000-03-31

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system.

  1. Corrosion monitoring in a straw-fired power plant using an electrochemical noise probe

    DEFF Research Database (Denmark)

    Cappeln, Frederik Vilhelm; Bjerrum, Niels; Petrushina, Irina

    2007-01-01

    Electrochemical Noise Measurements have been carried out in situ in a straw-fired power plant using an experimental probe constructed from alumina and AlSl 347 steel. Based on a framework of controlled laboratory experiments it has been found that electrochemical noise has the unique ability...... to provide in-situ monitoring of intergranular corrosion in progress. The probe had a lifetime of two months. It was shown that down-time corrosion in the boiler was negligible. Electrochemical noise data indicated that metal temperatures around 590 degrees C should be avoided as the intergranular corrosion...

  2. Corrosion Monitoring of Flexible Metallic Substrates for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Trystan Watson

    2013-01-01

    Full Text Available Two techniques for monitoring corrosion within a dye-sensitized solar cell (DSC system are presented, which enable continuous, high sensitivity, in situ measurement of electrolyte breakdown associated with DSCs fabricated on metals. The first method uses UV/Vis reflectance spectrophotometry in conjunction with encapsulation cells, which incorporate a 25 μm thick electrolyte layer, to provide highly resolved triiodide absorption data. The second method uses digital image capture to extract colour intensity data. Whilst the two methods provide very similar kinetic data on corrosion, the photographic method has the advantage that it can be used to image multiple samples in large arrays for rapid screening and is also relatively low cost. This work shows that the triiodide electrolyte attacks most metals that might be used for structural applications. Even a corrosion resistant metal, such as aluminium, can be induced to corrode through surface abrasion. This result should be set in the context with the finding reported here that certain nitrogen containing heterocyclics used in the electrolyte to enhance performance also act as corrosion inhibitors with significant stabilization for metals such as iron. These new techniques will be important tools to help develop corrosion resistant metal surfaces and corrosion inhibiting electrolytes for use in industrial scale devices.

  3. Corrosion and corrosion control

    International Nuclear Information System (INIS)

    Khanna, A.S.; Totlani, M.K.

    1995-01-01

    Corrosion has always been associated with structures, plants, installations and equipment exposed to aggressive environments. It effects economy, safety and product reliability. Monitoring of component corrosion has thus become an essential requirement for the plant health and safety. Protection methods such as appropriate coatings, cathodic protection and use of inhibitors have become essential design parameters. High temperature corrosion, especially hot corrosion, is still a difficult concept to accommodate in corrosion allowance; there is a lack of harmonized system of performance testing of materials at high temperatures. In order to discuss and deliberate on these aspects, National Association for Corrosion Engineers International organised a National Conference on Corrosion and its Control in Bombay during November 28-30, 1995. This volume contains papers presented at the symposium. Paper relevant to INIS is indexed separately. refs., figs., tabs

  4. On-line monitoring system development for single-phase flow accelerated corrosion

    International Nuclear Information System (INIS)

    Lee, Na Young; Lee, Seung Gi; Ryu, Kyung Ha; Hwang, Il Soon

    2007-01-01

    Aged nuclear piping has been reported to undergo corrosion-induced accelerated failures, often without giving signatures to current inspection campaigns. Therefore, we need diverse sensors which can cover a wide area in an on-line application. We suggest an integrated approach to monitor the flow accelerated corrosion (FAC) susceptible piping. Since FAC is a combined phenomenon, we need to monitor as many parameters as possible and that cover wide area, since we do not know where the FAC occurs. For this purpose, we introduce the wearing rate model which focuses on the electrochemical parameters. Using this model, we can predict the wearing rate and then compare testing results. Through analysis we identified feasibility and then developed electrochemical sensors for high temperature application; we also introduced a mechanical monitoring system which is still under development. To support the validation of the monitored results, we adopted high temperature ultrasonic transducer (UT), which shows good resolution in the testing environment. As such, all the monitored results can be compared in terms of thickness. Our validation tests demonstrated the feasibility of sensors. To support direct thickness measurement for a wide-area, the direct current potential drop (DCPD) method will be researched to integrate into the developed framework

  5. [Microcontroller temperature regulator MPT110 for drying-sterilizing cabinets].

    Science.gov (United States)

    Kostin, N N; Gavrishchuk, V I; Zelepukin, S A; Shkulepa, V M; Zharov, E N

    2002-01-01

    The paper describes a MPT-110 temperature microcontroller developed by the closed joint-stock company "OPLEKS" (Orel, Russia) and the results of comparative tests performed in the @IIICC-80 drying sterilizing cabinet. The use of the MPT-110 controller is shown to improve the quality of control and to shorten the times that is taken for the cabinet to reach the preset temperature point.

  6. Russia's science minister keeps cabinet post

    CERN Multimedia

    1999-01-01

    Mikhail Kirpichnikov, minister for science and technology has kept his post in the cabinet of the new prime minister Sergei Stepashin. Yevgeniy Adamov also remains as minister of atomic energy (2 paragraphs).

  7. Concrete and corrosion monitoring during the 2nd supercontainer half-scale test

    International Nuclear Information System (INIS)

    Areias, L.; Troullinous, I.; Verstricht, J.; Iliopoulos, S.; Pyl, L.; Voet, E.; Van Ingelgem, Y.; Kursten, B.; Craeye, B.; Coppens, E.; Van Marcke, P.

    2015-01-01

    The Super-container (SC) is a reference design concept for the packaging of spent fuel (SF) and vitrified high-level radioactive waste (HLW). The SC conceptual design is based on a multiple barrier system consisting of an outer stainless steel envelope, a concrete buffer and a water-tight carbon steel overpack containing one or more waste canisters. The experimental test described in this paper uses a so called 'half-scale' model of the SC. A metal container containing an electrical heat source is used to simulate the heat-emitting waste of a real overpack. A total of 182 sensors have been installed to monitor the half-scale model. The majority of the sensors are embedded in the concrete materials, while a limited number of them are installed around the outside of the structure to measure the ambient temperature, relative humidity and air velocity. The instrumentation included the use of fibre optics to measure both distributed as well as semi-distributed temperature and strain in the three orthogonal directions, Digital Image Correlation (DIC) and Acoustic Emission (AE) to monitor microcrack initiation and evolution, and a new PermaZEN corrosion sensor to measure the active corrosion of the carbon steel overpack. The combined results of DIC and AE monitoring have enabled the detection and measurement of surface movement, captured the onset of micro crack formation and its propagation, and measured the displacement and strain fields at different levels across the height of the half-scale test as a function of time. In particular, the DIC measurements clearly identified the appearance of the first micro cracks formed on the concrete surface of the buffer with a crack width resolution of approximately 13 microns. The results of a laboratory test performed with the corrosion sensor show a rapid onset of corrosion at the beginning of the test followed by an equally rapid decrease in corrosion after only a few days of testing. The measured corrosion rates

  8. Development of a unit suitable for corrosion monitoring in district heating systems. Experiences with the LOCOR-cell test method

    DEFF Research Database (Denmark)

    Andersen, Asbjørn; Hilbert, Lisbeth Rischel

    2004-01-01

    A by-pass unit suitable for placement of a number of different probes for corrosion monitoring has been designed. Also measurements of water parameters are allowed in a side stream from the unit. The project is a part of the Nordic Innovation Fund project KORMOF. The by-pass unit has been installed...... in 6 pressurised circulating heating systems and in one cooling system. 7 different corrosion monitoring methods have been used to study corrosion rates and types in dependency of water chemistry. This paper describes the design of the by-pass unit including water analysis methods. It also describes...... the purpose, background and gained results of one of the used monitoring techniques, the crevice corrosion measurements obtained by the LOCOR-Cell„§. The crevice corrosion cell was developed by FORCE Technology in a previous district heating project financed by Nordic Industrial Fund (1)(2). Results from...

  9. Bureau of radiological health compliance testing procedures for cabinet S-ray systems

    International Nuclear Information System (INIS)

    Miller, E.A.; Sprau, D.

    1976-01-01

    A manual has been developed by the Bureau of Radiological Health of the Food and Drug Administration to establish procedures for the routine field testing of cabinet x-ray systems to determine compliance with the Federal Performance Standard for Cabinet X-Ray Systems, 21 CFR 1020.40. The manual provides specific instructions for testing each model of cabinet x-ray system. Results from the inspection are recorded on a data from which is designed to permit automatic data processing

  10. Evaluation of modal properties of cabinet type instrument of nuclear power plant

    International Nuclear Information System (INIS)

    Cho, Y. H.; Park, H. K.; Cho, S. K.

    1999-01-01

    The seismic qualification of safety-related equipment is usually achieved through analysis and testing. Analysis method is preferably adopted for structurally simple equipments which are easy to be mathematically modeled. However, even for relatively complex equipments, analysis method is occasionlly used for computing the input motion or supporting information for the component test followed. Electrical cabinet is a typical example for which analysis method is combinedly used with test to get modal properties of the enclosing cabinet structure. In this paper, with respect to a typical cabinet-type structure(instrumentation cabinet of nuclear power plant) a comparative study has been performed between three different state-of-the-art modeling techniques: lumped mass model, frame model, and FEM modal. From the study results, it has been found that the modal properties of the cabinet-type structure in the elastic behavior range can be reasonably computed through any type of modeling techniques in the practice with slight modification of model properties to get better accuracy. However, it needs additional modeling techniques to get reasonable results up to nonlinear range

  11. Corrosion probe. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designed to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned

  12. Corrosion in systems for storage and transportation of petroleum products and biofuels identification, monitoring and solutions

    CERN Document Server

    Groysman, Alec

    2014-01-01

    This book treats corrosion as it occurs and affects processes in real-world situations, and thus points the way to practical solutions. Topics described include the conditions in which petroleum products are corrosive to metals; corrosion mechanisms of petroleum products; which parts of storage tanks containing crude oils and petroleum products undergo corrosion; dependence of corrosion in tanks on type of petroleum products; aggressiveness of petroleum products to polymeric material; how microorganisms take part in corrosion of tanks and pipes containing petroleum products; which corrosion monitoring methods are used in systems for storage and transportation of petroleum products; what corrosion control measures should be chosen; how to choose coatings for inner and outer surfaces of tanks containing petroleum products; and how different additives (oxygenates, aromatic solvents) to petroleum products and biofuels influence metallic and polymeric materials. The book is of interest to corrosion engineers, mat...

  13. Corrosion evaluation of traditional and new bronzes for artistic castings

    International Nuclear Information System (INIS)

    Chiavari, C.; Colledan, A.; Frignani, A.; Brunoro, G.

    2006-01-01

    By electrochemical and accelerated weathering tests, the corrosion behaviour of a new type of tin-bronze, containing about 3 wt.% silicon (SI3 bronze) was compared to a traditional 5% Sn, 5% Zn, 5% Pb bronze used for artistic castings (G85 bronze) under conditions simulating urban-industrial and marine environments. The aggressive media were: a synthetic pH 3.1 acid rain (AR) solution; a typical moist SO 2 -NO x for a climatic chamber and AR or 3.5% NaCl aqueous solution for salt spray cabinet. In all the environments the corrosion product layers formed on SI3 bronze were more uniform and protective than those formed on the traditional G85 bronze. The nature and morphology of the corrosion products were investigated by X-ray diffraction (XRD), optical and scanning electron microscopy with microprobe (SEM-EDS), atomic force microscopy (AFM)

  14. Corrosion/95 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The papers in this conference represent the latest technological advances in corrosion control and prevention. The following subject areas are covered: cathodic protection in natural waters; materials for fossil fuel combustion and conversion systems; modern problems in atmospheric corrosion; innovative ideas for controlling the decaying infrastructure; deposits and their effects on corrosion in industry; volatile high temperature and non aqueous corrosion inhibitors; corrosion of light-weight and precoated metals for automotive application; refining industry corrosion; corrosion in pulp and paper industry; arctic/cold weather corrosion; materials selection for waste incinerators and associated equipment; corrosion measurement technology; environmental cracking of materials; advancing technology in the coating industry; corrosion in gas treating; green inhibition; recent advances in corrosion control of rail equipment; velocity effects and erosion corrosion in oil and gas production; marine corrosion; corrosion of materials in nuclear systems; underground corrosion control; corrosion in potable and industrial water systems in buildings and its impact on environmental compliance; deposit related boiler tube failures; boiler systems monitoring and control; recent developments and experiences in reactive metals; microbiologically influenced corrosion; corrosion and corrosion control for steel reinforced concrete; international symposium on the use of 12 and 13 Cr stainless steels in oil and gas production environments; subsea corrosion /erosion monitoring in production facilities; fiberglass reinforced pipe and tubulars in oilfield service; corrosion control technology in power transmission and distribution; mechanisms and methods of scale and deposit control; closing the loop -- results oriented cooling system monitoring and control; and minimization of aqueous discharge

  15. Measuring Presidential Dominance over Cabinets in Presidential Systems: Constitutional Design and Power Sharing

    Directory of Open Access Journals (Sweden)

    Victor Araújo

    2016-08-01

    Full Text Available This study focuses on the degree of political dominance exercised on cabinets by the executive chief in presidential systems. According to a debate that began in the 1990s, presidential systems are characterized by a non-collegial decision-making process, led by and personified in the figure of the president, in contrast to parliamentary systems where a joint decision-making process is prevalent. The key argument of this research note is that, although the majority of presidents have the constitutional power to remove cabinet ministers, the executive decision-making process in presidential systems is not necessarily vertical or based on a non-collegial process. By building a new index, we reveal a significant variation in the executive power exerted by presidents over their cabinets. To classify the degree of political dominance of presidents over their cabinets, we analyzed the rules of cabinet decision-making processes as defined in 18 Latin American constitutions.

  16. Application Software for the Cabinet Operator Module of the Reactor Protection System

    International Nuclear Information System (INIS)

    Lee, Hyun-Chul; Jung, Hae-Won; Lee, Sung-Jin; Koo, Young-Ho; Kim, Seong-Tae; Kwak, Tae-Kil; Jin, Kyo-Hong

    2006-01-01

    A reactor protection system (RPS) plays the roles of generating the reactor trip signal and the engineered safety features (ESF) actuation signal when the monitored plant processes reach predefined limits. A Korean project group, so-called KNICS (Korean Nuclear I and C System), is developing a new digitalized RPS and the Cabinet Operator Module (COM) of the RPS which is used for the RPS integrity testing and monitoring by equipment operators. A flat panel display (FPD) with a touch screen capability is provided as a main user interface for the RPS. This paper shows the application software developed for the COM FPD. Equipment operators can monitor the status of the RPS and carry out various tests to verify system functions by means of the application software. A qualified hardware and software development environment are used to develop the application software

  17. Development and evaluation of an instantaneous atmospheric corrosion rate monitor

    Science.gov (United States)

    Mansfeld, F.; Jeanjaquet, S. L.; Kendig, M. W.; Roe, D. K.

    1985-06-01

    A research program was carried out in which a new instantaneous atmospheric corrosion rate monitor (ACRM) was developed and evaluated, and equipment was constructed which will allow the use of many sensors in an economical way in outdoor exposures. In the first task, the ACRM was developed and tested in flow chambers in which relative humidity and gaseous and particulate pollutant levels can be controlled. Diurnal cycles and periods of rain were simulated. The effects of aerosols were studied. A computerized system was used for collection, storage, and analysis of the electrochemical data. In the second task, a relatively inexpensive electronics system for control of the ACRM and measurement of atmospheric corrosion rates was designed and built. In the third task, calibration of deterioration rates of various metallic and nonmetallic materials with the response of the ACRMs attached to these materials was carried out under controlled environmental conditions using the system developed in the second task. A Quality Assurance project plan was prepared with inputs from the Rockwell International Environmental Monitoring and Service Center and Quality Assurance System audits were performed.

  18. CAPITAL MARKET’S REACTION TOWARDS 2014 WORKING CABINET ANNOUNCEMENT (INDONESIAN CASE STUDY

    Directory of Open Access Journals (Sweden)

    Anindya Ardiansari

    2015-03-01

    Full Text Available The purpose of this study is to examine the market reaction regarding the announcement  of working cabinet following the election of Jokowi as the President of Indonesia. Political events such as presidential election, government change, cabinet announcement, and other events are very influential towards price and trade volume at the stock exchange since the political events are closely related to the state economy stability.  The Sample in this study is stock which was listed as issuers in Indonesia Stock Exchange (IDX which included in LQ45 company group during this research period from 20 October– 3 November 2014. The result shows that there was significant effect towards abnormal return difference before and after the cabinet announcement on the companies listed in LQ 45. The existence of this significant difference means that market reacted with the cabinet announcement event.

  19. 76 FR 2145 - Masco Builder Cabinet Group Including On-Site Leased Workers From Reserves Network, Jackson, OH...

    Science.gov (United States)

    2011-01-12

    ...,287B; TA-W-71,287C] Masco Builder Cabinet Group Including On-Site Leased Workers From Reserves Network, Jackson, OH; Masco Builder Cabinet Group, Waverly, OH; Masco Builder Cabinet Group, Seal Township, OH; Masco Builder Cabinet Group, Seaman, OH; Amended Certification Regarding Eligibility To Apply for Worker...

  20. Corrosion Resistant FBG-Based Quasi-Distributed Sensor for Crude Oil Tank Dynamic Temperature Profile Monitoring

    Science.gov (United States)

    da Silva Marques, Rogério; Prado, Adilson Ribeiro; da Costa Antunes, Paulo Fernando; de Brito André, Paulo Sérgio; Ribeiro, Moisés R. N.; Frizera-Neto, Anselmo; Pontes, Maria José

    2015-01-01

    This article presents a corrosion resistant, maneuverable, and intrinsically safe fiber Bragg grating (FBG)-based temperature optical sensor. Temperature monitoring is a critical activity for the oil and gas industry. It typically involves acquiring the desired parameters in a hazardous and corrosive environment. The use of polytetrafluoroethylene (PTFE) was proposed as a means of simultaneously isolating the optical fiber from the corrosive environment and avoiding undesirable mechanical tensions on the FBGs. The presented sensor head is based on multiple FBGs inscribed in a lengthy single mode fiber. The sensor presents an average thermal sensitivity of 8.82 ± 0.09 pm/°C, resulting in a typical temperature resolution of ~0.1 °C and an average time constant value of 6.25 ± 0.08 s. Corrosion and degradation resistance were verified by infrared spectroscopy and scanning electron microscopy during 90 days exposure to high salinity crude oil samples. The developed sensor was tested in a field pilot test, mimicking the operation of an inland crude tank, demonstrating its abilities to dynamically monitor temperature profile. PMID:26690166

  1. Refrigerated display cabinets; Butikskyla

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, Per

    2000-07-01

    This report summarizes experience from SP research and assignments regarding refrigerated transport and storage of food, mainly in the retail sector. It presents the fundamentals of heat and mass transfer in display cabinets with special focus on indirect systems and secondary refrigerants. Moreover, the report includes a brief account of basic food hygiene and the related regulations. The material has been compiled for educational purposes in the Masters program at Chalmers Technical University.

  2. Chemically activated nanodiamonds for aluminum alloy corrosion protection and monitoring

    Science.gov (United States)

    Hannstein, Inga; Adler, Anne-Katrin; Lapina, Victoria; Osipov, Vladimir; Opitz, Jörg; Schreiber, Jürgen; Meyendorf, Norbert

    2009-03-01

    In the present study, a smart coating for light metal alloys was developed and investigated. Chemically activated nanodiamonds (CANDiT) were electrophoretically deposited onto anodized aluminum alloy AA2024 substrates in order to increase corrosion resistance, enhance bonding properties and establish a means of corrosion monitoring based on the fluorescence behavior of the particles. In order to create stable aqueous CANDiT dispersions suitable for electrophoretic deposition, mechanical milling had to be implemented under specific chemical conditions. The influence of the CANDiT volume fraction and pH of the dispersion on the electrochemical properties of the coated samples was investigated. Linear voltammetry measurements reveal that the chemical characteristics of the CANDiT dispersion have a distinct influence on the quality of the coating. The fluorescence spectra as well as fluorescence excitation spectra of the samples show that corrosion can be easily detected by optical means. Furthermore, an optimization on the basis of "smart" - algorithms for the data processing of a surface analysis by the laser-speckle-method is presented.

  3. Single Party Cabinets and Presidential Democracies: insights from the Argentinean case

    Directory of Open Access Journals (Sweden)

    Marcelo CAMERLO

    2013-07-01

    Full Text Available The study of presidential cabinets has mainly focused on coalitional formations, distinguishing individual ministers in terms of their party affiliation particularly at cabinet instauration and termination. This article moves the focus to single-party cabinets to study minister appointment in situations where the legislative support is less relevant. A model of analysis that observes extra-partisan affiliations, individual technical skills and personal liaison with the president is proposed and exploratory applied to the Argentinean case. The results suggest that well positioned presidents tend to apply closer strategies of portfolio distribution, with levels of institutionalization that depends on the president’s party organization and the president’s style of leadership.

  4. In-situ monitoring of undercoating corrosion damage by Direct Optical Interrogation (DOI)

    Science.gov (United States)

    Lopez-Garrity, Meng

    An approach referred to as "Direct Optical Interrogation" (DOI) has been developed as an extension of the thin film pitting approach developed and used by Frankel and others. Samples were prepared by depositing Al and Al-Cu alloy metallizations about 800 nm thick on glass substrates. These metallizations were then coated with various coatings and coating systems. Samples were introduced to aggressive environments and the progression of corrosion of the metallization under the coating was monitored in situ using low power videography. Because metallizations were thin, corrosion quickly penetrated through the metal layer to the glass substrate and then spread laterally. Measurement of the lateral spread of corrosion enabled non-electrochemical assessment of the corrosion kinetics. In Al-Cu thin films, both aged and as-deposited, corrosion sites are irregularly shaped because there is not enough cathodic current to propagate the entire corrosion site margin at equal rates. In a number of cases, corrosion propagates with a filamentary morphology resembling filiform corrosion. Cu played a strong role in determining under coating corrosion morphology and growth kinetics in experiments with Al-Cu thin films substrates. As-deposited Al-Cu metallizations were more corrosion resistant than aged metallization and both were more corrosion resistant than pure Al. Cu-rich dendrites were formed on the corrosion front. Corrosion rate (current density) was calculated using Faraday's law by collecting corrosion site perimeter and bottom area. Systematic exploration of the effects of a chromate and chromate-free conversion coatings, chromate and chromate-free primer coatings and the presence or absence of a polyurethane topcoat confirmed the extraordinary corrosion protection by chromates. A commercial praseodymium-pigmented primer coating was not particularly effective in retarding undercoating corrosion site growth unless paired with a chromate conversion coating. The presence of a

  5. Corrosion monitoring for underground and submerged concrete structures - examples and interpretation issues

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.; Leegwater, G.

    2008-01-01

    Since about 1980 Corrosion Monitoring Systems have been used in many concrete structures in aggressive environmentworldwide. While these systemswork properly in aboveground environment, some questions have arisen for submerged conditions, e.g. the outer sides of tunnels, piers in seawater or

  6. Isolation of I and C cabinets against shocks, vibrations and seismic movements

    International Nuclear Information System (INIS)

    Ciocan, George; Zamfir, Madalina; Florea, Ioana; Androne, Marian; Serban, Viorel; Prisecaru, Ilie

    2007-01-01

    This paper presents SERB-CITON solution to isolate the I and C cabinets against shocks, vibrations and seismic movements. The seismic qualification is required because the I and C components installed inside the cabinets are generally sensitive to shocks, vibrations and seismic movements and many times, the manufacturer does not guarantee them for a level of shocks, vibrations and seismic movements higher and equal to the level corresponding to the location where they are installed. The document also presents the solution to isolate such I and C cabinets associated to the hydrogen sulfide compressors located in ROMAG-PROD Drobeta Turnu-Severin. (authors)

  7. Real time corrosion monitoring in atmosphere using automated battery driven corrosion loggers

    DEFF Research Database (Denmark)

    Prosek, T.; Kouril, M.; Hilbert, Lisbeth Rischel

    2008-01-01

    diminishes due to corrosion. Zinc, iron, copper and nickel sensors at several thicknesses are available. Sensitivity of the corrosion measurement varies from 1 to 10 nm depending on the type and thickness of the sensor. Changes in the air corrosivity can be thus detected within hours or even tens of minutes......A logger enabling continuous measurement of corrosion rate of selected metals in indoor and outdoor atmospheres has been developed. Principle of the measurement method is based on the increasing electrical resistance of a measuring element made of the material concerned as its cross-sectional area....... The logger lifetime in medium corrosive environments is designed to be 2 years with full autonomy. Data on the sensor corrosion rate are available any time through GPRS connection or by a non-contact inductive reading without the need of retracting the logger from the exposure site....

  8. Potential drop technique for monitoring stress corrosion cracking growth

    International Nuclear Information System (INIS)

    Neves, Celia F.C.; Schvartzman, Monica M.A.M.; Moreira, Pedro A.L.D.P.L.P.

    2002-01-01

    Stress corrosion cracking is one of most severe damage mechanisms influencing the lifetime of components in the operation of nuclear power plants. To assess the initiation stages and kinetics of crack growth as the main parameters coming to residual lifetime determination, the testing facility should allow active loading of specimens in the environment which is close to the real operation conditions of assessed component. Under cooperation of CDTN/CNEN and International Atomic Energy Agency a testing system has been developed by Nuclear Research Institute, Czech Republic, that will be used for the environmentally assisted cracking testing at CDTN/CNEN. The facility allows high temperature autoclave corrosion mechanical testing in well-defined LWR water chemistry using constant load, slow strain rate and rising displacement techniques. The facility consists of autoclave and refreshing water loop enabling testing at temperatures up to 330 deg C. Active loading system allows the maximum load on a specimen as high as 60 kN. The potential drop measurement is used to determine the instant crack length and its growth rate. The paper presents the facility and describes the potential drop technique, that is one of the most used techniques to monitor crack growth in specimens under corrosive environments. (author)

  9. Development of corrosion condition sensing and monitoring system using radio-frequency identification devices (RFID)

    Energy Technology Data Exchange (ETDEWEB)

    Gu, G.P.; Zheng, W. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Laboratory

    2008-05-15

    This study discussed the development of a corrosion sensing and monitoring system for military land vehicles. Radio-frequency identification device (RFID) technology uses radio waves to identify individual masses with RFID tags attached. A corrosion-sensing element was integrated with the RFID technology, which incorporated a galvanic corrosion cell designed to trigger RFID tags. Corrosion severity was then related to the galvanic current. The tag recorded the sensor reading and transmitted the data to an RFID reader. The tags consisted of a microchip and an antenna. A software development kit has also been developed to interface RFID data with existing applications. While it is currently not possible to modify the RFID tags to prevent security risks, further research is being conducted to assemble a data-logger system with corrosion probes to measure humidity, electrical resistance, and linear polarization resistance. Studies will also be conducted to assemble an active tag reader system and investigate potential modifications. 4 refs., 1 fig., 1 appendix.

  10. Electrochemical corrosion potential monitoring in boiling water reactors

    International Nuclear Information System (INIS)

    Cowan, R.L.; Hettiarachchi, S.; Hale, D.H.; Law, R.J.

    1998-01-01

    The electrochemical corrosion potential (ECP) is defined as the measured voltage between a metal and a standard reference electrode converted to the standard hydrogen electrode (SHE) scale. This concept is shown schematically in Figure 1. The measurement of ECP is of primary importance for both evaluating the stress corrosion cracking susceptibility of a component and for assuring that the specification for hydrogen water chemistry, ECP < -230 mV, SHE is being met. In practice, only a limited number of measurement locations are available in the BWR and only a few reference electrode types are robust enough for BWR duty. Because of the radiolysis inherent in the BWR, local environment plays an important role in establishing the ECP of a component. This paper will address the strategies for obtaining representative measurements, given these stated limitations and constraints. The paper will also address the ECP monitoring strategies for the noble metal chemical addition process that is being implemented in BWRs to meet the ECP specification at low hydrogen injection rates. (author)

  11. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    International Nuclear Information System (INIS)

    Macdonald, D.D.

    2000-01-01

    Super Critical Water Oxidation (SCWO) is a promising technology for destroying highly toxic organic waste (including physiological agents) and for reducing the volume of DOE's low-level nuclear waste. The major problem inhibiting the wide implementation of SCWO is the lack of fundamental knowledge about various physico-chemical and corrosion processes that occur in SCW environments. In particular, the lack of experimental techniques for accurately monitoring important parameters, such as pH, corrosion potential and corrosion rate, has severely hampered the development of a quantitative understanding of the degradation of materials in this extraordinarily aggressive environment. Accordingly, the principal objective of the present program has been to develop new, innovative methods for accurately measuring parameters that characterize corrosion processes under super critical conditions

  12. Investigation of monitoring technologies for heat transfer corrosion in reprocessing equipment

    International Nuclear Information System (INIS)

    Tsukatani, I.; Kiuchi, K.

    2004-01-01

    Two types of in-situ monitoring techniques using electrical resistance methods were developed for estimating the wall thinning of heat transfer tubes used in evaporators for Purex process on commercial reprocessing plants. The corrosion rate is accelerated with oxidizer ions formed by the thermal decomposition of nitric acid under heat flux. An in-situ corrosion sensor was developed for estimating the corrosion rate of heat transfer tubes using miniature heat transfer tube specimens under heat flux control. It is possible to simulate the heating condition as same as heat transfer tubes. The applicability was evaluated by setting it in gas-liquid separator in a mock-up evaporator for acid recovery. The sensitivity of electric resistance methods is increased with decreasing the residual thickness of probe tube. The other is the electrical potential drop method using direct current so-called the field signature method. It is applicable to estimate the corrosiveness of reprocessing nitric acid by setting it on the drain tube in evaporator. The sensitivity to the thinning rate of tubes wall machined artificially was obtained within ±10% to the wall thickness. It has the non-sensitive region nearly 0.1mm up to begin working. The practical applicability has been also evaluated by setting it in a mock-up evaporator. (author)

  13. Field experience with advanced methods of on-line monitoring of water chemistry and corrosion degradation in nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Stellwag, B [Siemens AG Unternehmensbereich KWU, Erlangen (Germany); Aaltonen, P [Technical Research Centre of Finland, Espoo (Finland); Hickling, J [CML GmbH, Erlangen (Germany)

    1997-02-01

    Advanced methods for on-line, in-situ water chemistry and corrosion monitoring in nuclear power stations have been developed during the past decade. The terms ``on-line`` and ``in-situ`` characterize approaches involving continuous measurement of relevant parameters in high temperature water, preferably directly in the systems and components and not in removed samples at room temperature. This paper describes the field experience to-date with such methods in terms of three examples: (1) On-line chemistry monitoring of the primary coolant during shutdown of a Type WWER-440 PWR. (2) Redox and corrosion potential measurements in final feedwater preheaters and steam generators of two large KWU PWRs over several cycles of plant operation. (3) Real-time, in-situ corrosion surveillance inside the calundia vault of a CANDU reactor. The way in which water chemistry sensors and corrosion monitoring sensors complement each other is outlined: on-line, in-situ measurement of pH, conductivity and redox potential gives information about the possible corrosivity of the environment. Electrochemical noise techniques display signals of corrosion activity under the actual environmental conditions. A common experience gained from separate use of these different types of sensors has been that new and additional information about plants and their actual process conditions is obtained. Moreover, they reveal the intimate relationship between the operational situation and its consequences for the quality of the working fluid and the corrosion behaviour of the plant materials. On this basis, the efficiency of the existing chemistry sampling and control system can be checked and corrosion degradation can be minimized. Furthermore, activity buildup in the primary circuit can be studied. Further significant advantages can be expected from an integration of these various types of sensors into a common water chemistry and corrosion surveillance system. (Abstract Truncated)

  14. Market opportunities for kitchen cabinets made from Alaska hardwoods: a synthesis and review of recent research.

    Science.gov (United States)

    David L. Nicholls; Maria C. Stiefel

    2007-01-01

    The kitchen cabinet industry has shown significant growth recently, with expanding residential markets, new cabinet styles, and larger kitchens. This industry represents an opportunity for small Alaska wood producers to create high-value secondary products. In response to recent trends in kitchen cabinet manufacturing and the need to identify opportunities for...

  15. A New Corrosion Sensor to Determine the Start and Development of Embedded Rebar Corrosion Process at Coastal Concrete

    Directory of Open Access Journals (Sweden)

    Weiliang Jin

    2013-09-01

    Full Text Available The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate.

  16. A new corrosion sensor to determine the start and development of embedded rebar corrosion process at coastal concrete.

    Science.gov (United States)

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-09-30

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate.

  17. Monitoring and modeling stress corrosion and corrosion fatigue damage in nuclear reactors

    International Nuclear Information System (INIS)

    Andresen, P.L.; Ford, F.P.; Solomon, H.D.; Taylor, D.F.

    1990-01-01

    Stress corrosion and corrosion fatigue are significant problems in many industries, causing economic penalties from decreased plant availability and component repair or replacement. In nuclear power reactors, environmental cracking occurs in a wide variety of components, including reactor piping and steam generator tubing, bolting materials and pressure vessels. Life assessment for these components is complicated by the belief that cracking is quite irreproducible. Indeed, for conditions which were once viewed as nominally similar, orders of magnitude variability in crack growth rates are observed for stress corrosion and corrosion fatigue of stainless steels and low-alloy steels in 288 degrees C water. This paper shows that design and life prediction approaches are destined to be overly conservative or to risk environmental failure if life is predicted by quantifying only the effects of mechanical parameters and/or simply ignoring or aggregating environmental and material variabilities. Examples include the Nuclear Regulatory Commission (NRC) disposition line for stress-corrosion cracking of stainless steel in boiling water reactor (BWR) water and the American Society of Mechanical Engineers' Section XI lines for corrosion fatigue

  18. A Galvanic Sensor for Monitoring the Corrosion Condition of the Concrete Reinforcing Steel: Relationship Between the Galvanic and the Corrosion Currents

    Directory of Open Access Journals (Sweden)

    Elsa Vaz Pereira

    2009-10-01

    Full Text Available This work reports a study carried out on the design and performance of galvanic and polarization resistance sensors to be embedded in concrete systems for permanent monitoring of the corrosion condition of reinforcing steel, aiming to establish a correlation between the galvanic currents, Igal, and the corrosion currents, Icorr, estimated from the polarization resistance, Rp. Sensors have been tested in saturated Ca(OH2 aqueous solutions, under a variety of conditions, simulating the most important parameters that can accelerate the corrosion of concrete reinforcing steel, such as carbonation, ingress of chloride ions, presence or absence of O2. For all the conditions, the influence of temperature (20 to 55 ºC has also been considered. From this study, it could be concluded that the galvanic currents are sensitive to the various parameters following a trend similar to that of the Rp values. A relationship between the galvanic and the corrosion current densities was obtained and the limiting values of the Igal, indicative of the state condition of the reinforcing steel for the designed sensor, were established.

  19. Steamgenerators corrosion monitoring and chemical cleanings

    International Nuclear Information System (INIS)

    Otchenashev, G.

    2001-01-01

    One of the most important secondary side water chemistry objectives is optimization of chemistry conditions to reduce materials corrosion and their products transport into steam generators. Corrosion products (mainly iron and copper oxides) can form deposits on the SG's tubes and essentially decrease their operating resource. The transport of corrosion products by the constant flowrate of feed and blowdown water depends only on their content in these streams. All the internal surfaces (walls, collectors, tubes) were covered with the tough deposit firmly connected with the surface. Corrosion under this deposit was not detected. In some places sludge unconnected with the surface was detected. The lower tubes are located the more unconnected sludge was detected. On SG bottom near the hatch the sludge thickness was about 3 cm. (R.P.)

  20. Microbiological safety cabinets, cytotoxic safety cabinets. Choice and use

    International Nuclear Information System (INIS)

    Balty, I.; Belhanini, B.; Clermont, H.; Cornu, J.C.; Jacquet, M.A.; Texte, J.C.

    2003-01-01

    Drawn up by a working group composed of prevention professionals, manufacturers and control bodies, this guide is intended to help those responsible for safety in laboratories choose and acquire materials responding to the intended protection objectives. It provides recommendations for the commissioning and control of these materials as well as for their use. After a description of the operational characteristics of safety cabinets, this guide looks at the important points to be taken into account when ordering, accepting and commissioning equipment adapted to precise needs. It also covers verification of correct operation and provides a number of common sense rules relative to precautions for use. Material cleaning and decontamination is described briefly on account of the very specialized character of this activity. Detailed information relative to this subject should be sought in the literature. (authors)

  1. Development of metallic system multi-composite materials for compound environment and corrosion monitoring technology

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi

    1996-01-01

    For the structural materials used for the pressure boundary of nuclear power plants and others, the long term durability over several decades under the compound environment, in which the action of radiation and the corrosion and erosion in the environment of use are superposed, is demanded. To its controlling factors, the secular change of materials due to irradiation ageing and the chemical and physical properties of extreme compound environment are related complicatedly. In the first period of this research, the development of the corrosion-resistant alloys with the most excellent adaptability to environments was carried out by the combination of new alloy design and alloy manufacturing technology. In the second period, in order to heighten the adaptability as the pressure boundary materials between different compound environments, the creation of metallic system multi-composite materials has been advanced. Also corrosion monitoring technique is being developed. The stainless steel for water-cooled reactors, the wear and corrosion-resistant superalloy for reactor core, the corrosion-resistant alloy and the metallic refractory material for reprocessing nitric acid reaction vessels are reported. (K.I.)

  2. The Railway Transport Cabinet of the Kyiv Commercial Institute: educational activities and library

    Directory of Open Access Journals (Sweden)

    Afanasievа Z.

    2014-01-01

    Full Text Available In the article the history of foundation and activities of the Railway Transport Cabinet of the Kyiv Commercial Institute are recreated and an attempt is made to trace the way of its library book fonds which "has been lost" during the institute numerous transformations.The Railway Transport Cabinet was established as a supportive educational subdivision of the Merchandising Museum of the Kyiv Commercial Institute. Its purpose was to gather materials on railway science from the improved models of railway transport to the rich collection of specialized literature in foreign languages. In this regard a library was organized in a cabinet; it consisted of professional books and documents covering the railway science, railroads organization and operation, various manuals, diagrams etc. The novelty of the publication lies in the disclosure of the history of the Kyiv Commercial Institute Railway Transport Cabinet library, which has not yet been an object of a special book science research.

  3. Cabinet Governance and Political Stability in English Urban Councils

    Directory of Open Access Journals (Sweden)

    Stephen Greasley

    2011-12-01

    Full Text Available Policy-makers have long been concerned with the quality of local political leadership and have often resorted to institutional reform to try to improve political leadership. This paper looks at a specific and neglected facet of the political management reforms that have been implemented in English local government over the last decade: the tenure and turnover of cabinet members. The tenure of top politicians may be an important influence on the performance of local government particularly when political management is designed to favour individualised leadership. On the one hand, excessively short tenures for top politicians may damage the ability of governments to develop strategic plans and ensure they are implemented while on the other hand the risk of loss of office is central to political accountability and excessively long tenures may be indicative of an insulated and unresponsive elite. While some research attention has been paid to the tenures of leaders of councils in England there is little systematic information about the tenure of cabinet members. This paper discusses the relevance of cabinet stability and provides an overview of recent experience in England.

  4. Corrosion technology. V. 1

    International Nuclear Information System (INIS)

    Khan, I.H.

    1989-01-01

    This book has been produced for dissemination of information on corrosion technology, corrosion hazards and its control. Chapter one of this book presents an overall view of the subject and chapter 2-5 deals with electrochemical basics, types of corrosion, pourbaix diagrams and form of corrosion. The author explains polarization/kinetics of corrosion, passivity, aqueous corrosion and corrosion testing and monitoring in 6-11 chapters. The author hopes it will provide incentive to all those interested in the corrosion technology. (A.B.)

  5. ENERGY STAR Certified Commercial Hot Food Holding Cabinet

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Commercial Hot Food Holding Cabinets that are...

  6. Atmospheric corrosion Monitoring with Time-of-Wetness (TOW) sensor and Thin Film Electric Resistance (TFER) sensor

    International Nuclear Information System (INIS)

    Jung, Sung Won; Kim, Young Geun; Song, Hong Seok; Lee, Seung Min; Kho, Young Tai

    2002-01-01

    In this study, TOW sensor was fabricated with the same P. J. Serada's in NRC and was evaluated according to pollutant amount and wet/dry cycle. Laboratorily fabricated thin film electric resistance (TFER) probes were applied in same environment for the measurement of corrosion rate for feasibility. TOW sensor could not differentiate the wet and dry time especially at polluted environment like 3.5% NaCl solution. This implies that wet/dry time monitoring by means of TOW sensor need careful application on various environment. TFER sensor could produce instant atmospheric corrosion rate regardless of environment condition. And corrosion rate obtained by TFER sensor could be differentiated according to wet/dry cycle, wet/dry cycle time variation and solution chemistry. Corrosion behaviors of TFER sensor showed that corrosion could proceed even after wet cycle because of remained electrolyte at the surface

  7. A New Corrosion Sensor to Determine the Start and Development of Embedded Rebar Corrosion Process at Coastal Concrete

    OpenAIRE

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-01-01

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete u...

  8. Magnetic Carpet Probe for Large Area Instant Crack/Corrosion Detection and Health Monitoring

    International Nuclear Information System (INIS)

    Sun Yushi; Ouyang Tianhe; Yang Xinle; Zhu Haiou

    2007-01-01

    Recently a new NDE tool, Magnet Carpet Probe (MCP), has been developed by Innovative Materials Testing Technologies, Inc. supported by FAA to meet the demands of large area crack/corrosion detection and health monitoring. MCP is a two-dimensional coil array built on a piece of very thin flexible printed circuit board. A two-dimensional electromagnetic scan is going on within the MCP placed on top of a metallic surface under inspection. Therefore, one can finish the inspection, without moving anything, and see the crack/corrosion identification image on the instrument screen in a few second. Recent test results show that it can detect 0.030 x 0.016'' EDM notches on a Titanium standard; 0.024'' ∼ 0.036: real cracks on titanium standards, as well as penetrate through a 0.040'' aluminum layer for corrosion detection

  9. Corrosion Monitoring of PEO-Pretreated Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gnedenkov, A. S.; Sinebryukhov, S. L.; Mashtalyar, D. V.; Gnedenkov, S. V.; Sergienko, V. I. [Institute of Chemistry, Vladivostok (Russian Federation)

    2017-06-15

    The MA8 alloy (formula Mg-Mn-Ce) has been shown to have greater corrosion stability than the VMD10 magnesium alloy (formula Mg-Zn-Zr-Y) in chloride-containing solutions by Scanning Vibrating Electrode Technique (SVET) and by optical microscopy, gravimetry, and volumetry. It has been established that the crucial factor for the corrosion activity of these samples is the occurrence of microgalvanic coupling at the sample surface. The peculiarities of the kinetics and mechanism of the corrosion in the local heterogeneous regions of the magnesium alloy surface were investigated by localized electrochemical techniques. The stages of the corrosion process in artificial defects in the coating obtained by plasma electrolytic oxidation (PEO) at the surface of the MA8 magnesium alloy were also studied. The analysis of the experimental data enabled us to determine that the corrosion process in the defect zone develops predominantly at the magnesium/coating interface. Based on the measurements of the corrosion rate of the samples with PEO and composite polymer-containing coatings, the best anticorrosion properties were displayed by the composite polymer-containing coatings.

  10. An expert system for corrosion rate monitoring and diagnosis in the heating circuits of nuclear power plants

    International Nuclear Information System (INIS)

    Balducelli, C.; Conte, E.; Federico, A.G.; Tripi, A.; Ronchetti, C.

    1988-01-01

    The radiation field of out of core components of a water reactor primary plant depends on corrosion product equilibria. The computer programs that try to simulate the behaviour of the corrosion products and the radiation build up didn't provide good results, especially in describing several different plants with the same program. In order to obtain better results the authors decided to use a different approach, building an expert system, which performs on-line corrosion rate monitoring by means of a number of probes connected to an automatic corrosimeter, evaluates expected corrosion rate values and behaviours, and, if there are discrepancies, performs a diagnosis, providing suggestions to overcome the difficulty. (author)

  11. User's manual for the model interface and plugboard cabinets in the 14- by 22-foot subsonic tunnel

    Science.gov (United States)

    Askew, Robert B.; Quinto, P. Frank

    1994-01-01

    The primary method of connection between the wind tunnel model instrumentation and the data acquisition system in the 14- by 22-Foot Subsonic Tunnel is through the Model Interface (MIF) and Plugboard cabinets. The MIF and Plugboard cabinets allow versatility in the connection of the instrumentation to the different data systems in the facility. The User's Manual describes the components inside the MIF cabinet, the input and output of the MIF, and the MIF patchboard, and the Plugboard cabinets. There are examples of standard connections for most of the instrumentation used in the facility.

  12. Field experience with advanced methods of on-line monitoring of water chemistry and corrosion degradation in nuclear power stations

    International Nuclear Information System (INIS)

    Stellwag, B.; Aaltonen, P.; Hickling, J.

    1997-01-01

    Advanced methods for on-line, in-situ water chemistry and corrosion monitoring in nuclear power stations have been developed during the past decade. The terms ''on-line'' and ''in-situ'' characterize approaches involving continuous measurement of relevant parameters in high temperature water, preferably directly in the systems and components and not in removed samples at room temperature. This paper describes the field experience to-date with such methods in terms of three examples: (1) On-line chemistry monitoring of the primary coolant during shutdown of a Type WWER-440 PWR. (2) Redox and corrosion potential measurements in final feedwater preheaters and steam generators of two large KWU PWRs over several cycles of plant operation. (3) Real-time, in-situ corrosion surveillance inside the calundia vault of a CANDU reactor. The way in which water chemistry sensors and corrosion monitoring sensors complement each other is outlined: on-line, in-situ measurement of pH, conductivity and redox potential gives information about the possible corrosivity of the environment. Electrochemical noise techniques display signals of corrosion activity under the actual environmental conditions. A common experience gained from separate use of these different types of sensors has been that new and additional information about plants and their actual process conditions is obtained. Moreover, they reveal the intimate relationship between the operational situation and its consequences for the quality of the working fluid and the corrosion behaviour of the plant materials. On this basis, the efficiency of the existing chemistry sampling and control system can be checked and corrosion degradation can be minimized. Furthermore, activity buildup in the primary circuit can be studied. Further significant advantages can be expected from an integration of these various types of sensors into a common water chemistry and corrosion surveillance system. For confirmation, a complete set of sensors

  13. Il Cabinet d'amateur di Georges Perec

    Directory of Open Access Journals (Sweden)

    Valeria Cammarata

    2011-06-01

    Full Text Available In 1979 one year after the publication of La vie mode d’emploi, George Perec wrote Cabinet d’amateur. Histoire d’un tableau, in which he tells the story of a painting belonging to the genre of the cabinet d’amateur, also known as kunst- und wunderkammer. It is a collection of different paintings, usually belonging to a rich man or a notable, portrayed (once again in a single picture celebrating the magnificence of this more or less real collection. As for the pictorial genre, so the short novel is the celebration of the images collected by George Perec in his previous masterpiece, La vie mode d’emploi. This is why I assume this work to be referable to the genre of structural homology more than to that of ékphrasis, being the pictorial structure not only the thematic inspiration or motif of the novel but its own underlying structure

  14. The use of computers for chemistry and corrosion monitoring in the nuclear power industry

    International Nuclear Information System (INIS)

    Eber, K.

    1986-01-01

    Corrosion of steam generators in the nuclear power industry has caused increasingly expensive maintenance work during refueling outages. To assist in the control and monitoring of this problem, Northeast Utilities has developed computer programs for tracking steam generator water chemistry and steam generator eddy current inspection data. These programs have allowed detailed analytical studies to be performed which would have been extremely difficult without the use of computers. The paper discusses the capabilities and uses of a chemistry data management system. An example analysis of steam generator chemistry during plant startup is presented. The corrosion monitoring capabilities of several eddy current data analysis programs are also discussed. It is demonstrated how these programs allow a detailed analysis of the effects of a chemical cleaning operation to remove sludge from the steam generators. Applications of these analytical methods to other industries is also discussed

  15. Modelling of electrical cabinet fires based on the CARMELA experimental program

    International Nuclear Information System (INIS)

    Melis, S.; Rigollet, L.; Such, J.M.; Casselman, C.

    2004-01-01

    As fire of electrical cabinets causes some hazard to nuclear safety, IRSN has conducted the CARMELA program to investigate this topic. The program was carried out in three stages. The two first stages consisted in analytical experiments where the combustible was simulated by thin plastic pieces and where the different parameters that influence the fire could be easily varied. The third stage involved real relay cabinets. This article first describes the experimental facility and the test matrix. The phenomenology of electrical cabinet fires is then exposed and the most influencing parameters are identified from the analytical experiments: the ventilation comes at first rank but the materials involved are also shown to influence the propagation of the fire. The model developed to represent the fire, and particularly the rate of heat released, is then presented and the comparison of its results with the measurements performed in the experiments shows that its validity is acceptable. (orig.)

  16. Corrosion '98: 53. annual conference and exposition, proceedings

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    This conference was divided into the following sections: Corrosion in Gas Treating; Problems and Solutions in Commercial Building Water Systems; Green Corrosion/Scale Inhibitors; Atmospheric Corrosion; AIRPOL Update/98; Rubber Lining--Answers to Many Problems; Interference Problems; Environmental Assisted Cracking: Fundamental Research and Industrial Applications; Corrosion in Nuclear Systems; New Developments in Scale and Deposit Control; Corrosion and Corrosion Protection in the Transportation Industries; What's All the Noise About--Electrochemical That Is; Refining Industry Corrosion; Corrosion Problems in Military Hardware: Case Histories, Fixes and Lessons Learned; Cathodic Protection Test Methods and Instrumentation for Underground and On-grade Pipelines and Tanks; Recent Developments in Volatile Corrosion Inhibitors; Corrosion in Supercritical Fluids; Microbiologically Influenced Corrosion; Advances in Understanding and Controlling CO 2 Corrosion; Managing Corrosion with Plastics; Material Developments for Use in Exploration and Production Environments; Corrosion in Cold Regions; The Effect of Downsizing and Outsourcing on Cooling System Monitoring and Control Practices; New Developments in Mechanical and Chemical Industrial Cleaning; Mineral Scale Deposit Control in Oilfield Related Operations; Biocides in Cooling Water; Corrosion and Corrosion Control of Reinforced Concrete Structures; Materials Performance for Fossil Energy Conversion Systems; Marine corrosion; Thermal Spray--Coating and Corrosion Control; Flow Effects on Corrosion in Oil and Gas Production; Corrosion Measurement Technologies; Internal Pipeline Monitoring--Corrosion Monitoring, Intelligent Pigging and Leak Detection; Cathodic Protection in Natural Waters; Corrosion in Radioactive Liquid Waste Systems; On-line Hydrogen Permeation Monitoring Equipment and Techniques, State of the Art; Water Reuse and Recovery; Performance of Materials in High Temperature Environments; Advances in Motor

  17. TANK 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM PROJECT LESSONS LEARNED

    International Nuclear Information System (INIS)

    TAYLOR T; HAGENSEN A; KIRCH NW

    2008-01-01

    During 2007 and 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was designed and fabricated for use in double-shell tank 241-AN-102. The system was successfully installed in the tank on May 1, 2008. The 241-AN-102 MPCMS consists of one 'fixed' in-tank probe containing primary and secondary reference electrodes, tank material electrodes, Electrical Resistance (ER) sensors, and stressed and unstressed corrosion coupons. In addition to the fixed probe, the 241-AN-102 MPCMS also contains four standalone coupon racks, or 'removable' probes. Each rack contains stressed and unstressed coupons made of American Society of Testing and Materials A537 CL1 steel, heat-treated to closely match the chemical and mechanical characteristics of the 241-AN-102 tank wall. These coupon racks can be removed periodically to facilitate examination of the attached coupons for corrosion damage. Along the way to successful system deployment and operation, the system design, fabrication, and testing activities presented a number of challenges. This document discusses these challenges and lessons learned, which when applied to future efforts, should improve overall project efficiency

  18. MEPR versus EEPR valves in open supermarket refrigerated display cabinets

    International Nuclear Information System (INIS)

    Tahir, A.; Bansal, P.K.

    2005-01-01

    This paper presents the comparative experimental field performance of mechanical evaporator pressure regulating valves (MEPR) and electronic evaporator pressure regulating valves (EEPR) under the identical operating conditions of supermarket open multi-deck refrigerated display cabinets. The main goal of the supermarket refrigeration system design is to keep the displayed product at the required constant temperature, while minimising the cooling load to increase the overall energy efficiency of the system. Field tests have shown that the electronic evaporator pressure valve has a significant effect on improving the cabinet temperature and reducing the rate of frost formation on the evaporator coils with subsequent improvements in the air curtain strength

  19. Hygienic features of working conditions prevailing in X-ray cabinets

    International Nuclear Information System (INIS)

    Usol'tsev, V.I.; Serebryanyj, V.A.

    1975-01-01

    The results of an investigation of 352 x-ray cabinets showed that their personnel is subjected to simultaneous action of a number of factors: discomfortable microclimate, small concentrations of ozone and nitrogen oxides (within 0.1 of the maximum permissible concentration). The hands of the personnel, especially those of the x-ray laboratory assistants are contaminated with lead (2.38mg in the hands washings). Therefore the assessment of labour conditions prevailing in an x-ray cabinet and the accomplishment of measures of their provement should be carried out with due regards to all the complex of the above mentioned factors besides the ionizing radiation

  20. Development of on-line monitoring system for flow accelerated corrosion

    International Nuclear Information System (INIS)

    Lee, N.Y.; Lee, S.G.; Hwang, I.S.; Kim, J.T.; Luk, V.K.

    2005-01-01

    Aged nuclear piping has been reported to undergo corrosion-induced accelerated failures, often without giving signatures to current inspection campaigns. Therefore, we need diverse sensors which can cover wide area in the on-line application. We suggested integrated approach to monitor the FAC-susceptible piping. Since FAC is a combined phenomenon, we need to monitor as many parameters as possible, and that cover wide area, since we don't know where the FAC occurs. For this purpose, we introduced wearing rate model, which concentrates on the electrochemical parameters. By the model, we can predict the wearing rate and then can compare the testing result. After we identified feasibility by analytical way, we developed electrochemical sensors for high temperature application, and introduced mechanical monitoring system, which is still under development. To support the validation of the monitored results, we adopted high temperature UT, which shows good resolution in the testing environment. By this way, all the monitored results can be compared in terms of thickness. Validation test shows the feasibility of sensors. To support direct thickness measurement for wide-area, Direct Current Potential Drop method will be researched to integrate to the developed framework. (authors)

  1. Development of corrosion condition sensing and monitoring system using radio-frequency identification devices (RFID) : progress report 2

    Energy Technology Data Exchange (ETDEWEB)

    Gu, G.P.; Li, J.; Liu, P.; Bibby, D.; Zheng, W.; Lo, J. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Laboratory

    2008-12-15

    The development of a corrosion severity monitoring system that used radio-frequency identification device (RIFD) technology was discussed. A corrosion monitoring sensor was integrated with a tag modified to partially block the radio frequency signal. The metallic coating caused a frequency shift of the device's reader antenna in order to allow for the accurate characterization of metal coatings. Communications between the tag and the reader were re-established as the corrosion process gradually deteriorated the coating. The method was tested experimentally with 3 RFID systems using both active and passive tags were assembled. A passive tag was covered in aluminum foil. Results of the experiment showed that the metallic coating interfered with RFID signals. A cold-spray technology was used to coat tags with metal alloys. The surface morphology of the coatings was tested to determine optimum coating parameters. Further studies are being conducted to develop software for the technology. 4 refs., 11 figs.

  2. Development of self-powered wireless high temperature electrochemical sensor for in situ corrosion monitoring of coal-fired power plant.

    Science.gov (United States)

    Aung, Naing Naing; Crowe, Edward; Liu, Xingbo

    2015-03-01

    Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment. Copyright © 2014 ISA. All rights reserved.

  3. Monitoring of corrosion rates of Fe-Cu alloys under wet/dry condition in weakly alkaline environments

    International Nuclear Information System (INIS)

    Kim, Je Kyoung; Nishikata, Atsushi; Tsuru, Tooru

    2002-01-01

    When the steel, containing scrap elements like copper, is used as reinforcing steel bars for concrete, the steel is exposed to alkaline environments. in this study, AC impedance technique has been applied to the monitoring of corrosion rates of iron and several Fe-Cu (0.4, 10wt%) alloys in a wet-dry cycle condition. The wet-dry cycle was conducted by exposure to alternate conditions of 1 hour-immersion in a simulated pH10 concrete solution (Ca(OH) 2 ) containing 0.01M NaCl and 3 hour-drying at 298K and 50%RH. The corrosion rate of the iron is greatly accelerated by the wet-dry cycles. Because the active FeOOH species, which are produced by the oxidation of Fe(II, III)oxide in air during drying, act as very strong oxidants to the corrosion in the wet condition. As the drying progresses, iron shows a large increase in the corrosion rate and a small shift of the corrosion potential to the positive values. This can be explained by acceleration of oxygen transport through the thin electrolyte layer In contrast to iron, the Fe-Cu alloys show low corrosion rates and the high corrosion potentials in whole cycles

  4. An update on corrosion monitoring in cylinder storage yards

    Energy Technology Data Exchange (ETDEWEB)

    Henson, H.M.; Newman, V.S.; Frazier, J.L. [Oak Ridge K-25 Site, TN (United States)

    1991-12-31

    Depleted uranium, from US uranium isotope enrichment activities, is stored in the form of solid uranium hexafluoride (UF{sub 6}) in A285 and A516 steel cylinders designed and manufactured to ASME Boiler and Pressure Vessel Code criteria. In general, storage facilities are open areas adjacent to the enrichment plants where the cylinders are exposed to weather. This paper describes the Oak Ridge program to determine the general corrosion behavior of UF{sub 6} cylinders, to determine cylinder yard conditions which are likely to affect long term storage of this material, and to assess cylinder storage yards against these criteria. This program is targeted at conditions specific to the Oak Ridge cylinder yards. Based on (a) determination of the current cylinder yard conditions, (b) determination of rusting behavior in regions of the cylinders showing accelerated attack, (c) monitoring of corrosion rates through periodic measurement of test coupons placed within the cylinder yards, and (d) establishment of a computer base to incorporate and retain these data, the technical division is working with the enrichment sites to implement an upgraded system for storage of this material until such time as it is used or converted.

  5. Nanofilm-coated long-period fiber grating humidity sensors for corrosion detection in structural health monitoring

    Science.gov (United States)

    Zheng, Shijie; Zhu, Yinian; Krishnaswamy, Sridhar

    2011-04-01

    Long-period gratings (LPGs) have shown their significant promising applications in sensors owing to the attractive features that they posses such as small size, immunity for electromagnetic interference, geometric versatility, multiplexing capability, and resistance to corrosive and hazardous environments. Recent researches have revealed that LPGs written on the standard optical fibers could be used as a powerful sensing platform for structural health monitoring. In this work, we inscribe LPGs into SMF-28 optical fiber by focused-beam CO2 laser, demonstrating as a refractive index sensor for nondestructive chemical detections in the civil infrastructures. Although evanescent-field based LPG sensors have been applied in quantitatively monitoring chemical analytes including moisture, chloride, and corrosion by-product, etc., the sensitivity, selectivity, and response time as well as thermo-stability of such sensors are still the issues for some special purposes. In order to improve those characteristics of the sensors, we propose two types of nano-film to be coated in grating region by electrostatic self-assembly (ESA) deposition processing. The primary coating does not affect on LPG transmission parameters such as resonance wavelength and its intensity that can be used for sensing, but it increases the sensitivity to refractive index change of surrounding material. The secondary coating is for selectively absorption of analyte molecule of interest. Response time of the nanofilm-coated LPG sensor is dependent on the analyte absorption and de-absorption rates as well as the thicknesses of the coating materials, which is also investigated. Multi-channel sensor system is being designed to monitor different analytes simultaneously, which is continuing to further explore the monitoring of structural health conditions through in situ measurements of corrosion in the concrete structures.

  6. Initial study and verification of a distributed fiber optic corrosion monitoring system for transportation structures.

    Science.gov (United States)

    2012-07-01

    For this study, a novel optical fiber sensing system was developed and tested for the monitoring of corrosion in : transportation systems. The optical fiber sensing system consists of a reference long period fiber gratings (LPFG) sensor : for corrosi...

  7. 41 CFR 101-26.308 - Obtaining filing cabinets.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Obtaining filing cabinets. 101-26.308 Section 101-26.308 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 26-PROCUREMENT SOURCES AND...

  8. Fibre Bragg grating sensors for reinforcement corrosion monitoring in civil engineering structures

    International Nuclear Information System (INIS)

    Grattan, S K T; Basheer, P; Taylor, S E; Zhao, W; Sun, T; Grattan, K T V

    2007-01-01

    Fibre optic strain sensors offer a number of advantages over the current electrical resistance type gauges, yet are not widely used in civil engineering applications. The use of fibre optic strain sensors (with a cross comparison with the output of electrical resistance gauges) to monitor the production of corrosion by-products in civil engineering concrete structures containing reinforcement bars has been investigated and results reported

  9. Pilot study on the corrosion monitoring and control of the crude oil refining system by thin layer activation (TLA) technique

    International Nuclear Information System (INIS)

    Choochartchaikulkarn, Bodin; Chueinta, Siripone; Santawamaitre, Todsadol

    2001-01-01

    This report represents a pilot study on application of Ta technique for measurement monitoring the corrosion rates occurring in the refinery crude oil overhead crude oil system at the Bangchak Petroleum Co., Ltd. in Thailand during mid 1999 to mid 2000. TLA coupons containing very low activity of 5 6 Co produced by the accelerator was attached to the used electrical resistance probe inserted into production system at the test position. Gamma intensity of 56 Co was routinely monitored at external cladding and corrosion rates calculated in comparison with the non corroded standard after decay correction. From the study, TLA technique provides accurate corrosion rates less than 75 mm/year as compared to the standard Electrical Resistance Probes (ERP) technique. (author)

  10. A portable, automatic SNM monitor for nuclear safeguards: Development, evaluation, and applications

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1993-09-01

    The portable SNM monitor is a lightweight, full-size, automatic monitor, suitable for temporary service (such as demonstrations or for use during maintenance) or as a permanent replacement for hand- held monitors. The authors based the monitor on the TSA Systems, Ltd., modular SNM monitor design and, through evaluation and improvement of the commercial modules, obtained adequate sensitivity in a single- cabinet monitor that is easily portable. Complete monitoring of pedestrians with a single detector cabinet is achieved by requiring the pedestrian to stand in front of the detectors and turn around through 360 deg while being observed by a security inspector. The monitor is available commercially as the TSA Systems Model PMD-701, and it is beginning to be used in both temporary and permanent applications

  11. EUROCORR 2007 - The European corrosion congress - Progress by corrosion control. Book of Abstracts

    International Nuclear Information System (INIS)

    2007-01-01

    This book of abstracts contains lectures, workshops and posters which were held on the European Corrosion Congress 2007 in Freiburg (Germany). The main topics of the sessions and posters are: 1. Corrosion and scale inhibition; 2. Corrosion by hot gases and combustion products; 3. Nuclear corrosion; 4. Environment sensitive fracture; 5. Surface Science; 6. Physico-chemical methods of corrosion testing; 7. Marine corrosion; 8. Microbial corrosion; 9. Corrosion of steel in concrete; 10. Corrosion in oil and gas production; 11. Coatings; 12. Corrosion in the refinery industry; 13. Cathodic protection; 14. Automotive Corrosion; 15. Corrosion of polymer materials. The main topics of the workshops are: 1. High temperature corrosion in the chemical, refinery and petrochemical industries; 2. Bio-Tribocorrosion; 3. Stress corrosion cracking in nuclear power plants; 4. Corrosion monitoring in nuclear systems; 5. Cathodic protection for marine and offshore environments; 6. Self-healing properties of new surface treatments; 7. Bio-Tribocorrosion - Cost 533/Eureka-ENIWEP-Meeting; 8. Drinking water systems; 9. Heat exchangers for seawater cooling

  12. Seismic qualification of the rotary relay for use in the Trojan and Diablo Canyon Auxiliary Safeguards Cabinets

    International Nuclear Information System (INIS)

    Riggio, M.D.; Jarecki, S.J.

    1977-10-01

    This report presents the results of the analysis performed for the seismic qualification of the rotary relay for use in the Trojan and Diablo Canyon Auxiliary Safeguards Cabinets. A finite element model of the cabinet was developed from seismic test results. This model was analytically subjected to a simulated 3D floor acceleration time history that enveloped, simultaneously, the Trojan and the June 1969 Diablo Canyon Safe Shutdown Earthquake requirements. The dynamic response of the cabinet at the mounting location of the rotary relays was determined. The calculated acceleration time histories were converted to response spectra and these response spectra were compared to the test response spectra successfully achieved during the rotary relay seismic qualification tests. It was found that the dynamic motion levels at the rotary relays, when mounted in the Trojan or Diablo Canyon Auxiliary Safeguards Cabinets, do not exceed the levels for which they were previously seismically qualified by tests. Consequently, the rotary relays are seismically qualified for use in the Trojan or Diablo Canyon Auxiliary Safeguards Cabinets

  13. Corrosion in the oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Brondel, D [Sedco Forex, Montrouge (France); Edwards, R [Schlumberger Well Services, Columbus, OH (United States); Hayman, A [Etudes et Productions Schlumberger, Clamart (France); Hill, D [Schlumberger Dowell, Tulsa, OK (United States); Mehta, S [Schlumberger Dowell, St. Austell (United Kingdom); Semerad, T [Mobil Oil Indonesia, Inc., Sumatra (Indonesia)

    1994-04-01

    Corrosion costs the oil industry billions of dollars a year, a fact that makes the role of the corrosion engineer an increasingly important one. Attention is paid to how corrosion affects every aspect of exploration and production, from offshore rigs to casing. Also the role of corrosion agents such as drilling and production fluids is reviewed. Methods of control and techniques to monitor corrosion are discussed, along with an explanation of the chemical causes of corrosion. 21 figs., 32 refs.

  14. Uganda cabinet approves policy initiated by IDRC grantee | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-06-28

    Jun 28, 2016 ... The Economic Policy Research Centre (EPRC), an IDRC grantee under the ... on May 4, 2016, with cabinet approval of their National Fertilizer Policy. ... that 20% of the country's population has some form of physical disability.

  15. Corrosion-product transport, oxidation state and remedial measures

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Brett, M.E.; Tapping, R.L.

    1998-01-01

    The issues associated with monitoring and controlling corrosion-product transport (CPT) in the balance-of-plant (BOP) and steam generators (SG) of CANDU stations are briefly reviewed. The efforts are focused on minimizing corrosion of carbon steel, which is used extensively in the CANDU primary and secondary systems. Emphasis is placed on the corrosion-product oxidation state as a monitor of water chemistry effectiveness, and as a monitor of system corrosion effects. The discussion is based mostly on the results and observations from Ontario Hydro plants, and their comparisons with PWRs. The effects of low oxygen and elevated hydrazine chemistry are reviewed, as well as the effects of lay-up and various start-up conditions. Progress in monitoring electrochemical potential (ECP) at Ontario Hydro plants and its relationship to the oxidation state of corrosion products is reviewed. Observations on corrosion-product transport on the primary side of steam generators are also discussed. (author)

  16. Validation of cross-contamination control in biological safety cabinet for biotech/pharmaceutical manufacturing process.

    Science.gov (United States)

    Hu, Shih-Cheng; Shiue, Angus; Tu, Jin-Xin; Liu, Han-Yang; Chiu, Rong-Ben

    2015-12-01

    For class II, type A2 biological safety cabinets (BSC), NSF/ANSI Standard 49 should be conformed in cabinet airflow velocity derivation, particle contamination, and aerodynamic flow properties. However, there exists a potential problem. It has been built that the cabinet air flow stabilize is influenced by the quantity of downflow of air and the height above the cabinet exhaust opening. Three air downflow quantities were compared as an operating apparatus was placed from 20 to 40 cm above the bench of the cabinet. The results show that the BSC air downflow velocity is a function of increased sampling height, displaying that containment is improvingly permitted over product protection as the sampling height decreases. This study investigated the concentration gradient of particles at various heights and downflow air quantity from the bench of the BSC. Experiment results indicate that performance near the bench was better than in the rest of the BSC. In terms of height, the best cleanliness was measured at a height of 10 cm over the bench; it reduced actually with add in height. The empirical curves accommodate, founded on the concentration gradient of particle created was elaborated for evaluating the particle concentration at different heights and downflow air quantity from the source of the bench of the BSC. The particle image velocimetry system applied for BSC airflow research to fix amount of airflow patterns and air distribution measurement and results of measurements show how obstructions can greatly influence the airflow and contaminant transportation in a BSC.

  17. Seismic response prediction for cabinets of nuclear power plants by using impact hammer test

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Ki Young [Department of Civil and Structural Engineering, University of Sheffield, Sheffield (United Kingdom); Gook Cho, Sung [JACE KOREA, Gyeonggi-do (Korea, Republic of); Cui, Jintao [Department of Civil Engineering, Kunsan National University, Jeonbuk (Korea, Republic of); Kim, Dookie, E-mail: kim2kie@kunsan.ac.k [Department of Civil Engineering, Kunsan National University, Jeonbuk (Korea, Republic of)

    2010-10-15

    An effective method to predict the seismic response of electrical cabinets of nuclear power plants is developed. This method consists of three steps: (1) identification of the earthquake-equivalent force based on the idealized lumped-mass system of the cabinet, (2) identification of the state-space equation (SSE) model of the system using input-output measurements from impact hammer tests, and (3) seismic response prediction by calculating the output of the identified SSE model under the identified earthquake-equivalent force. A three-dimensional plate model of cabinet structures is presented for the numerical verification of the proposed method. Experimental validation of the proposed method is carried out on a three-story frame which represents the structure of a cabinet. The SSE model of the frame is accurately identified by impact hammer tests with high fitness values over 85% of the actual frame characteristics. Shaking table tests are performed using El Centro, Kobe, and Northridge earthquakes as input motions and the acceleration responses are measured. The responses of the model under the three earthquakes are predicted and then compared with the measured responses. The predicted and measured responses agree well with each other with fitness values of 65-75%. The proposed method is more advantageous over other methods that are based on finite element (FE) model updating since it is free from FE modeling errors. It will be especially effective for cabinet structures in nuclear power plants where conducting shaking table tests may not be feasible. Limitations of the proposed method are also discussed.

  18. 76 FR 19466 - Masco Builder Cabinet Group Including On-Site Leased Workers From Reserves Network, Reliable...

    Science.gov (United States)

    2011-04-07

    ... Builder Cabinet Group Including On-Site Leased Workers From Reserves Network, Reliable Staffing, and Third Dimension Waverly, OH; Masco Builder Cabinet Group Including On-Site Leased Workers From Reserves Network... Group including on-site leased workers from Reserves Network, Jackson, Ohio. The workers produce...

  19. Investigations of corrosion phenomena on gold coins with SIMS

    International Nuclear Information System (INIS)

    Mayerhofer, K.E.; Piplits, K.; Traum, R.; Griesser, M.; Hutter, H.

    2005-01-01

    In order to establish a new handling procedure for contaminated coins, the Coin Cabinet and the Conservation Science Department of the Kunsthistorisches Museum, Vienna, initiated a research project on corrosion effects of gold coins. By now, investigations on historic and contemporary coins included optical microscopy, scanning electron microscopy (SEM), Auger electron microscopy (AES), X-ray photoelectron microscopy (XPS), and electrochemical methods showing the distribution of pollutants. This work focuses on secondary ion mass spectrometry (SIMS) investigations merely showing the distribution of electronegative elements, such as sulfur, oxygen, and chlorine on the surface. Sulfur is highly suspected of causing the observed corrosion phenomena, and is indeed enriched near polluting splints. Since SIMS is a destructive method, the investigated samples are test coins with intentionally added impurities. These coins were manufactured in cooperation with the Austrian Mint. They were treated with potassium polysulfide (K 2 S x ) for 8 h gaining a rapid corrosion of the surface. SIMS mass spectra, depth profiles, and images were done (a) at non-polluted areas (b) near polluted areas with slight coloring, and (c) directly at polluting stains showing enrichments of sulfur and chlorine. Due to the success of these investigations further studies on historic coins are intended

  20. DCS cabinet power loss analysis for CPR1000 nuclear power plant

    International Nuclear Information System (INIS)

    Zhou Liang; Zhao Yanfeng; Sun Yongbin

    2014-01-01

    The DCS overall structure of CRP1000 nuclear power plant was introduced. Based on the RPC, the signal interface character and signal processing mechanism on the key root were analyzed. By the power loss analyzing of RPC, the RPC loss power may lead reactor trip signal from anticipated transient without scram (ATWS) system. The results indicate that it is necessary to search DCS cabinet power loss analysis. Optimizing and assigning the main water flow signals can avoid trigger reactor trip signal by mistake. The DCS cabinet power loss analysis can optimize the I and C (instrumentation and control) design and increase the nuclear plant's reliability. (authors)

  1. 21 CFR 1020.40 - Cabinet x-ray systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cabinet x-ray systems. 1020.40 Section 1020.40 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... are all x-ray systems designed primarily for the inspection of carry-on baggage at airline, railroad...

  2. Real-time corrosion monitoring of steel influenced by microbial activity (SRB) under controlled seawater injection conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Russell D. [InterCorr International, Inc., 14503 Bammel N. Houston Road, Suite 300, Houston, TX 77019 (United States); Campbell, Scott [Commercial Microbiology Inc., 10400 Westoffice Drive Suite 107, Houston, TX 77042 (United States)

    2004-07-01

    An experimental study of microbiologically influenced corrosion (MIC) was conducted involving online, real-time monitoring of a bio-film loop under controlled conditions simulating oil field water handling and injection. Bio-film growth, MIC and biocide efficacy were monitored using an automated, multi-technique monitoring system including linear polarization resistance, electrochemical noise and harmonic distortion analysis. This data was correlated with conventional off-line methods to differentiate conditions of varying MIC activity in real-time to facilitate quick assessment and operator intervention. (authors)

  3. Web-based continuous internal corrosion monitoring of a sweet natural gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Cauchi, Sam; Vorozcovs, Andrew [Fiber Optic Systems Technology Inc. (FOX-TEK), Bedford, Nova Scotia (Canada)

    2009-07-01

    Inspection of pipelines susceptible to internal corrosion is a key ingredient in maintaining their reliable throughput. While conventional inspection consisting of in line inspection, radiography and ultrasound remain the mainstay of most integrity programs, challenging circumstances in some cases make the availability of such data inadequate, cost prohibitive, and at times entirely unavailable. These scenarios include aggressive internal corrosion, expensive excavation conditions, low or stagnant flow, and non-piggable pipeline segments. While some gas pipelines in these circumstances are considered relatively low risk and low consequence, due to the significant reclamation costs and cleanup time associated with liquid pipelines, those areas identified as being high-risk are often high-consequence and thus require a specialized inspection solution. For areas deemed to be at high-risk, or areas of low-risk with high consequence, Electrical Field Mapping (EFM) has provided a practical solution to safe operation without introducing expensive and potentially dangerous dig programs. Historically, however, this inspection approach has required manual data acquisition as part of a scheduled EFM site visit schedule. Due to the tedious nature of this data acquisition approach, the remoteness of some pipeline inspection sites and the complexity of data analysis, it has been difficult to closely monitor the most critical assets on a continuous basis. The manual component of this approach also often eliminates EFM as a practical solution due to lack of properly trained personnel. In this paper, we will discuss a new approach to data acquisition where data is acquired, transmitted, analyzed, and displayed completely automatically and remotely with virtually no human overhead or recurring operating costs. An overview of the PinPoint monitoring setup covering 180 degrees of pipe circumference is described. This advanced EFM system allows operators to observe, essentially in real

  4. Corrosion-product transport, oxidation state and remedial measures

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Brett, M.E.; Tapping, R.L.

    1998-10-01

    The issues associated with monitoring and controlling corrosion-product transport (CPT) in the balance-of-plant (BOP) and steam generators (SG) of CANDU stations are briefly reviewed. Efforts are focused on minimizing corrosion of carbon steel, which is used extensively in the CANDU primary and secondary systems. Emphasis is placed on the corrosion-product oxidation state as a monitor of water chemistry effectiveness and as a monitor of system corrosion effects. The discussion is based mostly on the results of observations from Ontario Hydro plants, and their comparisons with pressurized-water reactors. The effects of low oxygen and elevated hydrazine chemistry are reviewed, as well as the effects of layup and various startup conditions. Progress in monitoring electrochemical potential (ECP) at Ontario Hydro plants and its relationship to the oxidation state of corrosion products is reviewed. Observations on CPT on the primary side of SGs are also discussed. (author)

  5. A non-destructive test method to monitor corrosion products and corrosion-induced cracking in reinforced cement based materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Peterova, Adela

    2011-01-01

    ) was conducted to describe the impact of water-to-cement ratio and corrosion current density (i.e., corrosion rate) on the reinforcement corrosion process. Focus was placed, in particular on the determination of the corrosion accommodating region (CAR) and time to corrosion-induced cracking. Experimental results...... showed that x-ray attenuation measurements allow determination of the actual concentrations of corrosion products averaged through the specimen thickness. The total mass loss of steel measured by x-ray attenuation was found to be in very good agreement with the calculated mass loss obtained by Faraday......’s law. Furthermore, experimental results demonstrated that the depth of penetration of corrosion products as well as time to corrosion-induced cracking is varying for the different water-to-cement ratios and applied corrosion current densities....

  6. Scanning reference electrode techniques in localized corrosion

    International Nuclear Information System (INIS)

    Isaacs, H.S.; Vyas, B.

    1979-04-01

    The principles, advantages, and implementations of scanning reference electrode techniques are reviewed. Data related to pitting, intergranular corrosion, welds and stress corrosion cracking are presented. The technique locates the position of localized corrosion and can be used to monitor the development of corrosion and changes in the corrosion rate under a wide range of conditions

  7. A review of fiber-optic corrosion sensor in civil engineering

    Science.gov (United States)

    Luo, Dong; Li, Junnan; Li, Yuanyuan

    2018-05-01

    Fiber-optical corrosion sensor (FOCS) is the research hotspot of corrosion monitoring sensor in recent years. It has the advantages of lightness, simplicity, anti-electromagnetic interference and distributed measurement, so it has an attractive application prospect. In this paper, the mechanism of metal corrosion is introduced. Several common methods for detecting optical fiber corrosion sensors are presented, and the latest progress of optical fiber corrosion sensors in recent years is described. We need to design a set of sensor devices that can directly monitor the corrosion of reinforcing steel bars directly, and propose a method of time dependent reliability assessment based on monitoring data, so as to form a complete research path.

  8. Corrosion monitoring of the AA2024 alloy in NaCl solutions by electrochemical noise measurements

    International Nuclear Information System (INIS)

    Aballe, A.; Bethencourt, M.; Botana, F.J.; Marcos, M.; Rodriguez-Chacon, M.A.

    1998-01-01

    The behaviour of the AA2024 alloy against corrosion in 3.5% NaCl solution has been monitored. In this environment the alloy can be easily damaged under small anodic polarizations. Linear Polarization, electrochemical impedance, spectroscopy and electrochemical noise measurement have been used as experimental techniques. Data from ENM have been analyzed using statistical parameters and Chaos Theory. The results here obtained suggest that ENM is particularly useful to monitored systems that can be modified using other electrochemical techniques. (Author) 11 refs

  9. A closed cabinet system with water flushers and a blender for breeding small animal administered 3HHO

    International Nuclear Information System (INIS)

    Yamamoto, O.; Takeoka, S.; Tsujimura, T.; Kuroda, T.; Iwashita, T.; Amme, T.

    1984-01-01

    A closed cabinet system was developed for breeding small animals administered 3 HHO. 3 HHO vapor released from the animals in the chamber was absorbed with water in a water bubbler. Feces and urine which were washed out with water were ground in a blender, diluted, and then released. With this cabinet system we were successful in safely breeding mice even given a total single injection of 15.5 GBq (420 mCi) of 3 HHO without storing the 3 H-slops for a long time and without any significant leakage of 3 H from the cabinet. (author)

  10. Remote measurement of corrosion using ultrasonic techniques

    International Nuclear Information System (INIS)

    Garcia, K.M.; Porter, A.M.

    1995-02-01

    Supercritical water oxidation (SCWO) technology has the potential of meeting the US Department of Energy's treatment requirements for mixed radioactive waste. A major technical constraint of the SCWO process is corrosion. Safe operation of a pilot plant requires monitoring of the corrosion rate of the materials of construction. A method is needed for measurement of the corrosion rate taking place during operation. One approach is to directly measure the change in wall thickness or growth of oxide layer at critical points in the SCWO process. In FY-93, a brief survey of the industry was performed to evaluate nondestructive evaluation (NDE) methods for remote corrosion monitoring in supercritical vessels. As a result of this survey, it was determined that ultrasonic testing (UT) methods would be the most cost-effective and suitable method of achieving this. Therefore, the objective for FY-94 was to prove the feasibility of using UT to monitor corrosion of supercritical vessels remotely during operation without removal of the insulation

  11. Monitoring wear and corrosion in industrial machines and systems: A radiation tool

    International Nuclear Information System (INIS)

    Konstantinov, I.O.; Zatolokin, B.V.

    1994-01-01

    Industrial equipment and machines, transport systems, nuclear and conventional power plants, pipelines, and other materials is substantially influenced by degradation processes such as wear and corrosion. For safety and economic reasons, appropriately monitoring the damage could prevent dangerous accidents. When the surfaces of machine parts under investigation are not easy to reach or are concealed by overlying structures, nuclear methods have become powerful tools for examination. They include X-ray radiography, neutron radiography, and a technique known as thin layer activation (TLA)

  12. Steam side corrosion-erosion monitoring and control improvements performed at the Kalinin NPP in the frame of the CEC Tacis'92 program

    International Nuclear Information System (INIS)

    1994-01-01

    The TACIS program (Technical Assistance to the Community of Independent States), funded by the CEC, is aimed at improving the reliability and safety of the VVER NPPs operation. The program consists of the following two phases: upgrading the on-line water chemistry monitoring and laboratory analytical equipment; implementation of generic studies to assess the corrosion risks in the steam side sensitive areas and to set-up the most appropriate strategy to monitor and to control the corrosion-erosion phenomena in the secondary side. 3 figs., 2 tabs

  13. Corrosion potential detection method, potential characteristic simulation method for reaction rate and plant monitoring system using the same

    International Nuclear Information System (INIS)

    Sakai, Masanori; Onaka, Noriyuki; Takahashi, Tatsuya; Yamanaka, Hiroshi.

    1995-01-01

    In a calculation controlling device for a plant monitoring system, concentrations of materials concerning reaction materials in a certain state of a reaction process, and an actually measured value for the potential of a material in this state are substituted into a reaction rate equation obtained in accordance with a reaction process model. With such procedures, a relation between the reaction rate (current value) and the potential of the material can be obtained. A potential at which the reaction rates of an anode reaction and a cathode reaction contained in a corrosion reaction are made equal is determined by a numerical value calculation, based on an electrochemical hybrid potential logic by using the reaction rate equation, the reaction rate information relative to the corrosion reaction of the material and the concentration of the material concerning the corrosion reaction is obtained by a numerical value calculation. Then, simulation for the corrosion potential is enabled based on the handling corresponding to the actual reaction. Further, even for a portion which can not be measured actually, the corrosion potential can be recognized by simulation. (N.H.)

  14. A Plan to Develop and Demonstrate Electrochemical Noise Based Corrosion Monitoring Systems in Hanford Site Waste Tanks

    International Nuclear Information System (INIS)

    NORMAN, E.C.

    2000-01-01

    This document describes changes that need to be made to the site's authorization basis and technical concerns that need to be resolved before proceduralized use of Electrochemical Noise based corrosion monitoring systems is fully possible at the Hanford Site

  15. Alternative techniques to monitoring the corrosive potential for fluids in submarine pipelines; Tecnicas alternativas para monitorar o potencial corrosivo de fluidos transportados em oleodutos submarinos

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Cynthia de Azevedo; Brito, Rosane Fernandes de; Paiva, Eva M. de O. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Tecnologia de Materiais, Equipamentos e Corrosao; Freitas, Nair Domingues de; Salvador, Angelica Dias [PETROBRAS, Macae, RJ (Brazil). Unidade de Negocios da Bacia de Campos

    2003-07-01

    PETROBRAS in search of being a benchmark in safety, environment and health, established in July 2001 a work group to elaborate a standard for Pipeline Integrity Management. This standard set the requirements for Pipeline Integrity Management and establishes, among others criteria, the actions required to detect, monitor and control internal corrosion of pipelines. The first step to evaluate, monitor and control the internal corrosion is to define the corrosive potential of transported fluids. Some oil pipelines located in central and southern areas of the Campos Basin transport high water cut produced fluids (> 30%) and with demulsifiers, which allow oil and water separation and increase internal corrosion risks. Despite of these, it is not possible to check the internal corrosion rates using conventional techniques because the fluids are produced through sub-sea 'manifolds'. In order to investigate the possibility of corrosion inhibition by crude oils, laboratory tests were performed simulating real field conditions in terms of fluid compositions, water cut and temperature. Experiments were conducted to determine the corrosion rate of specimens, the emulsion stability and the initial temperature of wax precipitation. This paper presents the results of the study realized to define the fluids' corrosive potential of four Campos Basin platforms that are transported through sub-sea 'manifolds. (author)

  16. Corrosion and anticorrosion. Industrial practice

    International Nuclear Information System (INIS)

    Beranger, G.; Mazille, H.

    2002-01-01

    This book comprises 14 chapters written with the collaboration of about 50 French experts of corrosion. It is complementary to another volume entitled 'corrosion of metals and alloys' and published by the same editor. This volume comprises two parts: part 1 presents the basic notions of corrosion phenomena, the properties of surfaces, the electrochemical properties of corrosion etc.. Part 2 describes the most frequent forms of corrosion encountered in industrial environments and corresponding to specific problems of protection: marine environment, atmospheric corrosion, galvanic corrosion, tribo-corrosion, stress corrosion etc.. The first 8 chapters (part 1) treat of the corrosion problems encountered in different industries and processes: oil and gas production, chemical industry, phosphoric acid industry, PWR-type power plants, corrosion of automobile vehicles, civil engineering and buildings, corrosion of biomaterials, non-destructive testing for the monitoring of corrosion. The other chapters (part 2) deal with anticorrosion and protective coatings and means: choice of materials, coatings and surface treatments, thick organic coatings and enamels, paints, corrosion inhibitors and cathodic protection. (J.S.)

  17. Autoadaptive Emailtest AZ90 for corrosion monitoring of glass-lined reactors

    International Nuclear Information System (INIS)

    Jean-Marie, H.

    1993-01-01

    In the Chemical and Pharmaceutical Industry, glass-lined vessels often contain very corrosive and harmful products. To prevent major problems such as batch contamination, leakages or explosions, it is important to detect as soon as possible a failure of the glass-lining. The well-known electrolytic method of detection has been improved by using a permanent comparison of a reference current passing between these electrodes and a defect in the glass-lining. This is made possible with the microprocessorized glass-guard to detect a leak rate independent of the product conductivity, to be self monitoring and to give an evaluation of the conductivity

  18. School District Cabinet Member Task and Relationship Conflict Behavior during Budget Development in a State Fiscal Crisis

    Science.gov (United States)

    Nickerson, John

    2009-01-01

    Purpose. The first purpose of this study was to determine to what extent task and relationship conflict occurred in school district cabinets during budget development in a state budget crisis. The second purpose was to determine which cabinet member task and relationship conflict behaviors were demonstrated during budget development in a state…

  19. Prediction of Dangerous Time in Case Hydrocarbon Refrigerant Leaks into Household Refrigerator Cabinet

    Science.gov (United States)

    Meguro, Takatoshi; Kaji, Nobufuji; Miyake, Kunihiro

    Hydrocarbon refrigerators are now on sale in European countries. However, hydrocarbons are flammable. A common claim is that concentration of hydrocarbon in the refrigerator could exceed the lower explosive limit by a sudden leak and then a spark ignites a flame causing overpressure. There is the need of the studies on potential risks originated from the use of flammable refrigerants. Thus, the flow rate of the fresh air into the refrigerator cabinet has been defined experimentally, and the spatial average concentration in the refrigerator cabinet has been analyzed theoretically to predict the dangerous time in excess of the lower explosive limit.

  20. Electromagnetic circulation pump for corrosive gases

    International Nuclear Information System (INIS)

    Noe, P.; Delafosse, D.; Deletre, G.

    1965-01-01

    In order to transport very corrosive products (fluorinated compounds) we have been led to develop a totally metallic circulation pump capable of operating at above room temperatures and with a molecular vacuum. We have aimed at maximum simplicity both in its conception and in its operation. The tests showed that the compression ratios produced, although not high are interesting (1.5 at a pressure of 100 torr) (see curve I). The flow-rate range is very wide: about one hundred ccs/atm/min. to 3000 ccs/atm/min. (see curves IV, V, VI). The desorption of this pump presents no difficulty if both the aspiration and the reject sides are pumped together. A hole of 2 mm diameter drilled in the piston makes it possible to desorb the space between the two segments. The price of this pump is not high: 1300 F, with the electrical cabinet. (authors) [fr

  1. Waste Tank Corrosion Program at Savannah River Site

    International Nuclear Information System (INIS)

    Chandler, J.R.; Hsu, T.C.; Hobbs, D.T.; Iyer, N.C.; Marra, J.E.; Zapp, P.E.

    1993-01-01

    The Savannah River Site (SRS) has approximately 30 million gallons of high level radioactive waste stored in 51 underground tanks. SRS has maintained an active corrosion research and corrosion control and monitoring program throughout the operating history of SRS nuclear waste storage tanks. This program is largely responsible for the successful waste storage experience at SRS. The program has consisted of extensive monitoring of the tanks and surrounding environment for evidence of leaks, extensive research to understand the potential corrosion processes, and development and implementation of corrosion chemistry control. Current issues associated with waste tank corrosion are primarily focused on waste processing operations and are being addressed by a number of active programs and initiatives

  2. Corrosion/96 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Topics covered by this conference include: cathodic protection in natural waters; cleaning and repassivation of building HVAC systems; worldwide opportunities in flue gas desulfurization; advancements in materials technology for use in oil and gas service; fossil fuel combustion and conversion; technology of corrosion inhibitors; computers in corrosion control--modeling and information processing; recent experiences and advances of austenitic alloys; managing corrosion with plastics; corrosion measurement technology; corrosion inhibitors for concrete; refining industry; advances in corrosion control for rail and tank trailer equipment; CO 2 corrosion--mechanisms and control; microbiologically influenced corrosion; corrosion in nuclear systems; role of corrosion in boiler failures; effects of water reuse on monitoring and control technology in cooling water applications; methods and mechanisms of scale and deposit control; corrosion detection in petroleum production lines; underground corrosion control; environmental cracking--relating laboratory results and field behavior; corrosion control in reinforced concrete structures; corrosion and its control in aerospace and military hardware; injection and process addition facilities; progress reports on the results of reinspection of deaerators inspected or repaired per RP0590 criteria; near 100% volume solids coating technology and application methods; materials performance in high temperature environments containing halides; impact of toxicity studies on use of corrosion/scale inhibitors; mineral scale deposit control in oilfield related operations; corrosion in gas treating; marine corrosion; cold climate corrosion; corrosion in the pulp and paper industry; gaseous chlorine alternatives in cooling water systems; practical applications of ozone in recirculating cooling water systems; and water reuse in industry. Over 400 papers from this conference have been processed separately for inclusion on the data base

  3. Inhibitor selection for internal corrosion control of pipelines: experience with field monitoring and measurement

    Energy Technology Data Exchange (ETDEWEB)

    Demoz, A.; Michaelian, K.H.; Donini, J. [Natural Resources Canada, CANMET Western Research Centre, Devon, AB (Canada); Papavinasam, S.; Revie, R.W. [Natural Resources Canada, CANMET Materials Technology Laboratory, Ottawa, ON (Canada)

    1999-07-01

    A loop of pipe consisting of pipe segments of 3 inches, 6 inches and 10 inches that could take the full flow of a production well was designed, constructed and put in-line close to a wellhead. The loop was able to simulate multiphase pipelines and had ports for coupons, some of which were used for electrochemical monitoring. Various techniques including electrochemical impedance spectroscopy (EIS), electrochemical noise (ECN), and linear polarization resistance (LPR) were employed, all of which gave corrosion rates that depended on the position of the coupons inside the loop (increasing from top to bottom, reflecting the media and flow to which coupons were exposed in a multiphase producing well). Results indicated that the general corrosion rates obtained were dependent on the method used for measurement, but following the relative trend of LPR>weight loss>EIS>ECN. 20 refs., 8 figs.

  4. Preferred Residential kitchen cabinets Cover Models: The Case of the province of Artvin

    Directory of Open Access Journals (Sweden)

    Abdi Atılgan

    2012-11-01

    Full Text Available In this study, residential kitchen cabinets today and should be preferred to determine the reasons for the cover models were investigated. The study of urban settlement area of ​​the province of Artvin, the different socio-economic (lower / middle / upper SES levels, cuisine sampling method was chosen families. Data were obtained from the poll and systematic observation. Determination of the outstanding elements of the study and interpretation of the choice of species to cover some of the statistical techniques used. According to the results, residential kitchen cabinets, the most multi-chipboard / mdflam cover (25%, aluminum framed door is at least (1.09% were used. Reasons to prefer the technological developments and the launch of new products, while effective proposals were received by property owners, manufacturers, cover models, significantly affects the reasons for cost differences should be preferred. Another important result, is a form of property owners to ensure the kitchen cabinets. Accordingly, the vast majority of users provided by way of kitchen furniture, in order, while the other places and provided in the reinforcing elements are usually prepared production are known.

  5. The activity of the Cabinet of Ukrainian Art History of the All-Ukrainian Academy of Sciences

    Directory of Open Access Journals (Sweden)

    M. I. Sichka

    2016-05-01

    As a result of this research it was recognized that Cabinet besides collecting the materials was study and developed issues of the history of Ukrainian art «from ancient times to the present», including Shevchenko as an artist, history of architecture and music. Moreover, members of Cabinet prepared materials for encyclopedias, and dictionaries of Ukrainian art History, involved in the museum activity in Kyiv and Moscow, popularized Ukrainian art.

  6. Corrosion in power industry

    International Nuclear Information System (INIS)

    Ventakeshwarlu, K.S.

    1979-01-01

    A brief account of the problem areas encountered as a result of corrosion in the electrical power industry including nuclear power industry is given and some of the measures contemplated and/or implemented to control corrosion are outlined. The corrosion problems in the steam generators and cladding tubes of the nuclear power plant have an added dimension of radioactivation which leads to contamination and radiation field. Importance of monitoring water quality and controlling water chemistry by addition of chemicals is emphasised. (M.G.B.)

  7. Corrosion testing and prediction in SCWO environments

    International Nuclear Information System (INIS)

    Kriksunov, L.B.; Macdonald, D.D.

    1995-01-01

    The authors review recent advances in corrosion monitoring and modeling in SCWO systems. Techniques and results of experimental corrosion measurements at high temperatures are presented. Results of modeling corrosion in high subcritical and supercritical aqueous systems indicate the primary importance of density of water in corrosion processes. A phenomenological model has been developed to simulate corrosion processes at nearcritical and supercritical temperatures in SCWO systems. They discuss as well the construction of Pourbaix diagrams for metals in SCW

  8. Les Cabinets de curiosités dauphinois dans les origines scientifiques du Muséum d'histoire naturelle de Grenoble (XVIII e -XIX e siècles)

    OpenAIRE

    Rochas , Joëlle

    2008-01-01

    Les actes du colloque de Poitiers concernant les cabinets de curiosités seront déposés sur le site web www.curiositas.org, site européen dédié aux cabinets de curiosités (Université de Poitiers).; Le Cabinet d'histoire naturelle de Grenoble, ancêtre du Muséum actuel, a été créé en 1773. Un premier historique de la fin du XVIIIe siècle mentionne les trois principaux cabinets d'où il était issu : un cabinet dauphinois - celui des Antonins - et deux cabinets grenoblois - celui du négociant greno...

  9. Development of techniques for monitoring corrosion in Magnox plant

    International Nuclear Information System (INIS)

    Haines, N.F.; Whittle, I.; Wilson, R.

    1974-01-01

    Steel oxidation in Magnox reactors has led to the development of techniques for measuring oxide thicknesses. An account is given of the methods used by the CEGB for making non-destructive measurements of oxide coatings both in the laboratory and remotely in the core regions of reactors. Specific techniques include β back-scattering which is compared with conventional microscope or weight gain methods for particular applications. The laser corrosion monitor and an ultrasonic method are described and compared as in-reactor techniques. An eddy current method is being developed for reactor regions where access is extremely restricted. A discussion considers the effect of oxide form upon the response of the instruments. The necessary further work is described which establishes the usefulness of each instrument over a range of oxide thicknesses and steels of different physical properties. (author)

  10. Manufacture and evaluation of integrated metal-oxide electrode prototype for corrosion monitoring in high temperature water

    International Nuclear Information System (INIS)

    Hashimoto, Yoshinori; Tani, Jun-ichi

    2014-01-01

    We have developed an integrated metal-oxide (M/O) electrode based on an yttria-stabilized-zirconia-(YSZ)-membrane M/O electrode, which was used as a reference electrode for corrosion monitoring in high temperature water. The YSZ-membrane M/O electrode can operate at high temperatures because of the conductivity of YSZ membrane tube. We cannot utilize it for long term monitoring at a wide range of temperatures. It also has a braze juncture between the YSZ membrane and metal tubes, which may corrode in high-temperature water. This corrosion should be prevented to improve the performance of the M/O electrode. An integrated M/O electrode was developed (i.e., integrated metal-oxide electrode, IMOE) to eliminate the braze juncture and increase the conductivity of YSZ. These issues should be overcome to improve the performance of M/O electrode. So we have developed two type of IMOE prototype with sputter - deposition or thermal oxidation. In this paper we will present and discuss the performance of our IMOEs in buffer solution at room temperature. (author)

  11. Microbiologically induced corrosion

    International Nuclear Information System (INIS)

    Stein, A.A.

    1988-01-01

    Biological attack is a problem that can affect all metallic materials in a variety of environments and systems. In the power industry, corrosion studies have focused on condensers and service water systems where slime, barnacles, clams, and other macro-organisms are easily detected. Efforts have been made to eliminate the effect of these organisms through the use of chlorination, backflushing, organic coating, or thermal shock. The objective is to maintain component performance by eliminating biofouling and reducing metallic corrosion. Recently, corrosion of power plant components by micro-organisms (bacteria) has been identified even in very clean systems. A system's first exposure to microbiologically induced corrosion (MIC) occurs during its first exposure to an aqueous environment, such as during hydrotest or wet layup. Corrosion of buried pipelines by sulfate-reducing bacteria has been studied by the petrochemical industry for years. This paper discusses various methods of diagnosing, monitoring, and controlling MIC in a variety of systems, as well as indicates areas where further study is needed

  12. High temperature on-line monitoring of water chemistry and corrosion control in water cooled power reactors. Report of a co-ordinated research project 1995-1999

    International Nuclear Information System (INIS)

    2002-07-01

    This report documents the results of the Co-ordinated Research Project (CRP) on High Temperature On-line Monitoring of Water Chemistry and Corrosion in Water Cooled Power Reactors (1995-1999). This report attempts to provide both an overview of the state of the art with regard to on-line monitoring of water chemistry and corrosion in operating reactors, and technical details of the important contributions made by programme participants to the development and qualification of new monitoring techniques. The WACOL CRP is a follow-up to the WACOLIN (Investigations on Water Chemistry Control and Coolant Interaction with Fuel and Primary Circuit Materials in Water Cooled Power Reactors) CRP conducted by the IAEA from 1986 to 1991. The WACOLIN CRP, which described chemistry, corrosion and activity-transport aspects, clearly showed the influence of water chemistry on corrosion of both fuel and reactor primary-circuit components, as well as on radiation fields. It was concluded that there was a fundamental need to monitor water-chemistry parameters in real time, reliably and accurately. The objectives of the WACOL CRP were to establish recommendations for the development, qualification and plant implementation of methods and equipment for on-line monitoring of water chemistry and corrosion. Chief investigators from 18 organizations representing 15 countries provided a variety of contributions aimed at introducing proven monitoring techniques into plants on a regular basis and filling the gaps between plant operator needs and available monitoring techniques. The CRP firmly demonstrated that in situ monitoring is able to provide additional and valuable information to plant operators, e.g. ECP, high temperature pH and conductivity. Such data can be obtained promptly, i.e. in real time and with a high degree of accuracy. Reliable techniques and sensor devices are available which enable plant operators to obtain additional information on the response of structural materials in

  13. Health evaluation of drinking water regarding to scaling and corrosion potential using corrosion indexes in Noorabad city, Iran

    Directory of Open Access Journals (Sweden)

    ghodratolah Shams Khorramabadi

    2016-05-01

    Conclusion: Result obtained from studied indexes showed that the drinking water in Noorabad is corrosive and so the water quality in water supply system should be monitored continuously. The best applicable practices for decreasing water corrosion in water supply system are including continuous control of pH, chlorination mechanism and the use of corrosion resistant pipelines and facilities.

  14. Transcriptomic and metabolomic analysis of Yukon Thellungiella plants grown in cabinets and their natural habitat show phenotypic plasticity

    Directory of Open Access Journals (Sweden)

    Guevara David R

    2012-10-01

    Full Text Available Abstract Background Thellungiella salsuginea is an important model plant due to its natural tolerance to abiotic stresses including salt, cold, and water deficits. Microarray and metabolite profiling have shown that Thellungiella undergoes stress-responsive changes in transcript and organic solute abundance when grown under controlled environmental conditions. However, few reports assess the capacity of plants to display stress-responsive traits in natural habitats where concurrent stresses are the norm. Results To determine whether stress-responsive changes observed in cabinet-grown plants are recapitulated in the field, we analyzed leaf transcript and metabolic profiles of Thellungiella growing in its native Yukon habitat during two years of contrasting meteorological conditions. We found 673 genes showing differential expression between field and unstressed, chamber-grown plants. There were comparatively few overlaps between genes expressed under field and cabinet treatment-specific conditions. Only 20 of 99 drought-responsive genes were expressed both in the field during a year of low precipitation and in plants subjected to drought treatments in cabinets. There was also a general pattern of lower abundance among metabolites found in field plants relative to control or stress-treated plants in growth cabinets. Nutrient availability may explain some of the observed differences. For example, proline accumulated to high levels in cold and salt-stressed cabinet-grown plants but proline content was, by comparison, negligible in plants at a saline Yukon field site. We show that proline accumulated in a stress-responsive manner in Thellungiella plants salinized in growth cabinets and in salt-stressed seedlings when nitrogen was provided at 1.0 mM. In seedlings grown on 0.1 mM nitrogen medium, the proline content was low while carbohydrates increased. The relatively higher content of sugar-like compounds in field plants and seedlings on low nitrogen

  15. Transcriptomic and metabolomic analysis of Yukon Thellungiella plants grown in cabinets and their natural habitat show phenotypic plasticity.

    Science.gov (United States)

    Guevara, David R; Champigny, Marc J; Tattersall, Ashley; Dedrick, Jeff; Wong, Chui E; Li, Yong; Labbe, Aurelie; Ping, Chien-Lu; Wang, Yanxiang; Nuin, Paulo; Golding, G Brian; McCarry, Brian E; Summers, Peter S; Moffatt, Barbara A; Weretilnyk, Elizabeth A

    2012-10-01

    Thellungiella salsuginea is an important model plant due to its natural tolerance to abiotic stresses including salt, cold, and water deficits. Microarray and metabolite profiling have shown that Thellungiella undergoes stress-responsive changes in transcript and organic solute abundance when grown under controlled environmental conditions. However, few reports assess the capacity of plants to display stress-responsive traits in natural habitats where concurrent stresses are the norm. To determine whether stress-responsive changes observed in cabinet-grown plants are recapitulated in the field, we analyzed leaf transcript and metabolic profiles of Thellungiella growing in its native Yukon habitat during two years of contrasting meteorological conditions. We found 673 genes showing differential expression between field and unstressed, chamber-grown plants. There were comparatively few overlaps between genes expressed under field and cabinet treatment-specific conditions. Only 20 of 99 drought-responsive genes were expressed both in the field during a year of low precipitation and in plants subjected to drought treatments in cabinets. There was also a general pattern of lower abundance among metabolites found in field plants relative to control or stress-treated plants in growth cabinets. Nutrient availability may explain some of the observed differences. For example, proline accumulated to high levels in cold and salt-stressed cabinet-grown plants but proline content was, by comparison, negligible in plants at a saline Yukon field site. We show that proline accumulated in a stress-responsive manner in Thellungiella plants salinized in growth cabinets and in salt-stressed seedlings when nitrogen was provided at 1.0 mM. In seedlings grown on 0.1 mM nitrogen medium, the proline content was low while carbohydrates increased. The relatively higher content of sugar-like compounds in field plants and seedlings on low nitrogen media suggests that Thellungiella shows

  16. Transcriptomic and metabolomic analysis of Yukon Thellungiella plants grown in cabinets and their natural habitat show phenotypic plasticity

    Science.gov (United States)

    2012-01-01

    Background Thellungiella salsuginea is an important model plant due to its natural tolerance to abiotic stresses including salt, cold, and water deficits. Microarray and metabolite profiling have shown that Thellungiella undergoes stress-responsive changes in transcript and organic solute abundance when grown under controlled environmental conditions. However, few reports assess the capacity of plants to display stress-responsive traits in natural habitats where concurrent stresses are the norm. Results To determine whether stress-responsive changes observed in cabinet-grown plants are recapitulated in the field, we analyzed leaf transcript and metabolic profiles of Thellungiella growing in its native Yukon habitat during two years of contrasting meteorological conditions. We found 673 genes showing differential expression between field and unstressed, chamber-grown plants. There were comparatively few overlaps between genes expressed under field and cabinet treatment-specific conditions. Only 20 of 99 drought-responsive genes were expressed both in the field during a year of low precipitation and in plants subjected to drought treatments in cabinets. There was also a general pattern of lower abundance among metabolites found in field plants relative to control or stress-treated plants in growth cabinets. Nutrient availability may explain some of the observed differences. For example, proline accumulated to high levels in cold and salt-stressed cabinet-grown plants but proline content was, by comparison, negligible in plants at a saline Yukon field site. We show that proline accumulated in a stress-responsive manner in Thellungiella plants salinized in growth cabinets and in salt-stressed seedlings when nitrogen was provided at 1.0 mM. In seedlings grown on 0.1 mM nitrogen medium, the proline content was low while carbohydrates increased. The relatively higher content of sugar-like compounds in field plants and seedlings on low nitrogen media suggests that

  17. Corrosion control for low-cost reliability: Preceedings

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This book is Volume 6 of the preceedings from the 12th International Corrosion Congress. The electric power industry workshop dealt with water chemistry control; monitoring of chemical, electrochemical, and biological corrosion; corrosion product analyses; and nuclear and fossil-fuel power plants. All papers have been processed separately for inclusion on the data base

  18. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    Directory of Open Access Journals (Sweden)

    Xingjun Lv

    2011-11-01

    Full Text Available In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  19. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method.

    Science.gov (United States)

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  20. Corrosion of Steel in Concrete – Potential Monitoring and Electrochemical Impedance Spectroscopy during Corrosion Initiation and Propagation

    DEFF Research Database (Denmark)

    Küter, Andre; Mason, Thomas O.; Geiker, Mette Rica

    2005-01-01

    wires. The wires can act as both reference and counter electrode during EIS and, thus, no external electrode is required. The defined geometry solves reproducibility problems involved with application of an external reference electrode for EIS. Changes of the electromotive force (EMF) between rebar...... and titanium wires can be monitored immediately after preparation. The wire arrangement also allows investigation of local changes in the bulk mortar by EIS or by measuring the potential development of the titanium wires versus an external standard electrode. The specimen design was evaluated...... in an investigation on the effect of the steel quality and the steel surface properties on initiation and propagation of chloride-induced reinforcement corrosion. Besides untreated (as received) carbon rebars and stainless rebars, selected surface treatments and galvanization were investigated. The surface treatments...

  1. Heterogeneous tiny energy: An appealing opportunity to power wireless sensor motes in a corrosive environment

    International Nuclear Information System (INIS)

    Qiao, Guofu; Sun, Guodong; Li, Hui; Ou, Jinping

    2014-01-01

    Highlights: • Ultra-low ambient energy was scavenged to power the first of its kind wireless corrosion sensors. • Three feasible tiny-energy sources were exploited for long-term corrosion monitoring. • Automatic recharging control of heterogeneous tiny energy was proposed for human-free monitoring. • Corrosion itself was applied as an energy source to power the wireless corrosion-monitoring motes. - Abstract: Reinforcing steel corrosion is a significant factor leading to the durability deterioration of reinforced concrete (RC) structures. The on-line monitoring of the corrosion of RC structures in a long-term, human-free manner is not only valuable in industry, but also a significant challenge in academia. This paper presents the first of its kind corrosion-monitoring approach that only exploits three heterogeneous tiny energy sources to power commercial-off-the-shelf wireless sensor motes such that the corrosion-related data are automatically and autonomously captured and sent to users via wireless channels. We first investigated the availability of these three tiny energy sources: corrosion energy, a cement battery, and a weak solar energy. In particular, the two former energy sources inherently exist in RC structures and can be generated continually in the service-life of RC structures, which beneficial for the prospects of long-term corrosion monitoring. We then proposed a proof-of-concept prototype, which consisted of a Telosb wireless sensor mote and an energy harvester in order to evaluate the feasibility and effectiveness of the ultralow-power ambient energy as a type of power supply in corrosion monitoring applications. The critical metrics for the holographic monitoring of RC structures, including electrochemical noise, humidity and temperature, were successfully acquired and analysed using a post-processing program. This paper describes a unique and novel approach towards the realisation of smart structural monitoring and control system in the

  2. NULIFE - Project CABINET. RPV Assessment under Consideration of Constraint and Warm Pre-Stress Effects

    International Nuclear Information System (INIS)

    Obermeier, F.; Nicak, Tomas; Keim, Elisabeth; Fekete, Tamas; Scibetta, Marc; Planman, Tapio; Laukkanen, Anssi; Carcia, Carlos Cueto-Felgueroso; Sattari-Far, Iradj

    2012-01-01

    At the moment, nuclear power plant regulators do not predominantly consider constraint and biaxial effects in their concepts for failure assessment of nuclear components. The warm pre-stressing (WPS) effect is only partly considered in some assessment procedures and codes. There is also a lack of a harmonized treatment of these effects in the safety assessment of European plants. This paper introduces the project CABINET (Constraint and Biaxial Loading Effects and their Interactions Considering Thermal Transients) which is a collaborative project under the EU's Network of Excellence NULIFE. The overall objective of CABINET is to investigate and understand constraint, biaxial loading and WPS effects in terms of a clearly defined application window, especially in the light of long term operation. The focus lies on already available experimental data and methodologies. The intention is to provide recommendations for a harmonized application of those effects in European nuclear safety assessment. The possibility to include different level of analysis depending on input data and acceptance of National Regulatory Body is also being evaluated. Although the CABINET project is not completed yet, it has been found that it is possible to rationalize the different existing codes. (author)

  3. In-situ monitoring of pitting corrosion on vertically positioned 304 stainless steel by analyzing acoustic-emission energy parameter

    International Nuclear Information System (INIS)

    Wu, Kaige; Jung, Woo-Sang; Byeon, Jai-Won

    2016-01-01

    Highlights: • Pitting process in vertically positioned 304 SS is investigated by AE energy. • Gravity-influenced elongated pit, crack and rupture of pit cover were observed. • Hydrogen bubble evolution and pit covers rupturing were separately monitored by AE. • Four stages of AE energy were correlated with observed pitting mechanism. - Abstract: The acoustic emission (AE) energy was analyzed to monitor the pitting process on a vertically positioned 304-stainless steel. The gravity-dependent morphology of the elongated corrosion pits was observed. A scatter plot of the duration and energy indicated two AE clusters with different energy levels. There was a time delay after the detection of the low-energy hydrogen-bubble signals. Subsequently, high-energy signals were observed, whose AE source was attributed to large-scale cracks formed during the rupture of the elongated pit cover. An in-situ analysis of the AE energy evolution provided detailed insights into the corrosion process in relation to the specimen position.

  4. Copper corrosion in pure oxygen-free water

    International Nuclear Information System (INIS)

    Moeller, K.

    1995-12-01

    The study was initiated following reports on corrosion of Copper in water in absence of Oxygen. Quartz glass tubes containing pure water and Copper plates were sealed in two different ways, using Palladium or Platinum foils, respectively. Tests were also performed with Copper wires. The insulated systems contained Oxygen initially. The Oxygen was dissolved in the water, and in the air column between the water surface and the Palladium/Platinum foils. The tubes were kept in a hot cabinet at 50 C for a total of two years. The exposed plates were analyzed in different ways, e g using reflectance FTIR. The amounts of oxide formed were also weighed. The following conclusions could be drawn: No difference in color was observed for the Pd and Pt seals except in one case for the Copper wire, where only a slight difference was noticed. No significant difference in oxidation between the plates with Pd or Pt seals in quartz glass tubes. No oxide growth was observed during the last year. The corrosion rate at 50 C is below 2.3 micrograms Copper/cm 2 /year. A certain imbalance was noted between the amounts of oxides formed, and expected amount estimated from the original amount of oxygen in the system. A significant amount of water has 'disappeared' from the tubes. 17 refs, 10 figs, 3 tabs

  5. A Review of Field Corrosion Control and Monitoring Techniques of ...

    African Journals Online (AJOL)

    OLUWASOGO

    corrosion attack and eventual failure of pipelines within oil and gas industry has been classified ... pipelines' commissioning which include design, material selection, protective ..... analyses after certain period to obtain corrosion information.

  6. DEVELOPMENT OF PROTOTYPE SYSTEM FOR REGULATING THERMAL CONDITIONS OF TELECOMMUNICATIONS EQUIPMENT CABINETS

    Directory of Open Access Journals (Sweden)

    A. T. Rashidkhanov

    2017-01-01

    Full Text Available Objectives. The main objective of the study was to regulate the thermal regime and ensure the reliability of electronic equipmentMethods. In order to conduct experimental studies of the thermoelectric cooling system using heat pipes, a stand was assembled on which the developed and manufactured prototype was studied. The object of the experimental studies was a prototype cooling system, consisting of a thermoelectric battery made of conventional unified thermoelectric materials of ICE-71 type. The solution of the research problems carried out by the method of reduction to ordinary differential equations (Kantorovich method provides acceptable accuracy for such a class of problems.Results. A design of a telecommunication equipment cabinet with a thermal management system based on the use of heat pipes and thermoelectric cooling units is proposed. A mathematical model for the determination of the thermal field in the cabinet volume is considered; an experimental stand for the prototype study is described; the results of experimental studies for various power sources of heat release are presented.Conclusion. Experimental studies confirm the operability of the developed cooling system for cabinets with telecommunication equipment; this cooling method has advantages over conventional forced or natural cooling; the temperature in the block volume and the peak values of the heat sources are significantly reduced; at dissipation powers on one board within 50 W there is no need to use special means to remove heat from hot junctions of the thermoelectric battery.

  7. Development of an on-line ultrasonic system to monitor flow-accelerated corrosion of piping in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, N.Y.; Bahn, C.B.; Lee, S.G.; Kim, J.H.; Hwang, I.S.; Lee, J.H.; Kim, J.T.; Luk, V.

    2004-01-01

    Designs of contemporary nuclear power plants (NPPs) are concentrated on improving plant life as well as safety. As the nuclear industry prepares for continued operation beyond the design lifetime of existing NPP, aging management through advanced monitoring is called for. Therefore, we suggested two approaches to develop the on-line piping monitoring system. Piping located in some position is reported to go through flow accelerated corrosion (FAC). One is to monitor electrochemical parameters, ECP and pH, which can show occurrence of corrosion. The other is to monitor mechanical parameters, displacement and acceleration. These parameters are shown to change with thickness. Both measured parameters will be combined to quantify the amount of FAC of a target piping. In this paper, we report the progress of a multidisciplinary effort on monitoring of flow-induced vibration, which changes with reducing thickness. Vibration characteristics are measured using accelerometers, capacitive sensor and fiber optic sensors. To theoretically support the measurement, we analyzed the vibration mode change in a given thickness with the aid of finite element analysis assuming FAC phenomenon is represented only as thickness change. A high temperature flow loop has been developed to simulate the NPP secondary condition to show the applicability of new sensors. Ultrasonic transducer is introduced as validation purpose by directly measuring thickness. By this process, we identify performance and applicability of chosen sensors and also obtain base data for analyzing measured value in unknown conditions. (orig.)

  8. Test Plan And Procedure For The Examination Of Tank 241-AY-101 Multi-Probe Corrosion Monitoring System

    International Nuclear Information System (INIS)

    Wyrwas, R.B.; Page, J.S.; Cooke, G.S.

    2012-01-01

    This test plan describes the methods to be used in the forensic examination of the Multi-probe Corrosion Monitoring System (MPCMS) installed in the double-shell tank 241-AY-101 (AY-101). The probe was designed by Applied Research and Engineering Sciences (ARES) Corporation. The probe contains four sections, each of which can be removed from the tank independently (H-14-107634, AY-101 MPCMS Removable Probe Assembly) and one fixed center assembly. Each removable section contains three types of passive corrosion coupons: bar coupons, round coupons, and stressed C-rings (H-14-l07635, AY-101 MPCMS Details). Photographs and weights of each coupon were recorded and reported on drawing H-14-107634 and in RPP-RPT-40629, 241-AY-101 MPCMS C-Ring Coupon Photographs. The coupons will be the subject of the forensic analyses. The purpose of this examination will be to document the nature and extent of corrosion of the 29 coupons. This documentation will consist of photographs and photomicrographs of the C-rings and round coupons, as well as the weights of the bar and round coupons during corrosion removal. The total weight loss of the cleaned coupons will be used in conjunction with the surface area of each to calculate corrosion rates in mils per year. The bar coupons were presumably placed to investigate the liquid-air-interface. An analysis of the waste level heights in the waste tank will be investigated as part of this examination.

  9. Savoirs mondains, savoirs savants : les femmes et leurs cabinets de curiosités au siècle des Lumières

    Directory of Open Access Journals (Sweden)

    Adeline Gargam

    2010-01-01

    Full Text Available Dans la France des Lumières, la culture de la curiosité est un phénomène de mode mais surtout un jeu social et intellectuel. La présente étude entend retracer l’histoire d’une trentaine de cabinets féminins de curiosité tenus à cette époque. Des femmes fortunées de l’aristocratie et de la bourgeoisie parisienne et provinciale ont alors constitué sous l’emprise de leur libido sciendi des cabinets d’alchimie, de minéralogie, de physique‑chimie, d’histoire naturelle et d’anatomie naturelle et artificielle. Ces cabinets obéissent à une typologie particulière. Il en existe deux catégories : les cabinets d’amateurs, constitués pour la parade et le spectacle des visiteurs et fonctionnant comme de véritables écoles de plaisirs intellectuels et éducatifs ; les cabinets à finalité scientifique et didactique, formés par des savantes expérimentées qui se livrent dans leurs laboratoires à des recherches personnelles et expérimentales au nom des progrès de la science médicale et de l’instruction publique. La réflexion porte aussi sur le fonctionnement de ces cabinets privés de curiosité, particulièrement sur leur mode de constitution, leur décor intérieur ainsi que sur le contenu des collections qui nécessitaient certaines techniques d’organisation, d’acquisition et de conservation communes à celles de leurs homologues masculins.During the Enlightenment in France, curiosity culture constituted both a fashion and an intellectual and social game.  This article explores thirty cabinets of  curiosities run by women during this period. Wealthy women from the Parisiain and provincial aristocracy and middle classes organized cabinets in alchemy, mineralogy, physics and chemistry, natural history and biology studies. These cabinets can be divided into two distinct categories. The first represented amateur interests; they were developed for show and served as schools for intellectual and

  10. BWR steel containment corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.P.; Bagchi, G.

    1996-04-01

    The report describes regulatory actions taken after corrosion was discovered in the drywell at the Oyster Creek Plant and in the torus at the Nine Mile Point 1 Plant. The report describes the causes of corrosion, requirements for monitoring corrosion, and measures to mitigate the corrosive environment for the two plants. The report describes the issuances of generic letters and information notices either to collect information to determine whether the problem is generic or to alert the licensees of similar plants about the existence of such a problem. Implementation of measures to enhance the containment performance under severe accident conditions is discussed. A study by Brookhaven National Laboratory (BNL) of the performance of a degraded containment under severe accident conditions is summarized. The details of the BNL study are in the appendix to the report.

  11. Portable electrochemical system using screen-printed electrodes for monitoring corrosion inhibitors.

    Science.gov (United States)

    Squissato, André L; Silva, Weberson P; Del Claro, Augusto T S; Rocha, Diego P; Dornellas, Rafael M; Richter, Eduardo M; Foster, Christopher W; Banks, Craig E; Munoz, Rodrigo A A

    2017-11-01

    This work presents a portable electrochemical system for the continuous monitoring of corrosion inhibitors in a wide range of matrices including ethanol, seawater and mineral oil following simple dilution of the samples. Proof-of-concept is demonstrated for the sensing of 2,5-dimercapto-1,3,5-thiadiazole (DMCT), an important corrosion inhibitor. Disposable screen-printed graphitic electrodes (SPGEs) associated with a portable batch-injection cell are proposed for the amperometric determination of DMCT following sample dilution with electrolyte (95% v/v ethanol + 5% v/v 0.1molL -1 H 2 SO 4 solution). This electrolyte was compatible with all samples and the organic-resistant SPGE could be used continuously for more than 200 injections (100µL injected at 193µLs -1 ) free from effects of adsorption of DMCT, which have a great affinity for metallic surfaces, and dissolution of the other reported SPGE inks which has hampered prior research efforts. Fast (180h -1 ) and precise responses (RSD < 3% n = 10) with a detection limit of 0.3µmolL -1 was obtained. The accuracy of the proposed method was attested through recovery tests (93-106%) and the reasonable agreement of results of DMCT concentrations in samples analyzed by both proposed and spectrophotometric (comparative) methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Density, distribution, and genetic structure of grizzly bears in the Cabinet-Yaak Ecosystem

    Science.gov (United States)

    Macleod, Amy C.; Boyd, Kristina L.; Boulanger, John; Royle, J. Andrew; Kasworm, Wayne F.; Paetkau, David; Proctor, Michael F.; Annis, Kim; Graves, Tabitha A.

    2016-01-01

    The conservation status of the 2 threatened grizzly bear (Ursus arctos) populations in the Cabinet-Yaak Ecosystem (CYE) of northern Montana and Idaho had remained unchanged since designation in 1975; however, the current demographic status of these populations was uncertain. No rigorous data on population density and distribution or analysis of recent population genetic structure were available to measure the effectiveness of conservation efforts. We used genetic detection data from hair corral, bear rub, and opportunistic sampling in traditional and spatial capture–recapture models to generate estimates of abundance and density of grizzly bears in the CYE. We calculated mean bear residency on our sampling grid from telemetry data using Huggins and Pledger models to estimate the average number of bears present and to correct our superpopulation estimates for lack of geographic closure. Estimated grizzly bear abundance (all sex and age classes) in the CYE in 2012 was 48–50 bears, approximately half the population recovery goal. Grizzly bear density in the CYE (4.3–4.5 grizzly bears/1,000 km2) was among the lowest of interior North American populations. The sizes of the Cabinet (n = 22–24) and Yaak (n = 18–22) populations were similar. Spatial models produced similar estimates of abundance and density with comparable precision without requiring radio-telemetry data to address assumptions of geographic closure. The 2 populations in the CYE were demographically and reproductively isolated from each other and the Cabinet population was highly inbred. With parentage analysis, we documented natural migrants to the Cabinet and Yaak populations by bears born to parents in the Selkirk and Northern Continental Divide populations. These events supported data from other sources suggesting that the expansion of neighboring populations may eventually help sustain the CYE populations. However, the small size, isolation, and inbreeding documented by this study

  13. New portable monitor enhances the ability to evaluate heat exchanger performance

    International Nuclear Information System (INIS)

    O'Toole, W.; Lacy, J.R.; Karlovich, D.N.

    1992-01-01

    Corrosion and fouling problems in nuclear power plant service water systems have led to industry-wide concern. These problems can affect the ability of these important heat exchangers to remove design heat loads. In addition, a limited amount of permanently installed on-line instrumentation is available to monitor key heat transfer parameters. A new, computerized monitoring system has been developed that acquires and manipulates process data. This enables power plant personnel to evaluate the on-line performance of important cooling system heat exchangers. The equipment provides the capability to continuously monitor, graph, and record cooling and process heat transfer parameters. The computer hardware is in a portable cabinet on wheels, which can be easily rolled from exchanger to exchanger for monitoring. This new monitoring system is being used at Consolidated Edison Company of New York Inc.'s Indian Point 2 Nuclear Station. They are currently expanding their performance testing on service water system heat exchangers and other auxiliary components to include those units that have limited on-line instrumentation. The ability to use clamp on flow and temperature sensing devices is necessary for trending exchanger performance. With on-line testing capabilities it is possible to: evaluate the cleanliness of plant heat transfer surfaces; make judgments about biofouling or antiscalant programs; and determine when equipment needs to be shut down for inspection or cleaning This paper describes this state-of-the-art equipment in detail and its application at the Indian Point 2 Nuclear Station. 9 refs., 8 figs., 1 tab

  14. DEMONSTRATION OF A NO-VOC/NO-HAP WOOD KITCHEN CABINET COATING SYSTEM

    Science.gov (United States)

    The report gives results of the development and demonstration of a no-VOC (volatile organic compound)/no-HAP (hazardous air pollutant) wood furniture coating system at two cabinet manufacturing plants: one in Portland, OR, and the other in Redwood City, CA. Technology transfer ef...

  15. Erosion and corrosion of nuclear power plant materials

    International Nuclear Information System (INIS)

    1994-01-01

    This conference is composed of 23 papers, grouped in 3 sessions which main themes are: analysis of corrosion and erosion damages of nuclear power plant equipment and influence of water chemistry, temperature, irradiations, metallurgical and electrochemical factors, flow assisted cracking, stress cracking; monitoring and control of erosion and corrosion in nuclear power plants; susceptibility of structural materials to erosion and corrosion and ways to improve the resistance of materials, steels, coatings, etc. to erosion, corrosion and cracking

  16. Erosion/corrosion-induced pipe wall thinning in US Nuclear Power Plants

    International Nuclear Information System (INIS)

    Wu, P.C.

    1989-04-01

    Erosion/corrosion in single-phase piping systems was not clearly recognized as a potential safety issue before the pipe rupture incident at the Surry Power Station in December 1986. This incident reminded the nuclear industry and the regulators that neither the US Nuclear Regulatory Commission (NRC) nor Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code require utilities to monitor erosion/corrosion in the secondary systems of nuclear power plants. This report provides a brief review of the erosion/corrosion phenomenon and its major occurrence in nuclear power plants. In addition, efforts by the NRC, the industry, and the ASME Section XI Committee to address this issue are described. Finally, results of the survey and plant audits conducted by the NRC to assess the extent of erosion/corrosion-induced piping degradation and the status of program implementation regarding erosion/corrosion monitoring are discussed. This report will support a staff recommendation for an additional regulatory requirement concerning erosion/corrosion monitoring. 21 refs., 3 tabs

  17. Kentucky Transportation Cabinet : annual assessment of customer needs and satisfaction : mail survey report

    Science.gov (United States)

    1997-11-01

    The Kentucky Transportation Cabinet, both through its own quality initiative and a statewide 'Empower Kentucky' campaign, has a commitment to achieve new levels of quality in the development, construction and maintenance of highways. In order to gage...

  18. Use of UV-C radiation to disinfect non-critical patient care items: a laboratory assessment of the Nanoclave Cabinet

    Directory of Open Access Journals (Sweden)

    Moore Ginny

    2012-08-01

    Full Text Available Abstract Background The near-patient environment is often heavily contaminated, yet the decontamination of near-patient surfaces and equipment is often poor. The Nanoclave Cabinet produces large amounts of ultraviolet-C (UV-C radiation (53 W/m2 and is designed to rapidly disinfect individual items of clinical equipment. Controlled laboratory studies were conducted to assess its ability to eradicate a range of potential pathogens including Clostridium difficile spores and Adenovirus from different types of surface. Methods Each test surface was inoculated with known levels of vegetative bacteria (106 cfu/cm2, C. difficile spores (102-106 cfu/cm2 or Adenovirus (109 viral genomes, placed in the Nanoclave Cabinet and exposed for up to 6 minutes to the UV-C light source. Survival of bacterial contaminants was determined via conventional cultivation techniques. Degradation of viral DNA was determined via PCR. Results were compared to the number of colonies or level of DNA recovered from non-exposed control surfaces. Experiments were repeated to incorporate organic soils and to compare the efficacy of the Nanoclave Cabinet to that of antimicrobial wipes. Results After exposing 8 common non-critical patient care items to two 30-second UV-C irradiation cycles, bacterial numbers on 40 of 51 target sites were consistently reduced to below detectable levels (≥ 4.7 log10 reduction. Bacterial load was reduced but still persisted on other sites. Objects that proved difficult to disinfect using the Nanoclave Cabinet (e.g. blood pressure cuff were also difficult to disinfect using antimicrobial wipes. The efficacy of the Nanoclave Cabinet was not affected by the presence of organic soils. Clostridium difficile spores were more resistant to UV-C irradiation than vegetative bacteria. However, two 60-second irradiation cycles were sufficient to reduce the number of surface-associated spores from 103 cfu/cm2 to below detectable levels. A 3 log10 reduction in

  19. Children: Oklahoma's Investment in Tomorrow '96. Preliminary Report: Agency Budget by Cabinet.

    Science.gov (United States)

    Oklahoma Commission on Children and Youth, Oklahoma City.

    This report presents preliminary Oklahoma state agency budget summaries for all programs serving children in the Departments of Administration, Agriculture, Commerce, Education, Energy, Health and Human Services, Human Resources, Safety and Security, Tourism and Recreation, and Veterans Affairs. The budget figures are organized by cabinet and…

  20. Corrosion problems and its prevention in nuclear industries

    International Nuclear Information System (INIS)

    Sakae, Yukio; Susukida, Hiroshi; Kowaka, Masamichi; Fujikawa, Hisao.

    1979-01-01

    29 nuclear power plants with 2.56 million kW output are expected to be in operation by 1985 in Japan. The main problems of corrosion in the nuclear reactors in operation at present and promising for the future are as follows: corrosion, denting and stress corrosion cracking in the steam generator tubes for PWRs, stress corrosion cracking in SUS pipings for BWRs, sodium corrosion and mass transfer in FBRs, high temperature gas corrosion in HTGRs, and interaction between coolant, blanket material and structural material in nuclear fusion reactors. In LWRs, the countermeasures based on the experiences in actual plants and the results of simulation tests have attained the good results. Various monitoring systems and the techniques for in-service inspection and preservice inspection have accomplished astonishing progress. These contributed largely to establish the reliability of nuclear power plants. The cases of troubles in primary and secondary systems, the experiences of the corrosion of steam generator tubes and the countermeasures, and the denting troubles occurred in USA and the trend of countermeasures in PWRs, the cases of stress corrosion cracking in SUS 304 and 316 pipings for BWRs, and the problems of various future reactors are described. Unexpected troubles often occur in practical plants of large capacity, therefore the method of predicting tests must be established, and the monitoring of safety must be thorough. (Kako, I.)

  1. CFD Parametric Studies for Global Performance Improvement of Open Refrigerated Display Cabinets

    Directory of Open Access Journals (Sweden)

    Pedro Dinis Gaspar

    2012-01-01

    Full Text Available A detailed CFD modelling of an open refrigerated display cabinet has been formulated in a previous study. Some modifications are introduced in order to perform parametric studies dealing with low-cost geometrical and functional characteristics for improvement of the global performance and energy efficiency. The parametric studies are devoted to the analysis of the thermal response and behaviour inside the food conservation space influenced by (1 air flow rate through the evaporator heat exchanger; (2 air curtain behaviour; (3 hole dimensions and distribution of the back panel; (4 discharge and return grilles angles; and (5 flow deflectors inside the internal duct. The analysis of the numerical predictions from the parametric studies allows the development of an optimized model for the conception of an open refrigerated display cabinet with a more adequate configuration. The numerical predictions of the optimized model show lower product temperature and reduced electrical energy consumption, allowing the improvement of the food safety and the energy rationalization of the refrigeration equipment.

  2. Sources of product information used by consumers when purchasing kitchen cabinets.

    Science.gov (United States)

    Geoffrey H. Donovan; David L. Nicholls; Joseph. Roos

    2004-01-01

    Survey data from home shows in Seattle, Washington and Anchorage, Alaska were used to determine the sources of product information used by consumers when buying kitchen cabinets. Results show that in-store sales staff are the most common source of product information, and that consumers' favorite wood species, age, and gender can influence the source of product...

  3. Coaxial stub resonator for online monitoring early stages of corrosion

    NARCIS (Netherlands)

    Hoog-Antonyuk, N.A.; Mayer, Mateo J.J.; Miedema, Henk; Olthuis, Wouter; van den Berg, Albert

    2014-01-01

    Here we demonstrate the proof-of-principle of a new type of flow-through sensor to assess the corrosion rate of metal surfaces. The method can be applied to all situations where metals are exposed to a corrosive (fluidic) environment, including, for instance, the interior of pipes and tubes. Our

  4. Development of sensors for in-situ monitoring of corrosion and water chemistry parameters for the electric power utility industry

    International Nuclear Information System (INIS)

    Macdonald, D.D.; Pang, J.; Liu, C.; Medina, E.; Villa, J.; Bueno, J.

    1993-01-01

    The in situ monitoring of the chemistry and electrochemistry of aqueous heat transport fluids in thermal (nuclear and fossil) power plants is now considered essential if adequate assessment and close control of corrosion and mass transfer phenomena are to be achieved. Because of the elevated temperatures and pressures involved, new sensor technologies are required that are able to measure key parameters under plant operating conditions for extended periods of time. In this paper, the authors outline a research and development program that is designed to develop practical sensors for use in thermal power plants. The current emphasis is on sensors for measuring corrosion potential, pH, the concentrations of oxygen and hydrogen, and the electrochemical noise generated by corrosion processes at temperatures ranging from ∼250 C to 500 C. The program is currently at the laboratory stage, but testing of prototype sensors in a coal-fired supercritical power plant in Spain will begin shortly

  5. Development of a user interface style guide for the reactor protection system cabinet operator module

    International Nuclear Information System (INIS)

    Lee, Hyun-Chul; Lee, Dong-Young; Lee, Jung-Woon

    2004-01-01

    The reactor protection system (RPS) plays the roles of generating the reactor trip signal and the engineered safety features (ESF) actuation signal when the monitored plant processes reach the predefined limits. A Korean project group is developing a new digitalized RPS and the Cabinet Operator Module (COM) of the RPS is used for the RPS integrity testing and monitoring by an equipment operator. A flat panel display (FPD) with a touch screen capability is provided as a main user interface for the RPS operation. To support the RPS COM user interface design, actually the FPD screen design, we developed a user interface style guide because the system designer could not properly deal with the many general human factors design guidelines. To develop the user interface style guide, various design guideline gatherings, a walk-though with a video recorder, guideline selection with respect to user interface design elements, determination of the properties of the design elements, discussion with system designers, and a conversion of the properties into the screen design were carried out. This paper describes the process details and the findings in the course of the style guide development. (Author)

  6. The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor.

    Science.gov (United States)

    Minnoş, Bihter; Ilhan-Sungur, Esra; Çotuk, Ayşın; Güngör, Nihal Doğruöz; Cansever, Nurhan

    2013-01-01

    The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor was investigated over a 10-month period in a hotel. Planktonic and sessile numbers of sulphate reducing bacteria (SRB) and heterotrophic bacteria were monitored. The corrosion rate was determined by the weight loss method. The corrosion products were analyzed by energy dispersive X-ray spectroscopy and X-ray diffraction. A mineralized, heterogeneous biofilm was observed on the coupons. Although a biocide and a corrosion inhibitor were regularly added to the cooling water, the results showed that microorganisms, such as SRB in the mixed species biofilm, caused corrosion of galvanized steel. It was observed that Zn layers on the test coupons were completely depleted after 3 months. The Fe concentrations in the biofilm showed significant correlations with the weight loss and carbohydrate concentration (respectively, p < 0.01 and p < 0.01).

  7. Tracking the harmonic response of magnetically-soft sensors for wireless temperature, stress, and corrosive monitoring

    Science.gov (United States)

    Ong, Keat G.; Grimes, Craig A.

    2002-01-01

    This paper describes the application of magnetically-soft ribbon-like sensors for measurement of temperature and stress, as well as corrosive monitoring, based upon changes in the amplitudes of the higher-order harmonics generated by the sensors in response to a magnetic interrogation signal. The sensors operate independently of mass loading, and so can be placed or rigidly embedded inside nonmetallic, opaque structures such as concrete or plastic. The passive harmonic-based sensor is remotely monitored through a single coplanar interrogation and detection coil. Effects due to the relative location of the sensor are eliminated by tracking harmonic amplitude ratios, thereby, enabling wide area monitoring. The wireless, passive, mass loading independent nature of the described sensor platform makes it ideally suited for long-term structural monitoring applications, such as measurement of temperature and stress inside concrete structures. A theoretical model is presented to explain the origin and behavior of the higher-order harmonics in response to temperature and stress. c2002 Elsevier Science B.V. All rights reserved.

  8. A novel capacitance sensor for fireside corrosion measurement

    Science.gov (United States)

    Ban, Heng; Li, Zuoping

    2009-11-01

    Fireside corrosion in coal-fired power plants is a leading mechanism for boiler tube failures. Online monitoring of fireside corrosion can provide timely data to plant operators for mitigation implementation. This paper presents a novel sensor concept for measuring metal loss based on electrical capacitance. Laboratory-scale experiments demonstrated the feasibility of design, fabrication, and operation of the sensor. The fabrication of the prototype sensor involved sputtering deposition of a thin metal coating with varying thickness on a ceramic substrate. Corrosion metal loss resulted in a proportional decrease in electrical capacitance of the sensor. Laboratory experiments using a muffle furnace with an oxidation environment demonstrated that low carbon steel coatings on ceramic substrate survived cyclic temperatures over 500 °C. Measured corrosion rates of sputtered coating in air had an Arrhenius exponential dependence on temperature, with metal thickness loss ranging from 2.0 nm/h at 200 °C to 2.0 μm/h at 400 °C. Uncertainty analysis indicated that the overall measurement uncertainty was within 4%. The experimental system showed high signal-to-noise ratio, and the sensor could measure submicrometer metal thickness changes. The laboratory experiments demonstrated that the sensor concept and measurement system are capable of short term, online monitoring of metal loss, indicating the potential for the sensor to be used for fireside corrosion monitoring and other metal loss measurement.

  9. Dictionary corrosion and corrosion control

    International Nuclear Information System (INIS)

    1985-01-01

    This dictionary has 13000 entries in both languages. Keywords and extensive accompanying information simplify the choice of word for the user. The following topics are covered: Theoretical principles of corrosion; Corrosion of the metals and alloys most frequently used in engineering. Types of corrosion - (chemical-, electro-chemical, biological corrosion); forms of corrosion (superficial, pitting, selective, intercrystalline and stress corrosion; vibrational corrosion cracking); erosion and cavitation. Methods of corrosion control (material selection, temporary corrosion protection media, paint and plastics coatings, electro-chemical coatings, corrosion prevention by treatment of the corrosive media); Corrosion testing methods. (orig./HP) [de

  10. Ajna: negotiating forms in the making of a musical cabinet

    DEFF Research Database (Denmark)

    Fernaeus, Ylva; Vallgårda, Anna

    2014-01-01

    Ajna is a musical cabinet made from a rich composition of acoustic materials and designed to perform digitally composed music. In this paper, we aim to unpack the design as well as key aspects of the design process that lead up to this unique artwork. We base our analysis on interviews with its t...... picture of bricolage as a design approach. Based on this we then discuss the qualities of bricolage in interaction design....

  11. Monitoring the residual life of atomic power station equipment based on the indices of stress-corrosion strength of constructional materials

    International Nuclear Information System (INIS)

    Stepanov, I.A.

    1994-01-01

    The properties of a constructional material determining life are strength, plasticity, and crack resistance. Loss of properties occurs as the result of corrosion, temperature action, actual and residual stresses, and neutron and gamma-radiation. Corrosion leads to a decrease in thickness, loss of density, changes in the composition and structure of the surface layers, and a reduction in strength, plasticity, and crack resistance of constructional materials. The influence of temperature on the loss of properties of materials is revealed as possible phase and structural transformations of the metal and the surface layers and a reduction in the stress-rupture, plastic, and thermal-fatigue properties. The actual and residual stresses not only strengthen the influence of corrosive media but also directly determine the stress-rupture strength and cyclic life. The influence of neutron and gamma-radiation is based o the change in composition of the corrosive medium (radiolysis), radiation embrittlement of the material, and the change in properties of the surface and oxide layers. The authors discuss the concepts and design of automated monitoring systems for determining the fitness of the components of on atomic power plant

  12. Application of electrochemical frequency modulation for monitoring corrosion and corrosion inhibition of iron by some indole derivatives in molar hydrochloric acid

    International Nuclear Information System (INIS)

    Khaled, K.F.

    2008-01-01

    The corrosion inhibition effect of four indole derivatives, namely indole (IND), benzotriazole (BTA), benzothiazole (BSA) and benzoimidazole (BIA), have been used as possible corrosion inhibitors for pure iron in 1 M HCl. In this study, electrochemical frequency modulation, EFM was used as an effective method for corrosion rate determination in corrosion inhibition studies. By using EFM measurements, corrosion current density was determined without prior knowledge of Tafel slopes. Corrosion rates obtained using EFM, were compared to that obtained from other chemical and electrochemical techniques. The results obtained from EFM, EIS, Tafel and weight loss measurements were in good agreement. Tafel polarization measurements show that indole derivatives are cathodic-type inhibitors. Molecular simulation studies were applied to optimize the adsorption structures of indole derivatives. The inhibitor/iron/solvent interfaces were simulated and the adsorption energies of these inhibitors were calculated. Quantum chemical calculations have been performed and several quantum chemical indices were calculated and correlated with the corresponding inhibition efficiencies

  13. Downhole corrosion mechanisms and mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, D. [Baker Hughes Canada, Calgary, AB (Canada)

    2010-07-01

    Pipeline corrosion refers to its deterioration because of a reaction with its environment. Although the physical condition of the metal at the anode initiates the corrosion process, it is the chemistry and composition of the electrolyte that controls the rate of the corrosion reaction and the severity of the corrosion. This presentation described the role of corrosion rate accelerators, with particular reference to dissolved gases such as oxygen, hydrogen sulfides and carbon dioxide, as well as pH levels, salinity, flow rate, temperature and presence of solids such as iron sulfides and sulfur. The effects of these accelerators were shown to be additive. Mitigation strategies include using materials such as resistant metal alloys or fiberglass, and applying coatings and chemical inhibitors. The importance of corrosion monitoring was also emphasized, with particular reference to the value of examining the number of corrosion related failures that have occurred over a fixed period of time. It was concluded that the ability to analyze samples of failed materials results in a better understanding of the cause of the failure, and is an integral part of designing any successful corrosion control program. tabs., figs.

  14. Smart Sensor Network for Aircraft Corrosion Monitoring

    Science.gov (United States)

    2010-02-01

    Network Elements – Hub, Network capable application processor ( NCAP ) – Node, Smart transducer interface module (STIM)  Corrosion Sensing and...software Transducer software Network Protocol 1451.2 1451.3 1451.5 1451.6 1451.7 I/O Node -processor Power TEDS Smart Sensor Hub ( NCAP ) IEEE 1451.0 and

  15. Corrosion problems and solutions in oil refining and petrochemical industry

    CERN Document Server

    Groysman, Alec

    2017-01-01

    This book addresses corrosion problems and their solutions at facilities in the oil refining and petrochemical industry, including cooling water and boiler feed water units. Further, it describes and analyzes corrosion control actions, corrosion monitoring, and corrosion management. Corrosion problems are a perennial issue in the oil refining and petrochemical industry, as they lead to a deterioration of the functional properties of metallic equipment and harm the environment – both of which need to be protected for the sake of current and future generations. Accordingly, this book examines and analyzes typical and atypical corrosion failure cases and their prevention at refineries and petrochemical facilities, including problems with: pipelines, tanks, furnaces, distillation columns, absorbers, heat exchangers, and pumps. In addition, it describes naphthenic acid corrosion, stress corrosion cracking, hydrogen damages, sulfidic corrosion, microbiologically induced corrosion, erosion-corrosion, and corrosion...

  16. Corrosion management in nuclear industry

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.

    2012-01-01

    Corrosion is a major degradation mechanism of metals and alloys which significantly affects the global economy with an average loss of 3.5% of GDP of several countries in many important industrial sectors including chemical, petrochemical, power, oil, refinery, fertilizer etc. The demand for higher efficiency and achieving name plate capacity, in addition to ever increasing temperatures, pressures and complexities in equipment geometry of industrial processes, necessitate utmost care in adopting appropriate corrosion management strategies in selecting, designing, fabricating and utilising various materials and coatings for engineering applications in industries. Corrosion control and prevention is an important focus area as the savings achieved from practicing corrosion control and prevention would bring significant benefits to the industry. Towards this, advanced corrosion management strategies starting from design, manufacturing, operation, maintenance, in-service inspection and online monitoring are essential. At the Indira Gandhi Centre for Atomic Research (IGCAR) strategic corrosion management efforts have been pursued in order to provide solutions to practical problems emerging in the plants, in addition to innovative efforts to provide insight into mechanism and understanding of corrosion of various engineering materials and coatings. In this presentation the author highlights how the nuclear industry benefited from the practical approach to successful corrosion management, particularly with respect to fast breeder reactor programme involving both reactor and associated reprocessing plants. (author)

  17. Corrosion control in electric power plants

    International Nuclear Information System (INIS)

    Syrett, B.C.

    1992-01-01

    This paper reports that corrosion of components in power plants costs the US electric power utility industry billions of dollars each year. Through the Electric Power Research Institute's (EPRI) research and development, several approaches have been developed to reduce these huge costs. They include improved materials selection procedures, coatings, cathodic protection, inhibitors, removal of aggressive species from the environment, and on-line corrosion monitoring. In addition, as part of an on-going technology transfer effort, EPRI is developing databases and expert systems that will help utilities obtain corrosion information and guide them in materials selection and failure analysis

  18. Development of a crack monitoring technique for use in a corrosion fatigue study of SA533-B pressure vessel steel

    International Nuclear Information System (INIS)

    Benson, J.M.; Tait, R.B.; Garrett, G.G.

    1981-10-01

    At present there does not exist a realistic crack growth law which will provide a good description of the relationship between the alternating stress intensity factor and the crack growth per cycle of stress. Such a law should be applicable to either the pressurized water reactor environment (PWR) or boiling water reactor environmnt (BWR). This project was formulated with the aim of examining the fatigue crack growth rate of SA533-B steel (a nuclear pressure vessel steel) in the threshold region in a simulated PWR environment. The aim of this report is to develop a crack monitoring technique for use in corrosion fatigue studies. Factors affecting fatigue crack propagation include: frequency, stress range, the effect of irradiation, ageing and environment. The mechanisms of crack propagation that are discussed include: slip dissolution, hydrogen assisted cracking, corrosion potential, and morphology studies. D.C. electrical potential, the compliance technique and the back-faced strain gauge method can be used for crack monitoring. Details are also given on the experimental equipment and programme. The results of the experiment has shown that the potential difference technique for monitoring crack length is a valuable one and is well suited for use in fatigue testing applications

  19. Continuous monitoring of back-wall stress corrosion cracking propagation by means of potential drop techniques

    International Nuclear Information System (INIS)

    Sato, Yasumoto; Atsumi, Takeo; Shoji, Tetsuo

    2006-01-01

    In order to investigate the applicability of the potential drop techniques to the continuous monitoring of stress corrosion cracking (SCC) propagation, SCC tests were performed in a sodium thiosulfate solution at room temperature using plate specimens with weldments. The SCC propagation was monitored using the techniques of direct current potential drop (DCPD), alternating current potential drop (ACPD) and modified induced current potential drop (MICPD) on the reverse side that on which the SCC existed and effectiveness of each technique for the continuous monitoring from the reverse side of SCC was compared from the viewpoints of sensitivity to the crack propagation and measurement stability. The MICPD and DCPD techniques permit continuous monitoring of the back-wall SCC propagation, which initiates from a fatigue pre-crack at a depth of about 4 mm, from which it propagates through more than 80% of the specimen thickness. The MICPD technique can decrease the effect of the current flowing in the direction of the crack length by focusing the induced current into the local area of measurement using induction coils, so that the sensitivity of the continuous monitoring of the back wall SCC propagation is higher than that of the DCPD and ACPD techniques. (author)

  20. Research on corrosion detection for steel reinforced concrete structures using the fiber optical white light interferometer sensing technique

    International Nuclear Information System (INIS)

    Zhao, Xuefeng; Cui, Yanjun; Kong, Xianglong; Wei, Heming; Zhang, Pinglei; Sun, Changsen

    2013-01-01

    In this paper, a novel kind of steel rebar corrosion monitoring technique for steel reinforced concrete structures is proposed, designed, and tested. The technique is based on the fiber optical white light interferometer (WLI) sensing technique. Firstly, a feasibility test was carried out using an equal-strength beam for comparison of strain sensing ability between the WLI and a fiber Bragg grating (FBG). The comparison results showed that the sensitivity of the WLI is sufficient for corrosion expansion strain monitoring. Then, two WLI corrosion sensors (WLI-CSs) were designed, fabricated, and embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion. Their performance was studied in an accelerated electrochemical corrosion test. Experimental results show that expansion strain along the fiber optical coil winding area can be detected and measured accurately by the proposed sensor. The advantages of the proposed monitoring technique allow for quantitative corrosion expansion monitoring to be executed in real time for reinforced concrete structures and with low cost. (paper)

  1. Tests on conducted electrical noise on a storage ring dc-dc converter cabinet

    International Nuclear Information System (INIS)

    Carwardine, J.J.

    1994-01-01

    Electrical noise is produced by switching transients in the power supply converters which excite resonances formed by stray capacitance and cable inductance. This noise is present not only on the load cables, but also on ground cables of the magnet and of the converter cabinet. Since there will eventually be a large number of cabinets running at one time, tests were carried out to characterize the noise and to investigate possible techniques for reducing the levels. The tests were carried out on the test girder and converter cabinet set up in 412 area. There were four magnets installed on the girder -- two 0.5m quadrupoles, a 0.8m quadrupole, and a sextupole. These tests were carried out on one of the 0.5m quadrupoles. It should be noted that with this setup, the raw dc power was supplied at around 70V. In the final configuration, a 0.5m quad will be fed from a 40V raw supply. Consequently, the switching transients observed during the tests are likely to be higher than will occur in reality. Noise currents contain two main components: a low frequency component at around 50kHz, and a higher frequency component at around lMHz. It is the latter component which is of primary concern. Currents measured on the dc load cables typically were around one ampere, while currents into the building ground system were only a few tens of milliamps. Several methods were used to try reducing the noise currents, but only the addition of a series impedance was successful -- other methods either had no effect or increased the ground currents

  2. Long Term Corrosion/Degradation Test Six Year Results

    Energy Technology Data Exchange (ETDEWEB)

    M. K. Adler Flitton; C. W. Bishop; M. E. Delwiche; T. S. Yoder

    2004-09-01

    The Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) contains neutron-activated metals from non-fuel, nuclear reactor core components. The Long-Term Corrosion/Degradation (LTCD) Test is designed to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements to the environment. The test is using two proven, industry-standard methods—direct corrosion testing using metal coupons, and monitored corrosion testing using electrical/resistance probes—to determine corrosion rates for various metal alloys generally representing the metals of interest buried at the SDA, including Type 304L stainless steel, Type 316L stainless steel, Inconel 718, Beryllium S200F, Aluminum 6061, Zircaloy-4, low-carbon steel, and Ferralium 255. In the direct testing, metal coupons are retrieved for corrosion evaluation after having been buried in SDA backfill soil and exposed to natural SDA environmental conditions for times ranging from one year to as many as 32 years, depending on research needs and funding availability. In the monitored testing, electrical/resistance probes buried in SDA backfill soil will provide corrosion data for the duration of the test or until the probes fail. This report provides an update describing the current status of the test and documents results to date. Data from the one-year and three-year results are also included, for comparison and evaluation of trends. In the six-year results, most metals being tested showed extremely low measurable rates of general corrosion. For Type 304L stainless steel, Type 316L stainless steel, Inconel 718, and Ferralium 255, corrosion rates fell in the range of “no reportable” to 0.0002 mils per year (MPY). Corrosion rates for Zircaloy-4 ranged from no measurable corrosion to 0.0001 MPY. These rates are two orders of magnitude lower than those specified in

  3. Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors.

    Science.gov (United States)

    Wood, Mary H; Welbourn, Rebecca J L; Zarbakhsh, Ali; Gutfreund, Philipp; Clarke, Stuart M

    2015-06-30

    Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at significantly less than full surface coverage.

  4. Experimental analysis of the thermal entrainment factor of air curtains in vertical open display cabinets for different ambient air conditions

    International Nuclear Information System (INIS)

    Gaspar, Pedro Dinis; Carrilho Goncalves, L.C.; Pitarma, R.A.

    2011-01-01

    The vertical open refrigerated display cabinets suffer alterations of their thermal performance and energy efficiency due to variations of ambient air conditions. The air curtain provides an aerothermodynamics insulation effect that can be evaluated by the thermal entrainment factor calculation as an engineering approximation or by the calculus of all sensible and latent thermal loads. This study presents the variation of heat transfer rate and thermal entrainment factor obtained through experimental tests carried out for different ambient air conditions, varying air temperature, relative humidity, velocity and its direction relatively to the display cabinet frontal opening. The thermal entrainment factor are analysed and compared with the total sensible and latent heats results for the experimental tests. From an engineering point of view, it is concluded that thermal entrainment factor cannot be used indiscriminately, although its use is suitable to design better cabinet under the same climate class condition.

  5. Corrosion detection and monitoring in steam generators by means of ultrasound; Deteccion y monitoreo de corrosion por medio de ultrasonido en generadores de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Chacon Nava, Jose G; Calva, Mauricio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Fuentes Samaniego, Raul [Universidad Autonoma de Nuevo Leon (Mexico); Peraza Garcia, Alejandro [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    The tube and component failures in steam generators due to corrosion cause huge economical losses. In this article the internal corrosion processes (hydrogen attack) and high temperature corrosion are described, as well as the ultrasound techniques used for its detection. The importance of obtaining corrosion rates, which are fundamental parameters for the detection of the tube`s residual life. The purpose is to prevent possible failures that would diminish the power plant availability. [Espanol] Las fallas de tuberia en componentes de generadores de vapor debidas a corrosion ocasionan considerables perdidas economicas. En este articulo se describen los procesos de corrosion interna (ataque por hidrogeno) y corrosion en alta temperatura, asi como tecnicas de ultrasonido empleadas para su deteccion. Se destaca la importancia de obtener valores de velocidad de corrosion, que es un parametro fundamental para la determinacion de la vida residual de tuberias. El proposito es poder prevenir posibles fallas que disminuyan la disponibilidad de centrales termoelectricas.

  6. Corrosion detection and monitoring in steam generators by means of ultrasound; Deteccion y monitoreo de corrosion por medio de ultrasonido en generadores de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Chacon Nava, Jose G.; Calva, Mauricio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Fuentes Samaniego, Raul [Universidad Autonoma de Nuevo Leon (Mexico); Peraza Garcia, Alejandro [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    The tube and component failures in steam generators due to corrosion cause huge economical losses. In this article the internal corrosion processes (hydrogen attack) and high temperature corrosion are described, as well as the ultrasound techniques used for its detection. The importance of obtaining corrosion rates, which are fundamental parameters for the detection of the tube`s residual life. The purpose is to prevent possible failures that would diminish the power plant availability. [Espanol] Las fallas de tuberia en componentes de generadores de vapor debidas a corrosion ocasionan considerables perdidas economicas. En este articulo se describen los procesos de corrosion interna (ataque por hidrogeno) y corrosion en alta temperatura, asi como tecnicas de ultrasonido empleadas para su deteccion. Se destaca la importancia de obtener valores de velocidad de corrosion, que es un parametro fundamental para la determinacion de la vida residual de tuberias. El proposito es poder prevenir posibles fallas que disminuyan la disponibilidad de centrales termoelectricas.

  7. From vanitas to veneration: the embellishments in the anatomical cabinet of Frederik Ruysch

    NARCIS (Netherlands)

    van de Roemer, G.M.

    2010-01-01

    The elaborate way in which the Dutch anatomist Frederik Ruysch (1638-1731) decorated and presented his anatomical cabinet has raised questions as to whether we should view him as a scientist or rather as an artist. The concept of the collection as ‘baroque monument’ or as merely ‘bizarre’ fails to

  8. Optimization of the Document Placement in the RFID Cabinet

    Directory of Open Access Journals (Sweden)

    Kiedrowicz Maciej

    2016-01-01

    Full Text Available The study is devoted to the issue of optimization of the document placement in a single RFID cabinet. It has been assumed that the optimization problem means the reduction of archivization time with respect to the information on all documents with RFID tags. Since the explicit form of the criterion function remains unknown, for the purpose of its approximation, the regression analysis method has been used. The method uses data from a computer simulation of the process of archiving data about documents. To solve the optimization problem, the modified gradient projection method has been used.

  9. Corrosion of container and infrastructure materials under clay repository conditions

    International Nuclear Information System (INIS)

    Debruyn, W.; Dresselaers, J.; Vermeiren, P.; Kelchtermans, J.; Tas, H.

    1991-01-01

    With regard to the disposal of high-level radioactive waste, it was recommended in a IAEA Technical Committee meeting to perform tests in realistic environments corresponding with normal and accidental conditions, to qualify and apply corrosion monitoring techniques for corrosion evaluation under real repository conditions and to develop corrosion and near-field evolution models. The actual Belgian experimental programme for the qualification of a container for long-term HLW storage in clay formations complies with these recommendations. The emphasis in the programme is indeed on in situ corrosion testing and monitoring and on in situ control of the near-field chemistry. Initial field experiments were performed in a near-surface clay quarry at Terhaegen. Based on a broad laboratory material screening programme and in agreement with the Commission of the European Communities, three reference materials were chosen for extensive in situ overpack testing. Ti/0.2 Pd and Hastelloy C-4 were chosen as reference corrosion resistant materials and a low-carbon steel as corrosion allowance reference material. This report summarizes progress made in the material qualification programme since the CEC contract of 1983-84. 57 Figs.; 15 Tabs.; 18 Refs

  10. Evaluation of atmospheric corrosion on electroplated zinc and zinc nickel coatings by Electrical Resistance (ER) Monitoring

    DEFF Research Database (Denmark)

    Møller, Per

    2013-01-01

    ER (Electrical Resistance) probes provide a measurement of metal loss, measured at any time when a metal is exposed to the real environment. The precise electrical resistance monitoring system can evaluate the corrosion to the level of nanometers, if the conductivity is compensated for temperature...... and magnetic fields. With this technique very important information about the durability of a new conversion coatings for aluminum, zinc and zinc alloys exposed to unknown atmospheric conditions can be gathered. This is expected to have a major impact on a number of industrial segments, such as test cars...

  11. New corrosion issues in gas sweetening plants

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G. (CLI International and Asperger Technologies, Houston, TX (United States))

    Gas treating plants are experiencing corrosion problems which impact on efficiency and safety. While general corrosion is not particularly hazardous in the gas processing industry, local corrosion is very dangerous since it has several different mechanisms, all of which have dangerously high rates, and it occurs at locations which are hard to find and hard to predict. A newly discovered, velocity-dependent type of corrosion is reported. It is related to yet-undefined species which cause excessively high corrosion in areas of turbulence. This accelerated corrosion is not due to erosion or cavitation, but to a diffusion-limited reaction accelerated by turbulence. A full-flow test loop was built to evaluate the corrosiveness of gas plant solutions at their normal temperature and flow rates. Test runs were conducted with Co[sub 2]-loaded amine solutions for periods of 12 days. Carbon steel specimens mounted in the test loop were examined and corrosion rates calculated. Chromium alloys were shown to be attacked by corrodents in the low-velocity part of the loop and very aggressively attacked in the high-velocity part. The tests demonstrate the need for rigorous monitoring of corrosion in areas of higher velocity such as piping elbows and other points of turbulence. 5 refs., 2 figs., 3 tabs.

  12. Corrosion rate of steel in concrete - Evaluation of confinement techniques for on-site corrosion rate

    DEFF Research Database (Denmark)

    Nygaard, Peter Vagn; Geiker, Mette Rica; Elsener, Bernhard

    2009-01-01

    Earlier on-site investigations and laboratory studies have shown that varying corrosion rates are obtained when different commercially available instruments are used. The different confinement techniques, rather than the different electrochemical techniques used in the instruments, are considered...... to be the main reason for the discrepancies. This paper presents a method for the quantitative assessment of confinement techniques based on monitoring the operation of the corrosion rate instrument and the current distribution between the electrode assembly on the concrete surface and a segmented reinforcement...... bar embedded in the concrete. The applicability of the method was demonstrated on two commercially available corrosion rate instruments based on different confinement techniques. The method provided an explanation of the differences in performance of the two instruments. Correlated measurements...

  13. EVALUATION OF CORROSION COST OF CRUDE OIL PROCESSING INDUSTRY

    Directory of Open Access Journals (Sweden)

    ADESANYA A.O.

    2012-08-01

    Full Text Available Crude oil production industry as the hub of Nigeria Economy is not immune to the global financial meltdown being experienced world over which have resulted in a continual fall of oil price. This has necessitated the need to reduce cost of production. One of the major costs of production is corrosion cost, hence, its evaluation. This research work outlined the basic principles of corrosion prevention, monitoring and inspection and attempted to describe ways in which these measures may be adopted in the context of oil production. A wide range of facilities are used in crude oil production making it difficult to evaluate precisely the extent of corrosion and its cost implication. In this study, cost of corrosion per barrel was determined and the annualized value of corrosion cost was also determined using the principles of engineering economy and results analyzed using descriptive statistics. The results showed that among the corrosion prevention methods identified, the use of chemical treatment gave the highest cost contribution (81% of the total cost of prevention while coating added 19%. Cleaning pigging and cathodic protection gave no cost. The contribution of corrosion maintenance methods are 60% for repairs and 40% for replacement. Also among the corrosion monitoring and inspection identified, NDT gave the highest cost contribution of 41% of the total cost, followed by coating survey (34%. Cathodic protection survey and crude analysis gives the lowest cost contribution of 19% and 6% respectively. Corrosion control cost per barrel was found to be 77 cent/barrel. The significance of this cost was not much due to high price of crude oil in the international market. But the effect of corrosion in crude oil processing takes its toll on crude oil production (i.e. deferment.

  14. Continuous monitoring of back wall stress corrosion cracking growth in sensitized type 304 stainless steel weldment by means of potential drop techniques

    OpenAIRE

    SATO, Y; ATSUMI, T; SHOJI, T

    2007-01-01

    Stress corrosion cracking (SCC) tests on welded specimens of sensitized type 304SS with a thickness of 20 mm were performed in sodium thiosulphate solution at room temperature, with continuous monitoring of the SCC growth, using the techniques of modified induced current potential drop (MICPD), alternating current potential drop (ACPD) and direct current potential drop (DCPD). The MICPD and DCPD techniques permit continuous monitoring of the back wall SCC, which initiates from a fatigue pre-c...

  15. TLA monitoring of an anodic protection system

    International Nuclear Information System (INIS)

    Wallace, G.; Boulton, H.

    1992-01-01

    Corrosion is a materials degradation process that engineering personnel in the pulp and paper industry have had to accept as unavoidable to some degree, due to aggressive processing conditions prevalent in paper mills. The increasing incidence of corrosion-related failures in plant and equipment has resulted in the introduction of new techniques to monitor corrosion rates, since many of the more traditional methods do not provide data that is either recent or accurate enough. Thin layer activation (TLA) is a new corrosion monitoring technique which has recently been employed to measure corrosion trends inside a continuous pulp digester. With TLA a surface is irradiated by a particle beam from a nuclear accelerator, causing it to be labelled with an accurate depth profile and low level radioactivity. By monitoring this activity, it is possible to calculate how much of the surface has been removed by corrosion. 14 refs., 7 figs., 4 tabs

  16. 76 FR 68297 - Airworthiness Directives; Agusta S.p.A. (Agusta) Model AB139 and AW139 Helicopters

    Science.gov (United States)

    2011-11-04

    ... related PS module, CSIO module, CIO module, MAU cabinet, and all related connectors. (d) Reinstall the AFT... and related connectors for corrosion. If there is corrosion on the connectors, this AD requires cleaning the connectors before further flight. If there is corrosion on a module, before further flight...

  17. The FSM technology -- Operational experience and improvements in local corrosion analysis

    International Nuclear Information System (INIS)

    Stroemmen, R.; Horn, H.; Gartland, P.O.; Wold, K.

    1996-01-01

    FSM (Field Signature Method) is a non-intrusive monitoring technique based on a patented principle, developed for the purpose of detection and monitoring of both general and localized corrosion, erosion and cracking in steel and metal structures, piping systems and vessels. Since 1991 FSM has been used for a wide range of applications e.g. for buried and open pipelines, process piping offshore, subsea pipelines and flowlines, applications in the nuclear power industry and in materials research in general. This paper describes typical applications of the FSM technology, and presents operational experience from some of the landbased and subsea installations. The paper also describes recent enhancements in the FSM technology and in the analysis of FSM readings, allowing for monitoring and detailed quantification of pitting and mesa corrosion, and of corrosion in welds

  18. Corrosion protection of reusable surgical instruments.

    Science.gov (United States)

    Shah, Sadiq; Bernardo, Mildred

    2002-01-01

    To understand the corrosion properties of surgical scissors, 416 stainless steel disks and custom electrodes were used as simulated surfaces under various conditions. These simulated surfaces were exposed to tap water and 400-ppm synthetic hard water as Ca2CO3 under different conditions. The samples were evaluated by various techniques for corrosion potential and the impact of environmental conditions on the integrity of the passive film. The electrodes were used to monitor the corrosion behavior by potentiodynamic polarization technique in water both in the presence and absence of a cleaning product. The surface topography of the 416 stainless steel disks was characterized by visual observations and scanning electron microscopy (SEM), and the surface chemistry of the passive film on the surface of the scissors was characterized by x-ray photoelectron spectroscopy (XPS). The results suggest that surgical instruments made from 416 stainless steel are not susceptible to uniform corrosion; however, they do undergo localized corrosion. The use of suitable cleaning products can offer protection against localized corrosion during the cleaning step. More importantly, the use of potentiodynamic polarization techniques allowed for a quick and convenient approach to evaluate the corrosion properties of surgical instruments under a variety of simulated-use environmental conditions.

  19. REMOTE DETECTION OF INTERNAL PIPELINE CORROSION USING FLUIDIZED SENSORS

    Energy Technology Data Exchange (ETDEWEB)

    Narasi Sridhar; Garth Tormoen; Ashok Sabata

    2005-10-31

    Pipelines present a unique challenge to monitoring because of the great geographical distances they cover, their burial depth, their age, and the need to keep the product flowing without much interruption. Most other engineering structures that require monitoring do not pose such combined challenges. In this regard, a pipeline system can be considered analogous to the blood vessels in the human body. The human body has an extensive ''pipeline'' through which blood and other fluids are transported. The brain can generally sense damage to the system at any location and alert the body to provide temporary repair, unless the damage is severe. This is accomplished through a vast network of fixed and floating sensors combined with a vast and extremely complex communication/decision making system. The project described in this report mimics the distributed sensor system of our body, albeit in a much more rudimentary fashion. Internal corrosion is an important factor in pipeline integrity management. At present, the methods to assess internal corrosion in pipelines all have certain limitations. In-line inspection tools are costly and cannot be used in all pipelines. Because there is a significant time interval between inspections, any impact due to upsets in pipeline operations can be missed. Internal Corrosion Direct Assessment (ICDA) is a procedure that can be used to identify locations of possible internal corrosion. However, the uncertainties in the procedure require excavation and location of damage using more detailed inspection tools. Non-intrusive monitoring techniques can be used to monitor internal corrosion, but these tools also require pipeline excavation and are limited in the spatial extent of corrosion they can examine. Therefore, a floating sensor system that can deposit at locations of water accumulation and communicate the corrosion information to an external location is needed. To accomplish this, the project is divided into four main

  20. A technique for predicting steel corrosion resistance

    Science.gov (United States)

    Novikov, V. F.; Sokolov, R. A.; Neradovskiy, D. F.; Muratov, K. R.

    2018-01-01

    Research works were carried out to develop a technique with the aim to increase the lifetime of steel items used in corrosive media. The possibility to monitor corrosion parameters of steel samples is analyzed on the basis of magnetic properties obtained by means of a magnetic structuroscope DIUS-1.15M designed by the Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences (IMP UB RAS).

  1. Corrosive environment tester for filter media

    International Nuclear Information System (INIS)

    Petit, G.S.; Weber, C.W.; Keinberger, C.A.; Rivers, R.D.

    1977-02-01

    Two continuous dynamic systems have been designed and fabricated for testing filter media in humid, corrosive environments--one for fluorine or fluoride exposures, and the other for nitrogen dioxide exposures. The tester using fluorine or fluoride atmospheres was constructed of nickel and the one using nitrogen dioxide was fabricated of stainless steel. Other corrosive gases could be used with the appropriate choice of system. For example, chlorine or hydrogen chloride could be used in the system fabricated of nickel, and sulfur dioxides or ammonia could be used in the stainless steel testing apparatus. Each tester is comprised of four equivalent dynamic systems designed for diluting a corrosive reagent with dry air, then with humidified air to provide a humid-corrosive environment for filter media testing. Auxiliary equipment includes a water injection system, corrosive reagent supply systems, and an automatic pressure differential (ΔP) monitoring and recording system. The testers are relatively maintenance-free and have operated continuously for periods as long as 96 h without requiring any attention, during total exposures of materials exceeding 600 h

  2. A cabinet for the handling or treatment of materials therein in a protected atmosphere

    International Nuclear Information System (INIS)

    Landy, J.J.

    1978-01-01

    A cabinet is described in which the atmosphere is arranged to move in a recirculatory filtered closed system. It is stated to be suitable for the handling of materials in a protected atmosphere, for example the handling of biohazardous materials, radioactive materials, etc. Full constructional details are given. (U.K.)

  3. Measurement of reinforcement corrosion in marine structures

    International Nuclear Information System (INIS)

    Mohammad Ismail; Nordin Yahaya

    1999-01-01

    The marine environment is known to be aggressive. Structures constructed on this belt need to undergo periodic assessment in order to ensure no defects or signs of deterioration had occurred. One of the most common deterioration that occurs on marine structures is corrosion of the reinforcement. Corrosion is an electrochemical process. The product of corrosion can increase the reinforcement volume, hence causing cracking on concrete cover. If no action is taken, delamination and spalling of concrete will follow and this will affect the structures integrity. It is therefore important to know the state of the structures condition by monitoring them periodically. NDT techniques that can detect the occurrence of corrosion of reinforcement in concrete uses half cell and resistivity meter. The method of application and interpretation of results are discussed. (author)

  4. Corrosion of metallic materials. Dry corrosion, aqueous corrosion and corrosion by liquid metal, methods of protection

    International Nuclear Information System (INIS)

    Helie, Max

    2015-01-01

    This book is based on a course on materials given in an engineering school. The author first gives an overview of metallurgy issues: metallic materials (pure metals, metallic alloys), defects of crystal lattices (point defects, linear defects or dislocations), equilibrium diagrams, steels and cast, thermal processing of steels, stainless steels, aluminium and its alloys, copper and its alloys. The second part addresses the properties and characterization of surfaces and interfaces: singularity of a metal surface, surface energy of a metal, energy of grain boundaries, adsorption at a material surface, metal-electrolyte interface, surface oxide-electrolyte interface, techniques of surface analysis. The third chapter addresses the electrochemical aspects of corrosion: description of the corrosion phenomenon, free enthalpy of a compound and free enthalpy of a reaction, case of dry corrosion (thermodynamic aspect, Ellingham diagram, oxidation mechanisms, experimental study, macroscopic modelling), case of aqueous corrosion (electrochemical thermodynamics and kinetics, experimental determination of corrosion rate). The fourth part addresses the different forms of aqueous corrosion: generalized corrosion (atmospheric corrosion, mechanisms and tests), localized corrosion (galvanic, pitting, cracking, intergranular, erosion and cavitation), particular cases of stress cracking (stress corrosion, fatigue-corrosion, embrittlement by hydrogen), and bi-corrosion (of non alloyed steels, of stainless steels, and of aluminium and copper alloys). The sixth chapter addresses the struggle and the protection against aqueous corrosion: methods of prevention, scope of use of main alloys, geometry-based protection of pieces, use of corrosion inhibitors, use of organic or metallic coatings, electrochemical protection. The last chapter proposes an overview of corrosion types in industrial practices: in the automotive industry, in the oil industry, in the aircraft industry, and in the

  5. Utilization of on-line corrosion monitoring in the flue gas cleaning system

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Nielsen, Lars V.; Petersen, Michael B.

    2015-01-01

    fan. The corrosion rates measured with respect to time were correlated to plant data such as load, temperature, gas composition, water content as well as change in the fuel used. From these results it is clear that many shutdowns/start-ups influence corrosion and therefore cause decreased lifetime...

  6. Full-signature real-time corrosion detection of underground casing pipes

    NARCIS (Netherlands)

    Yin, Jiming; Lu, Mi; Pineda de Gyvez, J.

    2000-01-01

    Corrosion monitoring and early detection of pits and wall thinning for casing pipes are considerably important to gas and petroleum industries since the frequently occurring corrosion at the internal or external parts of those steel casing pipes used in underground gas storage or oil fields causes

  7. The effect of zinc bath temperature on the morphology, texture and corrosion behaviour of industrially produced hot-dip galvanized coatings

    Directory of Open Access Journals (Sweden)

    A. Bakhtiari

    2014-03-01

    Full Text Available The purpose of this work is to identify the influence of zinc bath temperature on the morphology, texture and corrosion behavior of hot-dip galvanized coatings. Hot-dip galvanized samples were prepared at temperature in the range of 450-480 °C in steps of 10 °C, which is the conventional galvanizing temperature range in the galvanizing industries. The morphology of coatings was examined with optical microscopy and scanning electron microscopy (SEM. The composition of the coating layers was determined using energy dispersive spectroscopy (EDS analysis. The texture of the coatings was evaluated using X-ray diffraction. Corrosion behavior was performed using salt spray cabinet test and Tafel extrapolation test. From the experimental results, it was found that increasing the zinc bath temperature affects the morphology of the galvanized coatings provoking the appearance of cracks in the coating structure. These cracks prevent formation of a compact structure. In addition, it was concluded that (00.2 basal plane texture component was weakened by increasing the zinc bath temperature and, conversely, appearance of (10.1 prism component, (20.1 high angle pyramidal component and low angle component prevailed. Besides, coatings with strong (00.2 texture component and weaker (20.1 components have better corrosion resistance than the coatings with weak (00.2 and strong (20.1 texture components. Furthermore, corrosion resistance of the galvanized coatings was decreased by increasing the zinc bath temperature.

  8. The use of radiography for thickness measurement and corrosion monitoring in pipes

    International Nuclear Information System (INIS)

    Edalati, K.; Rastkhah, N.; Kermani, A.; Seiedi, M.; Movafeghi, A.

    2006-01-01

    In this study of pipes of 150 mm diameters, thickness ranging from 4.2 to 15.0 mm was determined by using two radiography techniques: tangential radiography and double wall radiography. It was concluded that thickness losses of 10%, 20% and 50% could be determined by these methods. Formulae were developed for the double wall radiography method with a high precision of thickness measurement for non-insulated pipes. The precision was comparable with ultrasonic measurement results. Corrosion type and corrosion surface could be observed by these methods. Internal or external corrosion produced different effects in tangential radiography. Insulation removal was not necessary using the radiographic techniques

  9. The use of radiography for thickness measurement and corrosion monitoring in pipes

    Energy Technology Data Exchange (ETDEWEB)

    Edalati, K. [Department of NDT, Nuclear Safety and Radiation Protection Technological Centre, AEOI, P.O. Box 14155-1399, Tehran (Iran, Islamic Republic of)]. E-mail: NDT99@aeoi.org.ir; Rastkhah, N. [Department of NDT, Nuclear Safety and Radiation Protection Technological Centre, AEOI, P.O. Box 14155-1399, Tehran (Iran, Islamic Republic of); Kermani, A. [Department of NDT, Nuclear Safety and Radiation Protection Technological Centre, AEOI, P.O. Box 14155-1399, Tehran (Iran, Islamic Republic of); Seiedi, M. [Department of NDT, Nuclear Safety and Radiation Protection Technological Centre, AEOI, P.O. Box 14155-1399, Tehran (Iran, Islamic Republic of); Movafeghi, A. [Department of NDT, Nuclear Safety and Radiation Protection Technological Centre, AEOI, P.O. Box 14155-1399, Tehran (Iran, Islamic Republic of)

    2006-10-15

    In this study of pipes of 150 mm diameters, thickness ranging from 4.2 to 15.0 mm was determined by using two radiography techniques: tangential radiography and double wall radiography. It was concluded that thickness losses of 10%, 20% and 50% could be determined by these methods. Formulae were developed for the double wall radiography method with a high precision of thickness measurement for non-insulated pipes. The precision was comparable with ultrasonic measurement results. Corrosion type and corrosion surface could be observed by these methods. Internal or external corrosion produced different effects in tangential radiography. Insulation removal was not necessary using the radiographic techniques.

  10. Inspection of Buildings in Rio de Janeiro-Brazil: Proving the greater tendency of corrosion at the base of reinforced concrete columns using potential corrosion technique

    OpenAIRE

    Marcelo Henrique Farias de Medeiros

    2013-01-01

    Monitoring the corrosion of steel embedded in concrete is a way to assess the degradation of civil structures. A technique used for this is the measurement of corrosion potential, which includes the use of a reference electrode, connected to a high input impedance voltmeter. There are many factors influencing the measurement of corrosion potential, such as: degree of concrete moisture content, the oxygen access, existence of micro fissures, chloride penetration, carbonation and concrete cover...

  11. Case histories of microbial induced corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Birketveit, Oe.; Liengen, T.

    2006-03-15

    Recent years bacterial activity has caused process problems and corrosion on several of Hydro s installations in the North Sea. The process problems are related to iron sulphide formed in process equipment and increased oil in discharge water. The corrosion problem is seen in downstream pipelines made of carbon steel, where deposits and formation of biofilm cause the corrosion inhibitor to be ineffective. In most cases the bacteria reproduce in the topside system and especially in the reclaimed oil sump tank. The problems observed, related to bacterial activity, are often a result of how the content from the reclaimed oil sump tank is re-circulated to the process system. Process modifications, changes in biocide treatment strategy, sulphide measurements, cleaning strategy and bio monitoring are presented. (author) (tk)

  12. Radiometric investigation of effect of decontamination agents on corrosion behavior of structural materials for nuclear power engineering

    International Nuclear Information System (INIS)

    Silber, R.; Ecksteinova, A.

    1987-01-01

    The tracer technique is used in monitoring corrosion behaviour of high-alloy steels used as structural materials in nuclear power engineering. Radioisotopes 59 Fe, 51 Cr, 58 Co and 60 Co produced by neutron irradiation of steel are mainly used for labelling steel components. The actual corrosion test proceeds in a facility whose description is given. The facility allows automatic sampling of corrosion medium fractions in preset intervals. The fractions are evaluated using a multi-channel analyzer with a Ge(Li) detector. The method can be applied in, e.g., monitoring extraction corrosion, the effect of decontamination agents on the corrosion of alloy steels and the effect of heat treatment of steels of their corrosion resistance in a model corrosion environment. (Z.M.). 2 fig., 1 tab., 5 refs

  13. Corrosion surveillance of the chemical decontamination process in Kuosheng nuclear power plant

    International Nuclear Information System (INIS)

    Wang, L.H.

    2002-01-01

    The Piping Recirculation System (RRS) and reactor water clean-up system (RWCU) of Kuosheng Nuclear Power Plant of Taiwan Power Company were decontaminated by CORD process of Framatome ANP GmbH during the outage at October 2001. This is the first time that CORD process was adopted and applied in Taiwan Nuclear Power Plant. To verify minor corrosion damage and correct process control, the material corrosion condition was monitored during all the stages of the chemical decontamination work. Three kinds of specimen were adopted in this corrosion monitoring, including corrosion coupons for weight loss measurements, electrochemical specimens for on-line corrosion monitoring, and WOL specimens (wedge opening loaded) for stress corrosion evaluation. The measured metal losses from nine coupon materials did not reveal any unexpected or intolerable high corrosion damage from the CORD UV or CORD CS processes. The coupon materials included type 304 stainless steel (SS) with sensitized and as-received thermal history, type 308 weld filler, type CF8 cast SS, nickel base alloy 182 weld filler, Inconel 600, Stellite 6 hard facing alloy, NOREM low cobalt hard facing alloy, and A106B carbon steel (CS). The electrochemical noise (ECN) measurements from three-electrode electrochemical probe precisely depicted the metal corrosion variation with the decontamination process change. Most interestingly, the estimated trend of accumulated metal loss is perfectly corresponding to the total removed activities. The ECN measurements were also used for examining the effect of different SS oxide films pre-formed in NWC and HWC on the decontamination efficiency, and for evaluating the galvanic effect of CS with SS. The existing cracks did not propagate further during the decontamination. The average decontamination factors achieved were 50.8 and 4.2 respectively for RRS and RWCU. (authors)

  14. Fire-Side Corrosion: A Case Study of Failed Tubes of a Fossil Fuel Boiler

    Directory of Open Access Journals (Sweden)

    Majid Asnavandi

    2017-01-01

    Full Text Available The failures of superheater and reheater boiler tubes operating in a power plant utilizing natural gas or mazut as a fuel have been analysed and the fire-side corrosion has been suggested as the main reason for the failure in boiler tubes. The tubes have been provided by a fossil fuel power plant in Iran and optical and electron microscopy investigations have been performed on the tubes as well as the corrosion products on their surfaces. The results showed that the thickness of the failed tubes is not uniform which suggests that fire-side corrosion has happened on the tubes. Fire-side corrosion is caused by the reaction of combustion products with oxide layers on the tube surface resulting in metal loss and consequently tubes fracture. However, the tubes corrosion behaviour did not follow the conventional models of the fire-side corrosion. Given that, using the corrosion monitoring techniques for these boiler tubes seems essential. As a result, the thickness of the boiler tubes in different parts of the boiler has been recorded and critical points are selected accordingly. Such critical points are selected for installation of corrosion monitoring probes.

  15. An Overview of New Progresses in Understanding Pipeline Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Tan, M. YJ; Varela, F.; Huo, Y.; Gupta, R.; Abreu, D.; Mahdavi, F.; Hinton, B.; Forsyth, M. [Deakin University, Victoria (Australia)

    2016-12-15

    An approach to achieving the ambitious goal of cost effectively extending the safe operation life of energy pipeline to 100 years is the application of health monitoring and life prediction tools that are able to provide both long-term remnant pipeline life prediction and in-situ pipeline condition monitoring. A critical step is the enhancement of technological capabilities that are required for understanding and quantifying the effects of key factors influencing buried steel pipeline corrosion and environmentally assisted materials degradation, and the development of condition monitoring technologies that are able to provide in-situ monitoring and site-specific warning of pipeline damage. This paper provides an overview of our current research aimed at developing new sensors and electrochemical cells for monitoring, categorising and quantifying the level and nature of external pipeline and coating damages under the combined effects of various inter-related variables and processes such as localised corrosion, coating cracking and disbondment, cathodic shielding, transit loss of cathodic protection.

  16. Dealloying, Microstructure and the Corrosion/Protection of Cast Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sieradzki, Karl [Arizona State Univ., Mesa, AZ (United States); Aiello, Ashlee [Arizona State Univ., Mesa, AZ (United States); McCue, Ian [Arizona State Univ., Mesa, AZ (United States)

    2017-12-15

    The purpose of this project was to develop a greater understanding of micro-galvanic corrosion effects in cast magnesium alloys using both experimental and computational methods. Experimental accomplishments have been made in the following areas of interest: characterization, aqueous free-corrosion, atmospheric corrosion, ionic liquid dissolution, rate kinetics of oxide dissolution, and coating investigation. Commercial alloys (AZ91D, AM60, and AZ31B), binary-phase alloys (αMg-2at.%Al, αMg-5at.%Al, and Mg-8at.%Al), and component phases (Mg, Al, β-Mg, β-1%Zn, MnAl3) were obtained and characterized using energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Full immersion in aqueous chloride was used to characterize the corrosion behavior of alloys. Rotating disc electrodes (RDEs) were used to observe accelerated long-term corrosion behavior. Al surface redistribution for freely corroded samples was analyzed using SEM, EDS, and lithium underpotential deposition (Li UPD). Atmospheric corrosion was observed using contact angle evolution, overnight pH monitoring, and surface pH evolution studies. Ionic liquid corrosion characterization was performed using linear sweep voltammetry and potentiostatic dissolution in 150° choline chloride-urea (cc-urea). Two surface coatings were investigated: (1) Li-carbonate and (2) cc-urea. Li-carbonate coatings were characterized using X-ray photoelectron spectroscopy (XPS), SEM, and aqueous free corrosion potential monitoring. Hydrophobic cc-urea coatings were characterized using contact angle measurements and electrochemical impedance spectroscopy. Oxide dissolution rate kinetics were studied using inductively coupled plasma mass spectroscopy (ICP-MS). Computational accomplishments have been made through the development of Kinetic Monte Carlo (KMC) simulations which model time- and composition-dependent effects on the microstructure due to spatial redistribution of alloying

  17. Effectiveness of using pure copper and silver coupon corrosivity monitoring (CCM) metal strips to measure the severity levels of air pollutants in indoor and outdoor atmospheres

    CSIR Research Space (South Africa)

    Foax, LJ

    2008-10-01

    Full Text Available Severity levels of air pollutants rich in oxides, chlorides and sulphides were successfully measured in indoor and outdoor atmospheres using pure copper and silver coupon corrosivity monitoring (CCM) metal strips when the maximum exposure periods...

  18. Vehicle accelerated corrosion test procedures for automotive in Malaysia

    Directory of Open Access Journals (Sweden)

    Anuar Liza

    2017-01-01

    Full Text Available An accelerated corrosion test, known as proving ground accelerated test, is commonly performed by automotive manufacturers to evaluate the corrosion performance of a vehicle. The test combines corrosion and durability inputs to detect potential failures that may occur during in-service conditions. Currently, the test is conducted at an external test center overseas. Such test is aimed to simulate the effects of one year accelerated corrosion in severe corrosive environment of the north-east and south east of America. However, the test results obtained do not correlate with the actual corrosion conditions observed in the Malaysian market, which is likely attributed to the different test environment of the tropical climate of vehicles in service. Therefore, a vehicle accelerated corrosion test procedure that suits the Malaysian market is proposed and benchmarked with other global car manufacturers that have their own dedicated corrosion test procedure. In the present work, a test track is used as the corrosion test ground and consists of various types of roads for structural durability exposures. Corrosion related facilities like salt trough, mud trough and gravel road are constructed as addition to the existing facilities. The establishment of accelerated corrosion test facilities has contributed to the development of initial accelerated corrosion test procedure for the national car manufacturer. The corrosion exposure is monitored by fitting test coupons at the underbody of test vehicle using mass loss technique so that the desired corrosion rate capable of simulating the real time corrosion effects for its target market.

  19. Study of optimal operation management by a monitoring system for corrosion and heat-transfer rate of condensate pipe

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Katsmi; Kominami, Hirohiko; Atsumi, Tetsuro; Nagata, Koji (Kansai Electric Power Co., Inc., Osaka (Japan); Sumitomo Light Metal Industries Ltd., Tokyo (Japan))

    1988-09-26

    In order to optimize the anticorrosion and antifouling management of aluminum brass condensate pipes, the monitoring system was developed, which could control a corrosion resistance and heat transfer rate during operation. Since a polarization resistance could be used as an index for anticorrosion control, while a heat transmission coefficient or cleanliness factor for heat transfer control, a polarization resistance meter and fouling meter were made as prototype detectors. Fundamental test of a model condenser (simulated by-pass pipe) was performed using a processing system combined with the meters, and monitored data and analytical data of the test were arranged. System performance was ascertained to be preferable by the verification test on a real condenser, however, more compact system was required for practical use because of restriction in by-pass pipe installation. In addition to the monitoring function, a control function for sponge ball cleaning and iron ion injection was also added to keep the specified index value. 13 figs,. 1 tab.

  20. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    Science.gov (United States)

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G.; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  1. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Ahmad Zaki

    2015-08-01

    Full Text Available Corrosion of reinforced concrete (RC structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods.

  2. Laboratory study of reinforcement protection with corrosion inhibitors

    International Nuclear Information System (INIS)

    Stefanescu, D.; Mihalache, M.; Mogosan, S.

    2013-01-01

    Concrete is a durable material and its performance as part of the containment function in NPPs has been good. However, experience shows that degradation of the reinforced concrete structures caused by the corrosion of the reinforcing steel represents more than 80% of all damages in the world. Much effort has been made to develop a corrosion inhibition process to prolong the life of existing structures and minimize corrosion damages in new structures. Migrating Corrosion Inhibitor technology was developed to protect the embedded steel rebar/concrete structure. These inhibitors can be incorporated as an admixture or can be surface impregnated on existing concrete structures. The effectiveness of two inhibitors (ethanolamine and diethanolamine) mixed in the reinforced concrete was evaluated by gravimetric measurements. The corrosion behavior of the steel rebar and the inhibiting effects of the amino alcohol chemistry in an aggressive environment were monitored using electrochemical measurements and scanning electron microscopy (SEM) investigations. (authors)

  3. Vibroacoustic Analysis of a Refrigerator Freezer Cabinet Coupled with an Air Duct

    Directory of Open Access Journals (Sweden)

    Onur Çelikkan

    2017-01-01

    Full Text Available In this study, the vibration and acoustic interactions between the structure and the cavity inside the freezer cabinet were investigated. Thus, a set of numerical and experimental analyses were performed. In the numerical analysis, the acoustic characteristics of the freezer cavity were solved, and the mixed finite element method was then implemented to analyse the coupled behaviour of the cavity with the air duct using the Acoustic Fluid-Structure Interaction (AFSI technique. In the experimental analyses, an acoustic modal analysis of the freezer cavity and a structural modal analysis of the air duct were performed for the validation process. A good agreement was obtained among the results. Thus, the accuracy of the numerical model was confirmed. The validated models were used for optimizing the design. To solve the noise generation mechanism inside the freezer cabinet, the noise primarily generated by the freezer fan unit was measured under normal working conditions of the refrigerator, and the resonance frequencies were obtained. This information was compared with the normal modes of the air duct, and the overlapping frequencies were identified. To reduce the interaction between the source and the structure, a few design modifications were applied to the air duct. Thus, the structural-borne noise radiating from the air duct into the freezer cavity was reduced.

  4. Erosion-Corrosion Management System for secondary circuits of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Butter, L.M.; Zeijseink, A.G.L.

    2001-01-01

    Erosion-corrosion in water steam systems is a corrosion mechanism that may develop undetected and results in unexpected damages. It is well known which chemical and physical parameters play an important role and what areas are usually affected. In order to facilitate this monitoring of Erosion-corrosion (EC) progress, KEMA has by order of the European Union Tacis-programme developed an Erosion-Corrosion Management System (ECMS) to improve control on the erosion-corrosion process, by improved data handling and analysis. This ECMS has been installed at the South Ukrainian Nuclear Power Plant (SUNPP) - VVER-1000. In general, it has been determined that the current ECMS helps by controlling the erosion-corrosion progress. The ECMS presents and analyses the results on an appropriate way. The recommendations are valuable. (R.P.)

  5. Detailed CFD Modelling of Open Refrigerated Display Cabinets

    Directory of Open Access Journals (Sweden)

    Pedro Dinis Gaspar

    2012-01-01

    Full Text Available A comprehensive and detailed computational fluid dynamics (CFDs modelling of air flow and heat transfer in an open refrigerated display cabinet (ORDC is performed in this study. The physical-mathematical model considers the flow through the internal ducts, across fans and evaporator, and includes the thermal response of food products. The air humidity effect and thermal radiation heat transfer between surfaces are taken into account. Experimental tests were performed to characterize the phenomena near physical extremities and to validate the numerical predictions of air temperature, relative humidity, and velocity. Numerical and experimental results comparison reveals the predictive capabilities of the computational model for the optimized conception and development of this type of equipments. Numerical predictions are used to propose geometrical and functional parametric studies that improve thermal performance of the ORDC and consequently food safety.

  6. Assessment of corrosion in the flue gas cleaning system using on-line monitoring

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vendelbo Nielsen, Lars; Berggreen Petersen, Michael

    2015-01-01

    Amager unit 1 is a 350 MW multifuel suspension-fired plant commissioned in 2009 to fire biomass (straw and wood pellets). Increasing corrosion problems in the flue gas cleaning system were observed in the gas-gas preheater (GAFO), the booster fan and flue gas ducts. Chlorine containing corrosion ...

  7. Implementation of Remote Corrosion-Monitoring Sensor for Mission-Essential Structures at Okinawa

    Science.gov (United States)

    2009-08-01

    with voluminous corrosion products. Martensitic stainless steels are susceptible to pitting and chlo- ride stress corrosion cracking in marine... steel , zinc- rich epoxy-coated steel , phenolic coated steel and bare type 410 stainless steel . (The steel panels were A36 steel .) The racks were...and ER probes were installed on building number 125. The coupons were mounted to an aluminum frame using stainless steel bolts and nylon spacer

  8. Electrochemical investigations for understanding and controlling corrosion in nuclear reactor materials

    International Nuclear Information System (INIS)

    Gnanamoorthy, J.B.

    1998-01-01

    Electrochemical techniques such as potentiodynamic polarization have been used at the Indira Gandhi Centre for Atomic Research at Kalpakkam for understanding and controlling the corrosion of nuclear reactor materials such as austenitic stainless steels and chrome-moly steels. Results on the measurements of critical potentials for pitting and crevice corrosion of stainless steels and their weldments and of laser surface modified stainless steels in aqueous chloride solutions are discussed. Investigations carried out to correlate the degree of sensitization in types 304 and 316 stainless steels, measured by the electrochemical potentiokinetic reactivation technique, with the susceptibility to intergranular corrosion and intergranular stress corrosion cracking have been discussed. The stress corrosion cracking behaviour of weldments of type 316 stainless steel was studied in a boiling solution of a mixture of 5 M NaCl and 0.15 M Na 2 SO 4 acidified to give a pH of 1.3 by monitoring of the open circuit potential with time as well as by anodic polarization. Interesting information could also been obtained on the microbiologically influenced corrosion of type 304 stainless steels in a fresh water system by carrying out cyclic potentiodynamic polarization measurements as well as by monitoring the open circuit potential measurements with exposure time. Since secondary phases present (or developed during thermal ageing) in stainless steels have a significant influence on their corrosion behaviour, the estimation of these secondary phases by electrochemical methods has also been discussed. (author)

  9. Monitoring dc stray current corrosion at sheet pile structures

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2012-01-01

    Steel is discarded by railway owners as a material for underground structures near railway lines, due to uncertainty over increased corrosion by DC stray currents stemming from the traction power system. This paper presents a large scale field test in which stray currents interference of a sheet

  10. The corrosion potential of stainless steel in BWR environment comparison of data and modeling results

    International Nuclear Information System (INIS)

    Molander, Anders; Ullberg, Mats

    2004-01-01

    Corrosion potential measurements have been performed in Swedish BWRs during 25 years using commercially available monitoring equipment. Today, such measurements are performed on a routine basis in the BWRs on hydrogen water chemistry in Sweden. Measurements are usually performed at several monitoring locations in the plants. During the years, variations in the corrosion potential between different reactor cycles have been observed. Also, the corrosion potential can vary significantly during the reactor year. The changes have not always been easy to explain. Examples of in-plant data are given, demonstrating the need for a better understanding and for improved modeling tools. These examples were used as starting points for developing improved methods for corrosion potential modeling. A new tool recently developed, The Virtual ECP Laboratory, is described and applications to BWR conditions including some unexpected experimental corrosion potential responses are given. (author)

  11. Home Medication Cabinets and Medication Taking Behavior of the Staffs in a University in China

    Science.gov (United States)

    Xue, Chengbin; Ye, Juan; Dong, Yuzhen; Xu, Chunmei

    2018-01-01

    Background: A growing sum of medicines is stored in home medication cabinets in China, with the behavior of self-medication increasing. Although responsible self-medication can help prevent and treat ailments that do not need professional consultation, it bears the risk of misuse of medicines issued on prescription due to inadequate prescription medicine administration. Objective: The objective of this study was to investigate the condition and safety of medication storage and intended self-medication in a University in China. Method: The study was conducted over 10 month period (May 2015-March 2016) and involved a random sample of households. The questionnaire survey and personal insight into household medicine supplies was performed by a team of trained pharmacy staffs. Interviewees (N = 398, aged 16-88 y) were visited door to door and the home medication cabinets were catalogued after the participants were interviewed. Results: The majority (89.71%) households have home medicine cabinets. The total number of medicine items in the 398 households was 5600, with a median of 14 per household. The most frequently encountered categories of registered medicines were cough and cold medcines (47.8%), antibacterials for systemic use (30.0%), topical products for joint and muscular pain(26.1%), vitamins (23.2%), medication for functional gastrointestinal disorders (23.2%), oral and external forms have not kept separately(55.1%). The most treatment related problems recorded were curative effect not ideal (57.9%). 68% of the sample population would choose doctors as medication consultation object about medicines purchased. Conclusion: Large sum of medicines were found per household, with a high prevalence of cough and cold medcines. Public services in China, mainly government and health organizations, need put more effort on educating people on how to store medicines, as well as finding a way to raise awareness of the public in promoting behavioral change about medication

  12. Corrosion detector apparatus for universal assessment of pollution in data centers

    Science.gov (United States)

    Hamann, Hendrik F.; Klein, Levente I.

    2015-08-18

    A compact corrosion measurement apparatus and system includes an air fan, a corrosion sensor, a temperature sensor, a humidity sensor, a heater element, and an air flow sensor all under control to monitor and maintain constant air parameters in an environment and minimize environmental fluctuations around the corrosion sensor to overcome the variation commonly encountered in corrosion rate measurement. The corrosion measurement apparatus includes a structure providing an enclosure within which are located the sensors. Constant air flow and temperature is maintained within the enclosure where the corrosion sensor is located by integrating a variable speed air fan and a heater with the corresponding feedback loop control. Temperature and air flow control loops ensure that corrosivity is measured under similar conditions in different facilities offering a general reference point that allow a one to one comparison between facilities with similar or different pollution levels.

  13. Corrosion Evaluation of INTEC Waste Storage Tank WM-182

    International Nuclear Information System (INIS)

    Dirk, W. J.; Anderson, P. A.

    1999-01-01

    Irradiated nuclear fuel has been stored and reprocessed at the Idaho National Engineering and Environmental Laboratory since 1953 using facilities located at the Idaho Nuclear Technology and Engineering Center (INTEC). This reprocessing produced radioactive liquid waste which was stored in the Tank Farm. The INTEC Tank Farm consists of eleven vaulted 300,000-gallon underground tanks including Tank WM-182. Tank WM-182 was put into service in 1955, has been filled four times, and has contained aluminum and zirconium fuel reprocessing wastes as well as sodium bearing waste. A program to monitor corrosion in the waste tanks was initiated in 1953 when the first of the eleven Tank Farm tanks was placed in service. Austenitic stainless steel coupons representative of the materials of construction of the tanks are used to monitor internal tank corrosion. This report documents the final inspection of the WM-182 corrosion coupons. Physical examination of the welded corrosion test coupons exposed to the tank bottom conditions of Tank WM-182 revealed very light uniform corrosion. Examination of the external surfaces of the extruded pipe samples showed very light uniform corrosion with slight indications of preferential attack parallel to extrusion marks and start of end grain attack of the cut edges. These indications were only evident when examined under stereo microscope at magnifications of 20X and above. There were no definite indications of localized corrosion, such as cracking, pitting, preferential weld attack, or weld heat affected zone attack on either the welded or extruded coupons. Visual examination of the coupon support cables, where they were not encased in plastic, failed to reveal any indication of liquid-liquid interface attack of any crevice corrosion. Based on the WM-182 coupon evaluations, which have occurred throughout the life of the tank, the metal loss from the tank wall due to uniform corrosion is not expected to exceed 5.5 x 10-1 mil (0.00 055 inch

  14. A state of the art on electrochemical noise technique. Assessment of corrosion characteristics and development of remedial technology in nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Jin; Kim, Joung Soo; Kim, Hong Pyo; Lim, Yun Soo; Yi, Yong Sun; Chung, Man Kyo

    2003-02-01

    The studies for the application of electrochemical noise technique were reviewed in terms of principle, analysing method and application examples of this technique. Because 4% of the economic damage of industry is caused by metallic corrosion, it is important to find and protect corrosive materials and location. By corrosion monitoring of industrial facilities such as nuclear power plant using Electrochemical Noise Measurement(ENM), corrosion attack can be detected and furthermore it can be indicated whether the attacked materials is replaced by new one or not. According to development of control and electronic technology, it was easy to apply ENM to the industry and the interest in ENM also increased. As corrosion is produced on a metal under corrosive environment, local anode(oxidation) and cathode(reduction) are formed. Hence, there is potential difference and current flow between the anode and cathode. ENM is monitoring the potential difference and the current flow with time by high impedance load voltmeter and Zero Resistance Ammeter(ZRA), respectively. The potential difference and current flow generated spontaneously without any application of current and potential between electrodes are monitored by electrochemical noise technique, Thereby ENM can be regarded as the most ideal corrosion monitoring method for the industrial facility and nuclear power plant having corrosion damage and difficulty in access of human body. Moreover, it is possible to obtain the spontaneous and reliable results from the metals damaged by ununiform and localized corrosion such as pitting and SCC using ENM while it is difficult to obtain the reliable result using traditional linear polarization and ac-impedance measurement. In many countries, there are extensive works concerned with application of electrochemical noise technique to corrosion monitoring of nuclear power plant and other industrial facilities, whereas there is little work on this field in Korea. Systematic study for

  15. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Digby D. Macdonald; Brian M. Marx; Sejin Ahn; Julio de Ruiz; Balaji Soundararaja; Morgan Smith; and Wendy Coulson

    2008-01-15

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO{sub 3}, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair. The different tasks that are being carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA) which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples

  16. Testing the performance of microbiological safety cabinets used in microbiology laboratories in South Korea.

    Science.gov (United States)

    Hwang, S H; Yi, T W; Cho, K H; Lee, I M; Yoon, C S

    2011-09-01

    To test a performance of the microbiological safety cabinets (MSCs) according to the type of MSCs in microbial laboratories. Tests were carried out to assess the performance of 31 MSCs in 14 different facilities, including six different biological test laboratories in six hospitals and eight different laboratories in three universities. The following tests were performed on the MSCs: the downflow test, intake velocity test, high-efficiency particulate air filter leak test and the airflow smoke pattern test. These performance tests were carried out in accordance with the standard procedures. Only 23% of Class II A1 (8), A2 (19) and unknown MSCs (4) passed these performance tests. The main reasons for the failure of MSCs were inappropriate intake velocity (65%), leakage in the HEPA filter sealing (50%), unbalanced airflow smoke pattern in the cabinets (39%) and inappropriate downflow (27%). This study showed that routine checks of MSCs are important to detect and strengthen the weak spots that frequently develop, as observed during the evaluation of the MSCs of various institutions. Routine evaluation and maintenance of MSCs are critical for optimizing performance. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  17. A Carboniferous Cabinet of Wonders: an example of how the collaboration of art and Earth Sciences can inspire conservation

    Science.gov (United States)

    Grey, Melissa; Rogers, Janine

    2016-04-01

    The Joggins Fossil Cliffs (Nova Scotia, Canada) is a UNESCO World Heritage Site representing the Late Carboniferous time period (ca. 310-325 mya). The site was formative for Charles Lyell in constructing his geological principles. It is still the best place in the world to view fossils from the Carboniferous 'Coal Age', a time when much of the coal that we use today was formed. The Joggins Fossil Institute is a not-for-profit, charitable organization that co-manages the site with the Province of Nova Scotia. Its mission is to conduct research and educate the public about Earth Sciences through interpretation (e.g., exhibits and tours of the site) and a fossil collection. Fossils are the only direct evidence of how biodiversity has changed over deep time; they are the texts and artifacts that we 'read' in order to understand the development of the earth and that can help humans decipher the deeper histories that produced us. At the Joggins Fossil Institute we primarily present the scientific history of the Carboniferous Period through the use of fossils, but we are also interested in the cultural history of coal production and usage, which is an essential part of the region's economic history. However, this industry has also contributed to climate change and the emergence of a new geological age called the Anthropocene. We encourage our visitors to connect palaeontology and coal energy consumption, and ask them to consider how different values (economic and scientific) are attributed to both coal and fossils; such questions lead directly to discussions about conservation issues. The Joggins Fossil Institute has partnered with the Faculty of Arts at nearby Mount Allison University to create an exhibit that will interrogate these questions. The medium of display that we have chosen is the "cabinet of wonders" or "cabinet of curiosity," which has a rich tradition in western cultures going back to the Renaissance. A venerable intersection of art and science, the cabinet

  18. Detection of corrosion by radiographic techniques

    International Nuclear Information System (INIS)

    Ahmad, M.; Ashraf, M.M.; Khurshid, U.

    2004-01-01

    Radiation processing technologies are playing an increasing role during manufacturing and subsequent use of everyday products. These technologies are now well established and are extensively practiced in industries, to ensure quality and safety of machinery. Corrosion reduces the operational life of the component, its efficiency and helps generate waste. There is an increasing need to detect and characterize the formation of corrosion in industrial components and assemblies at an early stage. Radiation methods and techniques are applied worldwide to examine defects and corrosion-formation in industrial components. For safety and economic reason, appropriate monitoring of the machinery and industrial components would help reduce accidental risks during operation and avoid production-losses. In the present study, X-ray and neutron-radiography techniques were applied for the inspection and evaluation of corrosion in metallic samples for thickness values of the order of 5 mm or less. Relative contrast at various degrees of metal corrosion product loss was computed theoretical and also measured experimentally by applying radiographic techniques. The relative contrast-sensitivity was also measured in two different ways by X-ray and neutron radiography, to compare the visibility of coarse and fine features. Thick metallic areas, free from sealant and variable paint thickness, were imaged with thermal neutrons beam. Low KV X-rays were also applied for imaging corrosion in metallic components. To optimize exposure-time at low KV in X-ray radiography, a medical film/screen combination was used. X-ray radiography approved to be the more promising technique for imaging of corrosion, as compared to neutron radiography. (author)

  19. A corrosion detection system for buried pipeline (II)

    International Nuclear Information System (INIS)

    Choi, Yoon Seok; Shin, Dong Ho; Kim, Sang Hyun; Kim, Jung Gu

    2005-01-01

    In order to develop a new corrosion sensor for detecting and monitoring the corrosion of buried pipeline, the electrochemical property of sensors and the correlation of its output to corrosion rate of steel pipe, were evaluated by electrochemical methods in synthetic groundwater, two soils of varying resistivity (5,000 ohm-cm, 10,000 ohm-cm), and synthetic tap water. In this paper, two types of electrochemical probes were used: galvanic cells containing of pipeline steel-copper and pipeline steel-stainless steel (Type 304). The results of EIS measurement indicated that the sensor current was inversely related to sensor resistance, which was governed by the corrosion behavior of cathode. In galvanic corrosion tests, the galvanic current of Cu-CS probe was higher than that of SS-CS probe. The comparison of the sensor output and corrosion rates revealed that a linear relationship was found between the probe current and the corrosion rates. A good linear quantitative relationship was found between the Cu-CS probe current and the corrosion rate of pipeline steel coupons in the soil resistivity of 5,000 ohm-cm, and synthetic tap water. In the case of the soil resistivity of 10,000 ohm-cm, although the SS-CS probe showed a better linear correlation than that of Cu-CS probe, the Cu-CS probe is more suitable than SS-CS probe, due to the high current output

  20. Reactor Structure Materials: Corrosion of Reactor Core Internals

    International Nuclear Information System (INIS)

    Van Dyck, S.

    2000-01-01

    The objectives of SCK-CEN's R and D programme on the corrosion of reactor core internals are: (1) to gain mechanistic insight into the Irradition Assisted Stress Corrosion Cracking (IASCC) phenomenon by studying the influence of separate parameters in well controlled experiments; (2) to develop and validate a predictive capability on IASCC by model description and (3) to define and validate countermeasures and monitoring techniques for application in reactors. Progress and achievements in 1999 are described

  1. Federal cabinet minister from N.B joins opponents to LNG terminals

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.

    2005-08-25

    This article addressed the debate regarding the United States' proposal to construct liquefied natural gas (LNG) facilities on a pristine bay between New Brunswick and Maine. Two LNG projects are currently being promoted for Passamaquoddy Bay, and 2 more proposals are expected to be announced in the near future. However, the proponents have not yet submitted any formal applications to the Canadian government. A federal cabinet minister from New Brunswick has joined the growing opposition to the proposed project, claiming that the location on the Maine side of Passamaquoddy Bay, a large inlet off the Bay of Fundy, poses too many risks to the habitat of several endangered or at-risk species, including the North Atlantic Right Whale. The proposed sites in Maine are directly across a narrow bay where tourism and fishing are prime industries in New Brunswick. The cabinet minister claims that with over 2,000 miles of coastline on the eastern seaboard, another location can be found for the LNG facilities that would not present navigational difficulties. The Canadian federal government has the jurisdiction to stop the project by not allowing the supertankers to cross Canadian waters to enter the Bay. The waters are known for their treacherous navigation. The premier of New Brunswick has also stepped in to ensure that the governor of Maine is made aware of Canada's opposition to the project. Officials with Downeast LNG and Quoddy Bay LLC claim there would not be any safety or environmental risks associated with the LNG project.

  2. Results of gas monitoring of double-shell flammable gas watch list tanks

    International Nuclear Information System (INIS)

    Wilkins, N.E.

    1995-01-01

    Tanks 103-SY; 101-AW; 103-, 104-, and 105-AN are on the Flammable Gas Watch List. Recently, standard hydrogen monitoring system (SHMS) cabinets have been installed in the vent header of each of these tanks. Grab samples have been taken once per week, and a gas chromatograph was installed on tank 104-AN as a field test. The data that have been collected since gas monitoring began on these tanks are summarized in this document

  3. Effect of water chemistry on flow accelerated corrosion rate of carbon steel measured by on-line corrosion-monitoring system

    International Nuclear Information System (INIS)

    Fujiwara, K.; Domae, M.; Yoneda, K.; Inada, F.

    2010-01-01

    Flow Accelerated Corrosion (FAC) of carbon steel is one of the most important subjects in coolant systems of power plants. FAC is influenced by material, flow condition, temperature, and water chemistry. Iron and chromium solubility should be the most effective factor to determine the effect of water chemistry on the FAC. It is very important to evaluate the correlation between the solubility and the FAC rate of the carbon steel. In the present study, the effects of pH and Cr concentration of material on the FAC rate of carbon steel were evaluated by using high temperature loop equipment with on-line corrosion-monitoring system. Effect of dissolved oxygen concentration at pH 7 was also evaluated. The experimental FAC rates were compared with the calculation result, which was obtained from a FAC model developed previously by the authors' group. The tube specimens made of STPT 480 carbon steel were used for the FAC tests. The Cr concentration of STPT 480 was specially adjusted to 0.001 and 0.08 %. The inner diameters of the tubes were 1.6, 2.4, and 3.2 mm. The solutions were fed to the specimens with the flow rate of 1.5 l/min. The temperature of the solution at the specimen was controlled at 140 o C. Test solutions were demineralized water or NH 3 solutions of pH 8.0, 9.2, and 10.0. The increase in pH more than 9 decreased the FAC rates of both 0.001 and 0.08 % Cr specimens at 140 o C. Increase of the Cr concentration of the material decreased the FAC rate in the solution of pH 7.0, 8.0, 9.2, and 10.0. The FAC model reproduced well dependence of the experimental FAC behavior on water chemistry. It was confirmed that effect of pH and Cr concentration of material on the FAC rate were closely related to the solubility and diffusion of iron and chromium. (author)

  4. Fatty Amides from Crude Rice Bran Oil as Green Corrosion Inhibitors

    Directory of Open Access Journals (Sweden)

    E. Reyes-Dorantes

    2017-01-01

    Full Text Available Due to its high oil content, this research proposes the use of an agroindustrial byproduct (rice bran as a sustainable option for the synthesis of corrosion inhibitors. From the crude rice bran oil, the synthesis of fatty amide-type corrosion inhibitors was carried out. The corrosion inhibitory capacity of the fatty amides was evaluated on an API X-70 steel using electrochemical techniques such as real-time corrosion monitoring and potentiodynamic polarization curves. As a corrosive medium, a CO2-saturated solution (3.5% NaCl was used at three temperatures (30, 50, and 70°C and different concentrations of inhibitor (0, 5, 10, 25, 50, and 100 ppm. The results demonstrate that the sustainable use of agroindustrial byproducts is a good alternative to the synthesis of environmentally friendly inhibitors with high corrosion inhibition efficiencies.

  5. Mechanistic investigation of internal corrosion in nuclear waste containers over extended time periods

    International Nuclear Information System (INIS)

    Onumonu, E.; Stevens, D. N. P. C.

    2008-01-01

    Storage of the UK's Intermediate Level Wastes (ILW), which comprises Magnox fuel cladding, uranium and small items of equipment exposed to radiation, is currently achieved via encapsulation within cementitious grout housed in 500 litre 316L stainless steel drums. The cements used display a high pH; in such an environment many metals form surface hydroxides or oxides. Magnox reacts with free water at high pH with the liberation of hydrogen whilst undergoing corrosion to form hydroxide species. Corrosion of Magnox cladding has previously been monitored by measuring the rate of hydrogen evolution and/or weight loss. Recent work by our group has shown impedance techniques may also be useful in monitoring early corrosion behaviour. In this project electrochemical polarisation techniques will be employed to examine the corrosion behaviour of Magnox fuel in situations where it is in electrical contact with other metals, including uranium, and hence determine how galvanic effects influence corrosion behaviour. In this paper we describe the background to such experiments along with some preliminary results. (authors)

  6. Corrosion of research reactor aluminium clad spent fuel in water

    International Nuclear Information System (INIS)

    2009-12-01

    A large variety of research reactor spent fuel with different fuel meats, different geometries and different enrichments in 235 U are presently stored underwater in basins located around the world. More than 90% of these fuels are clad in aluminium or aluminium based alloys that are notoriously susceptible to corrosion in water of less than optimum quality. Some fuel is stored in the reactor pools themselves, some in auxiliary pools (or basins) close to the reactor and some stored at away-from-reactor pools. Since the early 1990s, when corrosion induced degradation of the fuel cladding was observed in many of the pools, corrosion of research reactor aluminium clad spent nuclear fuel stored in light water filled basins has become a major concern, and programmes were implemented at the sites to improve fuel storage conditions. The IAEA has since then established a number of programmatic activities to address corrosion of research reactor aluminium clad spent nuclear fuel in water. Of special relevance was the Coordinated Research Project (CRP) on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase I) initiated in 1996, whose results were published in IAEA Technical Reports Series No. 418. At the end of this CRP it was considered necessary that a continuation of the CRP should concentrate on fuel storage basins that had demonstrated significant corrosion problems and would therefore provide additional insight into the fundamentals of localized corrosion of aluminium. As a consequence, the IAEA started a new CRP entitled Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase II), to carry out more comprehensive research in some specific areas of corrosion of aluminium clad spent nuclear fuel in water. In addition to this CRP, one of the activities under IAEA's Technical Cooperation Regional Project for Latin America Management of Spent Fuel from Research Reactors (2001-2006) was corrosion monitoring and surveillance of research

  7. Sedimentibacter sp. With corrosive capability, Ferric-reducing, isolated from an oil separation tank

    International Nuclear Information System (INIS)

    Lopez-Jimenez, G.; Loera, O.; Ramirez, F.; Monroy, O.; Fernandez-Linares, L. C.

    2009-01-01

    Bio corrosion is a common problem in oil and gas industry facilities. characterization of the microbial populations responsible for bio corrosion and the interactions between different microorganisms with metallic surfaces is required in order to implemented efficient monitoring and control strategies. (Author)

  8. On-line corrosion monitoring in geothermal district heating systems

    DEFF Research Database (Denmark)

    Richter, S.; Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.

    2006-01-01

    General corrosion rates in the geothermal district heating systems in Iceland are generally low, of the magnitude 1 lm/y. The reason is high pH (9.5), low-conductivity (200 lm/y) and negligible dissolved oxygen. The geothermal hot water is either used directly from source or to heat up cold ground...

  9. Corrosion monitoring of storage bins for radioactive calcines

    International Nuclear Information System (INIS)

    Hoffman, T.L.

    1975-01-01

    Highly radioactive liquid waste produced at the Idaho Chemical Processing Plant is calcined to a granular solid for long term storage in stainless steel bins. Corrosion evaluation of coupons withdrawn from these bins indicates excellent performance for the materials of construction of the bins. At exposure periods of up to six years the average penetration rates are 0.01 and 0.05 mils per year for Types 304 and 405 stainless steels, respectively. (auth)

  10. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Digby Macdonald; Brian Marx; Balaji Soundararajan; Morgan Smith

    2005-07-28

    The different tasks that have been carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA), which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals, and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture

  11. Touching Anatomy. : On the Handling of Anatomical Preparations in the Anatomical Cabinets of Frederik Ruysch (1638-1731)

    NARCIS (Netherlands)

    Knoeff, Rina

    2015-01-01

    This paper argues that the anatomical Cabinets of Dutch anatomist Frederik Ruysch must be understood as an early modern workshop in which preparations were continuously handled. It is claimed that preparations actively appealed to anatomists and visitors to handle, re-dissect, touch, and even kiss

  12. Corrosion induced failure analysis of subsea pipelines

    International Nuclear Information System (INIS)

    Yang, Yongsheng; Khan, Faisal; Thodi, Premkumar; Abbassi, Rouzbeh

    2017-01-01

    Pipeline corrosion is one of the main causes of subsea pipeline failure. It is necessary to monitor and analyze pipeline condition to effectively predict likely failure. This paper presents an approach to analyze the observed abnormal events to assess the condition of subsea pipelines. First, it focuses on establishing a systematic corrosion failure model by Bow-Tie (BT) analysis, and subsequently the BT model is mapped into a Bayesian Network (BN) model. The BN model facilitates the modelling of interdependency of identified corrosion causes, as well as the updating of failure probabilities depending on the arrival of new information. Furthermore, an Object-Oriented Bayesian Network (OOBN) has been developed to better structure the network and to provide an efficient updating algorithm. Based on this OOBN model, probability updating and probability adaptation are performed at regular intervals to estimate the failure probabilities due to corrosion and potential consequences. This results in an interval-based condition assessment of subsea pipeline subjected to corrosion. The estimated failure probabilities would help prioritize action to prevent and control failures. Practical application of the developed model is demonstrated using a case study. - Highlights: • A Bow-Tie (BT) based corrosion failure model linking causation with the potential losses. • A novel Object-Oriented Bayesian Network (OOBN) based corrosion failure risk model. • Probability of failure updating and adaptation with respect to time using OOBN model. • Application of the proposed model to develop and test strategies to minimize failure risk.

  13. Resistance of Alkali-Activated Slag Concrete to Chloride-Induced Corrosion

    Directory of Open Access Journals (Sweden)

    Joon Woo Park

    2015-01-01

    Full Text Available The corrosion resistance of steel in alkali-activated slag (AAS mortar was evaluated by a monitoring of the galvanic current and half-cell potential with time against a chloride-contaminated environment. For chloride transport, rapid chloride penetration test was performed, and chloride binding capacity of AAS was evaluated at a given chloride. The mortar/paste specimens were manufactured with ground granulated blast-furnace slag, instead of Portland cement, and alkali activators were added in mixing water, including Ca(OH2, KOH and NaOH, to activate hydration process. As a result, it was found that the corrosion behavior was strongly dependent on the type of alkali activator: the AAS containing the Ca(OH2 activator was the most passive in monitoring of the galvanic corrosion and half-cell potential, while KOH, and NaOH activators indicated a similar level of corrosion to Portland cement mortar (control. Despite a lower binding of chloride ions in the paste, the AAS had quite a higher resistance to chloride transport in rapid chloride penetration, presumably due to the lower level of capillary pores, which was ensured by the pore distribution of AAS mortar in mercury intrusion porosimetry.

  14. The corrosion of steels in molten sodium hydroxide

    International Nuclear Information System (INIS)

    Newman, R.N.; Smith, C.A.; Smith, R.J.

    1976-09-01

    The role of sodium hydroxide corrosion is discussed in relation to the wastage of materials observed in fast reactor boilers under fault conditions in the vicinity of a water leak into sodium. An experimental technique to study the corrosion under varying conditions is described. The results presented are for 2 1/4Cr 1Mo obtained in static sodium hydroxide in a closed volume over the temperature range 1033K to 1273K. It is found that the corrosion rate can be followed by monitoring the hydrogen produced by the reaction, which can be written as: Fe + 2NaOH = NaFeO 2 + NaH + 1/2H 2 . After an initial acceleration period the rate law is parabolic. The effect on the corrosion rate of melt and cover gas composition has been in part investigated, and the relevance of mass flow of reactants is discussed. (author)

  15. Corrosion resistance of the welded AISI 316L after various surface treatments

    Directory of Open Access Journals (Sweden)

    Tatiana Liptáková

    2014-01-01

    Full Text Available The main aim of this work is to monitor the surface treatment impact on the corrosion resistance of the welded stainless steel AISI 316L to local corrosion forms. The excellent corrosion resistance of austenitic stainless steel is caused by the existence of stable, thin and well adhering passive layer which quality is strongly influenced by welding. Therefore surface treatment of stainless steel is very important with regard to its local corrosion susceptibility Surfaces of welded stainless steel were treated by various mechanical methods (grinding, garnet blasting. Surface properties were studied by SEM, corrosion resistance was evaluated after exposition tests in chlorides environment using weight and metalographic analysis. The experimental outcomes confirmed that the mechanical finishing has a significant effect on the corrosion behavior of welded stainless steel AISI 316L.

  16. Initial stages of indoor atmospheric corrosion of electronics contact metals in humid tropical climate: tin and nickel

    Directory of Open Access Journals (Sweden)

    Veleva, L.

    2007-04-01

    Full Text Available Samples of electrolytic tin and nickel have been exposed for 1 to 12 m in indoor environment, inside a box (rain sheltered cabinet, placed in tropical humid marine-urban climate, as a part of Gulf of Mexico. The corrosion aggressiveness of box has been classified as a very high corrosive, based on the monitored chlorides and SO2 deposition rates, and the Temperature/Relative Humidity air daily complex. The annual mass increasing of nickel is approximately twice higher than its values of mass loss (C. The relation between nickel mass loss or increasing and time of wetness (t of metal surface is linear and does not obey the power equation C = A tn, which has be found for tin. The SEM images reveal a localized corrosion on nickel and tin surfaces. XRD detects the formation of SnCl2.H2O as a corrosion product. Within the time on the tin surface appear black spots, considered as organic material.

    Muestras de estaño y níquel electrolíticos han sido expuestas de 1 a 12 m en ambiente interno (indoor, en una caseta (gabinete protegido de lluvia, colocada en clima tropical húmedo marino-urbano del Golfo de México. La agresividad de la caseta ha sido clasificada como muy altamente corrosiva, basada al registro de la velocidad de deposición de cloruros y SO2, y en el complejo diario de temperatura/humedad relativa del aire. El incremento de masa anual de níquel es, aproximadamente, dos veces mayor que del valor de su pérdida de masa (C. La relación entre la pérdida de masa de Ni o su incremento, y el tiempo de humectación (t de la superficie metálica y lineal y no obedece la ley de potencia C = A tn , que ha sido encontrada para el estaño. Las imágenes del SEM revelan una corrosión localizada en las superficie de níquel y estaño. El análisis de rayos-X detecta la formación de SnCl2.H2O como producto de corrosión. Con el tiempo

  17. Measurements of copper corrosion in the LOT Project at the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Rosborg, B.; Karnland, O.; Quirk, G.; Werme, L.

    2003-01-01

    Real-time monitoring, of corrosion by means of electrochemical noise and other electrochemical techniques may offer interesting possibilities to estimate the kind and degree of corrosion in a sample or component, and further visualize the corrosion resistance of pure copper in repository environments. As a pilot effort, three cylindrical copper electrodes for such measurements, each of about 100 cm 2 surface area, have been installed in a test parcel in the Aespoe Hard Rock Laboratory and electrochemical measurements using InterCorr's SmartCET system were initiated in May 2001. The first results from real-time monitoring of copper corrosion in the Aespoe HRL under actual repository environment conditions by means of linear polarisation resistance, harmonic distortion analysis and electrochemical noise techniques are presented, and compared with the results obtained from one of the retrieved test parcels. (authors)

  18. Treatment screening for internal corrosion control of PETROBRAS oil pipelines; Selecao de tratamento para controle da corrosao interna de oleodutos da PETROBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Cynthia de Azevedo; Muller, Eduardo Gullo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Antunes, Warlley Ligorio; Shioya, Nilce Hiromi; Salvador, Angelica Dias [PETROBRAS, RJ (Brazil). Unidade de Negocios da Bacia de Campos

    2005-07-01

    The use of corrosion inhibitors is spread out in oil and gas industry and is the most common methodology to control pipeline internal corrosion. However, their effectiveness depends on the pipeline material, inhibitor composition, flow type and scale characteristics. When a pipeline has heavy scale deposits, thick bacterial biofilm, or oxygen contamination, the corrosion control via filmic inhibitors is not effective. So, the only way to control internal corrosion of an oil pipeline is to primary identifies the corrosive agent and the main corrosion mechanism. The monitoring of the inhibitor efficiency and the determination of minimal residual concentration to prevent corrosion, are also fundamental. In this paper, is presented the criteria used to identify the main corrosion mechanism of oil pipelines, the treatment proposed in each case and the techniques employed in real time corrosion monitoring. (author)

  19. 29 CFR 1926.432 - Environmental deterioration of equipment.

    Science.gov (United States)

    2010-07-01

    ...) Protection against corrosion. Metal raceways, cable armor, boxes, cable sheathing, cabinets, elbows..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Safety-Related...

  20. Recent advances of rearing cabinet instrumentation and control system for insect stock culture

    Science.gov (United States)

    Hermawan, Wawan; Kasmara, Hikmat; Melanie, Panatarani, Camellia; Joni, I. Made

    2017-01-01

    Helicoverpa armigera (Hubner) is one of a serious pest of horticulture in Indonesia. Helicoverpa armigera Nuclear Polyhedrovirus (HaNPV) has attracted interest for many researchers as a pest control for larvae of this species. Currently, we investigating the agrochemical formulations of HaNPV by introducing nanotechnology. Thus it is required an acceptable efficiency of insect stock cultures equipped with advance instruments to resolve the difficulties on insect stock seasons dependency. In addition, it is important to improve the insect survival with the aid of artificial natural environment and gain high insect production. This paper reports the rearing cabinet used as preparation of stock culture includes air-conditioning system, lighting, i.e. day and night control, and the main principles on recent technical and procedural advances apparatus of the system. The rearing system was moveable, designed and build by allowing air-conditioned cabinet for rearing insects, air motion and distribution as well as temperature and humidity being precisely controlled. The air was heated, humidified, and dehumidified respectively using a heater and ultrasonic nebulizer as actuators. Temperature and humidity can be controlled at any desired levels from room temperature (20°C) to 40 ± 1°C and from 0 to 80% RH with an accuracy of ±3% R.H. It is concluded that the recent design has acceptable performance based on the defined requirement for insect rearing and storage.

  1. Example of teaching practice for the comedy the Cabinet Minister's Wife by Branislav Nušić

    Directory of Open Access Journals (Sweden)

    Stanisavljević Nevena B.

    2017-01-01

    Full Text Available Awareness of the need for innovation and enrichment curriculum with comedies by Branislav Nušić inspired us to offer a creative methodological model processing for comedy Gospođa ministarka (The Cabinet Minister's Wife, in order to point out the possibility of it's involvement in the educational process and the positive effects that such action had. The reason for selecting just this comedy lies in the fact that, despite the fact that it's title well understood, it's ideological layer, referring to criticism of the government and power, can positively influence the development of student's personality traits. Our proposal is to analyze comedy Gospođa ministarka (The Cabinet Minister's Wife in the sixth grade, however, such an approach does not cease the possibility of interpretation of a play in teaching practices, but use the offered model as the starting point of any new readings and interpretation in the educational practice.

  2. New approaches to the estimation of erosion-corrosion

    International Nuclear Information System (INIS)

    Bakirov, Murat; Ereemin, Alexandr; Levchuck, Vasiliy; Chubarov, Sergey

    2006-09-01

    erosion-corrosion in a double-phase flow is that of moving deaerated liquid in directly contact with metal as a barrier between the metal and main steam-drop flow. Local processes of mass transfer, corrosion properties and water-chemical parameters of this film define intensity of erosion-corrosion and features of its behavior. Erosion-corrosion of metal in a double-phase flow is determined by the gas-dynamics of double-phase flaws, water chemistry, thermodynamic, materials science, etc. The goal of the work: development of theoretical and methodological basis of physical, chemical and mathematical models, as well as the finding of technical solutions and method of diagnostics, forecast and control of the erosion-corrosion processes. It will allow the increase of reliability and safety operation of the power equipment of the secondary circuit in NPP with WWER by use of monitoring of erosion-corrosion wear of pipelines. One concludes by stressing that the described design-experimental approach for solving of FAC problem will enable to carry out the following works: - elaboration and certification of the procedure of design-experimental substantiation of zones, aims and periodicity of the NPP elements operational inspection; - development and certification of a new Regulatory Document of stress calculation for definition of the minimum acceptable wall thickness levels considering real wear shape, FAC rates and inaccuracy of devices for wall thickness measurements; - improving the current Regulatory Documents and correcting of the Typical programs of operational inspection - optimization of zones, aims and periodicity of the inspection; - elaboration of recommendations for operational lifetime prolongation of the WWER secondary circuits elements by means of increasing of erosion-corrosion resistance of the new equipment and of the equipment, exceeding the design lifetime; - improving of safe and uninterrupted work of the power unit due to prediction of the most damaged

  3. Corrosion of Bronzes by Extended Wetting with Single versus Mixed Acidic Pollutants

    Directory of Open Access Journals (Sweden)

    Liliana Gianni

    2014-04-01

    Full Text Available The corrosion of bronzes was examined in the context of single-acid versus mixed-acid (as in urban acid rain solutions. Two bi-component bronzes (copper with either 3% Sn or 7% Sn that closely represent those of historic artifacts were immersed for five weeks in conditions designed to replicate those experienced by statues and ornaments in cities where rainfall and humidity constantly produce an electrolyte layer on the surfaces of bronzes. Ions, acids, and particles of pollutants can dissolve in this layer, resulting in a variety of harsh corrosion processes. The kinetics of corrosion and the properties of the resulting patinas were monitored weekly by electrochemical impedance spectroscopy and open-circuit potential measurements. The sizes and appearances of the corrosion products were monitored and used to estimate the progress of the corrosion, whose crystalline structures were visualized using scanning electron microscopy with energy dispersive spectroscopy, identified by X-ray diffraction, and characterized by spectrocolorimetry. The electrochemical measurements demonstrated that greater damage (in terms of color change and corrosion product formation did not correspond to deficiencies in protection. The mixed-acid solution did not corrode the bronzes, as would be expected from the additive effects of the single acids. The postulated mechanisms of metal dissolution appear to be specific to a particular bronze alloy, with the tin component playing an important role.

  4. Electrochemical corrosion potential and noise measurement in high temperature water

    International Nuclear Information System (INIS)

    Fong, Clinton; Chen, Yaw-Ming; Chu, Fang; Huang, Chia-Shen

    2000-01-01

    Hydrogen water chemistry (HWC) is one of the most important methods in boiling water reactor(BWR) system to mitigate and prevent stress corrosion cracking (SCC) problems of stainless steel components. Currently, the effectiveness of HWC in each BWR is mainly evaluated by the measurement of electrochemical corrosion potentials (ECP) and on-line monitoring of SCC behaviors of stainless steels. The objective of this work was to evaluate the characteristics and performance of commercially available high temperature reference electrodes. In addition, SCC monitoring technique based on electrochemical noise analysis (ECN) was also tested to examine its crack detection capability. The experimental work on electrochemical corrosion potential (ECP) measurements reveals that high temperature external Ag/AgCl reference electrode of highly dilute KCl electrolyte can adequately function in both NWC and HWC environments. The high dilution external Ag/AgCl electrode can work in conjunction with internal Ag/AgCl reference electrode, and Pt electrode to ensure the ECP measurement reliability. In simulated BWR environment, the electrochemical noise tests of SCC were carried out with both actively and passively loaded specimens of type 304 stainless steel with various electrode arrangements. From the coupling current and corrosion potential behaviors of the passive loading tests during immersion test, it is difficult to interpret the general state of stress corrosion cracking based on the analytical results of overall current and potential variations, local pulse patterns, statistical characteristics, or power spectral density of electrochemical noise signals. However, more positive SCC indication was observed in the power spectral density analysis. For aqueous environments of high solution impedance, successful application of electrochemical noise technique for SCC monitoring may require further improvement in specimen designs and analytical methods to enhance detection sensitivity

  5. Ampicillin potentials as Corrosion Inhibitor: fukui function ...

    African Journals Online (AJOL)

    The experimental study was carried out using gravimetric and Fourier transform infrared spectroscopy methods of monitoring corrosion while the computational study was carried out using quantum chemical approach via Hyperchem program suit. The results obtained showed that various concentrations of ampicillin ...

  6. Magnox reactor corrosion - 10 years on

    International Nuclear Information System (INIS)

    Haines, N.F.

    1981-01-01

    The development of new and existing techniques for monitoring the extent of corrosion within the core of Magnox reactors is described. Access through standpipes, use of manipulators, bolt examination, measurement of surface oxide thickness and interfacial oxide, material sampling and crack detection and thread strain in bolts is considered. (U.K.)

  7. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    International Nuclear Information System (INIS)

    Itty, Pierre-Adrien; Serdar, Marijana; Meral, Cagla; Parkinson, Dula; MacDowell, Alastair A.; Bjegović, Dubravka; Monteiro, Paulo J.M.

    2014-01-01

    Highlights: • The morphology of the corrosion of steel in cement paste was studied in situ. • During galvanostatic corrosion, carbon steel reinforcement corroded homogeneously. • On ferritic stainless steel, deep corrosion pits formed and caused wider cracks. • The measured rate of steel loss correlated well with Faraday’s law of electrolysis. - Abstract: In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover

  8. Fiber optic corrosion sensing for bridges and roadway surfaces

    Science.gov (United States)

    Fuhr, Peter L.; Ambrose, Timothy P.; Huston, Dryver R.; McPadden, Adam P.

    1995-04-01

    In this paper we report the development of a fiber optic corrosion sensing system that complements and/or surpasses the capabilities of conventional corrosion sensing techniques. The sensing system is based on evanescent wave phenomena and in the configured sensor allows for the detection of general corrosion on and within materials. Based on the authors' experience installing may kilometers of fiberoptic sensors into large civil structures such as multistory buildings, hydroelectric dams, and railway/roadway bridges, we are (currently) embedding these sensors into bridge test members -- limited structures that are being subjected to accelerated corrosion testing conditions. Three Vermont Agency of Transportation bridges, one in a low salt use region, one in a medium salt use region, and the third in a high salt use region, are being selected and will be instrumented with these embedded fiber optic corrosion sensors. Monitoring of chloride penetration and rebar corrosion status will be measured during the course of a longitudinal study. The specific sensing mechanism and design for robustness (to allow survival of the embedding process during repaving of the bridges) are discussed and laboratory and initial field results are presented.

  9. Erosion-corrosion interactions and their affect on marine and offshore components

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Robert JK [Surface Engineering and Tribology Group, School of Engineering Sciences, University of Southampton, SO17 1BJ (United Kingdom)

    2004-07-01

    The operation of modern fluid handling systems demands for low costs, reliability, longevity and no loss of fluid containment. All these can be achieved by minimising the material damage caused by the combined attack of solid particle or cavitation impingement and corrosion. This paper will cover the rationale behind the selection of erosion resistance surfaces for fluid handling equipment and highlight the complexities encountered when these surfaces are exposed to environments which contain sand particles or cavitation in a corrosive medium. The erosion and erosion-corrosion performance of a variety of coatings and bulk surfaces will be discussed using volume loss rate versus sand impact energy maps. Recent research into the erosion-corrosion of polymer coatings, PEO and HVOF aluminium and nickel aluminium bronze coatings will be reviewed. Electrochemical techniques designed to monitor the erosion-corrosion mechanisms and coating integrity will be presented and used to quantify the synergistic terms present when both erosion and corrosion act concurrently. (author)

  10. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  11. Encouraging resilience within SMEs: the Cabinet Office's proposed approach.

    Science.gov (United States)

    Sterling, Stuart

    2011-06-01

    This paper introduces the Cabinet Office's Civil Contingencies Secretariat (CCS). It explains how the National Risk Assessment, produced within the CCS, is created and used. As part of the recent Strategic Defence and Security Review, the Government made a commitment to improve the business continuity of small and medium-sized enterprises (SMEs).This paper describes the CCS's approach to achieving this, and explains why the resilience of SMEs is important to both local communities, at a time of disruption or crisis, and the essential services sectors, such as energy, food and transport. It provides an outline of a strategic approach that will seek to simplify business continuity by making it accessible, achievable and affordable, and, in partnership with the organisations that SMEs turn to for advice, promotes the benefits of business continuity and encourages its use.

  12. Quality Model of Foodstuff in a Refrigerated Display Cabinet

    DEFF Research Database (Denmark)

    Cai, Junping; Risum, Jørgen; Thybo, Claus

    2006-01-01

    Commercial refrigerating systems need to be defrosted regularly to maintain a satisfactory performance. When defrosting the evaporator coil, the air temperature inside the display cabinet will increase, and float outside the normal temperature range for a period of time, the question is what...... happens to the food inside during this period, when we look at the quality factor? This paper discusses quality model of foodstuff, different scenarios of defrost scheme are simulated, questions such as how the defrost temperature and duration influence the food temperature, thus the food quality, as well...... as what is the optimal defrost scheme from food quality point of view are answered. This will serve as a prerequisite of designing of optimal control scheme for the commercial refrigeration system, aiming at optimizing a weighed cost function of both food quality and overall energy consumption of system....

  13. Standard-B auto grab sampler hydrogen monitoring system, Acceptance Test Report

    International Nuclear Information System (INIS)

    Lott, D.T.

    1995-01-01

    Project W-369, Watch List Tank Hydrogen Monitors, installed a Standard-C Hydrogen Monitoring System (SHMS) on the Flammable gas waste tank AN-104. General Support Projects (8K510) was support by Test Engineering (7CH30) in the performance of the Acceptance Test Procedures (ATP) to qualify the SHMS cabinets on the waste tank. The ATP's performance was controlled by Tank Farm work package. This completed ATP is transmitted by EDT-601748 as an Acceptance Test Report (ATR) in accordance with WHC-6-1, EP 4.2 and EP 1.12

  14. Corrosion of aluminium alloy test coupons in water of spent fuel storage pool at RA reactor

    International Nuclear Information System (INIS)

    Pesic, M.; Maksin, T.; Jordanov, G.; Dobrijevic, R.

    2004-12-01

    Study on corrosion of aluminium cladding, of the TVR-S type of enriched uranium spent fuel elements of the research reactor RA in the storage water pool is examined in the framework nr the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) 'Corrosion of Research Reactor Clad-Clad Spent Fuel in Water' since 2002. Standard racks with aluminium coupons are exposed to water in the spent fuel pools of the research reactor RA. After predetermined exposure times along with periodic monitoring of the water parameters, the coupons are examined according to the strategy and the protocol supplied by the IAEA. Description of the standard corrosion racks, experimental protocols, test procedures, water quality monitoring and compilation of results of visual examination of corrosion effects are present in this article. (author)

  15. Interaction between corrosion crack width and steel loss in RC beams corroded under load

    International Nuclear Information System (INIS)

    Malumbela, Goitseone; Alexander, Mark; Moyo, Pilate

    2010-01-01

    This paper presents results and discussions on an experimental study conducted to relate the rate of widening of corrosion cracks with the pattern of corrosion cracks as well as the level of steel corrosion for RC beams (153 x 254 x 3000 mm) that were corroded whilst subjected to varying levels of sustained loads. Steel corrosion was limited to the tensile reinforcement and to a length of 700 mm at the centre of the beams. The rate of widening of corrosion cracks as well as strains on uncracked faces of RC beams was constantly monitored during the corrosion process, along the corrosion region and along other potential cracking faces of beams using a demec gauge. The distribution of the gravimetric mass loss of steel along the corrosion region was measured at the end of the corrosion process. The results obtained showed that: the rate of widening of each corrosion crack is dependent on the overall pattern of the cracks whilst the rate of corrosion is independent of the pattern of corrosion cracks. A mass loss of steel of 1% was found to induce a corrosion crack width of about 0.04 mm.

  16. Corrosion in airframes

    OpenAIRE

    PETROVIC ZORAN C.

    2016-01-01

    The introductory chapter provides a brief reference to the issue of corrosion and corrosion damage to aircraft structures. Depending on the nature and dimensions of this non uniformity, three different categories of corrosion are defined: uniform, selective and localized corrosion. The following chapters present the forms of corrosion that can occur in three defined categories of corrosion. Conditions that cause certain types of corrosion in various corrosive environments are discussed. Examp...

  17. Assessment of high performance concrete containing fly ash and calcium nitrite based corrosion inhibitor as a mean to prevent the corrosion of reinforcing steel

    International Nuclear Information System (INIS)

    Montes-García, P; Jiménez-Quero, V; López-Calvo, H

    2015-01-01

    This research analyses the effectiveness of the water-to-cement ratio (w/c), fly ash and a calcium nitrite based corrosion inhibitor to prevent the corrosion of reinforcing steel embedded in high performance concrete. The interactive effect between the inhibitor and fly ash was evaluated because the occurrence of a negative effect when both ingredients are added together in a concrete mixture has been reported. All the concrete mixtures studied in this investigation had 8.2% of silica fume. Twenty seven prismatic concrete specimens were fabricated with dimensions of 55 × 230 × 300 mm each containing two steel rods embedded for the purpose of corrosion monitoring. The specimens were exposed to a simulated marine environment with two daily cycles of wetting and drying for one year. To evaluate the deterioration of the specimens corrosion potentials and linear polarization resistance tests were carried out. The results indicate that the use of a low w/c, the addition of fly ash and the addition of the corrosion inhibitor contributed to the reduction of the corrosion of steel in the concrete specimens. The results further suggest that the combination of fly ash and corrosion inhibitor does not promote the deterioration of the concrete matrix

  18. Corrosion engineering

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, M.G.

    1986-01-01

    This book emphasizes the engineering approach to handling corrosion. It presents corrosion data by corrosives or environments rather than by materials. It discusses the corrosion engineering of noble metals, ''exotic'' metals, non-metallics, coatings, mechanical properties, and corrosion testing, as well as modern concepts. New sections have been added on fracture mechanics, laser alloying, nuclear waste isolation, solar energy, geothermal energy, and the Statue of Liberty. Special isocorrosion charts, developed by the author, are introduced as a quick way to look at candidates for a particular corrosive.

  19. Development of advanced electrodes for corrosion monitoring in nuclear power plants

    International Nuclear Information System (INIS)

    Ku, Hee Kwon; Lim, Dong Seok; Cho, Jae Seon

    2014-01-01

    Much of corrosion-related due to the piping material and coolant are generated for Nuclear Power Plants (NPPs) operation time. During normal-operation, operators manage main factors such as pH, ECP and impurities density by using optimized water-purity operation technique to maintain integrity of piping and structural materials. Various correlations related to the corrosion are developed between metal corrosion and ECP, pH and the effect on the piping and structural, which are the water chemistry factors. In this study, Ag/AgCl and Cu/Cu 2 O(YSZ) pH-sensing electrode for measuring hydrochemistry factors such as ECP, pH operating in NPPs have been developed. The developed sensors are conducted performance tests to prove their validity under the NPPs conditions. In this study, the external Ag/AgCl electrode is developed to resolve the potential drift phenomenon, which is a general phenomenon of conventional Ag/AgCl electrodes, through using the ceramic tube as a potential sensing part and high temperature part, and a related equation is established to calculate the TLJP (Thermal Liquid Junction Potential). The Cu/Cu 2 O electrode as a working electrode is developed using 8%-YSZ membrane. Its relational expression for converting the pH value is established with the Ag/AgCl reference electrode. The developed electrodes are tested to evaluate their response characteristics and stability in low/high temperature conditions. A titration test of the developed electrode is performed using 0.1m-NaCl and 0.01m-HCl solution under the test conditions of 300degC and 2700psi. The test results show that the response characteristics, stability and reproducibility of the manufactured electrodes. Base on the test results, the corrosion environment of carbon-steel (SA106Gr.C) is evaluated by using electrodes completed performance evaluation, and Fepourbaix-diagram is calculated for performance evaluation referred to EPRI report. The conditions of performance evaluation are 1000 ppm

  20. Self-sustained cabinet based on fuel cell technology and solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Rafael Augusto de Oliveira; Valentim, Rafael Bertier; Glir, Joao Raphael Zanlorensi; Stall, Alexandre; Sommer, Elise Meister; Sanches, Luciana Schimidilin; Dias, Fernando Gallego; Korndorfer, Heitor Medeiros de Albuquerque; Vargas, Jose Viriato Coelho [Universidade Federal do Parana (DEMEC/UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica], Email: rafaelcorrea123@hotmail.com; Ordonez, Juan Carlos [Florida State University, Tallahasse, Florida (United States). Dept. of Mechanical Engineering. Center for Advanced Power Systems

    2010-07-01

    Along the past few years, there has been intensive research on clean and renewable energy production. Two main reasons have been pointed out: pollution caused by oil based fuels consumption and their availability diminution, which increases their production costs. Fuel Cells have shown to be a clean and renewable energy source, which reveals them as a promising solution, although their technology needs further development. Fuel Cells produce electricity, water and heat consuming hydrogen and oxygen, this provided pure or from a natural air source. Present research has combined different equipment to compose a self-sustaining fuel cells technology based cabinet for energy production, which is a Regenerative Fuel Cell System (RFC). This system contains: fuel cells stack, electrolyzer, photovoltaic panel, batteries, current inverter and a charge controller. Photovoltaic panel charges the batteries, while charge controller controls the batteries loading. Batteries are connected to an inverter which converts direct current into alternating current. Inverter is connected to an electrolyzer (Hogen GC 600) which splits the water molecule into hydrogen and oxygen molecules. Produced hydrogen supplies the fuel cell stack and the oxygen is released directly to the atmosphere. Fuel cell stacks power production is transformed into mechanical energy by a fan. Electrical power generated by Ballard stack is 5.124 W, with a voltage of 36.6 V and current of 0.14 A. The system proved to have a great efficiency and to be capable to assemble two renewable energy sources (solar and fuel cell technology) in a self-sustainable cabinet. It has also been shown that equipment such as Electrolyzer, Fuel Cell Stack and Photovoltaic panel can be fit together in the order to produce energy. Therefore, research on Fuel Cells Regenerative System reveals great importance for developing a new, clean, renewable and regenerative energy production system. (author)

  1. Achievments of corrosion science and corrosion protection technology

    International Nuclear Information System (INIS)

    Fontana, M.; Stehjl, R.

    1985-01-01

    Problems of corrosion-mechanical strength of metals, effect of corrosive media on creep characteristics are presented. New concepts of the mechanism of corrosion cracking and its relation to hydrogen embrittlement are described. Kinetics and mechanism of hydrogen embrittlement effect on the process of corrosion cracking of different steels and alloys are considered. The dependence of such types of failure on various structural factors is shown. Data on corrosion cracking of high-strength aluminium and titanium alloys, mechanism of the processes and protective methods are given

  2. Erosion–corrosion and corrosion properties of DLC coated low temperature Erosion–corrosion and corrosion properties of DLC coated low temperature

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Christiansen, Thomas; Hilbert, Lisbeth Rischel

    2009-01-01

    of AISI 316 as substrate for DLC coatings are investigated. Corrosion and erosion–corrosion measurements were carried out on low temperature nitrided stainless steel AISI 316 and on low temperature nitrided stainless steel AISI 316 with a top layer of DLC. The combination of DLC and low temperature...... nitriding dramatically reduces the amount of erosion–corrosion of stainless steel under impingement of particles in a corrosive medium....

  3. Experimental and Empirical Time to Corrosion of Reinforced Concrete Structures under Different Curing Conditions

    Directory of Open Access Journals (Sweden)

    Ahmed A. Abouhussien

    2014-01-01

    Full Text Available Reinforced concrete structures, especially those in marine environments, are commonly subjected to high concentrations of chlorides, which eventually leads to corrosion of the embedded reinforcing steel. The total time to corrosion of such structures may be divided into three stages: corrosion initiation, cracking, and damage periods. This paper evaluates, both empirically and experimentally, the expected time to corrosion of reinforced concrete structures. The tested reinforced concrete samples were subjected to ten alternative curing techniques, including hot, cold, and normal temperatures, prior to testing. The corrosion initiation, cracking, and damage periods in this investigation were experimentally monitored by an accelerated corrosion test performed on reinforced concrete samples. Alternatively, the corrosion initiation time for counterpart samples was empirically predicted using Fick’s second law of diffusion for comparison. The results showed that the corrosion initiation periods obtained experimentally were comparable to those obtained empirically. The corrosion initiation was found to occur at the first jump of the current measurement in the accelerated corrosion test which matched the half-cell potential reading of around −350 mV.

  4. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien

    2014-06-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  5. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien; Serdar, Marijana; Meral, Cagla; Parkinson, Dula; MacDowell, Alastair A.; Bjegović, Dubravka; Monteiro, Paulo J.M.

    2014-01-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  6. Door and cabinet recognition using convolutional neural nets and real-time method fusion for handle detection and grasping

    DEFF Research Database (Denmark)

    Maurin, Adrian Llopart; Ravn, Ole; Andersen, Nils Axel

    2017-01-01

    In this paper we present a new method that robustly identifies doors, cabinets and their respective handles, with special emphasis on extracting useful features from handles to be then manipulated. The novelty of this system relies on the combination of a Convolutional Neural Net (CNN), as a form...

  7. Corrosion Evaluation and Corrosion Control of Steam Generators

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M.

    2008-06-01

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants

  8. Use of empirically based corrosion model to aid steam generator life management

    Energy Technology Data Exchange (ETDEWEB)

    Angell, P.; Balakrishnan, P.V.; Turner, C.W

    2000-07-01

    Alloy 800 (N08800) tubes used in CANDU 6 steam generators have shown a low incidence of corrosion damage because of the good corrosion resistance of N08800 and successful water chemistry control strategies. However, N08800 is not immune to corrosion, especially pitting, under plausible SG conditions. Electrochemical potentials are critical in determining both susceptibility and rates of corrosion and are known to be a function of water-chemistry. Using laboratory data an empirical model for pitting and crevice corrosion has been developed for N08800. Combination of such a model with chemistry monitoring and diagnostic software makes it possible to arm the impact of plant operating conditions on SG tube corrosion for plant life management (PLIM). Possible transient chemistry regimes that could significantly shorten expected tube lifetimes have been identified and predictions continue to support the position dud under normal, low dissolved oxygen conditions, pitting of N08800 will not initiate. (author)

  9. Use of empirically based corrosion model to aid steam generator life management

    International Nuclear Information System (INIS)

    Angell, P.; Balakrishnan, P.V.; Turner, C.W.

    2000-01-01

    Alloy 800 (N08800) tubes used in CANDU 6 steam generators have shown a low incidence of corrosion damage because of the good corrosion resistance of N08800 and successful water chemistry control strategies. However, N08800 is not immune to corrosion, especially pitting, under plausible SG conditions. Electrochemical potentials are critical in determining both susceptibility and rates of corrosion and are known to be a function of water-chemistry. Using laboratory data an empirical model for pitting and crevice corrosion has been developed for N08800. Combination of such a model with chemistry monitoring and diagnostic software makes it possible to arm the impact of plant operating conditions on SG tube corrosion for plant life management (PLIM). Possible transient chemistry regimes that could significantly shorten expected tube lifetimes have been identified and predictions continue to support the position dud under normal, low dissolved oxygen conditions, pitting of N08800 will not initiate. (author)

  10. Corrosion of research reactor aluminium clad spent fuel in water. Additional information

    International Nuclear Information System (INIS)

    2009-12-01

    A large variety of research reactor spent fuel with different fuel meats, different geometries and different enrichments in 235 U are presently stored underwater in basins located around the world. More than 90% of these fuels are clad in aluminium or aluminium based alloys that are notoriously susceptible to corrosion in water of less than optimum quality. Some fuel is stored in the reactor pools themselves, some in auxiliary pools (or basins) close to the reactor and some stored at away-from-reactor pools. Since the early 1990s, when corrosion induced degradation of the fuel cladding was observed in many of the pools, corrosion of research reactor aluminium clad spent nuclear fuel stored in light water filled basins has become a major concern, and programmes were implemented at the sites to improve fuel storage conditions. The IAEA has since then established a number of programmatic activities to address corrosion of research reactor aluminium clad spent nuclear fuel in water. Of special relevance was the Coordinated Research Project (CRP) on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase I) initiated in 1996, whose results were published in IAEA Technical Reports Series No. 418. At the end of this CRP it was considered necessary that a continuation of the CRP should concentrate on fuel storage basins that had demonstrated significant corrosion problems and would therefore provide additional insight into the fundamentals of localized corrosion of aluminium. As a consequence, the IAEA started a new CRP entitled Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase II), to carry out more comprehensive research in some specific areas of corrosion of aluminium clad spent nuclear fuel in water. In addition to this CRP, one of the activities under IAEA's Technical Cooperation Regional Project for Latin America Management of Spent Fuel from Research Reactors (2001-2006) was corrosion monitoring and surveillance of research

  11. Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings

    Science.gov (United States)

    Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry. The NASA Kennedy Space Centers Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion

  12. Monitoring corrosion and corrosion control of iron in HCl by non-ionic surfactants of the TRITON-X series - Part II. Temperature effect, activation energies and thermodynamics of adsorption

    International Nuclear Information System (INIS)

    Amin, Mohammed A.; Ahmed, M.A.; Arida, H.A.; Arslan, Taner; Saracoglu, Murat; Kandemirli, Fatma

    2011-01-01

    Research highlights: → TX-305 exhibits inhibiting properties for iron corrosion more than TX-165 and TX 100. → Inhibition efficiency increases with temperature, suggesting chemical adsorption. → The three tested surfactants act as mixed-type inhibitors with cathodic predominance. → Validation of corrosion rates measured by Tafel extrapolation method is confirmed. - Abstract: The inhibition characteristics of non-ionic surfactants of the TRITON-X series, namely TRITON-X-100 (TX-100), TRITON-X-165 (TX-165) and TRITON-X-305 (TX-305), on the corrosion of iron was studied in 1.0 M HCl solutions as a function of inhibitor concentration (0.005-0.075 g L -1 ) and solution temperature (278-338 K). Measurements were conducted based on Tafel extrapolation method. Electrochemical frequency modulation (EFM), a non-destructive corrosion measurement technique that can directly give values of corrosion current without prior knowledge of Tafel constants, is also presented. Experimental corrosion rates determined by the Tafel extrapolation method were compared with corrosion rates obtained by the EFM technique and an independent method of chemical analysis. The chemical method of confirmation of the corrosion rates involved determination of the dissolved cation, using ICP-AES (inductively coupled plasma atomic emission spectrometry). The aim was to confirm validation of corrosion rates measured by the Tafel extrapolation method. Results obtained showed that, in all cases, the inhibition efficiency increased with increase in temperature, suggesting that chemical adsorption occurs. The adsorptive behaviour of the three surfactants followed Temkin-type isotherm. The standard free energies of adsorption decreased with temperature, reflecting better inhibition performance. These findings confirm chemisorption of the tested inhibitors. Thermodynamic activation functions of the dissolution process were also calculated as a function of each inhibitor concentration. All the results

  13. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    Science.gov (United States)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  14. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study

    International Nuclear Information System (INIS)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-01-01

    Highlights: • An in-situ and real-time electrochemical monitoring of flow-induced corrosion of Mg alloy is designed in a vascular bioreactor. • Effect of hydrodynamics on corrosion kinetics, types, rates and products is analyzed. • Flow accelerates mass and electron transfer, leading to an increase in uniform and localized corrosions. • Flow increases not only the thickness of uniform corrosion product layer, but the removal rate of localized corrosion products. • Electrochemical impedance spectroscopy and linear polarization-measured polarization resistances provide a consistent correlation to corrosion rate calculated by computed tomography. - Abstract: An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography.

  15. Corrosion Evaluation and Corrosion Control of Steam Generators

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M

    2008-06-15

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants.

  16. Microbial corrosion of metallic materials in a deep nuclear-waste repository

    Directory of Open Access Journals (Sweden)

    Stoulil J.

    2016-06-01

    Full Text Available The study summarises current knowledge on microbial corrosion in a deep nuclear-waste repository. The first part evaluates the general impact of microbial activity on corrosion mechanisms. Especially, the impact of microbial metabolism on the environment and the impact of biofilms on the surface of structure materials were evaluated. The next part focuses on microbial corrosion in a deep nuclear-waste repository. The study aims to suggest the development of the repository environment and in that respect the viability of bacteria, depending on the probable conditions of the environment, such as humidity of bentonite, pressure in compact bentonite, the impact of ionizing radiation, etc. The last part is aimed at possible techniques for microbial corrosion mechanism monitoring in the conditions of a deep repository. Namely, electrochemical and microscopic techniques were discussed.

  17. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  18. Boiler and steam generator corrosion: Nuclear power plants. (Latest citations from the NTIS Bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in nuclear powered steam generators. Pitting, stress corrosion cracking, and crevice corrosion studies performed on the water side and hot gas side of the heat exchanger tubes and support structures are presented. Water treatment, corrosion monitoring, chemical cleaning, and descaling methods are considered. Fossil fuel fired boilers are examined in a separate bibliography. (Contains a minimum of 138 citations and includes a subject term index and title list.)

  19. The corrosion rate of copper in a bentonite test package measured with electric resistance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, Bo [Division of Surface and Corrosion Science, KTH, Stockholm (Sweden); Kosec, Tadeja; Kranjc, Andrej; Kuhar, Viljem; Legat, Andraz [Slovenian National Building and Civil Engineering Institute, Ljubljana (Slovenia)

    2012-12-15

    LOT1 test parcel A2 was exposed for six years in the Aespoe Hard Rock Laboratory, which offers a realistic environment for the conditions that will prevail in a deep repository for high-level radioactive waste disposal in Sweden. The test parcel contained copper electrodes for real-time corrosion monitoring in bentonite ring 36, where the temperature was 24 deg C, and copper coupons in bentonite rings 22 and 30, where the temperature was higher. After retrieval of the test parcel in January 2006, a bentonite test package consisting of bentonite rings 35 - 37 was placed in a container and sealed with a thick layer of paraffin. Later the same year new copper electrodes were installed in the test package. In January 2007 electric resistance (ER) sensors of pure copper with a thickness of 35 {mu}m were also installed in the test package mainly to facilitate the interpretation of the results from the real-time corrosion monitoring with electrochemical techniques. The ER measurements have shown that the corrosion rate of pure copper exposed in an oxic bentonite/ saline groundwater environment at room temperate decreases slowly with time to low but measurable values. The corrosion rates estimated from the regularly performed EIS measurements replicate the ER data. Thus, for this oxic environment in which copper acquires corrosion potentials of the order of 200 mV (SHE) or higher, electrochemical measurements provide believable data. Comparing the recorded ER data with an estimate of the average corrosion rate based on comparing cross-sections from exposed and protected sensor elements, it is obvious that the former overestimates the actual corrosion rate, which is understandable. It seems as if electrochemical measurements can provide a better estimate of the corrosion rate; however, this is quite dependent on the use of proper measuring frequencies and evaluation methods. In this respect ER measurements are more reliable. It has been shown that real-time corrosion

  20. The corrosion rate of copper in a bentonite test package measured with electric resistance sensors

    International Nuclear Information System (INIS)

    Rosborg, Bo; Kosec, Tadeja; Kranjc, Andrej; Kuhar, Viljem; Legat, Andraz

    2012-12-01

    LOT1 test parcel A2 was exposed for six years in the Aespoe Hard Rock Laboratory, which offers a realistic environment for the conditions that will prevail in a deep repository for high-level radioactive waste disposal in Sweden. The test parcel contained copper electrodes for real-time corrosion monitoring in bentonite ring 36, where the temperature was 24 deg C, and copper coupons in bentonite rings 22 and 30, where the temperature was higher. After retrieval of the test parcel in January 2006, a bentonite test package consisting of bentonite rings 35 - 37 was placed in a container and sealed with a thick layer of paraffin. Later the same year new copper electrodes were installed in the test package. In January 2007 electric resistance (ER) sensors of pure copper with a thickness of 35 μm were also installed in the test package mainly to facilitate the interpretation of the results from the real-time corrosion monitoring with electrochemical techniques. The ER measurements have shown that the corrosion rate of pure copper exposed in an oxic bentonite/ saline groundwater environment at room temperate decreases slowly with time to low but measurable values. The corrosion rates estimated from the regularly performed EIS measurements replicate the ER data. Thus, for this oxic environment in which copper acquires corrosion potentials of the order of 200 mV (SHE) or higher, electrochemical measurements provide believable data. Comparing the recorded ER data with an estimate of the average corrosion rate based on comparing cross-sections from exposed and protected sensor elements, it is obvious that the former overestimates the actual corrosion rate, which is understandable. It seems as if electrochemical measurements can provide a better estimate of the corrosion rate; however, this is quite dependent on the use of proper measuring frequencies and evaluation methods. In this respect ER measurements are more reliable. It has been shown that real-time corrosion

  1. Pipeline corrosion prevention by pH stabilization or corrosion inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Nyborg, Rolf [Institute for Energy Technology, Oslo (Norway)

    2009-07-01

    In many offshore oil and gas projects the pipeline costs are a considerable part of the investment and can become prohibitively high if the corrosivity of the fluid necessitates the use of corrosion resistant alloys instead of carbon steel. Development of more robust and reliable methods for internal corrosion control can increase the application range of carbon steel and therefore have a large economic impact. Corrosion control of carbon steel pipelines has traditionally often been managed by the use of corrosion inhibitors. The pH stabilization technique has been successfully used for corrosion control of several large wet gas pipelines in the last years. This method has advantages over film forming corrosion inhibitors when no or little formation water is produced. The use of corrosion inhibitors in multiphase pipelines implies several challenges which are not fully accounted for in traditional corrosion inhibitor testing procedures. Specialized test procedures have been developed to take account for the presence of emulsions dispersions and sand and clay particles in corrosion inhibitor testing. (author)

  2. Corrosion of carbon steel in contact with bentonite

    International Nuclear Information System (INIS)

    Dobrev, D.; Vokal, A.; Bruha, P.

    2010-01-01

    Document available in extended abstract form only. Carbon steel canisters were chosen in a number of disposal concepts as reference material for disposal canisters. The corrosion rates of carbon steels in water solution both in aerobic and anaerobic conditions are well known, but only scarce data are available for corrosion behaviour of carbon steels in contact with bentonite. A special apparatus, which enables to measure corrosion rate of carbon steels under conditions simulating conditions in a repository, namely in contact with bentonite under high pressure and elevated temperatures was therefore prepared to study: - Corrosion rate of carbon steels in direct contact with bentonite in comparison with corrosion rate of carbon steels in synthetic bentonite pore water. - Influence of corrosion products on bentonite. The apparatus is composed of corrosion chamber containing a carbon steel disc in direct contact with compacted bentonite. Synthetic granitic water is above compacted bentonite under high pressure (50 - 100 bar) to simulate hydrostatic pressure in a repository. The experiments can be carried out under various temperatures. Bentonites used for experiments were Na-type of bentonite Volclay KWK 80 - 20 and Ca-Mg Czech bentonite from deposit Rokle. Before adding water into corrosion system the corrosion chamber was purged by nitrogen gas. The saturation of bentonite and corrosion rate were monitored by measuring consumption of water, pressure increase caused by swelling pressure of bentonite and by generation of hydrogen. Corrosion rate was also determined after corrosion experiments from weight loss of samples. The results of experiments show that the corrosion behaviour of carbon steels in contact with bentonite is very different from corrosion of carbon steels in water simulating bentonite pore water solution. The corrosion rates of carbon steel in contact with bentonite reached after 30 days of corrosion the values approaching 40 mm/yr contrary to values

  3. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  4. Electrochemical noise measurements of steel corrosion in the molten NaCl-K2SO4 system

    DEFF Research Database (Denmark)

    Cappeln, Frederik Vilhelm; Bjerrum, Niels; Petrushina, Irina

    2005-01-01

    -called active corrosion (i.e., the corrosion proceeds with no passivation due to the influence of chlorine), characterized by the formation of volatile metal chlorides as a primary corrosion product. It was found possible to obtain an empirical separation of general and intergranular corrosion using kurtosis (a......Electrochemical noise measurements have been carried out on AISI347, 10CrMo910, 15Mo3, and X20CrMoV121 steels in molten NaCl-K2SO4 at 630 degrees C. Different types of current noise have been identified for pitting, intergranular and peeling corrosion. The corrosion mechanism was the so...... statistical parameter calculated from the electrochemical noise data). It was found that average kurtosis values above 6 indicated intergranular corrosion and average values below 6 indicated general corrosion. The response time for localized corrosion detection in in-plant monitoring was approximately 90 min...

  5. Microbiologically influenced corrosion. Final report for fiscal year 1995

    International Nuclear Information System (INIS)

    Jones, D.A.; Amy, P.J.

    1996-01-01

    Microbiologically influenced corrosion (MIC) is a serious concern when considering measures to guard against long-term corrosion of waste package containers at Yucca Mountain. An experimental program has been initiated to gain a better fundamental understanding of MIC in repository environments. Some engineering objectives will be achieved during the investigation: a reproducible apparatus and procedure for electrochemical monitoring of MIC will be developed; the most aggressive combinations of bacteria will be determined, and the MIC resistance of various candidate alloys for the multipurpose container (MPC) will be measured

  6. Microbiologically influenced corrosion. Final report for fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.A. [Univ. of Nevada, Reno, NV (United States); Amy, P.J. [Univ. of Nevada, Las Vegas, NV (United States)

    1996-06-06

    Microbiologically influenced corrosion (MIC) is a serious concern when considering measures to guard against long-term corrosion of waste package containers at Yucca Mountain. An experimental program has been initiated to gain a better fundamental understanding of MIC in repository environments. Some engineering objectives will be achieved during the investigation: a reproducible apparatus and procedure for electrochemical monitoring of MIC will be developed; the most aggressive combinations of bacteria will be determined, and the MIC resistance of various candidate alloys for the multipurpose container (MPC) will be measured.

  7. Anaerobic corrosion of carbon steel under unsaturated conditions in a nuclear waste deep geological repository

    International Nuclear Information System (INIS)

    Kwong, G.; Wang, St.; Newman, R.C.

    2009-01-01

    Full text of publication follows: Anaerobic corrosion behaviour of carbon steel in humid conditions, but not submerged in aqueous solution, was studied based on hydrogen generation. Initial tests monitored the hydrogen evolution from carbon steel in a high humidity environment (≥ 75% RH) at near-ambient temperature (30 C) using a high sensitivity pressure gauge system (sensitivity of 0.01 μm.a -1 ). The presence of hydrogen in test runs that showed no, or minimal, pressure increase was confirmed by a solid-state potentiometric hydrogen sensor which has the capability of detecting hydrogen partial pressure as low as 10 -6 bar or a corrosion rate of 1.5 * 10 -4 μm.a -1 . Preliminary results indicate that a corrosion rate as high as 0.2 μm.a -1 can be sustained for steel coated with salt at 100% RH. Higher corrosion rates (as high as 0.8 μm.a -1 ) were obtained in less humid environment (71% RH). Without a salt deposit, pickled steel in humid environment (as high as 100% RH) also showed detectable corrosion for a period up to 800 hours, during which 0.8 kPa of hydrogen was accumulated prior to the apparent arrest of corrosion, representing a metal loss of 3 nm. Corrosion scales are also identified with x-ray photoelectron spectroscopy (XPS) as well as by mass change monitoring using a quartz crystal microbalance. Corrosion mechanisms and prediction for longer-term exposure will be discussed. Results will be useful in predicting long-term carbon steel corrosion behaviour and improving the current knowledge of hydrogen gas evolution in a deep geological repository for nuclear waste. (authors)

  8. New Forum Addresses Microbiologically Influenced Corrosion

    Science.gov (United States)

    2012-06-01

    methanogens. 15. SUBJECT TERMS MIC, biofilm Formation , localized corrosion, microoganisms 16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified b... Stainless Steels for Prestressed Concrete" Elisabeth Schwarzenbbck University of Bourgogne Third Place, Mars Fontana Category "Microelectrochemical...Campbell described a monitoring sys- tem for a Type 316L stainless steel (UNS S31603) drinking water distribution system that measured open circuit

  9. Investigation of thermally sensitised stainless steels as analogues for spent AGR fuel cladding to test a corrosion inhibitor for intergranular stress corrosion cracking

    Science.gov (United States)

    Whillock, Guy O. H.; Hands, Brian J.; Majchrowski, Tom P.; Hambley, David I.

    2018-01-01

    A small proportion of irradiated Advanced Gas-cooled Reactor (AGR) fuel cladding can be susceptible to intergranular stress corrosion cracking (IGSCC) when stored in pond water containing low chloride concentrations, but corrosion is known to be prevented by an inhibitor at the storage temperatures that have applied so far. It may be necessary in the future to increase the storage temperature by up to ∼20 °C and to demonstrate the impact of higher temperatures for safety case purposes. Accordingly, corrosion testing is needed to establish the effect of temperature increases on the efficacy of the inhibitor. This paper presents the results of studies carried out on thermally sensitised 304 and 20Cr-25Ni-Nb stainless steels, investigating their grain boundary compositions and their IGSCC behaviour over a range of test temperatures (30-60 °C) and chloride concentrations (0.3-10 mg/L). Monitoring of crack initiation and propagation is presented along with preliminary results as to the effect of the corrosion inhibitor. 304 stainless steel aged for 72 h at 600 °C provided a close match to the known pond storage corrosion behaviour of spent AGR fuel cladding.

  10. Metallic corrosion in the polluted urban atmosphere of Hong Kong.

    Science.gov (United States)

    Liu, Bo; Wang, Da-Wei; Guo, Hai; Ling, Zhen-Hao; Cheung, Kalam

    2015-01-01

    This study aimed to explore the relationship between air pollutants, particularly acidic particles, and metallic material corrosion. An atmospheric corrosion test was carried out in spring-summer 2012 at a polluted urban site, i.e., Tung Chung in western Hong Kong. Nine types of metallic materials, namely iron, Q235 steel, 20# steel, 16Mn steel, copper, bronze, brass, aluminum, and aluminum alloy, were selected as specimens for corrosion tests. Ten sets of the nine materials were all exposed to ambient air, and then each set was collected individually after exposure to ambient air for consecutive 6, 13, 20, 27, 35, 42, 49, 56, 63, and 70 days, respectively. After the removal of the corrosion products on the surface of the exposed specimens, the corrosion rate of each material was determined. The surface structure of materials was observed using scanning electron microscopy (SEM) before and after the corrosion tests. Environmental factors including temperature, relative humidity, concentrations of gaseous pollutants, i.e., sulfur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), ozone (O₃), and particulate-phase pollutants, i.e., PM₂.₅ (FSP) and PM₁₀ (RSP), were monitored. Correlation analysis between environmental factors and corrosion rate of materials indicated that iron and carbon steel were damaged by both gaseous pollutants (SO₂ and NO₂) and particles. Copper and copper alloys were mainly corroded by gaseous pollutants (SO₂ and O₃), while corrosion of aluminum and aluminum alloy was mainly attributed to NO₂ and particles.

  11. Investigation of Eh, pH and corrosion potential of steel in anoxic groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Peat, R.; Brabon, S.; Fennell, P.A.H.; Rance, A.P.; Smart, N.R. [AEA Technology (United Kingdom)

    2001-01-01

    SKB intend to dispose of the spent nuclear fuel produced by Sweden's eleven nuclear reactors by encapsulating it in corrosion-resistant copper canisters containing a cast iron or carbon steel insert. After encapsulation, the fuel will be transported to a geological repository, where the containers will be deposited at a depth of 500 to 700 m in granitic rock and surrounded by a bentonite clay backfill material. If, or when the copper corrosion shield fails, the iron insert will be in contact with oxygen-free water and hydrogen-producing, anaerobic corrosion will start. SKB have carried out modelling calculations of the oxidising power (Eh) of groundwater and wished to confirm the results by carrying out experimental measurements. The objective of the work described in this report was to demonstrate the feasibility of monitoring Eh, pH and corrosion potential in a cell where anaerobic corrosion of steel in artificial groundwater was occurring. To this end, gas cells similar to those used previously for anaerobic corrosion rate measurements were used as the basis for the design of an electrochemical cell. The cell incorporated electrodes to provide an in situ measurement of the redox potential, Eh, the pH and the corrosion potential of carbon steel. The main stages of the work were: Design of the electrochemical cell; Preparation of silver-silver chloride and calomel reference electrodes; Calibration of the reference electrodes and commercial glass pH electrodes against a standard hydrogen electrode; Assembly of the test cell under anoxic conditions; Monitoring the cell before and after the addition of steel wires to the test solution. Details of the design of the test cell and the experimental procedures used are described. Two cells were set up. The first employed a silver-silver chloride reference electrode, which was failed after approximately 400 hours, and the second cell therefore used a calomel reference electrode. The results of the electrode

  12. Corrosion of research reactor Al-clad spent fuel in water

    International Nuclear Information System (INIS)

    Bendereskaya, O.S.; De, P.K.; Haddad, R.; Howell, J.P.; Johnson, A.B. Jr.; Laoharojanaphand, S.; Luo, S.; Ramanathan, L.V.; Ritchie, I.; Hussain, N.; Vidowsky, I.; Yakovlev, V.

    2002-01-01

    A significant amount of aluminium-clad spent nuclear fuel from research and test reactors worldwide is currently being stored in water-filled basins while awaiting final disposition. As a result of corrosion issues, which developed from the long-term wet storage of aluminium-clad fuel, the International Atomic Energy Agency (IAEA) implemented a Co-ordinated Research Project (CRP) in 1996 on the 'Corrosion of Research Reactor Aluminium-Clad Spent Fuel in Water'. The investigations undertaken during the CRP involved ten institutes in nine different countries. The IAEA furnished corrosion surveillance racks with aluminium alloys generally used in the manufacture of the nuclear fuel cladding. The individual countries supplemented these racks with additional racks and coupons specific to materials in their storage basins. The racks were immersed in late 1996 in the storage basins with a wide range of water parameters, and the corrosion was monitored at periodic intervals. Results of these early observations were reported after 18 months at the second research co-ordination meeting (RCM) in Sao Paulo, Brazil. Pitting and crevice corrosion were the main forms of corrosion observed. Corrosion caused by deposition of iron and other particles on the coupon surfaces was also observed. Galvanic corrosion of stainless steel/aluminium coupled coupons and pitting corrosion caused by particle deposition was observed. Additional corrosion racks were provided to the CRP participants at the second RCM and were immersed in the individual basins by mid-1998. As in the first set of tests, water quality proved to be the key factor in controlling corrosion. The results from the second set of tests were presented at the third and final RCM held in Bangkok, Thailand in October 2000. An IAEA document giving details about this CRP and other guidelines for spent fuel storage is in pres. This paper presents some details about the CRP and the basis for its extension. (author)

  13. Corrosion potential analysis system

    Science.gov (United States)

    Kiefer, Karl F.

    1998-03-01

    Many cities in the northeastern U.S. transport electrical power from place to place via underground cables, which utilize voltages from 68 kv to 348 kv. These cables are placed in seamless steel pipe to protect the conductors. These buried pipe-type-cables (PTCs) are carefully designed and constantly pressurized with transformer oil to prevent any possible contamination. A protective coating placed on the outside diameter of the pipe during manufacture protects the steel pipe from the soil environment. Notwithstanding the protection mechanisms available, the pipes remain vulnerable to electrochemical corrosion processes. If undetected, corrosion can cause the pipes to leak transformer oil into the environment. These leaks can assume serious proportions due to the constant pressure on the inside of the pipe. A need exists for a detection system that can dynamically monitor the corrosive potential on the length of the pipe and dynamically adjust cathodic protection to counter local and global changes in the cathodic environment surrounding the pipes. The northeastern United States contains approximately 1000 miles of this pipe. This milage is critical to the transportation and distribution of power. So critical, that each of the pipe runs has a redundant double running parallel to it. Invocon, Inc. proposed and tested a technically unique and cost effective solution to detect critical corrosion potential and to communicate that information to a central data collection and analysis location. Invocon's solution utilizes the steel of the casing pipe as a communication medium. Each data gathering station on the pipe can act as a relay for information gathered elsewhere on the pipe. These stations must have 'smart' network configuration algorithms that constantly test various communication paths and determine the best and most power efficient route through which information should flow. Each network station also performs data acquisition and analysis tasks that ultimately

  14. Review of corrosion causes and corrosion control in a technical facility

    International Nuclear Information System (INIS)

    Charng, T.; Lansing, F.

    1982-06-01

    Causes of corrosion of metals and their alloys are reviewed. The corrosion mechanism is explained by electrochemical reaction theory. The causes and methods of controlling of both physiochemical corrosion and biological corrosion are presented. Factors which influence the rate of corrosion are also discussed

  15. Selection of Corrosion Monitoring Equipment for Subsea Safety Joint

    OpenAIRE

    Ramachandran, Sajini

    2016-01-01

    Master Thesis in Offshore technology: Industrial asset management In Nature, most of all Metals evolve as stable ores of chemical compounds like oxides, sulphides or carbonates. Lot of energy is required to refine and make them useful for some means for every Industry. Corrosion on metals can reverse an unnatural process back to a lower state of energy, easily as simple. It eats away metal in outdoor furniture and automotive bodies, leaving the surface with bad appearance and if it is n...

  16. Technology development by the U.S. industry to resolve erosion-corrosion

    International Nuclear Information System (INIS)

    Chexal, B.; Dietrich, N.; Horowitz, J.; Layman, W.; Randall, G.; Shevde, V.

    1990-01-01

    Erosion-corrosion is a flow-accelerated corrosion process that leads to wall thinning (metal loss) of steel piping exposed to flowing water or wet steam. The rate of metal loss depends on a complex interplay of several parameters. These parameters include water chemistry, material composition, and hydrodynamics. Erosion-corrosion of plant piping can lead to costly outages and repairs, and can raise concerns about plant reliability and safety. Pipe wall degradation rates as high as 1.5 mm/year have occurred, resulting in pipe ruptures at both fossil and nuclear plants. The Nuclear Management and Resource Council (NUMARC) and EPRI have developed inspection planning methods and tools to help utilities identify areas of piping that might undergo erosion-corrosion. These tools provide utilities with the ability to predict wall thinning and to assess various remedial options. This allows utilities to plan and perform inspections, and to correct problems found during inspection. The U.S. electric power industry has developed the knowledge and the tools needed to protect against erosion-corrosion, and utilities have implemented erosion-corrosion monitoring programs. This paper describes EPRI's technical developments that support the utilities in determining where to inspect for erosion-corrosion. 15 refs, 7 figs

  17. Monitoring underlying epoxy-coated St-37 corrosion via 8-hydroxyquinoline as a fluorescent indicator

    Science.gov (United States)

    Roshan, Shamim; Sarabi Dariani, Ali Asghar; Mokhtari, Javad

    2018-05-01

    In the present study, successful performance of 8-hydroxyquinoline (8-HQ) as a ferric ion sensitive indicator is described. 8-HQ was used in epoxy coating because of its desirable properties. It doesn't exhibit premature fluorescence when mixed with coating precursors. Additionally it shows fluorescence turn-on mechanism upon chelate formation with Fe2+/Fe3+ ions produced during anodic reaction. The effect of different concentrations of 8-HQ (0.05, 0.1, 0.5 and 1 wt.%) incorporated in the epoxy coating on corrosion detection as well as optical and electrochemical behavior of the applied coating were studied. The fluorescence property of 8-HQ/Fe3+ solutions was evaluated by using fluorometer. The UV-Visible spectroscopy was used to investigate the effect of 8-HQ presence in the coating on transparency of the free films of the samples. The corrosion detection was performed by fluorescence microscope and the anti-corrosion performance of coated samples containing different concentrations of 8-HQ was studied using salt spray standard test and electrochemical impedance spectroscopy (EIS). The results of UV-Visible spectroscopy demonstrated that increasing 8-HQ concentration causes a slight decrease in coating transparency. According to the results of electrochemical impedance spectroscopy (EIS) measurements, the polarization resistance of the coated St-37 sample containing 0.1 wt.% 8-HQ was about 109 Ohm cm2 after 6 weeks immersion in corrosive electrolyte, while St-37 plates coated with other 8-HQ concentrations showed decreased resistance levels of about 106 Ohm cm2, during the same immersion period. Based on fluorescence microscopic investigation, as a result of incorporating 8-HQ into the epoxy matrix, fluorescence could be observed in regions where Fe2+/Fe3+ ions were produced through anodic reactions. This method is capable of detecting corrosion in situ at early stages before the metal surface suffers serious damages.

  18. Corrosion-fatigue studies of the Zr-based Vitreloy 105 bulk metallic glass

    International Nuclear Information System (INIS)

    Horton Jr, Joe A.; Morrison, M.L.; Buchanan, R.A.; Liaw, Peter K.; Green, B.A.; Wang, G.Y.

    2007-01-01

    The purpose of this study was to characterize the stress-life behavior of the Vitreloy 105 BMG alloy in the four-point bending configuration in a 0.6 M. NaCl electrolyte. At high stress amplitudes, the corrosion-fatigue life was similar to the fatigue lives observed in air. The environment became increasingly detrimental with decreases in stress, and the corrosion-fatigue endurance limit decreased to about 50 MPa, an 88% decrease relative to testing in air. Similar to the tests conducted in air, oxide particles were found on the fracture surfaces but did not appear to significantly affect the corrosion-fatigue lives. However, wear and the resultant corrosion at the outer loading pins resulted in crack initiation in most of the samples. Thus, these results are considered conservative estimates of the corrosion-fatigue behavior of this BMG alloy. Monitoring of the samples and the open-circuit potentials revealed that the onset of significant crack growth occurred at an average of 92% of the total fatigue life. The mechanism of corrosion-fatigue degradation was found to be anodic dissolution

  19. Corrosion evaluation of service water system materials

    International Nuclear Information System (INIS)

    Stein, A.A.; Felder, C.M.; Martin, R.L.

    1994-01-01

    The availability and reliability of the service water system is critical for safe operation of a nuclear power plant. Degradation of the system piping and components has forced utilities to re-evaluate the corrosion behavior of current and alternative system materials, to support assessments of the remaining service life of the service water system, selection of replacement materials, implementation of corrosion protection methods and corrosion monitoring programs, and identification of maintenance and operational constraints consistent with the materials used. TU Electric and Stone and Webster developed a service water materials evaluation program for the Comanche Peak Steam Electric Station. Because of the length of exposure and the generic interest in this program by the nuclear power industry, EPRI joined TU to co-sponsor the test program. The program was designed to evaluate the corrosion behavior of current system materials and candidate replacement materials and to determine the operational and design changes which could improve the corrosion performance of the system. Although the test program was designed to be representative of service water system materials and environments targeted to conditions at Comanche Peak, these conditions are typical of and relevant to other fresh water cooled nuclear service water systems. Testing was performed in raw water and water treated with biocide under typical service water operating conditions including continuous flow, intermittent flow, and stagnant conditions. The test program evaluated the 300 Series and 6% molybdenum stainless steels, copper-nickel, titanium, carbon steel, and a formed-in-place nonmetallic pipe lining to determine susceptibility to general, crevice, and microbiologically influenced corrosion and pitting attack. This report presents the results of the test program after 4 years of exposure

  20. Corrosion Detection of Reinforcement of Building Materials with Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Jia Peng

    2017-06-01

    Full Text Available The extensive use of reinforced materials in the construction industry has raised increased concerns about their safety and durability, while corrosion detection of steel materials is becoming increasingly important. For the scientific management, timely repair and health monitoring of construction materials, as well as to ensure construction safety and prevent accidents, this paper investigates corrosion detection on construction materials based on piezoelectric sensors. At present, the commonly used corrosion detection methods include physical and electrochemical methods, but there are shortcomings such as large equipment area, low detection frequency, and complex operation. In this study an improved piezoelectric ultrasonic sensor was designed, which could not only detect the internal defects of buildings while not causing structural damage, but also realize continuous detection and enable qualitative and quantitative assessment. Corrosion detection of reinforced building materials with piezoelectric sensors is quick and accurate, which can find hidden dangers and provide a reliable basis for the safety of the buildings.

  1. Hardwood lumber widths and grades used by the furniture and cabinet industries: Results of a 14-mill survey

    Science.gov (United States)

    Jan Wiedenbeck; John Brown; Neal Bennett; Everette Rast

    2003-01-01

    Data on red oak lumber width, length, and grade were collected at 14 furniture and cabinet industry rough mills to identify relationships among these lumber attributes and the degree to which they differ from mill to mill. Also, this information is needed to formulate valid lumber size distributions that will improve the quality of theresults obtained in mill and...

  2. Corrosion monitoring of iron, protected by an organic coating, with the aid of impedance measurements

    International Nuclear Information System (INIS)

    Hubrecht, J.; Piens, M.; Vereecken, J.

    1984-01-01

    The ac impedance measurement has proved to be a useful electrochemical technique for mainly qualitative studies of electrochemical and corrosion systems. Even for complicated systems such as coated metals in corrosive environments this technique has been used with success. The system chosen for the present study is an ARMCO iron plate, coated with a SrCrO 4 -pigmented styrene acrylic polymer, and immersed for several weeks in an aqueous NaCl solution. Impedance measurements analyze a system under test into its constituting phenomena. The dependence of system parameters on coating layer thickness, NaCl concentration, and pigmentation of the coating during the immersion time provides insight into the corrosion and protection mechanisms at the coating/metal interface, besides the behavior of the coating itself

  3. Corrosion and stress corrosion cracking in supercritical water

    Science.gov (United States)

    Was, G. S.; Ampornrat, P.; Gupta, G.; Teysseyre, S.; West, E. A.; Allen, T. R.; Sridharan, K.; Tan, L.; Chen, Y.; Ren, X.; Pister, C.

    2007-09-01

    Supercritical water (SCW) has attracted increasing attention since SCW boiler power plants were implemented to increase the efficiency of fossil-based power plants. The SCW reactor (SCWR) design has been selected as one of the Generation IV reactor concepts because of its higher thermal efficiency and plant simplification as compared to current light water reactors (LWRs). Reactor operating conditions call for a core coolant temperature between 280 °C and 620 °C at a pressure of 25 MPa and maximum expected neutron damage levels to any replaceable or permanent core component of 15 dpa (thermal reactor design) and 100 dpa (fast reactor design). Irradiation-induced changes in microstructure (swelling, radiation-induced segregation (RIS), hardening, phase stability) and mechanical properties (strength, thermal and irradiation-induced creep, fatigue) are also major concerns. Throughout the core, corrosion, stress corrosion cracking, and the effect of irradiation on these degradation modes are critical issues. This paper reviews the current understanding of the response of candidate materials for SCWR systems, focusing on the corrosion and stress corrosion cracking response, and highlights the design trade-offs associated with certain alloy systems. Ferritic-martensitic steels generally have the best resistance to stress corrosion cracking, but suffer from the worst oxidation. Austenitic stainless steels and Ni-base alloys have better oxidation resistance but are more susceptible to stress corrosion cracking. The promise of grain boundary engineering and surface modification in addressing corrosion and stress corrosion cracking performance is discussed.

  4. Corrosion Resistance of Galvanized Steel in the Environment of a Bioreactor

    Directory of Open Access Journals (Sweden)

    Šustr Michal

    2016-06-01

    Full Text Available The article deals with monitoring the corrosion resistibility of welded materials in the anaerobic fermenter (bioreactor. The main goal of this research is to assess the change of hardness after degradation. The change of hardness occurs in the corrosion environment and it correlates with the corrosion resistibility of material. The purpose of this experiment is to recognize the possibilities of using the CMT welded materials in the defined environment. As an innovative technology the acoustic emission method is used for assessment of surface layer disruption during hardness testing. Aluminium alloy with galvanized steel (AluZinc was used as an experimental material. The basic materials were welded by the filler material AlSi3.

  5. Corrosion/94 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The approximately 500 papers from this conference are divided into the following sections: Rail transit systems--stray current corrosion problems and control; Total quality in the coatings industry; Deterioration mechanisms of alloys at high temperatures--prevention and remediation; Research needs and new developments in oxygen scavengers; Computers in corrosion control--knowledge based system; Corrosion and corrosivity sensors; Corrosion and corrosion control of steel reinforced concrete structures; Microbiologically influenced corrosion; Practical applications in mitigating CO 2 corrosion; Mineral scale deposit control in oilfield-related operations; Corrosion of materials in nuclear systems; Testing nonmetallics for life prediction; Refinery industry corrosion; Underground corrosion control; Mechanisms and applications of deposit and scale control additives; Corrosion in power transmission and distribution systems; Corrosion inhibitor testing and field application in oil and gas systems; Decontamination technology; Ozone in cooling water applications, testing, and mechanisms; Corrosion of water and sewage treatment, collection, and distribution systems; Environmental cracking of materials; Metallurgy of oil and gas field equipment; Corrosion measurement technology; Duplex stainless steels in the chemical process industries; Corrosion in the pulp and paper industry; Advances in cooling water treatment; Marine corrosion; Performance of materials in environments applicable to fossil energy systems; Environmental degradation of and methods of protection for military and aerospace materials; Rail equipment corrosion; Cathodic protection in natural waters; Characterization of air pollution control system environments; and Deposit-related problems in industrial boilers. Papers have been processed separately for inclusion on the data base

  6. Corrosion Risk of Reinforced Concrete Structure Arising from Internal and External Chloride

    Directory of Open Access Journals (Sweden)

    M. J. Kim

    2018-01-01

    Full Text Available The corrosion risk of internal chloride and external chloride from three different exposure conditions was evaluated. The initiation of corrosion was detected by monitoring the galvanic current between cathode metal and embedded steel. The chloride threshold was determined by measuring the corrosion rate of steel by the polarization technique for internal chloride and the chloride profiling test for external chloride. As the result, the initiation of corrosion was accelerated with a cyclic wet/dry condition, compared to the totally wet condition. In addition, it was found that an increase of the drying ratio in the exposure condition resulted in an increase of corrosion rate after initiation. The threshold level of external chloride ranged from 0.2 to 0.3% weight by cement and internal chloride shows higher range, equated to 1.59–3.10%. Based on these data, the chloride penetration with exposure condition was predicted to determine the service life of reinforced concrete structure.

  7. A Study on Accelerated Corrosion Test by Combined Deteriorating Action of Salt Damage and Freeze-Thaw

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang-Soon; So, Byung-Tak [Sangmyung University, Cheonan (Korea, Republic of)

    2016-01-15

    In this study, the accelerated corrosion test by combined deteriorating action of salt damage and freeze-thaw was investigated. freeze-thaw cycle is one method for corrosion testing; corrosion initiation time was measured in four types of concrete samples, i.e., two samples mixed with fly ash (FA) and blast furnace slag (BS), and the other two samples having two water/cement ratio (W/C = 0.6, 0.35) without admixture (OPC60 and OPC35). The corrosion of rebar embedded in concrete occurred most quickly at the 30th freeze-thaw cycle. Moreover, a corrosion monitoring method with a half-cell potential measurement and relative dynamic elastic modulus derived from resonant frequency measures was conducted simultaneously. The results indicated that the corrosion of rebar occurred when the relative dynamic elastic modulus was less than 60%. Therefore, dynamic elastic modulus can be used to detect corrosion of steel bar. The results of the accelerated corrosion test exhibited significant difference according to corrosion periods combined with each test condition. Consequently, the OPC60 showed the lowest corrosion resistance among the samples.

  8. Electrochemical and micro-gravimetric corrosion studies on spent fuel provide relevant source term data for a repository performance assessment

    International Nuclear Information System (INIS)

    Wegen, Detlef H.; Bottomley, Paul D. W.; Glatz, Jean-Paul

    2004-01-01

    Various electrochemical methods (corrosion potential monitoring, AC impedance analysis and electrochemical noise monitoring) were used in the investigation of UO 2 samples: natural and doped with two different levels of 238 Pu (0.1 and 10 wt%) simulating the increasing α-intensities seen with time in the repository. The results were compared and were able to show the intense, but also the very local nature of the radiolysis and to demonstrate that corrosion rates were proportional to α-radiolysis and hence the 238 Pu content; the corrosion rates were in accordance with earlier work at ITU. By contrast it was seen that the redox potentials only gave information as to the bulk solution that did not reflect the true conditions at the electrode interface that were driving the corrosion processes of UO 2 dissolution in groundwaters. The study shows how electrochemical techniques can provide vital information on the corrosion mechanism at the UO 2 /solution interface

  9. The effect of sulfide on the aerobic corrosion of carbon steel in near-neutral pH saline solutions

    International Nuclear Information System (INIS)

    Sherar, B.W.A.; Keech, P.G.; Shoesmith, D.W.

    2013-01-01

    Highlights: ► The corrosion rate is low when steel is exposed to anaerobic conditions (pH = 8.9). ► An anaerobic to aerobic corrosion with sulfide switch increases the corrosion rate. ► Aerobic exposure induces the formation of goethite-covered tubercles. ► Continual sulfide exposure leads to the slow conversion of goethite to mackinawite. - Abstract: Severe corrosion damage may occur when gas transmission pipelines are exposed, at disbonded coating locations, to trapped waters containing sulfide followed by secondary exposure to air. Aerobic corrosion with sulfide was investigated in a long-term corrosion experiment in which corrosion was monitored by measurement of the corrosion potential and polarization resistance obtained from linear polarization resistance measurements. The properties and composition of the corrosion product deposits formed were determined using scanning electron microscopy, energy dispersive X-ray analysis, and Raman spectroscopy. A switch from aerobic to aerobic-with-sulfide corrosion doubles the relative corrosion rate.

  10. Weld region corrosion during chemical cleaning of PWR [pressurized-water reactor] steam generators: Volume 2, Tests and analyses: Final report

    International Nuclear Information System (INIS)

    Barna, J.L.; Bozeka, S.A.; Jevec, J.M.

    1987-07-01

    The potential for preferential corrosion of steam generator weld regions during chemical cleaning using the generic SGOG solvents was investigated. The investigations included development and use of a corrosion assessment test facility which measured corrosion currents in a realistic model of the steam generator geometry in the vicinity of a specific weld during a simulated chemical dissolution of sludge consisting of essentially pure magnetite. A corrosion monitoring technique was developed and qualified. In this technique free corrosion rates measured by linear polarization techniques are added to corrosion rates calculated from galvanic current measured using a zero resistance ammeter to give an estimate of total corrosion rate for a galvanically corroding material. An analytic modeling technique was developed and proved useful in determining the size requirements for the weld region mockup used in the corrosion assessment test facility. The technique predicted galvanic corrosion rates consistent with that observed in a corrosion assessement test when polarization data used as model input were obtained on-line during the test. The test results obtained during this investigation indicated that chemical cleaning using the SGOG magnetite dissolution solvent can be performed with a small amount of corrosion of secondary side internals and pressure boundary welds. The maximum weld region corrosion measured during a typical chemical cleaning cycle to remove essentially pure magnetite sludge was about 8 mils. However, additional site specific weld region corrosion assessment testing and qualification will be required prior to chemical cleaning steam generators at a specific plant. Recommendations for site specific qualification of chemical cleaning processes and for use of process monitors and on-line corrosion instrumentation are included in this report

  11. Analysis of acoustic emission signals of fatigue crack growth and corrosion processes. Investigation of the possibilities for continuous condition monitoring of transport containers by acoustic emission testing

    International Nuclear Information System (INIS)

    Wachsmuth, Janne

    2016-01-01

    Fatigue crack growth and active corrosion processes are the main causes of structural failures of transport products like road tankers, railway tank cars and ships. To prevent those failures, preventive, time-based maintenance is performed. However, preventive inspections are costly and include the risk of not detecting a defect, which could lead to a failure within the next service period. An alternative is the idea of continuous monitoring of the whole structure by means of acoustic emission testing (AT). With AT, defects within the material shall be detected and repaired directly after their appearance. Acoustic emission testing is an online non-destructive testing method. Acoustic emission (AE) arises from changes within the material and is transported by elastic waves through the material. If the AE event generates enough energy, the elastic wave propagates to the boundaries of the component, produces a displacement in the picometre scale and can be detected by a piezoelectric sensor. The sensor produces an electrical signal. From this AE signal, AE features such as the maximum amplitude or the frequency can be extracted. Methods of signal analysis are used to investigate the time and frequency dependency of signal groups. The purpose of the signal analysis is to connect the AE signal with the originating AE source. If predefined damage mechanisms are identified, referencing the damage condition of the structure is possible. Acoustic emission from events of the actual crack propagation process can for example lead to the crack growth rate or the stress intensity factor, both specific values from fracture mechanics. A new development in the domain of acoustic emission testing is the pattern recognition of AE signals. Specific features are extracted from the AE signals to assign them to their damage mechanisms. In this thesis the AE signals from the damage mechanisms corrosion and fatigue crack growth are compared and analysed. The damage mechanisms were

  12. Evaluation of microstructural effects on the corrosion behaviour of AZ91D magnesium alloy

    DEFF Research Database (Denmark)

    Ambat, Rajan; Aung, Naing Naing; Zhou, W.

    2000-01-01

    The effect of microconstituents on the corrosion and electrochemical behaviour of AZ91D alloy prepared by die-casting and ingot casting route has been investigated in 3.5% NaCl solution at pH 7.25. The experimental techniques used include constant immersion technique, in-situ corrosion monitoring....... The corrosion products for ingot consisted of Mg(OH)(2) with small amounts beta phase, magnesium-aluminum oxide and MgH2 while for die-cast, the product showed a highly amorphous structure. (C) 2000 Elsevier Science Ltd. All rights reserved....

  13. Corrosion behavior of copper-base materials in a gamma-irradiated environment

    International Nuclear Information System (INIS)

    Yunker, W.H.

    1990-09-01

    Specimens of three copper-base materials were corrosion tested with gamma radiation exposure dose rates in the range of 1.9 x 10 3 R/h to 4.9 x 10 5 R/h. Materials used were pure copper, 7% aluminum bronze and 30% copper-nickel. Exposures were performed in moist air at 95 degree C and 150 degree C and liquid Well J-13 water at 95 degree C, for periods of up to 16 months. Specimens were monitored for uniform weight loss, stress-induced corrosion and crevice corrosion. Specimen surfaces were examined visually at 10X magnification as well as by Auger Electron Spectroscopy, x-ray diffraction and metallography. Corrosion was not severe in any of the cases. In general, the pure copper was corroded most uniformly while the copper-nickel was the least reproducibly corroded. 11 refs, 40 figs., 15 tabs

  14. Corrosion study for a radioactive waste vitrification facility

    International Nuclear Information System (INIS)

    Imrich, K.J.; Jenkins, C.F.

    1993-01-01

    A corrosion monitoring program was setup in a scale demonstration melter system to evaluate the performance of materials selected for use in the Defense Waste Processing Facility (DWPF) at the DOE's Savannah River Site. The system is a 1/10 scale prototypic version of the DWPF. In DWPF, high activity radioactive waste will be vitrified and encapsulated for long term storage. During this study twenty-six different alloys, including DWPF reference materials of construction and alternate higher alloy materials, were subjected to process conditions and environments characteristic of the DWPF except for radioactivity. The materials were exposed to low pH, elevated temperature (to 1200 degree C) environments containing abrasive slurries, molten glass, mercury, halides and sulfides. General corrosion rates, pitting susceptibility and stress corrosion cracking of the materials were investigated. Extensive data were obtained for many of the reference materials. Performance in the Feed Preparation System was very good, whereas coupons from the Quencher Inlet region of the Melter Off-Gas System experienced localized attack

  15. Surveillance and Monitoring Program Full-Scale Experiments to Evaluate the Potential for Corrosion in 3013 Containers

    Energy Technology Data Exchange (ETDEWEB)

    Narlesky, Joshua Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Berg, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Duque, Juan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harradine, David Martin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hill, Dallas Dwight [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kaczar, Gregory Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lillard, R. Scott [Univ. of Akron, OH (United States); Lopez, Annabelle Sarita [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Max Alfonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Peppers, Larry G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rios, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Edward L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stroud, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trujillo, Leonardo Alberto [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilson, Kennard Virden Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-21

    A set of six long-term, full-scale experiments were initiated to determine the type and extent of corrosion that occurs in 3013 containers packaged with chloride-bearing plutonium oxide materials. The materials were exposed to a high relative humidity environment representative of actual packaging conditions for the materials in storage. The materials were sealed in instrumented, inner 3013 containers with corrosion specimens designed to test the corrosiveness of the environment inside the containers under various conditions. This report focuses on initial loading conditions that are used to establish a baseline to show how the conditions change throughout the storage lifetime of the containers.

  16. Evaluations of corrosion resistance of Ni-Cr plated and Zn-plated Fe Substrates Using an Electrolytic Corrosion Test

    International Nuclear Information System (INIS)

    Lee, Jaebong; Kim, Kyungwook; Park, Minwoo; Song, Taejun; Lee, Chaeseung; Lee, Euijong; Kim, Sangyeol

    2013-01-01

    An Eectrolytic Corrosion(EC) test method was evaluated by the comparison with Copper Accelerated Acetic Salt Spray(CASS) and Neutral Salt Spray(SS) tests. Those methods were applied in order to evaluate corrosion resistance of Ni-Cr plated and Zn-plated Fe substrates. The correlations between results obtained by different test methods were investigated. Results showed that the electrochemical method such as the EC test method was superior to the conventional methods such as CASS and SS, in terms of the quantitative accuracy and the test-time span. Furthermore, the EC test method provided the useful means to estimate the initiation of corrosion of each layer by monitoring the rest potentials of the coated layers such as Ni, Cr, and Zn on Fe substrate. With regard to test time spans, the EC test provided the 78 times and 182 times faster results than the CASS test in cases of Fe + 5μm Ni + 0.5 μm Cr and Fe + 20 μm Ni + 0.5 μm Cr respectively, while the EC test was 85 times faster results than the Salt Spray test in the case of Fe + 20 g/m 2 Zn. Therefore, the EC test can be the better method to evaluate the resistance to corrosion of coated layers than the conventional methods such as the SS test and the CASS

  17. Multifrequency Eddy Current Inspection of Corrosion in Clad Aluminum Riveted Lap Joints and Its Effect on Fatigue Life

    Science.gov (United States)

    Okafor, A. C.; Natarajan, S.

    2007-03-01

    Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented.

  18. Multifrequency Eddy Current Inspection of Corrosion in Clad Aluminum Riveted Lap Joints and Its Effect on Fatigue Life

    International Nuclear Information System (INIS)

    Okafor, A. C.; Natarajan, S.

    2007-01-01

    Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented

  19. A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models

    International Nuclear Information System (INIS)

    Vanaei, H.R.; Eslami, A.; Egbewande, A.

    2017-01-01

    Pipelines are the very important energy transmission systems. Over time, pipelines can corrode. While corrosion could be detected by in-line inspection (ILI) tools, corrosion growth rate prediction in pipelines is usually done through corrosion rate models. For pipeline integrity management and planning selecting the proper corrosion ILI tool and also corrosion growth rate model is important and can lead to significant savings and safer pipe operation. In this paper common forms of pipeline corrosion, state of the art ILI tools, and also corrosion growth rate models are reviewed. The common forms of pipeline corrosion introduced in this paper are Uniform/General Corrosion, Pitting Corrosion, Cavitation and Erosion Corrosion, Stray Current Corrosion, Micro-Bacterial Influenced Corrosion (MIC). The ILI corrosion detection tools assessed in this study are Magnetic Flux Leakage (MFL), Circumferential MFL, Tri-axial MFL, and Ultrasonic Wall Measurement (UT). The corrosion growth rate models considered in this study are single-value corrosion rate model, linear corrosion growth rate model, non-linear corrosion growth rate model, Monte-Carlo method, Markov model, TD-GEVD, TI-GEVD model, Gamma Process, and BMWD model. Strengths and limitations of ILI detection tools, and also corrosion predictive models with some practical examples are discussed. This paper could be useful for those whom are supporting pipeline integrity management and planning. - Highlights: • Different forms of pipeline corrosion are explained. • Common In-Line Inspection (ILI) tools and corrosion growth rate models are introduced. • Strength and limitations of corrosion growth rate models/ILI tools are discussed. • For pipeline integrity management programs using more than one corrosion growth rate model/ILI tool is suggested.

  20. Erosion and erosion-corrosion

    International Nuclear Information System (INIS)

    Isomoto, Yoshinori

    2008-01-01

    It is very difficult to interpret the technical term of erosion-corrosion' which is sometimes encountered in piping systems of power plants, because of complicated mechanisms and several confusing definitions of erosion-corrosion phenomena. 'FAC (flow accelerated corrosion)' is recently introduced as wall thinning of materials in power plant systems, as a representative of 'erosion-corrosion'. FAC is, however, not necessarily well understood and compared with erosion-corrosion. This paper describes firstly the origin, definition and fundamental understandings of erosion and erosion-corrosion, in order to reconsider and reconfirm the phenomena of erosion, erosion-corrosion and FAC. Next, typical mapping of erosion, corrosion, erosion-corrosion and FAC are introduced in flow velocity and environmental corrosiveness axes. The concept of damage rate in erosion-corrosion is finally discussed, connecting dissolution rate, mass transfer of metal ions in a metal oxide film and film growth. (author)

  1. Estimation of the activity and doses to personnel which intake Iodine 131 by coffee consumption in a cabinet of Nuclear Medicine

    International Nuclear Information System (INIS)

    Ruiz C, M.A.; Alfaro L, M.; Salinas, J.A.; Molina, G.

    2003-01-01

    Soon after an incident in a cabinet of nuclear medicine, its were carried out in the National Institute of Nuclear Research of Mexico (ININ), a series of bio essays measurements by whole-body counting to six people attributed to this cabinet. Of six people, five are classified as Occupational Exposed Personnel (POE), and the other one that works as secretary, according to the General Regulation of Radiological Safety, is classified as public member. Six people that were involved in this incident, the one which presumably it took place among November 15 and 18, 2002 and that it consisted on the effusion of a vial containing an unknown quantity of Iodine-131 to a coffeepot, they ingested coffee in diverse quantities. The Iodine-131 is used in nuclear medicine, so much for the illnesses diagnostic like in the treatment of thyroid cancer and of hyperthyroidism. (Author)

  2. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    MacDonal, Digby D.; Marx, Brian M.; Ahn, Sejin; Ruiz, Julio de; Soundararajan, Balaji; Smith, Morgan; Coulson, Wendy

    2005-06-15

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO3, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair.

  3. Using half-cell potential measurement to access the severity of corrosion in reinforced concrete structures in Gentilly-2 reactor building

    International Nuclear Information System (INIS)

    Picard, S.; Kadoum, N.; Poirier, F.

    2009-01-01

    The half-cell potential technique has been used to assess the corrosion in the reactor's building ring beam of the Gentilly-2 nuclear power plant. It is a non-destructive technique based on the ASTM C 876 Standard. Corrosion is the result of a difference of potential between anodic and cathodic zones within the re-bars network and these potential differences are measured in the half-cell potential technique. Time exposure is the leading factor and we recommend the installation of permanent electrodes of reference in strategic areas. The results show a low corrosion activity level on 98% of the investigated surface and no severe corrosion potential reading has been registered. Furthermore the exercise shows that the repair technique has no influence on the corrosion activity of the steel network. Since most of the readings are located in the low corrosion activity level (from 0 to -100 mV), it illustrates that there is heterogeneity of the corrosion activity within the ring beam. We recommend a system to monitor the evolution of the corrosion phenomena in real time. The installation of reference electrodes positioned in some ring beam strategic areas is a simple and accurate way of monitoring the corrosion activity of the steel in the structure. In the case where an evolution in higher level is noted in the corrosion activity, it would be possible to act and prevent any further degradation of the structure

  4. Vadose zone monitoring for hazardous waste sites

    International Nuclear Information System (INIS)

    Singley, J.E.; Beaudet, B.A.; Markey, P.H.; De Berry, D.W.; Kidwell, J.R.; Malish, D.A.

    1985-01-01

    The corrosion of water treatment and supply systems is a very significant concern. Not only does it affect the aesthetic quality of the water but it also has an economic impact and poses adverse health implications. Corrosion by-products containing materials such as lead and cadmium have been associated with serious risks to the health of consumers of drinking water. In addition, corrosion-related contaminants commonly include compounds such as zinc, iron, and copper, which adversely affect the aesthetic aspects of the water. This book presents a guidance manual for corrosion control with sections on how and why corrosion occurs and how best to handle it. It also reviews the various materials used in the water works industry and their corrosion characteristics, as well as monitoring and detection techniques. Emphasis is placed on assessing the conditions and water quality characteristics due to the corrosion or deterioration of each of these materials

  5. Vadose zone monitoring for hazardous waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Singley, J.E.; Beaudet, B.A.; Markey, P.H.; De Berry, D.W.; Kidwell, J.R.; Malish, D.A.

    1985-01-01

    The corrosion of water treatment and supply systems is a very significant concern. Not only does it affect the aesthetic quality of the water but it also has an economic impact and poses adverse health implications. Corrosion by-products containing materials such as lead and cadmium have been associated with serious risks to the health of consumers of drinking water. In addition, corrosion-related contaminants commonly include compounds such as zinc, iron, and copper, which adversely affect the aesthetic aspects of the water. This book presents a guidance manual for corrosion control with sections on how and why corrosion occurs and how best to handle it. It also reviews the various materials used in the water works industry and their corrosion characteristics, as well as monitoring and detection techniques. Emphasis is placed on assessing the conditions and water quality characteristics due to the corrosion or deterioration of each of these materials.

  6. Accelerated Corrosion Testing

    Science.gov (United States)

    1982-12-01

    Treaty Organization, Brussels, 1971), p. 449. 14. D. 0. Sprowls, T. J. Summerson, G. M. Ugianski, S. G. Epstein, and H. L. Craig , Jr., in Stress...National Association of Corrosion Engineers Houston, TX, 1972). 22. H. L. Craig , Jr. (ed.), Stress Corrosion-New Approaches, ASTM-STP- 610 (American...62. M. Hishida and H. Nakada, Corrosion 33 (11) 403 (1977). b3. D. C. Deegan and B. E. Wilde, Corrosion 34 (6), 19 (1978). 64. S. Orman, Corrosion Sci

  7. Inhibition of the Cu65/Zn35 brass corrosion by natural extract of Camellia sinensis

    International Nuclear Information System (INIS)

    Ramde, Tambi; Rossi, Stefano; Zanella, Caterina

    2014-01-01

    In this work, the corrosion inhibition of brass was studied using natural plant extract, Camellia sinensis, in 0.1 M Na2SO4 solutions with pH 7 and pH 4. Electrochemical techniques (potentiodynamic polarization, electrochemical impedance spectroscopy) and scanning electron microscopy (SEM) were applied to study the brass corrosion behavior in presence and absence of the extract. The results indicated that the extract is a very effective corrosion inhibitor for brass corrosion process in both the acidic and neutral media by virtue of adsorption. The inhibition effect increases by time as demonstrated by the EIS monitoring for 120 h. In the blank solution the corrosion process leads to the formation of a dark oxide patina at pH 7 and induces localized corrosion morphology at pH 4. The extract presence can avoid both the dark patina and the pits formation.

  8. Inhibition of the Cu65/Zn35 brass corrosion by natural extract of Camellia sinensis

    Energy Technology Data Exchange (ETDEWEB)

    Ramde, Tambi, E-mail: t_ramde@univ-ouaga.bf [Equipe Chimie Physique et Electrochimie, Laboratoire de Chimie Moléculaire et des Matériaux, Université de Ouagadougou, 03 BP 7021 Ouagadougou 03 (Burkina Faso); Department of Industrial Engineering, University of Trento, via Sommarive 9, 38123 Trento (Italy); Rossi, Stefano; Zanella, Caterina [Department of Industrial Engineering, University of Trento, via Sommarive 9, 38123 Trento (Italy)

    2014-07-01

    In this work, the corrosion inhibition of brass was studied using natural plant extract, Camellia sinensis, in 0.1 M Na2SO4 solutions with pH 7 and pH 4. Electrochemical techniques (potentiodynamic polarization, electrochemical impedance spectroscopy) and scanning electron microscopy (SEM) were applied to study the brass corrosion behavior in presence and absence of the extract. The results indicated that the extract is a very effective corrosion inhibitor for brass corrosion process in both the acidic and neutral media by virtue of adsorption. The inhibition effect increases by time as demonstrated by the EIS monitoring for 120 h. In the blank solution the corrosion process leads to the formation of a dark oxide patina at pH 7 and induces localized corrosion morphology at pH 4. The extract presence can avoid both the dark patina and the pits formation.

  9. Characterisation of corrosion products on pipeline steel under cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Lanarde, Lise [Gaz de France Research and Development Division, 361 avenue du President Wilson, BP33, 93211 Saint Denis La Plaine (France)]|[UPR15 du CNRS, Laboratoire des Interfaces et Systemes Electrochimiques, Universite Pierre et Marie Curie, C.P. 133, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Campaignolle, Xavier; Karcher, Sebastien; Meyer, Michel [Gaz de France Research and Development Division, 361 avenue du President Wilson, BP33, 93211 Saint Denis La Plaine (France); Joiret, Suzanne [UPR15 du CNRS, Laboratoire des Interfaces et Systemes Electrochimiques, Universite Pierre et Marie Curie, C.P. 133, 4 Place Jussieu 75252 Paris Cedex 05 (France)

    2004-07-01

    . The corrosion products were characterized by Raman spectroscopy, SEM and X-rays diffraction. In-situ tests with the Raman spectrometer were carried out to monitor the corrosion products evolution with time. (authors)

  10. Experience in the application of erosion-corrosion prediction programs

    International Nuclear Information System (INIS)

    Castiella Villacampa, E.; Cacho Cordero, L.; Pascual Velazquez, A.; Casar Asuar, M.

    1994-01-01

    Recently the results of the Nuclear Regulatory Commission's follow-on programme relating to the application of erosion-corrosion supervision and control programs were published. The main problems encountered in their practical application are highlighted, namely those associated with prediction, calculation of minimum thickness acceptable by code, results analyses of the thicknesses measured using ultrasound technology, cases of incorrect substitution, etc. A number of power plants in Spain are currently using a computerised prediction and monitoring program for the erosion-corrosion phenomenon. The experience gained in the application of this program has been such that it has led to a number or benefits: an improvement in the application of the program, proof of its suitability to real situation, the establishment of a series of criteria relative to the inclusion or exclusion of consideration during data input, the monitoring of the phenomenon, selection of elements for inspection, etc. The report describes these areas, using typical examples as illustrations. (Author)

  11. Evaluation on corrosively dissolved gold induced by alkanethiol monolayer with atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Cao Zhong; Zhang Ling; Guo Chaoyan; Gong Fuchun; Long Shu; Tan Shuzhen; Xia Changbin; Xu Fen; Sun Lixian

    2009-01-01

    We have monitored a gold corrosive dissolution behavior accompanied in n-alkanethiol like n-dodecanethiol assembled process with in situ quartz crystal microbalance (QCM), and then observed it with atomic force microscopy (AFM) which showed an evident image of corrosive defects or holes produced on gold substrate, corresponding to gold dissolution induced by the alkanethiol molecules in the presence of oxygen. For detection of the dissolved gold defects during alkanethiol assembled process, an atomic absorption spectroscopy (AAS) has been carried out in this paper, and the detection limit for the dissolved gold could be evaluated to be 15.4 ng/mL. The amount of dissolved gold from the substrates of gold plates as functions of immersion time, acid media, solvents and thiol concentration has been examined in the oxygen saturated solutions. In comparison with in situ QCM method, the kinetics behavior of the long-term gold corrosion on the gold plates in 1.0 mmol/L of n-dodecanethiol solution determined with AAS method was a slow process, and its corrosion rate on gold dissolution could be evaluated to be about 4.4 x 10 -5 ng.cm -2 .s -1 , corresponding to 1.3 x 10 8 Au atoms.cm -2 .s -1 , that was much smaller than that of initial rate monitored with in situ QCM. Both kinetics equations obtained with QCM and AAS showed a consistent corrosion behavior on gold surfaces.

  12. Corrosion inhibition of Armco iron by 2-mercaptobenzimidazole in sodium chloride 3% media

    International Nuclear Information System (INIS)

    Amar, H.; Tounsi, A.; Makayssi, A.; Derja, A.; Benzakour, J.; Outzourhit, A.

    2007-01-01

    The effect of 2-mercaptobenzimidazole (2MBI) on the corrosion of Armco iron in NaCl media has been investigated in relation to the concentration of the inhibitor by various corrosion monitoring techniques. Surface morphology was studied by scanning electron microscopy (SEM). Results obtained revealed that 2MBI is a good anodic inhibitor. The addition of increasing concentrations of 2MBI moves the corrosion potential towards positive values and reduces the corrosion rate. EIS results show that the changes in the impedance parameters (R t and C dl ) with concentrations of 2MBI is indicative of the adsorption of these molecules leading to the formation of a protective layer on iron surface. The adsorption of this compound is also found to obey Langmuir's adsorption isotherm in NaCl

  13. Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process

    International Nuclear Information System (INIS)

    Zhang Ruijin; Castel, Arnaud; Francois, Raoul

    2010-01-01

    This paper deals with the evolution of the corrosion pattern based on two beams corroded by 14 years (beam B1CL1) and 23 years (beam B2CL1) of conservation in a chloride environment. The experimental results indicate that, at the cracking initiation stage and the first stage of cracking propagation, localized corrosion due to chloride ingress is the predominant corrosion pattern and pitting corrosion is the main factor that influences the cracking process. As corrosion cracking increases, general corrosion develops rapidly and gradually becomes predominant in the second stage of cracking propagation. A comparison between existing models and experimental results illustrates that, although Vidal et al.'s model can better predict the reinforcement corrosion of beam B1CL1 under localized corrosion, it cannot predict the corrosion of beam B2CL1 under general corrosion. Also, Rodriguez's model, derived from the general corrosion due to electrically accelerated corrosion experiments, cannot match natural chloride corrosion irrespective of whether corrosion is localized or general. Thus, for natural general corrosion in the second stage of cracking propagation, a new model based on the parameter of average steel cross-section loss is put forward to predict steel corrosion from corrosion cracking.

  14. Atmospheric corrosion tests along the Norwegian-Russian border. Part II

    Energy Technology Data Exchange (ETDEWEB)

    Henriksen, J.F.; Mikhailov, A.A.

    1997-12-31

    A bilateral exposure programme was carried out along the Norwegian-Russian border in 1990-1991, 1992-1993 and 1993-1994 to evaluate quantitatively the effect of sulphur pollutants on the atmospheric corrosion of important materials in sub-arctic climate. The first part of the programme demonstrated that also in subarctic climate do metals corrode depending on the atmospheric corrosivity, and dose-response functions were derived which combined the effects of SO{sub 2} and time of wetness. The second part of the programme, which is described in this report, involved exposures of carbon steel, zinc and copper at two sites in Norway and three sites in Russia. It is concluded that the accelerated atmospheric corrosion of metals in regions along the border is mainly due to dry deposition of sulphur. At some sites, dry deposition of Cl contributes because of sea-salt aerosols. The corrosivity of acid precipitation is certain but could not be represented as a function because of the small differences observed in the pH values at the different sites. At all test sites the kinetics of corrosion of steel, zinc and copper are characterized by a reduced corrosion rate after one year of exposure. Time of wetness is an important parameter in predicting atmospheric corrosion of metals even on a regional scale. Hence, for monitoring and for trend-effect analysis, it is very important to determine the corrosivity of SO{sub 2} with time of wetness. In accordance with dose-response functions obtained, the yearly corrosion rate for steel and zinc are higher for the areas with higher amounts of dry deposition of Cl than for areas with analogous but only SO{sub 2}-containing atmosphere. 6 refs., 8 figs., 15 tabs.

  15. Design and monitoring of photostability systems for amlodipine dosage forms.

    Science.gov (United States)

    Ragno, G; Cione, E; Garofalo, A; Genchi, G; Ioele, G; Risoli, A; Spagnoletta, A

    2003-10-20

    Photostability of amlodipine (AML) has been monitored in several pharmaceutical inclusion systems characterized by plurimolecular aggregation of the drug and excipients with high molecular weight. Several formulations including cyclodextrins, liposomes and microspheres have been prepared and characterized. The photodegradation process has been monitored according to the conditions suggested by the ICH Guideline for photostability testing, by using a light cabinet equipped with a Xenon lamp and monitored by spectrophotometry. The formulations herein tested have been found to be able to considerably increase drug stability, when compared with usual pharmaceutical forms. The residual concentration detected in the inclusion complexes with cyclodextrins and liposomes was 90 and 77%, respectively, while a very good value of 97% was found for microspheres, after a radiant exposure of 11,340 kJm(-2).

  16. Effect of molybdate on phosphating of Nd-Fe-B magnets for corrosion protection

    Directory of Open Access Journals (Sweden)

    Adonis Marcelo Saliba-Silva

    2005-06-01

    Full Text Available Nd-Fe-B magnets are highly susceptible to corrosion and need protection against environment attack. The use of organic coatings is one of the main methods of corrosion protection of these materials. Data related to the effect of conversion coatings, such as phosphating, on corrosion performance of these magnets is still scarce. Studies about the effect of phosphating on the corrosion resistance of a commercial Nd-Fe-B sintered magnet indicated that it increases the corrosion resistance of these magnets, compared to non-phosphated magnets. In this study, the solution chemistry of a phosphating bath was altered with the addition of molybdate and its effect on the corrosion resistance of magnets investigated. Sintered magnet specimens were phosphated in solutions of 10 g/L NaH2PO4 (pH 3.8, either with or without molybdate [10-3 M MoO4(2-], to improve their corrosion resistance. The effect of phosphating time was also evaluated, and specimens were phosphated for 4 and 18 hours. To evaluate the corrosion performance of phosphated and unphosphated specimens, a corrosion test based on monitoring hydrogen evolution on the surface of the magnets was used. This technique revealed that the addition of molybdate to the phosphating solution improved the corrosion resistance of the magnets phosphated by immersion for short periods but had no beneficial effect if phosphated by immersion for longer periods.

  17. Humid-air and aqueous corrosion models for corrosion-allowance barrier material

    International Nuclear Information System (INIS)

    Lee, J.H.; Atkins, J.E.; Andrews, R.W.

    1995-01-01

    Humid-air and aqueous general and pitting corrosion models (including their uncertainties) for the carbon steel outer containment barrier were developed using the corrosion data from literature for a suite of cast irons and carbon steels which have similar corrosion behaviors to the outer barrier material. The corrosion data include the potential effects of various chemical species present in the testing environments. The atmospheric corrosion data also embed any effects of cyclic wetting and drying and salts that may form on the corroding specimen surface. The humid-air and aqueous general corrosion models are consistent in that the predicted humid-air general corrosion rates at relative humidities between 85 and 100% RH are close to the predicted aqueous general corrosion rates. Using the expected values of the model parameters, the model predicts that aqueous pitting corrosion is the most likely failure mode for the carbon steel outer barrier, and an earliest failure (or initial pit penetration) of the 100-mm thick barrier may occur as early as about 500 years if it is exposed continuously to an aqueous condition at between 60 and 70 degrees C

  18. The Effect of Fly Ash on the Corrosion Behaviour of Galvanised Steel Rebarsin Concrete

    Science.gov (United States)

    Tittarelli, Francesca; Mobili, Alessandra; Bellezze, Tiziano

    2017-08-01

    The effect of fly ash on the corrosion behaviour of galvanised steel rebars in cracked concrete specimens exposed to wet-dry cycles in a chloride solution has been investigated. The obtained results show that the use of fly ash, replacing either cement or aggregate, always improves the corrosion behaviour of galvanised steel reinforcements. In particular, the addition of fly ash, even in the presence of concrete cracks, decreases the corrosion rate monitored in very porous concretes, as those with w/c = 0.80, to values comparable with those obtained in good quality concretes, as those with w/c = 0.45. Therefore, fly ash cancels the negative effect, at least from the corrosion point of view, of a great porosity of the cement matrix.

  19. When can Electrochemical Techniques give Reliable Corrosion Rates on Carbon Steel in Sulfide Media?

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, Tor; Nielsen, Lars Vendelbo

    2005-01-01

    in combination with ferrous sulfide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 with electrochemical techniques - both by linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS). Oxygen entering the system accelerates......Effects of film formation on carbon steel in hydrogen sulfide media may corrupt corrosion rate monitoring by electrochemical techniques. Electrochemical data from hydrogen sulfide solutions, biological sulfide media and natural sulfide containing geothermal water have been collected and the process...... of film formation in sulfide solutions was followed by video. It can be shown that capacitative and diffusional effects due to porous reactive deposits tend to dominate the data resulting in unreliable corrosion rates measured by electrochemical techniques. The effect is strongly increased if biofilm...

  20. Quantitative measures of corrosion and prevention: application to corrosion in agriculture

    NARCIS (Netherlands)

    Schouten, J.C.; Gellings, P.J.

    1987-01-01

    The corrosion protection factor (c.p.f.) and the corrosion condition (c.c.) are simple instruments for the study and evaluation of the contribution and efficiency of several methods of corrosion prevention and control. The application of c.p.f. and c.c. to corrosion and prevention in agriculture in

  1. Evaluation of corrosive behavior of SAE 5155 by corrosion environment

    International Nuclear Information System (INIS)

    An, Jae Pil; Park, Keyung Dong

    2005-01-01

    In this study, the influence of shot peening and corrosive condition for corrosion property was investigated on immersed in 3.5% NaCl, 10% HNO 3 + 3% HF, 6% FeCl 3 . The immersion test was performed on two kinds of specimen. The immersion periods was performed 30days. Corrosion potential, weight loss were investigated from experimental results. From test results, the effect of shot peening on the corrosion was evaluated

  2. Influence of mictrostructure features on the corrosion behaviourof AZ91 alloy in chloride media

    Directory of Open Access Journals (Sweden)

    Lenka Bukovinová

    2014-11-01

    Full Text Available The influence of the microstructure of as-cast AZ91 magnesium alloy, which applied to solution annealing treatment and ageing treatment respectively, was evaluated in terms of its corrosion behaviour in 0.1 M NaCl solution at room temperature. The corrosion process was monitored by electrochemical impedance spectroscopy (EIS and the surface was characterized by scanning Kelvin probe force microscopy (SKPFM. The extent of corrosion damage was dependent on the microstructure. Surface potential maps indicated that, the surface potential of α-matrix is more positive than surface potential of β phase.

  3. Corrosion evaluation in insulated pipes by non destructive testing method

    International Nuclear Information System (INIS)

    Abd Razak Hamzah; Azali Muhammad; Mohammad Pauzi Ismail; Abd Nassir Ibrahim; Abd Aziz Mohamed; Sufian Saad; Saharuddin Sayuti; Shukri Ahmad

    2002-01-01

    In engineering plants, detection of corrosion and evaluation of deposit in insulated pipes using radiography method are considered as a very challenging tasks. In General this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is the wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most common technique is that based on the A-Scan, using either a normal flaw detector or some form of dedicated equipment. However, with recent development of ultrasonic technology, more advance method, namely B-Scan and C-scan techniques are also available. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method were studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Result of this study is presented and discussed in this paper. (Author)

  4. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Science.gov (United States)

    Huang, B. S.; Yin, W. F.; Sang, D. H.; Jiang, Z. Y.

    2012-10-01

    The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 °C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr5S8 phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  5. Degradation of aged plants by corrosion: 'Long cell action' in unresolved corrosion issues

    International Nuclear Information System (INIS)

    Saji, Genn

    2009-01-01

    In a series of previously published papers the author has identified that 'long cell action' corrosion plays a pivotal role in practically all unresolved corrosion issues for all types of nuclear power plants (e.g. PWR/VVER, BWR/RBMK and CANDU). Some of these unresolved issues are IGSCC, PWSCC, AOA and FAC (erosion-corrosion). In conventional corrosion science it is well established that 'long cell action' can seriously accelerate or suppress the local cell corrosion activities. Although long cell action is another fundamental mechanism of corrosion, especially in a 'soil corrosion' arena, potential involvement of this corrosion process has never been studied in nuclear and fossil power plants as far as the author has been able to establish. The author believes that the omission of this basic corrosion mechanism is the root cause of practically all un-resolved corrosion issues. In this paper, the author further elaborated on his assessment to other key corrosion issues, e.g. steam generator and turbine corrosion issues, while briefly summarizing previous discussions for completeness purposes, as well as introducing additional experimental and theoretical evidence of this basic corrosion mechanism. Due to the importance of this potential mechanism the author is calling for institutional review activities and further verification experiments in the form of a joint international project.

  6. A study on the initiation of pitting corrosion in carbon steel in chloride-containing media using scanning electrochemical probes

    International Nuclear Information System (INIS)

    Lin Bin; Hu Ronggang; Ye Chenqing; Li Yan; Lin Changjian

    2010-01-01

    Scanning electrochemical probes of corrosion potential and chloride ions were developed for the in situ monitoring of localized corrosion processes of reinforcing steel in NaCl-containing solution. The results indicated that the chloride ions (Cl - ) preferentially adsorbed and accumulated at the imperfect/defective sites, resulting in initiation and propagation of pitting corrosion on the reinforcing steel surface. An electron microprobe analyzer (EMPA) was used to examine the corrosion morphology and elemental distribution at the corroded location to investigate the origins of the preferential Cl - adsorption and pitting corrosion. By combining the in situ and ex situ images, we concluded that manganese sulfide inclusions in reinforcing steel are the most susceptible defects to pitting corrosion in chloride-containing solution.

  7. Quality Model of Foodstuff in the Control of Refrigerated Display Cabinet

    DEFF Research Database (Denmark)

    Cai, Junping; Risum, Jørgen; Thybo, Claus

    2006-01-01

    Commercial refrigerating systems need to be defrosted regularly to maintain a satisfactory performance. When defrosting the evaporator coil, the air temperature inside the display cabinet will increase, and float outside the normal temperature range for a period of time, the question is what...... happens to the food inside during this period, when we look at the quality factor? This paper discusses quality model of foodstuff, different scenarios of defrost scheme are simulated, questions such as how the defrost temperature and duration influence the food temperature, thus the food quality, as well...... as what is the optimal defrost scheme from food quality point of view are answered. This will serve as a prerequisite of designing of optimal control scheme for the commercial refrigeration system, aiming at optimizing a weighed cost function of both food quality and overall energy consumption of system....

  8. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  9. Effect of Fe ion concentration on corrosion of carbon steel in CO2 environment

    DEFF Research Database (Denmark)

    Rogowska, Magdalena; Gudme, J.; Rubin, A.

    2016-01-01

    In this work, the corrosion behaviour of steel wires in solutions containing different concentrations of Fe2+ was investigated by the linear polarisation resistance method, while the evolution of pH was monitored in situ and changes of the Fe2+ concentration were monitored ex situ. Characterisation...

  10. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.S., E-mail: yinwenfeng2010@163.com [College of Materials Science and Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China); Yin, W.F. [College of Mechatronic Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China); Sang, D.H. [Sheng Li Construction Group International Engineering Department, Shandong, Dongying, 257000 (China); Jiang, Z.Y. [College of Materials Science and Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer The corrosion of a carbon-manganese steel and a stainless steel in sulfur and/or naphthenic acid media was investigated. Black-Right-Pointing-Pointer The corrosion rate of the carbon-manganese steel increased with the increase of the acid value and sulfur content. Black-Right-Pointing-Pointer The critical values of the concentration of sulfur and acid for corrosion rate of the stainless steel were ascertained respectively. Black-Right-Pointing-Pointer The stainless steel is superior to the carbon-manganese steel in corrosion resistance because of the presence of stable Cr{sub 5}S{sub 8} phases. - Abstract: The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 Degree-Sign C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr{sub 5}S{sub 8} phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  11. Corrosion Behavior of SA508 Coupled with and without Magnetite in Chemical Cleaning Environments

    International Nuclear Information System (INIS)

    Son, Yeong-Ho; Jeon, Soon-Hyeok; Song, Geun Dong; Hur, Do Haeng; Lee, Jong-Hyeon

    2017-01-01

    To mitigate these problems, chemical cleaning process has been widely used. However, the chemical cleaning solution can affect the corrosion of SG structural materials as well as the magnetite dissolution. During the chemical cleaning process, the galvanic corrosion between SG materials and magnetite is also anticipated because they are in electrical connection. However, the corrosion measurement or monitoring for the materials has been performed without consideration of galvanic effect coupled with magnetite during the chemical cleaning process. In this study, the effect of temperature and EDTA concentration on the corrosion behavior of SA508 tubesheet material with and without magnetite was studied in chemical cleaning solutions. The galvanic corrosion behavior between SA508 and magnetite is predicted by using the mixed potential theory and its effect on the corrosion rate of SA508 is also discussed. By newly designed immersion test, it was confirmed that the extent of galvanic corrosion effect between SA508 and magnetite increased with increasing temperature and EDTA concentration. The galvanic corrosion behavior of SA508 coupled with magnetite in chemical cleaning environments was predicted by the mixed potential theory and verified by ZRA and LP technique. Galvanic coupling increased the corrosion rate of SA508 due to the shift in its potential to the anodic direction. Therefore, the galvanic corrosion effect between SA508 and magnetite should be considered when the corrosion measurement is performed during the chemical cleaning process in steam generators.

  12. Resistance to Corrosion of Reinforcement of High Volume Fly Ash Concrete

    International Nuclear Information System (INIS)

    Kwon, S. O.; Bae, S. H.; Lee, H. J.; Lee, K. M.; Jung, S. H.

    2014-01-01

    Due to the increasing of interest about the eco-friendly concrete, it is increased to use concretes containing by-products of industry such as fly ash(FA), ground granulated blast furnace slag(GGBFS), silica fume(SF), and etc. Especially, these are well known for improving the resistances to reinforcement corrosion in concrete and decreasing chloride ion penetration. The purpose of this experimental research is to evaluate the resistance against corrosion of reinforcement of high volume fly ash(HVFA) concrete which is replaced with high volume fly ash for cement volume. For this purpose, the concrete test specimens were made for various strength level and replacement ratio of FA, and then the compressive strength and diffusion coefficient for chloride ion of them were measured for 28, 91, and 182 days, respectively. Also, corrosion monitoring by half cell potential method was carried out for the made lollypop concrete test specimens to detect the time of corrosion initiation for reinforcement in concrete. As a result, it was observed from the test results that the compressive strength of HVFA concrete was decreased with increasing replacement ratio of FA but long-term resistances against reinforcement corrosion and chloride ion penetration of that were increased

  13. Erosion-corrosion

    International Nuclear Information System (INIS)

    Aghili, B.

    1999-05-01

    A literature study on erosion-corrosion of pipings in the nuclear industry was performed. Occurred incidents are reviewed, and the mechanism driving the erosion-corrosion is described. Factors that influence the effect in negative or positive direction are treated, as well as programs for control and inspection. Finally, examples of failures from databases on erosion-corrosion are given in an attachment

  14. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    International Nuclear Information System (INIS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-01-01

    Highlights: • Corrosion behaviors of a PEO coating was investigated after the salt spray test. • Corrosion products have significant effects on corrosion behaviors of the coating. • An electrochemical corrosion model is proposed. - Abstract: The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  15. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Guo, Changhong; Jiang, Guirong [College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004 (China); Shen, Dejiu, E-mail: DejiuShen@163.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-08-15

    Highlights: • Corrosion behaviors of a PEO coating was investigated after the salt spray test. • Corrosion products have significant effects on corrosion behaviors of the coating. • An electrochemical corrosion model is proposed. - Abstract: The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  16. Advanced on-line monitoring of power plant water/steam quality

    Energy Technology Data Exchange (ETDEWEB)

    Perboni, G.; Rocchini, G.; Sigon, F. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-03-01

    To improve the behaviour and resistance of materials in the water-steam cycle critical components (steam generator, condensate heaters, turbine) it is necessary to adopt proper actions for promoting formation and integrity of surface protective oxide layers and preventing general and localised corrosion and transport processes of corrosion products throughout the cycle. In this report two important topics are reported: steam side corrosion in the low pressure turbines induced by the `first condensate` in the final stages of the turbine, and the stability of the oxides layers as a function of the condensate chemistry, with particular attention to the transport of corrosion products to the boiler. Furthermore an innovative technique for monitoring some physico-chemical parameters at the actual fluid temperature (150-300C) using new electrochemical sensors improved by ENEL/CRAM is studied: pH, conductivity, corrosion rate, corrosion and redox potentials.ENEL/CRAM validated on lab-scale testing loops these sensors and carried out the following programs: calibration procedures, reliability of the response, long-term stability and assessment of a reduced maintenance. Applications of the electrochemical methods to fossil fired units have demonstrated their validity for monitoring the cycle chemistry and the resistance to corrosion of structural materials in real time.

  17. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon

    2004-10-01

    The waste package design for the License Application is a double-wall waste package underneath a protective drip shield (BSC 2004 [DIRS 168489]; BSC 2004 [DIRS 169480]). The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating waste package performance. The WPOB is constructed of Alloy 22 (UNS N06022), a highly corrosion-resistant nickel-based alloy. The inner vessel of the waste package is constructed of Stainless Steel Type 316 (UNS S31600). Before it fails, the Alloy 22 WPOB protects the Stainless Steel Type 316 inner vessel from exposure to the external environment and any significant degradation. The Stainless Steel Type 316 inner vessel provides structural stability to the thinner Alloy 22 WPOB. Although the waste package inner vessel would also provide some performance for waste containment and potentially decrease the rate of radionuclide transport after WPOB breach before it fails, the potential performance of the inner vessel is far less than that of the more corrosion-resistant Alloy 22 WPOB. For this reason, the corrosion performance of the waste package inner vessel is conservatively ignored in this report and the total system performance assessment for the license application (TSPA-LA). Treatment of seismic and igneous events and their consequences on waste package outer barrier performance are not specifically discussed in this report, although the general and localized corrosion models developed in this report are suitable for use in these scenarios. The localized corrosion processes considered in this report are pitting corrosion and crevice corrosion. Stress corrosion cracking is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]).

  18. Inhibition Effect of Deanol on Mild Steel Corrosion in Dilute ...

    African Journals Online (AJOL)

    The influence of deanol on the corrosion behaviour of mild steel in dilute sulphuric acid with sodium chloride addition was studied by means of mass-loss, potentiodynamic polarization, electrode potential monitoring, scanning electron microscopy and statistical analysis. Results show that deanol performed excellently with ...

  19. Development and characterization of oxalate coatings for the corrosion protection of metallic zinc

    International Nuclear Information System (INIS)

    Oliveira, M.; Ferreira Junior, J.M.; Baker, M.A.; Rossi, J.; Costa, I.

    2016-01-01

    This work aims to develop and characterize surface treatments for corrosion protection of zinc. Oxalic acid (OA) was used and the concentration range selected was from 10"-"1 M to 1 M. The chemical composition of the layers formed was evaluated by XPS, and the morphology and thickness, by FIB and EDS, respectively. The corrosion resistance was monitored by Electrochemical Impedance Spectroscopy (EIS). The results showed that a zinc oxalate layer had been formed in both concentrations but of different thickness and crystal sizes but similar morphology. The EIS results showed that the layer formed in the lower concentration solution provided corrosion protection for long periods whereas the one obtained at higher concentration did not protect the surface. The results led to conclude that one of the treatments tested is highly indicated for corrosion protection of zinc. (author)

  20. Some principles of service life calculation of reinforcements and in situ corrosion monitoring by sensors in the radioactive waste containers of El Cabril disposal (Spain)

    International Nuclear Information System (INIS)

    Andrade, C.; Martinez, I.; Castellote, M.; Zuloaga, P.

    2006-01-01

    Reinforced concrete is the most usual material used in engineered barriers in low-level nuclear waste disposal facilities. The record of modern concrete is no longer than about 100 years. During this time, it has been noticed that the material gives a good performance in many environments, however several chemical aggressive species in water, soil or the atmosphere may react with the cement mineralogical phases and perturb its integrity. El Cabril repository has a design life objective of longer than 300 years and therefore, these structures should maintain their main characteristics during this target service life. The potential aggressive conditions that the cement-based materials can suffer have been identified to be: carbonation, water permeation (leaching) and reinforcement corrosion. More unlikely may be the biological attack. Chlorides are not in the environment but they are inside the drums as part of analytical wastes. Vaults and containers are made of a very similar concrete composition while the mortar is specifically designed to be pumpable, with low hydration heat, low shrinkage and of low permeability. In this paper results of concrete characteristics are given as well as the monitoring of the behaviour of reinforcement corrosion parameters from 1995 on the same environmental conditions of the actual waste. This monitoring has been made in a buried structure with embedded sensors. The effect of temperature is commented