WorldWideScience

Sample records for corrosion mitigation effectiveness

  1. Microencapsulation Technology for Corrosion Mitigation by Smart Coatings

    Science.gov (United States)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.

    2011-01-01

    A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain

  2. Downhole corrosion mechanisms and mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, D. [Baker Hughes Canada, Calgary, AB (Canada)

    2010-07-01

    Pipeline corrosion refers to its deterioration because of a reaction with its environment. Although the physical condition of the metal at the anode initiates the corrosion process, it is the chemistry and composition of the electrolyte that controls the rate of the corrosion reaction and the severity of the corrosion. This presentation described the role of corrosion rate accelerators, with particular reference to dissolved gases such as oxygen, hydrogen sulfides and carbon dioxide, as well as pH levels, salinity, flow rate, temperature and presence of solids such as iron sulfides and sulfur. The effects of these accelerators were shown to be additive. Mitigation strategies include using materials such as resistant metal alloys or fiberglass, and applying coatings and chemical inhibitors. The importance of corrosion monitoring was also emphasized, with particular reference to the value of examining the number of corrosion related failures that have occurred over a fixed period of time. It was concluded that the ability to analyze samples of failed materials results in a better understanding of the cause of the failure, and is an integral part of designing any successful corrosion control program. tabs., figs.

  3. Mitigation of corrosion product ingress into SG's

    International Nuclear Information System (INIS)

    Han, S.H.

    1988-01-01

    Design and operation experiences to mitigate corrosion product ingress into SGs in Korea nuclear power plants are briefly reviewed. Maintaining the feedwater pH above 9.6 with morpholine seems to contribute significantly to reduction of iron transport to SGs. Measured iron transport rates were 4.8 g/hr/100 MWe at pH 9.8 and 2.8 g/hr/100 MWe at 9.3, respectively. Removal of corrosion products through SG blowdown is very limited. Its removal efficiency at the higher pH plant was in the neighborhood of 10 %. In one of the Korea Nuclear Units, a large amount of sludge piles were found in the middle of tube bundles especially on the cold leg side. Damaged tubes were identified by the multi-frequency eddy current tests and plugged later during the refueling period. Intermittent blowdown-rate increase was tried to enhance ionic impurity removal through SG blowdown. Even though it was not effective against Na, removal other impurity was improved, resulting in prolonged condensate polisher operation periods by 1 - 2 days. Two-bed polisher design, a cation bed followed by a mixed bed, was chosen for future PWR plants to enhance corrosion product filtering capability of the polishers. Condensate pump discharge polishing and divided hot well polishing methods are currently in consideration. (Nogami, K.)

  4. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation

    Science.gov (United States)

    Gąsiorek, Jolanta; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-01

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented. PMID:29373540

  5. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation

    Directory of Open Access Journals (Sweden)

    Jolanta Gąsiorek

    2018-01-01

    Full Text Available Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented.

  6. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation.

    Science.gov (United States)

    Gąsiorek, Jolanta; Szczurek, Anna; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-26

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented.

  7. Steam generator degradation: Current mitigation strategies for controlling corrosion

    International Nuclear Information System (INIS)

    Millett, P.

    1997-01-01

    Steam Generator degradation has caused substantial losses of power generation, resulted in large repair and maintenance costs, and contributed to significant personnel radiation exposures in Pressurized Water Reactors (PWRs) operating throughout the world. EPRI has just published the revised Steam Generator Reference Book, which reviews all of the major forms of SG degradation. This paper discusses the types of SG degradation that have been experienced with emphasis on the mitigation strategies that have been developed and implemented in the field. SG degradation is presented from a world wide perspective as all countries operating PWRs have been effected to one degree or another. The paper is written from a US. perspective where the utility industry is currently undergoing tremendous change as a result of deregulation of the electricity marketplace. Competitive pressures are causing utilities to strive to reduce Operations and Maintenance (O ampersand M) and capital costs. SG corrosion is a major contributor to the O ampersand M costs of PWR plants, and therefore US utilities are evaluating and implementing the most cost effective solutions to their corrosion problems. Mitigation strategies developed over the past few years reflect a trend towards plant specific solutions to SG corrosion problems. Since SG degradation is in most cases an economic problem and not a safety problem, utilities can focus their mitigation strategies on their unique financial situation. Accordingly, the focus of R ampersand D has shifted from the development of more expensive, prescriptive solutions (e.g. reduced impurity limits) to corrosion problems to providing the utilities with a number of cost effective mitigation options (e.g. molar ratio control, boric acid treatment)

  8. Critical corrosion issues and mitigation strategies impacting the operability of LWR's

    International Nuclear Information System (INIS)

    Jones, R.L.

    1996-01-01

    Recent corrosion experience in US light water reactor nuclear power plants is reviewed with emphasis on mitigation strategies to control the cost of corrosion to LWR operators. Many components have suffered corrosion problems resulting in industry costs of billions of dollars. The most costly issues have been stress corrosion cracking of stainless steel coolant piping in boiling water reactors and corrosion damage to steam generator tubes in pressurized water reactors. Through industry wide R and D programs these problems are now understood and mitigation strategies have been developed to address the issues in a cost effective manner. Other significant corrosion problems for both reactor types are briefly reviewed. Tremendous progress has been made in controlling corrosion, however, minimizing its impact on plant operations will present a continuing challenge throughout the remaining service lives of these power plants

  9. Corrosion-Mitigating, Bondable, Fluorinated Barrier Coating for Anodized Magnesium

    Science.gov (United States)

    2016-05-01

    ARL-TR-7669 ● MAY 2016 US Army Research Laboratory Corrosion -Mitigating, Bondable, Fluorinated Barrier Coating for Anodized...ARL-TR-7669 ● MAY 2016 US Army Research Laboratory Corrosion -Mitigating, Bondable, Fluorinated Barrier Coating for Anodized...TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) May 2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) January–December 2015 4. TITLE

  10. Stress corrosion cracking mitigation by ultrasound induced cavitation technique

    Energy Technology Data Exchange (ETDEWEB)

    Fong, C.; Lee, Y.C. [Industrial Technology Research Inst., Taiwan (China); Yeh, T.K. [National Tsing Hua Univ., Taiwan (China)

    2014-07-01

    Cavitation is usually considered as a damaging mechanism under erosion corrosion condition. However, if used appropriately, cavitation can be applied as a peening technique for surface stress modification process. The aim of surface stress modification is to alter the stress state of processed surface through direct or indirect thermo-mechanical treatments to reduce cracking problems initiated from surface. Ultrasonic devices are used to generate cavitation bubbles which when collapse will produce high intensity shock waves and high velocity micro-jet streams. The cavitation impact when properly controlled will create plastically deformed compressive layers in nearby surfaces and minimize cracking susceptibility in corrosive environments. This study is to investigate the effectiveness of Ultrasound Induced Cavitation (UIC) technique in surface stress improvement. Ultrasonic cavitation treatment of SS304 stainless steel under pure water is carried out with different controlling parameters. The cavitation impact on SS304 surface is measured in terms of surface roughness, surface strain, hardness, and microstructural characteristics. The in-depth residual stress distribution and crack mitigation effect are also evaluated. Test result indicates ultrasound induced cavitation treatment only has minor effect on surface physical characteristics. The extent of compressive stress produced on top surface exceeds the yield strength and can reach a depth above 150 μm. The maximum surface strain measured is generally below 20%, which is not considered detrimental to accelerate crack initiation. Stress corrosion verification tests show UIC treatment is capable in preventing environmental assisted cracking of stainless steels in severely corrosive conditions. In view of the test results, UIC technique has demonstrated to be a low cost, low contaminating, and effective surface stress improvement technology. (author)

  11. Stress corrosion cracking mitigation by ultrasound induced cavitation technique

    International Nuclear Information System (INIS)

    Fong, C.; Lee, Y.C.; Yeh, T.K.

    2014-01-01

    Cavitation is usually considered as a damaging mechanism under erosion corrosion condition. However, if used appropriately, cavitation can be applied as a peening technique for surface stress modification process. The aim of surface stress modification is to alter the stress state of processed surface through direct or indirect thermo-mechanical treatments to reduce cracking problems initiated from surface. Ultrasonic devices are used to generate cavitation bubbles which when collapse will produce high intensity shock waves and high velocity micro-jet streams. The cavitation impact when properly controlled will create plastically deformed compressive layers in nearby surfaces and minimize cracking susceptibility in corrosive environments. This study is to investigate the effectiveness of Ultrasound Induced Cavitation (UIC) technique in surface stress improvement. Ultrasonic cavitation treatment of SS304 stainless steel under pure water is carried out with different controlling parameters. The cavitation impact on SS304 surface is measured in terms of surface roughness, surface strain, hardness, and microstructural characteristics. The in-depth residual stress distribution and crack mitigation effect are also evaluated. Test result indicates ultrasound induced cavitation treatment only has minor effect on surface physical characteristics. The extent of compressive stress produced on top surface exceeds the yield strength and can reach a depth above 150 μm. The maximum surface strain measured is generally below 20%, which is not considered detrimental to accelerate crack initiation. Stress corrosion verification tests show UIC treatment is capable in preventing environmental assisted cracking of stainless steels in severely corrosive conditions. In view of the test results, UIC technique has demonstrated to be a low cost, low contaminating, and effective surface stress improvement technology. (author)

  12. Study on mitigation of stress corrosion cracking by peening

    International Nuclear Information System (INIS)

    Maeguchi, Takaharu; Tsutsumi, Kazuya; Toyoda, Masahiko; Ohta, Takahiro; Okabe, Taketoshi; Sato, Tomonobu

    2010-01-01

    In order to verify stability of residual stress improvement effect of peeing for mitigation of stress corrosion cracking in components of PWR plant, relaxation behavior of residual stress induced by water jet peening (WJP) and ultrasonic shot peening (USP) on surface of alloy 600 and its weld metal was investigated under various thermal aging and stress condition considered for actual plant operation. In the case of thermal aging at 320-380degC, surface residual stress relaxation was observed at the early stage of thermal aging, but no significant stress relaxation was observed after that. Applied stress below yield stress does not significantly affect stress relaxation behavior of surface residual stress. Furthermore, it was confirmed that cyclic stress does not accelerate stress relaxation. (author)

  13. ENVIRONMENTALLY BENIGN MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II; William Bogan

    2004-01-31

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. The technical approach for this quarter included the fractionation of extracts prepared from several varieties of pepper plants, and using several solvents, by high performance liquid chromatography (HPLC). A preliminary determination of antimicrobial activities of the new extracts and fractions using a growth inhibition assay, and evaluation of the extracts ability to inhibit biofilm formation was also performed. The analysis of multiple extracts of pepper plants and fractions of extracts of pepper plants obtained by HPLC illustrated that these extracts and fractions are extremely complex mixtures of chemicals. Gas chromatography-mass spectrometry was used to identify the chemical constituents of these extracts and fractions to the greatest degree possible. Analysis of the chemical composition of various extracts of pepper plants has illustrated the complexity of the chemical mixtures present, and while additional work will be performed to further characterize the extracts to identify bioactive compounds the focus of efforts should now shift to an evaluation of the ability of extracts to inhibit corrosion in mixed culture biofilms, and in pure cultures of bacterial types which are known or believed to be important in corrosion.

  14. Development of the mitigation method for carbon steel corrosion with ceramics in PWR secondary system

    International Nuclear Information System (INIS)

    Okamura, Masato; Shibasaki, Osamu; Miyazaki, Toyoaki; Kaneko, Tetsuji

    2012-09-01

    To verify the effect of depositing ceramic (TiO 2 , La 2 O 3 , and Y 2 O 3 ) on carbon steel to mitigate corrosion, corrosion tests were conducted under simulated chemistry conditions in a PWR secondary system. Test specimens (STPT410) were prepared with and without deposited ceramics. The ceramics were deposited on the specimens under high-temperature and high-pressure water conditions. Corrosion tests were conducted under high pH conditions (9.8) with a flow rate of 1.0-4.7 m/s at 185 deg. C for 200 hours. At a flow rate of 1.0 m/s, the amount of corrosion of the specimens with the ceramics was less than half of that of the specimens without the ceramics. As the flow rate increased, the amount of corrosion increased. However, even at a flow rate of 4.7 m/s, the amount of corrosion was reduced by approximately 30% by depositing the ceramics. After the corrosion tests, the surfaces of the specimens were analyzed with SEM and XRD. When the deposited ceramic was TiO 2 , the surface was densely covered with fine particles (less than 1 μm). From XRD analysis, these particles were identified as ilmenite (FeTiO 3 ). We consider that ilmenite may play an important role in mitigating the corrosion of carbon steel. (authors)

  15. Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation.

    Science.gov (United States)

    Antunes, Renato Altobelli; de Oliveira, Mara Cristina Lopes

    2012-03-01

    Cyclic stresses are often related to the premature mechanical failure of metallic biomaterials. The complex interaction between fatigue and corrosion in the physiological environment has been subject of many investigations. In this context, microstructure, heat treatments, plastic deformation, surface finishing and coatings have decisive influence on the mechanisms of fatigue crack nucleation and growth. Furthermore, wear is frequently present and contributes to the process. However, despite all the effort at elucidating the mechanisms that govern corrosion fatigue of biomedical alloys, failures continue to occur. This work reviews the literature on corrosion-fatigue-related phenomena of Ti alloys, surgical stainless steels, Co-Cr-Mo and Mg alloys. The aim was to discuss the correlation between structural and surface aspects of these materials and the onset of fatigue in the highly saline environment of the human body. By understanding such correlation, mitigation of corrosion fatigue failure may be achieved in a reliable scientific-based manner. Different mitigation methods are also reviewed and discussed throughout the text. It is intended that the information condensed in this article should be a valuable tool in the development of increasingly successful designs against the corrosion fatigue of metallic implants. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Mitigation of stress corrosion cracking in boiling water reactors

    International Nuclear Information System (INIS)

    Hanneman, R.E.; Cowan, R.L. II

    1980-01-01

    Intergranular stress corrosion cracking (IGSCC) has occurred in a statistically small number of weld heat affected zones (HAZ) of 304 SS piping in BWR's. A range of mitigating actions have been developed and qualified that provide viable engineering solutions to the unique aspects of (1) operating plants, (2) plants under various stages of construction, and (3) future plants. This paper describes the technical development of each mitigating concept, relates it to the fundamental causal factors for IGSCC, and discusses its applicability to operating, in-construction and new BWR's. 31 refs

  17. 49 CFR 195.579 - What must I do to mitigate internal corrosion?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false What must I do to mitigate internal corrosion? 195... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.579 What must I do to mitigate internal corrosion? (a) General. If you transport any hazardous liquid or carbon dioxide that...

  18. Study on Mitigation Method of Solder Corrosion for Crystalline Silicon Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Ju-Hee Kim

    2014-01-01

    Full Text Available The corrosion of 62Sn36Pb2Ag solder connections poses serious difficulties for outdoor-exposed photovoltaic (PV modules, as connection degradation contributes to the increase in series resistance (RS of PV modules. In this study, we investigated a corrosion mitigation method based on the corrosion mechanism. The effect of added sacrificial metal on the reliability of PV modules was evaluated using the oxidation-reduction (redox reaction under damp heat (DH conditions. Experimental results after exposure to DH show that the main reason for the decrease in power was a drop in the module’s fill factor. This drop was attributed to the increase of RS. The drop in output power of the PV module without added sacrificial metal is greater than that of the sample with sacrificial metal. Electroluminescence and current-voltage mapping analysis also show that the PV module with sacrificial metal experienced less degradation than the sample without sacrificial metal.

  19. ENVIROMENTALLY BENIGN MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)

    Energy Technology Data Exchange (ETDEWEB)

    J. Robert Paterek; Gemma Husmillo; Amrutha Daram; Vesna Trbovic

    2003-10-31

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. The technical approach for this quarter includes the application of the method of fractionation of the extracts by high performance liquid chromatography (HPLC); determination of antimicrobial activities of the new extracts and fractions using a growth inhibition assay, and evaluation of the extracts' ability to inhibit biofilm formation. We initiated the delivery system for these new biocides in the test cell and in mixtures of foam components and biocides/anti-biofilms. A total of 51 fractions collected by HPLC from crude extracts that were obtained from three varieties of Capsicum sp. (Serrano, Habanero, Chile de Arbol) were subjected to growth inhibition tests against two SRB strains, D. vulgaris and D. desulfuricans. Five fractions showed growth inhibition against both strains while seven inhibited D. desulfuricans only. The crude extracts did not show growth inhibition on both strains but were proven to be potent in preventing the formation of biofilm. Growth inhibition tests of the same set of crude extracts against Comamonas denitrificans did not show positive results. The fractions will be subjected to biofilm inhibition and dissociation assay as well. The delivery system to be evaluated first was foam. The ''foam pig'' components of surfactants and water were tested with the biocide addition. The first chemical and physical parameters to be tested were pH and surfactants. Tests using the fractionated pepper extracts are progressing rapidly. Gas chromatographic analysis

  20. Investigation of Coating and Corrosion Mitigation Strategies in Magnesium/Mixed Metal Assemblies

    Science.gov (United States)

    Forsmark, Joy H.; McCune, Robert C.; Giles, Terry; Audette, Michelle; Snowden, Jasmine; Stalker, Jeff; Morey, Matthew; O'Keefe, Matt; Castano, Carlos

    The US Automotive Materials Partnership through the Magnesium-Intensive Front End Development Project (MFERD) is currently investigating a number of joining, coating and corrosion mitigation strategies to incorporate magnesium components into the automotive body-in-white with the ultimate goal of decreasing vehicle curb weight, thus improving fuel economy. Because Mg is anodic to all other structural metals, this is a key hurdle to Mg component implementation in vehicles. This paper will discuss the results of a study to examine the effectiveness of different corrosion mitigation strategies in joined plate assemblies and provide some insight into the systems challenges of incorporation of Mg parts into a vehicle. Details of a statistically-designed experiment developed to explore the interaction of several materials of construction (magnesium, steel and aluminum), pretreatment and topcoatings, joining methods and standardized test protocols including SAE J-2334 and ASTM B-117 are discussed. A number of avenues have emerged from this study as potential strategies for corrosion mitigation.

  1. Hydrazine and hydrogen coinjection to mitigate stress corrosion cracking of structural materials in boiling water reactors (7). Effects of bulk water chemistry on ECP distribution inside a crack

    International Nuclear Information System (INIS)

    Wada, Yoichi; Ishida, Kazushige; Tachibana, Masahiko; Aizawa, Motohiro; Fuse, Motomasa

    2007-01-01

    Water chemistry in a simulated crack (crack) has been studied to understand the mechanisms of stress corrosion cracking in a boiling water reactor environment. Electrochemical corrosion potential (ECP) in a crack made in an austenite type 304 stainless steel specimen was measured. The ECP distribution along the simulated crack was strongly affected by bulk water chemistry and bulk flow. When oxygen concentration was high in the bulk water, the potential difference between the crack tip and the outside of the crack (ΔE), which must be one motive force for crack growth, was about 0.3V under a stagnant condition. When oxygen was removed from the bulk water, ECP inside and outside the crack became low and uniform and ΔE became small. The outside ECP was also lowered by depositing platinum on the steel specimen surface and adding stoichiometrically excess hydrogen to oxygen to lower ΔE. This was effective only when bulk water did not flow. Under the bulk water flow condition, water-borne oxygen caused an increase in ECP on the untreated surface inside the crack. This also caused a large ΔE. The ΔE effect was confirmed by crack growth rate measurements with a catalyst-treated specimen. Therefore, lowering the bulk oxidant concentration by such measures as hydrazine hydrogen coinjection, which is currently under development, is important for suppressing the crack growth. (author)

  2. Operational measures for the mitigation of MIC [microbiologically influenced corrosion

    International Nuclear Information System (INIS)

    Johnson, C.J.

    1989-01-01

    Although entitled Operational Measure, this section of the workshop encompasses aspects of mitigating MIC by controlling the hydraulic characteristics of a system. In order for operational considerations outside of the chemical treatment program to be effective, the system must be designed, constructed or modified, and maintained with MIC in mind. Since other papers in these proceedings discuss in detail the proper selection of materials, chemical treatments and detection of monitoring techniques, this paper is limited to quidelines for mitigating MIC and its effects by the mechanical design, maintenance and operation of the system. The key concept behind this philosophy is the synergistic relationships among microbes and among microbes and larger biofouling organisms. If the slime formers or other marine organisms can be prevented from attaching to the components, conducive environments for attack by other species is avoided

  3. Field Testing of High Current Electrokinetic Nanoparticle Treatment for Corrosion Mitigation in Reinforced Concrete

    Science.gov (United States)

    Cardenas, Henry; Alexander, Joshua; Kupwade-Patil, Kunal; Calle, Luz marina

    2010-01-01

    Electrokinetic Nanoparticle (EN) treatment was used as a rapid repair measure to mitigate chloride induced corrosion of reinforced concrete in the field. EN treatment uses an electric field to transport positively charged nanoparticles to the reinforcement through the concrete capillary pores. Cylindrical reinforced concrete specimens were batched with 4.5 wt % salt content (based on cement mass). Three distinct electrokinetic treatments were conducted using high current density (up to 5 A/m2) to form a chloride penetration barrier that was established in 5 days, as opposed to the traditional 6-8 weeks, generally required for electrochemical chloride extraction (ECE). These treatments included basic EN treatment, EN with additional calcium treatment, and basic ECE treatment. Field exposures were conducted at the NASA Beachside Corrosion Test Site, Kennedy Space Center, Florida, USA. The specimens were subjected to sea water immersion at the test site as a posttreatment exposure. Following a 30-day post-treatment exposure period, the specimens were subjected to indirect tensile testing to evaluate treatment impact. The EN treated specimens exhibited 60% and 30% increases in tensile strength as compared to the untreated controls and ECE treated specimens respectively. The surfaces of the reinforcement bars of the control specimens were 67% covered by corrosion products. In contrast, the EN treated specimens exhibited corrosion coverage of only 4%. Scanning electron microscopy (SEM) revealed a dense concrete microstructure adjacent to the bars of the treated specimens as compared to the control and ECE specimens. Energy dispersive spectroscopic (EDS) analysis of the polished EN treated specimens showed a reduction in chloride content by a factor of 20 adjacent to the bars. This study demonstrated that EN treatment was successful in forming a chloride penetration barrier rapidly. This work also showed that the chloride barrier was effective when samples were exposed to

  4. Corrosion issues in the BWR and their mitigation for plant life extension

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1988-01-01

    Corrosion is a major service life limiting mechanism for both pressurized water reactors (PWRs) and boiling water reactors (BWRs). For the BWR, stress corrosion cracking of piping has been the major source of concern where extensive research has led to a number of qualified remedies and currently > 90% of susceptible welds have been mitigated or replaced. Stress corrosion cracking of reactor internals due to the interaction of irradiation, as discussed elsewhere in this conference, is also a possible life limiting phenomenon. This paper focusses on two corrosion phenomena in the BWR which have only recently been identified as impacting the universal goal of BWR life extension: the general corrosion of containment structures and the erosion-corrosion of carbon steel piping

  5. New Developments in Mitigation of Microbiologically Influenced Corrosion

    National Research Council Canada - National Science Library

    Little, B; Lee, J; Ray, R

    2007-01-01

    .... These strategies include the following: 1) use of biofilms to inhibitor prevent corrosion and 2) manipulation (removal or addition) of an electron acceptor, including oxygen, sulfate and nitrate, to influence the microbial population.

  6. Mitigating the Risk of Stress Corrosion of Austenitic Stainless Steels in Advanced Gas Cooled Reactor Boilers

    International Nuclear Information System (INIS)

    Bull, A.; Owen, J.; Quirk, G.; G, Lewis; Rudge, A.; Woolsey, I.S.

    2012-09-01

    Advanced Gas-Cooled Reactors (AGRs) operated in the UK by EDF Energy have once-through boilers, which deliver superheated steam at high temperature (∼500 deg. C) and pressure (∼150 bar) to the HP turbine. The boilers have either a serpentine or helical geometry for the tubing of the main heat transfer sections of the boiler and each individual tube is fabricated from mild steel, 9%Cr1%Mo and Type 316 austenitic stainless steel tubing. Type 316 austenitic stainless steel is used for the secondary (final) superheater and steam tailpipe sections of the boiler, which, during normal operation, should operate under dry, superheated steam conditions. This is achieved by maintaining a specified margin of superheat at the upper transition joint (UTJ) between the 9%Cr1%Mo primary superheater and the Type 316 secondary superheater sections of the boiler. Operating in this mode should eliminate the possibility of stress corrosion cracking of the Type 316 tube material on-load. In recent years, however, AGRs have suffered a variety of operational problems with their boilers that have made it difficult to maintain the specified superheat margin at the UTJ. In the case of helical boilers, the combined effects of carbon deposition on the gas side and oxide deposition on the waterside of the tubing have resulted in an increasing number of austenitic tubes operating with less than the specified superheat margin at the UTJ and hence the possibility of wetting the austenitic section of the boiler. Some units with serpentine boilers have suffered creep-fatigue damage of the high temperature sections of the boiler, which currently necessitates capping the steam outlet temperature to prevent further damage. The reduction in steam outlet temperature has meant that there is an increased risk of operation with less than the specified superheat margin at the UTJ and hence stress corrosion cracking of the austenitic sections of the boiler. In order to establish the risk of stress

  7. Approach to mitigate intergranular stress corrosion cracking and dose rate reduction rate by water chemistry control in Tokai-2

    International Nuclear Information System (INIS)

    Hisamune, Kenji

    2015-01-01

    The Japan Atomic Power Company (JAPC) had been working on material replacement and measures to mitigate stress in order to maintain the integrity of the structural material of Tokai-Daini nuclear power plant (Tokai-2, BWR, 1,100 MWe; commercial operation started on November 28, 1978). In addition, as Stress Corrosion Cracking (SCC) environmental mitigation measures, we have been reducing the sulfate ion concentration in the reactor water by improving the regeneration method of the ion exchange resin at condensate purification system. Furthermore, in conducting the SCC environmental mitigation measures by applying hydrogen water chemistry (HWC) and HWC during start-up (HDS), we have been reducing the oxidizing agent concentration in the reactor water. On the other hand, as a plant that has not installed condensate filters, we have been working on feed water iron concentration reduction measures in Tokai-2 as part of the dose reduction measures. Therefore, we have improved condensate demineralizer's ion exchange resin and the ion exchange resin cleaning method using the ARCS (Advanced Resin Cleaning System) in order to improve the iron removal performance of condensate demineralizer. This document reports the improvement effect of the SCC environmental mitigation measures and the dose reduction measures by water chemistry management at Tokai-2. In addition, the dose reduction effect of the recently applied zinc injection, and the Electrochemical Corrosion Potential (ECP) monitoring plan under the On-Line Noble Chemical Addition (OLNC™) to be implemented later shall be introduced. (author)

  8. Drinking water quality assessment and corrosion mitigation in the hospital water supply system of Chacas Village (Peru

    Directory of Open Access Journals (Sweden)

    Riccardo Bigoni

    2014-07-01

    Full Text Available Rural hospitals in developing countries often lack appropriate water treatments to assure their water needs. In these facilities, due to water different uses and its use with medical equipment, water quality problems can cause very hazardous situations. In particular, corrosion of water distribution systems is a common issue that can cause unwanted changes in water quality and failures of the distribution system’s pipes. These considerations suggest that a complete monitoring program and water treatments to control and guarantee the water quality would be required in each health-care facility. This study assessed the quality of the water at the rural hospital of Chacas (Peru as measured via specific physical-chemical and microbiological parameters. The results show that the chemical and microbiological qualities of the water generally worsen from catchment to the hospital’s taps. Moreover, this work investigated the effects of a dolomite limestone filter installed to adjust the quality of the water distributed at the hospital and thereby mitigate the water’s corrosiveness. Corrosion indices were calculated to provide useful information on the water’s corrosiveness and positive results were obtained in reducing corrosiveness after the installation of the dolomite filter.

  9. New Technology for Corrosion Mitigation of Steam Generator Tubesheet in Secondary Side Environments

    International Nuclear Information System (INIS)

    Hur, Do Haeng; Choi, Myung Sik; Lee, Deok Hyun; Han, Jung Ho

    2013-01-01

    Denting has been mitigated by a modification of the design and material of the tube support structures, it has been an inevitable problem in the crevice region of the top of the tubesheet(TTS). Denting at the TTS has been a significant concern regardless of the tube materials. This is because it is a mechanical process resulted from a volume expansion of corrosion products of the tubesheet materials. It should be noted that the corrosion rate of low alloy tubesheet materials is accelerated due to the presence of corrosion products accumulated at the top of the tubesheet. Therefore a reduction of the corrosion rate of the tubesheet material should be a key strategy to prevent tube denting at the TTS as well as an improvement of the secondary water chemistry. This paper provides a new technology to prevent denting by cladding the secondary side surface of the tubesheet with a corrosion resistant material. In this study, Alloy 690 material on the surface of the SA508 tubesheet was cladded to a thickness of about 9mm. The corrosion rates of the SA508 original tubesheet and Alloy 690 clad material were measured in acidic and caustic simulated environments. Denting has been a precursor of stress corrosion cracking in nuclear steam generator tubing, although it may be mitigated by a design and material modification of the tube support structures and secondary water chemistry control. Corrosion resistant Alloy 690 tubing is not an exception because denting at the TTS is due to corrosion of the tubesheet material. In this paper, a new technology was suggested to prevent denting at the TTS by cladding the secondary side surface of the tubesheet with a corrosion resistant material. It was verified that the corrosion rates of a tubesheet with an Alloy 690 clad layer drastically decreased in both acidic and alkaline environments, even inside the magnetite sludge pile. Because the cladding processes of Alloy 690 have already been applied to the primary side surface of a

  10. Application of Nano-Structured Coatings for Mitigation of Flow-Accelerated Corrosion in Secondary Pipe Systems of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hyun; Kim, Jong Jin; Yoo, Seung Chang; Huh, Jae Hoon; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    Flow-accelerated corrosion (FAC) is a complex corrosion process combined with mechanical reaction with fluid. There were lots of research to mitigate FAC such as controlling temperature or water chemistry but in this research, we adopt active coating techniques especially nano-particle reinforced coatings. One of the general characteristics of FAC and its mitigation is that surface friction due to surface morphology makes a significant effect on FAC. Therefore to form a uniform coating layers, nano-particles including TiO2, SiC, Fe-Cr-W and Graphene were utilized. Those materials are known as greatly improve the corrosion resistance of substrates such as carbon steels but their effects on mitigation of FAC are not revealed clearly. Therefore in this research, the FAC resistive performance of nano-structured coatings were tested by electrochemical impedance spectroscopy (EIS) in room temperature 15 wt% sulfuric acid. As the flow-accelerated corrosion inhibitors in secondary piping system of nuclear power plants, various kinds of nano-structured coatings were prepared and tested in room-temperature electrochemical cells. SHS7740 with two types of Densifiers, electroless nickel plating with TiO2 are prepared. Electropolarization curves shows the outstanding corrosion mitigation performance of SHS7740 but EIS results shows the promising potential of Ni-P and Ni-P-TiO2 electroless nickel plating. For future work, high-temperature electrochemical analysis system will be constructed and in secondary water chemistry will be simulated.

  11. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    International Nuclear Information System (INIS)

    Macdonald, D. D.; Lvov, S. N.

    2000-01-01

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system

  12. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, D. D.; Lvov, S. N.

    2000-03-31

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system.

  13. Mitigation of caustic stress corrosion cracking of steam generator tube materials by blowdown -a case study

    International Nuclear Information System (INIS)

    Dutta, Anu; Patwegar, I.A.; Chaki, S.K.; Venkat Raj, V.

    2000-01-01

    The vertical U-tube steam generators are among the most important equipment in nuclear power plants as they form the vital link between the reactor and the turbogenerator. Over ∼ 35 years of operating experience of water cooled reactor has demonstrated that steam generator tubes are susceptible to various forms of degradation. This degradation leads to failure and outages of the power plant. A majority of these failures have been attributed to concentrated alkali attacks in the low flow areas such as crevices in the tube to tube sheet joints, baffle plate location and the areas of sludge deposits. Free hydroxides can be produced by improper maintenance of phosphate chemical control in the secondary side of the steam generators and also by the thermal decomposition of impurities present in the condenser cooling water which may leak into the feed water through the condenser tubes. The free hydroxides concentrate in the low flow areas. This buildup of free hydroxide in combination with residual stress leads to caustic stress corrosion cracking. In order to mitigate caustic stress corrosion cracking of Inconel 600 tubes, the trend is to avoid phosphate dosing. Instead All Volatile Treatment (AVT) for secondary water is used backed by full flow condensate polishing. Sodium hydroxide concentration is now being considered as the basis for steam generator blowdown. A methodology has been established for determining the blowdown requirement in order to mitigate caustic stress corrosion cracking in the secondary side of the vertical U-tube natural circulation steam generator. A case study has been carried out for zero solid treatment (AVT coupled with full flow condensate polishing plant) water chemistry. Only continuous blowdown schemes have been studied based on maximum caustic concentration permissible in the secondary side of the steam generator. The methodology established can also be used for deciding concentration of any other impurities

  14. Assessing Level and Effectiveness of Corrosion Education in the UAE

    Directory of Open Access Journals (Sweden)

    Hwee Ling Lim

    2012-01-01

    Full Text Available The consequences of corrosion can be minimized by an engineering workforce well trained in corrosion fundamentals and management. Since the United Arab Emirates incurs the second highest cost of corrosion after Saudi Arabia, this paper examined the quality of corrosion education in the UAE. Surveys with academia and industry respondents showed that dedicated corrosion courses and engineering courses that integrated corrosion into the curricula were available in UAE universities, but graduates had insufficient knowledge of corrosion engineering and superficial understanding of corrosion in real-life design contexts. The effectiveness of corrosion education is determined by both competence in corrosion knowledge/skills and availability of resources (faculty and research. Though most departments would not hire new corrosion-specialist faculty, department research efforts and industry partnerships in corrosion research were present. The paper concluded with recommendations for improving knowledge and skills of future engineers in corrosion and enhancing corrosion instruction to better meet industry needs.

  15. Can Thermally Sprayed Aluminum (TSA) Mitigate Corrosion of Carbon Steel in Carbon Capture and Storage (CCS) Environments?

    Science.gov (United States)

    Paul, S.; Syrek-Gerstenkorn, B.

    2017-01-01

    Transport of CO2 for carbon capture and storage (CCS) uses low-cost carbon steel pipelines owing to their negligible corrosion rates in dry CO2. However, in the presence of liquid water, CO2 forms corrosive carbonic acid. In order to mitigate wet CO2 corrosion, use of expensive corrosion-resistant alloys is recommended; however, the increased cost makes such selection economically unfeasible; hence, new corrosion mitigation methods are sought. One such method is the use of thermally sprayed aluminum (TSA), which has been used to mitigate corrosion of carbon steel in seawater, but there are concerns regarding its suitability in CO2-containing solutions. A 30-day test was carried out during which carbon steel specimens arc-sprayed with aluminum were immersed in deionized water at ambient temperature bubbled with 0.1 MPa CO2. The acidity (pH) and potential were continuously monitored, and the amount of dissolved Al3+ ions was measured after completion of the test. Some dissolution of TSA occurred in the test solution leading to nominal loss in coating thickness. Potential measurements revealed that polarity reversal occurs during the initial stages of exposure which could lead to preferential dissolution of carbon steel in the case of coating damage. Thus, one needs to be careful while using TSA in CCS environments.

  16. corrosion response of low carbon steel in tropical road mud

    African Journals Online (AJOL)

    Dr Obe

    Corrosion Mitigation efforts using readily available anti- corrosion coatings to protect low carbon steel test coupons against the ... The following protective coating devices were effective: ..... 2 West, J.M (1986): Basic Corrosion and Oxidation,.

  17. Corrosion effects on soda lime glass

    NARCIS (Netherlands)

    Veer, F.A.; Rodichev, Y.M.

    2010-01-01

    Although soda lime glass is the most common used transparent material in architecture, little is known about the corrosion effects on long term strength and the interaction between corrosion and defects. Extensive testing on soda lime bars under different environmental conditions and different

  18. Mitigating Localized Corrosion Using Thermally Sprayed Aluminum (TSA) Coatings on Welded 25% Cr Superduplex Stainless Steel

    Science.gov (United States)

    Paul, S.; Lu, Q.; Harvey, M. D. F.

    2015-04-01

    Thermally sprayed aluminum (TSA) coating has been increasingly used for the protection of carbon steel offshore structures, topside equipment, and flowlines/pipelines exposed to both marine atmospheres and seawater immersion conditions. In this paper, the effectiveness of TSA coatings in preventing localized corrosion, such as pitting and crevice corrosion of 25% Cr superduplex stainless steel (SDSS) in subsea applications, has been investigated. Welded 25% Cr SDSS (coated and uncoated) with and without defects, and surfaces coated with epoxy paint were also examined. Pitting and crevice corrosion tests, on welded 25% Cr SDSS specimens with and without TSA/epoxy coatings, were conducted in recirculated, aerated, and synthetic seawater at 90 °C for 90 days. The tests were carried out at both the free corrosion potentials and an applied cathodic potential of -1100 mV saturated calomel electrode. The acidity (pH) of the test solution was monitored daily and adjusted to between pH 7.5 and 8.1, using dilute HCl solution or dilute NaOH, depending on the pH of the solution measured during the test. The test results demonstrated that TSA prevented pitting and crevice corrosion of 25% Cr SDSS in artificial seawater at 90 °C, even when 10-mm-diameter coating defect exposing the underlying steel was present.

  19. Mitigation of intergranular stress corrosion cracking in RBMK reactors. Final report of the programme's steering committee

    International Nuclear Information System (INIS)

    2002-09-01

    In 2000 the IAEA initiated an Extrabudgetary Programme on Mitigation of Intergranular Stress Corrosion Cracking in RBMK Reactors to assist countries operating RBMK reactors in addressing the issue in austenitic stainless steel 300 mm diameter piping. Intergranular stress corrosion cracking of austenitic stainless steel piping in BWRs has been a major safety concern since the early seventies. Similar degradation was found in RBMK reactor piping in 1997. Early in 1998 the IAEA responded to requests for assistance from RBMK operating countries on this issue through activities organized in the framework of Technical Co-operation Department regional projects and the Extrabudgetary Programme on the Safety of WWER and RBMK Nuclear Power Plants. Results of these activities were a basis for the formulation of the objective and scope of the Extrabudgetary Programme on Mitigation of Intergranular Stress Corrosion Cracking in RBMK reactors ('the Programme'). The scope of the Programme included in-service inspection, assessment, repair and mitigation, and water chemistry and decontamination. The Programme was pursued by means of exchange of experience, formulation of guidance, transfer of technology, and training, which will assist the RBMK operators to address related safety concerns. The Programme implementation relied on voluntary extrabudgetary financial contributions from Japan, Spain, the United Kingdom and the USA, and on in kind contributions from Finland, Germany and Sweden. The Programme was implemented in close co-ordination with ongoing national and bilateral activities and major inputs to the Programme were provided through the activities of the Swedish International Project Nuclear Safety and of the US DOE International Nuclear Safety Program. The RBMK nuclear power plants in Lithuania, Russian Federation and Ukraine hosted most of the Programme activities. Support of these Member States involved in the Programme was instrumental for its successful completion in

  20. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Science.gov (United States)

    Huang, B. S.; Yin, W. F.; Sang, D. H.; Jiang, Z. Y.

    2012-10-01

    The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 °C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr5S8 phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  1. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.S., E-mail: yinwenfeng2010@163.com [College of Materials Science and Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China); Yin, W.F. [College of Mechatronic Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China); Sang, D.H. [Sheng Li Construction Group International Engineering Department, Shandong, Dongying, 257000 (China); Jiang, Z.Y. [College of Materials Science and Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer The corrosion of a carbon-manganese steel and a stainless steel in sulfur and/or naphthenic acid media was investigated. Black-Right-Pointing-Pointer The corrosion rate of the carbon-manganese steel increased with the increase of the acid value and sulfur content. Black-Right-Pointing-Pointer The critical values of the concentration of sulfur and acid for corrosion rate of the stainless steel were ascertained respectively. Black-Right-Pointing-Pointer The stainless steel is superior to the carbon-manganese steel in corrosion resistance because of the presence of stable Cr{sub 5}S{sub 8} phases. - Abstract: The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 Degree-Sign C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr{sub 5}S{sub 8} phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  2. Pullulan as a potent green inhibitor for corrosion mitigation of aluminum composite: Electrochemical and surface studies.

    Science.gov (United States)

    B P, Charitha; Rao, Padmalatha

    2018-06-01

    This work emphasizes the corrosion inhibition ability of pullulan, an environmentally benign fungal polysaccharide on acid corrosion of 6061Aluminum-15% (v) SiC (P) composite material (Al-CM). The electrochemical measurements such as potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) studies were carried out for the corrosion inhibition studies. Conditions were optimized to obtain maximum inhibition efficiency, by performing the experiment at varying concentrations of inhibitor, in the temperature range of 308K- 323K. Surface morphology studies were done to reaffirm the adsorption of inhibitor on the surface of composite material. Pullulan acted as mixed type of inhibitor with a maximum efficiency of 89% at 303K for the addition of 1.0 gL -1 of inhibitor. Evaluation of kinetic and thermodynamic parameters revealed that inhibitor underwent physical adsorption onto the surface of Al-CM and obeyed Freundlich adsorption isotherm. The surface characterization like SEM-EDX, AFM confirmed the adsorption of pullulan molecule. Pullulan can be considered as effective, eco friendly green inhibitor for the corrosion control of Al-CM. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Corrosion effects on friction factors

    International Nuclear Information System (INIS)

    Magleby, H.L.; Shaffer, S.J.

    1996-01-01

    This paper presents the results of NRC-sponsored material specimen tests that were performed to determine if corrosion increases the friction factors of sliding surfaces of motor-operated gate valves, which could require higher forces to close and open safety-related valves when subjected to their design basis differential pressures. Friction tests were performed with uncorroded specimens and specimens subjected to accelerated corrosion. Preliminary tests at ambient conditions showed that corrosion increased the friction factors, indicating the need for additional tests duplicating valve operating parameters at hot conditions. The additional tests showed friction factors of corroded specimens were 0.1 to 0.2 higher than for uncorroded specimens, and that the friction factors of the corroded specimens were not very dependent on contact stress or corrosion film thickness. The measured values of friction factors for the three corrosion films tested (simulating three operating times) were in the range of 0.3 to 0.4. The friction factor for even the shortest simulated operating time was essentially the same as the others, indicating that the friction factors appear to reach a plateau and that the plateau is reached quickly

  4. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  5. Strain rate effects in stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Parkins, R.N. (Newcastle upon Tyne Univ. (UK). Dept. of Metallurgy and Engineering Materials)

    1990-03-01

    Slow strain rate testing (SSRT) was initially developed as a rapid, ad hoc laboratory method for assessing the propensity for metals an environments to promote stress corrosion cracking. It is now clear, however, that there are good theoretical reasons why strain rate, as opposed to stress per se, will often be the controlling parameter in determining whether or not cracks are nucleated and, if so, are propagated. The synergistic effects of the time dependence of corrosion-related reactions and microplastic strain provide the basis for mechanistic understanding of stress corrosion cracking in high-pressure pipelines and other structures. However, while this may be readily comprehended in the context of laboratory slow strain tests, its extension to service situations may be less apparent. Laboratory work involving realistic stressing conditions, including low-frequency cyclic loading, shows that strain or creep rates give good correlation with thresholds for cracking and with crack growth kinetics.

  6. Effect of Flow Velocity on Corrosion Rate and Corrosion Protection Current of Marine Material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong Jong [Kunsan National University, Kunsan (Korea, Republic of); Han, Min Su; Jang, Seok Ki; Kim, Seong Jong [Mokpo National Maritime University, Mokpo (Korea, Republic of)

    2015-10-15

    In spite of highly advanced paint coating techniques, corrosion damage of marine metal and alloys increase more and more due to inherent micro-cracks and porosities in coatings formed during the coating process. Furthermore, flowing seawater conditions promote the breakdown of the protective oxide of the materials introducing more oxygen into marine environments, leading to the acceleration of corrosion. Various corrosion protection methods are available to prevent steel from marine corrosion. Cathodic protection is one of the useful corrosion protection methods by which the potential of the corroded metal is intentionally lowered to an immune state having the advantage of providing additional protection barriers to steel exposed to aqueous corrosion or soil corrosion, in addition to the coating. In the present investigation, the effect of flow velocity was examined for the determination of the optimum corrosion protection current density in cathodic protection as well as the corrosion rate of the steel. It is demonstrated from the result that the material corrosion under dynamic flowing conditions seems more prone to corrosion than under static conditions.

  7. Influence of alkali metal oxides and alkaline earth metal oxides on the mitigation of stress corrosion cracking in CANDU fuel sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, J.; Ferrier, G.A.; Farahani, M.; Chan, P.K.; Corcoran, E.C., E-mail: Joseph.Metzler@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2015-07-01

    Stress corrosion cracking (SCC)can cause failures of CANDU Zircaloy-4 fuel sheathing. The process occurs when a corrosive element (i.e.,iodine) interacts with a susceptible material that is under sufficient strain at a high temperature. Currently, there is an ongoing effort to improve SCC mitigation strategies for future iterations of CANDU reactors. A potential mechanism for SCC mitigation involves utilizing alkali metal oxides and alkaline earth metal oxides that will sequester corrosive iodine while actively repairing a protective oxide layer on the sheath. SCC tests performed with sodium oxide (Na{sub 2}O) and calcium oxide (CaO) have shown to decrease significantly the sheath degradation. (author)

  8. Cost effectiveness of radon mitigation in Canada

    International Nuclear Information System (INIS)

    Letourneau, E.G.; Krewski, D.; Zielinski, J.M.; McGregor, R.G.

    1992-01-01

    This paper examines the cost effectiveness of comprehensive strategies for reducing exposure to radon gas in indoor air in Canadian homes. The analysis is conducted within the context of a general framework for risk management programme evaluation which includes well-known evaluation techniques such as cost effectiveness and cost-benefit analyses as special cases. Based on this analysis, it is clear that any comprehensive programme to reduce exposure to environmental radon will be extremely expensive, and may not be justifiable in terms of health impact, particularly when considered in relation to other public health programmes. Testing of homes at the point of sale and installing sub-slab suction equipment to reduce exposure to indoor radon where necessary appears to be a relatively cost-effective radon mitigation strategy. In general, radon mitigation was found to be most cost effective in cities with relatively high levels of radon. (author)

  9. Materials corrosion and mitigation strategies for APT: End of year report, FY '96

    International Nuclear Information System (INIS)

    Lillard, R.S.; Butt, D.P.

    1996-01-01

    The authors major accomplishment in FY96 was the design and fabrication of the corrosion probes to be used ''In Beam'' during the FY97 irradiation period to begin on February 1, 1997. Never before have corrosion rate measurements been made on-line in such a high radiation environment. To measure corrosion rate as a function of beam time, it is necessary to electrical isolate the corrosion electrode to be examined form the plumbing system. Conventionally, this is accomplished with glass seals. Here irradiation of the glass may cause it to become conductive, rendering the seal useless. To overcome this problem, the corrosion probes to be used in-beam at the spallation neutron cooling water loop at the LANSCE A6 target station were fabricated with ceramic inserts which act as electrical feed-throughs. The corrosion sample is joined to the ceramic by means of a compression seal. The corrosion samples are closed end cylinders, 0.5 inches diameter x 6.25 inch length, that are constructed from Stainless Steel 304L, Stainless Steel 316L, Inconel 718, Tungsten, HT-9, and Tantalum. Because of their specialized nature, InTa Corporation, of Santa Clara, CA was contracted to manufacture these problems. As of November 1, 1996 delivery of these probes has begun and the authors anticipate having all of the probes in hand by Nov. 25

  10. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    International Nuclear Information System (INIS)

    Macdonald, D.D.

    2000-01-01

    Super Critical Water Oxidation (SCWO) is a promising technology for destroying highly toxic organic waste (including physiological agents) and for reducing the volume of DOE's low-level nuclear waste. The major problem inhibiting the wide implementation of SCWO is the lack of fundamental knowledge about various physico-chemical and corrosion processes that occur in SCW environments. In particular, the lack of experimental techniques for accurately monitoring important parameters, such as pH, corrosion potential and corrosion rate, has severely hampered the development of a quantitative understanding of the degradation of materials in this extraordinarily aggressive environment. Accordingly, the principal objective of the present program has been to develop new, innovative methods for accurately measuring parameters that characterize corrosion processes under super critical conditions

  11. The effects of corrosion conditions and cold work on the nodular corrosion of zircaloy-4

    International Nuclear Information System (INIS)

    You, Gil Sung

    1992-02-01

    The nodular corrosion of Zircaloy-4 was investigated on the effects of corrosion conditions and cold work. Variation of steam pressures, heat-up environments and prefilms were considered and cold work effects were also studied. The corrosion rate of Zircaloy-4 was dependent on pressure between 1 and 100 atm and it followed the cubic law as W=16.85 x P 0.31 for plate specimens and W=12.69 x P 0.27 for tube specimens, where W is weight gain (mg/dm 2 ) and P is the steam pressure (atm). The environment variation in autoclave during heat-up period did not affect the early stage of nodular corrosion. The prefilm, which was formed at 500 .deg. C under 1 atm steam for 4 hours, restrained the formation of the initial small nodules. The oxide film formed under 1 atm steam showed no difference of electrical resistivity from the oxides formed under 100 atm steam pressure. Cold work specimens showed the higher resistivity against nodular corrosion than as-received specimens. The corrosion resistance arising from cold work seems to be due to the texture changes by the cold work. The results showed that cold work can affect the later stage of uniform corrosion and the early stage of nodular corrosion, namely, the nodule initiation stage

  12. Mitigation of the effects of sulphur pollution

    Energy Technology Data Exchange (ETDEWEB)

    Chang, B.; Wilson, R.

    1976-07-05

    As an introduction to the discussion of mitigation of the effects of SO/sub 2/, its health effect on man and the use of sulfates as indicators of the health hazard are first considered. The use of tall chimney stacks and intermittent control and other schemes to reduce the SO/sub 2/ release to the atmosphere are discussed. The problems of administration and forecasting are analyzed and legal problems associated with SO/sub 2/ control are reviewed. In an appendix an analysis of federal jurisdiction over interstate pollution and possible avenues of litigation open to the states is presented. (JSR)

  13. Atmospheric corrosion effects on copper

    International Nuclear Information System (INIS)

    Franey, J.P.

    1985-01-01

    Studies have been performed on the naturally formed patina on various copper samples. Samples have been obtained from structures at AT and T Bell Laboratories, Murray Hill, NJ (40,2,1 and <1 yr) and the Statue of Liberty (100 yr). The samples show a distinct layering effect, that is, the copper base material shows separate oxide and basic sulfate layers on all samples, indicating that patina is not a homogeneous mixture of oxides and basic sulfates

  14. The effect of recasting on corrosion of DUCINOX prosthetic alloy

    Directory of Open Access Journals (Sweden)

    L. Klimek

    2009-07-01

    Full Text Available The effect of recasting, up to two times, Ni-Cr (DUCINOX prosthetic alloy on its corrosion properties was carried out. The corrosion measurements were done in deoxygenated Fusayama Meyer artificial saliva solution at temperature of 37°C. In the study following electrochemical methods were used: measurement of free corrosion potential Ecor in open circuit, measurement of polarization resistance according to Stern-Geary's method and measurement of potentiodynamic characteristic in wide range of anodic polarization. In general, it can be stated that casting number weakly influence on corrosion properties of investigated alloy. At free corrosion potential there is no monotonic dependence of corrosion parameters versus casting number. However, at extreme anodic potentials monotonic changes of corrosion parameters with increasing casting number is observed. Obtained results and drawn conclusions are partially compatible with literature data.

  15. Surface layer effects on waste glass corrosion

    International Nuclear Information System (INIS)

    Feng, X.

    1993-01-01

    Water contact subjects waste glass to chemical attack that results in the formation of surface alteration layers. Two principal hypotheses have been advanced concerning the effect of surface alteration layers on continued glass corrosion: (1) they act as a mass transport barrier and (2) they influence the chemical affinity of the glass reaction. In general, transport barrier effects have been found to be less important than affinity effects in the corrosion of most high-level nuclear waste glasses. However, they can be important under some circumstances, for example, in a very alkaline solution, in leachants containing Mg ions, or under conditions where the matrix dissolution rate is very low. The latter suggests that physical barrier effect may affect the long-term glass dissolution rate. Surface layers influence glass reaction affinity through the effects of the altered glass and secondary phases on the solution chemistry. The reaction affinity may be controlled by various precipitates and crystalline phases, amorphous silica phases, gel layer, or all the components of the glass. The surface alteration layers influence radionuclide release mainly through colloid formation, crystalline phase incorporation, and gel layer retention. This paper reviews current understanding and uncertainties

  16. Application of nano-structured coatings to mitigate flow-accelerated corrosion in secondary pipe systems of nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Seung Hyun; Kim, Jong Jin; Yoo, Seung Chang; Kim, Ji Hyun

    2014-01-01

    Carbon steel is widely used as a structural material in secondary pipe systems. However, the passivity of carbon steel is not sufficient for protection in secondary water chemistry with a very fast-flowing fluid because of the dissolution of ferrous and magnetite ions and surface friction at the interface of the coolant and pipe surface. There have been many efforts to mitigate flow-accelerated corrosion through adoption of advanced water chemistries such as optimized dissolve oxygen (DO) concentration and temperature, as well as usage of new additives such as monoethanol amine (ETA) to adjust pH. However, these mitigation techniques pose certain challenges relating to the compatibility of new water chemistries with the steam generator, the thermal efficiency of the secondary side, etc. In this study, to improve the passivity of carbon steel, nanostructured coatings especially nanoparticle-enhanced surface coatings were adopted to improve resistance to corrosion and wear. Nanoparticles in the coating matrix help decrease the electrochemical potential compared coatings without nanoparticles, and thus help improve the mechanical properties, especially hardness, through precipitation. In other words, nanoparticle-enhanced surface coatings have the potential to mitigate flow-accelerated corrosion in secondary pipe systems. As candidate coatings, TiO 2 - and SiC-enhanced electrolytic and electroless nickel plating and Fe-Cr-W amorphous metallic coatings (AMC) were selected by acquiring the Pourbaix diagram with thermodynamic calculations. Both TiO 2 and SiC show a stable state in secondary water chemistry, and it is estimated that Fe-Cr-W can be applied to secondary water chemistry because it has a similar chemical composition to carbon steel. Electron microscopic analysis results with scanning electron microscopy (SEM) and tunneling electron microscopy (TEM) show the distribution of TiO 2 nanoparticles in the nickel matrix coating layer, whereas the SiC nanoparticles

  17. Application of aluminum diffusion coatings to mitigate the KCl-induced high-temperature corrosion

    DEFF Research Database (Denmark)

    Kiamehr, Saeed; Lomholt, T. N.; Dahl, Kristian Vinter

    2017-01-01

    Pack cementation was used to produce Fe1−xAl and Fe2Al5 diffusion coatings on ferritic-martensitic steel P91 and a Ni2Al3 diffusion coating on pure nickel. The performance of diffusion coatings against high-temperature corrosion induced by potassium chloride (KCl) was evaluated by exposing...

  18. Feasibility Study on Nano-structured Coatings to Mitigate Flow-accelerated Corrosion in Secondary System of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seunghyun; Kim, Jeong Won; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan (Korea, Republic of)

    2015-05-15

    There have been many efforts to mitigate FAC through the adoption of the advanced and modified water chemistries such as optimized dissolved oxygen (DO) concentration and temperature. However, these mitigation techniques pose certain challenges relating to the compatibility of new water chemistries with the steam generator, the thermal efficiency of the secondary side, etc. In this context, nano-particle reinforced electroless nickel plating (NP ENP) could help solve the FAC issues in secondary pipe systems. This does not require modification of water chemistry or structural materials, and hence, its application is reasonable and time-saving compared to previous FAC mitigation techniques. The main parameters of FAC are known as electrochemical reaction at the interface, dissolution of magnetite and ferrous ions due to concentration gradient between carbon steels and water and wear due to a fast-flowing fluid. High-temperature corrosion characteristics of the both coatings have potential as FAC barrier for carbon steel. Feasibility study will be carried out with FAC simulation experiments.

  19. Corrosion of X65 Pipeline Steel Under Deposit and Effect of Corrosion Inhibitor

    Directory of Open Access Journals (Sweden)

    XU Yun-ze

    2016-10-01

    Full Text Available Effect of the deposit on the electrochemical parameters of X65 pipeline steel in oxygen contained sodium chloride solution was studied by EIS and PDS methods. The galvanic corrosion behavior under deposit and effect of different concentration of corrosion inhibitor PBTCA were studied by electrical resistance (ER method combined with ZRA. The results show that the corrosion potential of X65 steel shifts negatively as SiO2 covering its surface and the corrosion rate becomes lower. When the galvanic couple specimen with deposit is electrically connected with the specimen without deposit, anodic polarization occurs on X65 steel under deposit and the galvanic current density decreases from 120μA/cm2 to 50μA/cm2 and keeps stable. As 5×10-5, 8×10-5 and 3×10-4 PBTCA were introduced into the solution, the galvanic current density reaches the highest 1300μA/cm2 and then decreases to 610μA/cm2 keeping stable around 610μA/cm2, corrosion rate of X65 steel under deposit reaches 6.11mm/a. PBTCA accelerates the corrosion of X65 steel under deposit in oxygen contained solution. Through the investigation on the surface of the specimens, serious local corrosion occurs on the X65 steel surface under deposit.

  20. Synergistic Effect of Molybdate and Monoethanolamine on Corrosion Inhibition of Ductile Cast Iron in Tap Water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. T.; Kim, Y. S. [Andong National University, Andong (Korea, Republic of); Chang, H. Y.; Lim, B. T.; Park, H. B. [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of)

    2017-02-15

    A synergistic effect was observed in the combination of nitrite and ethanolamines. Ethanolamine is one of the representative organic corrosion inhibitors and can be categorized as adsorption type. However, nitrosamines can form when amines mix with sodium nitrite. Since nitrosamine is a carcinogen, the co-addition of nitrite and ethanolamine will be not practical, and thus, a non-toxic combination of inhibitors shall be needed. In order to maximize the effect of monoethanolamine, we focused on the addition of molybdate. Molybdate has been used to alternate the addition of chromate, but it showed insufficient oxidizing power relative to corrosion inhibitors. This work evaluated the synergistic effect of the co-addition of molybdate and monoethanolamine, and its corrosion mechanism was elucidated. A high concentration of molybdate or monoethanolamine was needed to inhibit the corrosion of ductile cast iron in tap water, but in the case of the co-addition of molybdate and monoethanolamine, a synergistic effect was observed. This synergistic effect could be attributed to the molybdate that partly oxidizes the metallic surface and the monoethanolamine that is simultaneously adsorbed on the graphite surface. This adsorbed layer then acts as the barrier layer that mitigates galvanic corrosion between the graphite and the matrix.

  1. Applied methods for mitigation of damage by stress corrosion in BWR type reactors

    International Nuclear Information System (INIS)

    Hernandez C, R.; Diaz S, A.; Gachuz M, M.; Arganis J, C.

    1998-01-01

    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  2. An Investigation of Corrosion Mitigation Strategies for Aging Post-Tensioned Cables

    Science.gov (United States)

    2017-01-01

    for Aging Post- Tensioned Cables Ernest L. Miller, Barry C. White, Richard W. Haskins, Robert M. Ebeling, and James A. Evans Information Technology...approach walls) using post- tensioning (PT) seven-wire strand cables is a common approach. In the Portland District, for example, 10% of the projects...hydraulic structures by post- tensioned ground anchorage, appreciable loss of capacity in seven-wire strand cables due to corrosion is a reason for concern

  3. An Investigation of Corrosion Mitigation Strategies for Aging Post Tensioned Cables

    Science.gov (United States)

    2017-01-01

    for Aging Post- Tensioned Cables Ernest L. Miller, Barry C. White, Richard W. Haskins, Robert M. Ebeling, and James A. Evans Information Technology...approach walls) using post- tensioning (PT) seven-wire strand cables is a common approach. In the Portland District, for example, 10% of the projects...hydraulic structures by post- tensioned ground anchorage, appreciable loss of capacity in seven-wire strand cables due to corrosion is a reason for concern

  4. Effects of cold work, sensitization treatment, and the combination on corrosion behavior of stainless steels in nitric acid

    International Nuclear Information System (INIS)

    Mayuzumi, M.; Ohta, J.; Arai, T.

    1998-01-01

    In a reprocessing process, spent nuclear fuels from light-water reactors are dissolved in nitric acid (HNO 3 ) to separate and recover the fissile materials such as uranium and plutonium from the radioactive fission products. Corrosion behavior of two stainless steels (SS) was investigated in nitric acid (HNO 3 ) for the effect of cold work (CW), sensitization heat treatment (Sens.), and a combination (CW + Sens.). The corrosion rate of the solution-treated type 304 SS (UNS S30400) with extra-low carbon (type 304ELC SS (UNS S30403)) increased with time and reached constant values after 1,000 h of immersion. However, constant corrosion rates were obtained for 25% Cr-20% Ni-Nb (type 310Nb SS [UNS S31040]) from the initial stage of immersion. CW mitigated corrosion of the solution-treated SS. The effect of CW was different on the two types of SS, with the sensitization heat-treated type 304 ELC SS showing higher corrosion rates and type 310Nb SS lower corrosion rates by CW. Corrosion resistance of type 310Nb SS was superior to type 304 ELC SS after all treatments. Chromium concentration of the sensitization-treated type 304 ELC SS was lower in the grain-boundary region than of the solution-treated one, although no chromium carbide precipitation was observed. This may have been the cause of intergranular corrosion enhancement by sensitization treatment

  5. Effect of flow on corrosion in catenary risers and its corrosion inhibitor performance

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pedro Altoe; Magalhaes, Alvaro Augusto Oliveira; Silva, Jussara de Mello [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Kang, Cheolho; More, Parimal P. [Det Norske Veritas (DNV), Oslo (Norway)

    2009-07-01

    In oil and gas production, multiphase flow is often encountered and a range of different flow patterns can be experienced in pipelines. The flow regime transition and flow characteristics can be changed with the change of pipeline topography, which affects the corrosion and the performance of corrosion inhibitor in these multiphase pipelines. This paper outlines on the effect of inclination on the flow characteristics and their subsequent effect on corrosion rates. Also, this paper presents on the performance of three candidate corrosion inhibitors under severe slugging conditions at low water cut. For the simulation of offshore flow lines and risers, the experiments were carried out in a 44 m long, 10 cm diameter, three different pipeline inclinations of 0, 3 and 45 degrees. Light condensate oil with a viscosity of 2.5 cP at room temperature was used and water cut was 20%. The results indicated that the baseline corrosion rate in 45 degrees showed higher than other inclinations. Each corrosion inhibitor showed a different inhibitor performance. (author)

  6. WVNS Tank Farm Process Support: Experimental evaluation of an inert gas (nitrogen) to mitigate external corrosion of high-level waste storage tanks

    International Nuclear Information System (INIS)

    Elmore, M.R.

    1996-02-01

    Corrosion of the carbon steel waste storage tanks at West Valley Nuclear Services continues to be of concern, especially as the planned duration of waste storage time increases and sludge washing operations are conducted. The external surfaces of Tanks 8D-1 and 8D-2 have been exposed for more than 10 years to water that has intruded into the tank vaults. Visual inspection of the external tank surfaces using a remote video camera has shown indications of heavy corrosion in localized areas on the tank walls. Tests on mild steel specimens under simulated tank vault conditions showed that corrosion is related to the availability of oxygen for the corrosion reactions; consequently, removing oxygen as one of the reactants should effectively eliminate corrosion. In terms of the waste tanks, excluding oxygen from the annular vault space, such as by continuous flushing with an inert gas, should substantially decrease corrosion of the external surfaces of the mild steel tanks (100% exclusion of oxygen is probably not practicable). Laboratory corrosion testing was conducted at Pacific Northwest National Laboratory to give a preliminary assessment of the ability of nitrogen-inerting to reduce steel corrosion. This report summarizes test results obtained after 18-month corrosion tests comparing open-quotes nitrogen-inertedclose quotes corrosion with open-quotes air-equilibratedclose quotes corrosion under simulated tank vault conditions

  7. Effect of Acidic Water on Strength, Durability and Corrosion of ...

    African Journals Online (AJOL)

    In this study, specimens of 108 cubes (150 mm x 150 mm x 150 mm), 36 cylinders (300 mm x 150 mm), and 72 cylinders (102 mm x 51 mm) were cast and cured in percentages of NaCl added water to find the workability, strength, durability and corrosion resistance characteristics concrete. The effect of corrosion of steel in ...

  8. Economic effects of full corrosion surveys for aging concrete structures

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.; Raupach, M.; Reichling, K.

    2013-01-01

    This paper investigates the economic effects of full corrosion surveys of concrete structures. The background is that the existing concrete infrastructure is aging, while being exposed to aggressive influences, which increases the occurrence of corrosion and related concrete damage over time. The

  9. Effect of municipal liquid waste on corrosion susceptibility of ...

    African Journals Online (AJOL)

    This investigation studied the effect of municipal liquid waste discharged into the environment within Kano municipal area on the corrosion susceptibility of galvanized steel pipe burial underground. Six stagnant and six moving municipal liquid waste samples were used for the investigation. The corrosion rate of the ...

  10. Permanent Injury and the Disability-Mitigating Effects of Education

    OpenAIRE

    Bruce Cater; Sohee Kang; Byron Lew; Marco Pollanen

    2013-01-01

    Using data from Ontario, we study the extent to which education mitigates the realized work-disabling effects of permanent occupational injury. Focusing first on the rates of post-injury employment, our results suggest that education has a strong disability-mitigating effect in cases of knee and shoulder injuries, but a smaller effect where workers have experienced permanent back or wrist/finger injuries. A comparison of pre- and post-injury occupations then reveals that education mitigates d...

  11. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    International Nuclear Information System (INIS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-01-01

    Highlights: • Corrosion behaviors of a PEO coating was investigated after the salt spray test. • Corrosion products have significant effects on corrosion behaviors of the coating. • An electrochemical corrosion model is proposed. - Abstract: The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  12. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Guo, Changhong; Jiang, Guirong [College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004 (China); Shen, Dejiu, E-mail: DejiuShen@163.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-08-15

    Highlights: • Corrosion behaviors of a PEO coating was investigated after the salt spray test. • Corrosion products have significant effects on corrosion behaviors of the coating. • An electrochemical corrosion model is proposed. - Abstract: The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  13. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    Science.gov (United States)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  14. Structural Effects of Reinforced Concrete Beam Due to Corrosion

    Science.gov (United States)

    Noh, Hamidun Mohd; Idris, Nur'ain; Noor, Nurazuwa Md; Sarpin, Norliana; Zainal, Rozlin; Kasim, Narimah

    2018-03-01

    Corrosion of steel in reinforced concrete is one of the main issues among construction stakeholders. The main consequences of steel corrosion include loss of cross section of steel area, generation of expansive pressure which caused cracking of concrete, spalling and delaminating of the concrete cover. Thus, it reduces the bond strength between the steel reinforcing bar and concrete, and deteriorating the strength of the structure. The objective of this study is to investigate the structural effects of corrosion damage on the performance of reinforced concrete beam. A series of corroded reinforced concrete beam with a corrosion rate of 0%, 20% and 40% of rebar corrosion is used in parametric study to assess the influence of different level of corrosion rate to the structural performance. As a result, the used of interface element in the finite element modelling predicted the worst case of corrosion analysis since cracks is induced and generate at this surface. On the other hand, a positive linear relationship was sketched between the increase of expansive pressure and the corrosion rate. Meanwhile, the gradient of the graph is decreased with the increase of steel bar diameter. Furthermore, the analysis shows that there is a significant effect on the load bearing capacity of the structure where the higher corrosion rate generates a higher stress concentration at the mid span of the beam. This study could predict the residual strength of reinforced concrete beam under the corrosion using the finite element analysis. The experimental validation is needed on the next stage to investigate the quantitative relation between the corrosion rate and its influence on the mechanical properties.

  15. Mitigating Intergranular Stress Corrosion Cracking in Age-Hardenable Al-Zn-Mg-Cu Alloys

    Science.gov (United States)

    Ajay Krishnan, M.; Raja, V. S.; Shukla, Shweta; Vaidya, S. M.

    2018-06-01

    This article reports an attempt to develop high-strength aluminum alloys of 7xxx series resistant to intergranular stress corrosion cracking (SCC). A novel aging technique reported in this work exhibited improved strength levels (as high as 100 MPa to that of conventional overaged temper for AA 7050) with significant resistance to SCC measured even at a low strain rate (10-7 s-1) in 3.5 wt pct NaCl. The novel aging heat treatment produced a microstructure that is finer and dense enough in the matrix to impart strength, whereas it is enriched with Cu on the grain boundaries to impart SCC resistance. A detailed explanation for the enhanced strength and SCC resistance is discussed.

  16. Mitigating Intergranular Stress Corrosion Cracking in Age-Hardenable Al-Zn-Mg-Cu Alloys

    Science.gov (United States)

    Ajay Krishnan, M.; Raja, V. S.; Shukla, Shweta; Vaidya, S. M.

    2018-04-01

    This article reports an attempt to develop high-strength aluminum alloys of 7xxx series resistant to intergranular stress corrosion cracking (SCC). A novel aging technique reported in this work exhibited improved strength levels (as high as 100 MPa to that of conventional overaged temper for AA 7050) with significant resistance to SCC measured even at a low strain rate (10-7 s-1) in 3.5 wt pct NaCl. The novel aging heat treatment produced a microstructure that is finer and dense enough in the matrix to impart strength, whereas it is enriched with Cu on the grain boundaries to impart SCC resistance. A detailed explanation for the enhanced strength and SCC resistance is discussed.

  17. Effect of menthol coated craft paper on corrosion of copper in HCl ...

    Indian Academy of Sciences (India)

    Administrator

    The effect of menthol on copper corrosion was studied by gravimetric and ... lable for temporary protection of metals and alloys from corrosion, the use of volatile .... The corrosion kinetic parameters were obtained from the anodic and cathodic.

  18. Corrosion in marine atmospheres. Effect of distance from the coast

    International Nuclear Information System (INIS)

    Chico, B.; Otero, E.; Morcillos, M.; Mariaca, L.

    1998-01-01

    In marine atmospheres the deposition of saline particles on the surface of metals intensifies the metallic corrosion process. However, quantitative information about the effect of atmospheric salinity on metallic corrosion is very scarce. This paper reports the relationship between salinity and metallic corrosion, where a clear linear relation (r=0.97) has been found for a broad interval of salinities (4-500 mg Cl''-/m''2.d), as well as the relationship between salinity (or metallic corrosion) and distance from the coast. A hyperbolic function seems to be established both variables; there is an exponential drop in salinity (or corrosion) as shoreline distance increases tending towards and asymptotic value. The study has been based on information obtained from field research conducted at a marine atmosphere in Tarragona (Spain) and data compiled from the literature. (Author) 14 refs

  19. Effects of climate and corrosion on concrete behaviour

    Science.gov (United States)

    Ismail, Mohammad; Egba, Ernest Ituma

    2017-11-01

    Corrosion of steel is a damaging agent that reduces the functional and structural responsibilities of reinforced concrete structures. Accordingly, reinforced concrete members in the environments that are prone to concrete carbonation or chloride attack coupled with high temperature and relative humidity suffer from accelerated corrosion of reinforcing material. Also, literature proves that climate influences corrosion of concrete, and suggests investigation of impact of corrosion on concrete based on climate zone. Therefore, this paper presents the effects of climate and corrosion on concrete behavior, using bond strength of concrete as a case study. Concrete specimens were prepared form concrete mix that was infested with 3.5 kgm-3 of sodium chloride to accelerate corrosion. The specimens were cured sodium chloride solution 3.5% by weight of water for 28 days before placing them in the exposure conditions. Pull-out tests were conducted at time intervals for one year to measure the impact of exposure condition and corrosion on bond strength of concrete. The results show reduction of bond strength of concrete by 32%, 28% and 8% after one year of subjection of the specimens to the unsheltered natural climate, sheltered natural climate, and laboratory ambient environment respectively. The findings indicate that the climate influences corrosion, which reduces the interlocking bond between the reinforcing bar and the adjacent concrete.

  20. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    International Nuclear Information System (INIS)

    Anderson, Mark; Sridharan, Kumar; Morgan, Dane; Peterson, Per; Calderoni, Pattrick; Scheele, Randall; Casekka, Andrew; McNamara, Bruce

    2015-01-01

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re

  1. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Peterson, Per [Univ. of Wisconsin, Madison, WI (United States); Calderoni, Pattrick [Univ. of Wisconsin, Madison, WI (United States); Scheele, Randall [Univ. of Wisconsin, Madison, WI (United States); Casekka, Andrew [Univ. of Wisconsin, Madison, WI (United States); McNamara, Bruce [Univ. of Wisconsin, Madison, WI (United States)

    2015-01-22

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re

  2. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  3. EFFECT OF RATIO OF SURFACE AREA ON THE CORROSION RATE

    OpenAIRE

    Dody Prayitno; M. Irsyad

    2018-01-01

    Aluminum and steel are used to be a construction for a building outdoor panel. Aluminum and steel are connected by bolt and nut. An atmosphere due to a corrosion of the aluminum. The corrosion possibly to cause the hole diameter of bolt and nut to become larger. Thus the bolt and nut can not enough strong to hold the panel. The panel may collapse. The aim of the research is first to answer a question where does the corrosion starts. The second is to know the effect of ratio surface area of st...

  4. Companion Study Guide to Short Course on Geothermal Corrosion and Mitigation in Low Temperature Geothermal Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, II, P F

    1985-04-24

    The economic utilization of geothermal resources with temperatures less than 220 degrees Fahrenheit for purposes other than electric power generation (direct utilization) requires creation of systems with long plant life and minimum operation and maintenance costs. Development of such systems requires careful corrosion engineering if the most cost effective material selections and design choices are to be made. This study guide presents guidelines for materials selection for low-temperature geothermal systems (120 - 200 degrees Fahrenheit), as well as guidance in materials design of heat pump systems for very-lowtemperature geothermal resources (less than 120 degrees Fahrenheit). This guideline is divided into five sections and an Appendix.

  5. Mitigating Reptile Road Mortality: Fence Failures Compromise Ecopassage Effectiveness

    Science.gov (United States)

    Baxter-Gilbert, James H.; Riley, Julia L.; Lesbarrères, David; Litzgus, Jacqueline D.

    2015-01-01

    Roadways pose serious threats to animal populations. The installation of roadway mitigation measures is becoming increasingly common, yet studies that rigorously evaluate the effectiveness of these conservation tools remain rare. A highway expansion project in Ontario, Canada included exclusion fencing and ecopassages as mitigation measures designed to offset detrimental effects to one of the most imperial groups of vertebrates, reptiles. Taking a multispecies approach, we used a Before-After-Control-Impact study design to compare reptile abundance on the highway before and after mitigation at an Impact site and a Control site from 1 May to 31 August in 2012 and 2013. During this time, radio telemetry, wildlife cameras, and an automated PIT-tag reading system were used to monitor reptile movements and use of ecopassages. Additionally, a willingness to utilize experiment was conducted to quantify turtle behavioral responses to ecopassages. We found no difference in abundance of turtles on the road between the un-mitigated and mitigated highways, and an increase in the percentage of both snakes and turtles detected dead on the road post-mitigation, suggesting that the fencing was not effective. Although ecopassages were used by reptiles, the number of crossings through ecopassages was lower than road-surface crossings. Furthermore, turtle willingness to use ecopassages was lower than that reported in previous arena studies, suggesting that effectiveness of ecopassages may be compromised when alternative crossing options are available (e.g., through holes in exclusion structures). Our rigorous evaluation of reptile roadway mitigation demonstrated that when exclusion structures fail, the effectiveness of population connectivity structures is compromised. Our project emphasizes the need to design mitigation measures with the biology and behavior of the target species in mind, to implement mitigation designs in a rigorous fashion, and quantitatively evaluate road

  6. Mitigating reptile road mortality: fence failures compromise ecopassage effectiveness.

    Directory of Open Access Journals (Sweden)

    James H Baxter-Gilbert

    Full Text Available Roadways pose serious threats to animal populations. The installation of roadway mitigation measures is becoming increasingly common, yet studies that rigorously evaluate the effectiveness of these conservation tools remain rare. A highway expansion project in Ontario, Canada included exclusion fencing and ecopassages as mitigation measures designed to offset detrimental effects to one of the most imperial groups of vertebrates, reptiles. Taking a multispecies approach, we used a Before-After-Control-Impact study design to compare reptile abundance on the highway before and after mitigation at an Impact site and a Control site from 1 May to 31 August in 2012 and 2013. During this time, radio telemetry, wildlife cameras, and an automated PIT-tag reading system were used to monitor reptile movements and use of ecopassages. Additionally, a willingness to utilize experiment was conducted to quantify turtle behavioral responses to ecopassages. We found no difference in abundance of turtles on the road between the un-mitigated and mitigated highways, and an increase in the percentage of both snakes and turtles detected dead on the road post-mitigation, suggesting that the fencing was not effective. Although ecopassages were used by reptiles, the number of crossings through ecopassages was lower than road-surface crossings. Furthermore, turtle willingness to use ecopassages was lower than that reported in previous arena studies, suggesting that effectiveness of ecopassages may be compromised when alternative crossing options are available (e.g., through holes in exclusion structures. Our rigorous evaluation of reptile roadway mitigation demonstrated that when exclusion structures fail, the effectiveness of population connectivity structures is compromised. Our project emphasizes the need to design mitigation measures with the biology and behavior of the target species in mind, to implement mitigation designs in a rigorous fashion, and quantitatively

  7. Mitigation effects of radon decay products by air cleaner

    International Nuclear Information System (INIS)

    Kazuki Iwaoka; Tetsuo Ishikawa; Hidenori Yonehara; Shinji Tokonami

    2013-01-01

    One of the most effective methods for reducing exposure is the use of air cleaners. In this study, a dose mitigation of a commonly-used Japanese air cleaner under conditions in which aerosols are continuously supplied was investigated. Although the values of the EERC during an operation of air cleaner decreased, values of the f p increased with the use of air cleaner. An effective dose was calculated on the basis of our experimental results, resulting in the dose mitigation of about 40 % by the air cleaner. Air cleaners can be regarded as an effective tool for the dose mitigation under with conditions in which aerosols are continuously supplied. (author)

  8. Effect of aging on the corrosion of aluminum alloy 6061

    International Nuclear Information System (INIS)

    EL-Bedawy, M.E.M.

    2010-01-01

    Not only alloying additions may affect the corrosion resistance of aluminum alloys, but also practices that result in a nonuniform microstructure may introduce susceptibility to some forms of corrosion, especially if the microstructural effect is localized. This work was intended to study the effect of aging time at 225, 185 and 140 degree C and the effect of constant aging time ( 24 hrs ) in the temperature range 100 - 450 degree C as well as the influence of the solution ph on the corrosion characteristics of 6061 aluminum alloy, (Al-Mg-Si alloy) containing 0.22 wt% Cu. The investigation was performed by standard immersion corrosion test according to the British Standard BS 11846 method B and by applying potentiodynamic polarization technique in neutral deaerated 0.5 % M NaCl solution as well as in alkaline NaOH solution (ph = 10). The susceptibility to corrosion and the dominant corrosion type was evaluated by examination of transverse cross sections of corroded samples after the immersion test and examination of the corroded surfaces after potentiodynamic polarization using optical microscope. Analysis of the polarization curves was used to determine the effect of different aging parameters on corrosion characteristics such as the corrosion current density I (corr), the corrosion potential E (corr), the cathodic current densities and the passivation behavior.Results of the immersion test showed susceptibility to intergranular corrosion in the under aged tempers while pitting was the dominant corrosion mode for the over aged tempers after aging at 225 and 185 degree C.Analysis of the potentiodynamic polarization curves showed similar dependence of I (corr) and cathodic current densities on the aging treatment in the neutral 0.5 %M NaCl solution and in the alkaline NaOH solution. It was observed that E(corr) values in the NaCl solution were shifted in the more noble direction for the specimens aged before peak aging while it decreased again with aging time for

  9. Optimization of the dissolved hydrogen level in PWR to mitigate stress corrosion cracking of nickel alloys. Bibliographic review, modelling and recommendations

    International Nuclear Information System (INIS)

    Labousse, M.; Deforge, D.; Gressier, F.; Taunier, S.; Le Calvar, M.

    2012-09-01

    Nickel based alloys Stress Corrosion Cracking (SCC) has been a major concern for the Nuclear Power Plants (NPP) utilities since more than 40 years. At EDF, this issue led to the replacement of all upper vessel heads and of most of the steam generators with Alloy 600 MA tubes. Under the scope of plant lifetime extension, there is some concerns about the behaviour of Bottom Mounted Instrumentation Nozzles (BMI) made of Alloy 600 welded with Alloy 182 and a few vessel dissimilar metal welds made of Alloy 82, for only three 1450 MWe plants. It is considered for long that Primary Water Stress Corrosion Cracking (PWSCC) is influenced by the dissolved hydrogen (DH) level in primary coolant. Now, the whole community clearly understands that there is a hydrogen level corresponding to a maximum in terms of SCC susceptibility. Many experimental studies were done worldwide to optimize the hydrogen level in primary water during power operation, both in terms of SCC initiation and propagation. From these studies, most of American plants decided to increase the dissolved hydrogen level in order to mitigate crack propagation. Conversely, in Japan, based on crack initiation data, it is thought that drastically decreasing the hydrogen content would rather be beneficial. In order to consolidate EDF position, a review of laboratory tests data was made. Studies on the influence of hydrogen on nickel alloys 600 and 182 PWSCC were compiled and rationalized. Data were collapsed using a classical Gaussian model, such as initially proposed by Morton et al. An alternative model based on more phenomenological considerations was also proposed. Both models lead to similar results. The maximum susceptibility to SCC cracking appears to be rather consistent with the Ni/NiO transition, which was not taken as an initial hypothesis. Regarding crack initiation, an inverse Gaussian model was proposed. Based on the current hydrogen concentration range during power operation and considering components

  10. Effect of Wall Shear Stress on Corrosion Inhibitor Film Performance

    Science.gov (United States)

    Canto Maya, Christian M.

    In oil and gas production, internal corrosion of pipelines causes the highest incidence of recurring failures. Ensuring the integrity of ageing pipeline infrastructure is an increasingly important requirement. One of the most widely applied methods to reduce internal corrosion rates is the continuous injection of chemicals in very small quantities, called corrosion inhibitors. These chemical substances form thin films at the pipeline internal surface that reduce the magnitude of the cathodic and/or anodic reactions. However, the efficacy of such corrosion inhibitor films can be reduced by different factors such as multiphase flow, due to enhanced shear stress and mass transfer effects, loss of inhibitor due to adsorption on other interfaces such as solid particles, bubbles and droplets entrained by the bulk phase, and due to chemical interaction with other incompatible substances present in the stream. The first part of the present project investigated the electrochemical behavior of two organic corrosion inhibitors (a TOFA/DETA imidazolinium, and an alkylbenzyl dimethyl ammonium chloride), with and without an inorganic salt (sodium thiosulfate), and the resulting enhancement. The second part of the work explored the performance of corrosion inhibitor under multiphase (gas/liquid, solid/liquid) flow. The effect of gas/liquid multiphase flow was investigated using small and large scale apparatus. The small scale tests were conducted using a glass cell and a submersed jet impingement attachment with three different hydrodynamic patterns (water jet, CO 2 bubbles impact, and water vapor cavitation). The large scale experiments were conducted applying different flow loops (hilly terrain and standing slug systems). Measurements of weight loss, linear polarization resistance (LPR), and adsorption mass (using an electrochemical quartz crystal microbalance, EQCM) were used to quantify the effect of wall shear stress on the performance and integrity of corrosion inhibitor

  11. Localized Corrosion of Alloy 22 -Fabrication Effects-FY05 Summary Report

    International Nuclear Information System (INIS)

    Rebak, R B

    2005-01-01

    This report deals with the impact of fabrication processes on the localized corrosion behavior of Alloy 22 (N06022). The four fabrication processes that were analyzed are: (1) Surface stress mitigation of final closure weld, (2) Manufacturing of the mockup container, (3) Black annealing of the container and (4) Use of different heats of Alloy 22 for container fabrication. Immersion and Electrochemical tests performed in the laboratory are generally aggressive and do not represent actual repository environments in Yucca Mountain. For example, to determine the intergranular attack in the heat affected zone of a weldment, tests are conducted in boiling acidic and oxidizing solutions according to ASTM standards. These solutions are used to compare the behavior of differently treated metallic coupons. Similarly for electrochemical tests many times pure sodium chloride or calcium chloride solutions are used. Pure chloride solutions are not representative of the repository environment. (1) Surface Stress Mitigation--When metallic plates are welded, for example using the Gas Tungsten Arc Welding (GTAW) method, residual tensile stresses may develop in the vicinity of the weld seam. Processes such as Low Plasticity Burnishing (LPB) and Laser Shock Peening (LSP) could be applied locally to eliminate the residual stresses produced by welding. In this study, Alloy 22 plates were welded and then the above-mentioned surface treatments were applied to eliminate the residual tensile stresses. The aim of the current study was to comparatively test the corrosion behavior of as-welded (ASW) plates with the corrosion behavior of plates with stress mitigated surfaces. Immersion and electrochemical tests were performed. Results from both immersion and electrochemical corrosion tests show that the corrosion resistance of the mitigated plates was not affected by the surface treatments applied. (2) Behavior of Specimens from a Mockup container--Alloy 22 has been extensively tested for

  12. Forest and Water Management for Mitigating the effects of Climate ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Forest and Water Management for Mitigating the effects of Climate Change in the ... forest, agriculture and water management strategies play in both adaptation to and ... IDRC joins more than 800 international delegates at the Resilient Cities ...

  13. Forest and Water Management for Mitigating the effects of Climate ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Forest and Water Management for Mitigating the effects of Climate Change in the ... Internet as a gateway in expanding choices for building adaptive capacity : a case ... L'honorable Chrystia Freeland, ministre du Commerce international, ...

  14. Effects of prior cold work on corrosion and corrosive wear of copper in HNO3 and NaCl solutions

    International Nuclear Information System (INIS)

    Yin Songbo; Li, D.Y.

    2005-01-01

    Effects of prior cold work on corrosion and corrosive wear behavior of copper in 0.1 M HNO 3 and 3.5% NaCl solutions, respectively, were investigated using electrochemical tests, electron work function measurements, and sliding corrosive wear tests with and without cathodic protection. Optical microscope and SEM were employed to examine the microstructure and worn surfaces. It was shown that, in general, the prior cold work raised the corrosion rate, but the effect differed in different corrosive media. In both the solutions, pure mechanical wear decreased with an increase in cold work. The prior cold work had a significant influence on the corrosive wear of copper, depending on the corrosive solution and the applied load. In the 0.1 M HNO 3 solution, the ratio of the wear loss caused by corrosion-wear synergism to the total wear loss increased with the cold work and became saturated when the cold work reached a certain level. In the 3.5% NaCl solution, however, this ratio decreased initially and then became relatively stable with respect to the cold work. It was observed that wear of copper in the 3.5% NaCl solution was larger than that in 0.1 M HNO 3 solution, although copper showed lower corrosion rate in the former solution. The experimental observations and the possible mechanisms involved are discussed

  15. The corrosion effect on the conduit systems

    International Nuclear Information System (INIS)

    Laaidi, Naouar; Belattar, Sougratti

    2009-01-01

    The conduits in the buildings require a regular and permanent control, in order to avoid the risks of deterioration caused by the corrosion or the escape of water. In this work, we present a thermal nondestructive testing method of concrete structures containing water conduits, based on numerical modeling in three dimensions. The goal is to study the detectability of these conduits in different situations and to give a thermal characterization of the rust behaviour in the steel conduits. (author)

  16. Effect of zinc injection on BWR fuel cladding corrosion. Pt. 1. Study on an accelerated corrosion condition to evaluate corrosion resistance of zircaloy-2 fuel cladding

    International Nuclear Information System (INIS)

    Kawamura, Hirotaka; Kanbe, Hiromu; Furuya, Masahiro

    2002-01-01

    Japanese BWR utilities have a plan to apply zinc injection to the primary coolant in order to reduce radioactivity accumulation on the structure. Prior to applying the zinc injection to BWR plants, it is necessary to evaluate the effect of zinc injection on corrosion resistance of fuel cladding. The objective of this report was to examine the accelerated corrosion condition for evaluation of BWR fuel cladding corrosion resistance under non-irradiated conditions, as the first step of a zinc injection evaluation study. A heat transfer corrosion test facility, in which a two phase flow condition could be achieved, was designed and constructed. The effects of heat flux, void fraction and solution temperature on BWR fuel cladding corrosion resistance were quantitatively investigated. The main findings were as follows. (1) In situ measurements using high speed camera and a void sensor together with one dimensional two phase flow analysis results showed that a two phase flow simulated BWR core condition can be obtained in the corrosion test facility. (2) The heat transfer corrosion test results showed that the thickness of the zirconium oxide layer increased with increasing solution temperature and was independent of heat flux and void fraction. The corrosion accelerating factor was about 2.5 times in the case of a temperature increase from 288degC to 350degC. (author)

  17. Corrosion and corrosion control

    International Nuclear Information System (INIS)

    Khanna, A.S.; Totlani, M.K.

    1995-01-01

    Corrosion has always been associated with structures, plants, installations and equipment exposed to aggressive environments. It effects economy, safety and product reliability. Monitoring of component corrosion has thus become an essential requirement for the plant health and safety. Protection methods such as appropriate coatings, cathodic protection and use of inhibitors have become essential design parameters. High temperature corrosion, especially hot corrosion, is still a difficult concept to accommodate in corrosion allowance; there is a lack of harmonized system of performance testing of materials at high temperatures. In order to discuss and deliberate on these aspects, National Association for Corrosion Engineers International organised a National Conference on Corrosion and its Control in Bombay during November 28-30, 1995. This volume contains papers presented at the symposium. Paper relevant to INIS is indexed separately. refs., figs., tabs

  18. Effective flow-accelerated corrosion programs in nuclear facilities

    International Nuclear Information System (INIS)

    Esselman, Thomas C.; McBrine, William J.

    2004-01-01

    Piping Flow-Accelerated Corrosion Programs in nuclear power generation facilities are classically comprised of the selection of inspection locations with the assistance of a predictive methodology such as the Electric Power Research Institute computer codes CHECMATE or CHECWORKS, performing inspections, conducting structural evaluations on the inspected components, and implementing the appropriate sample expansion and corrective actions. Performing such a sequence of steps can be effective in identifying thinned components and implementing appropriate short term and long term actions necessary to resolve flow-accelerated corrosion related problems. A maximally effective flow-accelerated corrosion (FAC) program requires an understanding of many programmatic details. These include the procedural control of the program, effective use of historical information, managing the activities performed during a limited duration outage, allocating resources based on risk allocation, having an acute awareness of how the plant is operated, investigating components removed from the plant, and several others. This paper will describe such details and methods that will lead to a flow-accelerated corrosion program that effectively minimizes the risk of failure due to flow-accelerated corrosion and provide full and complete documentation of the program. (author)

  19. Evaluation and mitigation of the degradation by corrosion in the components of the service water system of a nuclear power plant

    International Nuclear Information System (INIS)

    Salaices A, E.; Salaices, M.; Ovando, R.

    2005-01-01

    One of the main problems that face the nuclear power stations is the degradation by corrosion in the service water systems. The corrosion causes lost substantial in energy generation and a high cost in maintenance and repairs. In this work, the results of a study of the degradation by the MIC mechanisms (microorganisms influenced corrosion), incrustations in heat exchangers and erosion for solid particles in the components of a typical service water system of a nuclear plant are presented. Diverse mitigation options are analyzed for these mechanisms. In the analysis, it was used the CHECWORKS-CWA code to carry out the evaluation of the degradation so much as well as the mitigation of the caused damage. The results are presented in susceptibility indexes and degradation rates component-by-component. A significant decrement could be observed in the susceptibility to MIC when changing the operation conditions of stagnated flow to continuous flow. With respect to the erosion by solid particles, it was found a significant reduction of the damage it when adding filters to the system. Finally, in the case of the heat exchangers, it is shown that one of the more viable options to diminish incrustations and existent calcium deposits it is the reduction of the pH of the service water. (Author)

  20. Influence of alkali metal oxides and alkaline earth metal oxides on the mitigation of stress corrosion cracking in CANDU fuel sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, J.; Ferrier, G.A.; Farahani, M.; Chan, P.K.; Corcoran, E.C., E-mail: Joseph.Metzler@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2015-07-01

    This work investigates strategies to mitigate stress corrosion cracking (SCC) in Zircaloy-4 sheathing materials. The CANLUB coatings currently used in CANDU reactors contain both alkali metal and alkaline earth metal impurities, which can exist as oxides (e.g., Na{sub 2}O and CaO). It is believed that when the corrosive fission product iodine reacts with these oxides, the iodine can be sequestered through the formation of an iodide (e.g.,NaI and CaI{sub 2}). The subsequent O{sub 2} release may repair cracks in the protective ZrO{sub 2} layer on the sheathing, shielding the Zircaloy-4 sheathing from further corrosive fission product attack. For this investigation, O{sub 2} gas, Na{sub 2}O, and CaO were separately introduced into an environment wherein slotted Zircaloy-4 rings endure mechanical stresses in iodine vapour at high temperatures. Controlled additions of O{sub 2} gas created a slight reduction in the corrosive attack on Zircaloy-4 sheathing, while the inclusion of Na{sub 2}O and CaO lead to greater reductions. (author)

  1. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  2. Effect of Bi on the corrosion resistance of zirconium alloys

    International Nuclear Information System (INIS)

    Yao Meiyi; Zhou Bangxin; Li Qiang; Zhang Weipeng; Zhu Li; Zou Linghong; Zhang Jinlong; Peng Jianchao

    2014-01-01

    In order to investigate systematically the effect of Bi addition on the corrosion resistance of zirconium alloys, different zirconium-based alloys, including Zr-4 (Zr-l.5Sn-0.2Fe-0.1Cr), S5 (Zr-0.8Sn-0.35Nb-0.4Fe-0.1Cr), T5 (Zr-0.7Sn-l.0Nb-0.3Fe-0.1Cr) and Zr-1Nb, were adopted to prepare the zirconium alloys containing Bi of 0∼0.5% in mass fraction. These alloys were denoted as Zr-4 + xBi, S5 + xBi, T5 + xBi and Zr-1Nb + xBi, respectively. The corrosion behavior of these specimens was investigated by autoclave testing in lithiated water with 0.01 M LiOH or deionized water at 360 ℃/18.6 MPa and in superheated steam at 400 ℃/10.3 MPa. The microstructure of the alloys was examined by TEM and the second phase particles (SPPs) were analyzed by EDS. Microstructure observation shows that the addition of Bi promotes the precipitation of Sn as second phase particles (SPPs) because Sn is in solid solution in α-Zr matrix in Zr-4, S5 and T5 alloys. The concentration of Bi dissolved in α-Zr matrix increase with the increase of Nb in the alloys, and the excess Bi precipitates as Bi-containing SPPs. The corrosion results show that the effect of Bi addition on the corrosion behavior of different zirconium-based alloys is very complicated, depending on their compositions and corrosion conditions. In the case of higher Bi concentration in α-Zr, the zirconium alloys exhibit better corrosion resistance. However, in the case of precipitation of Bi-containing SPPs, the corrosion resistance gets worse. This indicates that the solid solution of Bi in α-Zr matrix can improve the corrosion resistance, while the precipitation of the Bi-containing SPPs is harmful to the corrosion resistance. (authors)

  3. Effect of microcrystallization on pitting corrosion of pure aluminium

    International Nuclear Information System (INIS)

    Meng Guozhe; Wei Liyan; Zhang Tao; Shao Yawei; Wang Fuhui; Dong Chaofang; Li Xiaogang

    2009-01-01

    A microcrystalline aluminium film with grain size of about 400 nm was prepared by magnetron sputtering technique. Its corrosion behaviour was investigated in NaCl containing acidic solution by means of potentiodynamic polarization curves and electrochemical noise (EN). The polarization results indicated that the corrosion potential of the sample shifted towards more positive direction, while its corrosion current density decreased compared with that of pure coarse-grain Al. The EN analysis based on stochastic model demonstrated that there existed two kinds of effect of microcrystallization on the pitting behaviour of pure aluminium: (1) the rate of pit initiation is accelerated, (2) the pit growth process was impeded. This leads to the enhancement of pitting resistance for the microcrystallized aluminium.

  4. Effect of radiation on anaerobic corrosion of iron

    International Nuclear Information System (INIS)

    Smart, N.R.; Rance, A.P.

    2005-01-01

    To ensure the safe encapsulation of spent nuclear fuel elements for geological disposal, SKB of Sweden are considering using the Advanced Cold Process Canister, which consists of an outer copper canister and a cast iron insert. A programme of work has been carried out to investigate a range of corrosion issues associated with the canister, including measurements of gas generation due to the anaerobic corrosion of ferrous materials (carbon steel and cast iron) over a range of conditions. To date, all this work has been conducted in the absence of a radiation field. SKB asked Serco Assurance to carry out a set of experiments designed to investigate the effect of radiation on the corrosion of steel in repository environments. This report describes the experimental programme and presents the results that were obtained. The measurements were carried out in the type of gas cell used previously, in which the change in gas pressure was measured using a liquid-filled manometer. The test cells were placed in a radiation cell and positioned so that the received radiation dose was equivalent to that expected in the repository. Control cells were used to allow for any gas generation caused by radiolytic breakdown of the construction materials and the water. Tests were carried out at two temperatures (30 deg C and 50 deg C), two dose rates (11 Gray/hr and 300 Gray/hr), and in two different artificial groundwaters. A total of four tests were carried out, using carbon steel wires as the test material. The cells were exposed for a period of several months, after which they were dismantled and the corrosion product on one wire from each test cell was analysed using Raman spectroscopy. The report presents the results from the gas generation tests and compares the results obtained under irradiated conditions to results obtained previously in the absence of radiation. Radiation was found to enhance the corrosion rate at both dose rates but the greatest enhancement occurred at the

  5. Effects of chemical composition on the corrosion of dental alloys.

    Science.gov (United States)

    Galo, Rodrigo; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira; Rocha, Luís Augusto; de Mattos, Maria da Glória Chiarello

    2012-01-01

    The aim of this study was to determine the effect of the oral environment on the corrosion of dental alloys with different compositions, using electrochemical methods. The corrosion rates were obtained from the current-potential curves and electrochemical impedance spectroscopy (EIS). The effect of artificial saliva on the corrosion of dental alloys was dependent on alloy composition. Dissolution of the ions occurred in all tested dental alloys and the results were strongly dependent on the general alloy composition. Regarding the alloys containing nickel, the Ni-Cr and Ni-Cr-Ti alloys released 0.62 mg/L of Ni on average, while the Co-Cr dental alloy released ions between 0.01 and 0.03 mg/L of Co and Cr, respectively.The open-circuit potential stabilized at a higher level with lower deviation (standard deviation: Ni-Cr-6Ti = 32 mV/SCE and Co-Cr = 54 mV/SCE). The potenciodynamic curves of the dental alloys showed that the Ni-based dental alloy with >70 wt% of Ni had a similar curve and the Co-Cr dental alloy showed a low current density and hence a high resistance to corrosion compared with the Ni-based dental alloys. Some changes in microstructure were observed and this fact influenced the corrosion behavior for the alloys. The lower corrosion resistance also led to greater release of nickel ions to the medium. The quantity of Co ions released from the Co-Cr-Mo alloy was relatively small in the solutions. In addition, the quantity of Cr ions released into the artificial saliva from the Co-Cr alloy was lower than Cr release from the Ni-based dental alloys.

  6. The electrochemistry of IGSCC mitigation

    International Nuclear Information System (INIS)

    Macdonald, D.D.

    2002-01-01

    A brief review is presented of the electrochemical mitigation of intergranular stress corrosion cracking (IGSCC) in watercooled reactor heat transport circuit structural materials. Electrochemical control and mitigation is possible because of the existence of a critical potential for intergranular stress corrosion cracking and due to the feasibility of modifying the environment to displace the corrosion potential to a value that is more negative than the critical value. However, even in cases where the corrosion potential cannot be displaced sufficiently in the negative direction to become more negative than the critical potential, considerable advantage is accrued, because of the roughly exponential dependence of the crack growth rate on potential. The most important parameters in affecting electrochemical control over the corrosion potential and crack growth rate are the kinetic parameters (exchange current densities and Tafel constants) for the redox reactions involving the principal radiolysis products of water (O 2 , H 2 H 2 O 2 ), external solution composition (concentrations of O 2 , H 2 O 2 , and H 2 ), flow velocity, and the conductivity of the bulk environment. The kinetic parameters for the redox reactions essentially determine the charge transfer impedance of the steel surface, which is shown to be one of the key parameters in affecting the magnitude of the coupling current and hence the crack growth rate. The exchange current densities, in particular, are amenable to control by catalysis or inhibition, with the result that surface modification techniques are highly effective in controlling and mitigating intergranular stress corrosion cracking in reactor coolant circuit materials. (orig.)

  7. The Effects of Saltwater Intrusion to Flood Mitigation Project

    Science.gov (United States)

    Azida Abu Bakar, Azinoor; Khairudin Khalil, Muhammad

    2018-03-01

    The objective of this study is to determine the effects of saltwater intrusion to flood mitigation project located in the flood plains in the district of Muar, Johor. Based on the studies and designs carried out, one of the effective flood mitigation options identified is the Kampung Tanjung Olak bypass and Kampung Belemang bypass at the lower reaches of Sungai Muar. But, the construction of the Kampung Belemang and Tanjung Olak bypass, while speeding up flood discharges, may also increase saltwater intrusion during drought low flows. Establishing the dynamics of flooding, including replicating the existing situation and the performance with prospective flood mitigation interventions, is most effectively accomplished using computer-based modelling tools. The finding of this study shows that to overcome the problem, a barrage should be constructed at Sungai Muar to solve the saltwater intrusion and low yield problem of the river.

  8. Effect of temperature on structure and corrosion resistance for ...

    Indian Academy of Sciences (India)

    The effect of plating temperatures between 60 and 90◦C on structure and corrosion resistance for elec- troless NiWP coatings ..... which helps to form fine grain. At 80 .... [23] Zhang W X, Jiang Z H, Li G Y and Jiang Q 2008 Surf. Coat. Technol.

  9. Effects of glacial meltwater on corrosion of copper canisters

    International Nuclear Information System (INIS)

    Ahonen, L.; Vieno, T.

    1994-08-01

    The composition of glacial meltwater and its reactions in the bedrock are examined. The evidences that there are or should be from past intrusions of glacial meltwater and oxygen deep in the bedrock are also considered. The study is concluded with an evaluation of the potential effects of oxygenated meltwater on the corrosion of copper canisters. (46 refs., 3 figs., 2 tabs.)

  10. Synergetic effect of sulphur and nitrogen oxides on corrosion of ...

    African Journals Online (AJOL)

    The synergetic effect of nitrogen dioxide (NO2) and sulphur dioxide (SO2) on corrosion of galvanized iron roofing sheets has been investigated. The field studies were conducted in Ibeno and Ebocha (Niger Delta, Nigeria). Specimens of the roofing sheets were exposed for one year to outdoor environment to record the ...

  11. Mitigation of FOD and Corrosion Fatigue Damage in 17-4 PH Stainless Steel Compressor Blades With Surface Treatment

    National Research Council Canada - National Science Library

    Prevey, Paul S; Jayaraman, N; Ravindranath, Ravi

    2004-01-01

    ... the geometrical conditions of thick section and blade leading edges of compressor blades. The FOD tolerance and corrosion fatigue performance of 17-4PH prepared by low plasticity burnishing (LPB), shot peening (SP...

  12. Efficiency of parks in mitigating urban heat island effect

    DEFF Research Database (Denmark)

    Feyisa, Gudina Legese; Dons, Klaus; Meilby, Henrik

    2014-01-01

    Urban green infrastructure can to a certain extent mitigate urban warming. However, the cooling effect of plants varies with space, time and plant-specific properties. To contribute to our understanding of the cooling effect of vegetation on urban surface and air temperature, 21 parks in Addis...... and spatial design of green spaces in cooling the environment....

  13. Combating Desertification and Mitigating the Effects of Drought

    International Nuclear Information System (INIS)

    Awuondo, C.O

    2001-01-01

    The paper discusses the effects of desertification and drought on the well-being of humankind and therefore it important for them to be combated and mitigated. Desertification is the process that turns fertile lands into desert; drought is defined as lack of sufficient precipitation to sustain plant and human life. In an effort to discuss how to combat desertification, the author has subdivided the paper into five sections namely; introduction, ecological crisis, strategies for combating desertification and mitigating the effects of drought and finally the conclusion

  14. Applied methods for mitigation of damage by stress corrosion in BWR type reactors; Metodos aplicados para la mitigacion del dano por corrosion bajo esfuerzo en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez C, R.; Diaz S, A.; Gachuz M, M.; Arganis J, C. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencia de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  15. Galvanic corrosion -- Effect of environmental and experimental variables

    International Nuclear Information System (INIS)

    Roy, A.K.; Fleming, D.L.; Lum, B.Y.

    1999-01-01

    Galvanic corrosion behavior of A 516 steel (UNS K01800) coupled to UNS N06022 and UNS R53400, respectively was evaluated in an acidic brine (pH ∼ 2.75) at 30 C, 60 C and 80 C using zero resistance ammeter method. A limited number of experiments were also performed in a neutral brine involving A 516 steel/UNS N06022 couple. The steady-state galvanic current and galvanic potential were measured as functions of anode-to-cathode (A/C) area ratio and electrode distance. Results indicate that the galvanic current was gradually reduced as the A/C area ratio was increased. No systematic trend on the effect of A/C area ratio on the galvanic potential was observed. Also, no significant effect of electrode distance on the galvanic current and galvanic potential was evident. In general, increased galvanic current was noticed with increasing temperature. The limited data obtained in the neutral brine indicate that the galvanic current was reduced in this environment compared to that in the acidic brine. Optical microscopic examination was performed on all tested specimens to evaluate the extent of surface damage resulting from galvanic interaction. A 516 steel suffered from general corrosion and crevice corrosion in all environments tested. Very light crevice corrosion mark was observed with UNS N06022 and R53400 in the acidic brine at 60 C and 80 C. However, this mark appears to be a surface discoloration and no actual crevice was detected

  16. An Experimental Investigation of the Effect of Corrosion on Dry Friction Noise

    International Nuclear Information System (INIS)

    Baek, Jongsu; Kang, Jaeyoung

    2015-01-01

    This study investigates the friction noise characteristic in relation to the corrosion of metal by using the frictional reciprocating and pin-on-disk system. From the experiments, it is found that the corrosion of metal advances the onset time and increases the magnitude of friction noise. Further, it is observed that the effect of corrosion on friction noise stems from the alteration of tribo-surface during repetitive frictional motion. The alteration of the corrosive contact surface induces a negative friction-velocity slope, by which the corrosion of metal can generate dynamic instability faster than non-corrosion of metal

  17. Mitigating the Harmful Effects of Violent Television

    Science.gov (United States)

    Rosenkoetter, Lawrence I.; Rosenkoetter, Sharon E.; Ozretich, Rachel A.; Acock, Alan C.

    2004-01-01

    In an effort to minimize the harmful effects of violent TV, a yearlong intervention was undertaken with children in Grades 1 through 3 (N = 177). The classroom-based intervention consisted of 31 brief lessons that emphasized the many ways in which television distorts violence. As hypothesized, the intervention resulted in a reduction in children's…

  18. The Effects of Corrosive Chemicals on Corrosion Rate of Steel Reinforcement Bars: II. Swamp Sludges

    Directory of Open Access Journals (Sweden)

    Henki Ashadi

    2010-10-01

    Full Text Available A polluted environment will influence the building age. The objective of this research was to find out the influence of corrosive chemicals within the sludge swamp area with the corrosion rate of steel concrete. Corrosion in steel concrete usually occur in acid area which contain of SO42-, Cl- and NO3-. The research treatment used by emerging ST 37 andST 60 within 60 days in 'polluted' sludge swamp area. Three variation of 'polluted' swamp sludge were made by increasing the concentration a corrosive unsure up to 1X, 5X and 10X. The corrosion rate measured by using an Immersion Method. The result of Immersion test showed that sulphate had a greatest influence to corrosion rate of ST 37 and ST 60 and followed by chloride and nitrate. Corrosion rate value for ST 37 was 17.58 mpy and for ST 60 was 12.47 mpy.

  19. The Effect of Homogenization on the Corrosion Behavior of Al-Mg Alloy

    Science.gov (United States)

    Li, Yin; Hung, Yuanchun; Du, Zhiyong; Xiao, Zhengbing; Jia, Guangze

    2018-04-01

    The effect of homogenization on the corrosion behavior of 5083-O aluminum alloy is presented in this paper. The intergranular corrosion and exfoliation corrosion were used to characterize the discussed corrosion behavior of 5083-O aluminum alloy. The variations in the morphology, the kind and distribution of the precipitates, and the dislocation configurations in the samples after the homogenization were evaluated using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The effects of the highly active grain boundary character distribution and the types of constituent particles on the corrosion are discussed on the basis of experimental observations. The results indicated that the corrosion behavior of 5083-O alloy was closely related to the microstructure obtained by the heat treatment. Homogenization carried out after casting had the optimal effect on the overall corrosion resistance of the material. Nevertheless, all samples could satisfy the requirements of corrosion resistance in marine applications.

  20. Radionuclide decay effects on waste glass corrosion and weathering

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.

    1993-01-01

    The release of glass components into solution, including radionuclides, may be influenced by the presence of radiolytically produced nitric acid, carboxylic acid, and transient water dissociation products such as ·OH and O 2 - . Under batch test conditions, glass corrosion has been shown to increase up to a maximum of three-to five-fold in irradiated tests relative to nonirradiated tests, while in other studies the presence of radiolytic products has actually decreased glass corrosion rates. Bicarbonate groundwaters will buffer against pH decreases and changes in corrosion rates. Under high surface area-to-solution volume (S/V) conditions, the bicarbonate buffering reservoir may be quickly overwhelmed by radiolytic acids that are concentrated in the thin films of water contacting the samples. Glass reaction rates have been shown to increase up to 10-to-15-fold due to radiation exposure under high S/V conditions. Radiation damage to solid glass materials results in bond damage and atomic displacements. This type of damage has been shown to increase the release rates of glass components up to four-fold during subsequent corrosion tests, although under actual disposal conditions, glass annealing processes may negate the solid radiation damage effects

  1. The effect of single overloading on stress corrosion cracking

    International Nuclear Information System (INIS)

    Ito, Yuzuru; Saito, Masahiro

    2008-01-01

    In the normal course of nuclear power plant operation in Japan, proof testing has been performed after periodic plant inspections. In this proof test procedure, the reactor pressure vessel and pipes of the primary coolant loop are subjected to a specified overload with a slightly higher hydraulic pressure than during normal operation. This specified overload is so called a single overload' in material testing. It is well known that the fatigue crack growth rate is decreased after a single overload has been applied to the specimen. However, it is not clear whether the stress corrosion cracking rate is also decreased after a single overload. In this study, the effect of a single overload on the stress corrosion cracking rate under simulated boiling water reactor environment was evaluated by examining a singly overloaded WOL (wedge opening load) specimen. The WOL specimen for the stress corrosion cracking test was machined from sensitized 304 type austenitic stainless steel. Since the crack extension length was 3.2% longer in the case of a more severely overloaded specimen, it was observed than the stress corrosion cracking rate is also decreased after the single overload has been applied to the specimen. (author)

  2. Assessing Level and Effectiveness of Corrosion Education in the UAE

    OpenAIRE

    Lim, Hwee Ling

    2012-01-01

    The consequences of corrosion can be minimized by an engineering workforce well trained in corrosion fundamentals and management. Since the United Arab Emirates incurs the second highest cost of corrosion after Saudi Arabia, this paper examined the quality of corrosion education in the UAE. Surveys with academia and industry respondents showed that dedicated corrosion courses and engineering courses that integrated corrosion into the curricula were available in UAE universities, but graduates...

  3. The effects of Nitinol phases on corrosion and fatigue behavior

    Science.gov (United States)

    Denton, Melissa

    The purpose of these studies was to provide a detailed understanding of Nitinol phases and their effects on corrosion and fatigue life. The two primary phases, austenite and martensite, were carefully evaluated with respect to material geometry, corrosion behavior, wear, and fatigue life. Material characterization was performed using several techniques that include metallography, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray photoelectron spectrum (XPS), and Auger electron spectroscopy (AES). Uniaxial tensile tests were conducted to determine the mechanical properties such as elongation, ultimate tensile strength, modulus, transformation strain, and plateau stress. In addition, accelerated wear testing and four point bend fatigue testing were completed to study the fatigue life and durability of the material. The corrosion of Nitinol was found to be dependent on various surface conditions. Electrochemical corrosion behavior of each phase was investigated using cyclic potentiodyamic polarization testing. The corrosion response of electropolished Nitinol was found to be acceptable, even after durability testing. Stress-induced martensite had a lower breakdown potential due to a rougher surface morphology, while thermally induced martensite and austenite performed similarly well. The surface conditioning also had a significant effect on Nitinol mechanical properties. Electropolishing provided a smooth mirror finish that reduced localized texture and enhanced the ductility of the material. Quasi-static mechanical properties can be good indicators of fatigue life, but further fatigue testing revealed that phase transformations had an important role as well. The governing mechanisms for the fatigue life of Nitinol were determined to be both martesitic phase transformations and surface defects. A new ultimate dislocation strain model was proposed based on specific accelerated step-strain testing.

  4. Adsorption and corrosion inhibiting effect of riboflavin on Q235 mild steel corrosion in acidic environments

    Energy Technology Data Exchange (ETDEWEB)

    Chidiebere, Maduabuchi A. [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China); Electrochemistry and Materials Science Research Laboratory, Department of Chemistry, Federal University of Technology Owerri, PMB 1526 Owerri (Nigeria); Oguzie, Emeka E. [Electrochemistry and Materials Science Research Laboratory, Department of Chemistry, Federal University of Technology Owerri, PMB 1526 Owerri (Nigeria); Liu, Li [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China); Li, Ying, E-mail: liying@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China); Wang, Fuhui [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China)

    2015-04-15

    The inhibiting effect of Riboflavin (RF) on Q235 mild steel corrosion in 1 M HCl and 0.5 M H{sub 2}SO{sub 4} at 30 °C temperature was investigated using electrochemical techniques (electrochemical impedance spectroscopy and potentiodynamic polarization). The obtained results revealed that RF inhibited the corrosion reaction in both acidic solutions. Maximum inhibition efficiency values in 1 M HCl and 0.5 M H{sub 2}SO{sub 4} were 83.9% and 71.4%, respectively, obtained for 0.0012 M RF. Polarization data showed RF to be a mixed-type inhibitor, while EIS results revealed that the RF species adsorbed on the metal surface. The adsorption of RF followed Langmuir adsorption isotherm. Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) studies confirmed the formation of a protective layer adsorbed on the steel surface. Quantum chemical calculations were used to correlate the inhibition ability of RF with its electronic structural parameters. - Highlights: • The inhibitory mechanism was influenced by the nature of acid anions. • RF has reasonable inhibition effect especially in 1 M HCl solution. • Polarization studies showed that RF functioned as a mixed type inhibitor. • Improved surface morphology was observed in the presence of RF.

  5. A flow reactor for the flow supercritical water oxidation of wastes to mitigate the reactor corrosion problem

    International Nuclear Information System (INIS)

    Chitanvis, S.M.

    1994-01-01

    We have designed a flow tube reactor for supercritical water oxidation of wastes that confines the oxidation reaction to the vicinity of the axis of the tube. This prevents high temperatures and reactants as well as reaction products from coming in intimate contact with reactor walls. This implies a lessening of corrosion of the walls of the reactor. We display numerical simulations for a vertical reactor with conservative design parameters that illustrate our concept. We performed our calculations for the destruction of sodium nitrate by ammonium hydroxide In the presence of supercritical water, where the production of sodium hydroxide causes corrosion. We have compared these results with that for a horizontal set-up where the sodium hydroxide created during the reaction ends up on the floor of the tube, implying a higher probability of corrosion

  6. Dynamic thermo-chemo-mechanical strain of Zircaloy-4 slotted rings for evaluating strategies that mitigate stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Ferrier, G.A.; Metzler, J.; Farahani, M.; Chan, P.K.; Corcoran, E.C. [Royal Military College of Canada, Kingston, ON (Canada)

    2014-07-01

    Stress corrosion cracking (SCC) in Zircaloy-4 fuel sheaths has been investigated by static loading of slotted ring samples under hot and corrosive conditions. However, in nuclear reactors, power ramps can have short (e.g., 10-20 minutes) and recurring time frames due to dynamic processes such as on-power refuelling, adjuster rod manoeuvres, and load following. Therefore, to enable out-reactor dynamic testing, an apparatus was designed to dynamically strain slotted ring samples under SCC conditions. This apparatus can additionally be used to test fatigue properties. Unique capabilities of this apparatus and preliminary results obtained from static and dynamic tests are presented. (author)

  7. Systematic effects in radon mitigation by sump/pump remediation

    International Nuclear Information System (INIS)

    Groves-Kirkby, C.J.; Denman, A.R.; Groves-Kirkby, C.J.; Woolridge, A.C.; Woolridge, A.C.; Phillips, P.S.; Crockett, R.G.M.; Tornberg, R.

    2006-01-01

    Sump/Pump remediation is widely used in the United Kingdom to mitigate indoor radon gas levels in residential properties. To quantify the effectiveness of this technology, a study was made of radon concentration data from a set of 173 homes situated in radon Affected Areas in and around Northamptonshire, U.K., re-mediated using conventional sump/pump technology. This approach is characterised by a high incidence of satisfactory mitigation outcomes, with more than 75% of the sample exhibiting mitigation factors (defined as the ratio of radon concentrations following and prior to remediation) of 0.2 or better. There is evidence of a systematic trend, where houses with higher initial radon concentrations have higher mitigation factors, suggesting that the total indoor radon concentration within a dwelling can be represented by two components, one susceptible to mitigation by sump/pump remediation, the other remaining essentially unaffected by these remediation strategies. The first component can be identified with ground-radon emanating from the subsoil and bedrock geologies, percolating through the foundations of the dwelling as a component of the soil-gas, potentially capable of being attenuated by sump/pump or radon-barrier remediation. The second contribution is attributed to radon emanating from materials used in the construction of the dwelling, principally concrete and gypsum plaster-board, with a further small contribution from the natural background level, and is essentially unaffected by ground-level remediation strategies. Modelling of such a two-component radon dependency using realistic ground-radon attenuation factors in conjunction with typical structural-radon levels yields behaviour in good agreement with the observed inverse-power dependence of mitigation factor on initial radon concentration. (authors)

  8. The effect of notches and pits on corrosion fatigue strength

    Science.gov (United States)

    Tatner, Ian

    An investigation has been undertaken to examine the fatigue behaviour of two martensitic steels in air and aggressive environments. The steels studied are, 18% Ni marageing steel and FV520B, the later being a stainless steel turbine blade material and the former being a marageing steel that suffers general corrosion in mild environments. Both steels were heat treated to give similar tensile strength.The design and manufacture of an autoclave allowed push-pull fatigue tests to be conducted in aggressive environments at elevated temperatures.Corrosion potential was monitored using a three electrode cell and was controlled during testing. Base-line fatigue tests were conducted with a range of constant corrosion potentials, using both notched and plain FV520B specimens. In addition fatigue tests with pulsed corrosion potential were performed to asses the effect of transient corrosion conditions on the corrosion fatigue strength. The pulsed tests were designed to simulate service transients in the oxygen content and general chemical hostility in the condensing steam environment during start-up and shut down of the steam turbine.Post test examination of fractured samples was performed using Scanning Electron Microscopy (SEM) and optical microscope techniques. The fractography results were used to quantify microstructural and fracture features of the steels.A model based on the size and geometry of the initial corrosion pitting has been proposed to asses the fatigue life of FV520B in an aggressive environment.The effect of pitting on the corrosion fatigue strength of FV520B has been modelled using linear elastic fracture mechanics (LEFM) type approach. The model has shown a good correlation between predicted fatigue lives with experimental results.The results suggest that the fatigue life is governed by the mechanical stress concentrating effect of the pits rather than the electrochemical damage caused by the environment.Finite Element Analysis (FEA) of the notch allowed

  9. Effects of Chemical Treatments on Microbiologically Influenced Corrosion

    Science.gov (United States)

    Friedman, E. S.; Strom, M.; Dexter, S. C.

    2008-12-01

    Biofilms are known to have an effect on galvanic corrosion of alloys in seawater systems. In the Delaware Bay, biofilm formation on surface of cathodes has been shown to cause galvanic corrosion to occur up to 100 times more rapidly. Given the impacts that corrosion can have on structures, it is important to study how we can affect corrosion rates. One way of doing this is the application of chemical treatments to biofilms on metal samples. To investigate this, natural marine biofilms were grown on alloy 6XN stainless steel samples, and various chemical treatments were applied to discover their effects on open circuit potentials and corrosion currents. Another objective of this study was to determine if there was a threshold molecular weight above which molecules were unable to penetrate the biofilm. It was discovered that chemicals with molecular weights as high as 741.6 g/mol were able to penetrate at least some parts of the heterogeneous biofilm and reach the metal surface. No upper threshold value was found in this study. It was found that the reducing agents sodium L-ascorbate and NADH as well as the chelate ferizene caused a drop in open circuit potential of biofilmed 6XN samples. Also, glutaraldahyde, which is used as a fixative for bacteria, shifted the open circuit potential of biofilm samples in the noble direction but had no effect on the corrosion current. Sodium L- ascorbate was found to reach the metal surface, but in concentrations lower than those present in the bulk fluid. It was not determined in this study whether this was due to physical or chemical processes within the biofilm. A synergistic effect was observed when applying a mixture of ferizene and glutaraldahyde. It is thought that this was due to the death of the bacteria as well as the disruption of iron cycling in the biofilm. Finally, it was observed that NADH caused a reduction in current at potentials associated with iron reduction, leading us to believe that the iron was being reduced

  10. Technostress : negative effect on performance and possible mitigations

    OpenAIRE

    Tarafdar, Monideepa; Pullins, Ellen; Ragu-Nathan, T. S

    2015-01-01

    We investigate the effect of conditions that create technostress, on technology-enabled innovation, technology-enabled performance and overall performance. We further look at the role of technology self-efficacy, organizational mechanisms that inhibit technostress and technology competence as possible mitigations to the effects of technostress creators. Our findings show a negative association between technostress creators and performance. We find that, while traditional effort-based mechanis...

  11. Effect of preemptive weld overlay on residual stress mitigation for dissimilar metal weld of nuclear power plant pressurizer

    International Nuclear Information System (INIS)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong

    2008-01-01

    Weld overlay is one of the residual stress mitigation methods which arrest crack initiation and crack growth. Therefore weld overlay can be applied to the region where cracking is likely to be. An overlay weld used in this manner is termed a Preemptive Weld OverLay(PWOL). In Pressurized Water Reactor(PWR) dissimilar metal weld is susceptible region for Primary Water Stress Corrosion Cracking(PWSCC). In order to examine the effect of PWOL on residual stress mitigation, PWOL was applied to a specific dissimilar metal weld of Kori nuclear power plant by finite element analysis method. As a result, strong compressive residual stress was made in PWSCC susceptible region and PWOL was proved effective preemptive repair method for weldment

  12. Effect of preemptive weld overlay on residual stress mitigation for dissimilar metal weld of nuclear power plant pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Weld overlay is one of the residual stress mitigation methods which arrest crack initiation and crack growth. Therefore weld overlay can be applied to the region where cracking is likely to be. An overlay weld used in this manner is termed a Preemptive Weld OverLay(PWOL). In Pressurized Water Reactor(PWR) dissimilar metal weld is susceptible region for Primary Water Stress Corrosion Cracking(PWSCC). In order to examine the effect of PWOL on residual stress mitigation, PWOL was applied to a specific dissimilar metal weld of Kori nuclear power plant by finite element analysis method. As a result, strong compressive residual stress was made in PWSCC susceptible region and PWOL was proved effective preemptive repair method for weldment.

  13. Coal mine subsidence: effects of mitigation on crop yields

    International Nuclear Information System (INIS)

    Darmody, R.G.; Hetzler, R.T.; Simmons, F.W.

    1992-01-01

    Subsidence from longwall underground coal mining adversely impacts agricultural land by creating wet or ponded areas. While most subsided areas show little impact, some localized places, usually less than 1.5 ha in size, may experience total crop failure. Coal companies mitigate subsidence damaged cropland by installing drainage waterways or by adding fill material to raise the grade. The objective of this study was to test the effectiveness of mitigation in restoring corn and soybean yields to pre-mined levels. Fourteen sites in southern Illinois were selected for study. Corn (Zea mays L.) and soybean (Glycine max L.) yields from mitigated and nearby undisturbed areas were compared for four years. Results varied due to differing weather and site conditions. Mean corn yields overall, however were significantly (α0.05) lower on mitigated areas. There was no significant difference in overall mean soybean yields. Soil fertility levels were similar and did not account for yield differences. 14 refs., 1 fig., 7 tabs

  14. Chemical effects in the Corrosion of Aluminum and Aluminum Alloys. A Bibliography

    Science.gov (United States)

    1976-10-01

    tances.II. Effect Of Pomegranate Juice And The Aqueous Extract Of Pomegranate Fruits And Tea leaves On The Corrosion Of Aluminum" The effect of the juices...T7651 tempers to exfoliation and stress- corrosion cracking . 1968-8 D.P. Doyle and H.P. Godard ,a) Tr. Mezhdunar. Kongr. Korroz. Metal, 4, 439-48, (1968...Tapper Brit. Corros. J., 3, 285-87, (1968) "Corrosion Of Aluminum" Summary of the literature of Al corrosion which includes stress- corrosion cracking

  15. The effects of corrosion product colloids on actinide transport

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1991-11-01

    This report assesses the possible effects of colloidal corrosion products on the transport of actinides from the near field of radioactive waste repositories. The desorption of plutonium and americium from colloidal corrosion products of iron and zirconium was studied under conditions simulating a transition from near-field to far-field environmental conditions. Desorption of actinides occurred slowly from the colloids under far-field conditions. Measurements of particle stability showed all the colloids to be unstable in the near field. Stability increased under far-field conditions or as a result of the evolution of the near field. Migration of colloids from the near field is unlikely except in the presence of organic materials. (Author)

  16. Effects of amalgam corrosion products on human cells

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, P R; Cogen, R B; Taubman, S B [Departments of Periodontics and Pathology, University of Connecticut Health Center, Farmington, Connecticut, U.S.A.

    1976-01-01

    Using three independent criteria, we have found that 10/sup -4/,10/sup -6/M concentrations of ions presumably liberated from the corrosion of dental amalgam produce injurious effects on either human gingival fibroblasts or HeLa cells when the cells are grown in culture. Release of /sup 51/Cr and uptake of trypan blue dye were seen with 10/sup -5/M Hg/sup + +/ and Ag/sup +/. Inhibition of amino acid incorporation into protein-like material was seen with eluates of amalgam and with ionic solutions of most metals comprising dental amalgam. Stannous ion showed little if any cytotoxic potential. These results suggest that corrosion products of amalgam are capable of causing cellular injury or destruction.

  17. Effect of additive on electrochemical corrosion properties of plasma electrolytic oxidation coatings formed on CP Ti under different processing frequency

    Energy Technology Data Exchange (ETDEWEB)

    Babaei, Mahdi, E-mail: mahdi.babaei@ut.ac.ir; Dehghanian, Changiz; Vanaki, Mojtaba

    2015-12-01

    Highlights: • PEO coatings formed on Cp Ti from phosphate electrolyte with zirconate additive. • The SEM results provide information of microdischarge behavior. • The effect of additive on structure and long-term corrosion behavior was investigated. • The additive influence on coating performance varies with processing frequency. - Abstract: The plasma electrolytic oxidation (PEO) coating containing zirconium oxide was fabricated on CP Ti at different processing frequencies viz., 100 Hz and 1000 Hz in a (Na{sub 2}ZrO{sub 3}, Na{sub 2}SiO{sub 3})-additive containing NaH{sub 2}PO{sub 4}-based solution, and long-term electrochemical corrosion behavior of the coatings was studied using electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. Electrochemical degradation behavior of two-layered coatings formed at different frequencies was turned out to be governed by concentration of electrolyte additive. With increasing additive concentration, the coating obtained at frequency of 1000 Hz exhibited enhanced corrosion resistance. However, corrosion resistance of the coating prepared at 100 Hz was found to decrease with increased additive, which was attributed to intensified microdischarges damaging the protective effect of inner layer. Nevertheless, the electrolyte additive was found to mitigate the long-term degradation of the coatings to a significant extent.

  18. Electrochemical evaluation of zinc effect on the corrosion of nickel alloy in PWR solutions with increasing temperature

    International Nuclear Information System (INIS)

    Alvial M, Gaston; Neves, Celia F.C.; Schvartzman, Monica M.A.M.; Quinan, Marco Antonio D.

    2007-01-01

    The main objective for the addition of zinc acetate to the reactor coolant system of PWRs is to effect radiation dose rate reductions. However, zinc is also added as an approach to mitigate the occurrence or severity of primary water stress corrosion cracking of nickel alloy 600. The mechanism by which zinc affects the corrosion of austenitic nickel-base alloys is by incorporation of zinc into the spinel oxide corrosion films. The purpose of this work is to evaluate the influence of zinc on the corrosion behavior of the nickel alloy 600 in PWR chemical environment (1200 ppm B, 2.2 ppm Li, deoxygenated water) with increasing temperature at room pressure. Electrochemical tests (anodic potentiodynamic polarization and electrochemical impedance spectroscopy) were used to characterize the alloy 600. Two conditions were applied: 0 and 100 ppb zinc and the temperature range was 50 - 90 deg C, at ambient pressure. Potentiodynamic polarization was inefficient to present conclusive results. Impedance measurements showed single semicircle in the Nyquist plane suggesting reduction of the charge transference resistance in zinc-containing solutions. This effect is evident at 90 deg C suggesting prejudicial influence of zinc for the alloy 600 at room pressure. (author)

  19. Effect of water chemistry improvement on flow accelerated corrosion in light-water nuclear reactor

    International Nuclear Information System (INIS)

    Sugino, Wataru; Ohira, Taku; Nagata, Nobuaki; Abe, Ayumi; Takiguchi, Hideki

    2009-01-01

    Flow Accelerated Corrosion (FAC) of Carbon Steel (CS) piping has been one of main issues in Light-Water Nuclear Reactor (LWRs). Wall thinning of CS piping due to FAC increases potential risk of pipe rupture and cost for inspection and replacement of damaged pipes. In particular, corrosion products generated by FAC of CS piping brought steam generator (SG) tube corrosion and degradation of thermal performance, when it intruded and accumulated in secondary side of PWR. To preserve SG integrity by suppressing the corrosion of CS, High-AVT chemistry (Feedwater pH9.8±0.2) has been adopted to Tsuruga-2 (1160 MWe PWR, commercial operation in 1987) in July 2005 instead of conventional Low-AVT chemistry (Feedwater pH 9.3). By the High-AVT adoption, the accumulation rate of iron in SG was reduced to one-quarter of that under conventional Low-AVT. As a result, a tendency to degradation of the SG thermal efficiency was improved. On the other hand, it was clarified that High-AVT is ineffective against Flow Accelerated Corrosion (FAC) at the region where the flow turbulence is much larger. By contrast, wall thinning of CS feed water pipes due to FAC has been successfully controlled by oxygen treatment (OT) for long time in BWRs. Because Magnetite film formed on CS surface under AVT chemistry has higher solubility and porosity in comparison with Hematite film, which is formed under OT. In this paper, behavior of the FAC under various pH and dissolved oxygen concentration are discussed based on the actual wall thinning rate of BWR and PWR plant and experimental results by FAC test-loop. And, it is clarified that the FAC is suppressed even under extremely low DO concentration such as 2ppb under AVT condition in PWR. Based on this result, we propose the oxygenated water chemistry (OWC) for PWR secondary system which can mitigate the FAC of CS piping without any adverse effect for the SG integrity. Furthermore, the applicability and effectiveness of this concept developed for FAC

  20. Corrosion and inhibition of stainless steel pitting corrosion in alkaline medium and the effect of Cl- and Br- anions

    International Nuclear Information System (INIS)

    Refaey, S.A.M.; Taha, F.; El-Malak, A.M. Abd

    2005-01-01

    The effect of carbonate anion on the pitting corrosion and inhibition behavior of stainless steel samples (304L SS and 316L SS) has been studied using potentiodynamic and scanning electron microscope (SEM) techniques. The effect of concentration of CO 3 2- ions, pH, potential scanning rate and the composition of stainless steel are discussed. Additions of Cl - and Br - ions into the carbonate solution increase the anodic dissolution of stainless steel and decrease its pitting corrosion resistance. The effect of CO 3 2- anion on the inhibition of chloride and bromide pitting corrosion of the two stainless steel types has been studied also. Pitting corrosion decrease with the increasing of sodium carbonate concentration, i.e. increases the resistance of stainless steels towards the chloride and bromide pitting corrosion. This inhibition effect argued to formation of [Fe,Cr]CO 3 film caused by preferential adsorption of the CO 3 2- ion, leading to instantaneous repair of weak sites for pit nucleation

  1. Effect of ageing time and temperature on corrosion behaviour of aluminum alloy 2014

    Science.gov (United States)

    Gadpale, Vikas; Banjare, Pragya N.; Manoj, Manoranjan Kumar

    2018-03-01

    In this paper, the effect of corrosion behaviour of aluminium alloy 2014 were studied by potentiodynamic polarization in 1 mole of NaCl solution of aged sample. The experimental testing results concluded that, corrosion resistance of Aluminum alloy 2014 degraded with the increasing the temperature (150°C & 200°C) and time of ageing. Corroded surface of the aged specimens was tested under optical microscopes for microstructures for phase analysis. Optical micrographs of corroded surfaces showed general corrosion and pitting corrosion. The corrosion resistance of lower ageing temperature and lower ageing time is higher because of its fine distribution of precipitates in matrix phase.

  2. Effects of Alloying Elements (Cr, Mn) on Corrosion Properties of Carbon Steel in Synthetic Seawater

    International Nuclear Information System (INIS)

    Hyun, Youngmin; Kim, Heesan

    2016-01-01

    Effects of alloying elements, manganese and chromium, on corrosion resistance of carbon steel were examined using weight loss test and electrochemical tests (polarization test and electrochemical impedance spectroscopy (EIS)) in synthetic seawater at 60 ℃. The results from the weight loss test showed that chromium effectively improved corrosion resistance of carbon steel during the entire immersion time, but manganese improved corrosion resistance after the lowered corrosion resistance at the beginnings of immersion. Unlike the weight loss test, the electrochemical tests showed that the corrosion resistance did not increase with immersion time, in all the specimens. This disagreement is explained by the presence of rust involved in electrochemical reaction during electrochemical tests. The analysis of rust with transmission electron microscopy (TEM)−energy dispersive spectroscopy (EDS) showed that the amorphous-like rust layer located at the metal/rust interface with enriched alloying element (Cr, Mn) prevents diffusion of corrosive species into a metal/rust interface effectively, which leads to increased corrosion resistance. The initial corrosion behaviour is also affected by the rust types. In other words, manganese accelerated the formation of spinel oxides, negatively affecting corrosion resistance. Meanwhile, chromium accelerated the formation of goethite but impeded the formation of spinel oxides, positively affecting the corrosion resistance. From the above results, the corrosion resistance of steel is closely related with a rust type.

  3. Effects of Alloying Elements (Cr, Mn) on Corrosion Properties of Carbon Steel in Synthetic Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Youngmin; Kim, Heesan [Hongik University, Sejong (Korea, Republic of)

    2016-02-15

    Effects of alloying elements, manganese and chromium, on corrosion resistance of carbon steel were examined using weight loss test and electrochemical tests (polarization test and electrochemical impedance spectroscopy (EIS)) in synthetic seawater at 60 ℃. The results from the weight loss test showed that chromium effectively improved corrosion resistance of carbon steel during the entire immersion time, but manganese improved corrosion resistance after the lowered corrosion resistance at the beginnings of immersion. Unlike the weight loss test, the electrochemical tests showed that the corrosion resistance did not increase with immersion time, in all the specimens. This disagreement is explained by the presence of rust involved in electrochemical reaction during electrochemical tests. The analysis of rust with transmission electron microscopy (TEM)−energy dispersive spectroscopy (EDS) showed that the amorphous-like rust layer located at the metal/rust interface with enriched alloying element (Cr, Mn) prevents diffusion of corrosive species into a metal/rust interface effectively, which leads to increased corrosion resistance. The initial corrosion behaviour is also affected by the rust types. In other words, manganese accelerated the formation of spinel oxides, negatively affecting corrosion resistance. Meanwhile, chromium accelerated the formation of goethite but impeded the formation of spinel oxides, positively affecting the corrosion resistance. From the above results, the corrosion resistance of steel is closely related with a rust type.

  4. Corrosion/94 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The approximately 500 papers from this conference are divided into the following sections: Rail transit systems--stray current corrosion problems and control; Total quality in the coatings industry; Deterioration mechanisms of alloys at high temperatures--prevention and remediation; Research needs and new developments in oxygen scavengers; Computers in corrosion control--knowledge based system; Corrosion and corrosivity sensors; Corrosion and corrosion control of steel reinforced concrete structures; Microbiologically influenced corrosion; Practical applications in mitigating CO 2 corrosion; Mineral scale deposit control in oilfield-related operations; Corrosion of materials in nuclear systems; Testing nonmetallics for life prediction; Refinery industry corrosion; Underground corrosion control; Mechanisms and applications of deposit and scale control additives; Corrosion in power transmission and distribution systems; Corrosion inhibitor testing and field application in oil and gas systems; Decontamination technology; Ozone in cooling water applications, testing, and mechanisms; Corrosion of water and sewage treatment, collection, and distribution systems; Environmental cracking of materials; Metallurgy of oil and gas field equipment; Corrosion measurement technology; Duplex stainless steels in the chemical process industries; Corrosion in the pulp and paper industry; Advances in cooling water treatment; Marine corrosion; Performance of materials in environments applicable to fossil energy systems; Environmental degradation of and methods of protection for military and aerospace materials; Rail equipment corrosion; Cathodic protection in natural waters; Characterization of air pollution control system environments; and Deposit-related problems in industrial boilers. Papers have been processed separately for inclusion on the data base

  5. Effect of molybdate on phosphating of Nd-Fe-B magnets for corrosion protection

    Directory of Open Access Journals (Sweden)

    Adonis Marcelo Saliba-Silva

    2005-06-01

    Full Text Available Nd-Fe-B magnets are highly susceptible to corrosion and need protection against environment attack. The use of organic coatings is one of the main methods of corrosion protection of these materials. Data related to the effect of conversion coatings, such as phosphating, on corrosion performance of these magnets is still scarce. Studies about the effect of phosphating on the corrosion resistance of a commercial Nd-Fe-B sintered magnet indicated that it increases the corrosion resistance of these magnets, compared to non-phosphated magnets. In this study, the solution chemistry of a phosphating bath was altered with the addition of molybdate and its effect on the corrosion resistance of magnets investigated. Sintered magnet specimens were phosphated in solutions of 10 g/L NaH2PO4 (pH 3.8, either with or without molybdate [10-3 M MoO4(2-], to improve their corrosion resistance. The effect of phosphating time was also evaluated, and specimens were phosphated for 4 and 18 hours. To evaluate the corrosion performance of phosphated and unphosphated specimens, a corrosion test based on monitoring hydrogen evolution on the surface of the magnets was used. This technique revealed that the addition of molybdate to the phosphating solution improved the corrosion resistance of the magnets phosphated by immersion for short periods but had no beneficial effect if phosphated by immersion for longer periods.

  6. Corrosion of conductive polypyrrole: Effects of environmental factors, electrochemical stimulation, and doping anions

    International Nuclear Information System (INIS)

    Qi Kai; Qiu Yubing; Chen Zhenyu; Guo Xingpeng

    2012-01-01

    Highlights: ► Corrosive galvanic cells form on PPy film with the electrochemical reduction of O 2. ► Suitable electrochemical stimulation can inhibit the PPy’s corrosion. ► PPy film doped with larger sized anions has better corrosion resistance performance. - Abstract: The effects of environmental factors, electrochemical stimulation, and doping anions on the corrosion behaviour of conductive polypyrrole (PPy) films in alkaline aqueous media were studied with cyclic voltammetry, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. High concentrations of electrolyte, low dissolved oxygen and low temperatures enhance the stability of PPy. Polarising PPy at a negative potential inhibits its corrosion obviously. PPy doped with large counter anions shows better corrosion resistance than PPy doped with small counter ions. The possible mechanism involved in PPy corrosion process is discussed.

  7. Effects of Cations on Corrosion of Inconel 625 in Molten Chloride Salts

    Science.gov (United States)

    Zhu, Ming; Ma, Hongfang; Wang, Mingjing; Wang, Zhihua; Sharif, Adel

    2016-04-01

    Hot corrosion of Inconel 625 in sodium chloride, potassium chloride, magnesium chloride, calcium chloride and their mixtures with different compositions is conducted at 900°C to investigate the effects of cations in chloride salts on corrosion behavior of the alloy. XRD, SEM/EDS were used to analyze the compositions, phases, and morphologies of the corrosion products. The results showed that Inconel 625 suffers more severe corrosion in alkaline earth metal chloride molten salts than alkaline metal chloride molten salts. For corrosion in mixture salts, the corrosion rate increased with increasing alkaline earth metal chloride salt content in the mixture. Cations in the chloride molten salts mainly affect the thermal and chemical properties of the salts such as vapor pressure and hydroscopicities, which can affect the basicity of the molten salt. Corrosion of Inconel 625 in alkaline earth metal chloride salts is accelerated with increasing basicity.

  8. Cost effectiveness of GHG mitigation options and policy implication

    Energy Technology Data Exchange (ETDEWEB)

    Lim, K. S. [Korea Institute for Industrial Economics and Trade, Seoul (Korea, Republic of)

    1998-04-01

    This paper represents the summary findings and conclusions of several studies implemented about microeconomics and macroeconomics marginal costs of GHG abatement policies. Financial, economic, and, where possible, environmental microeconomics costs of reducing GHGs are estimated by a World Bank team. Six energy-related CO{sub 2} mitigation policy options are applied to estimate the macroeconomics costs of GHG emission reduction, the macroeconomics impacts on the Chinese economy. In terms of policy, conservation is a better option to cope with a restrictive mitigation constraint, assuming a developing country can achieve planned energy-saving targets. Without a CO{sub 2} emission constraint or with less restrictive CO{sub 2} emission constraints, however, the simulation results indicate that a conservation strategy may be less attractive than fuel substitution in a developing country, mainly due to the economic dampening effect of reduced production in the energy sectors. This finding suggests that an often-cited costless or negative-cost energy conservation policy may not be a better option when a less restrictive mitigation target is in force. This does not mean that the potential for energy efficiency improvements in a developing country is not worthwhile, but that the overall macroeconomics impacts should be considered before implementing the policy option. (author). 9 refs., 3 figs., 3 tabs.

  9. Mitigating the Urban Heat Island Effect in Megacity Tehran

    Directory of Open Access Journals (Sweden)

    Sahar Sodoudi

    2014-01-01

    Full Text Available Cities demonstrate higher nocturnal temperatures than surrounding rural areas, which is called “urban heat island” (UHI effect. Climate change projections also indicate increase in the frequency and intensity of heat waves, which will intensify the UHI effect. As megacity Tehran is affected by severe heatwaves in summer, this study investigates its UHI characteristics and suggests some feasible mitigation strategies in order to reduce the air temperature and save energy. Temperature monitoring in Tehran shows clear evidence of the occurrence of the UHI effect, with a peak in July, where the urban area is circa 6 K warmer than the surrounding areas. The mobile measurements show a park cool island of 6-7 K in 2 central parks, which is also confirmed by satellite images. The effectiveness of three UHI mitigation strategies high albedo material (HAM, greenery on the surface and on the roofs (VEG, and a combination of them (HYBRID has been studied using simulation with the microscale model ENVI-met. All three strategies show higher cooling effect in the daytime. The average nocturnal cooling effect of VEG and HYBRID (0.92, 1.10 K is much higher than HAM (0.16 K, although high-density trees show a negative effect on nocturnal cooling.

  10. Effects of crystalline growth on corrosion behaviour of ...

    Indian Academy of Sciences (India)

    tron microscopy and transmission electron microscopy. The corrosion behaviours ... sity and high melting point.7,8 This compound often shows good corrosion and .... Figure 4. TEM image of as-deposited nanocrystalline NiAl coating. Figure 5.

  11. Mitigation of stress corrosion cracking in pressurized water reactor (PWR) piping systems using the mechanical stress improvement process (MSIPR) or underwater laser beam welding

    International Nuclear Information System (INIS)

    Rick, Grendys; Marc, Piccolino; Cunthia, Pezze; Badlani, Manu

    2009-01-01

    A current issue facing pressurized water reactors (PWRs) is primary water stress corrosion cracking (PWSCC) of bi metallic welds. PWSCC in a PWR requires the presence of a susceptible material, an aggressive environment and a tensile stress of significant magnitude. Reducing the potential for SCC can be accomplished by eliminating any of these three elements. In the U.S., mitigation of susceptible material in the pressurizer nozzle locations has largely been completed via the structural weld overlay (SWOL) process or NuVision Engineering's Mechanical Stress Improvement Process (MSIP R) , depending on inspectability. The next most susceptible locations in Westinghouse designed power plants are the Reactor Vessel (RV) hot leg nozzle welds. However, a full SWOL Process for RV nozzles is time consuming and has a high likelihood of in process weld repairs. Therefore, Westinghouse provides two distinctive methods to mitigate susceptible material for the RV nozzle locations depending on nozzle access and utility preference. These methods are the MSIP and the Underwater Laser Beam Welding (ULBW) process. MSIP applies a load to the outside diameter of the pipe adjacent to the weld, imposing plastic strains during compression that are not reversed after unloading, thus eliminating the tensile stress component of SCC. Recently, Westinghouse and NuVision successfully applied MSIP on all eight RV nozzles at the Salem Unit 1 power plant. Another option to mitigate SCC in RV nozzles is to place a barrier between the susceptible material and the aggressive environment. The ULBW process applies a weld inlay onto the inside pipe diameter. The deposited weld metal (Alloy 52M) is resistant to PWSCC and acts as a barrier to prevent primary water from contacting the susceptible material. This paper provides information on the approval and acceptance bases for MSIP, its recent application on RV nozzles and an update on ULBW development

  12. The Effects of Corrosive Chemicals on Corrosion Rate of Steel Reinforcement Bars: I. Swamp Water

    Directory of Open Access Journals (Sweden)

    Sulistyoweni Widanarko

    2010-10-01

    Full Text Available Most of infrastructures using steel concrete to reinforce the strength of concrete. Steel concrete is so vulnerable to chemical compounds that can cause corrosion. It can happen due to the presence of chemical compounds in acid environment in low pH level. These chemical compounds are SO42-, Cl-, NO3-. There are many swamp area in Indonesia. The acid contents and the concentration of ion sulphate, chlorides, and nitrate are higher in the swamp water than in the ground water .The objective of this research was to find out the influence of corrosive chemicals in the swamp water to the steel concrete corrosion rate. There were two treatment used: (1 emerging ST 37 and ST 60 within 60 days in the 'polluted' swamp water, (2 moving the ST 37 up and down periodically in the ' polluted' swamp water. Three variation of 'polluted' swamp water were made by increasing the concentration of corrosive chemical up to 1X, 5X and 10X respectively. The corrosion rate was measured by using an Immersion Method. The result of Immersion test showed that chloride had the greatest influence to corrosion rate of ST 37 and ST 60 and followed by sulphate and Nitrate. Corrosion rate value for ST 37 is 24.29 mpy and for ST 60 is 22.76 mpy. By moving the sample up and down, the corrosion rate of ST 37 increase up to 37.59 mpy, and chloride still having the greatest influence, followed by sulphate and nitrate.

  13. Synergistic Effect of Potassium Iodide on Corrosion Inhibition of Mild ...

    African Journals Online (AJOL)

    MICHAEL

    fruticans' wurmb extract on corrosion of mild steel in 0.1M and 0.5M HCl have been investigated using weight loss methods. ... efficient ways of combating the corrosion of metals. Among other ..... chloride ion on cold rolled steel corrosion.

  14. Effect of Adenine Concentration on the Corrosion Inhibition of Aisi ...

    African Journals Online (AJOL)

    This gave a surface coverage of 0.8956 and corrosion penetration rate of 0.022132mm/yr. Hence, the best adenine concentration for the corrosion inhibition of alloys 304L in 1.0M sulphuric acid solution to obtain optimum inhibition efficiency is 0.011M. Keywords: Corrosion, AISI 304L Steel, Inhibition efficiency, Degree of ...

  15. Temperature effect on Zircaloy-4 stress corrosion cracking

    International Nuclear Information System (INIS)

    Farina, Silvia B.; Duffo, Gustavo S.; Galvele, Jose R.

    1999-01-01

    Stress corrosion cracking (SCC) susceptibility of Zircaloy-4 alloy in chloride, bromide and iodide solutions with variables as applied electrode potential, deformation rate and temperature have been studied. In those three halide solutions the susceptibility to SCC is only observed at potentials close to pitting potential, the crack propagation rate increases with the increase of deformation rate, and that the temperature has a notable effect only for iodide solutions. For chloride and bromide solutions and temperatures ranging between 20 to 90 C degrees it was not found measurable changes in crack propagation rates. (author)

  16. Cooperative binding mitigates the high-dose hook effect.

    Science.gov (United States)

    Roy, Ranjita Dutta; Rosenmund, Christian; Stefan, Melanie I

    2017-08-14

    The high-dose hook effect (also called prozone effect) refers to the observation that if a multivalent protein acts as a linker between two parts of a protein complex, then increasing the amount of linker protein in the mixture does not always increase the amount of fully formed complex. On the contrary, at a high enough concentration range the amount of fully formed complex actually decreases. It has been observed that allosterically regulated proteins seem less susceptible to this effect. The aim of this study was two-fold: First, to investigate the mathematical basis of how allostery mitigates the prozone effect. And second, to explore the consequences of allostery and the high-dose hook effect using the example of calmodulin, a calcium-sensing protein that regulates the switch between long-term potentiation and long-term depression in neurons. We use a combinatorial model of a "perfect linker protein" (with infinite binding affinity) to mathematically describe the hook effect and its behaviour under allosteric conditions. We show that allosteric regulation does indeed mitigate the high-dose hook effect. We then turn to calmodulin as a real-life example of an allosteric protein. Using kinetic simulations, we show that calmodulin is indeed subject to a hook effect. We also show that this effect is stronger in the presence of the allosteric activator Ca 2+ /calmodulin-dependent kinase II (CaMKII), because it reduces the overall cooperativity of the calcium-calmodulin system. It follows that, surprisingly, there are conditions where increased amounts of allosteric activator actually decrease the activity of a protein. We show that cooperative binding can indeed act as a protective mechanism against the hook effect. This will have implications in vivo where the extent of cooperativity of a protein can be modulated, for instance, by allosteric activators or inhibitors. This can result in counterintuitive effects of decreased activity with increased concentrations of

  17. Cost-effectiveness in the mitigation of green house gases

    International Nuclear Information System (INIS)

    Rey, Francisco Carlos

    2009-01-01

    This paper analyzes the cost-effectiveness in the mitigation of green house gases from solar, eolic and nuclear energy sources, concluding that nuclear is, not doubt, the mos efficient. On the other hand, nuclear is the unique source that can be installed without limit in magnitude and in the proximity of the demand, and is for all these reasons that several environmental referents in the world have changed their perception on this source and defend it as the unique actual alternative to fight against the emission of green house gases. (author) [es

  18. Corrosion/95 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The papers in this conference represent the latest technological advances in corrosion control and prevention. The following subject areas are covered: cathodic protection in natural waters; materials for fossil fuel combustion and conversion systems; modern problems in atmospheric corrosion; innovative ideas for controlling the decaying infrastructure; deposits and their effects on corrosion in industry; volatile high temperature and non aqueous corrosion inhibitors; corrosion of light-weight and precoated metals for automotive application; refining industry corrosion; corrosion in pulp and paper industry; arctic/cold weather corrosion; materials selection for waste incinerators and associated equipment; corrosion measurement technology; environmental cracking of materials; advancing technology in the coating industry; corrosion in gas treating; green inhibition; recent advances in corrosion control of rail equipment; velocity effects and erosion corrosion in oil and gas production; marine corrosion; corrosion of materials in nuclear systems; underground corrosion control; corrosion in potable and industrial water systems in buildings and its impact on environmental compliance; deposit related boiler tube failures; boiler systems monitoring and control; recent developments and experiences in reactive metals; microbiologically influenced corrosion; corrosion and corrosion control for steel reinforced concrete; international symposium on the use of 12 and 13 Cr stainless steels in oil and gas production environments; subsea corrosion /erosion monitoring in production facilities; fiberglass reinforced pipe and tubulars in oilfield service; corrosion control technology in power transmission and distribution; mechanisms and methods of scale and deposit control; closing the loop -- results oriented cooling system monitoring and control; and minimization of aqueous discharge

  19. Effects of alpha-decay on spent fuel corrosion behaviour

    International Nuclear Information System (INIS)

    Wiss, T.; Rondinella, V.V.; Cobos, J.; Wegen, D.H.; Amme, M.; Ronchi, C.

    2004-01-01

    An overview of results in the area of spent fuel characterization as nuclear waste is presented. These studies are focused on primary aspects of spent fuel corrosion, by considering different fuel compositions and burn ups, as well as a wide set of environmental conditions. The key parameter is the storage time of the fuel e.g. in view of spent fuel retrieval or in view of its final disposal. To extrapolate data obtainable from a laboratory-acceptable timescale to those expected after storage periods of interest have elapsed (amounting in the extreme case to geological ages) is a tough challenge. Emphasis is put on key aspects of fuel corrosion related to fuel properties at a given age and environmental conditions expected in the repository: e.g. the fuel activity (radiolysis effects), the effects of helium build-up and of groundwater composition. A wide range of techniques, from traditional leaching experiments to advanced electrochemistry, and of materials, including spent fuel with different compositions/burnups and analogues like the so-called alpha-doped UO 2 , are employed for these studies. The results confirm the safety of European underground repository concepts. (authors)

  20. Effect of mechanical treatment on intergranular corrosion of 6064 alloy bars

    Science.gov (United States)

    Sláma, P.; Nacházel, J.

    2017-02-01

    Aluminium Al-Mg-Si-type alloys (6xxx-series) exhibit good mechanical properties, formability, weldability and good corrosion resistance in various environments. They often find use in automotive industry and other applications. Some alloys, however, particularly those with higher copper levels, show increased susceptibility to intergranular corrosion. Intergranular corrosion (IGC) is typically related to the formation of microgalvanic cells between cathodic, more noble phases and depleted (precipitate-free) zones along grain boundaries. It is encountered mainly in AlMgSi alloys containing Cu, where it is thought to be related to the formation Q-phase precipitates (Al4Mg8Si7Cu2) along grain boundaries. The present paper describes the effects of mechanical working (extrusion, drawing and straightening) and artificial aging on intergranular corrosion in rods of the 6064 alloy. The resistance to intergranular corrosion was mapped using corrosion tests according to EN ISO 11846, method B. Corrosion tests showed dependence of corrosion type on mechanical processing of the material. Intergranular, pitting and transgranular corrosion was observed. Artificial ageing influenced mainly the depth of the corrosion.

  1. Effect of Inhibitors on Weld Corrosion under Sweet Conditions Using Flow Channel

    OpenAIRE

    Khaled Alawadhi; Abdulkareem Aloraier; Suraj Joshi; Jalal Alsarraf

    2014-01-01

    The aim of this paper is to compare the effectiveness and electrochemical behavior of typical oilfield corrosion inhibitors with previous oilfield corrosion inhibitors under the same electrochemical techniques to control preferential weld corrosion of X65 pipeline steel in artificial seawater saturated with carbon dioxide at a pressure of one bar. A secondary aim is to investigate the conditions under which current reversal takes place. A flow channel apparatus was used in the laboratory to s...

  2. A TN adaptive ray effect mitigation for Styx 3D

    International Nuclear Information System (INIS)

    Aussourd, Ch.

    2003-01-01

    Ray effect (RE) is a non-physical flaw of discrete ordinate methods characterized by spurious rays becoming sharper when small bright neutron sources radiate through low scattering media. While this effect has low impact on integral parameters (α and K eff ), it can ruin simulations of diagnostic problem in terms of neutron dose received by a detector. 3 cumulative factors may affect the RE intensity: the source size, the scattering cross-sections, and the mesh size. We introduce an adaptive Ray Effect Mitigation (REM) aimed at locally improving the angular accuracy of the 3 dimension AMR (adaptive mesh refinement) deterministic neutron transport code Styx. Promising preliminary results have been obtained using a recursively refined octahedron based sphere tessellation in place of the standard S N quadrature. This angular mesh, referred to as T N , has valuable features for local refinement

  3. The Effects of Alloy Chemistry on Localized Corrosion of Austenitic Stainless Steels

    Science.gov (United States)

    Sapiro, David O.

    This study investigated localized corrosion behavior of austenitic stainless steels under stressed and unstressed conditions, as well as corrosion of metallic thin films. While austenitic stainless steels are widely used in corrosive environments, they are vulnerable to pitting and stress corrosion cracking (SCC), particularly in chloride-containing environments. The corrosion resistance of austenitic stainless steels is closely tied to the alloying elements chromium, nickel, and molybdenum. Polarization curves were measured for five commercially available austenitic stainless steels of varying chromium, nickel, and molybdenum content in 3.5 wt.% and 25 wt.% NaCl solutions. The alloys were also tested in tension at slow strain rates in air and in a chloride environment under different polarization conditions to explore the relationship between the extent of pitting corrosion and SCC over a range of alloy content and environment. The influence of alloy composition on corrosion resistance was found to be consistent with the pitting resistance equivalent number (PREN) under some conditions, but there were also conditions under which the model did not hold for certain commercial alloy compositions. Monotonic loading was used to generate SCC in in 300 series stainless steels, and it was possible to control the failure mode through adjusting environmental and polarization conditions. Metallic thin film systems of thickness 10-200 nm are being investigated for use as corrosion sensors and protective coatings, however the corrosion properties of ferrous thin films have not been widely studied. The effects of film thickness and substrate conductivity were examined using potentiodynamic polarization and scanning vibrating electrode technique (SVET) on iron thin films. Thicker films undergo more corrosion than thinner films in the same environment, though the corrosion mechanism is the same. Conductive substrates encourage general corrosion, similar to that of bulk iron

  4. Microbiologically Influenced Corrosion (MIC) in the Oil and Gas Industry

    DEFF Research Database (Denmark)

    Skovhus, Torben Lund; Eckert, Rickard

    2015-01-01

    Microbiologically influenced corrosion (MIC) is a serious corrosion threat that impacts the operating integrity and reliability of assets in the oil and gas, maritime, power generation, and other industries. Yet MIC is also commonly misunderstood, leading to ineffective mitigation programs, wasted...... and implement improved mitigation strategies and thereby reduce operating risk. Our experts provide guidance in applying the latest state-of-the-art molecular microbiological methods (MMM) and industry standards to properly diagnose MIC in operating assets and on failed components. With this understanding, MIC...... can be effectively addressed as part of the overall Corrosion Management System (CMS)....

  5. Effect of chlorides on the corrosion behaviour of mild steel

    International Nuclear Information System (INIS)

    Harada, Kazuyuki; Shimada, Minoru

    1980-01-01

    In PWR's steam generators, ''denting'' resulted from corrosion of support plate material, carbon steel is an important problem. The role of chlorides in corrosion acceleration of mild steel was studied. Corrosion tests were conducted at temperature from 100 0 C to 280 0 C in deaerated solutions of NaCl and MgCl 2 which are main content of sea water. 1) Solution of MgCl 2 was more corrosive than that of NaCl. The more increased in concentration of each chloride solution, the more corrosive in MgCl 2 soln. but the less corrosive in NaCl soln. 2) The rate of corrosion in the mixed solution of NaCl and MgCl 2 was governed by the concentration of MgCl 2 soln. The corrosion behaviour in sea water was suggested to be not controlled by NaCl but by MgCl 2 . 3) Acidification of MgCl 2 soln. could be evaluated by experiment at 100 0 C, the degree of acidification increased with increasing the concentration. However, the value of pH during corrosion was kept constant by the concentration of dissolved Fe 2+ ions. 4) The corrosion acceleration by MgCl 2 soln. was arised not only from acidification by the solution itself but from continuous supplementation of H + ions with the hydrolysis of dissolved Fe 2+ ions. This autocatalytic corrosion process not exhausting acid was characterized with the corrosion in closed system such as in crevice. In addition to acidification of MgCl 2 soln., the formation of non-protective magnetite film by Mg 2+ ion was estimated to be a reason of accelerated corrosion. (author)

  6. The Effect of Corrosive Environment on Geopolymer Concrete Tensile Strength

    Directory of Open Access Journals (Sweden)

    Bayuaji Ridho

    2017-01-01

    Full Text Available This study has the purpose to explore the potential of geopolymer concrete tensile strength in particular on the effects of corrosive environments. Geopolymer concrete, concrete technology used no OPC that has advantages, one of which is durability, especially for corrosive seawater environment. In addition, geopolymer concrete with polymerization mechanism does not require large energy consumption or an environmentally friendly concept. Geopolymer concrete in this study is using a type C fly ash from PT. International Power Mitsui Operation & Maintenence Indonesia (IPMOMI Paiton. The type of alkaline activator used NaOH (14 molar and Na2SiO3. Coarse and fine aggregate used are local aggregate. Geopolymer concrete molded test specimen with dimensions of (10 × 20 cm cylinder, further heating and without heating, then maintained at room temperature and seawater up to 28 days. Then to determine the mechanical properties, the tensile strength testing is done with reference. This result of study indicates the curing of geopolymer concrete at 60 ° C for 24 hours to raise the tensile strength of geopolymer concrete.

  7. Effect of Copper on Passivity and Corrosion Behavior of Fe-xC-5Cu ...

    African Journals Online (AJOL)

    ... copper/microstructure is discussed. Alloying Cu showed a beneficial effect on hypoeutectoid steel and harmful effect on hypereutectoid steel. The improved corrosion resistance is related to cementite morphology and by a copper dissolution/re-deposition process. Keywords: Corrosion; Copper; cementite; EIS; Passivation ...

  8. Effects of annealing on tensile property and corrosion behavior of Ti-Al-Zr alloy

    International Nuclear Information System (INIS)

    Kim, Tae-Kyu; Choi, Byung-Seon; Jeong, Yong-Hwan; Lee, Doo-Jeong; Chang, Moon-Hee

    2002-01-01

    The effects of annealing on the tensile property and corrosion behavior of Ti-Al-Zr alloy were evaluated. The annealing in the temperature range from 500 to 800 deg. C for 1 h induced the growth of the grain and the precipitate sizes. The results of tensile tests at room temperature showed that the strengths and the ductility were almost independent of the annealing temperature. However, the results of corrosion test in an ammonia aqueous solution of pH 9.98 at 360 deg. C showed that the corrosion resistance depended on the annealing temperature, and the corrosion rate was accelerated with increasing annealing temperature. Hydrogen contents absorbed during the corrosion test of 220 days also increased with the annealing temperature. It could be attributed to the growth of Fe-rich precipitates by annealing. It is thus suggested that the lower annealing temperatures provide the better corrosion properties without degrading the tensile properties

  9. Effects of annealing on the corrosion behavior and mechanical properties of Ti-Al-V alloy

    International Nuclear Information System (INIS)

    Kim, T. K.; Choi, B. S.; Baek, J. H.; Choi, B. K.; Jeong, Y. H.; Lee, D. J.; Jang, M. H.; Jeong, Y. H.

    2002-01-01

    In order to determine the annealing condition after cold rolling, the effects of annealing on the corrosion behavior and mechanical properties of Ti-Al-V alloy were evaluated. The results of tensile tests at room temperature showed that the strengths and the ductility were almost independent of the annealing temperature. The results of hardness test also revealed that the hardness was independent of the annealing, However, the results of corrosion test in an ammoniated water of pH 9.98 at 360 .deg. C showed that the corrosion resistance depended on the annealing temperature, and the corrosion rate was accelerated with increasing annealing temperature. Hydrogen contents absorbed during the corrosion test of 120 days also increased with the annealing temperature. It may be attributed to the growth of α' precipitates by annealing. It is thus suggested that the lower annealing temperatures provide the better corrosion properties without degrading the tensile properties

  10. Effect of Biodiesel Concentration on Corrosion of Carbon Steel by Serratia marcescens

    Directory of Open Access Journals (Sweden)

    Pusparizkita Yustina M

    2018-01-01

    Full Text Available Biodiesel come into being used as an alternative source of energy as the diminishing of petroleum reserves. This fuel is typically stored in tanks that are commonly made from carbon steel, which is easily corroded by microorganisms. Recent studies have shown that bacteria aside from SRB may also be involved in corrosion. Therefore, this research was aimed to evaluate the effect of biodiesel concentration (15%, 20% and 30% v/v mixed in diesel oil on the corrosion of carbon steel by S. marcescens that dominate biocorrosion on hydrocarbon products. In this study, the corrosion process was investigated by evaluation of biofilm morphology and composition, the rate of corrosion and the corrosion product of carbon steel which was exposed in the mixture of hydrocarbons and the presence of S. marcescens. It can be concluded that higher concentration of biodiesel in diesel oil leads to higher growth of bacteria in the biofilm and higher corrosion rate.

  11. Effect of Surface Precipitate on the Crevice Corrosion in HYBRID and Oxalic Acid Solution

    International Nuclear Information System (INIS)

    Park, S. Y.; Jung, J. Y.; Won, H. J.; Kim, S. B.; Choi, W. K.; Moon, J. K.; Park, S. J.

    2015-01-01

    In this study, we investigated the characteristics of the crevice corrosion for Inconel-600 and 304SS in OA solution according to the change in pH. The evaluation of the crevice corrosion with the chemical thermodynamic analysis identified the effect of the residual chemicals such as iron-oxalate and nickeloxalate to the crevice corrosion behavior. Test results were compared with those of HYBRID (HYdrizine Base Reductive metal Ion Decontamination). The crevice corrosion properties of 304 SS and Inconel-600 in HYBRID and oxalic acid solution were evaluated. In case of oxalic acid solution, the corrosion rate on 304SS was rapidly increased with a pH decrease of around 2, but there was no increase in the corrosion rate on Inconel-600

  12. The effect of urea on the corrosion behavior of different dental alloys.

    Science.gov (United States)

    Geckili, Onur; Bilhan, Hakan; Bilgin, Tayfun; Anthony von Fraunhofer, J

    2012-01-01

    Intraoral corrosion of dental alloys has biological, functional, and esthetic consequences. Since it is well known that the salivary urea concentrations undergo changes with various diseases, the present study was undertaken to determine the effect of salivary urea concentrations on the corrosion behavior of commonly used dental casting alloys. Three casting alloys were subjected to polarization scans in synthetic saliva with three different urea concentrations. Cyclic polarization clearly showed that urea levels above 20 mg/100 ml decreased corrosion current densities, increased the corrosion potentials and, at much higher urea levels, the breakdown potentials. The data indicate that elevated urea levels reduced the corrosion susceptibility of all alloys, possibly through adsorption of organics onto the metal surface. This study indicates that corrosion testing performed in sterile saline or synthetic saliva without organic components could be misleading.

  13. Corrosion mitigation of J55 steel in 3.5% NaCl solution by a macrocyclic inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ambrish [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu, Sichuan 610500 (China); Department of Chemistry, LFTS, Lovely Professional University, Phagwara, Punjab 144402 (India); Lin, Yuanhua, E-mail: yhlin28@163.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu, Sichuan 610500 (China); Obot, I.B. [Centre of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ebenso, Eno E. [Department of Chemistry, School of Mathematical & Physical Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735 (South Africa); Material Science Innovation & Modelling (MaSIM) Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735 (South Africa); Ansari, K.R.; Quraishi, M.A. [Department of Applied Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh (India)

    2015-11-30

    Graphical abstract: SECM studies revealed decrease of steady current in the presence of inhibitor while it increased for 3.5% NaCl solution that acted as the conductor. - Highlights: • J55 steel protection in 3.5% NaCl solution saturated with CO{sub 2} by HPT. • Potentiodynamic polarization curves reveal that the actions of HPT are mixed type. • The adsorption of HPT obeys the Langmuir adsorption isotherm. • Scanning electrochemical microscopy is used to discuss the insulated and conductive surface. - Abstract: 1,2,4,7,9,10-Hexaazacyclo-pentadeca-10,15-dien-3,5,6,8-tetraone (HPT) a macrocyclic compound has been studied using electrochemical methods and scanning electrochemical microscopy (SECM) techniques. The R{sub ct} values increased and C{sub dl} values decreased with the increase in concentration of the inhibitor. The corrosion inhibition of J55 steel in 3.5 wt.% NaCl solution saturated with CO{sub 2} by polarization studies revealed that HPT acted as a mixed type inhibitor. The adsorption of HPT on the J55 steel surface obeyed the Langmuir adsorption isotherm. The thermodynamic parameters (K{sub ads}, ΔG°{sub ads}) were also computed and discussed.

  14. Corrosion mitigation of J55 steel in 3.5% NaCl solution by a macrocyclic inhibitor

    International Nuclear Information System (INIS)

    Singh, Ambrish; Lin, Yuanhua; Obot, I.B.; Ebenso, Eno E.; Ansari, K.R.; Quraishi, M.A.

    2015-01-01

    Graphical abstract: SECM studies revealed decrease of steady current in the presence of inhibitor while it increased for 3.5% NaCl solution that acted as the conductor. - Highlights: • J55 steel protection in 3.5% NaCl solution saturated with CO 2 by HPT. • Potentiodynamic polarization curves reveal that the actions of HPT are mixed type. • The adsorption of HPT obeys the Langmuir adsorption isotherm. • Scanning electrochemical microscopy is used to discuss the insulated and conductive surface. - Abstract: 1,2,4,7,9,10-Hexaazacyclo-pentadeca-10,15-dien-3,5,6,8-tetraone (HPT) a macrocyclic compound has been studied using electrochemical methods and scanning electrochemical microscopy (SECM) techniques. The R ct values increased and C dl values decreased with the increase in concentration of the inhibitor. The corrosion inhibition of J55 steel in 3.5 wt.% NaCl solution saturated with CO 2 by polarization studies revealed that HPT acted as a mixed type inhibitor. The adsorption of HPT on the J55 steel surface obeyed the Langmuir adsorption isotherm. The thermodynamic parameters (K ads , ΔG° ads ) were also computed and discussed.

  15. Effects of road mortality and mitigation measures on amphibian populations.

    Science.gov (United States)

    Beebee, Trevor J C

    2013-08-01

    Road mortality is a widely recognized but rarely quantified threat to the viability of amphibian populations. The global extent of the problem is substantial and factors affecting the number of animals killed on highways include life-history traits and landscape features. Secondary effects include genetic isolation due to roads acting as barriers to migration. Long-term effects of roads on population dynamics are often severe and mitigation methods include volunteer rescues and under-road tunnels. Despite the development of methods that reduce road kill in specific locations, especially under-road tunnels and culverts, there is scant evidence that such measures will protect populations over the long term. There also seems little likelihood that funding will be forthcoming to ameliorate the problem at the scale necessary to prevent further population declines. © 2013 Society for Conservation Biology.

  16. Effect of chloride concentration and pH on pitting corrosion of waste package container materials

    International Nuclear Information System (INIS)

    Roy, A.K.; Fleming, D.L.; Gordon, S.R.

    1996-12-01

    Electrochemical cyclic potentiodynamic polarization experiments were performed on several candidate waste package container materials to evaluate their susceptibility to pitting corrosion at 90 degrees C in aqueous environments relevant to the potential underground high-level nuclear waste repository. Results indicate that of all the materials tested, Alloy C-22 and Ti Grade-12 exhibited the maximum corrosion resistance, showing no pitting or observable corrosion in any environment tested. Efforts were also made to study the effect of chloride ion concentration and pH on the measured corrosion potential (Ecorr), critical pitting and protection potential values

  17. Effect of nitrogen alloying of stainless steels on their corrosion stability

    International Nuclear Information System (INIS)

    Chigal, V.; Knyazheva, V.M.; Pitter, Ya.; Babich, S.G.; Bogolyubskij, S.D.

    1986-01-01

    Results of corrosion tests and structural investigations of 03Cr18Ni10 and 03Cr18Ni10Mo3 steels without nitrogen and with nitrogen content of 0.15-0.3% are presented. Corrosion-electrochemical behaviour of Cr20Ni20 steel with ultralow carbon content (0.004-0.006%) and nitrogen content with 0-0.5% as well as Cr 2 N nitride behaviour are investigated. A conclusion is made on nitrogen and excessive nitride phase effect on corrosion stability of steel in corrosive media with different reduction-oxidation properties

  18. Mitigation of sensitisation effects in unstabilised 12%Cr ferritic stainless steel welds

    International Nuclear Information System (INIS)

    Warmelo, Martin van; Nolan, David; Norrish, John

    2007-01-01

    Sensitisation in the heat-affected zones of ferritic stainless steel welds is typically prevented by stabilisation of the parent material with titanium or niobium, and suitable design of the overall composition to produce a suitably high ferrite factor. However, such alloy modification has proven to be economically unviable for thick gauge (>10 mm) plate products and therefore unstabilised 12%Cr (3CR12) material is still currently being used for heavy gauge structural applications in many parts of the world. The aim of the current work was to review the mechanisms responsible for sensitisation in these unstabilised ferritic stainless steels, and to characterise the sensitisation effects arising from multipass welding procedures. The objective was to determine the influence of welding parameters, and thereby to recommend mitigating strategies. Two particular sensitisation modes were found to occur in the current work, although only one was predominant and considered problematic from a practical perspective. It was found that with proper positioning of weld capping runs and control of weld overlap, it is possible to ensure that sensitising isotherms remain buried beneath the parent surface, and so reduce harmful corrosion effects

  19. Effect of heating rate on caustic stress corrosion cracking

    International Nuclear Information System (INIS)

    Indig, M.E.; Hoffman, N.J.

    1977-01-01

    To evaluate effects of a large water leak into the sodium side of a steam generator in a Liquid Metal Fast Breeder Reactor the Liquid Metal Engineering Center (LMEC) at Canoga Park, California, is performing a series of tests in a Large Leak Test Rig (LLTR). This test series involves heating a large steam generator that possibly contains localized pockets of aqueous caustic retained from a previous sodium-water reaction. Such pockets of caustic solution could be in contact with welds and other components that contain residual stresses up to the yield point. The LMEC and General Electric (GE) ran a series of tests to evaluate the effect of heating rate on caustic stress corrosion cracking (SCC) for alloys either used or considered for the LLTR. A summary of the temperatures and caustic concentration ranges that can result in caustic SCC for carbon steel and Type-304 stainless steel is given

  20. The effect of zinc addition on PWR corrosion product deposition on zircaloy-4

    International Nuclear Information System (INIS)

    Walters, W.S.; Page, J.D.; Gaffka, A.P.; Kingsbury, A.F.; Foster, J.; Anderson, A.; Wickenden, D.; Henshaw, J.; Zmitko, M.; Masarik, V.; Svarc, V.

    2002-01-01

    During the period 1995 to 2001 a programme of loop irradiation tests have been performed to confirm the effectiveness of zinc additions on PWR circuit chemistry and corrosion. The programme included two loop irradiation experiments, and subsequent PIE; the experiments were a baseline test (no added zinc) and a test with added zinc (10 ppb). This paper addresses the findings regarding corrosion product deposition and activation on irradiated Zircaloy-4 surfaces. The findings are relevant to overall corrosion of the reactor primary circuit, the use of zinc as a corrosion inhibitor, and activation and transport of corrosion products. The irradiation experience provides information on the equilibration of the loop chemistry, with deliberate injection of zinc. The PIE used novel and innovative techniques (described below) to obtain samples of the oxide from the irradiated Zircaloy. The results of the PIE, under normal chemistry and zinc chemistry, indicate the effect of zinc on the deposition and activation of corrosion products on Zircaloy. It was found that corrosion product deposition on Zircaloy is enhanced by the addition of zinc (but corrosion product deposition on other materials was reduced in the presence of zinc). Chemical analysis and radioisotope gamma counting results are presented, to interpret the findings. A computer model has also been used to simulate the corrosion product deposition and activation, to assist in the interpretation of the results. (authors)

  1. Evaluation of the flow-accelerated corrosion downstream of an orifice. 2. Measurement of corrosion rate and evaluation on the effects of the flow field

    International Nuclear Information System (INIS)

    Nagaya, Yukinori; Utanohara, Yoichi; Nakamura, Akira; Murase, Michio

    2008-01-01

    In this study, in order to evaluate the effects of flow field on corrosion rate due to flow accelerated corrosion (FAC), a corrosion rate downstream of an orifice was measured using the electric resistance method. The diameter of the pipe is 50 mm and that of the orifice is 24.3 mm, and flow velocity of the experimental loop was set at 5m/s, and the temperature of water was controlled within ±1 at 150deg-C. There were no significant circumferential difference in measured corrosion rate, and the maximum corrosion rate was observed at 1D or 2D downstream from the orifice. The ratios of the measured corrosion rate and the calculated wall shear stress at the 1D downstream from the orifice to the value at upstream under well developed flow agreed well. (author)

  2. Microbial exopolysaccharides: Effect on corrosion and partial chemical characterization

    Digital Repository Service at National Institute of Oceanography (India)

    Majumdar, I; DeSouza, F.P.; Bhosle, N.B.

    gas chromatograph MICROBIAL EXOPOLYSACCHARIDES 543 Fig. I. Changes in the biofilm organic carbon (a) and EPS (b) associated with corrosion products and corrosion rate (c) of mild steel. Fig. 2. Linear correlation coeffiient (r) between EPS and organic... carbon (a), corrosion rate and organic carbon (b). and corrosion rate and EPS (c). (Chrompack model CP-9002) equipped with a fused silica capillary column coated with CP Sil-88 (25 m, i.d. = 0.32 mm) and flame ionization detector (FID) was used...

  3. Effect of grain size on corrosion of nanocrystalline copper in NaOH solution

    International Nuclear Information System (INIS)

    Luo Wei; Xu Yimin; Wang Qiming; Shi Peizhen; Yan Mi

    2010-01-01

    Research highlights: → Coppers display an active-passive-transpassive behaviour with duplex passive film. → Grain size variation has little effect on the overall corrosion behaviour of Cu. → Little effect on corrosion may be due to duplex passivation in NaOH solution. → Bulk nanocrystalline Cu show bamboo-like flake corrosion structure. - Abstract: Effect of grain size on corrosion of bulk nanocrystalline copper was investigated using potentiodynamic polarization measurements in 0.1 M NaOH solution. Bulk nanocrystalline copper was prepared by inert gas condensation and in situ warm compress (IGCWC) method. The grain sizes of all bulk nanocrystalline samples were determined to be 48, 68 and 92 nm using X-ray diffraction (XRD). Results showed that bulk coppers displayed an active-passive-transpassive behaviour with duplex passive films. From polycrystalline to nanocrystalline, grain size variation showed little effect on the overall corrosion resistance of copper samples.

  4. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Kryk, Holger, E-mail: h.kryk@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Hoffmann, Wolfgang [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany)

    2014-12-15

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products.

  5. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    International Nuclear Information System (INIS)

    Kryk, Holger; Hoffmann, Wolfgang; Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan

    2014-01-01

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products

  6. The effect of conditioning agents on the corrosive properties of molten urea

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, D E; Nguyen, D T; Norton, M M; Parker, B R; Daniels, L E

    1991-01-01

    From the process case histories of the failure of several heat exchanger tube bundles, it was revealed that molten urea containing lignosulfonate as a granulation conditioning-hardening agent (Urea LS[trademark]) is corrosive to Types 304 and 316 stainless steel. The results of field and laboratory immersion corrosion tests indicated that the corrosivity of molten urea is strongly dependent on the process temperature rather than the conditioner composition. At temperatures below 295F, molten Urea LS[trademark] is not aggressive to these stainless steels. However, at temperatures above 300F, the corrosion of these stainless steels is extremely severe. The corrosion rate of Types 304, 304L, 316, and 316L is as high as hundreds of mils per year. The corrosion mechanism tends to be more general than localized. The results of the laboratory corrosion test also revealed that among alloying elements, copper is detrimental to corrosion resistance of stainless steel exposed to molten Urea LS[trademark], chromium is the most beneficial, and nickel has only a minor effect. Thus, copper-free and chromium stainless steels have superior corrosion resistance to the molten Urea LS[trademark] at a wide range of temperatures up to 345F.

  7. Area effect on galvanic corrosion of condenser materials with titanium tubes in nuclear power plants

    International Nuclear Information System (INIS)

    Hwang, Seong Sik; Kim, Joung Soo; Kim, Uh Chul

    1993-01-01

    Titanium tubes have recently been used in condensers of nuclear power plants since titanium has very good corrosion resistance to seawater. However, when it is connected to Cu alloys as tube sheet materials and these Cu alloys are connected to carbon steels as water box materials, it makes significant galvanic corrosion on connected materials. It is expected from electrochemical tests that the corrosion rate of carbon steel will increase when it is galvanically coupled with Ti or Cu in sea water and the corrosion rate of Cu will increase when it is coupled with Ti, of this couple is exposed to sea water for a long time. It is also expected that the surface area ratios, R 1 (surface area of carbon steel/surface area of Ti) and R 2 (surface area of carbon steel/surface area of Cu) are very improtant for the galvanic corrosion of carbon steel and that these should not be kept to low values in order to minimize the galvanic corrosion on the carbon steel of the water box. Immersed galvanic corrosion tests show that the corrosion rate of carbon steel is 4.4 mpy when this ratio is 10 -2 . The galvanic corrosion rate of this carbon steel is increased from 4.4 mpy to 13 mpy at this area ratio, 1, when this connected galvanic specimen is galvanically coupled with a Ti tube. This can be rationalized by the combined effects of R 1 and R 2 on the polarization curve. (Author)

  8. Mitigating costs and the preemptive effect of federal rate orders

    International Nuclear Information System (INIS)

    Darr, F.P.

    1992-01-01

    The role of federalism in the regulation of energy production is a long-standing problem. This article is divided into five parts. Following a summary of the case 'New Orleans Public Service, Inc. v. Council of New Orleans' (NOPSI) in Part I the article addresses the statutory and interpretive foundations of the filed rate doctrine described in Part II. Part III discusses the Supreme Court's extension of the doctrine into greater federal management of retail rates and introduces the reaction of the lower courts to the Supreme Court's decisions. Part IV analyzes the NOPSI exception requiring a utility to mitigate the effects of a FERC order in light of the policy distinctions inherent in the filed rate doctrine and the recognized eceptions. Part V addresses a related policy issue of the appropriate venue for challenging state orders to deny costs arising from federal orders. 153 refs

  9. Corrosion and protection in reinforced concrete : Pulse cathodic protection: an improved cost-effective alternative

    NARCIS (Netherlands)

    Koleva, D.A.

    2007-01-01

    Corrosion and protection in reinforced concrete. Pulse cathodic protection: an improved cost-effective alternative. The aim of the research project was to study the possibilities for establishing a new or improved electrochemical method for corrosion prevention/protection for reinforced concrete.

  10. Effectiveness of resins/exudates of trees in corrosion prevention of ...

    African Journals Online (AJOL)

    Corrosion of steel reinforcement is one of the important factors that are responsible for the short service life of reinforced concrete members, in marine structures like bridges, piers and jetties. This study, investigated the effectiveness of resin/exuda tes in corrosion prevention of reinforcement in reinforced concrete cubes.

  11. Evaluation of austenitic stainless steels for transpassive corrosion by metal purification technology. Synergistic effect of Si and P on intergranular corrosion of Fe-18Cr-14Ni alloys

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Ohta, Joji; Kako, Kenji; Kawakami, Eishi

    2001-01-01

    The synergistic effect of Si, Mn, C, P, and S on the transpassive corrosion of HP18Cr-14Ni alloys was studied in 13N nitric acid. The specimens were fabricated using a cold crucible method in a high-vacuum chamber to reduce contamination. The additions of Si<1% and Mn<2% had no effect on the corrosion behavior of HP18Cr-14Ni alloys, and the addition of Si<1% also had no effect on the corrosion behavior of HP18Cr-14Ni-1Mn alloys, although 1% Si induced intergranular corrosion in both the alloys. Thus, HP18Cr-14Ni-1Mn-0.5Si alloys were selected to evaluate the effects of C, P and S (100 ppm each). The addition of P, and the co-addition of C, P, and S to HP18Cr-14Ni-1Mn-0.5Si induced intergranular corrosion of the same degree in the solution annealed condition. This result suggests the synergistic effect of Si and P to induce intergranular corrosion, since the single addition of Si or P to this level did not lead to intergranular corrosion of HP18Cr-14Ni alloys. HP18Cr-14Ni-1Mn-0.5Si alloys containing C, P, and S at the 100 ppm level each showed superior corrosion resistance compared to a commercial Type 304L in 13N nitric acid. (author)

  12. Corrosion behavior of Zircaloy 4 cladding material. Evaluation of the hydriding effect

    International Nuclear Information System (INIS)

    Blat, M.

    1997-04-01

    In this work, particular attention has been paid to the hydriding effect in PIE and laboratory test to validate a detrimental hydrogen contribution on Zircaloy 4 corrosion behavior at high burnup. Laboratory corrosion tests results confirm that hydrides have a detrimental role on corrosion kinetics. This effect is particularly significant for cathodic charged samples with a massive hydride outer layer before corrosion test. PIE show that at high burnup a hydride layer is formed underneath the metal/oxide interface. The results of the metallurgical examinations are discussed with respect to the possible mechanisms involved in this detrimental effect of hydrogen. Therefore, according to the laboratory tests results and PIE, hydrogen could be a strong contributor to explain the increase in corrosion rate at high burnup. (author)

  13. Effects of alloying elements on nodular and uniform corrosion resistance of zirconium-based alloys

    International Nuclear Information System (INIS)

    Abe, Katsuhiro

    1992-01-01

    The effects of alloying and impurity elements (tin, iron, chromium, nickel, niobium, tantalum, oxygen, aluminum, carbon, nitrogen, silicon, and phosphorus) on the nodular and uniform corrosion resistance of zirconium-based alloys were studied. The improving effect of iron, nickel and niobium in nodular corrosion resistance were observed. The uniform corrosion resistance was also improved by nickel, niobium and tantalum. The effects of impurity elements, nitrogen, aluminum and phosphorus were negligibly small but increasing the silicon content seemed to improve slightly the uniform corrosion resistance. Hydrogen pick-up fraction were not changed by alloying and impurity elements except nickel. Nickel addition increased remarkably hydrogen pick-up fraction. Although the composition of secondary precipitates changed with contents of alloying elements, the correlation of composition of secondary precipitates to corrosion resistance was not observed. (author)

  14. Moessbauer effect study on the corrosion of an oil refinery

    International Nuclear Information System (INIS)

    Da Costa, M.I. Jr.; Kunrath, J.I.; Moro, J.T.; Englert, G.; Comparsi, L.U.; Mueller, I.L.

    1994-01-01

    Metallic coupons are placed in strategical points of an oil refining plant in order to control the amount of corrosion produced by amine stripping of H 2 S from liquefied oil and combustible gases. This paper reports some of the results obtained by CEMS and transmission Moessbauer spectroscopy for the corrosion products formed on such coupons. (orig.)

  15. effect of municipal liquid waste on corrosion susceptibility

    African Journals Online (AJOL)

    DR. AMINU

    Kogo, A. A.. Department of Integrated Science, Federal College of Education, Kano, Nigeria. ... The corrosion rate of the galvanized steel pipe was measured using the gravimetric ... Key words: Liquid waste, galvanized steel, weight loss, gravimetric, corrosion, leaking ... the side of the test tubes, so that each side would be.

  16. Inhibition Effect of Deanol on Mild Steel Corrosion in Dilute ...

    African Journals Online (AJOL)

    NICOLAAS

    2014-06-23

    Jun 23, 2014 ... The influence of deanol on the corrosion behaviour of mild steel in dilute sulphuric acid with sodium ... the formation of a complex precipitate of protective film, which ... silicon carbide abrasive papers of 80, 120, 220, 800 and 1000 grit ...... ions in sulphuric acid on the corrosion behaviour of stainless steel,.

  17. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effect of Ti3+ ion on the Corrosion Behavior of Alloy 600

    International Nuclear Information System (INIS)

    Lee, Chang Bong; Lim, Han Gwi; Kim, Bok Hee; Kim, Ki Ju

    1999-01-01

    Alloy 600 has been widely used as a steam generator tubing material in pressurized water reactors(PWRs) nuclear power plants. Corrosion of steam generator tubing mainly occurs on the secondary water side. The purpose of this work is primarily concerned with examining the effect of Ti 3+ ion concentrations on the corrosion behavior of the Alloy 600 steam generator tubing material. Corrosion behavior of the Alloy 600 steam generator tubing material was studied in aqueous solutions with varying Ti 3+ ion concentration at room temperature. Potentiodynamic and potentiostatic polarization techniques were used to determine the corrosion and pitting potentials for the Alloy 600 test material. The addition of Ti 3+ ion to 1000ppm, showed inhibition effect on the corrosion of Alloy 600. But the corrosion of Alloy 600 was accelerated when the concentration of Ti 3+ ion exceeded 1000ppm, it is assumed that the effect of general corrosion of Alloy 600 is more sensitive than pitting corrosion. It is considered that the passive film which was formed on the Alloy 600 surface in the 100ppm Ti 3+ ion containing solution is mainly consisted of TiO 2

  19. Corrosion of alloy 22 in phosphate ions effect and chloride containing solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.

    2009-01-01

    Alloy 22 belongs to Ni-Cr-Mo family. This alloy resists the most aggressive environments for industrial applications, in oxidizing as well as reducing conditions, because exhibits an excellent uniform and localized corrosion resistance in aqueous solution. Because of its outstanding corrosion resistant, this alloy is one of the candidate to be considered for the outer shell of the canister that would contain high level radioactive nuclear wastes in a geological repository. The aim of this work is to study ion phosphate influence over Alloy 22 corrosion behavior under aggressive conditions, such as high temperature and high ion chloride concentration, where this material might be susceptible to crevice corrosion. Two different types of samples were used: cylinder specimens for uniform corrosion behavior studies and Prismatic Crevice Assembly (PCA) specimens for localized corrosion studies. Electrochemical tests were performed in deaerated aqueous solution of 1 M NaCl and 1 M NaCl with different phosphate additions at 90 C degrees and pH near neutral. The anodic film and corrosion products obtained were studied by SEM/EDS. Cyclic Potentiodynamic Polarization (CPP) curves obtained for uniform corrosion studies, showed an increase of the passivity range in phosphate containing solutions. The passive current value was 1 μA/cm 2 approximately in all the tests. PCA electrochemical tests, that combined a CPP with a potentiostatic polarization step for 2 hours in between the forward and reverse scan, showed crevice corrosion development in some cases. The repassivation potential value, determined by the intersection of the forward and the reverse scan, increased with phosphate addition. A complete crevice corrosion inhibition effect was found for phosphate concentration higher than 0.3 M. These results indicate that the passivity potential range depend on phosphate presence and might be related with the incorporation of the anion in the passive film. Results of the tests

  20. The effects of heat treatment and environment on corrosion fatigue

    International Nuclear Information System (INIS)

    Ballinger, R.G.; Hwang, I.S.; Elliott, C.K.

    1993-05-01

    Alloy X-750 is a nickel-base alloy used extensively in Light Water Reactor (LWR) nuclear power systems due to its excellent corrosion resistance and high temperature strength. In spite of alloy X-750's exceptional high temperature properties, it has been found to be susceptible to environmentally assisted fatigue and stress corrosion cracking in relatively low temperature aqueous environments such as those that exist in LWR systems. In order to develop a better understanding of the role that microstructure plays in the fatigue behavior of alloy X-750, three thermal treatments were studied. The treatments used were as hot worked + : (1) 24 h at 885 degree C + 20 h at 704 degree C (AH), (2) lh at 982 degree C + 20 h at 704 degree C (BH), and (3) 1 h at 1093 degree C + 20 h at 704 degree C (HTH). Fatigue crack growth tests were conducted at frequencies of 0.1 and 10 Hz in the following aqueous environments: (1) high purity, air saturated water (8 ppM O 2 ) at 93 degree C and 288 degree C, (2) high purity, deoxygenated water (5 ppb O 2 ) at 93 degree C, and (3) simulated BWR water chemistry with hydrogen additions at 288 degree C. Crack growth rate data was collected at constant values of stress intensity factor range (ΔK). The results show that crack growth rates and morphology are a function of ΔK, frequency, thermal treatment and environment. Frequency effects were most significant for the AH material. Crack growth rates generally decrease, for a given value of ΔK, in the BH and HTH materials with the HTH material showing the lowest growth rate

  1. The effect of corrosion on the structural reliability of steel offshore structures

    International Nuclear Information System (INIS)

    Melchers, Robert E.

    2005-01-01

    This paper considers essential theoretical concepts and data requirements for engineering structural reliability assessment suitable for the estimation of the safety and reliability of corroding ships, offshore structures and pipelines. Such infrastructure operates in a harsh environment. Allowance must be made for structural deterioration since protective measures such as paint coatings, galvanizing or cathodic protection may be ineffective. Reliability analysis requires accurate engineering models for the description and prediction of material corrosion loss and for the maximum depth of pitting. New probability-based models for both these forms of corrosion have been proposed recently and calibrated against a wide range of data. The effects of water velocity and of water pollution are reviewed and compared with recently reported field data for a corrosion at an offshore oil platform. The data interpreted according to the model show good correlation when allowance is made for the season of first immersion and the adverse effects of seawater velocity and of water pollution. An example is given to illustrate the application of reliability analysis to a pipeline subject to pitting corrosion. An important outcome is that good quality estimation of the longer-term probability of loss of structural integrity requires good modelling of the longer-term corrosion behaviour. This is usually associated with anaerobic corrosion. As a result, it cannot be extrapolated from data for short-term corrosion as this is associated with aerobic corrosion conditions

  2. The effect of corrosion on the structural reliability of steel offshore structures

    Energy Technology Data Exchange (ETDEWEB)

    Melchers, Robert E. [Centre for Infrastructure Performance and Reliability, Department of Civil, Surveying and Environmental Engineering, School of Engineering, University of Newcastle, University Drive, Callaghan NSW 2300 (Australia)]. E-mail: rob.melchers@newcastle.edu.au

    2005-10-01

    This paper considers essential theoretical concepts and data requirements for engineering structural reliability assessment suitable for the estimation of the safety and reliability of corroding ships, offshore structures and pipelines. Such infrastructure operates in a harsh environment. Allowance must be made for structural deterioration since protective measures such as paint coatings, galvanizing or cathodic protection may be ineffective. Reliability analysis requires accurate engineering models for the description and prediction of material corrosion loss and for the maximum depth of pitting. New probability-based models for both these forms of corrosion have been proposed recently and calibrated against a wide range of data. The effects of water velocity and of water pollution are reviewed and compared with recently reported field data for a corrosion at an offshore oil platform. The data interpreted according to the model show good correlation when allowance is made for the season of first immersion and the adverse effects of seawater velocity and of water pollution. An example is given to illustrate the application of reliability analysis to a pipeline subject to pitting corrosion. An important outcome is that good quality estimation of the longer-term probability of loss of structural integrity requires good modelling of the longer-term corrosion behaviour. This is usually associated with anaerobic corrosion. As a result, it cannot be extrapolated from data for short-term corrosion as this is associated with aerobic corrosion conditions.

  3. The effects of argon ion bombardment on the corrosion resistance of tantalum

    Science.gov (United States)

    Ramezani, A. H.; Sari, A. H.; Shokouhy, A.

    2017-02-01

    Application of ion beam has been widely used as a surface modification method to improve surface properties. This paper investigates the effect of argon ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, argon ions with energy of 30 keV and in doses of 1 × 1017-10 × 1017 ions/cm2 were used. The surface bombardment with inert gases mainly produces modified topography and morphology of the surface. Atomic Force Microscopy was also used to patterned the roughness variations prior to and after the implantation phase. Additionally, the corrosion investigation apparatus wear was applied to compare resistance against tantalum corrosion both before and after ion implantation. The results show that argon ion implantation has a substantial impact on increasing resistance against tantalum corrosion. After the corrosion test, scanning electron microscopy (SEM) analyzed the samples' surface morphologies. In addition, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this paper was to obtain the perfect condition for the formation of tantalum corrosion resistance. In order to evaluate the effect of the ion implantation on the corrosion behavior, potentiodynamic tests were performed. The results show that the corrosion resistance of the samples strongly depends on the implantation doses.

  4. Feasibility of mitigating the effects of windfarms on primary radar

    Energy Technology Data Exchange (ETDEWEB)

    Butler, M.M.; Johnson, D.A.

    2003-07-01

    The objectives of the study were to investigate the feasibility of modifying civil and military radars to mitigate the effects from wind turbines, to provide costings for implementing changes to the radar and to produce guidelines for planning wind farms in the vicinity of radars. The effect of wind turbines on radar signals, assessed through computer modelling, is summarised. The key aspects of turbine design that can be modified to minimise these effects are described. A key issue is the fact that no two radar installations are alike, with settings being customised for local requirements. As a consequence, a detailed understanding of the design and features of each individual radar would be required in order to assess the impact of a wind farm proposal. The costs of a programme of modifications to the civil ATC (air traffic control) radar base will depend on many factors. An estimate of costs is provided, based on the assumption that only 30 of the UK radars would need modification and that a range of modifications from very simple to very complex will be required. A number of other approaches, outside of modification of the radar system, may require investigation during a windfarm planning application, such as layout and location of the wind farm or changing air traffic routes in the vicinity of the wind farm.

  5. The effects of water radiolysis on the corrosion and stress corrosion behavior of type 316 stainless steel in pure water

    International Nuclear Information System (INIS)

    Wyllie, W.E. II; Duquette, D.J.; Steiner, D.

    1994-11-01

    In the ITER Conceptual Design Activity, water will be used as coolant for the major reactor components, which will be made of solution-annealed 316 SS. A concern is that the radiolysis products may increase the stress corrosion cracking (SCC) susceptibility of 316 SS. The corrosion and stress corrosion of 316 SS was observed under irradiated and nonirradiated conditions. Gamma irradiation produced a 100 mV potential shift in the active direction, probably from the polarizing effect of reducing radiolysis products. The irradiation also resulted in nearly an order of magnitude increase in the passive current density of 316 SS, probably from increased surface reaction rates involving radiolysis products as well as increased corrosion rates; however the latter was considered insignificant. Computer simulations of pure water radiolysis at 50, 90, and 130 C and dose rates of 10 18 -10 24 were performed; effects of hydrogen, argon, and argon + 20% oxygen deaeration were also studied. Slow strain rate suggest that annealed and sensitized 316 SS was not suscepible to SCC in hydrogen- or argon-deaerated water at 50 C. Modeling of irradiated water chemistry was performed. Open circuit potential of senstizied and annealed 316 SS had a shift of 800 mV in the noble (positive) direction. Steady-state potentials of -0.180 V for sensitized 316 SS wire and -0.096 V vs Hg/HgSO 4 for annealed 316 SS wire were independent of oxygen presence. The -0.180 V shift is likely to promote SCC

  6. Hybrid Coatings Enriched with Tetraethoxysilane for Corrosion Mitigation of Hot-Dip Galvanized Steel in Chloride Contaminated Simulated Concrete Pore Solutions

    Science.gov (United States)

    Figueira, Rita B.; Callone, Emanuela; Silva, Carlos J. R.; Pereira, Elsa V.; Dirè, Sandra

    2017-01-01

    Hybrid sol-gel coatings, named U(X):TEOS, based on ureasilicate matrices (U(X)) enriched with tetraethoxysilane (TEOS), were synthesized. The influence of TEOS addition was studied on both the structure of the hybrid sol-gel films as well as on the electrochemical properties. The effect of TEOS on the structure of the hybrid sol-gel films was investigated by solid state Nuclear Magnetic Resonance. The dielectric properties of the different materials were investigated by electrochemical impedance spectroscopy. The corrosion behavior of the hybrid coatings on HDGS was studied in chloride-contaminated simulated concrete pore solutions (SCPS) by polarization resistance measurements. The roughness of the HDGS coated with hybrids was also characterized by atomic force microscopy. The structural characterization of the hybrid materials proved the effective reaction between Jeffamine® and 3-isocyanate propyltriethoxysilane (ICPTES) and indicated that the addition of TEOS does not seem to affect the organic structure or to increase the degree of condensation of the hybrid materials. Despite the apparent lack of influence on the hybrids architecture, the polarization resistance measurements confirmed that TEOS addition improves the corrosion resistance of the hybrid coatings (U(X):TEOS) in chloride-contaminated SCPS when compared to samples prepared without any TEOS (U(X)). This behavior could be related to the decrease in roughness of the hybrid coatings (due TEOS addition) and to the different metal coating interaction resulting from the increase of the inorganic component in the hybrid matrix. PMID:28772667

  7. Effects of alloy composition and flow condition on the flow accelerated corrosion in neutral water condition

    International Nuclear Information System (INIS)

    Satoh, Tomonori; Ugachi, Hirokazu; Tsukada, Takashi; Uchida, Shunsuke

    2008-01-01

    The major mechanism of Flow accelerated corrosion (FAC) is the dissolution of the protective oxide on carbon steel, which is enhanced by mass transfer and erosion under high flow velocity conditions. In this study, the effects of alloy composition and flow velocity on FAC of carbon steel were evaluated by measuring FAC rate of tube type carbon steel specimens in the neutral water condition at 150degC. Obtained results are summarized in follows. 1) High FAC rate was depended upon the v 1.2 in the tube type specimen made of the standard alloy. 2) FAC was mitigated for the carbon steel with more than 0.03% of Cr content. 3) FAC rate decreased as Ni content increased in more than 0.1% of Ni content. 4) The difference in chemical composition of oxide film between Ni added carbon steel and Cr added one was confirmed. The hematite rich oxide was observed for Ni added carbon steel. 5) The effects of Cu on FAC rate was not observed up to 0.1% of Cu content. (author)

  8. Effect of water chemistry on corrosion of stainless steel and deposition of corrosion products in high temperature pressurised water

    International Nuclear Information System (INIS)

    Morrison, Jonathan; Cooper, Christopher; Ponton, Clive; Connolly, Brian; Banks, Andrew

    2012-09-01

    In any water-cooled nuclear reactor, the corrosion of the structural materials in contact with the coolant and the deposition of the resulting oxidised species has long been an operational concern within the power generation industry. Corrosion of the structural materials at all points in the reactor leads to low concentrations of oxidised metal species in the coolant water. The oxidised metal species can subsequently be deposited out as CRUD deposits at various points around the reactor's primary and secondary loops. The deposition of soluble oxidised material at any location in the reactor cooling system is undesirable due to several effects; deposits have a porous structure, capable of incorporating radiologically active material (forming out of core radiation fields) and concentrating aggressively corrosive chemicals, which exacerbate environmental degradation of structural and fuel-cladding materials. Deposits on heat transfer surfaces also limit efficiency of the system as a whole. The work in this programme is an attempt to determine and understand the fundamental corrosion and deposition behaviour under controlled, simulated reactor conditions. The rates of corrosion of structural materials within pressurised water reactors are heavily dependent on the condition of the exposed surface. The effect of mechanical grinding and of electropolishing on the corrosion rate and structure of the resultant oxide film formed on grade 316L stainless steel exposed to high purity water, modified to pH 9.5 and 10.5 at temperatures between 200 and 300 deg. C and pressures of up to 100 bar will be investigated. The corrosion of stainless steel in water via electrochemical oxidation leads to the formation of surface iron, nickel and chromium based spinels. Low concentrations of these spinels can be found dissolved in the coolant water. The solubility of magnetite, stainless steels' major corrosion product, in high purity water will be studied at pH 9.5 to 10.5 at

  9. 3D study of intermetallics and their effect on the corrosion morphology of rheocast aluminium alloy

    International Nuclear Information System (INIS)

    Mingo, B.; Arrabal, R.; Pardo, A.; Matykina, E.; Skeldon, P.

    2016-01-01

    In the present study, the effect of heat treatment T6.1 on the microstructure and corrosion behaviour of rheocast aluminium alloy A356 is investigated on the basis of 2D/3D characterization techniques and electrochemical and SKPFM measurements. Heat treatment strengthens the α-Al matrix, modifies the intermetallic particles and spheroidizes eutectic Si. These changes do not modify significantly the corrosion behaviour of the alloy. 3D SEM-Tomography clearly shows that the corrosion advances in the shape of narrow paths between closely spaced intermetallics without a major influence of eutectic Si. - Highlights: • T6.1 spheroidizes Si, strengthens the matrix and modifies the intermetallics. • Electrochemical behaviour of untreated and heat-treated alloys is similar. • 3D SEM-Tomography provides additional information on the corrosion morphology. • Corrosion advances as paths between intermetallics with little influence of Si.

  10. The effect of recrystallization on corrosion and electrochemical behavior of 7150 Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Peng, G.S.; Chen, K.H.; Fang, H.C.; Chen, S.Y.; Chao, H. [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2011-01-15

    By weight loss, potentiodynamic polarization, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS) techniques complemented by optical and scanning electron microscopy observations, the effect of recrystallization on the corrosion, and electrochemical behavior of 7150 Al alloy was studied. The results indicated that the high recrystallization fraction 7150-1 was worse than the low recrystallization fraction 7150-2 on corrosion resistance. The analysis of EIS indicated that 7150-1 exhibited obvious pitting corrosion at 5 h immersion time, whereas 7150-2 showed no obvious pitting corrosion even at 33 h. The corrosion route developed along the grain boundary of recrystallization grains, not along the grain boundary of unrecrystallization grains. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Mechanism and degree of chemical elements effect on atmosphere corrosion resistance of steels

    International Nuclear Information System (INIS)

    Vu Din' Vuj

    1991-01-01

    It follows from the proposed regression equations that falourable effect of chemical elements on steel resistance to atmospheric corrosion is determined by their ability to increase interatom bond stability in iron crystal lattice and form corrosion products with high protection properties. Element positive influence on steel corrosion resistance decreases in the following order: S, P, Si, Mn, Cu, Cr, Ni, C in semiurban tropical atmosphere and S, Mn, Sr, Cu, Ni, Cr in coastal atmosphere. In the latter case C increases corrosion in a greater degree as compared to P. Small ammounts of Mo decrease steel resistance in semiurban atmosphere and almost do not influence it in the coastal one. Possible mechanisms of individual element influence on steel corrosion resistance are considered

  12. Effect of ion implantation on the corrosion behavior of lead and a lead-antimony alloy

    International Nuclear Information System (INIS)

    Zhang, S.T.; Kong, F.P.; Muller, R.H.

    1994-01-01

    Ion implantation of different metals in Pb and Pb-4% Sb has been found to improve the open-circuit corrosion resistance of the two metals in 5M H 2 SO 4 . Titanium ions were implanted under different conditions of ion dose and ion energy. Optimum implantation conditions resulted in an up to 72-fold reduction of corrosion currents. The implantation of V, Cr, Ni, and W has been investigated for one implantation condition and has also resulted in decreased corrosion currents. The corrosion behavior was characterized by the current response to small anodic potential steps. Surface analysis and depth profiles have shown the importance of the spatial distribution of the implanted ions for their effects on the anodic and cathodic parts of the corrosion reactions

  13. Effect of cold working on the stress corrosion cracking resistance of nickel-chromium-iron alloys

    International Nuclear Information System (INIS)

    Yonezawa, T.; Onimura, K.

    1987-01-01

    In order to grasp the stress corrosion cracking resistance of cold worked nickel base alloys in PWR primary water, the effect of cold working on the stress corrosion cracking resistance of alloys 600, X-750 and 690, in high temperature water, have been studied. Stress corrosion cracking tests were conducted at 360 0 C (633K) in a simulated PWR primary water for about 12,000 hours (43.2Ms). From the test results, it is concluded that the stress corrosion cracking resistance in the cold worked Alloy 600 at the same applied stress level increases with an increase in cold working ratio, and the cold worked alloys of thermally treated 690 and X-750 have excellent stress corrosion cracking resistance. (Author)

  14. The effect of heat treatments on the corrosion behavior of Zircaloy-4

    International Nuclear Information System (INIS)

    Zhou Bangxin; Zhao Wenjin; Miao Zhi; Pan Shufang; Li Cong; Jiang Yourong

    1996-06-01

    The effect of penultimate annealing temperature and cooling rate on the corrosion behavior of Zircaloy-4 cladding tube has been investigated. Both nodular corrosion and uniform corrosion resistance can be improved obviously after changing the heat treatment from the original annealing at 650 degree C to quenching from 830 degree C (upper temperature of alpha phase region or lower temperature of beta phase region). Although the nodular corrosion resistance can be improved obviously after quenching from beta phase, there was a second transition in the variation between weight gain and exposure time, which shows a poor uniform corrosion resistance after a long exposure time during the autoclave tests. The main factor of affecting corrosion behavior is the solid solution contents of Fe and Cr in alpha zirconium rather than the size of second phase particles. About 200 μg/g Fe and Cr super saturated solid solution in alpha zirconium could get good uniform and nodular corrosion resistance, but much more solid solution contents of Fe and Cr in alpha zirconium could bring about a trend toward poor uniform corrosion resistance for long-term exposure time. (14 refs., 10 figs., 1 tab.)

  15. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy

    International Nuclear Information System (INIS)

    Zaid, B.; Saidi, D.; Benzaid, A.; Hadji, S.

    2008-01-01

    Effects of pH solution and chloride (Cl - ) ion concentration on the corrosion behaviour of alloy AA6061 immersed in aqueous solutions of NaCl have been investigated using measurements of weight loss, potentiodynamic polarisation, linear polarisation, cyclic polarisation experiment combined with open circuit potential transient technique and optical or scanning electron microscopy. The corrosion behaviour of the AA6061 aluminum alloy was found to be dependant on the pH and chloride concentration [NaCl] of solution. In acidic or slightly neutral solutions, general and pitting corrosion occurred simultaneously. In contrast, exposure to alkaline solutions results in general corrosion. Experience revealed that the alloy AA6061 was susceptible to pitting corrosion in all chloride solution of concentration ranging between 0.003 wt% and 5.5 wt% NaCl and an increase in the chloride concentration slightly shifted both the pitting E pit and corrosion E cor potentials to more active values. In function of the conditions of treatment, the sheets of the alloy AA6061 undergo two types of localised corrosion process, leading to the formation of hemispherical and crystallographic pits. Polarisation resistance measurements in acidic (pH = 2) and alkaline chloride solutions (pH = 12) which are in good agreement with those of weight loss, show that the corrosion kinetic is minimised in slightly neutral solutions (pH = 6)

  16. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments.

    Science.gov (United States)

    Song, Yarong; Jiang, Guangming; Chen, Ying; Zhao, Peng; Tian, Yimei

    2017-07-31

    Chloride is reported to play a significant role in corrosion reactions, products and kinetics of ferrous metals. To enhance the understanding of the effects of soil environments, especially the saline soils with high levels of chloride, on the corrosion of ductile iron and carbon steel, a 3-month corrosion test was carried out by exposing ferrous metals to soils of six chloride concentrations. The surface morphology, rust compositions and corrosion kinetics were comprehensively studied by visual observation, scanning electron microscopy (SEM), X-Ray diffraction (XRD), weight loss, pit depth measurement, linear polarization and electrochemical impedance spectroscopy (EIS) measurements. It showed that chloride ions influenced the characteristics and compositions of rust layers by diverting and participating in corrosion reactions. α-FeOOH, γ-FeOOH and iron oxides were major corrosion products, while β-Fe 8 O 8 (OH) 8 Cl 1.35 rather than β-FeOOH was formed when high chloride concentrations were provided. Chloride also suppressed the decreasing of corrosion rates, whereas increased the difficulty in the diffusion process by thickening the rust layers and transforming the rust compositions. Carbon steel is more susceptible to chloride attacks than ductile iron. The corrosion kinetics of ductile iron and carbon steel corresponded with the probabilistic and bilinear model respectively.

  17. Effect of Additional Sulfide and Thiosulfate on Corrosion of Q235 Carbon Steel in Alkaline Solutions

    Directory of Open Access Journals (Sweden)

    Bian Li Quan

    2016-01-01

    Full Text Available This paper investigated the effect of additional sulfide and thiosulfate on Q235 carbon steel corrosion in alkaline solutions. Weight loss method, scanning electron microscopy (SEM equipped with EDS, X-ray photoelectron spectroscopy (XPS, and electrochemical measurements were used in this study to show the corrosion behavior and electrochemistry of Q235 carbon steel. Results indicate that the synergistic corrosion rate of Q235 carbon steel in alkaline solution containing sulfide and thiosulfate is larger than that of sulfide and thiosulfate alone, which could be due to redox reaction of sulfide and thiosulfate. The surface cracks and pitting characteristics of the specimens after corrosion were carefully examined and the corrosion products film is flake grains and defective. The main corrosion products of specimen induced by S2− and S2O32- are FeS, FeS2, Fe3O4, and FeOOH. The present study shows that the corrosion mechanism of S2− and S2O32- is different for the corrosion of Q235 carbon steel.

  18. Effects of cold working on the pitting corrosion behavior s of AISI 304 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kee Min; Kim, Jong Soo; Kim, Young Jun; Kwon, Houk Sang [KAIST, Daejon (Korea, Republic of)

    2015-12-15

    These microstructural changes by cold working can lead improvement of mechanical properties, however from a corrosion resistant point of view, the effects of cold working on the corrosion resistance of stainless steel have been argued. Several studies has been focused on the influence of cold working on the localized corrosion resistance of stainless steels. However, the opinions about the role of cold working on the localized corrosion resistance are highly in consistence. Some studies report that the pitting potential of austenitic stainless steels decreased with cold working level, on the other hands, other studies claimed that the pitting resistance was increased by cold working. Therefore it is necessary to verify how cold working affects pitting corrosion behavior of austenitic stainless steels. In the present work, the influence of cold working on the localized corrosion of AISI 304stainless steel in the neutral chloride solution was studied based on point defect model (PDM). The fraction of deformation-induced martensite was linearly increased with cold rolling level. Through cold rolling, the pitting potential was decreased, the metastable pitting event density was significantly increased and the repassivation potential was decreased. The overall localized corrosion resistance was decreased with cold working, however cold working level increased from 30 % to 50 %, localized corrosion resistance was recovered. The accumulated cation vacancy generates a void at metal/film interface, therefore film breakdown accelerates for cold worked alloys.

  19. Effects of cold working on the pitting corrosion behavior s of AISI 304 stainless steels

    International Nuclear Information System (INIS)

    Jung, Kee Min; Kim, Jong Soo; Kim, Young Jun; Kwon, Houk Sang

    2015-01-01

    These microstructural changes by cold working can lead improvement of mechanical properties, however from a corrosion resistant point of view, the effects of cold working on the corrosion resistance of stainless steel have been argued. Several studies has been focused on the influence of cold working on the localized corrosion resistance of stainless steels. However, the opinions about the role of cold working on the localized corrosion resistance are highly in consistence. Some studies report that the pitting potential of austenitic stainless steels decreased with cold working level, on the other hands, other studies claimed that the pitting resistance was increased by cold working. Therefore it is necessary to verify how cold working affects pitting corrosion behavior of austenitic stainless steels. In the present work, the influence of cold working on the localized corrosion of AISI 304stainless steel in the neutral chloride solution was studied based on point defect model (PDM). The fraction of deformation-induced martensite was linearly increased with cold rolling level. Through cold rolling, the pitting potential was decreased, the metastable pitting event density was significantly increased and the repassivation potential was decreased. The overall localized corrosion resistance was decreased with cold working, however cold working level increased from 30 % to 50 %, localized corrosion resistance was recovered. The accumulated cation vacancy generates a void at metal/film interface, therefore film breakdown accelerates for cold worked alloys

  20. Exploring cosmic origins with CORE: Mitigation of systematic effects

    Science.gov (United States)

    Natoli, P.; Ashdown, M.; Banerji, R.; Borrill, J.; Buzzelli, A.; de Gasperis, G.; Delabrouille, J.; Hivon, E.; Molinari, D.; Patanchon, G.; Polastri, L.; Tomasi, M.; Bouchet, F. R.; Henrot-Versillé, S.; Hoang, D. T.; Keskitalo, R.; Kiiveri, K.; Kisner, T.; Lindholm, V.; McCarthy, D.; Piacentini, F.; Perdereau, O.; Polenta, G.; Tristram, M.; Achucarro, A.; Ade, P.; Allison, R.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Bartlett, J.; Bartolo, N.; Basak, S.; Baumann, D.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Cai, Z.-Y.; Calvo, M.; Carvalho, C.-S.; Castellano, M. G.; Challinor, A.; Chluba, J.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; De Zotti, G.; Di Valentino, E.; Diego, J.-M.; Errard, J.; Feeney, S.; Fernandez-Cobos, R.; Finelli, F.; Forastieri, F.; Galli, S.; Genova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Gruppuso, A.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernandez-Monteagudo, C.; Hervías-Caimapo, C.; Hills, M.; Keihänen, E.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Liguori, M.; López-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-González, E.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; Melchiorri, A.; Melin, J.-B.; Migliaccio, M.; Monfardini, A.; Negrello, M.; Notari, A.; Pagano, L.; Paiella, A.; Paoletti, D.; Piat, M.; Pisano, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rossi, G.; Rubino-Martin, J.-A.; Salvati, L.; Signorelli, G.; Tartari, A.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Valiviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Wallis, C.; Young, K.; Zannoni, M.

    2018-04-01

    We present an analysis of the main systematic effects that could impact the measurement of CMB polarization with the proposed CORE space mission. We employ timeline-to-map simulations to verify that the CORE instrumental set-up and scanning strategy allow us to measure sky polarization to a level of accuracy adequate to the mission science goals. We also show how the CORE observations can be processed to mitigate the level of contamination by potentially worrying systematics, including intensity-to-polarization leakage due to bandpass mismatch, asymmetric main beams, pointing errors and correlated noise. We use analysis techniques that are well validated on data from current missions such as Planck to demonstrate how the residual contamination of the measurements by these effects can be brought to a level low enough not to hamper the scientific capability of the mission, nor significantly increase the overall error budget. We also present a prototype of the CORE photometric calibration pipeline, based on that used for Planck, and discuss its robustness to systematics, showing how CORE can achieve its calibration requirements. While a fine-grained assessment of the impact of systematics requires a level of knowledge of the system that can only be achieved in a future study phase, the analysis presented here strongly suggests that the main areas of concern for the CORE mission can be addressed using existing knowledge, techniques and algorithms.

  1. Overview of Corrosion, Erosion, and Synergistic Effects of Erosion and Corrosion in the WTP Pre-treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Imrich, K. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-27

    Corrosion is an extremely complex process that is affected by numerous factors. Addition of a flowing multi-phase solution further complicates the analysis. The synergistic effects of the multiple corrosive species as well as the flow-induced synergistic effects from erosion and corrosion must be thoroughly evaluated in order to predict material degradation responses. Public domain data can help guide the analysis, but cannot reliably provide the design basis especially when the process is one-of-a-kind, designed for 40 plus years of service, and has no viable means for repair or replacement. Testing in representative simulants and environmental conditions with prototypic components will provide a stronger technical basis for design. This philosophy was exemplified by the Defense Waste Processing Facility (DWPF) at the Savannah River Site and only after 15 plus years of successful operation has it been validated. There have been “hiccups”, some identified during the cold commissioning phase and some during radioactive operations, but they were minor and overcome. In addition, the system is robust enough to tolerate most flowsheet changes and the DWPF design allows minor modifications and replacements – approaches not available with the Hanford Waste Treatment Plant (WTP) “Black Cell” design methodology. Based on the available data, the synergistic effect between erosion and corrosion is a credible – virtually certain – degradation mechanism and must be considered for the design of the WTP process systems. Testing is recommended due to the number of variables (e.g., material properties, process parameters, and component design) that can affect synergy between erosion and corrosion and because the available literature is of limited applicability for the complex process chemistries anticipated in the WTP. Applicable testing will provide a reasonable and defensible path forward for design of the WTP Black Cell and Hard-to-Reach process equipment. These

  2. Effect of heat treatment on the grooving corrosion resistance of ERW pipes

    International Nuclear Information System (INIS)

    Lee, Jong Kwon; Lee, Jae Young; Lim, Soo Hyun; Park, Ji Hwan; Seo, Bo Min; Kim, Seon Hwa

    2002-01-01

    The v-sharp grooving corrosion of ERW(electrical resistance welding) steel pipes limited their wide application in the industry in spite of their high productivity and efficiency. The grooving corrosion is caused mainly by the different microstructures between the matrix and weld that is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. Even though the diminishing of sulfur content is most effective to decrease the susceptibility of grooving corrosion, it requires costly process. In this study, improvement of grooving corrosion resistance was pursuited by post weld heat treatment in the temperature range between 650 .deg. C and 950 .deg. C. Also, the effect of heat input in the welding was investigated. By employing chromnoamperometry and potentiodynamic experiment, the corrosion rate and grooving corrosion index(α) were obtained. It was found that heat treatment could improve the grooving corrosion resistance. Among them, the heat treated at 900 .deg. C and 950 .deg. C had excellent grooving corrosion resistance. The index of heat treated specimen at 900 .deg. C and 950 .deg. C were 1.0, 1.2, respectively, which are almost immune to the grooving corrosion. Potential difference after the heat treatment, between base and weld metal was decreased considerably. While the as-received one measured 61∼71 mV, that of the 900 .deg. C heat treated steel pipe measured only 10mV. The results were explained and discussed

  3. Inhibition Effect of Deanol on Mild Steel Corrosion in Dilute ...

    African Journals Online (AJOL)

    NICOLAAS

    2014-06-23

    Jun 23, 2014 ... allows for extensive use as the material of construction in petro- leum industries .... steel specimens was investigated after mass-loss analysis ..... Ogbuliec, Inhibition of pseudo-anaerobic corrosion of oil pipeline steel in ...

  4. Effect of corrosion on the buckling capacity of tubular members

    Science.gov (United States)

    Øyasæter, F. H.; Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.

    2017-12-01

    Offshore installations are subjected to harsh marine environment and often have damages from corrosion. Several experimental and numerical studies were performed in the past to estimate buckling capacity of corroded tubular members. However, these studies were either based on limited experimental tests or numerical analyses of few cases resulting in semi-empirical relations. Also, there are no guidelines and recommendations in the currently available design standards. To fulfil this research gap, a new formula is proposed to estimate the residual strength of tubular members considering corrosion and initial geometrical imperfections. The proposed formula is verified with results from finite element analyses performed on several members and for varying corrosion patch parameters. The members are selected to represent the most relevant Eurocode buckling curve for tubular members. It is concluded that corrosion reduces the buckling capacity significantly and the proposed formula can be easily applied by practicing engineers without performing detailed numerical analyses.

  5. Effect of tempering on corrosion resistance of cast aluminium bronzes

    International Nuclear Information System (INIS)

    Aaltonen, P.; Klemetti, K.; Haenninen, H.

    1985-01-01

    The subject of this study is corrosion resistance of aluminium bronzes, which are copper base alloys containing aluminium up to 12% with additions of nickel, iron and manganese. The main conclutions that can be drawn are: (1) The dealloying corrosion resistance of nickel-aluminium bronze is much better than that of aluminium bronze with iron and manganese additions, but it is not immune; (2) The dealloying corrosion resistance of aluminium bronzes can be improved by appropiate heat treatments. The best properties were obtained by temperering between 600 and 800 deg C, depending on the initial microstructure; (3) In crevice conditions, where local acidification can occur, dealloying of aluminium bronzes is a consequence of the preferential attack of aluminium-rich phases. By appropriate tempering, a uniform distribution of aluminium-rich phases is obtained and the continous path for selective corrosion is not formed

  6. Filtration–UV irradiation as an option for mitigating the risk of microbiologically influenced corrosion of subsea construction alloys in seawater

    International Nuclear Information System (INIS)

    Machuca, Laura L.; Jeffrey, Robert; Bailey, Stuart I.; Gubner, Rolf; Watkin, Elizabeth L.J.; Ginige, Maneesha P.; Kaksonen, Anna H.; Heidersbach, Krista

    2014-01-01

    Highlights: •Biofilms ennobled E corr of offshore construction alloys in natural seawater. •Filtration–UV irradiation delayed biofilm growth and activity on alloys. •Localized corrosion in seawater was lowered by the use of filtration–UV irradiation. •Biofilm community composition was affected by both substratum and seawater treatment. •Filtration–UV irradiation can be an ecofriendly practice for protection against MIC. -- Abstract: The effect of filtration–UV irradiation of seawater on the biofilm activity on several offshore structural alloys was evaluated in a continuous flow system over 90 days. Biofilms ennobled the electrode potential by +400 to 500 mV within a few days of exposure to raw untreated seawater. Filtration–UV irradiation of the seawater delayed the ennoblement of the steels for up to 40 days and lowered localized corrosion rates in susceptible alloys. Ennobling biofilms were composed of microbial cells, diatoms and extracellular polymeric substances and the bacterial community in biofilms was affected by both the alloy composition and seawater treatment

  7. Nuclear power plant life extension and management aspects; neutron irradiation embrittlement and stress corrosion cracking - two possible degradation mechanisms and methods for their mitigation

    International Nuclear Information System (INIS)

    Tipping, P.; Ineichen, U.; Cripps, R.C.

    1994-01-01

    The response of a mock-up low alloy ferritic reactor pressure vessel (RPV) steel and associated weldments to neutron irradiation has been studied using a combination of hardness, tensile, fracture mechanical and toughness tests in combination with annealing treatments. Thermal analysis using isochronal and isothermal techniques has indicated that annealing at a minimum of 440 o C for 168h is needed to mitigate neutron embrittlement received at 290 o C. Rates of re-embrittlement after annealing and reirradiating are no faster than initial rates, even up to neutron fluences as high as 5x10 19 cm -2 (energy E>1 MeV). All mechanical properties measured benefited from annealing. Thus, annealing is indicated as one measure for maintaining mechanical properties in irradiated low alloy steels and welds and should be considered in plant life management strategies. The influence of simulated reactor coolant water chemistry on the stress corrosion cracking propensity of ferritic low alloy steel specimens in autoclave loop experiments has also been studied. The double cantilever bend specimens were fatigue pre-cracked and wedge-loaded to different degrees to induce nominal stress intensity factors between 15-95 MPa.m 1/2 . Other specimens were subjected to stress using a tensile loading device integral with the test autoclave. The importance of close control of the dissolved oxygen content and the conductivity of the water has become evident under these experimental conditions. The RPV material and degree and mode of loading are also important parameters in SCC studies; stress intensity factors above 30 MPa.m 1/2 have been associated with SCC in these studies. (author) 2 figs., 13 refs

  8. Effect of surfactant in mitigating cadmium oxide nanoparticle toxicity: Implications for mitigating cadmium toxicity in environment

    Energy Technology Data Exchange (ETDEWEB)

    Balmuri, Sricharani Rao [Department of Bioengineering, School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401 (India); Selvaraj, Uthra [Department of Biotechnology, School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401 (India); Kumar, Vadivel Vinod [Department of Chemistry, School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401 (India); Anthony, Savarimuthu Philip, E-mail: philip@biotech.sastra.edu [Department of Chemistry, School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401 (India); Tsatsakis, Aristides Michael [Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003 (Greece); Scientific Educational Center of Nanotechnology, Far Eastern Federal University, Vladivostok 690990 (Russian Federation); Golokhvast, Kirill Sergeevich [Scientific Educational Center of Nanotechnology, Far Eastern Federal University, Vladivostok 690990 (Russian Federation); Raman, Thiagarajan, E-mail: raman@biotech.sastra.edu [Department of Bioengineering, School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401 (India); Centre for Research in Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401 (India)

    2017-01-15

    Cadmium (Cd), classified as human carcinogen, is an extremely toxic heavy metal pollutant, and there is an increasing environmental concern for cadmium exposure through anthropogenic sources including cigarette smoke. Though Cd based nanoparticles such as cadmium oxide (CdO) are being widely used in a variety of clinical and industrial applications, the toxicity of CdO nanoparticles has not been well characterized. Herein we report the toxicity of CdO nanoparticles employing zebrafish as a model. Two different CdO nanoparticles were prepared, calcination of Cd(OH){sub 2} without any organic molecule (CdO-1) and calcination of Cd-citrate coordination polymer (CdO-2), to evaluate and compare the toxicity of these two different CdO nanoparticles. Results show that zebrafish exposed to CdO-2 nanoparticles expressed reduced toxicity as judged by lower oxidative stress levels, rescue of liver carboxylesterases and reduction in metallothionein activity compared to CdO-1 nanoparticles. Histopathological observations also support our contention that CdO-1 nanoparticles showed higher toxicity relative to CdO-2 nanoparticles. The organic unit of Cd-citrate coordination polymer might have converted into carbon during calcination that might have covered the surface of CdO nanoparticles. This carbon surface coverage can control the release of Cd{sup 2+} ions in CdO-2 compared to non-covered CdO-1 nanoparticles and hence mitigate the toxicity in the case of CdO-2. This was supported by atomic absorption spectrophotometer analyses of Cd{sup 2+} ions release from CdO-1 and CdO-2 nanoparticles. Thus the present study clearly demonstrates the toxicity of CdO nanoparticles in an aquatic animal and also indicates that the toxicity could be substantially reduced by carbon coverage. This could have important implications in terms of anthropogenic release and environmental pollution caused by Cd and human exposure to Cd{sup 2+} from sources such as cigarette smoke. - Highlights:

  9. Effect of surfactant in mitigating cadmium oxide nanoparticle toxicity: Implications for mitigating cadmium toxicity in environment

    International Nuclear Information System (INIS)

    Balmuri, Sricharani Rao; Selvaraj, Uthra; Kumar, Vadivel Vinod; Anthony, Savarimuthu Philip; Tsatsakis, Aristides Michael; Golokhvast, Kirill Sergeevich; Raman, Thiagarajan

    2017-01-01

    Cadmium (Cd), classified as human carcinogen, is an extremely toxic heavy metal pollutant, and there is an increasing environmental concern for cadmium exposure through anthropogenic sources including cigarette smoke. Though Cd based nanoparticles such as cadmium oxide (CdO) are being widely used in a variety of clinical and industrial applications, the toxicity of CdO nanoparticles has not been well characterized. Herein we report the toxicity of CdO nanoparticles employing zebrafish as a model. Two different CdO nanoparticles were prepared, calcination of Cd(OH) 2 without any organic molecule (CdO-1) and calcination of Cd-citrate coordination polymer (CdO-2), to evaluate and compare the toxicity of these two different CdO nanoparticles. Results show that zebrafish exposed to CdO-2 nanoparticles expressed reduced toxicity as judged by lower oxidative stress levels, rescue of liver carboxylesterases and reduction in metallothionein activity compared to CdO-1 nanoparticles. Histopathological observations also support our contention that CdO-1 nanoparticles showed higher toxicity relative to CdO-2 nanoparticles. The organic unit of Cd-citrate coordination polymer might have converted into carbon during calcination that might have covered the surface of CdO nanoparticles. This carbon surface coverage can control the release of Cd 2+ ions in CdO-2 compared to non-covered CdO-1 nanoparticles and hence mitigate the toxicity in the case of CdO-2. This was supported by atomic absorption spectrophotometer analyses of Cd 2+ ions release from CdO-1 and CdO-2 nanoparticles. Thus the present study clearly demonstrates the toxicity of CdO nanoparticles in an aquatic animal and also indicates that the toxicity could be substantially reduced by carbon coverage. This could have important implications in terms of anthropogenic release and environmental pollution caused by Cd and human exposure to Cd 2+ from sources such as cigarette smoke. - Highlights: • Toxicity of Cd

  10. Mitigating cyanobacterial blooms: how effective are 'effective microorganisms'?

    NARCIS (Netherlands)

    Lürling, M.F.L.L.W.; Tolman, Y.; Euwe, M.

    2009-01-01

    This study examined the effects of 'Effective Microorganisms (EM)' on the growth of cyanobacteria, and their ability to terminate cyanobacterial blooms. The EM was tested in the form of 'mudballs' or 'Bokashi-balls', and as a suspension (EM-A) in laboratory experiments. No growth inhibition was

  11. Effects of Alloyed Carbon on the General Corrosion and the Pitting Corrosion Behavior of FeCrMnN Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Heon-Young; Lee, Tae-Ho; Kim, Sung-Joon [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2011-10-15

    The effects of alloyed carbon on the pitting corrosion, the general corrosion, and the passivity behavior of Fe{sub 1}8Cr{sub 1}0Mn{sub 0}.4Nx{sub C} (x=0 ⁓ 0.38 wt%) alloys were investigated by various electrochemical methods and XPS analysis. The alloyed carbon increased the general corrosion resistance of the FeCrMnN matrix. Carbon enhanced the corrosion potential, reduced the metal dissolution rate, and accelerated the hydrogen evolution reaction rate in various acidic solutions. In addition, carbon promoted the pitting corrosion resistance of the matrix in a chloride solution. The alloyed carbon in the matrix increased the chromium content in the passive film, and thus the passive film became more protective.

  12. AC-Induced Bias Potential Effect on Corrosion of Steels

    Science.gov (United States)

    2009-02-05

    induction, variable conduction Experimental Setup Super- martensitic stainless steel composition Analysis: C Mn Si Cr Ni Mo Cu N Typical 13 Cr ɘ.01 0.6... stainless steel used in pipelines. •Low carbon (ɘ.01): allows the formation of a “soft” martensite that is more resistant than standard martensitic ...Proposed AC Corrosion Models  AC Simulated Corrosion testing  Stainless steel pipe and coating  Cathodic protection  Experimental Setup  Preliminary

  13. Water vapor effects on the corrosion of steel

    International Nuclear Information System (INIS)

    Estill, J.C.; Gdowski, G.E.

    1995-01-01

    Critical relative humidity for AISI 1020 carbon steel is 75-85% RH at 65 C. Aggressive electrochemical corrosion occurs above 85% RH, while dry oxidation occurs below 75% RH. The reddish-brown product is probably Fe2O3 or its hydrate; the black oxide layer, Fe3O4. The face surfaces had little or no corrosion, while the mill-machined edges were corroded with nonuniform reddish-brown areas

  14. Multilayer graphene as an effective corrosion protection coating for copper

    Science.gov (United States)

    Ravishankar, Vasumathy; Ramaprabhu, S.; Jaiswal, Manu

    2018-04-01

    Graphene grown by chemical vapor deposition (CVD) has been studied as a protective layer against corrosion of copper. The layer number dependence on the protective nature of graphene has been investigated using techniques such as Tafel analysis and Electroimpedance Spectroscopy. Multiple layers of graphene were achieved by wet transfer above CVD grown graphene. Though this might cause grain boundaries, the sites where corrosion is initiated, to be staggered, wet transfer inherently carries the disadvantage of tearing of graphene, as confirmed by Raman spectroscopy measurements. However, Electroimpedance Spectroscopy (EIS) reflects that graphene protected copper has a layer dependent resistance to corrosion. Decrease in corrosion current (Icorr) for graphene protected copper is presented. There is only small dependence of corrosion current on the layer number, Tafel plots clearly indicate passivation in the presence of graphene, whether it be single layer or multiple layers. Notwithstanding the crystallite size, defect free layers of graphene with staggered grain boundaries combined with passivation could offer good corrosion protection for metals.

  15. Effect of Pseudomonas fluorescens on Buried Steel Pipeline Corrosion.

    Science.gov (United States)

    Spark, Amy J; Law, David W; Ward, Liam P; Cole, Ivan S; Best, Adam S

    2017-08-01

    Buried steel infrastructure can be a source of iron ions for bacterial species, leading to microbiologically influenced corrosion (MIC). Localized corrosion of pipelines due to MIC is one of the key failure mechanisms of buried steel pipelines. In order to better understand the mechanisms of localized corrosion in soil, semisolid agar has been developed as an analogue for soil. Here, Pseudomonas fluorescens has been introduced to the system to understand how bacteria interact with steel. Through electrochemical testing including open circuit potentials, potentiodynamic scans, anodic potential holds, and electrochemical impedance spectroscopy it has been shown that P. fluorescens increases the rate of corrosion. Time for oxide and biofilms to develop was shown to not impact on the rate of corrosion but did alter the consistency of biofilm present and the viability of P. fluorescens following electrochemical testing. The proposed mechanism for increased corrosion rates of carbon steel involves the interactions of pyoverdine with the steel, preventing the formation of a cohesive passive layer, after initial cell attachment, followed by the formation of a metal concentration gradient on the steel surface.

  16. Modeling Effectiveness of Gradual Increases in Source Level to Mitigate Effects of Sonar on Marine Mammals

    NARCIS (Netherlands)

    Benda-Beckmann, A.M. von; Wensveen, P.J.; Kvadsheim, P.H.; Lam, F.P.A.; Miller, P.J.O.; Tyack, P.L.; Ainslie, M.A.

    2013-01-01

    Ramp-up or soft-start procedures (i.e., gradual increase in the source level) are used to mitigate the effect of sonar sound on marine mammals, although no one to date has tested whether ramp-up procedures are effective at reducing the effect of sound on marine mammals. We investigated the

  17. Modeling the mitigation effect of coastal forests on tsunami

    Science.gov (United States)

    Kh'ng, Xin Yi; Teh, Su Yean; Koh, Hock Lye

    2017-08-01

    As we have learned from the 26 Dec 2004 mega Andaman tsunami that killed 250, 000 lives worldwide, tsunami is a devastating natural disaster that can cause severe impacts including immense loss of human lives and extensive destruction of properties. The wave energy can be dissipated by the presence of coastal mangrove forests, which provide some degree of protection against tsunami waves. On the other hand, costly artificial structures such as reinforced walls can substantially diminish the aesthetic value and may cause environmental problems. To quantify the effectiveness of coastal forests in mitigating tsunami waves, an in-house 2-D model TUNA-RP is developed and used to quantify the reduction in wave heights and velocities due to the presence of coastal forests. The degree of reduction varies significantly depending on forest flow-resistant properties such as vegetation characteristics, forest density and forest width. The ability of coastal forest in reducing tsunami wave heights along the west coast of Penang Island is quantified by means of model simulations. Comparison between measured tsunami wave heights for the 2004 Andaman tsunami and 2-D TUNA-RP model simulated values demonstrated good agreement.

  18. Effect of yttrium chromite doping on its resistance to high-temperature salt and gas corrosions

    International Nuclear Information System (INIS)

    Oryshich, I.V.; Poryadchenko, N.E.; Rakitskij, A.N.; Bega, N.D.

    1996-01-01

    Effect of yttrium chromite doping with 2-4 group metal oxides on the corrosion resistance in the air at 1300 C during 5 hours and in sodium chloride and sulfate melts at 900 C during 20 hours is investigated. A notable increase of corrosion resistance is achieved under complex doping with zirconium and magnesium oxides in a quantity, close to solubility in yttrium oxide and solubility by aluminium oxide. Doping with calcium and strontium oxides in the quantities, dose to solubility in yttrium oxide does not produce any notable effect, and at higher concentrations it reduces the corrosion resistance in media indicated. Refs. 8, refs. 2, tabs. 1

  19. Zinc Addition Effects on General Corrosion of Austenitic Stainless Steels in PWR Primary Conditions

    International Nuclear Information System (INIS)

    Qiao Peipeng; Zhang Lefu; Liu Ruiqin; Jiang Suqing; Zhu Fawen

    2010-01-01

    Zinc addition effects on general corrosion of austenitic stainless steel 316 and 304 were investigated in simulated PWR primary coolant without zinc or with 50 ppb zinc addition at 315 degree C for 500 h. The results show that with the addition of zinc, the corrosion rate of austenitic stainless steel is effectively reduced, the surface oxide film is thinner, the morphology and chemical composition of surface oxide scales are evidently different from those without zinc. There are needle-like corrosion products on the surface of stainless steel 304. (authors)

  20. Effect of flow velocity on erosion-corrosion behaviour of QSn6 alloy

    Science.gov (United States)

    Huang, Weijiu; Zhou, Yongtao; Wang, Zhenguo; Li, Zhijun; Zheng, Ziqing

    2018-05-01

    The erosion-corrosion behaviour of QSn6 alloy used as propellers in marine environment was evaluated by erosion-corrosion experiments with/without cathodic protection, electrochemical tests and scanning electron microscope (SEM) observations. The analysis was focused on the effect of flow velocity. The dynamic polarization curves showed that the corrosion rate of the QSn6 alloy increased as the flow velocity increased, due to the protective surface film removal at higher velocities. The lowest corrosion current densities of 1.26 × 10‑4 A cm‑2 was obtained at the flow velocity of 7 m s‑1. Because of the higher particle kinetic energies at higher flow velocity, the mass loss rate of the QSn6 alloy increased as the flow velocity increased. The mass loss rate with cathodic protection was lower than that without cathodic protection under the same conditions. Also, the lowest mass loss rate of 0.7 g m‑2 · h‑1 was acquired at the flow velocity of 7 m s‑1 with cathodic protection. However, the increase rate of corrosion rate and mass loss were decreased with increasing the flow velocity. Through observation the SEM morphologies of the worn surfaces, the main wear mechanism was ploughing with/without cathodic protection. The removal rates of the QSn6 alloy increased as the flow velocity increased in both pure erosion and erosion-corrosion, whereas the erosion and corrosion intensified each other. At the flow velocity of 7 m s‑1, the synergy rate (ΔW) exceeded by 5 times the erosion rate (Wwear). Through establishment and observation the erosion-corrosion mechanism map, the erosion-corrosion was the dominant regime in the study due to the contribution of erosion on the mass loss rate exceeded the corrosion contribution. The QSn6 alloy with cathodic protection is feasible as propellers, there are higher security at lower flow velocity, such as the flow velocity of 7 m s‑1 in the paper.

  1. Group support system and explanatory feedback: An experimental study of mitigating halo effect

    Directory of Open Access Journals (Sweden)

    Intiyas Utami

    2015-12-01

    Full Text Available Comprehensive assessment potentially leads to halo effect that will affect accuracy of auditors decision-making process. Biased initial audit decision will potentially influence final audit decision. It is there-fore necessary to mitigate halo effect that is the consequence of auditors good impression on clients initial condition. This re-search aims to empirically show that halo effect can be mitigated by explanatory feedback and Group Support System (GSS. The researchers experimentally mani-pulate explanatory feedback and GSS using online web-site. The subjects are stu-dents who have already taken auditing courses. The results show that: 1 explanato-ry feedback can mitigate halo effect so that audit decision will be more accurate 2 GSS can also mitigate halo effect 3 explanatory feedback and GSS are the best me-thods to mitigate halo effect.

  2. Implementation of Polyurea Applications for Wastewater System Corrosion-Mitigation Projects: Final Report on Project F15-AR04

    Science.gov (United States)

    2017-07-24

    coating technology lacks a field repair method that Directorates of Public Works (DPWs) can use for damaged locations. It is not cost effective for DPWs...sanitary sewer pipe infiltration and inflow at wastewater treatment plants by avoiding operation and maintenance costs . Such a cost -saving benefit ...methods prescribed by Office of Management and Budget (OMB) Circular No. A-94, Guidelines and Discount Rates for Benefit - Cost Analysis of Federal

  3. Effects of partial crystallinity and quenched-in defects on corrosion of ...

    Indian Academy of Sciences (India)

    Unknown

    Rapid solidification by planar flow casting has been found to have introduced deficiencies, viz. ... alloy. In order to investigate the effects of these deficiencies on the corrosion of rapidly ... Partial crystallinity (Dutta et al 1995; Savalia et al 1996),.

  4. Detection and mitigation of aging effects of nuclear power plant components

    International Nuclear Information System (INIS)

    Pachner, J.

    1988-09-01

    This paper describes the general principles of the methods for timely detection and mitigation of aging effects. These methods include condition monitoring, failure trending, system reliability monitoring, predictive maintenance and scheduled maintenance. In addition, developments of existing detection and mitigation methods needed to improve the capability for effective managing of nuclear power plant aging are discussed

  5. Experimental and computational approaches to evaluate the environmental mitigation effect in narrow spaces by noble metal chemical addition (NMCA)

    International Nuclear Information System (INIS)

    Shimizu, Ryosuke; Ota, Nobuyuki; Nagase, Makoto; Aizawa, Motohiro; Ishida, Kazushige; Wada, Yoichi

    2014-01-01

    The environmental mitigation effect of NMCA in a narrow space was evaluated by experimental and computational approaches. In the experiment at 8 MPa and 553K, T-tube whose branched line had a narrow space was prepared, and the Zr electrodes were set in the branched line at certain intervals, which were 1, 3, 5, 7, 9, 11, 15 and 29 cm from the opening section of the branched line. Electrochemical corrosion potential (ECP) at the tip of the branched narrow space varied in response to the water chemistry in the main line which was at right angle with the branched line. Computational fluid dynamics (CFD) analysis reproduced the experimental results. It was also confirmed by CFD analysis that the ingress of water from the main line into the narrow space was accelerated by cavity flow and thermal convection. By CFD analysis in a thermal sleeve of actual plant condition, which had a narrow space, the concentration of dissolved oxygen at a tip of the thermal sleeve reached at 250 ppb within 300 sec, which was the same concentration of the main line. Noble metal deposition on the surface of the thermal sleeve was evaluated by mass transfer model. Noble metal deposition was the largest near the opening section of the branched line, and gradually decreased toward the tip section. In light of the consumption of dissolved oxygen in the branched line, noble metal deposition in the thermal sleeve was sufficient to reduce the ECP. It was expected that NMCA could mitigate the corrosion environment in the thermal sleeve. (author)

  6. Effect of niobium element on the electrochemical corrosion behavior of depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanping, E-mail: wuyanping-2@126.com; Wu, Quanwen; Zhu, Shengfa, E-mail: zhushf-306@163.com; Pu, Zhen; Zhang, Yanzhi; Wang, Qinguo; Lang, Dingmu; Zhang, Yuping

    2016-09-15

    Depleted uranium (DU) has many military and civilian uses. However, its high chemical reactivity limits its application. The effect of Nb content on corrosion behavior of DU is evaluated by scanning Kelvin probe and electrochemical corrosion measurements. The Volta potential value of DU and U-2.5 wt% Nb is about the same level, the Volta potential value of U-5.7 wt% Nb has a rise of 370mV{sub SHE} in comparison with DU. The polarization current of U-5.7 wt% Nb alloy is about an order of magnitude of that of DU. The Nb{sub 2}O{sub 5} is the protective layer for the U-Nb alloys. The negative potential of Nb-depleted α phase is the main reason of the poor corrosion resistance of DU and U-2.5 wt% Nb alloy. - Highlights: • New method (scanning Kelvin probe) was used to study the corrosion property. • Three types of corrosion morphologies were found after potentiodynamic polarization. • The effect of impurity elements on corrosion property was mentioned. • The corrosion mechanism of DU and U-Nb alloys was discussed.

  7. The effect of organic matter associated with the corrosion products on the corrosion of mild steel in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Wagh, A.B.

    The corrosion of mild steel immersed at various depths (0-100 m) from three stations of the Arabian Sea was investigated. The corrosion of mild steel decreased with increasing immersion depth. Significant positive relationships were observed between...

  8. Olive Oil effectively mitigates ovariectomy-induced osteoporosis in rats

    Directory of Open Access Journals (Sweden)

    Saleh Hanan A

    2011-02-01

    Full Text Available Abstract Background Osteoporosis, a reduction in bone mineral density, represents the most common metabolic bone disease. Postmenopausal women are particularly susceptible to osteoporosis when their production of estrogen declines. For these women, fracture is a leading cause of morbidity and mortality. This study was conducted to evaluate the protective effects of olive oil supplementation against osteoporosis in ovariectomized (OVX rats. Methods We studied adult female Wistar rats aged 12-14 months, divided into three groups: sham-operated control (SHAM, ovariectomized (OVX, and ovariectomized rats supplemented with extravirgin olive oil (Olive-OVX orally for 12 weeks; 4 weeks before ovariectomy and 8 weeks after. At the end of the experiment, blood samples were collected. Plasma levels of calcium, phosphorus, alkaline phosphatase (ALP, malondialdehyde (MDA, and nitrates were assayed. Specimens from both the tibia and the liver were processed for light microscopic examination. Histomorphometric analysis of the tibia was also performed. Results The OVX-rats showed a significant decrease in plasma calcium levels, and a significant increase in plasma ALP, MDA, and nitrates levels. These changes were attenuated by olive oil supplementation in the Olive-OVX rats. Light microscopic examination of the tibia of the OVX rats revealed a significant decrease in the cortical bone thickness (CBT and the trabecular bone thickness (TBT. In addition, there was a significant increase in the osteoclast number denoting bone resorption. In the Olive-OVX rats these parameters were markedly improved as compared to the OVX group. Examination of the liver specimens revealed mononuclear cellular infiltration in the portal areas in the OVX-rats which was not detected in the Olive-OVX rats. Conclusions Olive oil effectively mitigated ovariectomy-induced osteoporosis in rats, and is a promising candidate for the treatment of postmenopausal osteoporosis.

  9. Environmental effects on corrosion in the Tuff repository

    International Nuclear Information System (INIS)

    Beavers, J.A.; Thompson, N.G.

    1990-02-01

    Cortest Columbus is investigating the long-term performance of container materials used for high-level waste packages as part of the information needed by the Nuclear Regulatory Commission to assess the Department of Energy's application to construct a geologic repository for high-level radioactive waste. The scope of work consists of employing short-term techniques, to examine a wide range of possible failure modes. Long-term tests are being used to verify and further examine specific failure modes identified as important by the short-term studies. The original focus of the program was on the salt repository but the emphasis was shifted to the Tuff repository. This report summarizes the results of a literature survey performed under Task 1 of the program. The survey focuses on the influence of environmental variables on the corrosion behavior of candidate container materials for the Tuff repository. Environmental variables considered include: radiation, thermal and microbial effects. 80 refs., 44 figs., 44 tabs

  10. Effect of Sensitization on Corrosion-Fatigue Cracking in Al 5083 Alloy

    Science.gov (United States)

    2015-01-21

    immediately ahead of the fatigue precrack in 0.001 and 0.01% NaCl solutions are transgranular ductile void coalescences. This observation suggests the 9...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6355--15-9581 Effect of Sensitization on Corrosion- Fatigue Cracking in Al 5083 Alloy...area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Effect of Sensitization on Corrosion- Fatigue Cracking in Al 5083

  11. The precious metal effect in high temperature corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Wit, J.H.W. de (Lab. for Materials Science, Delft Univ. of Technology (Netherlands)); Manen, P.A. van (Lab. for Materials Science, Delft Univ. of Technology (Netherlands))

    1994-01-01

    Additions of platinum and to a smaller extent rhodium, to aluminium oxide forming alloys are known to improve the high temperature corrosion resistance of the alloys. This effect is known as the ''precious metal effect''. The expensive Pt-additions are used because of the increased lifetime of turbine-vanes especially in marine environments. Only a limited number of coating systems is commercially available, as JML-1, LDC-2 and RT22. Normally Pt is deposited electrochemically or by a fused salt method. After deposition the high or low activity pack-cementation-process is applied to obtain a PtNiAl-coating. In this paper the effect of platinum on the oxidation mechanism is discussed by comparing the oxidation mechanism of [beta]-NiAl and Pt20Ni30Al50. This composition agrees with the average composition of a platinum modified aluminide coating. The alloys were oxidized at temperatures from 1000 to 1200 C. The growth of the oxide scale on the NiAl alloy proceeds both by aluminium and by oxygen diffusion through the scale resulting in growth within the scale. On Pt20Ni30Al50 the growth of the scale is limited to the oxide/gas interface due to a predominant aluminium transport through the scale. The morphology of the oxide scales did not show large differences. However, the extensive void formation at the [beta]-NiAl/oxide interface was not observed on the Pt20Ni30Al50 samples. The absence of voids at the interface and the reduction of growth stresses, as a result of the outward growth of the scale, are the two likely reasons for the improved oxide scale adherence and can thus be considered, to be two elements of the ''precious metal effect''. (orig.)

  12. Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution

    International Nuclear Information System (INIS)

    Wang Liping; Zhang Junyan; Gao Yan; Xue Qunji; Hu Litian; Xu Tao

    2006-01-01

    Effects of grain size reduction on the electrochemical corrosion behavior of nanocrystalline Ni produced by pulse electrodeposition were characterized using potentiodynamic polarization testing and electrochemical impedance spectroscopy; X-ray photoelectron spectroscopy were used to confirm the electrochemical measurements and the suggested mechanisms. The corrosion resistance of Ni coatings in alkaline solutions considerably increased as the grain size decreased from microcrystalline to nanocrystalline. The higher corrosion resistance of NC Ni may be due to the more rapid formation of continuous Ni(OH) 2 passive films compared with coarse-grained Ni coatings

  13. Evaluation of microstructural effects on the corrosion behaviour of AZ91D magnesium alloy

    DEFF Research Database (Denmark)

    Ambat, Rajan; Aung, Naing Naing; Zhou, W.

    2000-01-01

    The effect of microconstituents on the corrosion and electrochemical behaviour of AZ91D alloy prepared by die-casting and ingot casting route has been investigated in 3.5% NaCl solution at pH 7.25. The experimental techniques used include constant immersion technique, in-situ corrosion monitoring....... The corrosion products for ingot consisted of Mg(OH)(2) with small amounts beta phase, magnesium-aluminum oxide and MgH2 while for die-cast, the product showed a highly amorphous structure. (C) 2000 Elsevier Science Ltd. All rights reserved....

  14. Effects of organic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.

    2010-01-01

    mu m of the contaminated surface was required to reach corrosion rates less than 1 mm/year in salt spray condition. Among the three organic acids examined, acetic acid is the best choice. Oxalic acid can be an alternative while citric acid is not suitable for cleaning AZ31 sheet, because......Organic acids were used to clean AZ31 magnesium alloy sheet and the effect of the cleaning processes on the surface condition and corrosion performance of the alloy was investigated. Organic acid cleanings reduced the surface impurities and enhanced the corrosion resistance. Removal of at least 4...

  15. The effect of ion implantation on the resistance of 316L stainless steel to crevice corrosion

    International Nuclear Information System (INIS)

    Bombara, G.; Cavallini, M.

    1983-01-01

    The results of an investigation of the influence of aluminium, titanium and scandium implantation on the electrochemical and chemical crevice corrosion behaviour of 316L stainless steel are presented and discussed. Ion implantation, in addition to improving markedly the protective quality of the passive film at the free corrosion potential, greatly increases the resistance of 316L stainless steel to crevice corrosion in both neutral NaCl and acidic FeCl 3 solutions. A moderate decrease in pitting resistance is possibly due to coverage effect of implanted species on the surface molybdenum constituent. (Auth.)

  16. Effects of nitrogen and nitrogen getters in lithium on the corrosion of type 316 stainless steel

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.; Selle, J.E.

    1979-01-01

    This paper presents preliminary results on the corrosion of type 316 stainless steel in nitrogen-contaminated lithium. Nitrogen is a principal interstitial impurity in lithium and has a significant detrimental effect on compatibility, while O, H, and C in lithium do not enhance corrosion of type 316 stainless steel. Because of this, there is a need to understand the corrosion mechanisms and kinetics associated with nitrogen-induced attack in lithium. Results from experiments with getters in nitrogen-contaminated lithium are also reported

  17. Effect of Nitrite Inhibitor on the Macrocell Corrosion Behavior of Reinforcing Steel

    Directory of Open Access Journals (Sweden)

    Zhonglu Cao

    2015-01-01

    Full Text Available The effect of nitrite ions on the macrocell corrosion behavior of reinforcing steel embedded in cement mortar was investigated by comparing and analyzing the macrocell corrosion current, macrocell polarization ratios, and slopes of anodic and cathodic steels. Based on the experimental results, the relationship between macrocell potential difference and macrocell current density was analyzed, and the mechanism of macrocell corrosion affected by nitrite ions was proposed. The results indicated that nitrite ions had significant impact on the macrocell polarization ratios of cathode and anode. The presence of nitrite could reduce the macrocell current by decreasing the macrocell potential difference and increasing the macrocell polarization resistance of the anode.

  18. Flow Accelerated Corrosion mitigation at EDF with BRT-CICEROTM. Feedback of version 3.2 and future trends

    International Nuclear Information System (INIS)

    Moutrille, Marie-Pierre; Trevin, Stephane; Qiu, Gonghao; Miller, Cecile; Mellin, Nicolas

    2012-09-01

    EDF has developed during these 15 last years software called BRT-CICERO TM for the surveillance of the secondary piping system of its Pressurized Water Reactors (PWRs). This software enables the operator to calculate the FAC wear rates taking into account all the influencing parameters such as: pipe isometrics, chromium content of the steel, chemical conditioning and operating parameters of the secondary circuit (temperature, pressure, etc.). This is a major tool for the operators to organize the maintenance and to plan the inspections. In the framework of the French pressure vessel law issued on March 15, 2000, the software BRT-CICERO TM has been recognized by the French authority for the FAC surveillance on the secondary pressure piping lines of the EDF 58 NPPs. It takes advantage of the experience feedback of the French fleet, of the R and D improvements (especially from the laboratory tests conducted on EDF's CIROCO loop) and is frequently updated. The software is based on specific calculation modules, which are: - thermodynamics module, - chemistry module, - void module, - geometric factor module to take into account the effect of singularities on hydraulics, - FAC kinetics module, - codes and standards module for minimum required thickness calculations. This architecture allows independent and complete validation of each model calculation and therefore the quality of software. This paper describes the simplified model and the calculation modules. The performances of BRT-CICERO TM version 3 are examined with a statistical analysis allowing estimating the accuracy of calculation for each components and position into the pipelines. A computational fluid dynamic study has been initiated to confirm the geometrical coefficients which allow to take into account the fittings. All these studies and many others brought EDF to propose evolutions both on the plan thermodynamics and chemical. These evolutions are discussed in this topic. (authors)

  19. Mechanical and environmental effects on stress corrosion cracking of low carbon pipeline steel in a soil solution

    International Nuclear Information System (INIS)

    Contreras, A.; Hernández, S.L.; Orozco-Cruz, R.; Galvan-Martínez, R.

    2012-01-01

    Highlights: ► Mechanical and environmental effects on SCC of X52 steel were investigated. ► Slow strain rate tests (SSRT) were performed in a soil solution (NS4). ► Different levels of polarization potentials were applied to mitigating SCC. ► SSRT results indicate that X52 pipeline steel was susceptible to SCC. ► SCC susceptibility increase as the yielding and ultimate tensile stress increase. -- Abstract: Mechanical and environmental effects on stress corrosion cracking (SCC) susceptibility of X52 pipeline steel were investigated using slow strain rate tests (SSRT) performed in a glass autoclave containing a soil solution at strain rate of 1 × 10 −6 in./s at room temperature. Polarization potentials of −100, −200 and −400 mV referred to open circuit potential (OCP) was applied in order to establish the effectiveness of cathodic protection in mitigating SCC of X52 pipeline steel. Electrochemical impedance spectroscopy (EIS) tests and scanning electron microscopy (SEM) observations were done in order to analyze the SCC process. SSRT results indicate that X52 pipeline steel was susceptible to SCC. Susceptibility to SCC increase as the yielding stress (YS) and ultimate tensile stress (UTS) increase. The EIS results showed that the highest corrosion of the steel sample was obtained when the highest cathodic over potential was applied. SEM observations of these specimens showed a brittle type of fracture with transgranular appearance. The failure and SCC of X52 steel in soil solution was explained by hydrogen mechanism.

  20. Effect of microstructure on corrosion behavior of Ag-30Cu-27Sn alloy in vitro media

    International Nuclear Information System (INIS)

    Salehisaki, Mehdi; Aryana, Maryam

    2014-01-01

    Highlights: • High cooling rates decrease the number of Ag intermetallic particles in Cu-rich phase. • Increasing cooling rate improves corrosion behavior of Ag-30Cu-27Sn dental alloy. • Cathode/anode ratio in Cu-rich phases determines the corrosion behavior of alloy. - Abstract: In the present work, three simple heat treatment cycles were used to study the effects of microstructure on electrochemical corrosion behavior of Ag-30Cu-27Sn dental alloy. The electrochemical impedance spectroscopy (EIS) measurements and potentiodynamic polarization tests were carried out to investigate the corrosion behavior of as-cast and heat treated samples in synthetic saliva solution. The presence of intermetallic compounds were studied by X-ray diffraction method (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray detector (EDAX). The microstructural observations and electrochemical corrosion results revealed that, increasing the cooling rate improves the corrosion behavior of under investigation samples. Improvement of the corrosion behavior is attributed to reducing the area of fine distributed Ag 3 Sn islands in the Cu-rich matrix which decrease the cathode/anode ratio of microgalvanic cells

  1. Effects of chitosan inhibitor on the electrochemical corrosion behavior of 2205 duplex stainless steel

    Science.gov (United States)

    Yang, Se-fei; Wen, Ying; Yi, Pan; Xiao, Kui; Dong, Chao-fang

    2017-11-01

    The effects of chitosan inhibitor on the corrosion behavior of 2205 duplex stainless steel were studied by electrochemical measurements, immersion tests, and stereology microscopy. The influences of immersion time, temperature, and chitosan concentration on the corrosion inhibition performance of chitosan were investigated. The optimum parameters of water-soluble chitosan on the corrosion inhibition performance of 2205 duplex stainless steel were also determined. The water-soluble chitosan showed excellent corrosion inhibition performance on the 2205 duplex stainless steel. Polarization curves demonstrated that chitosan acted as a mixed-type inhibitor. When the stainless steel specimen was immersed in the 0.2 g/L chitosan solution for 4 h, a dense and uniform adsorption film covered the sample surface and the inhibition efficiency (IE) reached its maximum value. Moreover, temperature was found to strongly influence the corrosion inhibition of chitosan; the inhibition efficiency gradually decreased with increasing temperature. The 2205 duplex stainless steel specimen immersed in 0.4 g/L water-soluble chitosan at 30°C displayed the best corrosion inhibition among the investigated specimens. Moreover, chitosan decreased the corrosion rate of the 2205 duplex stainless steel in an FeCl3 solution.

  2. Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates

    Science.gov (United States)

    Dur, Ender; Cora, Ömer Necati; Koç, Muammer

    2014-01-01

    Metallic bipolar plate (BPP) with high corrosion and low contact resistance, durability, strength, low cost, volume, and weight requirements is one of the critical parts of the PEMFC. This study is dedicated to understand the effect of the process sequence (manufacturing then coating vs. coating then manufacturing) on the corrosion resistance of coated metallic bipolar plates. To this goal, three different PVD coatings (titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN)), with three thicknesses, (0.1, 0.5, 1 μm) were applied on BPPs made of 316L stainless steel alloy before and after two types of manufacturing (i.e., stamping or hydroforming). Corrosion test results indicated that ZrN coating exhibited the best corrosion protection while the performance of TiN coating was the lowest among the tested coatings and thicknesses. For most of the cases tested, in which coating was applied before manufacturing, occurrence of corrosion was found to be more profound than the case where coating was applied after manufacturing. Increasing the coating thickness was found to improve the corrosion resistance. It was also revealed that hydroformed BPPs performed slightly better than stamped BPPs in terms of the corrosion behavior.

  3. The composition effect on the long-term corrosion of high-level waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, P. [Pacific Northwest National Laboratory, Richland, Washington (United States)

    1997-07-01

    Waste glass can be optimized for long-term corrosion behavior if the key parameters that control the rate of corrosion are identified, measured, and modeled as functions of glass composition. Second-order polynomial models have been used to optimize glass with respect to a set of requirements on glass properties, such as viscosity and outcomes of standard corrosion tests. Extensive databases exist for the 7-day Product Consistency Test and the 28-day Materials Characterization Center tests, which have been used for nuclear waste glasses in the United States. Models based on these tests are reviewed and discussed to demonstrate the compositional effects on the extent of corrosion under specified conditions. However, modeling the rate of corrosion is potentially more useful for predicting long-term behavior than modeling the extent of corrosion measured by standard tests. Based on an experimental study of two glasses, it is shown that the rate of corrosion can be characterized by simple functions with physically meaningful coefficients. (author)

  4. Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tsuyoshi, Nakajima; Mitsuhiro, Mori; Vinay, Gupta; Yoshimi, Ohzawa [Aichi Institute of Technology, Dept. of Applied Chemistry, Toyota-shi (Japan); Hiroyuki, Iwata [Aichi Institute of Technology, Technical Research Center, Toyata-shi (Japan)

    2002-12-01

    Effect of fluoride additives was investigated in organic solvents containing LiCF{sub 3}SO{sub 3} to prevent the corrosion of aluminum current collector for lithium ion batteries. LiClO{sub 4} was also examined for comparison. Among examined LiBF{sub 4}, LiPF{sub 6}, LiAsF{sub 6}, LiSbF{sub 6} and LiClO{sub 4}, LiBF{sub 4} was the best additive to suppress the corrosion of aluminum because its oxidation potential is close to that of CF{sub 3}SO{sub 3}{sup -} anion. Corrosion currents for aluminum in a complex fluoride- or LiClO{sub 4}-added solvents became smaller in the order, LiSbF{sub 6}>LiAsF{sub 6}>LiClO{sub 4}>LiPF{sub 6}>LiBF{sub 4}. Oxidation potential of ClO{sub 4}{sup -} is nearly the same as that of CF{sub 3}SO{sub 3}{sup -}. However, the corrosion currents were similar to or slightly larger than those observed in LiPF{sub 6}-added solvents. SEM images of electrochemically oxidized aluminum samples indicated that the level of corrosion well coincided with the observed corrosion currents. The corrosion mechanism of aluminum was also proposed. (authors)

  5. Quantitative assessment of the effect of corrosion product buildup on occupational exposure

    International Nuclear Information System (INIS)

    Divine, J.R.

    1982-10-01

    The program was developed to provide a method for predicting occupational exposures caused by the deposition of radioactive corrosion products outside the core of the primary system of an operating power reactor. This predictive capability will be useful in forecasting total occupational doses during maintenance, inspection, decontamination, waste treatment, and disposal. In developing a reliable predictive model, a better understanding of the parameters important to corrosion product film formation, corrosion product transport, and corrosion product film removal will be developed. This understanding can lead to new concepts in reactor design to minimize the buildup and transport of radioactive corrosion products or to improve methods of operation. To achieve this goal, three objectives were established to provide: (1) criteria for acceptable coolant sampling procedures and sampling equipment that will provide data which will be used in the model development; (2) a quantitative assessment of the effect of corrosion product deposits on occupational exposure; and (3) a model which describes the influence of flow, temperature, coolant chemistry, construction materials, radiation, and other operating parameters on the transport and buildup of corrosion products

  6. Effect of noble metals on the corrosion of AISI 316L stainless steel in nitric acid

    International Nuclear Information System (INIS)

    Robin, R.; Andreoletti, G.; Fauvet, P.; Terlain, A.

    2004-01-01

    In the spent fuel treatment, the solutions of fission products contain dissolution fines, in particular platinoids. These solutions are stored into AISI 316L stainless steel tanks, and the contact of noble metallic particles such as platinoids with austenitic stainless steels may induce a shift of the steel corrosion potential towards the trans-passive domain by galvanic coupling. In that case, the steel may be polarized up to a potential value above the range of passive domain, that induces an increase of the corrosion current. The galvanic corrosion of AISI 316L stainless steel in contact with different platinoids has been investigated by electrochemical and gravimetric techniques. Two types of tests were conducted in 1 mol/L nitric acid media at 80 deg C: (1) polarization curves and (2) immersion tests with either platinoid powders (Ru, Rh, Pd) or true insoluble dissolution fines (radioactive laboratory test). The results of the study have shown that even if galvanic coupling enhances the corrosion rate by about a factor 10 in these conditions, the corrosion behavior of AISI 316L remains low (a corrosion rate below 6 μm/year, few small intergranular indentations). No specific effect of irradiation and of elements contained in radioactive fines (other than Ru, Rh and Pd) was observed on corrosion behavior. A platinoids-ranking has also been established according to their coupling potential: Ru > Pd > Rh. (authors)

  7. Effect of nanograin-boundary networks generation on corrosion of carburized martensitic stainless steel.

    Science.gov (United States)

    Boonruang, Chatdanai; Thong-On, Atcharawadi; Kidkhunthod, Pinit

    2018-02-02

    Martensitic stainless steel parts used in carbonaceous atmosphere at high temperature are subject to corrosion which results in a large amount of lost energy and high repair and maintenance costs. This work therefore proposes a model for surface development and corrosion mechanism as a solution to reduce corrosion costs. The morphology, phase, and corrosion behavior of steel are investigated using GIXRD, XANES, and EIS. The results show formation of nanograin-boundary networks in the protective layer of martensitic stainless steel. This Cr 2 O 3 -Cr 7 C 3 nanograin mixture on the FeCr 2 O 4 layer causes ion transport which is the main reason for the corrosion reaction during carburizing of the steel. The results reveal the rate determining steps in the corrosion mechanism during carburizing of steel. These steps are the diffusion of uncharged active gases in the stagnant-gas layer over the steel surface followed by the conversion of C into C 4- and O into O 2- at the gas-oxide interface simultaneously with the migration of Cr 3+ from the metal-oxide interface to the gas-oxide interface. It is proposed that previous research on Al 2 O 3 coatings may be the solution to producing effective coatings that overcome the corrosion challenges discussed in this work.

  8. Effect of Heat treatment on Hardness and Corrosion Resistance of Super Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Roun; Kim, Young Sik [Andong National University, Andong (Korea, Republic of)

    2014-07-15

    In fossil-fuel-fired power plants, a variety of pollutants are produced from the combustion of conventional fuels such as coal, oil and gas. Major component of such pollution are ash and corrosive chemicals, which also destroy pumps and piping; by causing erosion/corrosion, pitting, and wear. In order to over come such damage, materials with high hardness and high corrosion resistance are needed. In this work, we melted super-cast-iron with excellent corrosion resistance and high hardness. To elucidate the effect of heat treatment, microstructural analysis, hardness measurement, and corrosion tests were performed. Test results revealed that the super-cast-iron had several tens better corrosion resistance than 316 L stainless steel, and it also had a high surface hardness (> HRC45). High hardness, in spite of its low carbon content (0.74%C), could resulted from a hardening heat treatment to precipitate sufficient Cr{sub 7}C{sub 3} and Cr{sub 2}3C{sub 6}. Also, it was concluded that the excellent corrosion resistance of the super-cast-iron was due to the increase of the relative chromium content by minimizing the carbon content, and by the enhancement of passive film by the addition of Cr, Mo, Cu, and W.

  9. The effect of Electro Discharge Machining (EDM) on the corrosion resistance of dental alloys.

    Science.gov (United States)

    Ntasi, Argyro; Mueller, Wolf Dieter; Eliades, George; Zinelis, Spiros

    2010-12-01

    The aim of the present study was to evaluate the effect of Electro Discharge Machining (EDM) on the corrosion resistance of two types of dental alloys used for fabrication of implant retained superstructures. Two groups of specimens were prepared from a Co-Cr (Okta-C) and a grade II cpTi (Biotan) alloys respectively. Half of the specimens were subjected to EDM with Cu electrodes and the rest were conventionally finished (CF). The corrosion resistance of the alloys was evaluated by anodic polarization in Ringer's solution. Morphological and elemental alterations before and after corrosion testing were studied by SEM/EDX. Six regions were analyzed on each surface before and after corrosion testing and the results were statistically analyzed by paired t-test (a=0.05). EDM demonstrated inferior corrosion resistance compared to CF surfaces, the latter being passive in a wider range of potential demonstrating higher polarization resistance and lower I(corr) values. Morphological alterations were found before and after corrosion testing for both materials tested after SEM analysis. EDX showed a significant decrease in Mo, Cr, Co, Cu (Co-Cr) and Ti, Cu (cpTi) after electrochemical testing plus an increase in C. According to the results of this study the EDM procedure decreases the corrosion resistance of both the alloys tested, increasing thus the risk of possible adverse biological reactions. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Corrosion potential monitoring in nuclear power environments

    International Nuclear Information System (INIS)

    Molander, A.

    2004-01-01

    Full text of publication follows: corrosion monitoring. The corrosion potential is usually an important parameter or even the prime parameter for many types of corrosion processes. One typical example of the strong influence of the corrosion potential on corrosion performance is stress corrosion of sensitized stainless steel in pure high temperature water corresponding to boiling water conditions. The use of in-plant monitoring to follow the effect of hydrogen addition to mitigate stress corrosion in boiling water reactors is now a well-established technique. However, different relations between the corrosion potential of stainless steel and the oxidant concentration have been published and only recently an improved understanding of the electrochemical reactions and other conditions that determine the corrosion potential in BWR systems have been reached. This improved knowledge will be reviewed in this paper. Electrochemical measurements has also been performed in PWR systems and mainly the feedwater system on the secondary side of PWRs. The measurements performed so far have shown that electrochemical measurements are a very sensitive tool to detect and follow oxygen transients in the feedwater system. Also determinations of the minimum hydrazine dosage to the feedwater have been performed. However, PWR secondary side monitoring has not yet been utilized to the same level as BWR hydrogen water chemistry surveillance. The future potential of corrosion potential monitoring will be discussed. Electrochemical measurements are also performed in other reactor systems and in other types of reactors. Experiences will be briefly reviewed. In a BWR on hydrogen water chemistry and in the PWR secondary system the corrosion potentials show a large variation between different system parts. To postulate the material behavior at different locations the local chemical and electrochemical conditions must be known. Thus, modeling of chemical and electrochemical conditions along

  11. Measuring the effectiveness of SDN mitigations against cyber attacks

    NARCIS (Netherlands)

    Koning, R.; de Graaff, B.; Meijer, R.; de Laat, C.; Grosso, P.

    2017-01-01

    To address increasing problems caused by cyber attacks, we leverage Software Defined networks and Network Function Virtualisation governed by a SARNET-agent to enable autonomous response and attack mitigation. A Secure Autonomous Response Network (SARNET) uses a control loop to constantly assess the

  12. Effect of high temperature filtration on out-core corrosion product activity

    International Nuclear Information System (INIS)

    Horvath, G.L.; Bogancs, J.

    1983-01-01

    Investigation of the effect of high temperature filtration on corrosion product transport and out-core corrosion product activity has been carried out for VVER-440 plants. In the physico-chemical model applied particulate and dissolved corrosion products were taken into account. We supposed 100% effectivity for the particulate filter. It was found that about 0,5% 160 t/h/ of the main flow would result in an approx.50% reduction of the out-core corrosion product activity. Investigation of the details of the physico-chemical model in Nuclear Power Plant Paks showed a particle deposition rate measured during power transients fairly agreeing with other measurements and data used in the calculations. (author)

  13. The Effect of Fly Ash on the Corrosion Behaviour of Galvanised Steel Rebarsin Concrete

    Science.gov (United States)

    Tittarelli, Francesca; Mobili, Alessandra; Bellezze, Tiziano

    2017-08-01

    The effect of fly ash on the corrosion behaviour of galvanised steel rebars in cracked concrete specimens exposed to wet-dry cycles in a chloride solution has been investigated. The obtained results show that the use of fly ash, replacing either cement or aggregate, always improves the corrosion behaviour of galvanised steel reinforcements. In particular, the addition of fly ash, even in the presence of concrete cracks, decreases the corrosion rate monitored in very porous concretes, as those with w/c = 0.80, to values comparable with those obtained in good quality concretes, as those with w/c = 0.45. Therefore, fly ash cancels the negative effect, at least from the corrosion point of view, of a great porosity of the cement matrix.

  14. Effect of hydrogen on the corrosion behavior of the Mg–xZn alloys

    Directory of Open Access Journals (Sweden)

    Yingwei Song

    2014-09-01

    Full Text Available Hydrogen evolution reaction is inevitable during the corrosion of Mg alloys. The effect of hydrogen on the corrosion behavior of the Mg–2Zn and Mg–5Zn alloys is investigated by charging hydrogen treatment. The surface morphologies of the samples after charging hydrogen were observed using a scanning electron microscopy (SEM and the corrosion resistance was evaluated by polarization curves. It is found that there are oxide films formed on the surface of the charged hydrogen samples. The low hydrogen evolution rate is helpful to improve the corrosion resistance of Mg alloys, while the high hydrogen evolution rate can increases the defects in the films and further deteriorates their protection ability. Also, the charging hydrogen effect is greatly associated with the microstructure of Mg substrate.

  15. Effect of soil compositions on the electrochemical corrosion behavior of carbon steel in simulated soil solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.M. [College of Materials Science and Engineering, Chongqing University (China); Luo, S.X. [Department of Chemistry, Zunyi Normal College, Zunyi (China); Sun, C. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China); Wu, Y.H.

    2010-04-15

    In this study, effect of cations, Ca{sup 2+}, Mg{sup 2+}, K{sup +}, and anions, SO{sub 4}{sup 2-}, HCO{sub 3}{sup -}, NO{sub 3}{sup -} on electrochemical corrosion behavior of carbon steel in simulated soil solution was investigated through potentiodynamic polarization curves and electrochemical impedance spectroscopy. The results indicate that the Ca{sup 2+}and Mg{sup 2+} can decrease the corrosion current density of carbon steel in simulated soil solution, and K{sup +}, SO{sub 4}{sup 2-}, HCO{sub 3}{sup -}, and NO{sub 3}{sup -} can increase the corrosion density. All the above ions in the simulated soil solution can decrease its resistivity, but they have different effect on the charge transfer resistivity. This finding can be useful in evaluating the corrosivity of certain soil through chemical analysis, and provide data for construction engineers. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Effect of H2O2 on the corrosion behavior of 304L stainless steel

    International Nuclear Information System (INIS)

    Song, Taek Hoh; Kim, In Sub; Noh, Sung Kee

    1995-01-01

    In connection with the safe storage of high level nuclear waste, effect of H 2 O 2 on the corrosion behavior of 304L stainless steel was examined. Open circuit potentials and polarization curves were measured with and without H 2 O 2 . The experimental results show that H 2 O 2 increased corrosion potential and decreased pitting potential. The passive range, therefore, decreased as H 2 O 2 concentration increased, indicating that pitting resistance was decreased by the existence of H 2 O 2 in the electrolyte. These effects of H 2 O 2 on corrosion of 304L stainless steel are considered to be similar to those of γ-irradiation. To compare the effects of H 2 O 2 with those of O 2 , cathodic and anodic polarization curves were made in three types of electrolyte such as aerated, deaerated, and stirred electrolyte. The experimental results show that the effects of H 2 O 2 on the corrosion behavior were very similar to those of O 2 such as increase of corrosion potential, decrease of pitting resistance, and increase of repassivation potential. In acid and alkaline media, the corrosion potential shifts by H 2 O 2 were restricted by the large current density of proton reduction and by the le Chatelier's principle respectively. 13 figs., 1 tabs., 17 refs. (Author)

  17. Development of evaluation method on flow-induced vibration and corrosion of components in two-phase flow by coupled analysis. 1. Evaluation of effects of flow-induced vibration on structural material integrity

    International Nuclear Information System (INIS)

    Naitoh, Masanori; Uchida, Shunsuke; Koshizuka, Seiichi; Ninokata, Hisashi; Anahara, Naoki; Dosaki, Koji; Katono, Kenichi; Akiyama, Minoru; Saitoh, Hiroaki

    2007-01-01

    Problems in major components and structural materials in nuclear power plants have often been caused by flow induced vibration, corrosion and their overlapping effects. In order to establish safe and reliable plant operation, it is necessary to predict future problems for structural materials based on combined analyses of flow dynamics and corrosion and to mitigate them before they become serious issues for plant operation. An innovative method for flow induced vibration of structures in two phase flow by combined analyses of three dimensional flow dynamics and structures is to be introduced. (author)

  18. Inhibition of Aluminium Corrosion in Hydrochloric Acid Using Nizoral and the Effect of Iodide Ion Addition

    OpenAIRE

    I. B. Obot; N. O. Obi-Egbedi

    2010-01-01

    The effect of nizoral (NZR) on the corrosion inhibition of aluminium alloy AA 1060 in 2 M HCl solution was investigated using the mylius thermometric technique. Results of the study revealed that nizoral acts as corrosion inhibitor for aluminium in the acidic medium. In general, at constant acid concentration, the inhibition efficiency increases with increase in the inhibitor concentration. The addition of KI to the inhibitor enhanced the inhibition efficiency to a considerable extent. The ad...

  19. Radiometric investigation of effect of decontamination agents on corrosion behavior of structural materials for nuclear power engineering

    International Nuclear Information System (INIS)

    Silber, R.; Ecksteinova, A.

    1987-01-01

    The tracer technique is used in monitoring corrosion behaviour of high-alloy steels used as structural materials in nuclear power engineering. Radioisotopes 59 Fe, 51 Cr, 58 Co and 60 Co produced by neutron irradiation of steel are mainly used for labelling steel components. The actual corrosion test proceeds in a facility whose description is given. The facility allows automatic sampling of corrosion medium fractions in preset intervals. The fractions are evaluated using a multi-channel analyzer with a Ge(Li) detector. The method can be applied in, e.g., monitoring extraction corrosion, the effect of decontamination agents on the corrosion of alloy steels and the effect of heat treatment of steels of their corrosion resistance in a model corrosion environment. (Z.M.). 2 fig., 1 tab., 5 refs

  20. Investigations into the corrosion resistance of copper aluminium alloys. Effect of phosphorus as corrosion resistant third alloying element in the ternary system CuAl20P1

    International Nuclear Information System (INIS)

    Allwardt, A.

    1997-01-01

    The effect of phosphorus on the corrosion resistance of Al-bronzes is studied in detail in this work. A literature review showed that there are a lot of things known about the microstructure and the mechanical properties of Al-bronzes. In spite of their corrosion resistance the corrosion properties and the structure of the protective oxide films of Al-bronzes were seldom a matter of interest. Systematic studies of the influence of different alloying elements on the oxide film and the corrosion properties are rare. Therefore, it is not possible to predict the corrosion resistance of Al-bronzes, made by alloying particular elements. The high corrosion resistance of the new alloy CuAl 20 P 1 was the reason to investigate the influence of phosphorus on the corrosion properties of Al-bronzes in more detail. A systematic study of the microstructure and the corrosion properties of Cu, CuP x , CuAl 20 and CuAl 20 P x offers an insight into the effect of aluminium and phosphorus on the formation of the oxide film on Al-bronzes. It was found that there exists a critical amount of 1 at.-% of phosphorus. Above and below this amount the corrosion resistance becomes worse. This behaviour could be explained by XPS-and electrochemical measurements. Although there are still some questions about the influence of phosphorus on the corrosion resistance of Al-bronzes, this work has produced some important results, which in the future may be helpful to develop new high corrosion resistant Al-bronzes more efficiently: - on clean surface Al-bronze, the oxidation of Al and Cu takes place simultaneously, - Al promotes the formation of Cu 2 O but impedes the formation of Cu(II)-oxide/-hydride in neutral solutions, - P impedes the formation of Cu 2 O and as a consequence promotes the formation of aluminium oxide. This results in a higher amount of Al in the oxide film on the surface of the alloy, which leads to a better corrosion resistance. (author) figs., tabs., 106 refs

  1. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    Energy Technology Data Exchange (ETDEWEB)

    Aghion, E., E-mail: egyon@bgu.ac.il; Perez, Y.

    2014-10-15

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments.

  2. Physico-chemical analyses and corrosion effect of produced water ...

    African Journals Online (AJOL)

    Physico-chemical characteristics of the composite produced water sample used for the study has a higher concentration compared with DPR standard for discharge of produced formation water into surface environment. It was assumed that the corrosion of the coupons was due to presence of high chemical matters in the ...

  3. effect of municipal liquid waste on corrosion susceptibility

    African Journals Online (AJOL)

    DR. AMINU

    categories: complete immersion in seawater or exposure to an environment charged with salts particles or solutions, both categories are subjected to many variables and pollutants (Kareem, 2006). Also the corrosion behaviour of galvanized steel in industrial effluents discharged into the environment, was found to corrode ...

  4. Effect of acid corrosion on crack propagation of concrete beams

    Indian Academy of Sciences (India)

    HU SHAOWEI

    2018-03-10

    Mar 10, 2018 ... sive strength, low price, convenient construction modelling and workability, as well as corrosion ... These test results showed that the elastic modulus and fracture parameters of concrete structures reduced ... due to nonlinear characteristics of concrete materials, the classical linear elastic fracture mechanics.

  5. Effect of piperidones on hydrogen permeation and corrosion ...

    Indian Academy of Sciences (India)

    corrosion inhibition. 3.5 Hydrogen permeation measurements. Hydrogen can enter into the metal during various industrial operations like melting, heat treatment, or pickling and electrochemical processes such as cathodic cleaning and electrolytic machining. Of the various sources of entry of hydrogen into the metal,.

  6. Inhibition Effect of Deanol on Mild Steel Corrosion in Dilute ...

    African Journals Online (AJOL)

    The influence of deanol on the corrosion behaviour of mild steel in dilute sulphuric acid with sodium chloride addition was studied by means of mass-loss, potentiodynamic polarization, electrode potential monitoring, scanning electron microscopy and statistical analysis. Results show that deanol performed excellently with ...

  7. The effect of flow and chemical corrosion in reverse osmosis over desalinated water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jae [Chunnam National Univ., Gwangju (Korea, Republic of); Pak, Byung Gu [Doosan Heavy Industry Co., Tongyoung (Korea, Republic of)

    2015-12-15

    Desalinated water produced by a reverse osmosis (RO) filtering method forms about 22% of total production of desalinated water in the world. However, the RO environment is very corrosive due to the presence of various chemicals for water treatment and the flow of sand particles leading to corrosion. Recently, there has been much effort to substitute cheaper and more corrosion resistant stainless steels for copper based alloys as a valve material in RO. Nevertheless, the effects of chemicals and particles on the corrosion of stainless steels have rarely been studied. Erosion phenomenon was detected under the condition with the flow rate of more than 8ms{sup -1} in spite of the absence of sand particles. In seawater containing sand particles, the erosion in stainless steels was accelerated further.

  8. Effect of Zr on the Corrosion Properties of Mg-Li-Al Alloy

    International Nuclear Information System (INIS)

    Kim, Soon Ho; Choi, Sang Hyun; Kim, In Bae; Kim, Kyung Hyun

    1994-01-01

    Effect of Zr on the electrochemical corrosion characteristics of Mg-Li-Al alloy has been investigated by means of potentiodynamic polarization study. The electrochemical behaviors were evaluated in 0.03% NaCl solution and the solution buffered with KH 2 PO 5 · NaOH at room temperature. It was found that the addition of very small quantity of Zr (0.03wt%) in Mg-Li-Al alloy increased corrosion rates and amount of corrosion products and decreased the pitting resistance of the alloy. From the results it was concluded that Zr which is added to increase the strength of Mg-Li-Al alloy is harmful to corrosion properties of the alloy

  9. Radiolysis effects on fuel corrosion within a failed nuclear waste container

    International Nuclear Information System (INIS)

    Sunder, S.; Shoeshmith, D.W.; Christensen, H.C.

    2003-01-01

    The concept of geological disposal of used nuclear fuel in corrosion resistant containers is being investigated in several countries. In the Canadian Nuclear Fuel Waste Management Program (CNFWMP), it is assumed that the used fuel will be disposed of in copper containers. Since the predicted lifetimes of these containers are very long (>106 years), only those containers emplaced with an undetected defect will fail within the period for which radionuclide release from the fuel must be considered. Early failure could lead to the entry of water into the container and subsequent release of radionuclides. The release rate of radionuclides from the used fuel will depend upon its dissolution rate. The primary mechanism for release will be the corrosion of the fuel driven by radiolytically-produced oxidants. The studies carried out to determine the effects of water radiolysis on fuel corrosion are reviewed, and some of the procedures used to predict corrosion rates of used fuel in failed nuclear waste containers described. (author)

  10. Reliability assessment of underground pipelines under the combined effect of active corrosion and residual stress

    International Nuclear Information System (INIS)

    Amirat, A.; Mohamed-Chateauneuf, A.; Chaoui, K.

    2006-01-01

    Lifetime management of underground pipelines is mandatory for safe hydrocarbon transmission and distribution systems. Reliability analysis is recognized as a powerful decision-making tool for risk-based design and maintenance. Both the residual stresses generated during the manufacturing process and in-service corrosion reduce the ability to resist internal and external loading. In this study, the residual stress distribution in large diameter pipes has been characterized experimentally in order to be coupled with the corrosion model. During the pipe lifetime, residual stress relaxation occurs due to the loss of pipe thickness as material layers are consumed by corrosion. The reliability-based assessment of residual stress effects is applied to underground pipelines under a roadway, with and without active corrosion. It has been found that the residual stress greatly increases the failure probability, especially in the early stage of the pipe lifetime

  11. A review on the effect of welding on the corrosion of magnesium alloys

    Science.gov (United States)

    Mohamed, N. S.; Alias, J.

    2017-10-01

    Welding is an important joining technique for lightweight alloys with their increasing applications in aerospace, aircraft, automotive, electronics and other industries. The applications of lightweight alloys particularly magnesium alloys increased rapidly due to their beneficial properties such as low density, high strength-to-mass ratio, good dimensional stability, electromagnetic shielding and good recyclability. The effect of welding on the corrosion of magnesium alloys are reviewed in this paper, which closely related to the developed microstructure by the welding process. The paper focuses particularly on friction stir and laser welding. The basic principles of friction stir and laser welding are discussed, to present the likelihood of defects which significantly affect the corrosion of magnesium alloy. The finding in corrosion demonstrated the morphology of corrosion occurrence on each welded region, and observation on the potential and current values are also included.

  12. Effect of red mud addition on the corrosion parameters of reinforced concrete evaluated by electrochemical methods

    Directory of Open Access Journals (Sweden)

    D.V. Ribeiro

    Full Text Available Red mud, the main waste generated in aluminum and alumina production from bauxite ore by the Bayer process, is considered "hazardous" due to its high pH. The high pH also provides greater protection of rebars, which is reflected in the low corrosion potential and high electrical resistivity (filler effect of concrete. The corrosion potential was monitored by electrochemical measurements and the electrical resistivity was evaluated using sensors embedded in concrete test specimens. The results showed that the addition of red mud is beneficial to concrete, reducing its corrosion potential and increasing its electrical resistivity. Red mud proved to be a promising additive for concrete to inhibit the corrosion process.

  13. Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels

    Directory of Open Access Journals (Sweden)

    Kai Wang Chan

    2014-07-01

    Full Text Available Duplex stainless steels (DSSs with austenitic and ferritic phases have been increasingly used for many industrial applications due to their good mechanical properties and corrosion resistance in acidic, caustic and marine environments. However, DSSs are susceptible to intergranular, pitting and stress corrosion in corrosive environments due to the formation of secondary phases. Such phases are induced in DSSs during the fabrication, improper heat treatment, welding process and prolonged exposure to high temperatures during their service lives. These include the precipitation of sigma and chi phases at 700–900 °C and spinodal decomposition of ferritic grains into Cr-rich and Cr-poor phases at 350–550 °C, respectively. This article gives the state-of the-art review on the microstructural evolution of secondary phase formation and their effects on the corrosion behavior of DSSs.

  14. Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels.

    Science.gov (United States)

    Chan, Kai Wang; Tjong, Sie Chin

    2014-07-22

    Duplex stainless steels (DSSs) with austenitic and ferritic phases have been increasingly used for many industrial applications due to their good mechanical properties and corrosion resistance in acidic, caustic and marine environments. However, DSSs are susceptible to intergranular, pitting and stress corrosion in corrosive environments due to the formation of secondary phases. Such phases are induced in DSSs during the fabrication, improper heat treatment, welding process and prolonged exposure to high temperatures during their service lives. These include the precipitation of sigma and chi phases at 700-900 °C and spinodal decomposition of ferritic grains into Cr-rich and Cr-poor phases at 350-550 °C, respectively. This article gives the state-of the-art review on the microstructural evolution of secondary phase formation and their effects on the corrosion behavior of DSSs.

  15. Effect of load deflection on corrosion behavior of NiTi wire.

    Science.gov (United States)

    Liu, I H; Lee, T M; Chang, C Y; Liu, C K

    2007-06-01

    For dental orthodontic applications, NiTi wires are used under bending conditions in the oral environment for a long period. The purpose of this study was to investigate the effect of bending stress on the corrosion of NiTi wires using potentiodynamic and potentiostatic tests in artificial saliva. The results indicated that bending stress induces a higher corrosion rate of NiTi wires in passive regions. It is suggested that the passive oxide film of specimens would be damaged under bending conditions. Auger electron spectroscopic analysis showed a lower thickness of passive films on stressed NiTi wires compared with unstressed specimens in the passive region. By scanning electron microscopy, localized corrosion was observed on stressed Sentalloy specimens after a potentiodynamic test at pH 2. In conclusion, this study indicated that bending stress changed the corrosion properties and surface characteristics of NiTi wires in a simulated intra-oral environment.

  16. Effect of forging process on microstructure, mechanical and corrosion properties of biodegradable Mg-1Ca alloy

    International Nuclear Information System (INIS)

    Harandi, Shervin Eslami; Hasbullah Idris, Mohd; Jafari, Hassan

    2011-01-01

    Research highlights: → Forging temperature demonstrates more pronounced effect compared to forging speed. → Precipitation of Mg 2 Ca phase at grain boundaries accelerates corrosion rate. → Forging process doesn't provide the corrosion resistance required for bone healing. -- Abstract: The performance of Mg-1Ca alloy, a biodegradable metallic material, may be improved by hot working in order that it may be of use in bone implant applications. In this study, Mg-1Ca cast alloy was preheated to different temperatures before undergoing forging process with various forging speeds. Macro- and microstructure of the samples were examined by stereo and scanning electron microscopes (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), respectively. To determine the mechanical properties of the alloy, hardness value and plastic deformation ability of the samples were measured. To investigate the corrosion behaviour of the alloy, immersion and electrochemical tests were performed on the samples in simulated body fluid and the corrosion products were characterized by SEM/EDS. The results showed that increasing forging temperature decreased grain size led to improved hardness value and plastic deformation ability of the alloy, whereas no significant effect was observed by changing forging speed. Moreover, forging at higher temperatures led to an increase in the amount of Mg 2 Ca phase at grain boundaries resulted in higher corrosion rates. It can be concluded that although forging process improved the mechanical properties of the alloy, it does not satisfy the corrosion resistance criteria required for bone healing.

  17. Effect of compression deformation on the microstructure and corrosion behavior of magnesium alloys

    International Nuclear Information System (INIS)

    Snir, Y.; Ben-Hamu, G.; Eliezer, D.; Abramov, E.

    2012-01-01

    Highlights: ► Metallurgical features (mainly twinning, dislocation accumulation, and dynamic recrystallization). ► The thermo-mechanical state (amount of deformation and its temperature). ► The corrosion behavior of wrought Mg-alloys. This correlation was emphasized by the mechanical behavior measured through micro-hardness. ► Microstructural changes during deformation, and potentio-dynamic corrosion tests were correlated. - Abstract: The effect of deformation on the corrosion and mechanical behavior of wrought Mg-alloys AZ31, AM50, and ZK60 was investigated. The materials’ behavior was correlated to the changes in metallurgical features, during compression, into different amounts of deformation at three temperatures: 250° C, 280° C, and 350° C. The metallurgical features were monitored by optical microscope, scanning electron microscope (SEM), and transmission electron microscopy (TEM). It was observed that there is a very strong correlation between three features: 1. metallurgical features (mainly twinning, dislocation accumulation, and dynamic recrystallization); 2. The thermo-mechanical state (amount of deformation and its temperature); and 3. The corrosion behavior of wrought Mg-alloys. This correlation was emphasized by the mechanical behavior measured through micro-hardness. Microstructural changes during deformation, and potentio-dynamic corrosion tests were correlated. These results show that studies on the effect of thermo-mechanical state (related to the microstructure) on the corrosion behavior of wrought Mg-alloys are essential in order to optimize their applicability to plastic forming processes.

  18. Effect of mixed alloy combinations on fretting corrosion performance of spinal screw and rod implants.

    Science.gov (United States)

    Mali, Sachin A; Singh, Vaneet; Gilbert, Jeremy L

    2017-07-01

    Spinal implants are made from a variety of materials to meet the unique mechanical demands of each application. However, the medical device community has raised concern about mixing dissimilar metals in an implant because of fear of inducing corrosion. There is a lack of systematic studies on the effects of mixing metals on performance of spinal implants, especially in fretting corrosion conditions. Hence, the goal was to determine whether mixing stainless steel (SS316L), titanium alloy (Ti6Al4V) and cobalt chromium (CoCrMo) alloy components in a spinal implant leads to any increased risk of corrosion degradation. Spinal constructs consisting of single assembly screw-connector-rod components were tested using a novel short-term cyclic fretting corrosion test method. A total of 17 alloy component combinations (comprised of SS316L, Ti6Al4V-anodized and CoCrMo alloy for rod, screws and connectors) were tested under three anatomic orientations. Spinal constructs having all SS316L were most susceptible to fretting-initiated crevice corrosion attack and showed higher average fretting currents (∼25 - 30 µA), whereas constructs containing all Ti6Al4V components were less susceptible to fretting corrosion with average fretting currents in the range of 1 - 6 µA. Mixed groups showed evidence of fretting corrosion but they were not as severe as all SS316L group. SEM results showed evidence of severe corrosion attack in constructs having SS316L components. There also did not appear to be any galvanic effects of combining alloys together. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1169-1177, 2017. © 2016 Wiley Periodicals, Inc.

  19. Effect of temperature, of oxygen content and the downstream effect on corrosion rate of structural materials in liquid sodium

    International Nuclear Information System (INIS)

    Ilincev, G.

    1988-01-01

    The effects were experimentally tested of temperature and of oxygen content on the corrosion rate of structural materials in liquid sodium and on reducing the corrosion rate down the sodium stream. The results of the experiments are shown in graphs and tables and are discussed in detail. The duration of all tests was standard 1,000 hours. The test parameters were set such as to determine the effect of temperature on corrosion of a quantity of various materials in sodium with a low oxygen content (1.2 to 2 ppm) at temperatures of 500 to 800 degC and in sodium with a high oxygen content (345 ppm) at temperatures of 500 to 700 degC. More experiments served the determination of the effect of a different oxygen content varying between 1.2 and 2 ppm at a constant temperature of 600 degC. The materials being tested included main structural materials used for fast reactor construction and materials allowing to establish the effect of main alloying elements on their corrosion in liquid sodium of different temperatures and purity grades. The relationships showing the effects of temperature and oxygen content in sodium on the rate of corrosion of various structural materials in hot parts of the installation and on the reduction in the rate of corrosion downstream due to sodium saturation with corrosion products were constructed using the experimental results. (Z.M.). 15 figs., 2 tabs., 7 refs

  20. Effect Mo Addition on Corrosion Property and Sulfide Stress Cracking Susceptibility of High Strength Low Alloy Steels

    International Nuclear Information System (INIS)

    Lee, Woo Yong; Koh, Seong Ung; Kim, Kyoo Young

    2005-01-01

    The purpose of this work is to understand the effect of Mo addition on SSC susceptibility of high strength low alloy steels in terms of microstructure and corrosion property. Materials used in this study are high strength low alloy (HSLA) steels with carbon content of 0.04wt% and Mo content varying from 0.1 to 0.3wt%. The corrosion property of steels was evaluated by immersion test in NACE-TM01-77 solution A and by analyzing the growth behavior of surface corrosion products. SSC resistance of steels was evaluated using constant load test. Electrochemical test was performed to investigate initial corrosion rate. Addition of Mo increased corrosion rate of steels by enhancing the porosity of surface corrosion products. however, corrosion rate was not directly related to SSC susceptibility of steels

  1. The effect of corrosion on stained glass windows

    Directory of Open Access Journals (Sweden)

    Laissner, Johanna

    1996-06-01

    Full Text Available Stained glass windows belong to the most important cultural heritage of Europe. Within the last decades a disastrous deterioration took place. The wonderful stained glass windows and their glass paintings as pieces of art are acutely menaced by environmental corrosive influences. This corrosion process is a very complex reaction which is not only influenced by temperature and humidity changes but also by gaseous pollutants like sulfur dioxide, nitrogen oxides or ozone, by dust and air, microorganisms as well as synergetic interactions. Strongly affected by these environmental attacks are medieval stained glasses due to their chemical composition. They have a low content in silica and high contents of modifier ions (e.g. potassium and calcium. The corrosion phenomena can range from predominantly pitting on the surface to the formation of thick corrosion crusts which are turning the panel opaque and thus reducing strongly the transparency of the windows. In order to set up a conservation and restoration concept, it is necessary to know about the environmental conditions to which the stained glass windows are exposed. For this purpose very corrosion sensitive model glasses (so called glass sensors were developed which have a similar chemical composition as historic stained glasses. They exhibit the same corrosion reactions but react much faster, and are now widely used to estimate corrosive stresses on stained glass windows to give basic information about the corrosive impacts which work on the historic glasses. In this paper principle corrosion mechanisms of stained glass windows and their enhancing factors are discussed. For the evaluation of the environmental impact, the application of glass sensors is demonstrated.

    Las vidrieras coloreadas pertenecen al legado cultural más importante de Europa. En las últimas décadas se ha producido en ellas un desastroso deterioro. Las maravillosas vidrieras coloreadas y sus policromías est

  2. Evaluation and mitigation of the degradation by corrosion in the components of the service water system of a nuclear power plant; Evaluacion y mitigacion de la degradacion por corrosion en los componentes del sistema de agua de servicio de una planta nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Salaices A, E.; Salaices, M.; Ovando, R. [IIE, Av. Reforma 113 Col. Palmira, 62490 Cuernavaca, Morelos (Mexico)]. e-mail: sal@iie.org.mx

    2005-07-01

    One of the main problems that face the nuclear power stations is the degradation by corrosion in the service water systems. The corrosion causes lost substantial in energy generation and a high cost in maintenance and repairs. In this work, the results of a study of the degradation by the MIC mechanisms (microorganisms influenced corrosion), incrustations in heat exchangers and erosion for solid particles in the components of a typical service water system of a nuclear plant are presented. Diverse mitigation options are analyzed for these mechanisms. In the analysis, it was used the CHECWORKS-CWA code to carry out the evaluation of the degradation so much as well as the mitigation of the caused damage. The results are presented in susceptibility indexes and degradation rates component-by-component. A significant decrement could be observed in the susceptibility to MIC when changing the operation conditions of stagnated flow to continuous flow. With respect to the erosion by solid particles, it was found a significant reduction of the damage it when adding filters to the system. Finally, in the case of the heat exchangers, it is shown that one of the more viable options to diminish incrustations and existent calcium deposits it is the reduction of the pH of the service water. (Author)

  3. Corrosion resistance of Ni-Cr-Mo alloys. Chemical composition and metallurgical condition's effects

    International Nuclear Information System (INIS)

    Zadorozne, N.S.; Rebak, Raul B.

    2009-01-01

    Ni-Cr-Mo alloys offer an outstanding corrosion resistance in a wide variety of highly-corrosive environments. This versatility is due to the excellent performance of nickel in hot alkaline solutions and the beneficial effect of chromium and molybdenum in oxidizing and reducing conditions, respectively. Alloy C-22 (22 % Cr-13 % Mo-3% W) is a well known versatile member of this family. Due to its excellent corrosion resistance in a wide variety of environments, Alloy C-22 has been selected for the fabrication of the corrosion-resistant outer shell of the high-level nuclear waste container. The increasing demand of the industry for corrosion resistant alloys with particular properties of corrosion and mechanical resistance has led to the development of new alloys. Alloy C-22HS (Ni-21 % Cr-17 % Mo) is a new high-strength corrosion resistant material recently developed and introduced into the market. This alloy provides a corrosion resistance comparable with that of other C-type alloys, and it can also be age hardened to effectively double its yield strength. HASTELLOY HYBRID-BC1 (Ni-22 % Mo-15 % Cr) is a new development intended for filling the gap between Ni-Mo and Ni-Cr-Mo alloys. This novel alloy is able to withstand HCl and H 2 SO 4 , even in the presence of dissolved oxygen and other oxidizing species. Its resistance to chloride-induced pitting corrosion, crevice corrosion and stress corrosion cracking is also remarkable. Thermal aging of Ni-Cr-Mo alloys leads to microstructure changes depending on the temperature range and exposure time at temperature. A Long Range Ordering (LRO) reaction can occur in the range of 350 C degrees to 600 C degrees, producing an ordered Ni 2 (Cr,Mo) phase. This ordering reaction does not seem to affect the corrosion resistance and produces only a slight loss in ductility. LRO transformation is homogeneous and has proven to be useful to fabricate the age-hard enable Alloy C22-HS. Tetrahedral Close Packed (TCP) phases, like μ, σ and

  4. Effect of acidity upon attrition-corrosion of human dental enamel.

    Science.gov (United States)

    Wu, Yun-Qi; Arsecularatne, Joseph A; Hoffman, Mark

    2015-04-01

    Attrition-corrosion is a synthesized human enamel wear process combined mechanical effects (attrition) with corrosion. With the rising consumption of acidic food and beverages, attrition-corrosion is becoming increasingly common. Yet, research is limited and the underlying mechanism remains unclear. In this study, in vitro wear loss of human enamel was investigated and the attrition-corrosion process and wear mechanism were elucidated by the analysis of the wear scar and its subsurface using focused ion beam (FIB) sectioning and scanning electron microscopy (SEM). Human enamel flat-surface samples were prepared with enamel cusps as the wear antagonists. Reciprocating wear testing was undertaken under load of 5N at the speed of 66 cycle/min for 2250 cycles with lubricants including citric acid (at pH 3.2 and 5.5), acetic acid (at pH 3.2 and 5.5) and distilled water. All lubricants were used at 37°C. Similar human enamel flat-surface samples were also exposed to the same solutions as a control group. The substance loss of enamel during wear can be linked to the corrosion potential of a lubricant used. Using a lubricant with very low corrosion potential (such as distilled water), the wear mechanism was dominated by delamination with high wear loss. Conversely, the wear mechanism changed to shaving of the softened layer with less material loss in an environment with medium corrosion potential such as citric acid at pH 3.2 and 5.5 and acetic acid at pH 5.5. However, a highly corrosive environment (e.g., acetic acid at pH 3.2) caused the greatest loss of substance during wear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effects of Copper and Sulfur Additions on Corrosion Resistance and Machinability of Austenitic Stainless Steel

    International Nuclear Information System (INIS)

    Kim, Soon Tae; Park, Yong Soo; Kim, Hyung Joon

    1999-01-01

    Effects of Cu and S on corrosion resistance and machinability of austenitic stainless steel were investigated using immersion test, metallographic examination, Auger surface analysis and tool life test with single point turning tools. Corrosion resistance of the experimental Cu containing alloys in 18.4N H 2 SO 4 at 80 ∼ 120 .deg. C and 3N HCl at 40 .deg. C decreased as S content increased. However, one of the experimental alloys (Fe- 18%Cr- 21%Ni-3.2%Mo- 1.6%W- 0.2%N- 3.1%Cu- 0.091%S) showed general and pitting corrosion resistance equivalent to that of CW12MW in highly concentrated SO 4 2- environment. The alloy also showed pitting corrosion resistance superior to super stainless steel such as 654SMO in Cl - environment. The reasons why the increase in S content deteriorated the corrosion resistance were first, that the number and size of (Mn, Cr)S sulfides having corrosion resistance lower than that of matrix increased, leading to pitting corrosion and second, that rapid dissolution of the matrix around the pits was caused by adsorbed S. However, the alloy containing 3.1 %Cu and 0.091 % S maintained high general and pitting corrosion resistance due to heavily enriched noble Cu through selective dissolution of active Fe and Ni. The tool life for 3.1 % Cu + 0.091 % S added alloy was about four times that of 0.06%Cu + 0.005% S added alloy due to high shear strain rate generated by Cu addition giving easy cross slip of dislocation, lubrication of ductile (Mn, Cr)S sulfides adhering to tool crater surface and low cutting force resulting from thin continuous sulfides formed in chips during machining

  6. Synergistic Effect on Corrosion Inhibition Efficiency of Ginger Affinale Extract in Controlling Corrosion of Mild Steel in Acid Medium

    International Nuclear Information System (INIS)

    Subramanian, Ananth Kumar; Arumugam, Sankar; Mallaiya, Kumaravel; Subramaniam, Rameshkumar

    2013-01-01

    The corrosion inhibition nature of Ginger affinale extract for the corrosion of mild steel in 0.5N H 2 SO 4 was investigated using weight loss, electrochemical impedance and potentiodynamic polarization methods. The results revealed that Ginger affinale extract acts as a good corrosion inhibitor in 0.5N H 2 SO 4 medium. The inhibition efficiency increased with an increase in inhibitor concentration. The inhibition could be attributed to the adsorption of the inhibitor on the steel surface

  7. Characterizing Corrosion Effects of Weak Organic Acids Using a Modified Bono Test

    Science.gov (United States)

    Zhou, Yuqin; Turbini, Laura J.; Ramjattan, Deepchand; Christian, Bev; Pritzker, Mark

    2013-12-01

    To meet environmental requirements and achieve benefits of cost-effective manufacturing, no-clean fluxes (NCFs) or low-solids fluxes have become popular in present electronic manufacturing processes. Weak organic acids (WOAs) as the activation ingredients in NCFs play an important role, especially in the current lead-free and halogen-free soldering technology era. However, no standard or uniform method exists to characterize the corrosion effects of WOAs on actual metallic circuits of printed wiring boards (PWBs). Hence, the development of an effective quantitative test method for evaluating the corrosion effects of WOAs on the PWB's metallic circuits is imperative. In this paper, the modified Bono test, which was developed to quantitatively examine the corrosion properties of flux residues, is used to characterize the corrosion effects of five WOAs (i.e., abietic acid, succinic acid, glutaric acid, adipic acid, and malic acid) on PWB metallic circuits. Experiments were performed under three temperature/humidity conditions (85°C/85% RH, 60°C/93% RH, and 40°C/93% RH) using two WOA solution concentrations. The different corrosion effects among the various WOAs were best reflected in the testing results at 40°C and 60°C. Optical microscopy was used to observe the morphology of the corroded copper tracks, and scanning electron microscopy (SEM) energy-dispersive x-ray (EDX) characterization was performed to determine the dendrite composition.

  8. The effects of bacteria on the corrosion behavior of carbon steel in compacted bentonite

    International Nuclear Information System (INIS)

    Nishimura, T.; Wada, R.; Nishimoto, H.; Fujiwara, K.; Taniguchi, N.; Honda, A.

    1999-10-01

    As a part of evaluation of corrosion life of carbon steel overpack, the experimental studies have been performed on the effects of bacteria on the corrosion behavior of carbon steel in compacted bentonite using iron bacteria (IB) as a representative oxidizing bacteria and sulphur reducing bacteria (SRB) as a representative reducing bacteria. The results of the experimental studies showed that; The activity of SRB was low in compacted bentonite in spite of applying suitable condition for the action of bacteria such as temperature and nutritious solution. Although the corrosion behavior of carbon steel was affected by the existence of bacteria in simple solution, the corrosion rates of carbon steel in compacted bentonite were several μ m/year -10 μ m/year irrespective of coexistence of bacteria and that the corrosion behavior was not affected by the existence of bacteria. According to these results, it was concluded that the bacteria would not affect the corrosion behavior of carbon steel overpack under repository condition. (author)

  9. Shadow corrosion phenomenon. An out-of-pile study on electrochemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Nadine

    2017-04-28

    The focus of the present thesis was the study of the enhanced corrosion phenomenon named ''Shadow Corrosion''. Within the context of researching based on the corrosion mechanism as well as the influencing parameters and driving forces, which cause or even intensify the corrosion, a variety of electrochemical characterization and surface analysis techniques were used. The first part of this thesis gives a short introduction with the definition of the term Shadow Corrosion and of the specific type called ''Enhanced Spacer Shadow Corrosion'' (ESSC). This is followed by a description of the involved materials being Zircaloy and Inconel 718. Chapter 2 introduces the background knowledge including fundamentals about environ-mental conditions under which Shadow Corrosion occurs as well as the oxidation behavior of Zircaloy and Inconel 718. Furthermore, the state of the art about the Shadow Corrosion mechanism is presented and a description of the influencing effects on the enhanced corrosion phenomenon, like galvanic corrosion, water radiolysis, and photo-effect, is given. Further information and parameters on the part of AREVA GmbH concerning water impurities and a used coating layer on Inconel 718 are listed, which are of interest for the issue concerning the phenomenon Shadow Corrosion. The last part of this chapter contains the experimental conditions and parameters for the laboratory experiments with focus on water chemistry, specimen geometry, and UV-light exposure for photoexcitation and water radiolysis. Three different working hypotheses of this thesis are described in chapter 3. One hypothesis regarding the Shadow Corrosion Phenomenon is based on a galvanic corrosion mechanism between Zircaloy and Inconel 718. In addition, it is supposed that the galvanic corrosion could be influenced by the deposition of silver on Zircaloy and Inconel 718 in the form of an increased galvanic current. A further assumption is that the

  10. Effect of Heat Treatment on Corrosion Behaviors of Mg-5Y-1.5Nd Alloys

    Directory of Open Access Journals (Sweden)

    Xiumin Ma

    2016-01-01

    Full Text Available Corrosion behavior of Mg-5Y-1.5Nd alloy was investigated after heat treatment. The microstructure and precipitation were studied by scanning electron microscope (SEM and energy dispersive spectrometer (EDS. The weight loss rates of different samples were arranged as T6-24 h>T6-6 h>T6-14 h>as-cast>T4. The open circuit potential (OCP showed that T4 sample had a more positive potential than that of other samples. The potentiodynamic polarization curves showed that the T6-24 h sample had the highest corrosion current density of 245.362 μA·cm−2, whereas the T4 sample had the lowest at 52.164 μA·cm−2. The EIS results confirmed that the heat treatment reduced the corrosion resistance for Mg-5Y-1.5Nd alloy, because the precipitations acted as the cathode of electrochemical reactions to accelerate the corrosion process. The corrosion rates of different samples were mainly determined by the amount and distribution of the precipitations. The precipitations played dual roles that depended on the amount and distribution. The presence of the phase in the alloys could deteriorate the corrosion performance as it could act as an effective galvanic cathode. Otherwise, a fine and homogeneous phase appeared to be a better anticorrosion barrier.

  11. Shadow corrosion phenomenon. An out-of-pile study on electrochemical effects

    International Nuclear Information System (INIS)

    Weber, Nadine

    2017-01-01

    The focus of the present thesis was the study of the enhanced corrosion phenomenon named ''Shadow Corrosion''. Within the context of researching based on the corrosion mechanism as well as the influencing parameters and driving forces, which cause or even intensify the corrosion, a variety of electrochemical characterization and surface analysis techniques were used. The first part of this thesis gives a short introduction with the definition of the term Shadow Corrosion and of the specific type called ''Enhanced Spacer Shadow Corrosion'' (ESSC). This is followed by a description of the involved materials being Zircaloy and Inconel 718. Chapter 2 introduces the background knowledge including fundamentals about environ-mental conditions under which Shadow Corrosion occurs as well as the oxidation behavior of Zircaloy and Inconel 718. Furthermore, the state of the art about the Shadow Corrosion mechanism is presented and a description of the influencing effects on the enhanced corrosion phenomenon, like galvanic corrosion, water radiolysis, and photo-effect, is given. Further information and parameters on the part of AREVA GmbH concerning water impurities and a used coating layer on Inconel 718 are listed, which are of interest for the issue concerning the phenomenon Shadow Corrosion. The last part of this chapter contains the experimental conditions and parameters for the laboratory experiments with focus on water chemistry, specimen geometry, and UV-light exposure for photoexcitation and water radiolysis. Three different working hypotheses of this thesis are described in chapter 3. One hypothesis regarding the Shadow Corrosion Phenomenon is based on a galvanic corrosion mechanism between Zircaloy and Inconel 718. In addition, it is supposed that the galvanic corrosion could be influenced by the deposition of silver on Zircaloy and Inconel 718 in the form of an increased galvanic current. A further assumption is that the galvanic current could be decreased by a Cr

  12. The effect of Ti(CN/TiNb(CN coating on erosion–corrosion resistance

    Directory of Open Access Journals (Sweden)

    William Aperador Chaparro

    2012-05-01

    Full Text Available The goal of this work was to study electrochemical behaviour in corrosion-erosion conditions for Ti(CN/TiNb(CN multilayer coatings having 1, 50, 100, 150 and 200 bilayer periods on AISI 4140 steel substrates by using a multi-target magnetron reactive sputtering device, with an r.f. source (13.56 MHz, two cylindrical magnetron cathodes and two stoichiometric TiC and Nb targets. The multi-layers were evaluated by comparing them to corrosion, erosion and erosion corrosion for a 30º impact angle in a solution of 0.5 M NaCl and silica, analysing the effect of impact angle and the number of bilayers on these coatings’ corrosion resistance. The electrochemical characterisation was performed using electrochemical impedance spectroscopy for analysing corrosion surface; surface morphology was characterised by using a high-resolution scanning electron microscope (SEM. The results showed a de-creased corrosion rate for multilayer systems tested at 30°.

  13. Lithuanian Quarry Aggregates Concrete Effects of Alkaline Corrosion Tests

    Directory of Open Access Journals (Sweden)

    Aurimas Rutkauskas

    2016-02-01

    Full Text Available Aggregate alkaline corrosion of cement in concrete is going to respond in sodium and potassium hydroxide (lye with active SiO2 found in some aggregates. During this reaction, the concrete has resulted in significant internal stresses which cause deformation of the concrete, cracking and disintegration. The reaction is slow and concrete signs of decomposition appear only after a few months or years. The study used two different aggregates quarries. Studies show that Lithuania gravel contaminated with reactive particles having amorphous silicon dioxide reacting with cement in sodium and potassium hydroxide and the resulting alkaline concrete corrosion. It was found that, according to AAR 2 large aggregates include Group II – potentially reactive because of their expansion after 14 days, higher than 0.1%.

  14. Effect of Solder Flux Residues on Corrosion of Electronics

    DEFF Research Database (Denmark)

    Hansen, Kirsten Stentoft; Jellesen, Morten Stendahl; Møller, Per

    2009-01-01

    Flux from ‘No Clean’ solder processes can cause reliability problems in the field due to aggressive residues, which may be electrical conducting or corrosive in humid environments. The solder temperature during a wave solder process is of great importance to the amount of residues left on a PCBA...... testing and use in the field, consequences and recommendations are given. Failures, caused by harsh[1] customer environments, are not covered in this paper....

  15. Astrakhan-Mangyshlak water main (pipeline): corrosion state of the inner surface, and methods for its corrosion protection. Part III. The effects of KW2353 inhibitor. Part IV. Microbiological corrosion

    International Nuclear Information System (INIS)

    Reformatskaya, I.I.; Ashcheulova, I.I.; Barinova, M.A.; Kostin, D.V.; Prutchenko, S.G.; Ivleva, G.A.; Taubaldiev, T.S.; Murinov, K.S.; Tastanov, K.Kh.

    2003-01-01

    The effect of the KW2353 corrosion inhibitor, applied on the Astrakhan-Mangyshlak water main (pipeline) since 1997, on the corrosion processes, occurring on the 17G1S steel surface, is considered. The properties of the surface sediments are also considered. The role of the microbiological processes in the corrosion behavior of the water main (pipeline) inner surface is studied. It is shown, that application of the polyphosphate-type inhibitors, including the KW2353 one, for the anticorrosive protection of the inner surface of the extended water main (pipelines) is inadmissible: at the temperature of ∼20 deg C this corrosion inhibitor facilitates the development of the local corrosion processes on the water main (pipeline) inner surface. At the temperature of ∼8 deg C the above inhibitor discontinues to effect the corrosive stability of the 17G1S steel. The optimal way of the anticorrosive protection of the steel equipment, contacting with the water media, is the increase in the oxygen content therein [ru

  16. Current state of knowledge in radiolysis effects on spent fuel corrosion

    International Nuclear Information System (INIS)

    Christensen, H.; Sunder, S.

    1998-09-01

    Literature data on the effect of water radiolysis products on spent fuel oxidation and dissolution have been reviewed. Effects of γ-radiolysis, α-radiolysis and dissolved O 2 or H 2 O 2 in unirradiated solutions have been discussed separately. Also the effect of carbonate in γ-irradiated solutions and radiolysis effects on leaching of spent fuels have been reviewed. In addition a radiolysis model for calculation of corrosion rates of UO 2 , presented previously, has been discussed. The model has been shown to give a good agreement between calculated and measured corrosion rates in the case of γ-radiolysis and in unirradiated solutions of dissolved oxygen or hydrogen peroxide. The model has failed to predict the results of α-radiolysis. In a recent study it was shown that the model gave a good agreement with measured corrosion rates of spent fuel exposed in deionized water

  17. Current state of knowledge of water radiolysis effects on spent nuclear fuel corrosion

    International Nuclear Information System (INIS)

    Christensen, H.; Sunder, S.

    2000-07-01

    Literature data on the effect of water radiolysis products on spent-fuel oxidation and dissolution are reviewed. Effects of gamma radiolysis, alpha radiolysis, and dissolved O 2 or H 2 O 2 in unirradiated solutions are discussed separately. Also, the effect of carbonate in gamma-irradiated solutions and radiolysis effects on leaching of spent fuel are reviewed. In addition, a kinetic model for calculating the corrosion rates of UO 2 in solutions undergoing radiolysis is discussed. The model gives good agreement between calculated and measured corrosion rates in the case of gamma radiolysis and in unirradiated solutions containing dissolved oxygen or hydrogen peroxide. However, the model fails to predict the results of alpha radiolysis. In a recent study , it was shown that the model gave good agreement with measured corrosion rates of spent fuel exposed in deionized water. The applications of radiolysis studies for geologic disposal of used nuclear fuel are discussed. (author)

  18. Effect of H2O2 on the corrosion behavior of 304L stainless steel

    International Nuclear Information System (INIS)

    Song, Taek Ho

    1994-02-01

    In connection with the safe storage of high level nuclear waste, effect of H 2 O 2 on the corrosion behavior of 304L stainless steel was examined. Open circuit potentials and polarization curves were measured with and without H 2 O 2 . The experimental results show that H 2 O 2 increased corrosion potential and decreased pitting potential. The passive range, therefore, decreased as H 2 O 2 concentration increased, indicating that pitting resistance was decreased by the existence of H 2 O 2 in the electrolyte. These effects of H 2 O 2 on corrosion of 304L stainless steel are considered to be similar to those of γ-irradiation. To compare the effects of H 2 O 2 with those of O 2 , cathodic and anodic polarization curves were made in three types of electrolyte such as aerated, deaerated, and stirred electrolyte. The experimental results show that the effects of H 2 O 2 on the corrosion behavior were very similar to those of O 2 such as increase of corrosion potential, decrease of pitting resistance, and increase of repassivation potential. Further, H 2 O 2 played much greater role in controlling cathodic reaction rate in neutral water environment. In acid and alkaline media, potential shifts by H 2 O 2 were restricted by the large current density of proton reduction and by the le Chatelier's principle respectively

  19. Mitigation effectiveness for improving nesting success of greater sage-grouse influenced by energy development

    Science.gov (United States)

    Kirol, Christopher P.; Sutphin, Andrew L.; Bond, Laura S.; Fuller, Mark R.; Maechtle, Thomas L.

    2015-01-01

    Sagebrush Artemisia spp. habitats being developed for oil and gas reserves are inhabited by sagebrush obligate species — including the greater sage-grouse Centrocercus urophasianus (sage-grouse) that is currently being considered for protection under the U.S. Endangered Species Act. Numerous studies suggest increasing oil and gas development may exacerbate species extinction risks. Therefore, there is a great need for effective on-site mitigation to reduce impacts to co-occurring wildlife such as sage-grouse. Nesting success is a primary factor in avian productivity and declines in nesting success are also thought to be an important contributor to population declines in sage-grouse. From 2008 to 2011 we monitored 296 nests of radio-marked female sage-grouse in a natural gas (NG) field in the Powder River Basin, Wyoming, USA, and compared nest survival in mitigated and non-mitigated development areas and relatively unaltered areas to determine if specific mitigation practices were enhancing nest survival. Nest survival was highest in relatively unaltered habitats followed by mitigated, and then non-mitigated NG areas. Reservoirs used for holding NG discharge water had the greatest support as having a direct relationship to nest survival. Within a 5-km2 area surrounding a nest, the probability of nest failure increased by about 15% for every 1.5 km increase in reservoir water edge. Reducing reservoirs was a mitigation focus and sage-grouse nesting in mitigated areas were exposed to almost half of the amount of water edge compared to those in non-mitigated areas. Further, we found that an increase in sagebrush cover was positively related to nest survival. Consequently, mitigation efforts focused on reducing reservoir construction and reducing surface disturbance, especially when the surface disturbance results in sagebrush removal, are important to enhancing sage-grouse nesting success.

  20. Corrosion Behavior of SA508 Coupled with and without Magnetite in Chemical Cleaning Environments

    International Nuclear Information System (INIS)

    Son, Yeong-Ho; Jeon, Soon-Hyeok; Song, Geun Dong; Hur, Do Haeng; Lee, Jong-Hyeon

    2017-01-01

    To mitigate these problems, chemical cleaning process has been widely used. However, the chemical cleaning solution can affect the corrosion of SG structural materials as well as the magnetite dissolution. During the chemical cleaning process, the galvanic corrosion between SG materials and magnetite is also anticipated because they are in electrical connection. However, the corrosion measurement or monitoring for the materials has been performed without consideration of galvanic effect coupled with magnetite during the chemical cleaning process. In this study, the effect of temperature and EDTA concentration on the corrosion behavior of SA508 tubesheet material with and without magnetite was studied in chemical cleaning solutions. The galvanic corrosion behavior between SA508 and magnetite is predicted by using the mixed potential theory and its effect on the corrosion rate of SA508 is also discussed. By newly designed immersion test, it was confirmed that the extent of galvanic corrosion effect between SA508 and magnetite increased with increasing temperature and EDTA concentration. The galvanic corrosion behavior of SA508 coupled with magnetite in chemical cleaning environments was predicted by the mixed potential theory and verified by ZRA and LP technique. Galvanic coupling increased the corrosion rate of SA508 due to the shift in its potential to the anodic direction. Therefore, the galvanic corrosion effect between SA508 and magnetite should be considered when the corrosion measurement is performed during the chemical cleaning process in steam generators.

  1. Effect Of Age And Concrete Cover Thickness On Steel Reinforcement Corrosion At Splash Zone In Reinforced Concrete Hydraulic Structures

    Directory of Open Access Journals (Sweden)

    Nada M. Al- Galawi

    2015-08-01

    Full Text Available Corrosion of reinforcing steel bars in reinforced concrete is considered as one of the biggest problems that face countries overlooking to the Arabian Gulf including Iraq. The research aims to study the effect of the corrosion of steel bars in concrete structures that are exposed to wetting and drying via waves. Reinforced concrete samples were exposed to marine simulated environment for 90 days using prepared system for this purpose. At the end of exposure period polarization test was implemented to measure the actual corrosion rate in each sample. After that the corrosion process was accelerated using impressed current technique by applying a constant electric current DC to the reinforcing bars. Depending on the corrosion current in natural conditions which was measured in polarization test periods of exposing samples to accelerated corrosion current so as to maintain virtual exposure ages of 5 and 25 years of exposure to natural corrosion were calculated. The results showed a remarkable increase in the corrosion current of steel bars in samples that had lower concrete cover thickness. The increase in the cover thickness from 20mm to 40 and 65 mm had a significant effect on reducing the corrosion current at the age of 90 days to about 70 of its original value in both cases. At the virtual exposure age of 5 years the reduction percentage in the corrosion current resulted from increasing cover thickness from 20mm to 40 and 65 mm were 43 and 79 respectively.

  2. Injection of nano-particles in mitigating flow accelerated corrosion (FAC) damage in the secondary system of nuclear power plants (NPPs)

    International Nuclear Information System (INIS)

    Lim, Dong Seok; Ku, Hee Kwon; Cho, Jae Seon

    2015-01-01

    NPPs produces electric energy through phase transition of water. According to this, a piping, which is flow path, integrity is essential for safety functions. Erosion, FAC and fittings are corrosion failure mechanism by increasing service life. Especially, there are 10-kilometers of piping in secondary systems. It needs to estimate FAC and apply periodic management. Iron oxides produced by FAC cause power reduction and Loss Of Coolant Accident (LOCA) will be occurred through the continued piping wall thinning. In this study, corrosion rate of pipe materials with carbon steel(SA106.Gr.B) and low-alloy steel (SA335.P22) was evaluated for pipe configuration and dissolved oxygen concentration on 150 °C, pH 9.5∼10.0 and flow velocity of 5m/s. Temperature of 150°C is well known that causes high FAC rate and pH consider a NPPs in-service condition. Further corrosion rate test was performed to develop FAC reduction technology through Pt-nanoparticle injection. In this study, corrosion rate is evaluated by weight depletion method. The results of material impact assessment show that corrosion rate of carbon steel is more higher than that of low-alloy steel because of Cr content. And also, the results of pipe configuration test show that case with 90° elbow had maximum wall thinning than with 180° horizontal pipe. The dissolved oxygen concentration test shows that low oxygen condition, ≤5 ppb, had high corrosion rate compared to normal condition and the corrosion rate decreased 50% at Pt-nanoparticle injection test on maximum corrosion rate condition compared to maximum wall thinning condition without Pt-nanoparticle injection. In this study, samples provided by each test case had analyzed through SEM-EDX (Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy). Behavior evaluation for oxide film was performed and Electrochemical corrosion potential (ECP) was measured for electrochemistry evaluation. To apply Pt-nanoparticle injection technology on nuclear

  3. Corrosion mitigation of rare-earth metals containing magnesium EV31A-T6 alloy via chrome-free conversion coating treatment

    International Nuclear Information System (INIS)

    Hamdy, Abdel Salam; Butt, Darryl P.

    2013-01-01

    Highlights: • Protective stannate coatings have been proposed for rare-earth-EV31A-T6 magnesium alloy. • A simple coating method based on direct treatment of EV31A-T6 in a diluted stannate was found promising. • Surface modification prior to stannate coating offer no substantial advantage over directly coating. • Stannate conversion coatings decrease corrosion rates by a factor of 1/7. • The coating does not display any self-healing characteristics as shown in AZ91D. -- Abstract: Magnesium alloys posses unique mechanical and physical characteristics making them attractive light-weight materials for several strategic industries such as electronics, computer, automotive and aerospace. Due to their high chemical reactivity and poor corrosion resistance, the protection of magnesium alloys from corrosion is one of the hottest topics in materials science and engineering. Addition of rare-earth metals (RE) as alloying elements to magnesium alloys is one of the common approaches to improve their mechanical properties and, sometimes, the corrosion resistance. However, the potential difference between the RE metals phase formed in the Mg matrix enhances the galvanic corrosion at the interfaces where RE metals inert phase acts as cathode and the active Mg matrix acts as anode. This paper introduces a simple one-step clean conversion coating treatment for improving the protection of RE containing magnesium EV31A-T6 alloy in Cl − media

  4. Effect of Rice Straw Extract and Alkali Lignin on the Corrosion Inhibition of Carbon Steel

    International Nuclear Information System (INIS)

    Rabiahtul Zulkafli; Norinsan Kamil Othman; Irman Abdul Rahman; Azman Jalar

    2014-01-01

    A paddy residue based corrosion inhibitor was prepared by treating finely powdered rice straw with aqueous ethanol under acid catalyst (0.01 M H 2 SO 4 ). Commercial alkali lignin was obtained from Sigma-Aldrich. Prior to the corrosion test, the extraction yield and alkali lignin was characterized via FTIR to determine the functional group. The effect of paddy residue extract and commercial alkali lignin on the corrosion inhibition of carbon steel in 1 M HCl was investigated through the weight loss method, potentiodynamic polarization technique and scanning electron microscopy (SEM). The corrosion inhibition efficiency of the extract and alkali lignin at different immersion times (3 h, 24 h and 42 h) was evaluated. The results show that the paddy waste extract exhibited lesser weight loss of carbon steel in the acidic medium in comparison to the commercial alkali lignin, suggesting that the paddy residue extract is more effective than the commercial alkali lignin in terms of its corrosion inhibition properties. The results obtained proves that the extract from paddy residue could serve as an effective inhibitor for carbon steel in acidic mediums. (author)

  5. The size effect in corrosion greatly influences the predicted life span of concrete infrastructures.

    Science.gov (United States)

    Angst, Ueli M; Elsener, Bernhard

    2017-08-01

    Forecasting the life of concrete infrastructures in corrosive environments presents a long-standing and socially relevant challenge in science and engineering. Chloride-induced corrosion of reinforcing steel in concrete is the main cause for premature degradation of concrete infrastructures worldwide. Since the middle of the past century, this challenge has been tackled by using a conceptual approach relying on a threshold chloride concentration for corrosion initiation ( C crit ). All state-of-the-art models for forecasting chloride-induced steel corrosion in concrete are based on this concept. We present an experiment that shows that C crit depends strongly on the exposed steel surface area. The smaller the tested specimen is, the higher and the more variable C crit becomes. This size effect in the ability of reinforced concrete to withstand corrosion can be explained by the local conditions at the steel-concrete interface, which exhibit pronounced spatial variability. The size effect has major implications for the future use of the common concept of C crit . It questions the applicability of laboratory results to engineering structures and the reproducibility of typically small-scale laboratory testing. Finally, we show that the weakest link theory is suitable to transform C crit from small to large dimensions, which lays the basis for taking the size effect into account in the science and engineering of forecasting the durability of infrastructures.

  6. Corrosion/96 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Topics covered by this conference include: cathodic protection in natural waters; cleaning and repassivation of building HVAC systems; worldwide opportunities in flue gas desulfurization; advancements in materials technology for use in oil and gas service; fossil fuel combustion and conversion; technology of corrosion inhibitors; computers in corrosion control--modeling and information processing; recent experiences and advances of austenitic alloys; managing corrosion with plastics; corrosion measurement technology; corrosion inhibitors for concrete; refining industry; advances in corrosion control for rail and tank trailer equipment; CO 2 corrosion--mechanisms and control; microbiologically influenced corrosion; corrosion in nuclear systems; role of corrosion in boiler failures; effects of water reuse on monitoring and control technology in cooling water applications; methods and mechanisms of scale and deposit control; corrosion detection in petroleum production lines; underground corrosion control; environmental cracking--relating laboratory results and field behavior; corrosion control in reinforced concrete structures; corrosion and its control in aerospace and military hardware; injection and process addition facilities; progress reports on the results of reinspection of deaerators inspected or repaired per RP0590 criteria; near 100% volume solids coating technology and application methods; materials performance in high temperature environments containing halides; impact of toxicity studies on use of corrosion/scale inhibitors; mineral scale deposit control in oilfield related operations; corrosion in gas treating; marine corrosion; cold climate corrosion; corrosion in the pulp and paper industry; gaseous chlorine alternatives in cooling water systems; practical applications of ozone in recirculating cooling water systems; and water reuse in industry. Over 400 papers from this conference have been processed separately for inclusion on the data base

  7. Effects of ion implantation on corrosion of zirconium and zirconium base alloys

    International Nuclear Information System (INIS)

    Zelenskij, V.F.; Petel'guzov, I.A.; Rekova, L.P.; Rodak, A.G.

    1989-01-01

    The influence of He and Ar ion bombardment on the corrosion of Zr and Zr-1%Nb and Zr-2.5%Nb alloys is investigated with the aims of finding the irradiation influence laws, obtaining the dependences of the effect of increasing the corrosiuon resistance on the type and dose of bombarding ions and of finding the conditions for the maximum effect. The prolonged corrosion test of specimens (3500 hours) have shown that the strongest effect is obtained for the irradiation with Ar ions up to the dose 1x10 16 ion/cm 2 . The kinetics of ion thermosorption after corrosion of irradiated materials is studied, the temperature threshold of implanted ion stability in zirconium and its alloys is found to be 400 deg C

  8. Quantitative analysis on the urban flood mitigation effect by the extensive green roof system

    International Nuclear Information System (INIS)

    Lee, J.Y.; Moon, H.J.; Kim, T.I.; Kim, H.W.; Han, M.Y.

    2013-01-01

    Extensive green-roof systems are expected to have a synergetic effect in mitigating urban runoff, decreasing temperature and supplying water to a building. Mitigation of runoff through rainwater retention requires the effective design of a green-roof catchment. This study identified how to improve building runoff mitigation through quantitative analysis of an extensive green-roof system. Quantitative analysis of green-roof runoff characteristics indicated that the extensive green roof has a high water-retaining capacity response to rainfall of less than 20 mm/h. As the rainfall intensity increased, the water-retaining capacity decreased. The catchment efficiency of an extensive green roof ranged from 0.44 to 0.52, indicating reduced runoff comparing with efficiency of 0.9 for a concrete roof. Therefore, extensive green roofs are an effective storm water best-management practice and the proposed parameters can be applied to an algorithm for rainwater-harvesting tank design. -- Highlights: •Urban extensive green roof systems have a synergetic effect in mitigating urban runoff. •These systems are improve runoff mitigation and decentralized urban water management. •These systems have a high water-retaining capacity response to rainfall of less than 20 mm/h. •The catchment efficiency of an extensive green roof ranged from 0.44 to 0.52. -- Extensive green-roofs are an effective storm water best-management practice and the proposed parameters can be applied to mitigate urban runoff

  9. Photo-Electrochemical Effect of Zinc Addition on the Electrochemical Corrosion Potentials of Stainless Steels and Nickel Alloys in High Temperature Water

    International Nuclear Information System (INIS)

    Lee, Yi-Ching; Fong, Clinton; Fang-Chu, Charles; Chang, Ching

    2012-09-01

    Hydrogen water chemistry (HWC) is one of the main mitigating methods for stress corrosion cracking problem of reactor core stainless steel and nickel based alloy components. Zinc is added to minimize the radiation increase associated with HWC. However, the subsequently formed zinc-containing surface oxides may exhibit p-type semiconducting characteristics. Upon the irradiation of Cherenkov and Gamma ray in the reactor core, the ECP of stainless steels and nickel based alloys may shift in the anodic direction, possibly offsetting the beneficial effect of HWC. This study will evaluate the photo-electrochemical effect of Zinc Water Chemistry on SS304 stainless steel and Alloy 182 nickel based weld metal under simulated irradiated BWR water environments with UV illumination. The experimental results reveal that Alloy 182 nickel-based alloy generally possesses n-type semiconductor characteristics in both oxidizing NWC and reducing HWC conditions with zinc addition. Upon UV irradiation, the ECP of Alloy 182 will shift in the cathodic direction. In most conditions, SS304 will also exhibit n-type semiconducting properties. Only under hydrogen water chemistry, a weak p-type property may emerge. Only a slight upward shift in the anodic direction is detected when SS304 is illuminated with UV light. The potential influence of p-type semiconductor of zinc containing surface oxides is weak and the mitigation effect of HWC on the stress corrosion cracking is not adversely affected. (authors)

  10. The effect of surface treatment and gaseous rust protection paper on the atmospheric corrosion stability of aluminium alloy

    International Nuclear Information System (INIS)

    Gao Guizhong

    1992-03-01

    The experimental results of atmospheric corrosion of 166 aluminium alloy of Al-Mg-Si-Cu system and 167 aluminium alloy of Al-Mg-Si-Cu-Fe-Ni system for different surface treatment and different wrapping papers used are introduced. The results show: 1. The composition of aluminium alloy has some effect on the performance of atmospheric corrosion stability and the local corrosion depth for 167 aluminium alloy specimen is considerable. 2. After 8 years storage, the 167 aluminium alloy tubular specimen, which was treated with surface treatment in deionized water at 100 ∼ 230 C degree, has no spot of atmospheric corrosion found. 3. Within the test period, the performance of atmospheric corrosion stability by sulphuric-acid anodization film is remarkable. 4. The No. 19 gaseous rust protection paper has no effect of atmospheric corrosion stability on the 166 and 167 aluminium alloys which were treated with quenching and natural ageing method

  11. Multifrequency Eddy Current Inspection of Corrosion in Clad Aluminum Riveted Lap Joints and Its Effect on Fatigue Life

    Science.gov (United States)

    Okafor, A. C.; Natarajan, S.

    2007-03-01

    Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented.

  12. Multifrequency Eddy Current Inspection of Corrosion in Clad Aluminum Riveted Lap Joints and Its Effect on Fatigue Life

    International Nuclear Information System (INIS)

    Okafor, A. C.; Natarajan, S.

    2007-01-01

    Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented

  13. Investigation of Non-Uniform Rust Distribution and Its Effects on Corrosion Induced Cracking in Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Sutrisno Wahyuniarsih

    2017-01-01

    Full Text Available Uniform corrosion still widely used by a lot of researchers and engineers to analyze the corrosion induced cracking. However, in practice, corrosion process occurred non-uniformly. The part nearest to the exposed surface is more likely to have faster corrosion initiation compared with other regions. This research is mainly focused on investigating the effect of non-uniform rust distribution to cover cracking in reinforced concrete. An experimental test performed using accelerated corrosion test by using 5% NaCl solution and applied a constant electric current to the concrete samples. The rust distribution and measurement were observed by using a digital microscope. Based on the experimental result, it was found that the rust was distributed in a non-uniform pattern. As a result, the cracks also formed non-uniformly along the perimeter of steel bar. At the last part of this paper, a simulation result of concrete cracking induced by non-uniform corrosion is presented. The result compared with a simulation using uniform corrosion assumption to investigate the damage pattern of each model. The simulation result reveals stress evolution due to rust expansion which leads to concrete cracking. Furthermore, a comparison of stresses induced by non-uniform corrosion and uniform corrosion indicates that non-uniform corrosion could lead to earlier damage to the structure which is specified by the formation and propagation of the crack.

  14. Effect of Calcium Nitrate and Sodium Nitrite on the Rebar Corrosion of Medium Carbon Steel in Seawater and Cassava Fluid

    OpenAIRE

    Adamu, M; Umoru, LE; Ige, OO

    2014-01-01

    Inhibitors are regularly used as one of the principal prevention and control techniques in reinforcement corrosion. Hence this study investigates the effect of calcium nitrate and sodium nitrite inhibitors on the rebar corrosion of medium carbon steel in seawater and cassava fluid with a view to determining inhibitive potentials of the different inhibitors in the two media. Gravimetric and voltametric techniques were employed in this study and a total of forty-five corrosion coupons of differ...

  15. The effects of RE and Si on the microstructure and corrosion resistance of Zn–6Al–3Mg hot dip coating

    International Nuclear Information System (INIS)

    Li, Shiwei; Gao, Bo; Yin, Shaohua; Tu, Ganfeng; Zhu, Guanglin; Sun, Shuchen; Zhu, Xiaoping

    2015-01-01

    Highlights: • ZAM coating has been prepared by using an experimental hot-dip galvanizing simulator. • The corrosion resistance of ZAM coating can be improved by additions of Si and RE. • Zn–6Al–3Mg–Si–RE coating forms a dense and stabilized corrosion product layer. • Zn–6Al–3Mg–Si–RE coating shows uniform corrosion. - Abstract: The effects of Si and RE on the microstructure and corrosion resistance of Zn–6Al–3Mg coating (ZAM) have been investigated. Surface morphology observations of the coating and corrosion products reveal that the additions of Si and rare earth metals (RES) improve the microstructural homogeneity of ZAMSR coating and stability of corrosion products formed on ZAMSR coating. Moreover, only uniform corrosion occurs in ZAMSR coating during the corrosion test, while intergranular corrosion and pitting occur in ZAM. As a result, the corrosion resistance of ZAM coating is improved by the additions of Si and RES.

  16. The effects of RE and Si on the microstructure and corrosion resistance of Zn–6Al–3Mg hot dip coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiwei [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Gao, Bo, E-mail: surfgao@aliyun.com [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Yin, Shaohua [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Tu, Ganfeng; Zhu, Guanglin; Sun, Shuchen; Zhu, Xiaoping [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China)

    2015-12-01

    Highlights: • ZAM coating has been prepared by using an experimental hot-dip galvanizing simulator. • The corrosion resistance of ZAM coating can be improved by additions of Si and RE. • Zn–6Al–3Mg–Si–RE coating forms a dense and stabilized corrosion product layer. • Zn–6Al–3Mg–Si–RE coating shows uniform corrosion. - Abstract: The effects of Si and RE on the microstructure and corrosion resistance of Zn–6Al–3Mg coating (ZAM) have been investigated. Surface morphology observations of the coating and corrosion products reveal that the additions of Si and rare earth metals (RES) improve the microstructural homogeneity of ZAMSR coating and stability of corrosion products formed on ZAMSR coating. Moreover, only uniform corrosion occurs in ZAMSR coating during the corrosion test, while intergranular corrosion and pitting occur in ZAM. As a result, the corrosion resistance of ZAM coating is improved by the additions of Si and RES.

  17. Possible effects of external electrical fields on the corrosion of copper in bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Taxen, Claes (Swerea KIMAB (Sweden))

    2011-12-15

    External potentials that develop across a repository may interact with the copper canister. A study was undertaken to investigate the potential corrosion effects of voltage differences in a repository. A set of experiments was performed to study the tendency of copper in bentonite to corrode under influence of an externally applied electrical field. A model study was made to estimate possible corrosion effects of an external electrical field on a full-scale canister in the KBS-3 concept. The interaction between the repository represented by a copper canister in bentonite, and an external electrical field is illustrated with an example

  18. How Effective Is Road Mitigation at Reducing Road-Kill? A Meta-Analysis

    OpenAIRE

    Rytwinski, Trina; Soanes, Kylie; Jaeger, Jochen A. G.; Fahrig, Lenore; Findlay, C. Scott; Houlahan, Jeff; van der Ree, Rodney; van der Grift, Edgar A

    2016-01-01

    Road traffic kills hundreds of millions of animals every year, posing a critical threat to the populations of many species. To address this problem there are more than forty types of road mitigation measures available that aim to reduce wildlife mortality on roads (road-kill). For road planners, deciding on what mitigation method to use has been problematic because there is little good information about the relative effectiveness of these measures in reducing road-kill, and the costs of these...

  19. Experimental research of the effects of different shields on power frequency electric field mitigation

    Directory of Open Access Journals (Sweden)

    Nahman Jovan

    2012-01-01

    Full Text Available The paper describes experimental research on the effects of different shields on power frequency electric field mitigation. This research was performed in order to determine those materials that may be used for electric field mitigation in cases where the reference level is exceeded. Using measured results, the value of the shielding factor has been calculated for all tested shields and the most efficient shields were determined.

  20. Effect of reactor chemistry and operating variables on fuel cladding corrosion in PWRs

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Lee, Sang Hee

    1997-01-01

    As the nuclear industry extends the fuel cycle length, waterside corrosion of zircaloy cladding has become a limiting factor in PWR fuel design. Many plant chemistry factors such as, higher lithium/boron concentration in the primary coolant can influence the corrosion behavior of zircaloy cladding. The chemistry effect can be amplified in higher duty fuel, particularlywhen surface boiling occurs. Local boiling can result in increased crud deposition on fuel cladding which may induce axial power offset anomalies (AOA), recently reported in several PWR units. In this study, the effect of reactor chemistry and operating variables on Zircaloy cladding corrosion is investigated and simulation studies are performed to evaluate the optimal primary chemistry condition for extended cycle operation. (author). 8 refs., 3 tabs., 16 figs

  1. Multiple mitigation mechanisms: Effects of submerged plants on the toxicity of nine insecticides to aquatic animals.

    Science.gov (United States)

    Brogan, William R; Relyea, Rick A

    2017-01-01

    Understanding the processes that regulate contaminant impacts in nature is an increasingly important challenge. For insecticides in surface waters, the ability of aquatic plants to sorb, or bind, hydrophobic compounds has been identified as a primary mechanism by which toxicity can be mitigated (i.e. the sorption-based model). However, recent research shows that submerged plants can also rapidly mitigate the toxicity of the less hydrophobic insecticide malathion via alkaline hydrolysis (i.e. the hydrolysis-based model) driven by increased water pH resulting from photosynthesis. However, it is still unknown how generalizable these mitigation mechanisms are across the wide variety of insecticides applied today, and whether any general rules can be ascertained about which types of chemicals may be mitigated by each mechanism. We quantified the degree to which the submerged plant Elodea canadensis mitigated acute (48-h) toxicity to Daphnia magna using nine commonly applied insecticides spanning three chemical classes (carbamates: aldicarb, carbaryl, carbofuran; organophosphates: malathion, diazinon, chlorpyrifos; pyrethroids: permethrin, bifenthrin, lambda-cyhalothrin). We found that insecticides possessing either high octanol-water partition coefficients (log K ow ) values (i.e. pyrethroids) or high susceptibility to alkaline hydrolysis (i.e. carbamates and malathion) were all mitigated to some degree by E. canadensis, while the plant had no effect on insecticides possessing intermediate log K ow values and low susceptibility to hydrolysis (i.e. chlorpyrifos and diazinon). Our results provide the first general insights into which types of insecticides are likely to be mitigated by different mechanisms based on known chemical properties. We suggest that current models and mitigation strategies would be improved by the consideration of both mitigation models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Dictionary corrosion and corrosion control

    International Nuclear Information System (INIS)

    1985-01-01

    This dictionary has 13000 entries in both languages. Keywords and extensive accompanying information simplify the choice of word for the user. The following topics are covered: Theoretical principles of corrosion; Corrosion of the metals and alloys most frequently used in engineering. Types of corrosion - (chemical-, electro-chemical, biological corrosion); forms of corrosion (superficial, pitting, selective, intercrystalline and stress corrosion; vibrational corrosion cracking); erosion and cavitation. Methods of corrosion control (material selection, temporary corrosion protection media, paint and plastics coatings, electro-chemical coatings, corrosion prevention by treatment of the corrosive media); Corrosion testing methods. (orig./HP) [de

  3. The Effects of Mitigation Measures on Flood Damage Prevention in Korea

    Directory of Open Access Journals (Sweden)

    Cheol-Hee Son

    2015-12-01

    Full Text Available This study analyzed the characteristics of flood damages and the effects of structural and non-structural flood damage mitigation measures in Korea. First, a theoretical discussion of the structural and non-structural measures to mitigate flood damages was used to select the variables and devise the hypotheses. An analysis was conducted using the Auto-Regressive Integrated Moving-Average (ARIMA time series methodology, Korean socioeconomic data, and damage characteristics of major flood events. The effects of flood damage mitigation measures on the extent of flood damages were assessed using an intervention time series model. The major findings were that the intervention effects of structural and non-structural measures were statistically significant from 1958 to 2013 (a period of 55 years and that while the former were ineffective at mitigating flood damages, the latter were successful in doing so. Based on the above findings, policy suggestions for future flood damage mitigation measures in Korea were offered. For structural measures, the government should manage its existing facilities, recover ecosystems of damaged rivers, and devise mitigation measures for urban areas. For non-structural measures, the government should enhance its flood forecasting capacity, revise laws related to flood control and prevention, and update and rationalize land-use plans.

  4. The effect of corrosion product colloids on actinide transport

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1992-01-01

    The near field of the proposed UK repository for ILW/LLW will contain containers of conditioned waste in contact with a cementious backfill. It will contain significant quantities of iron and steel, Magnox and Zircaloy. Colloids deriving from their corrosion products may possess significant sorption capacity for radioelements. If the colloids are mobile in the groundwater flow, they could act as a significant vector for activity transport into the far field. The desorption of plutonium and americium from colloidal corrosion products of iron and zirconium has been studied under chemical conditions representing the transition from the near field to the far field. Desorption R d values of ≥ 5 x 10 6 ml g -1 were measured for both actinides on these oxides and hydroxides when actinide sorption took place under the near-field conditions and desorption took place under the far-field conditions. Desorption of the actinides occurred slowly from the colloids under far-field conditions when the colloids had low loadings of actinide and more quickly at high loadings of actinide. Desorbed actinide was lost to the walls of the experimental vessel. (author)

  5. Effect of elevated lithium on the waterside corrosion of zircaloy-4: Experimental and predictive studies

    International Nuclear Information System (INIS)

    Pecheur, D.; Giordano, A.; Picard, E.; Billot, P.; Thomazet, J.

    1997-01-01

    Lithium and boron content in the coolant are known to influence the oxidation behaviour of the fuel cladding. Since new PWR operating conditions could consist in an increase of the lithium and the boron concentration in the coolant early in the cycle, a specific study has been conducted to analyze and to predict the effect of such new water chemistry conditions on the oxidation kinetics of the Zircaloy-4 material. Experimental studies have been performed in out-of-pile loop tests, under one and two phase flow heat transfer in various water chemistry conditions (0≤Li≤350 ppm, 0≤B≤1000 ppm, 0≤K≤56 ppm). A simulation of the effect of elevated lithium on the corrosion has been made using the semi-empirical COCHISE corrosion code. Under one phase flow heat transfer conditions, the addition of lithium hydroxide in the coolant increases the oxidation rate, essentially in the post-transition regime for low lithium levels (≤ 75 ppm) and immediately in the pre-transition phase for very high lithium level (350 ppm). Under two phase flow heat transfer, an enhancement of the corrosion is observed in the area of the rod submitted to boiling. Based on the out-of-pile loop test performed in presence of KOH instead of LiOH, such an enhancement of the corrosion appears to be due to a lithium enrichment in the oxide layer induced by boiling and not to a pH effect. The simulation of the increase of lithium content in the coolant from 2.2 to 3.5 ppm leads to an enhancement in corrosion rates which becomes only significant at high burn up. This predictive result of elevated lithium effect on corrosion is then compared with oxidation data derived from reactors operating under an elevated lithium regime. (author). 14 refs, 9 figs, 3 tabs

  6. Effect of elevated lithium on the waterside corrosion of zircaloy-4: Experimental and predictive studies

    Energy Technology Data Exchange (ETDEWEB)

    Pecheur, D; Giordano, A; Picard, E; Billot, P [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France); Thomazet, J [FRAMATOME, Nuclear Fuel Div., Lyon (France)

    1997-02-01

    Lithium and boron content in the coolant are known to influence the oxidation behaviour of the fuel cladding. Since new PWR operating conditions could consist in an increase of the lithium and the boron concentration in the coolant early in the cycle, a specific study has been conducted to analyze and to predict the effect of such new water chemistry conditions on the oxidation kinetics of the Zircaloy-4 material. Experimental studies have been performed in out-of-pile loop tests, under one and two phase flow heat transfer in various water chemistry conditions (0{<=}Li{<=}350 ppm, 0{<=}B{<=}1000 ppm, 0{<=}K{<=}56 ppm). A simulation of the effect of elevated lithium on the corrosion has been made using the semi-empirical COCHISE corrosion code. Under one phase flow heat transfer conditions, the addition of lithium hydroxide in the coolant increases the oxidation rate, essentially in the post-transition regime for low lithium levels ({<=} 75 ppm) and immediately in the pre-transition phase for very high lithium level (350 ppm). Under two phase flow heat transfer, an enhancement of the corrosion is observed in the area of the rod submitted to boiling. Based on the out-of-pile loop test performed in presence of KOH instead of LiOH, such an enhancement of the corrosion appears to be due to a lithium enrichment in the oxide layer induced by boiling and not to a pH effect. The simulation of the increase of lithium content in the coolant from 2.2 to 3.5 ppm leads to an enhancement in corrosion rates which becomes only significant at high burn up. This predictive result of elevated lithium effect on corrosion is then compared with oxidation data derived from reactors operating under an elevated lithium regime. (author). 14 refs, 9 figs, 3 tabs.

  7. New understanding of the effect of hydrostatic pressure on the corrosion of Ni–Cr–Mo–V high strength steel

    International Nuclear Information System (INIS)

    Yang, Yange; Zhang, Tao; Shao, Yawei; Meng, Guozhe; Wang, Fuhui

    2013-01-01

    Highlights: •Stress distributions of pits under different hydrostatic pressures are simulated. •Corrosion model of Ni–Cr–Mo–V steel under hydrostatic pressure is established. •A novel understanding of the effect of hydrostatic pressure is proposed. -- Abstract: Corrosion of Ni–Cr–Mo–V high strength steel at different hydrostatic pressures is investigated by scanning electron microscopy (SEM) and finite element analysis (FEA). The results indicate that corrosion pits of Ni–Cr–Mo–V high strength steel originate from inclusions in the steel and high hydrostatic pressures accelerate pit growth rate parallel to steel and the coalescence rate of neighbouring pits, which lead to the fast formation of uniform corrosion. Corrosion of Ni–Cr–Mo–V high strength steel under high hydrostatic pressure is the interaction result between electrochemical corrosion and elastic stress

  8. Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys

    International Nuclear Information System (INIS)

    Brunelli, Katya; Dabala, Manuele; Calliari, Irene; Magrini, Maurizio

    2005-01-01

    The corrosion protection afforded by a cerium conversion coating, formed by immersion in a solution containing rare earth salt and hydrogen peroxide, on pure magnesium and two magnesium alloys, AZ91 and AM50, has been studied. The effect of HCl pre-treatments on the morphology and on the corrosion resistance of the cerium conversion layer was investigated. A thicker and more homogeneous distribution of the conversion coating was obtained when the sample surface was pre-treated with acid. Higher amounts of cerium on the surface of the pre-treated samples were detected. The cerium conversion coating increased the corrosion resistance of the alloys because it ennobled the corrosion potential and decreased both the anodic and cathodic current. The acid pre-treatment further increased the corrosion resistance of the coated alloys. After five days of immersion in chloride environment the untreated samples showed localized corrosion while the chemical conversion coated samples appeared unaffected

  9. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    BROWN MH

    2008-11-13

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program.

  10. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE-SHELL TANKS

    International Nuclear Information System (INIS)

    Brown, M.H.

    2008-01-01

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program

  11. Synergistic Effect on Corrosion Inhibition Efficiency of Ginger Affinale Extract in Controlling Corrosion of Mild Steel in Acid Medium

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Ananth Kumar; Arumugam, Sankar [Kandaswami Kandar' s College, Namakkal (India); Mallaiya, Kumaravel; Subramaniam, Rameshkumar [PSG College of Technology Peelamedu, Coimbatore (India)

    2013-12-15

    The corrosion inhibition nature of Ginger affinale extract for the corrosion of mild steel in 0.5N H{sub 2}SO{sub 4} was investigated using weight loss, electrochemical impedance and potentiodynamic polarization methods. The results revealed that Ginger affinale extract acts as a good corrosion inhibitor in 0.5N H{sub 2}SO{sub 4} medium. The inhibition efficiency increased with an increase in inhibitor concentration. The inhibition could be attributed to the adsorption of the inhibitor on the steel surface.

  12. The effect of zinc thickness on corrosion film breakdown of Colombian galvanized steel

    Science.gov (United States)

    Sandoval-Amador, A.; E Torres Ramirez, J.; Cabrales-Villamizar, P. A.; Laverde Cataño, D.; Y Peña-Ballesteros, D.

    2017-12-01

    This work studies the corrosion behaviour of Colombian galvanized steel in solutions of chloride and sulphate ions. The effect of the thickness and exposure time on the film’s breakdown susceptibility and protectiveness of the corrosion products were studied using potentiodynamic polarization curves and electrochemical impedance spectroscopy. The corrosion products were analysed using SEM-EDS and XRD. The samples with a higher thickness level in the zinc film (Z180) have the lowest corrosion rate. In this case, one of the products that was formed by the chemical reactions that occurred was Zinc hydroxide, which exhibits a passive behaviour as observed in the Pourbaix curves of the obtained potentials and in how the different Ph levels of the solutions worked. The sheets with the highest thickness (Z180) had the best performance, since at the end of the study they showed the least amount of damage on the surface of the zinc layer. This is because the thickness of the zinc layer favours the formation of simonkolleite, which is the corrosion product that protects the material under the conditions of the study.

  13. Effects of porosity in a model of corrosion and passive layer growth

    Directory of Open Access Journals (Sweden)

    F.D.A. Aarão Reis

    2017-12-01

    Full Text Available We introduce a stochastic lattice model to investigate the effects of pore formation in a passive layer grown with products of metal corrosion. It considers that an anionic species diffuses across that layer and reacts at the corrosion front (metal-oxide interface, producing a random distribution of compact regions and large pores, respectively represented by O (oxide and P (pore sites. O sites are assumed to have very small pores, so that the fraction Φ of P sites is an estimate of the porosity, and the ratio between anion diffusion coefficients in those regions is D_r0 and D_r≪1, significant changes are observed in passive layer growth and corrosion front roughness. For small Φ, a slowdown of the growth rate is observed, which is interpreted as a consequence of the confinement of anions in isolated pores for long times. However, the presence of large pores near the corrosion front increases the frequency of reactions at those regions, which leads to an increase in the roughness of that front. This model may be a first step to represent defects in a passive layer which favor pitting corrosion.

  14. Effect of Water Chemistry Factors on Flow Accelerated Corrosion : pH, DO, Hydrazine

    International Nuclear Information System (INIS)

    Lee, Eun Hee; Kim, Kyung Mo; Kim, Hong Pyo

    2013-01-01

    Flow accelerated corrosion(FAC) of the carbon steel piping in pressurized water reactors(PWRs) has been major issue in nuclear industry. Severe accident at Surry Unit 2 in 1986 initiated the worldwide interest in this area. Major parameters influencing FAC are material composition, microstructure, water chemistry, and hydrodynamics. Qualitative behaviors of FAC have been well understood but quantitative data about FAC have not been published for proprietary reason. In order to minimize the FAC in PWRs, the optimal method is to control water chemistry factors. Chemistry factors influencing FAC such as pH, corrosion potential, and hydrazine contents were reviewed in this paper. FAC rate decreased with pH up to 10 because magnetite solubility decreased with pH. Corrosion potential is generally controlled dissolved oxygen (DO) and hydrazine in secondary water. DO increased corrosion potential. FAC rate decreased with DO by stabilizing magnetite at low DO concentration or by formation of hematite at high DO concentration. Even though hydrazine is generally used to remove DO, hydrazine itself thermally decomposed to ammonia, nitrogen, and hydrogen raising pH. Hydrazine could react with iron and increased FAC rate. Effect of hydrazine on FAC is rather complex and should be careful in FAC analysis. FAC could be managed by adequate combination of pH, corrosion potential, and hydrazine

  15. Effect of Equal-Channel Angular Pressing on Pitting Corrosion of Pure Aluminum

    Directory of Open Access Journals (Sweden)

    Injoon Son

    2012-01-01

    Full Text Available The effect of equal-channel angular pressing (ECAP on the pitting corrosion of pure Al was investigated using electrochemical techniques in solutions containing 0.1 m mol·dm−3 of Na2SO4 and 8.46 mol·dm−3 of NaCl (300 ppm Cl− and followed by surface analysis. The potential for pitting corrosion of pure Al was clearly shifted in the noble direction by the ECAP process indicating that this process improves resistance to pitting corrosion. The time dependence of corrosion potential and the anodic potential at 1 A·m−2 revealed that the rate of formation of Al oxide films increased due to a decrease in the grain size of the Al after ECAP. Since there exists a negligible amount of impurity precipitates in pure Al, the improvement in pitting corrosion resistance of pure Al by ECAP appears to be attributable to an increase in the rate of formation of Al oxide films.

  16. Effects of molybdenum additions on the corrosion resistance of stainless steels in inorganic aqueous solutions and organic media (A review)

    International Nuclear Information System (INIS)

    Charbonnier, J.-C.

    1975-01-01

    The effects of molybdenum additions on the corrosion resistance of austenitic and ferritic stainless steels are reviewed. The following types of corrosion are considered: uniform attack in inorganic and organic acids, pitting and crevice corrosion in chloride media. The survey has been conducted with particular emphasis on the recent works. The different hypotheses which have been suggested in order to clarify the role of the molybdenum additions on the improvement of the corrosion resistance of stainless steels are analyzed and discussed. A synthesis is given [fr

  17. Effects of surface condition on aqueous corrosion and environmental embrittlement of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, R.L.; Buchanan, R.A. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-08-01

    Effects of retained high-temperature surface oxides, produced during thermomechanical processing and/or heat treatment, on the aqueous-corrosion and environmental-embrittlement characteristics of Fe{sub 3}Al-based iron aluminides (FA-84, FA-129 and FAL-Mo), a FeAl-based iron aluminide (FA-385), and a disordered low-aluminum Fe-Al alloy (FAPY) were evaluated. All tests were conducted at room temperature in a mild acid-chloride solution. In cyclic-anodic-polarization testing for aqueous-corrosion behavior, the surface conditions examined were: as-received (i.e., with the retained high-temperature oxides), mechanically cleaned and chemically cleaned. For all materials, the polarization tests showed the critical pitting potentials to be significantly lower in the as-received condition than in the mechanically-cleaned and chemically-cleaned conditions. These results indicate detrimental effects of the retained high-temperature oxides in terms of increased susceptibilities to localized corrosion. In 200-hour U-bend stress-corrosion-cracking tests for environmental-embrittlement behavior, conducted at open-circuit corrosion potentials and at a hydrogen-charging potential of {minus}1500 mV (SHE), the above materials (except FA-385) were examined with retained oxides and with mechanically cleaned surfaces. At the open-circuit corrosion potentials, none of the materials in either surface condition underwent cracking. At the hydrogen-charging potential, none of the materials with retained oxides underwent cracking, but FA-84, FA-129 and FAL-Mo in the mechanically cleaned condition did undergo cracking. These results suggest beneficial effects of the retained high-temperature oxides in terms of increased resistance to environmental hydrogen embrittlement.

  18. Effect of cryogenic cooling on corrosion of friction stir welded AA7010-T7651

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Davenport, A. J.; Ambat, Rajan

    2010-01-01

    Purpose - The purpose of this paper is to study how cryogenic CO2 cooling during the welding process affects corrosion behaviour of friction stir welding (FSW) AA7010-T7651. Design/methodology/approach - Friction stir welded AA7010-17651 was produced with a rotation speed of 288 rpm and a travel...... speed of 58 mm/min. The liquid CO2 was sprayed onto the weld centre line immediately after the toolpiece. The microstructures of welds in different regions were observed using Field Emission Gun Scanning Electron Microscope (FEG-SEM). The effect on the corrosion susceptibility was investigated using...... a gel visualisation test and potentiodynamic polarisation measurements using a micro-electrochemical technique. Findings - The main corrosion region for both FSWs AA7010-T7651 produced with and without cryogenic CO2 cooling is in the HAZ region, which exhibited intergranular attack. Cryogenic cooling...

  19. Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, J. Ishwara [Mangalore Univ., Karnataka (India); Alva, Vijaya D. P. [Shree Devi Institute of Technology, Karnataka (India)

    2014-02-15

    The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum.

  20. Annealing Effect on Corrosion Behavior of the Beta-Quenched HANA Alloy

    International Nuclear Information System (INIS)

    Kim, Hyun Gil; Kim, Il Hyun; Choi, Byung Kwan; Park, Sang Yoon; Park, Jeong Yong; Jeong, Yong Hwan

    2009-01-01

    The advanced fuel cladding materials named as HANA cladding have been developed at KAERI for application of high burn-up and that cladding showed an improved performance in both in-pile and out-of-pile conditions. However, the cladding performance could be changed by the annealing conditions during the tube manufacturing process. Especially, the corrosion resistance is considerably sensitive to their microstructure which is determined by a manufacturing process in the high Nb-containing zirconium alloys. They reported that the corrosion properties of the Nb-containing Zr alloys were considerably affected by the microstructure conditions such as the Nb concentration in the matrix and the second phase types. Therefore, the corrosion behavior of HANA cladding having the high Nb could be considerably affected by the annealing time and temperatures. The purpose of this study is focused on the annealing effect of the beta quenched HANA alloy to obtain the optimum annealing conditions

  1. Effect of Sulfide Concentration on Copper Corrosion in Anoxic Chloride-Containing Solutions

    Science.gov (United States)

    Kong, Decheng; Dong, Chaofang; Xu, Aoni; Man, Cheng; He, Chang; Li, Xiaogang

    2017-04-01

    The structure and property of passive film on copper are strongly dependent on the sulfide concentration; based on this, a series of electrochemical methods were applied to investigate the effect of sulfide concentration on copper corrosion in anaerobic chloride-containing solutions. The cyclic voltammetry and x-ray photoelectron spectroscopy analysis demonstrated that the corrosion products formed on copper in anaerobic sulfide solutions comprise Cu2S and CuS. And the corrosion resistance of copper decreased with increasing sulfide concentration and faster sulfide addition, owing to the various structures of the passive films observed by the atomic force microscope and scanning electron microscope. A p-type semiconductor character was obtained under all experimental conditions, and the defect concentration, which had a magnitude of 1022-1023 cm-3, increased with increasing sulfide concentration, resulting in a higher rate of both film growth and dissolution.

  2. Effect of some pyrimidinic Schiff bases on the corrosion of mild steel in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Ashassi-Sorkhabi, H.; Shaabani, B.; Seifzadeh, D.

    2005-01-01

    The efficiency of benzylidene-pyrimidin-2-yl-amine (A) (4-methyl-benzylidene)-pyrimidine-2-yl-amine (B) and (4-chloro-benzylidene)-pyrimidine-2-yl-amine, as corrosion inhibitors for mild steel in 1 M HCl have been determined by weight loss measurements and electrochemical polarization method. The results showed that these inhibitors revealed a good corrosion inhibition even at very low concentrations. Polarization curves indicate that all compounds are mixed type inhibitors. The effect of various parameters such as temperature and inhibitor concentration on the efficiency of the inhibitors has been studied. Activation energies of corrosion reaction in the presence and absence of inhibitors have been calculated. The adsorption of used compounds on the steel surface obeys Langmuir's isotherm. It appears that an efficient inhibition is characterized by a relatively greater decrease in free energy of adsorption. Significant correlations are obtained between inhibition efficiency and quantum chemical parameters using quantitative structure-activity relationship (QSAR) method

  3. Boron effect on fabrication properties and service behaviour of complex corrosion-resistant steels

    International Nuclear Information System (INIS)

    Gol'dshtejn, Ya.E.; Piskunova, A.I.; Shmatko, M.N.

    1978-01-01

    In order to determine the optimum boron admixtures for the improvement of the technological plasticity without the considerable reduction in the corrosion resistance of the complex alloy Cr-Ni-Mo steels, industrial heats of the 03KH16N15M3, 03KH17N14M3 and other steels, containing 0.0005-0.003% boron, have been researched. The plasticity, corrosion resistance and microstructure of certain steels have been determined. It is shown that small additions of boron enhance the technological plasticity during the ingot rolling. In order to prevent a sharp reduction in the corrosion resistance, the boron content should be confined to 0.0015% and the quenching temperature raised to 1,120-1,150 deg C. The positive effect of the quenching temperature increase is accounted for by the solution of the excess phases and by the reduction of the dislocation density in the near-the-boundary zones

  4. Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

    International Nuclear Information System (INIS)

    Bhat, J. Ishwara; Alva, Vijaya D. P.

    2014-01-01

    The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum

  5. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Sherar, B.W.A. [Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 (Canada); Power, I.M. [Department of Earth Sciences, University of Western Ontario, London, ON, N6A 5B7 (Canada); Keech, P.G.; Mitlin, S. [Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 (Canada); Southam, G. [Department of Earth Sciences, University of Western Ontario, London, ON, N6A 5B7 (Canada); Shoesmith, D.W., E-mail: dwshoesm@uwo.c [Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 (Canada)

    2011-03-15

    Research highlights: Compares inorganic sulfide and sulfate reducing bacteria (SRB) on steel corrosion. Mackinawite was the dominant iron sulfide phase. SRBs can form nanowires, presumably grown to acquire energy. - Abstract: This article compares the electrochemical effects induced by inorganic sulfide and sulfate reducing bacteria on the corrosion of carbon steel - a subject of concern for pipelines. Biological microcosms, containing varying concentrations of bioorganic content, were studied to investigate changes to the morphology of biofilms and corrosion product deposits. Raman analysis indicated mackinawite (FeS{sub 1-x}) was the dominant iron sulfide phase grown both abiotically and biotically. A fascinating feature of biological media, void of an organic electron donor, was the formation of putative nanowires that may be grown to acquire energy from carbon steel by promoting the measured cathodic reaction.

  6. Effects of laser shock peening on stress corrosion behavior of 7075 aluminum alloy laser welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.T., E-mail: jiasqq1225@126.com [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Zhang, Y.K. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); School of Mechanical Engineering, Southeast University, Nanjing 211189 (China); Chen, J.F.; Zhou, J.Y.; Ge, M.Z.; Lu, Y.L.; Li, X.L. [School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001 (China)

    2015-10-28

    7075 aluminum alloy weldments were processed by an intensive process known as laser shock peening (LSP), meanwhile its stress corrosion behaviors were observed by scanning electron microscopy (SEM) and slow strain rate tensile (SSRT) tests. Results showed that the effect of LSP on corrosion behavior of the joint was fairly useful and obvious. With LSP, the elongation, time of fracture and static toughness after the SSRT test were improved by 11.13%, 20% and 100%, respectively. At the same time, the location of the fracture also changed. LSP led to a transition of the fracture type from transgranular to intergranular The reasons for these enhancements of the joint on corrosion behavior were caused by microstructure, residual stress, micro-hardness, and fracture appearance.

  7. Electrochemical analysis of the corrosion inhibition effect of trypsin complex on the pitting corrosion of 420 martensitic stainless steel in 2M H2SO4 solution.

    Science.gov (United States)

    Loto, Roland Tolulope

    2018-01-01

    Inhibition effect of trypsin complex (TC) on the pitting corrosion of martensitic stainless steel (type 420) in 1M H2SO4 solution was studied with potentiodynamic polarization, open circuit potential measurement and optical microscopy. TC reduced the corrosion rate of the steel with maximum inhibition efficiency of 80.75%. Corrosion potential shifted anodically due to the electrochemical action of TC. The pitting potential increased from 1.088VAg/AgCl (3M) at 0% TC to 1.365VAg/AgCl(3M) at 4% TC. TC shifts the open circuit corrosion potential from -0.270s at 0% TC concentration to -0.255V at 5% TC. The compound completely adsorbed onto the steel according to Langmuir, Frumkin and Temkin isotherms. ATF-FTIR spectroscopy confirmed the inhibition mode to be through surface coverage. Thermodynamic calculations showed physisorption molecular interaction. Corrosion pits are present on the uninhibited 420 morphology in comparison to TC inhibited surface which slightly deteriorated.

  8. CORROSION ISSUES ASSOCIATED WITH AUSTENITIC STAINLESS STEEL COMPONENTS USED IN NUCLEAR MATERIALS EXTRACTION AND SEPARATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Louthan, M.; Sindelar, R.

    2012-12-17

    This paper illustrated the magnitude of the systems, structures and components used at the Savannah River Site for nuclear materials extraction and separation processes. Corrosion issues, including stress corrosion cracking, pitting, crevice corrosion and other corrosion induced degradation processes are discussed and corrosion mitigation strategies such as a chloride exclusion program and corrosion release testing are also discussed.

  9. Effect of iron ions on corrosion of lithium in a thionyl chloride electrolytes

    International Nuclear Information System (INIS)

    Shirokov, A.V.; Churikov, A.V.

    1999-01-01

    The effect of the iron electrolyte addition on the growth rate of the passivating layer on lithium in the LiAlCl 4 1 M solution in thionyl chloride is experimentally studied. It is established, that kinetic curved in the first 10 hours of the Li-electrode contact with electrolyte are described by the equation, assuming mixed diffusion kinetic control over the corrosion process. It is shown that introduction of Fe 3+ into electrolyte causes increase in both ionic and electron conductivity constituents. Increase in the electron carrier concentration is the cause of lithium corrosion in the iron-containing thionyl chloride solutions [ru

  10. The effects of strain induced martensite on stress corrosion cracking in AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Lee, W. S.; Kwon, S. I.

    1989-01-01

    The effects of strain induced martensite on stress corrosion cracking behavior in AISI 304 stainless steel in boiling 42 wt% MgCl 2 solution were investigated using monotonic SSRT and cyclic SSRT with R=0.1 stress ratio. As the amount of pre-strain increased, the failure time of the specimens in monotonic SSRT test decreased independent of the existence of strain induced martensite. The strain induced martensite seems to promote the crack initiation but to retard the crack propagation during stress corrosion cracking

  11. Inhibition of Aluminium Corrosion in Hydrochloric Acid Using Nizoral and the Effect of Iodide Ion Addition

    Directory of Open Access Journals (Sweden)

    I. B. Obot

    2010-01-01

    Full Text Available The effect of nizoral (NZR on the corrosion inhibition of aluminium alloy AA 1060 in 2 M HCl solution was investigated using the mylius thermometric technique. Results of the study revealed that nizoral acts as corrosion inhibitor for aluminium in the acidic medium. In general, at constant acid concentration, the inhibition efficiency increases with increase in the inhibitor concentration. The addition of KI to the inhibitor enhanced the inhibition efficiency to a considerable extent. The adsorption of nizoral onto the aluminium surface was found to obey the Fruendlich adsorption isotherm. The value of the free energy for the adsorption process shows that the process is spontaneous.

  12. Corrosion effect of fast reactor fuel claddings on their mechanical properties

    International Nuclear Information System (INIS)

    Davydov, E.F.; Krykov, F.N.; Shamardin, V.K.

    1985-01-01

    Fast reactor fuel cladding corrosion effect on its mechanical properties was investigated. UO 2 fuel elements were irradiated in the BOP-60 reactor at the linear heat rate of 42 kw/m. Fuel cladding is made of stainless steel OKh16N15M3BR. Calculated maximum cladding temperature is 920 K. Neutron fluence in the central part of fuel elements is 6.3x10 26 m+H- 2 . To investigate the strength changes temperature dependence of corrossion depth, cladding strength reduction factors was determined. Samples plasticity reduction with corrosion layer increase is considered to be a characteristic feature

  13. Contribution of local probes in the understanding of mechanical effect on localized corrosion

    International Nuclear Information System (INIS)

    Vignal, Vincent; Oltra, Roland; Mary, Nicolas

    2004-01-01

    Understanding the actual effects of mechanical stresses on the processes leading to pitting corrosion necessitates to develop both a mechanical approach and electrochemical experiments at a microscopic scale. Typical embrittlement can be observed after straining around MnS inclusions on a re-sulfurized 316 stainless steels and their corrosion sensitivity have been classified using the micro-capillary electrochemical cell technique. It has been shown that the numerical simulation of the location of stress gradients is possible before the local electrochemical analysis and could be a very interesting way to define the pitting susceptibility of micro-cracked areas during straining. (authors)

  14. The effect of fatigue on the corrosion resistance of common medical alloys.

    Science.gov (United States)

    Di Prima, Matthew; Gutierrez, Erick; Weaver, Jason D

    2017-10-01

    The effect of mechanical fatigue on the corrosion resistance of medical devices has been a concern for devices that experience significant fatigue during their lifespan and devices made from metallic alloys. The Food and Drug Administration had recommended in some instances for corrosion testing to be performed on post-fatigued devices [Non-clinical tests and recommended labeling for intravascular stents and associated delivery systems: guidance for industry and FDA staff. 2005: Food and Drug Administration, Center for Devices and Radiological Health], although the need for this has been debated [Nagaraja S, et al., J Biomed Mater Res Part B: Appl Biomater 2016, 8.] This study seeks to evaluate the effect of fatigue on the corrosion resistance of 5 different materials commonly used in medical devices: 316 LVM stainless steel, MP35N cobalt chromium, electropolished nitinol, mechanically polished nitinol, and black oxide nitinol. Prior to corrosion testing per ASTM F2129, wires of each alloy were split into subgroups and subjected to either nothing (that is, as received); high strain fatigue for less than 8 min; short-term phosphate buffered saline (PBS) soak for less than 8 min; low strain fatigue for 8 days; or long-term PBS soak for 8 days. Results from corrosion testing showed that the rest potential trended to an equilibrium potential with increasing time in PBS and that there was no statistical (p > 0.05) difference in breakdown potential between the fatigued and matching PBS soak groups for 9 out of 10 test conditions. Our results suggest that under these nonfretting conditions, corrosion susceptibility as measured by breakdown potential per ASTM F2129 was unaffected by the fatigue condition. 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2019-2026, 2017. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  15. Laboratory testing of waste glass aqueous corrosion; effects of experimental parameters

    International Nuclear Information System (INIS)

    Ebert, W.L.; Mazer, J.J.

    1993-01-01

    A literature survey has been performed to assess the effects of the temperature, glass surface area/leachate volume ratio, leachant composition, leachant flow rate, and glass composition (actual radioactive vs. simulated glass) used in laboratory tests on the measured glass reaction rate. The effects of these parameters must be accounted for in mechanistic models used to project glass durability over long times. Test parameters can also be utilized to highlight particular processes in laboratory tests. Waste glass corrosion results as water diffusion, ion-exchange, and hydrolysis reactions occur simultaneously to devitrify the glass and release soluble glass components into solution. The rates of these processes are interrelated by the affects of the solution chemistry and glass alteration phases on each process, and the dominant (fastest) process may change as the reaction progresses. Transport of components from the release sites into solution may also affect the observed corrosion rate. The reaction temperature will affect the rate of each process, while other parameters will affect the solution chemistry and which processes are observed during the test. The early stages of corrosion will be observed under test conditions which maintain dilute leachates and the later stages will be observed under conditions that generate more concentrated leachate solutions. Typically, water diffusion and ion-exchange reactions dominate the observed glass corrosion in dilute solutions while hydrolysis reactions dominant in more concentrated solutions. Which process(es) controls the long-term glass corrosion is not fully understood, and the long-term corrosion rate may be either transport- or reaction-limited

  16. Phytochemicals as Green Corrosion Inhibitors in Various Corrosive ...

    African Journals Online (AJOL)

    There is an intensive effort underway to develop new plant origin corrosion inhibitors for metal subjected to various environmental conditions. These efforts have been motivated by the desire to replace toxic inhibitors used for mitigation of corrosion of various metals and alloys in aqueous solutions. Plants represent a class ...

  17. Is carbon farming an effective climate mitigation option?

    Science.gov (United States)

    Zelikova, T. J.; Funk, J.; Deich, N.; Amador, G.; Jacobson, R.

    2017-12-01

    "Carbon farming" refers to agricultural and land management practices that store carbon in soils and biomass. Carbon-farming techniques can include crop rotation, cover crops, no-till practices, and the application of compost to build up soil organic matter. Carbon farming also improves agricultural production and sustainability, while mitigating climate change. Despite well-documented benefits of carbon farming, these practices continue to be underutilized outside of experimental settings. One barrier to the widespread use of carbon farming is the challenge of fitting these practices into ongoing commercial operations, while managing the consequent market uncertainties across the value chain. To help address this barrier, we are working with landowners and local groups to establish demonstration "test beds" that can build experience among land managers and help resolve market uncertainties. We specifically focus on demonstrating the commercial viability of management practices that can enhance soil health, catalyzing economic and environmental synergies that come from healthy soils. Each test bed has a commercial agricultural operation at its center, and we bring together researchers, local groups, corporate partners, and key policymakers who can support wider adoption of these agricultural techniques. Early challenges have included finding commercial farms willing to shift their practices and face uncertain outcomes. A transition to new practices usually involves changes in equipment, scheduling, activities, and monitoring that have implications for the entire farm operation, its resources, and its bottom line. At the same time, practitioners have difficulty quantifying the carbon benefits they provide, due to persistent uncertainties, even with the benefit of decades of experimental research. We are building a network of farmers who are implementing carbon farming practices and addressing these challenges, step by step. We envision our test beds becoming hubs

  18. New Mechanism on Synergistic Effect of Nitrite and Triethanolamine Addition on the Corrosion of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    K. T. Kim

    2016-01-01

    Full Text Available In general, we compared the different inhibition mechanisms of organic inhibitor with that of anodic inhibitor. When triethanolamine or nitrite was added separately to tap water for inhibiting the corrosion of ductile cast iron, large amounts of inhibitor were needed. This is because the corrosion inhibitors had to overcome the galvanic corrosion that occurs between graphite and matrix. In this work, we investigated the corrosion of ductile cast iron in tap water with/without inhibitors. The corrosion rate was measured using chemical immersion test and electrochemical methods, including anodic polarization test. The inhibited surface was analyzed using EPMA and XPS. Test solutions were analyzed by performing FT-IR measurement. When triethanolamine and nitrite coexisted in tap water, synergistic effect built up, and the inhibition effect was ca. 30 times more effective than witnessed with single addition. This work focused on the synergistic effect brought about by nitrite and triethanolamine and its novel mechanism was also proposed.

  19. Local effects in flow-accelerated corrosion wall thinning

    International Nuclear Information System (INIS)

    Pietralik, J.

    2006-01-01

    'Full text:' There is enough evidence that flow conditions play the dominant role locally in Flow-Accelerated Corrosion (FAC) under certain conditions, e.g., in CANDU feeders. While chemistry and materials set the overall potential for FAC, which can be low or high, flow conditions determine the local distribution of wall thinning. This relationship is not new and recent accurate measurements of FAC rate of a plant feeder bend confirm that the relationship between flow local conditions expressed by local mass transfer coefficient and FAC rate in CANDU feeder bends is close. There is also a lot of other direct and indirect, experimental and laboratory evidence about this relationship. This knowledge can be useful for minimizing inspection, predicting new locations for inspection, predicting the location with the highest FAC rate for a given piping component, e.g., feeder element, and determining what components or feeders and to what extent they should be replaced. It applies also to heat exchangers and steam generators. The objective of this paper is to examine the relationship between FAC rate and local flow parameters. For FAC, the most important flow parameter is mass transfer coefficient. The mass transfer coefficient describes the intensity of the transport of corrosion products from the oxide-water interface into the bulk water. Therefore, this parameter can be used for predicting the local distribution of FAC rate. It could also be used in planning experiments because time-varying surface roughness can explain the time-dependence of FAC rates. The paper presents plant and laboratory evidence about the relationship. In addition, it shows correlations for mass transfer coefficient in components that are highly susceptible to FAC. The role of surface roughness, wall shear stress, and local turbulence is also discussed. (author)

  20. 15 CFR 970.702 - Monitoring and mitigation of environmental effects.

    Science.gov (United States)

    2010-01-01

    ... environmental effects. 970.702 Section 970.702 Commerce and Foreign Trade Regulations Relating to Commerce and... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Environmental Effects § 970.702 Monitoring and mitigation of environmental effects. (a) Monitoring. If an...

  1. Experiments and models of general corrosion and flow-assisted corrosion of materials in nuclear reactor environments

    Science.gov (United States)

    Cook, William Gordon

    Corrosion and material degradation issues are of concern to all industries. However, the nuclear power industry must conform to more stringent construction, fabrication and operational guidelines due to the perceived additional risk of operating with radioactive components. Thus corrosion and material integrity are of considerable concern for the operators of nuclear power plants and the bodies that govern their operations. In order to keep corrosion low and maintain adequate material integrity, knowledge of the processes that govern the material's breakdown and failure in a given environment are essential. The work presented here details the current understanding of the general corrosion of stainless steel and carbon steel in nuclear reactor primary heat transport systems (PHTS) and examines the mechanisms and possible mitigation techniques for flow-assisted corrosion (FAC) in CANDU outlet feeder pipes. Mechanistic models have been developed based on first principles and a 'solution-pores' mechanism of metal corrosion. The models predict corrosion rates and material transport in the PHTS of a pressurized water reactor (PWR) and the influence of electrochemistry on the corrosion and flow-assisted corrosion of carbon steel in the CANDU outlet feeders. In-situ probes, based on an electrical resistance technique, were developed to measure the real-time corrosion rate of reactor materials in high-temperature water. The probes were used to evaluate the effects of coolant pH and flow on FAC of carbon steel as well as demonstrate of the use of titanium dioxide as a coolant additive to mitigated FAC in CANDU outlet feeder pipes.

  2. A High-Performance Corrosion-Resistant Iron-Based Amorphous Metal - The Effects of Composition, Structure and Environment on Corrosion Resistance

    International Nuclear Information System (INIS)

    Farmer, J.; Haslam, J.; Day, D.; Lian, T.; Saw, C.; Hailey, P.; Choi, J.S.; Rebak, R.; Yang, N.; Bayles, R.; Aprigliano, L.; Payer, J.; Perepezko, J.; Hildal, K.; Lavernia, E.; Ajdelsztajn, L.; Branagan, D.; Beardsley, B.

    2007-01-01

    The passive film stability of several Fe-based amorphous metal formulations have been found to be comparable to that of high-performance Ni-based alloys, and superior to that of stainless steels, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). The high boron content of this particular amorphous metal also makes it an effective neutron absorber, and suitable for criticality control applications, as discussed in companion publications. Corrosion data for SAM2X5 (Fe 49.7 Cr 17.7 Mn 1.9 Mo 7.4 W 1.6 B 15.2 C 3.8 Si 2.4 ) is discussed here. (authors)

  3. Effect of boron control of environment on corrosion and resistance to low-cycle corrosion fatigue in structural steels

    International Nuclear Information System (INIS)

    Babej, Yu.I.; Zhitkov, V.V.; Zvezdin, Yu.I.; Liskevich, I.Yu.; Nazarov, A.A.

    1982-01-01

    Tests of the specimens on total, contact and crevice corrosion, corrosion cracking and low-cycle fatigue are conducted for determination of corrosion and corrosion-fatigue characteristics in the 15Kh3NMFA, 10N3MFA, 10Kh16N4B, 05Kh13N6M2 structural steels, used in energetics. The environment is subjected to boron control and contacting with atmosphere for simulation of stop and operation modes of the facility. The experiments are carried out in the distilled water with 12g/l H 3 BO 3 and 10 mg/l Cl' at 25, 60, 100 deg C under contacting with atmosphere. It is established, that the pearlitic steels 15Kh3NMFA, 10N3MFA, as well as transition and martensitic 05Kh13N6M2 and 10Kh16N4B steels are highly stable to total, crevice and contact corrosion at the high parameters of aqueous boron-containing medium. Steel resistance to low-cycle fracture decreases slightly under the conditions similar to the operation ones, in the water with 12 g/l H 3 BO 3 . Durability of the pearlitic steels at the simulation of stop conditions decreases more noticeably, crack formation as a rule, initiating from corrosion spots

  4. Erosion-corrosion

    International Nuclear Information System (INIS)

    Aghili, B.

    1999-05-01

    A literature study on erosion-corrosion of pipings in the nuclear industry was performed. Occurred incidents are reviewed, and the mechanism driving the erosion-corrosion is described. Factors that influence the effect in negative or positive direction are treated, as well as programs for control and inspection. Finally, examples of failures from databases on erosion-corrosion are given in an attachment

  5. Catastrophes caused by corrosion

    OpenAIRE

    PETROVIC ZORAN C.

    2016-01-01

    For many years, huge attention has been paid to the problem of corrosion damage and destruction of metallic materials. Experience shows that failures due to corrosion problems are very important, and statistics at the world level shows that the damage resulting from the effects of various forms of corrosion is substantial and that, for example, in industrialized countries it reaches 4-5% of national incomes. Significant funds are determined annually for the prevention and control of corrosion...

  6. Effects of Cr, Mo, and W on Na2SO4 induced high temperature corrosion of Ni

    International Nuclear Information System (INIS)

    Reising, R.F.

    1975-01-01

    Operating gas turbine engines are susceptible to a phenomenon called hot corrosion. Hot corrosion is generally attributed to the interaction of nickel-base turbine blade alloys with ingested sodium sulfate. Two mechanism were presented previously to account for the surface and grain boundary corrosion of nickel metal. The effects of chromium, molybdenum, or tungsten, or their corrosion products on the corrosion of nickel metal were studied. The corrosion products considered are the oxides and sodium-oxygen compounds. The corrosion products of molybdenum and tungsten enhance the sodium sulfate-induced corrosion of nickel to the same degree as the metals themselves while those of chromium do not. The enhanced corrosion caused by sodium molybdate or tungstate suggests that more than a simple acid-base phenomenon is involved. The formation of a triable, porous film caused by the presence of nickel molybdate or tungstate is proposed as the mechanism responsible for this enhancement. This mechanism is consistent with that proposed by Lashka and Glezer who associated the intensified oxidation of molybdenum-containing nickel alloys with a sub-layer oxide scale containing nickel molybdate. (U.S.)

  7. Effects of partial crystallinity and quenched-in defects on corrosion of ...

    Indian Academy of Sciences (India)

    Rapid solidification by planar flow casting has been found to have introduced deficiencies, viz. partial crystallinity, air pockets and compositional difference in the ribbons of rapidly solidified Ti42.9-Cu57.1 alloy. In order to investigate the effects of these deficiencies on the corrosion of rapidly solidified Ti42.9-Cu57.1 alloy ...

  8. A Study on the Effect of Electrolyte Thickness on Atmospheric Corrosion of Carbon Steel

    International Nuclear Information System (INIS)

    Chung, Kyeong Woo; Kim, Kwang Bum

    1998-01-01

    Effect of electrolyte layer thickness and increase in concentration of electrolyte during electrolyte thining on the atmospheric corrosion of carbon steel were investigated using EIS and cathodic polarization technique. The electrolyte layer thickness was controlled via two methods : one is mechanical method with microsyringe applying a different amount of electrolyte onto the metal surface to give different electrolyte thickness with the same electrolyte concentration. The other is drying method in which water layer thickness decreases through drying, causing increase in concentration of electrolyte during electrolyte thinning. In the region whose corrosion rate is controlled by cathodic reaction, corrosion rate for mechanical method is larger than that for drying method. However, for the electrolyte layers thinner than 20 ∼ 30 m, increase in concentration of electrolyte cause a higher corrosion rate for the case of the mechanical method compared with that of drying method. For a carbon steel covered with 0.1M Na 2 SO 4 , maximum corrosion rate is found at an electrolyte thickness of 45 ∼ 55 μm for mechanical method. However, maximum corrosion rate is found at an electrolyte thickness of 20 ∼ 35 μm for drying method. The limiting current is inversely proportional to electrolyte thickness for electrolyte thicker than 20 ∼ 30 μm. However, further decrease of the electrolyte thickness leads to an electrolyte thickness-independent limiting current reagion, where the oxygen rate is controlled by the solvation of oxygen at the electrolyte/gas interface. Diffusion limiting current for drying method is smaller compared with that for mechanica control. This can be attributed to decreasing in O 2 solubility caused by increase in concentration of electrolyte during electrolyte thining

  9. Effect of chemical composition on corrosion resistance of Zircaloy fuel cladding tube for BWR

    International Nuclear Information System (INIS)

    Inagaki, Masahisa; Akahori, Kimihiko; Kuniya, Jirou; Masaoka, Isao; Suwa, Masateru; Maru, Akira; Yasuda, Teturou; Maki, Hideo.

    1990-01-01

    Effects of Fe and Ni contents on nodular corrosion susceptibility and hydrogen pick-up of Zircaloy were investigated. Total number of 31 Zr alloys having different chemical compositions; five Zr-Sn-Fe-Cr alloys, eight Zr-Sn-Fe-Ni alloys and eighteen Zr-Sn-Fe-Ni-Cr alloys, were melted and processed to thin plates for the corrosion tests in the environments of a high temperature (510degC) steam and a high temperature (288degC) water. In addition, four 450 kg ingots of Zr-Sn-Fe-Ni-Cr alloys were industrially melted and BWR fuel cladding tubes were manufactured through a current material processing sequence to study their producibility, tensile properties and corrosion resistance. Nodular corrosion susceptibility decreased with increasing Fe and Ni contents of Zircaloys. It was seen that the improved Zircaloys having Fe and Ni contents in the range of 0.30 [Ni]+0.15[Fe]≥0.045 (w%) showed no susceptibility to nodular corrosion. An increase of Fe content resulted in a decrease of hydrogen pick-up fraction in both steam and water environments. An increase of Fe and Ni content of Zircaloys in the range of Fe≤0.25 w% and Ni≤0.1 w% did not cause the changes in tensile properties and fabricabilities of fuel cladding tube. The fuel cladding tube of improved Zircaloy, containing more amount of Fe and Ni than the upper limit of Zircaloy-2 specification showed no susceptibility to nodular corrosion even in the 530degC steam test. (author)

  10. How Effective Is Road Mitigation at Reducing Road-Kill? A Meta-Analysis.

    Science.gov (United States)

    Rytwinski, Trina; Soanes, Kylie; Jaeger, Jochen A G; Fahrig, Lenore; Findlay, C Scott; Houlahan, Jeff; van der Ree, Rodney; van der Grift, Edgar A

    2016-01-01

    Road traffic kills hundreds of millions of animals every year, posing a critical threat to the populations of many species. To address this problem there are more than forty types of road mitigation measures available that aim to reduce wildlife mortality on roads (road-kill). For road planners, deciding on what mitigation method to use has been problematic because there is little good information about the relative effectiveness of these measures in reducing road-kill, and the costs of these measures vary greatly. We conducted a meta-analysis using data from 50 studies that quantified the relationship between road-kill and a mitigation measure designed to reduce road-kill. Overall, mitigation measures reduce road-kill by 40% compared to controls. Fences, with or without crossing structures, reduce road-kill by 54%. We found no detectable effect on road-kill of crossing structures without fencing. We found that comparatively expensive mitigation measures reduce large mammal road-kill much more than inexpensive measures. For example, the combination of fencing and crossing structures led to an 83% reduction in road-kill of large mammals, compared to a 57% reduction for animal detection systems, and only a 1% for wildlife reflectors. We suggest that inexpensive measures such as reflectors should not be used until and unless their effectiveness is tested using a high-quality experimental approach. Our meta-analysis also highlights the fact that there are insufficient data to answer many of the most pressing questions that road planners ask about the effectiveness of road mitigation measures, such as whether other less common mitigation measures (e.g., measures to reduce traffic volume and/or speed) reduce road mortality, or to what extent the attributes of crossing structures and fences influence their effectiveness. To improve evaluations of mitigation effectiveness, studies should incorporate data collection before the mitigation is applied, and we recommend a

  11. How Effective Is Road Mitigation at Reducing Road-Kill? A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Trina Rytwinski

    Full Text Available Road traffic kills hundreds of millions of animals every year, posing a critical threat to the populations of many species. To address this problem there are more than forty types of road mitigation measures available that aim to reduce wildlife mortality on roads (road-kill. For road planners, deciding on what mitigation method to use has been problematic because there is little good information about the relative effectiveness of these measures in reducing road-kill, and the costs of these measures vary greatly. We conducted a meta-analysis using data from 50 studies that quantified the relationship between road-kill and a mitigation measure designed to reduce road-kill. Overall, mitigation measures reduce road-kill by 40% compared to controls. Fences, with or without crossing structures, reduce road-kill by 54%. We found no detectable effect on road-kill of crossing structures without fencing. We found that comparatively expensive mitigation measures reduce large mammal road-kill much more than inexpensive measures. For example, the combination of fencing and crossing structures led to an 83% reduction in road-kill of large mammals, compared to a 57% reduction for animal detection systems, and only a 1% for wildlife reflectors. We suggest that inexpensive measures such as reflectors should not be used until and unless their effectiveness is tested using a high-quality experimental approach. Our meta-analysis also highlights the fact that there are insufficient data to answer many of the most pressing questions that road planners ask about the effectiveness of road mitigation measures, such as whether other less common mitigation measures (e.g., measures to reduce traffic volume and/or speed reduce road mortality, or to what extent the attributes of crossing structures and fences influence their effectiveness. To improve evaluations of mitigation effectiveness, studies should incorporate data collection before the mitigation is applied, and we

  12. How Effective Is Road Mitigation at Reducing Road-Kill? A Meta-Analysis

    Science.gov (United States)

    Rytwinski, Trina; Soanes, Kylie; Jaeger, Jochen A. G.; Fahrig, Lenore; Findlay, C. Scott; Houlahan, Jeff; van der Ree, Rodney; van der Grift, Edgar A

    2016-01-01

    Road traffic kills hundreds of millions of animals every year, posing a critical threat to the populations of many species. To address this problem there are more than forty types of road mitigation measures available that aim to reduce wildlife mortality on roads (road-kill). For road planners, deciding on what mitigation method to use has been problematic because there is little good information about the relative effectiveness of these measures in reducing road-kill, and the costs of these measures vary greatly. We conducted a meta-analysis using data from 50 studies that quantified the relationship between road-kill and a mitigation measure designed to reduce road-kill. Overall, mitigation measures reduce road-kill by 40% compared to controls. Fences, with or without crossing structures, reduce road-kill by 54%. We found no detectable effect on road-kill of crossing structures without fencing. We found that comparatively expensive mitigation measures reduce large mammal road-kill much more than inexpensive measures. For example, the combination of fencing and crossing structures led to an 83% reduction in road-kill of large mammals, compared to a 57% reduction for animal detection systems, and only a 1% for wildlife reflectors. We suggest that inexpensive measures such as reflectors should not be used until and unless their effectiveness is tested using a high-quality experimental approach. Our meta-analysis also highlights the fact that there are insufficient data to answer many of the most pressing questions that road planners ask about the effectiveness of road mitigation measures, such as whether other less common mitigation measures (e.g., measures to reduce traffic volume and/or speed) reduce road mortality, or to what extent the attributes of crossing structures and fences influence their effectiveness. To improve evaluations of mitigation effectiveness, studies should incorporate data collection before the mitigation is applied, and we recommend a

  13. Demonstration and Validation of Controlled Low-Strength Materials for Corrosion Mitigation of Buried Steel Pipes: Final Report on Project F09-A17

    Science.gov (United States)

    2015-12-01

    steel surfaces. Two different CLSM blends were tested. Both used cement and a flowability admixture, but one used native soil instead of standard...by about 63% in the soil cement . Therefore, CLSMs can reduce the cost of applying CP to buried steel structures. The return-on-investment ratio for...was exposed in the native-soil backfill to deter- mine the corrosion rate in the absence of any flowable fill or soil cement . The removable steel

  14. The mitigation effect of configuration and context optimization of urban holdings on heat island

    International Nuclear Information System (INIS)

    Liu, Y P; Yu, D Y; Xun, B

    2014-01-01

    The urban heat island (UHI) phenomenon has become a serious problem in recent years. It is necessary to study the mitigation methods and quantify their effects on UHI. In this paper, based on the remote sensed data, an empirical model was established as a negative function of land surface temperature (LST) to vegetation coverage. Urban heat island intensity (UHII) was estimated by a robust statistic algorithm. Compared with the current condition (vegetation coverage equaling to 0%), five high vegetation coverage building scenarios (10%, 20%, 30%, 40%, and 50%) were designed to explore mitigation effects on UHI separately. The results showed that the mean LST increase by about 0.5°C when vegetation coverage decrease by 0.1. UHII has a considerable decrease when the scenarios of vegetation coverage equaling to 20% and 40%, respectively. The reasonable vegetation configuration is the effective UHI mitigation

  15. Interventions to Mitigate the Psychological Effects of Media Violence on Aggressive Behavior.

    Science.gov (United States)

    Eron, Leonard D.

    1986-01-01

    Describes and evaluates attempts to mitigate effect that watching television violence has on young children. Most relevant studies have been laboratory experiments, and there is no reported evidence that any intervention has been effective over long-term. Concludes that interventions combining cognitive and behavioral approaches have most promise,…

  16. The effect of functionalized polycarboxylate structures as corrosion inhibitors in a simulated concrete pore solution

    Science.gov (United States)

    Fazayel, A. S.; Khorasani, M.; Sarabi, A. A.

    2018-05-01

    In this study, the effects of polycarboxylate derivatives with different comonomers and functional groups on the control or reduction of corrosion in steel specimens were evaluated through electrochemical impedance spectroscopy (EIS) and potentiodynamic analysis. A highly alkaline contaminated concrete pore solution (CPS) containing chlorides was used to simulate the pitting corrosion, and according to the results, the mechanism of inhibitive action was determined. Both the inhibition efficiency and pitting corrosion inhibition of methacrylate-copolymers were in the order of poly methacrylate-co acrylamide > poly methacrylate-co-2-acrylamido-2 methylpropane sulfonic acid > poly methacrylate-co-hydroxyethyl methacrylate. In addition, the corrosion potential of steel specimens in all studied concentrations of NaCl with different concentrations of polymethacrylate-co acrylamide (as the best inhibitor in this study) in saturated Ca(OH)2 solution showed almost an identical trend. Polymethacrylic acid-co-acrylamide showed a 92.35% inhibitor efficiency in the saturated Ca(OH)2 solution containing 1.8 wt.% chlorides and could effectively reduce the corrosion rate. Even at 3.5 wt.% of NaCl, this inhibitor could remarkably reduce the destructive effect of chloride ion attacks on the steel surface and passive film. The inhibition effect of these polymeric inhibitors seemed to be due to the formation of a barrier layer on the metal surface, approved by the well-known adsorption mechanism of organic molecules at the metal/solution interface. The results of SEM, EDS and AFM investigations were also in agreement with the outcomes of electrochemical studies.

  17. Effect of sulfur on the SCC and corrosion fatigue performance of stainless steel

    International Nuclear Information System (INIS)

    West, E.; Nolan, T.; Lucente, A.; Morton, D.; Lewis, N.; Morris, R.; Mullen, J.; Newsome, G.

    2015-01-01

    Stress corrosion cracking and corrosion fatigue experiments were conducted on model heats of 304/304L stainless steel with systematically controlled sulfur content to isolate the influence of sulfur on crack growth behavior. The results of the SCC experiments conducted in 338 C. degrees deaerated water on 20% cold worked model heats with 0.006 and 0.012 wt% sulfur showed an order of magnitude or more reduction in the crack growth rate relative to a model heat with <0.001 wt% sulfur. Corrosion fatigue crack growth rates revealed a reduction in the crack growth rates of the elevated sulfur heats relative to model predicted steady state crack growth rates with increasing rise time for nominal loading conditions of a stress ratio of 0.7 and a stress intensity factor range of 6.6 MPa√m. At the longest rise time of 5.330 sec, the corrosion fatigue crack growth rate of the 0.006 wt% sulfur model heat was only 13% of model predictions and the crack growth of the 0.012 wt% sulfur heat completely stalled. Experiments conducted in anion faulted aerated water on stainless steel heats with moderate to high sulfur and variable carbon and boron contents showed that any detrimental effect of sulfur in this environment was secondary to the effect of sensitization in promoting SCC growth. (authors)

  18. Effects of iron content on microstructure and crevice corrosion of titanium Grade-2

    International Nuclear Information System (INIS)

    He, X.; Noel, J.J.; Shoesmith, D.W.

    2003-01-01

    The effects of iron content on microstructure and crevice corrosion of titanium Grade-2 (Ti-2) were studied using a galvanic coupling technique combined with optical microscopy and secondary ion mass spectrometry (SIMS) imaging. The study reveals that iron content has a significant effect on the microstructure and crevice corrosion behavior of Ti-2. The grain size decreases significantly with the increasing iron content. For Ti-2 material of medium iron content, crevice corrosion was readily initiated and exhibited extensive intergranular attack which could be associated with the more reactive iron-stabilized β-phase within the α-phase matrix as revealed by SIMS imaging. By contrast, Ti-2 materials with low and high iron content showed suppressed crevice attack. The small surface area of available grain boundaries in Ti-2 of low iron content accounted for this limited attack. For the material with high iron content, SIMS imaging suggest that some Ti x Fe intermetallic particles were formed. These particles may act as proton reduction catalysts and enhance crevice corrosion resistance. (author)

  19. Effect of temperature on corrosion of steels in high purity water

    International Nuclear Information System (INIS)

    Honda, Takashi; Kashimura, Eiji; Ohashi, Kenya; Furutani, Yasumasa; Ohsumi, Katsumi; Aizawa, Motohiro; Matsubayashi, Hideo.

    1987-01-01

    Effect of temperature on corrosion behavior of steels was evaluated in the range of 150 - 300 deg C in high purity water containing about 200 ppb oxygen. The exposure tests were carried out in actual and simulated reactor water of BWR plants. Through X-ray diffractometry, SIMS, XPS and chemical analyses, it was clarified that the chemical composition and morphology of oxide films formed on austenitic stainless steel changed above about 250 deg C. Chromium dissolved easily through corrosion above this temperature, and the oxide films primarily consisted of spinel type oxides containing high concentration of nickel. Further, as the protectivety of oxide films increased with temperature, the corrosion rate had a peak around 250 deg C after a long exposure period. A major phase of oxide films on carbon steel was magnetite in the whole temperature range. However, as the oxide films formed at high temperatures had very compact structures, the effect of temperature on the corrosion rate was similar to that observed on stainless steel. (author)

  20. The effects of the glass surface area/solution volume ratio on glass corrosion: A critical review

    International Nuclear Information System (INIS)

    Ebert, W.L.

    1995-03-01

    This report reviews and summarizes the present state of knowledge regarding the effects of the glass surface area/solution volume (SA/V) ratio on the corrosion behavior of borosilicate waste glasses. The SA/V ratio affects the rate of glass corrosion through the extent of dilution of corrosion products released from the glass into the leachate solution: glass corrosion products are diluted more in tests conducted at low SA/V ratios than they are in tests conducted at high SA/V ratios. Differences in the solution chemistries generated in tests conducted at different SA/V ratios then affect the observed glass corrosion behavior. Therefore, any testing parameter that affects the solution chemistry will also affect the glass corrosion rate. The results of static leach tests conducted to assess the effects of the SA/V are discussed with regard to the effects of SA/V on the solution chemistry. Test results show several remaining issues with regard to the long-term glass corrosion behavior: can the SA/V ratio be used as an accelerating parameter to characterize the advanced stages of glass corrosion relevant to long disposal times; is the alteration of the glass surface the same in tests conducted at different SA/V, and in tests conducted with monolithic and crushed glass samples; what are the effects of the SA/V and the extent of glass corrosion on the disposition of released radionuclides? These issues will bear on the prediction of the long-term performance of waste glasses during storage. The results of an experimental program conducted at ANL to address these and other remaining issues regarding the effects of SA/V on glass corrosion are described. 288 refs., 59 figs., 16 tabs

  1. The effects of the glass surface area/solution volume ratio on glass corrosion: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W.L. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1995-03-01

    This report reviews and summarizes the present state of knowledge regarding the effects of the glass surface area/solution volume (SA/V) ratio on the corrosion behavior of borosilicate waste glasses. The SA/V ratio affects the rate of glass corrosion through the extent of dilution of corrosion products released from the glass into the leachate solution: glass corrosion products are diluted more in tests conducted at low SA/V ratios than they are in tests conducted at high SA/V ratios. Differences in the solution chemistries generated in tests conducted at different SA/V ratios then affect the observed glass corrosion behavior. Therefore, any testing parameter that affects the solution chemistry will also affect the glass corrosion rate. The results of static leach tests conducted to assess the effects of the SA/V are discussed with regard to the effects of SA/V on the solution chemistry. Test results show several remaining issues with regard to the long-term glass corrosion behavior: can the SA/V ratio be used as an accelerating parameter to characterize the advanced stages of glass corrosion relevant to long disposal times; is the alteration of the glass surface the same in tests conducted at different SA/V, and in tests conducted with monolithic and crushed glass samples; what are the effects of the SA/V and the extent of glass corrosion on the disposition of released radionuclides? These issues will bear on the prediction of the long-term performance of waste glasses during storage. The results of an experimental program conducted at ANL to address these and other remaining issues regarding the effects of SA/V on glass corrosion are described. 288 refs., 59 figs., 16 tabs.

  2. Effect of antimony, bismuth and calcium addition on corrosion and electrochemical behaviour of AZ91 magnesium alloy

    International Nuclear Information System (INIS)

    Zhou Wei; Aung, Naing Naing; Sun Yangshan

    2009-01-01

    This study investigated the effect of antimony, bismuth and calcium addition on the corrosion and electrochemical behaviour of AZ91 magnesium alloy in 3.5% NaCl solution. Techniques including constant immersion, electrochemical potentiodynamic polarisation, scanning electron microscopy (SEM), energy dispersed spectroscopy (EDS) and X-ray diffraction (XRD) were used to characterise electrochemical and corrosion properties and surface topography. It was found that corrosion attack occurred preferentially on Mg 3 Bi 2 and Mg 3 Sb 2 particles while Mg 17 Al 8 Ca 0.5 and Mg 2 Ca phases showed no detrimental effect on corrosion. Combined addition of small amounts of bismuth and antimony to the AZ91 alloy resulted in significant increase in corrosion rate

  3. Exploratory shaft liner corrosion estimate

    International Nuclear Information System (INIS)

    Duncan, D.R.

    1985-10-01

    An estimate of expected corrosion degradation during the 100-year design life of the Exploratory Shaft (ES) is presented. The basis for the estimate is a brief literature survey of corrosion data, in addition to data taken by the Basalt Waste Isolation Project. The scope of the study is expected corrosion environment of the ES, the corrosion modes of general corrosion, pitting and crevice corrosion, dissimilar metal corrosion, and environmentally assisted cracking. The expected internal and external environment of the shaft liner is described in detail and estimated effects of each corrosion mode are given. The maximum amount of general corrosion degradation was estimated to be 70 mils at the exterior and 48 mils at the interior, at the shaft bottom. Corrosion at welds or mechanical joints could be significant, dependent on design. After a final determination of corrosion allowance has been established by the project it will be added to the design criteria. 10 refs., 6 figs., 5 tabs

  4. Flow Accelerated Corrosion: Effect of Water Chemistry and Database Construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Hee; Kim, Kyung Mo; Lee, Gyeong Geun; Kim, Dong Jin [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Flow accelerated corrosion (FAC) of carbon steel piping in pressurized water reactors (PWRs) has been a major issue in nuclear industry. Severe accidents at Surry Unit 2 in 1986 and Mihama Unit 3 in 2004 initiated the world wide interest in this area. FAC is a dissolution process of the protective oxide layer on carbon steel or low-alloy steel when these parts are exposed to flowing water (single-phase) or wet steam (two-phase). In a single-phase flow, a scalloped, wavy, or orange peel and in a two-phase flow, tiger striping is observed, respectively. FAC is affected by many parameters, like material composition, pH, dissolved oxygen (DO), flow velocity, system pressure, and steam quality. This paper describes the water chemistry factors influencing on FAC and the database is then constructed using literature data. In order to minimize FAC in NPPs, the optimal method is to control water chemistry parameters. However, quantitative data about FAC have not been published for proprietary reason even though qualitative behaviors of FAC have been well understood. A database was constructed using experimental data in literature. Accurate statistical analysis will be performed using this database to identify the relationship between the FAC rate and test environment.

  5. Anti-corrosive Effects of Multi-Walled Carbon Nano Tube and Zinc Particle Shapes on Zinc Ethyl Silicate Coated Carbon Steel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, JiMan; Shon, MinYoung; Kwak, SamTak [Pukyong National University, Busan (Korea, Republic of)

    2016-01-15

    Zinc ethyl silicate coatings containing multi walled carbon nanotubes (MWCNTs) were prepared, to which we added spherical and flake shaped zinc particles. The anti-corrosive effects of MWCNTs and zinc shapes on the zinc ethyl silicate coated carbon steel was examined, using electrochemical impedance spectroscopy and corrosion potential measurement. The results of EIS and corrosion potential measurement showed that the zinc ethyl silicate coated with flake shaped zinc particles and MWCNT showed lesser protection to corrosion. These outcomes were in agreement with previous results of corrosion potential and corrosion occurrence.

  6. climate change: causes, effects and mitigation measures-a review

    African Journals Online (AJOL)

    BARTH EKWUEME

    Both natural and human causes of climate change including the earth's orbital changes, solar variations .... analysis supported by climate models have revealed that cloud ... clouds could actually exert a small cooling effect as temperature ...

  7. Effect of cerium addition on the corrosion behaviour of carbon-alloyed iron aluminides

    International Nuclear Information System (INIS)

    Sriram, S.; Balasubramaniam, R.; Mungole, M.N.; Bharagava, S.; Baligidad, R.G.

    2006-01-01

    The effect of Ce addition on the microstructure and corrosion behavior of carbon-alloyed iron aluminides Fe-20.0Al-2.0C, Fe-18.5Al-3.6C and Fe-19.2Al-3.3C-0.07Ce (in at.%) has been studied. The potentiodynamic polarization behaviour of the alloys was evaluated in freely aerated 0.25 mol/l H 2 SO 4 . A 0.05% C steel was used for comparison purposes. All the alloys exhibited active-passive behaviour in the acidic solution. The addition of Ce destroyed passivity as indicated by lower breakdown potentials in polarization studies. This has been related to the finer distribution of the carbides in the microstructure. Corrosion rates were evaluated by immersion testing. The iron aluminide with Ce addition exhibited a lower corrosion rate compared to the aluminides without Ce addition. This has been attributed to modifications in surface film with Ce addition. Scanning electron microscopy of corroded surfaces indicated that the carbon-alloyed intermetallics were susceptible to localized galvanic corrosion due to the presence of carbides in the microstructure

  8. Effect of microstructure on the localized corrosion of Fe-Cr-Mn-N stainless steels

    International Nuclear Information System (INIS)

    Kim, Jae Young; Park, Yong Soo; Kim, Young Sik

    1998-01-01

    This paper dealt with the effect of microstructure on the localized corrosion of Fe-Cr-Mn-N stainless steels. The experimental alloys were made by vacuum induction melting and then hot rolled. The alloys were designed by controlling Cr eq /Ni eq ratio. Two alloys had austenitic phase and one alloy showed (austenite+ferrite) du-plex phase. High nitrogen addition in austenitic alloys stabilized the austenitic structure and then suppressed the formations of ferrite and α martensite, but martensite was formed in the case of large Cr eq /Ni eq ratio and low nitrogen addition. Pitting initiation site was grain boundary in austenitic alloys and was ferrite/austenite phase boundary in duplex alloy in the HCl solution. In sulfuric acids, austenitic alloys showed uniform corrosion, but ferrite phase was preferentially corroded in duplex alloy. The preferential dissolution seems to be related with the distribution of alloying elements between ferrite and austenite. Intergranular corrosion test showed that corrosion rate by immersion Huey test had a linear relation with degree of sensitization by EPR test

  9. Investigation of processing effects on the corrosion resistance of Ti20Mo alloy in saline solutions

    International Nuclear Information System (INIS)

    Bolat, G.; Izquierdo, J.; Gloriant, T.; Chelariu, R.; Mareci, D.; Souto, R.M.

    2015-01-01

    Graphical abstract: - Highlights: • Alloy fabrication method affects both surface finish and corrosion resistance. • More porous surface finish and higher wettability produced by powder sintering. • Passive layer formed on sintered alloy breaks down in saline solution. • Increase in surface porosity facilitated electron transfer through the oxide film. • More corrosion resistant alloy produced by cold crucible levitation melting. - Abstract: The electrochemical properties of Ti20Mo alloys prepared using different fabrication procedures, namely cold crucible levitation melting (CCLM) and powder sintering, were investigated using linear potentiodynamic polarization and EIS measurements. The surface condition was established using AFM, with the observation of a more porous surface finish in the case of powder sintering. A major effect of surface conditioning on the corrosion resistance of Ti20Mo alloys was observed, where the compact finish exhibits a superior corrosion resistance in chloride-containing saline solutions. Less insulating surfaces towards electron exchange resulted for the more porous finish as revealed by scanning electrochemical microscopy (SECM)

  10. Effect of Plastic Deformation on the Corrosion Behavior of a Super-Duplex Stainless Steel

    Science.gov (United States)

    Renton, Neill C.; Elhoud, Abdu M.; Deans, William F.

    2011-04-01

    The role of plastic deformation on the corrosion behavior of a 25Cr-7Ni super-duplex stainless steel (SDSS) in a 3.5 wt.% sodium chloride solution at 90 °C was investigated. Different levels of plastic strain between 4 and 16% were applied to solution annealed tensile specimens and the effect on the pitting potential measured using potentiodynamic electrochemical techniques. A nonlinear relationship between the pitting potential and the plastic strain was recorded, with 8 and 16% causing a significant reduction in average E p, but 4 and 12% causing no significant change when compared with the solution-annealed specimens. The corrosion morphology revealed galvanic interaction between the anodic ferrite and the cathodic austenite causing preferential dissolution of the ferrite. Mixed potential theory and the changing surface areas of the two phases caused by the plastic deformation structures explain the reductions in pitting potential at certain critical plastic strain levels. End-users and manufacturers should evaluate the corrosion behavior of specific cold-worked duplex and SDSSs using their as-produced surface finishes assessing in-service corrosion performance.

  11. Experimental Investigation into Corrosion Effect on Mechanical Properties of High Strength Steel Bars under Dynamic Loadings

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2018-01-01

    Full Text Available The tensile behaviors of corroded steel bars are important in the capacity evaluation of corroded reinforced concrete structures. The present paper studies the mechanical behavior of the corroded high strength reinforcing steel bars under static and dynamic loading. High strength reinforcing steel bars were corroded by using accelerated corrosion methods and the tensile tests were carried out under different strain rates. The results showed that the mechanical properties of corroded high strength steel bars were strain rate dependent, and the strain rate effect decreased with the increase of corrosion degree. The decreased nominal yield and ultimate strengths were mainly caused by the reduction of cross-sectional areas, and the decreased ultimate deformation and the shortened yield plateau resulted from the intensified stress concentration at the nonuniform reduction. Based on the test results, reduction factors were proposed to relate the tensile behaviors with the corrosion degree and strain rate for corroded bars. A modified Johnson-Cook strength model of corroded high strength steel bars under dynamic loading was proposed by taking into account the influence of corrosion degree. Comparison between the model and test results showed that proposed model properly describes the dynamic response of the corroded high strength rebars.

  12. Protective effect of KhOSP-10 inhibitor during corrosion, hydrogenadsorption and corrosion cracking of a steel in sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Mindyuk, A K; Svist, E I; Savitskaya, O P; Goyan, E B; Gopanenko, A N [AN Ukrainskoj SSR, Lvov. Fiziko-Mekhanicheskij Inst.

    1975-01-01

    The protective propeties of inhibitor KhOSP-10 in the time of corrosion and corrosive cracking of steel 40Kh are higher then those of inhibitors KPI-1, KI-1, I-I-V etc. Its ability to reduce steel hydrogenation is the same as in the case of KPI-1 inhibitor i.e. below that of KI-1. HCl additives enhance the efficiency of inhibitors KPI-1, KI-1, I-1-V etc. up to the protective ability of KhOSP-10. Kinetics of the electrode processes was estimated from polarization curves.

  13. Effect of Water Chemistry Variations on Corrosion of Zr-Alloys for BWR Applications

    International Nuclear Information System (INIS)

    Kim, Young-Jin; Yang- Lin, Pi; Lutz, Dan; Kucuk, Aylin; Cheng, Bo

    2012-09-01

    Two reference water chemistry conditions (60 ppb Zn and 60 μg/cm 2 Pt/Rh with either 500 ppb O 2 and 500 ppb H 2 O 2 , or 150 ppb H 2 ) were chosen for testing at 300 deg. C in refreshed autoclaves. For each reference water chemistry, the potential effects due to three chemical impurities of interest to BWRs (33 ppm Na, 10 ppm Li, and 10 ppm EHC fluid) were evaluated. Zircaloy-2 and GNF-Ziron (a Zr-based alloy with higher Fe additions than Zircaloy-2) cladding tubes were tested and the effects of tubing process variation and pre-filming were investigated. Tested channel materials included Zircaloy-2, Zircaloy-4, GNF-Ziron and NSF (a Zr-based alloy with Sn, Nb and Fe additions). The corrosion weight gain and hydrogen absorption were measured up to 12 months of exposure for a given water chemistry condition. Tests under 150 ppb H 2 based water chemistry, with or without chemical impurities, generally resulted in greater amounts of corrosion after 12 month exposure compared with 500 ppb O 2 and 500 ppb H 2 O 2 based water chemistries. Of the added chemical impurities, only 33 ppm Na addition produced slightly increased corrosion. Under various test conditions, the presence of a thin pre-film resulted in some initial corrosion benefits, but the benefits were no longer evident after 12 months exposure; however, slight hydrogen benefits remained. For GNF-Ziron cladding, hydrogen absorption was generally lower compared with similarly processed Zircaloy-2 under 150 ppb H 2 based water chemistry, when corrosion was generally higher. Of the channel material tested, NSF developed the lowest level of hydrogen absorption, particularly under 150 ppb H 2 based water chemistries. (authors)

  14. Effect of the Type of Surface Treatment and Cement on the Chloride Induced Corrosion of Galvanized Reinforcements

    Science.gov (United States)

    Tittarelli, Francesca; Mobili, Alessandra; Vicerè, Anna Maria; Roventi, Gabriella; Bellezze, Tiziano

    2017-10-01

    The effect of a new passivation treatment, obtained by immersion of the galvanized reinforcements in a trivalent chromium salts based solution, on the chlorides induced corrosion has been investigated. To investigate also the effect of cement alkalinity on corrosion behaviour of reinforcements, concretes manufactured with three different European cements were compared. The obtained results show that the alternative treatment based on hexavalent chromium-free baths forms effective protection layers on the galvanized rebar surfaces. The higher corrosion rates of zinc coating in concrete manufactured with Portland cement compared to those recorded for bars in concrete manufactured with pozzolanic cement depends strongly on the higher chloride content at the steel concrete interface.

  15. Multiple-pollutant cost-effectiveness of greenhouse gas mitigation measures in the UK agriculture

    International Nuclear Information System (INIS)

    Eory, Vera; Topp, Cairistiona F.E.; Moran, Dominic

    2013-01-01

    Highlights: ► Multiple-pollutant marginal abatement cost curves can inform integrated environmental policy. ► We incorporated the co-effects on NH 3 , NO 3 − , P and sediment, as monetary values, into the UK GHG MACC. ► Adding co-effects modifies the GHG MACC, though with little impact unless using high damage values. ► Further research is needed on the co-effects of GHG mitigation measures and on damage values. ► Analysis should focus on the co-effects of measures that are slightly above or below the threshold. -- Abstract: This paper develops multiple-pollutant marginal abatement cost curve analysis to identify an optimal set of greenhouse gas (GHG) mitigation measures considering the trade-offs and synergies with other environmental pollutants. The analysis is applied to UK agriculture, a sector expected to make a contribution to the national GHG mitigation effort. Previous analyses using marginal abatement cost curves (MACCs) have determined the sector's GHG abatement potential based on the cost-effectiveness of a variety of technically feasible mitigation measures. Most of these measures have external effects on other pollution loads arising from agricultural activities. Here the monetary values of four of the most important impacts to water and air (specifically ammonia, nitrate, phosphorous and sediment) are included in the cost-effectiveness analysis. The resulting multiple-pollutant marginal abatement cost curve (MP MACC) informs the design of sustainable climate change policies by showing how the MP MACC for the UK agriculture can differ from the GHG MACC. The analysis also highlights research gaps, and suggests a need to understand the wider environmental effects of GHG mitigation options and to reduce the uncertainty in pollutant damage cost estimates

  16. Effects of grain size on the corrosion resistance of pure magnesium by cooling rate-controlled solidification

    Science.gov (United States)

    Liu, Yichi; Liu, Debao; You, Chen; Chen, Minfang

    2015-09-01

    The aim of this study was to investigate the effect of grain size on the corrosion resistance of pure magnesium developed for biomedical applications. High-purity magnesium samples with different grain size were prepared by the cooling rate-controlled solidification. Electrochemical and immersion tests were employed to measure the corrosion resistance of pure magnesium with different grain size. The electrochemical polarization curves indicated that the corrosion susceptibility increased as the grain size decrease. However, the electrochemical impedance spectroscopy (EIS) and immersion tests indicated that the corrosion resistance of pure magnesium is improved as the grain size decreases. The improvement in the corrosion resistance is attributed to refine grain can produce more uniform and density film on the surface of sample.

  17. The Effect of Deep Cryogenic Treatment on the Corrosion Behavior of Mg-7Y-1.5Nd Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Quantong Jiang

    2017-10-01

    Full Text Available The effect of quenching on the corrosion resistance of Mg-7Y-1.5Nd alloy was investigated. The as-cast alloy was homogenized at 535 °C for 24 h, followed by quenching in air, water, and liquid nitrogen. Then, all of the samples were peak-aged at 225 °C for 14 h. The microstructures were studied by scanning electron microscopy, energy-dispersive spectrometry, and X-ray diffraction. Corrosion behavior was analyzed by using weight loss rate and gas collection. Electrochemical characterizations revealed that the T4-deep cryogenic sample displayed the strongest corrosion resistance among all of the samples. A new square phase was discovered in the microstructure of the T6-deep cryogenic sample; this phase was hugely responsible for the corrosion property. Cryogenic treatment significantly improved the corrosion resistance of Mg-7Y-1.5Nd alloy.

  18. Effect of pulsed gas tungsten arc welding on corrosion behavior of Ti-6Al-4V titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, M. [Department of Mechanical Engineering, Maamallan Institute of Technology, Anna University, Sriperumpudur 602 105 (India)], E-mail: manianmb@rediffmail.com; Jayabalan, V. [Department of Manufacturing Engineering, Anna University, Guindy, Chennai 600 025 (India)], E-mail: jbalan@annauniv.edu; Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002 (India)], E-mail: visvabalu@yahoo.com

    2008-07-01

    Due to the excellent combination of properties such as elevated strength-to-weight ratio, high toughness and excellent resistance to corrosion, make titanium alloys attractive for many industrial applications. Advantages of pulsed current welding frequently reported in literature include refinement of fusion zone grain size, etc. Hence, in this investigation an attempt has been made to study the effect of pulsed current Gas Tungsten Arc (GTA) welding parameters on corrosion behavior of Ti-6Al-4V titanium alloy. Pulsed current gas tungsten arc welding was used to fabricate the joints. To optimize the number of experiments to be performed, central composite design was used. The investigation revealed increase in corrosion resistance with increase in peak current and pulse frequency up to an optimum value of the same and decrease in corrosion resistance beyond that optimum point. An increase in corrosion resistance with grain refinement was also detected.

  19. Effect of pulsed gas tungsten arc welding on corrosion behavior of Ti-6Al-4V titanium alloy

    International Nuclear Information System (INIS)

    Balasubramanian, M.; Jayabalan, V.; Balasubramanian, V.

    2008-01-01

    Due to the excellent combination of properties such as elevated strength-to-weight ratio, high toughness and excellent resistance to corrosion, make titanium alloys attractive for many industrial applications. Advantages of pulsed current welding frequently reported in literature include refinement of fusion zone grain size, etc. Hence, in this investigation an attempt has been made to study the effect of pulsed current Gas Tungsten Arc (GTA) welding parameters on corrosion behavior of Ti-6Al-4V titanium alloy. Pulsed current gas tungsten arc welding was used to fabricate the joints. To optimize the number of experiments to be performed, central composite design was used. The investigation revealed increase in corrosion resistance with increase in peak current and pulse frequency up to an optimum value of the same and decrease in corrosion resistance beyond that optimum point. An increase in corrosion resistance with grain refinement was also detected

  20. The effect lead impurities on the corrosion resistance of alloy 600 and alloy 690 in high temperature water

    International Nuclear Information System (INIS)

    Sakai, T.; Nakagomi, N.; Kikuchi, T.; Aoki, K.; Nakayasu, F.; Yamakawa, K.

    1998-01-01

    Degradation of nickel-based alloy steam generator (SG) tubing caused by lead-induced corrosion has been reported recently in some PWR plants. Several laboratory studies also have shown that lead causes intergranular or transgranular stress corrosion cracking (IGSCC or TGSCC) of the tubing materials. Information from previous studies suggests two possible explanations for the mechanism of lead-induced corrosion. One is selective dissolution of tube metal elements, resulting in formation of a lead-containing nickel-depleted oxide film as observed in mildly acidic environments. The other explanation is an increase in potential, as has been observed in lead-contaminated caustic environments, although not in all volatile treatment (AVT) water such as the ammonium-hydrazine water chemistry. These observation suggest that an electrochemical reaction between metal elements and dissolved lead might be the cause of lead-induced corrosion. The present work was undertaken to clarify the lead-induced corrosion mechanism of nickel-based alloys from an electrochemical viewpoint, focusing on mildly acidic and basic environments. These are the probable pH conditions in the crevice region between the tube and tube support plate of the SG where corrosion damage could occur. Measurements of corrosion potential and electrochemical polarization of nickel-based alloys were performed to investigate the effect of lead on electrochemical behavior of the alloys. Then, constant extension rate tests (CERT) were carried out to determine the corrosion susceptibility of the alloys in a lead-contaminated environment. (J.P.N.)

  1. An investigation on the effect of bleaching environment on pitting corrosion and trans-passive dissolution of 316 stainless steel

    International Nuclear Information System (INIS)

    Moayed, M.H.; Golestanipour, M.

    2004-01-01

    Pitting corrosion and trans-passive dissolution of 316 stainless steel in solution containing five percent of commercial bleaching liquid was investigated by employing potentiodynamic polarization method and recording corrosion potential during immersion. Today commercial bleaching liquids are widely used as cleaner additives, therefore, those house appliances made from stainless steels are in contact with aqueous solution containing bleaching liquid. This may cause sever localized corrosion and trans-passive dissolution. In order to investigate the possibility of trans-passive dissolution of stainless steel by bleaching liquid, potentiodynamic polarization and recording variation of corrosion potential of specimens were carried out in 0.2 M Na 2 SO 4 solution containing 5 %wt. commercial bleaching liquid. A 500 mV drop in trans-passive potential and also instantaneously ennobling corrosion potential revealed the possibility of trans-passive dissolution due to oxidizing effect of the species such as free chlorine and its derivatives in bleaching liquid. Evaluation of the occurrence of localized corrosion at the presence of Cl - and bleaching liquid was investigated by similar electrochemical experiments in 0.2 M Na 2 SO 4 + 0.4M NaCl containing 5%wt. bleaching solution. Initiation of stable pitting at potentials lower than trans-passive potential as well as sharp increasing of corrosion potential in this environment demonstrates the possibility of pitting corrosion. (authors)

  2. Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys.

    Science.gov (United States)

    Lu, Y; Bradshaw, A R; Chiu, Y L; Jones, I P

    2015-03-01

    The bio-corrosion behaviour of Mg-3Zn-0.3Ca (wt.%) alloy in simulated body fluid (SBF) at 37°C has been investigated using immersion testing and electrochemical measurements. Heat treatment has been used to alter the grain size and secondary phase volume fraction; the effects of these on the bio-corrosion behaviour of the alloy were then determined. The as-cast sample has the highest bio-corrosion rate due to micro-galvanic corrosion between the eutectic product (Mg+Ca2Mg6Zn3) and the surrounding magnesium matrix. The bio-corrosion resistance of the alloy can be improved by heat treatment. The volume fraction of secondary phases and grain size are both key factors controlling the bio-corrosion rate of the alloy. The bio-corrosion rate increases with volume fraction of secondary phase. When this is lower than 0.8%, the dependence of bio-corrosion rate becomes noticeable: large grains corrode more quickly. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Effect of Ethanolamines on Corrosion Inhibition of Ductile Cast Iron in Nitrite Containing Solutions

    International Nuclear Information System (INIS)

    Kim, K. T.; Kim, Y. S.; Chang, H. Y.; Lim, B. T.; Park, H. B.

    2016-01-01

    In this work, synergistic corrosion inhibition effect of nitrite and 3 kinds of ethanolamines on ductile cast iron using chemical and electrochemical methods was evaluated. This work attempts to clarify the synergistic effect of nitrite and ethanolamines. The effects of single addition of TEA, DEA, and MEA, and mixed addition of nitrite plus TEA, DEA or MEA on the corrosion inhibition of ductile cast iron in a tap water were evaluated. A huge amount of single addition of ethanolamine was needed. However, the synergistic effect by mixed addition was observed regardless of the combination of nitrite and triethanolamines, but their effects increased in a series of MEA + nitrite > DEA + nitrite > TEA + nitrite. This tendency of synergistic effect was attributed to the film properties and polar effect; TEA addition couldn't form the film showing high film resistance and semiconductive properties, but DEA or MEA could build the film having relatively high film resistance and n-type semiconductive properties. Moreover, it can be explained that this behaviour was closely related to electron attractive group within the ethanolamines, and thus corrosion inhibition power depends upon the number of the electron attractive group of MEA, DEA, and TEA.

  4. Effect of Ethanolamines on Corrosion Inhibition of Ductile Cast Iron in Nitrite Containing Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. T.; Kim, Y. S. [Andong National University, Andong (Korea, Republic of); Chang, H. Y.; Lim, B. T.; Park, H. B. [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of)

    2016-08-15

    In this work, synergistic corrosion inhibition effect of nitrite and 3 kinds of ethanolamines on ductile cast iron using chemical and electrochemical methods was evaluated. This work attempts to clarify the synergistic effect of nitrite and ethanolamines. The effects of single addition of TEA, DEA, and MEA, and mixed addition of nitrite plus TEA, DEA or MEA on the corrosion inhibition of ductile cast iron in a tap water were evaluated. A huge amount of single addition of ethanolamine was needed. However, the synergistic effect by mixed addition was observed regardless of the combination of nitrite and triethanolamines, but their effects increased in a series of MEA + nitrite > DEA + nitrite > TEA + nitrite. This tendency of synergistic effect was attributed to the film properties and polar effect; TEA addition couldn't form the film showing high film resistance and semiconductive properties, but DEA or MEA could build the film having relatively high film resistance and n-type semiconductive properties. Moreover, it can be explained that this behaviour was closely related to electron attractive group within the ethanolamines, and thus corrosion inhibition power depends upon the number of the electron attractive group of MEA, DEA, and TEA.

  5. A conceptual framework to analyze and mitigate aging effects of a system in nuclear power plants

    International Nuclear Information System (INIS)

    Ahmed, S.

    1985-01-01

    A conceptual framework is developed to analyze, characterize, and mitigate the degradation of a system in a nuclear power plant due to aging. The system is evaluated, based on an aging-specific system decision model, to understand and implement decisions pertaining to surveillance, maintenance, and replacement. Decisions on other corrective measures to mitigate the effects of aging of a number of equipment items, interconnections (relationships with other systems), and interfaces (relationships within the system) can also be made based on the proposed approach

  6. Prediction of Corrosion of Advanced Materials and Fabricated Components

    Energy Technology Data Exchange (ETDEWEB)

    A. Anderko; G. Engelhardt; M.M. Lencka (OLI Systems Inc.); M.A. Jakab; G. Tormoen; N. Sridhar (Southwest Research Institute)

    2007-09-29

    -base alloys, stainless steels and copper-nickel alloys and (2) the effects of heat treatment on localized corrosion. Excellent agreement with experimental data has been obtained for alloys in various environments, including acids, bases, oxidizing species, inorganic inhibitors, etc. Further, a probabilistic model has been established for predicting the long-term damage due to localized corrosion on the basis of short-term inspection results. This methodology is applicable to pitting, crevice corrosion, stress corrosion cracking and corrosion fatigue. Finally, a comprehensive model has been developed for predicting sensitization of Fe-Ni-Cr-Mo-W-N alloys and its effect on localized corrosion. As a vehicle for the commercialization of this technology, OLI Systems has developed the Corrosion Analyzer, a software tool that is already used by many companies in the chemical process industry. In process design, the Corrosion Analyzer provides the industry with (1) reliable prediction of the tendency of base alloys for localized corrosion as a function of environmental conditions and (2) understanding of how to select alloys for corrosive environments. In process operations, the software will help to predict the remaining useful life of equipment based on limited input data. Thus, users will also be able to identify process changes, corrosion inhibition strategies, and other control options before costly shutdowns, energy waste, and environmental releases occur. With the Corrosion Analyzer, various corrosion mitigation measures can be realistically tested in a virtual laboratory.

  7. Effects of combined organic and inorganic corrosion inhibitors on the nanostructure cerium based conversion coating performance on AZ31 magnesium alloy: Morphological and corrosion studies

    International Nuclear Information System (INIS)

    Saei, E.; Ramezanzadeh, B.; Amini, R.; Kalajahi, M. Salami

    2017-01-01

    Highlights: •Cn-Mn-polyvinyl alcohol conversion coating led to more uniform and crack free film deposition. •The corrosion resistance of Ce film was noticeably improved by using combination of polyvinyl alchol and Mn2+ cations. •A synergistic effect between polyvinyl alchol-Mn2+ resulted in Ce film with enhanced morphology and corrosion resistance. -- Abstract: Magnesium (Mg) AZ31 samples were chemically treated by a series of room temperature nanostructure cerium based conversion coatings containing Mn(NO 3 ) 2 ·4H 2 O, Co(NO 3 ) 2 ·6H 2 O, and polyvinyl alcohol (PVA). The microstructure and corrosion protection properties of different samples were studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and polarization test in 3.5 wt.% NaCl solution. Results demonstrated that the AZ31 Mg alloy sample treated by Ce-Mn-PVA showed the highest corrosion resistance. A denser Ce film with lower crack was precipitated on the sample treated by Ce-Mn-PVA conversion coating.

  8. The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation

    International Nuclear Information System (INIS)

    Fujimori, S.; Kainuma, M.; Masui, T.; Hasegawa, T.; Dai, H.

    2014-01-01

    A reduction of energy service demand is a climate mitigation option, but its effectiveness has never been quantified. We quantify the effectiveness of energy service demand reduction in the building, transport, and industry sectors using the Asia-Pacific Integrated Assessment/Computable General Equilibrium (AIM/CGE) model for the period 2015–2050 under various scenarios. There were two major findings. First, a 25% energy service demand reduction in the building, transport, and basic material industry sectors would reduce the GDP loss induced by climate mitigation from 4.0% to 3.0% and from 1.2% to 0.7% in 2050 under the 450 ppm and 550 ppm CO 2 equivalent concentration stabilization scenarios, respectively. Second, the effectiveness of a reduction in the building sector's energy service demand would be higher than those of the other sectors at the same rate of the energy service demand reduction. Furthermore, we also conducted a sensitivity analysis of different socioeconomic conditions, and the climate mitigation target was found to be a key determinant of the effectiveness of energy service demand reduction measures. Therefore, more certain climate mitigation targets would be useful for the decision makers who design energy service demand reduction measures. - Highlights: • The effectiveness of a reduction in energy service demand is quantified. • A 25% reduction in energy service demand would be equivalent to 1% of GDP in 2050. • Stringent mitigation increases the effectiveness of energy service demand reduction. • Effectiveness of a reduction in energy demand service is higher in the building sector

  9. Why herd size matters - mitigating the effects of livestock crashes.

    Directory of Open Access Journals (Sweden)

    Marius Warg Næss

    Full Text Available Analysing the effect of pastoral risk management strategies provides insights into a system of subsistence that have persevered in marginal areas for hundreds to thousands of years and may shed light into the future of around 200 million households in the face of climate change. This study investigated the efficiency of herd accumulation as a buffer strategy by analysing changes in livestock holdings during an environmental crisis in the Saami reindeer husbandry in Norway. We found a positive relationship between: (1 pre- and post-collapse herd size; and (2 pre-collapse herd size and the number of animals lost during the collapse, indicating that herd accumulation is an effective but costly strategy. Policies that fail to incorporate the risk-beneficial aspect of herd accumulation will have a limited effect and may indeed fail entirely. In the context of climate change, official policies that incorporate pastoral risk management strategies may be the only solution for ensuring their continued existence.

  10. The Effect of Greenhouse Gas Mitigation on Drought Impacts in the U.S.

    Science.gov (United States)

    In this paper, we present a methodology for analyzing the economic benefits in the U.S. of changes in drought frequency and severity due to global greenhouse gas (GHG) mitigation. We construct reduced-form models of the effect of drought on agriculture and reservoir recreation i...

  11. Implementation and effectiveness of sound mitigation measures on Texas highways (HB 790) : final report.

    Science.gov (United States)

    2016-10-01

    The 84th Texas Legislature passed House Bill (HB) 790 directing the Texas A&M Transportation Institute (TTI) to perform a study on the implementation and effectiveness of sound mitigation measures on the state highway system and certain toll roads an...

  12. Resonant nuclear battery may aid in mitigating the greenhouse effect

    International Nuclear Information System (INIS)

    Brown, P.M.

    1989-01-01

    A new process for the direct conversion of radioactive decay energy directly into electricity of a usable form is currently being developed by Peripheral Systems, Inc. of Portland, Oregon. United States Patent 4,835,433 was issued May 30, 1989 to protect this Resonant Nuclear Power Supply. When developed, this system promises cheap, reliable power from a package small and light enough to be mobile and an energy density great enough for use as a space-based power supply. One of the potential domestic applications could be to power electric automobiles. Use in highly populated areas would have a tremendous beneficial effect on the ecology. The principle of operation for the resonant nuclear power supply is an LCR (inductance capacitance resistance) resonant tank circuit oscillating at its self-resonant frequency (at resonance, the inductive reactance and the capacitive reactance cancel to leave the ohmic resistance of the circuit as the only major loss of energy). A means for absorbing the natural radioactive decay energy emitted from an alpha or beta source is provided in the primary tank circuit and contributes an amount of energy, by means of the beta voltaic effect, in excess of the energy required to sustain the oscillation of the LCR primary tank. A transformer is impedance matched to this oscillating primary circuit for efficient energy transfer of the excess energy to a secondary output circuit, which yields net electrical power in a high-frequency usable form to drive a load

  13. Systematic Review of Uit Parameters on Residual Stresses of Sensitized AA5456 and Field Based Residual Stress Measurements for Predicting and Mitigating Stress Corrosion Cracking

    Science.gov (United States)

    2014-03-01

    University Press, 2009, pp. 820–824. [30] S. Kou, Welding Metallurgy , 2nd ed. Hoboken, NJ: John Wiley and Sons, Inc., 2003. [31] M. N.James et al...around welds in aluminum ship structures both in the laboratory and in the field. Tensile residual stresses are often generated during welding and, in...mitigate and even reverse these tensile residual stresses. This research uses x-ray diffraction to measure residual stresses around welds in AA5456 before

  14. The Effect of Low-Quantity Cr Addition on the Corrosion Behaviour of Dual-Phase High Carbon Steel

    Directory of Open Access Journals (Sweden)

    Wilson Handoko

    2018-03-01

    Full Text Available Industrial application of high carbon low alloy steel with the dual-phase structure of martensite and austenite has increased drastically in recent years. Due to its excellent compression strength and its high abrasion resistance, this grade of steel has used as a high performance cutting tool and in press machinery applications. By increasing the usage of more corrosive media in industrial practice and increasing the demand for reducing the production cost, it is crucial to understand the effect of the small addition of Cr on the corrosion behaviour of this grade of steel. In this study, this effect was investigated using Secondary Electron Microscopy (SEM and in-situ Atomic Force Microscopy (AFM in the sodium chloride solution. Also, the corrosion rate was measured using the Tafel polarisation curve. It has been found that the small addition of Cr increased the stability of retained austenite, thus improving its corrosion resistance and reducing its corrosion rate. This effect has been acquired through in-situ high resolution topography images in which the samples were submerged in a corrosive solution. It has been demonstrated that the corrosion rate was reduced when the stability of austenite enhanced.

  15. The effect of magnetite on corrosion of stainless steel (SUS309S) in deaerated synthetic sea water

    International Nuclear Information System (INIS)

    Taniguchi, N.; Honda, A.

    1999-10-01

    The assessment of lifetime of carbon steel overpack needs to clear the effects of corrosion products on the corrosion rate of carbon steel. It is reported that the corrosion of carbon steel was accelerated under the presence of magnetite as simulated corrosion products. Therefore, it is important to clear the mechanism of the acceleration of corrosion under the presence of magnetite. If carbon steel overpack will not be able to avoid the acceleration of corrosion under repository condition, some countermeasures have to be taken. One of the countermeasures against the effect of magnetite is considered to be the addition of alloying elements to a steel. The immersion test of stainless steel (SUS309S) as the extreme case of alloying was conducted under the presence of magnetite on the metal surface in synthetic sea water. As the result of this test, the corrosion of stainless steel (SUS309S) was not accelerated by the presence of magnetite. Therefore, it is expected that the susceptibility to the effect of magnetite is able to be reduced by addition of alloying elements to a steel. (author)

  16. The Spread of Corrosion in Cast Iron and its Effect on the Life Cycle of Transportation Vehicles

    Directory of Open Access Journals (Sweden)

    Tomáš Binar

    2017-01-01

    Full Text Available This article deals with the spread of corrosion in material at different exposure times, and its effect on the measured brittle fracture and notch impact strength under different temperature conditions. To assess the degradational effect of corrosion on the material characteristics represented by the measured impact strength, we conducted a fractographic analysis of fracture surfaces, the aim of which was to evaluate the spread of corrosion in the material. In the first part of the experiment, two corrosion tests are simulated with a duration time of 432 and 648 hours, to compare the degradation effect of corrosion on the notch impact strength, depending on the duration of the corrosion tests. The following part shows the results of the impact bending test, where the experiment was conducted in an area of reduced and increased temperatures. The final part summarizes the results of the fractographic analysis of sample fracture surfaces from the impact bending tests. Based on the measured the length of the corrosion cracks, we analyzed the sample at the notch and from the material surface after the impact bending test.

  17. Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Hu, Xuexiang; Yang, Min; Qu, Jiuhui

    2012-03-15

    The effects of disinfection and biofilm on the corrosion of cast iron pipe in a model reclaimed water distribution system were studied using annular reactors (ARs). The corrosion scales formed under different conditions were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM), while the bacterial characteristics of biofilm on the surface were determined using several molecular methods. The corrosion scales from the ARs with chlorine included predominantly α-FeOOH and Fe2O3, while CaPO3(OH)·2H2O and α-FeOOH were the predominant phases after chloramines replaced chlorine. Studies of the consumption of chlorine and iron release indicated that the formation of dense oxide layers and biofilm inhibited iron corrosion, causing stable lower chlorine decay. It was verified that iron-oxidizing bacteria (IOB) such as Sediminibacterium sp., and iron-reducing bacteria (IRB) such as Shewanella sp., synergistically interacted with the corrosion product to prevent further corrosion. For the ARs without disinfection, α-FeOOH was the predominant phase at the primary stage, while CaCO3 and α-FeOOH were predominant with increasing time. The mixed corrosion-inducing bacteria, including the IRB Shewanella sp., the IOB Sediminibacterium sp., and the sulfur-oxidizing bacteria (SOB) Limnobacter thioxidans strain, promoted iron corrosion by synergistic interactions in the primary period, while anaerobic IRB became the predominant corrosion bacteria, preventing further corrosion via the formation of protective layers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Effects of dissolved calcium and magnesium ions on lead-induced stress corrosion cracking susceptibility of nuclear steam generator tubing alloy in high temperature crevice solutions

    International Nuclear Information System (INIS)

    Lu, B.T.; Tian, L.P.; Zhu, R.K.; Luo, J.L.; Lu, Y.C.

    2011-01-01

    The effects of Ca 2+ and Mg 2+ ions on the stress corrosion cracking (SCC) susceptibility of UNS N08800 are investigated using constant extension rate tensile (CERT) tests at 300 o C in simulated crevice chemistries. The presence of lead contamination in the crevice chemistries increases significantly the SCC susceptibility of the alloy. The lead-assisted SCC (PbSCC) susceptibility is reduced markedly by the addition of Ca 2+ and Mg 2+ ions into the solution and this mitigating effect is enhanced by increasing the total concentration of Ca 2+ + Mg 2+ . The CERT test results are consistent with the types of fracture surfaces shown by Scanning Electron Microscopy (SEM). There is a reasonable correlation between the SCC susceptibility and the donor densities in the anodic films in accord with the role of lead-induced passivity degradation in PbSCC.

  19. The effects of alternative carbon mitigation policies on Japanese industries

    International Nuclear Information System (INIS)

    Sugino, Makoto; Arimura, Toshi H.; Morgenstern, Richard D.

    2013-01-01

    To address the climate change issue, developed nations have considered introducing carbon pricing mechanisms in the form of a carbon tax or an emissions trading scheme (ETS). Despite the small number of programmes actually in operation, these mechanisms remain under active discussion in a number of countries, including Japan. Using an input–output model of the Japanese economy, this article analyses the effects of carbon pricing on Japan′s industrial sector. We also examine the impact of a rebate programme of the type proposed for energy-intensive trade-exposed (EITE) industries in U.S. legislation, the Waxman–Markey Bill (H.R. 2454), and in the European Union′s ETS. We find that a carbon pricing scheme would impose a disproportionate burden on a limited number of sectors – namely, pig iron, crude steel (converters), cement and other EITE industries. Out of 401 industries, 23 would be eligible for rebates according to the Waxman–Markey-type programme, whereas 122 industries would be eligible for rebates according to the E.U.-type programme, if adopted in Japan. Overall, despite the differences in coverage, we find that the Waxman–Markey and E.U. rebate programmes have roughly similar impacts in reducing the average burden on EITE industries. - Highlights: • Energy-intensive trade-exposed (EITE) industries suffer the most due to carbon pricing policies. • Twenty-three industries will be eligible under a Waxman–Markey (WM)-type rebate programme. • The E.U. emissions trading scheme (ETS)-type programme identifies 122 industries. • Both WM- and E.U.-type programmes will lower the cost of production to similar levels. • Industries eligible for rebates must be determined carefully

  20. Can re-regulation reservoirs and batteries cost-effectively mitigate sub-daily hydropeaking?

    Science.gov (United States)

    Haas, J.; Nowak, W.; Anindito, Y.; Olivares, M. A.

    2017-12-01

    To compensate for mismatches between generation and load, hydropower plants frequently operate in strong hydropeaking schemes, which is harmful to the downstream ecosystem. Furthermore, new power market structures and variable renewable systems may exacerbate this behavior. Ecological constraints (minimum flows, maximum ramps) are frequently used to mitigate hydropeaking, but these stand in direct tradeoff with the operational flexibility required for integrating renewable technologies. Fortunately, there are also physical methods (i.e. re-regulation reservoirs and batteries) but to date, there are no studies about their cost-effectiveness for hydropeaking mitigation. This study aims to fill that gap. For this, we formulate an hourly mixed-integer linear optimization model to plan the weekly operation of a hydro-thermal-renewable power system from southern Chile. The opportunity cost of water (needed for this weekly scheduling) is obtained from a mid-term programming solved with dynamic programming. We compare the current (unconstrained) hydropower operation with an ecologically constrained operation. The resulting cost increase is then contrasted with the annual payments necessary for the physical hydropeaking mitigation options. For highly constrained operations, both re-regulation reservoirs and batteries show to be economically attractive for hydropeaking mitigation. For intermediate constrained scenarios, re-regulation reservoirs are still economic, whereas batteries can be a viable solution only if they become cheaper in future. Given current cost projections, their break-even point (for hydropeaking mitigation) is expected within the next ten years. Finally, less stringent hydropeaking constraints do not justify physical mitigation measures, as the necessary flexibility can be provided by other power plants of the system.

  1. Effect of nitrogen on the corrosion behavior of austenitic stainless steel in chloride solutions

    International Nuclear Information System (INIS)

    Ghanem, Wafaa A.

    2004-01-01

    The effect of partial replacement of nickel with nitrogen on the mechanism of localized corrosion resistance and re-passivation for nitrogen-bearing stainless steel was investigated using anodic potentiodynamic polarization technique. The solutions used for this study contained 0.0, 0.05 and 0.33 M Fe 3+ for solutions I, II and III respectively, in a total Cl - ion concentration 1 M. The pitting attack was found to be retarded by nitrogen addition and the samples were able to passivate as the nitrogen increase. Addition of nitrogen allows decreasing the percentage of Ni, but to a certain limit. Nitrogen is adsorbed on the interface of the metal oxide and results in repulsion of Cl - ions. Moreover, it reacts with H + ions in the solution leading to higher pH, which explains the retardation effect of nitrogen to corrosion. (author)

  2. The Effect of Multiple Shot Peening on the Corrosion Behavior of Duplex Stainless Steel

    Science.gov (United States)

    Feng, Qiang; She, Jia; Wu, Xueyan; Wang, Chengxi; Jiang, Chuanhai

    2018-03-01

    Various types of shot peening treatments were applied to duplex stainless steel. The effects of shot peening intensity and working procedures on the microstructure were investigated. The domain size and microstrain evolution in the surface layer were characterized utilizing the Rietveld method. As the shot peening intensity increased, the surface roughness increased in the surface layer; however, it decreased after multiple (dual and triple) shot peening. The mole fraction of strain-induced martensite as a function of the intensity of shot peening was evaluated by XRD measurements. Both potentiodynamic polarization curves and salt spray tests of shot-peened samples in NaCl solution were investigated. The results indicate that traditional shot peening has negative effects on corrosion resistance with increasing shot peening intensity; however, the corrosion rate can be reduced by means of multiple shot peening.

  3. On the Effects of Atmospheric Particles Contamination and Humidity on Tin Corrosion

    DEFF Research Database (Denmark)

    D’Angelo, L.; Verdingovas, V.; Ferrero, L.

    2017-01-01

    The effects of hygroscopic atmospheric particles are investigated in relation to the corrosion of tin. Surface insulation resistance test boards were directly contaminated both with ambient particles sampled in the field at Milan, Italy, and with pure saline particles generated in the laboratory....... An innovative particle deposition device was used to uniformly coat circular spots on to the test board surfaces. Deliquescence and crystallization of the water-soluble compounds were detected by observing the impedance response to varying relative humidity (RH) conditions with a gradual and continuous ramps....... The effects of the adsorption/desorption kinetics and of the temperature on the deliquescence and crystallization RH values were also investigated. Leakage current measurements at 5-V dc highlighted the ability of atmospheric particles to promote corrosion and electrochemical migration at RH levels far below...

  4. Redox conditions effect on flow accelerated corrosion: Influence of hydrazine and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Bouvier, O. de [EDF, R and D Div., Moret sur Loing (France); Bouchacourt, M. [EDF, Engineering and Service Div., Villeurbanne (France); Fruzzetti, K. [EPRI, Science and Technology Div., Palo Alto, CA (United States)

    2002-07-01

    Flow accelerated corrosion (FAC) of carbon steels has been studied world-wide for more than twenty years and is now fairly well understood. The influence of several parameters like water chemistry (i.e. pH and oxygen content), temperature, hydrodynamic or mass transfer conditions (i.e. flow velocity, geometry, steam quality..) and steel composition on the corrosion kinetics has been demonstrated both theoretically and experimentally. However, the effect of a reducing environment and variable redox conditions have not yet been fully explored. It's well known that a reducing environment is effective in increasing the resistance of steam generator tubing to intergranular attack / stress corrosion cracking (IGA/SCC) and pitting. In that way, secondary water chemistry specifications have been modified from low hydrazine to high hydrazine chemistry in the steam-water circuit. Nevertheless, increasing hydrazine levels up to 200 {mu}g/kg could have a detrimental effect by potentially enhancing the FAC process. Moreover, in order to have a complete understanding of the possible impact of the water chemistry environment it is also important to consider the impact of redox conditions during shutdowns (cold and/or hot shutdowns) and start up periods when aerated water injections are made to maintain a constant water level in the Steam Generators from the auxiliary feedwater circuit. Therefore, a common EDF and EPRI R and D effort has been recently carried out to study the effects of hydrazine and oxygen on FAC. The results are presented as follows. (authors)

  5. BWR steel containment corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.P.; Bagchi, G.

    1996-04-01

    The report describes regulatory actions taken after corrosion was discovered in the drywell at the Oyster Creek Plant and in the torus at the Nine Mile Point 1 Plant. The report describes the causes of corrosion, requirements for monitoring corrosion, and measures to mitigate the corrosive environment for the two plants. The report describes the issuances of generic letters and information notices either to collect information to determine whether the problem is generic or to alert the licensees of similar plants about the existence of such a problem. Implementation of measures to enhance the containment performance under severe accident conditions is discussed. A study by Brookhaven National Laboratory (BNL) of the performance of a degraded containment under severe accident conditions is summarized. The details of the BNL study are in the appendix to the report.

  6. Predicting Effects of Corrosion Erosion of High Strength Steel Pipelines Elbow on CO2-Acetic Acid (HAc) Solution

    International Nuclear Information System (INIS)

    Asmara, Y. P.; Ismail, M. F.; Chui, L. Giok; Halimi, Jamiludin

    2016-01-01

    Simultaneously effect of erosion combined with corrosion becomes the most concern in oil and gas industries. It is due to the fast deterioration of metal as effects of solid particles mixed with corrosive environment. There are many corrosion software to investigate possible degradation mechanisms developed by researchers. They are using many combination factors of chemical reactions and physical process. However effects of CO 2 and acid on pipelines orientations are still remain uncovered in their simulation. This research will investigate combination effects of CO 2 and HAc on corrosion and erosion artificial environmental containing sands particles in 45°, 90° and 180° elbow pipelines. The research used theoretical calculations combined with experiments for verification. The main concerns are to investigate the maximum erosion corrosion rate and maximum shear stress at the surface. Methodology used to calculate corrosion rate are Linear Polarization Resistance (LPR) and weight loss. The results showed that at 45°, erosion rate is the more significant effects in contributing degradation of the metal. The effects of CO 2 and HAc gave significant effects when flow rate of the solution are high which reflect synergism effects of solid particles and those chemical compositions. (paper)

  7. Study of the Effect of Swelling on Irradiation Assisted Stress Corrosion Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Teysseyre, Sebastien Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report describes the methodology used to study the effect of swelling on the crack growth rate of an irradiation-assisted stress corrosion crack that is propagating in highly irradiated stainless steel 304 material irradiated to 33 dpa in the Experimental Breeder Reactor-II. The material selection, specimens design, experimental apparatus and processes are described. The results of the current test are presented.

  8. EFFECTIVENESS OF INHIBITORS OF METAL CORROSION IN AQUEOUS ENVIRONMENTS WITH VARYING SALINITY

    OpenAIRE

    Носачова, Юлія Вікторівна; Макаренко, Ірина Миколаївна; Шаблій, Тетяна Олександрівна

    2015-01-01

    EFFECTIVENESS OF INHIBITORS OF METAL CORROSION IN AQUEOUS ENVIRONMENTS WITH VARYING SALINITYThe main reason for the growing problem of water quality in Ukraine is the increase of anthropogenic impacts on water resources caused by intense chemical, biological and radiation contamination of existing and potential sources for industrial and communal water supply. Especially polluted rivers in Donbass and Krivbas area, that turned into collectors of saline wastewater. Especially hard environment...

  9. The effect of the PWR secondary circuit water chemistry on erosion corrosion

    International Nuclear Information System (INIS)

    Kaplan, J.

    1993-07-01

    The secondary circuit of WWER-440 and WWER-1000 reactors is described. The causes of erosion corrosion are outlined, and the effects of the physical properties and chemical composition of water are discussed with emphasis on specific conductivity and concentrations of oxygen, ammonia, iron, sodium, silicon and organics. Described are corrective actions to eliminate the deviations from the normal state during reactor power reduction or reactor shutdown. (J.B.)

  10. Effect of calcium on the microstructure and corrosion behavior of microarc oxidized Mg-xCa alloys.

    Science.gov (United States)

    Pan, Yaokun; Chen, Chuanzhong; Feng, Rui; Cui, Hongwei; Gong, Benkui; Zheng, Tingting; Ji, Yarou

    2018-01-16

    Magnesium alloys are potential biodegradable implants for biomedical applications, and calcium (Ca) is one kind of ideal element being examined for magnesium alloys and biodegradable ceramic coatings owing to its biocompatibility and mechanical suitability. In this study, microarc oxidation (MAO) coatings were prepared on Mg-xCa alloys to study the effect of Ca on the microstructure and corrosion resistance of Mg-xCa alloys and their surface MAO coatings. The electrochemical corrosion behavior was investigated using an electrochemical workstation, and the degradability and bioactivity were evaluated by soaking tests in simulated body fluid (SBF) solutions. The corrosion products were characterized by scanning electron microscopy, x-ray diffractometry, and Fourier transform infrared spectrometry. The effects of Ca on the alloy phase composition, microstructure, MAO coating formation mechanism, and corrosion behavior were investigated. Results showed that the Mg-0.82Ca alloy and MAO-coated Mg-0.82Ca exhibited the highest corrosion resistance. The number and distribution of Mg 2 Ca phases can be controlled by adjusting the Ca content in the Mg-xCa alloys. The proper amount of Ca in magnesium alloy was about 0.5-0.8 wt. %. The pore size, surface roughness, and corrosion behavior of microarc oxidized Mg-xCa samples can be controlled by the number and distribution of the Mg 2 Ca phase. The corrosion behaviors of microarc oxidized Mg-Ca in SBF solutions were discussed.

  11. Evaluating the effects of hydroxyapatite coating on the corrosion behavior of severely deformed 316Ti SS for surgical implants

    International Nuclear Information System (INIS)

    Mhaede, Mansour; Ahmed, Aymen; Wollmann, Manfred; Wagner, Lothar

    2015-01-01

    The present work investigates the effects of severe plastic deformation by cold rolling on the microstructure, the mechanical properties and the corrosion behavior of austenitic stainless steel (SS) 316Ti. Hydroxyapatite coating (HA) was applied on the deformed material to improve their corrosion resistance. The martensitic transformation due to cold rolling was recorded by X-ray diffraction spectra. The effects of cold rolling on the corrosion behavior were studied using potentiodynamic polarization. The electrochemical tests were carried out in Ringer's solution at 37 ± 1 °C. Cold rolling markedly enhanced the mechanical properties while the electrochemical tests referred to a lower corrosion resistance of the deformed material. The best combination of both high strength and good corrosion resistance was achieved after applying hydroxyapatite coating. - Highlights: • Cold rolling markedly increases the hardness of SS 316Ti from 125 to 460 HV10. • Higher deformation degrees lead to lower corrosion resistance. • Application of HA-coating leads to significant improvement of the corrosion resistance

  12. Effects of nitrogen in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel welding joint

    Science.gov (United States)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhou, Chao

    2017-05-01

    The effects of nitrogen addition in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel (DSS) welds were studied. N2-supplemented shielding gas facilitated the primary austenite formation, suppressed the Cr2N precipitation in weld root, and increased the microhardnesses of weld metal. Furthermore, N2-supplemented shielding gas increased pitting resistance equivalent number (PREN) of austenite, but which decreased slightly PREN of ferrite. The modified double loop electrochemical potentiokinetic reactivation in 2 M H2SO4 + 1 M HCl was an effective method to study the localized corrosion of the different zones in the DSS welds. The adding 2% N2 to pure Ar shielding gas improved the localized corrosion resistance in the DSS welds, which was due to compensation for nitrogen loss and promoting nitrogen further solution in the austenite phases, suppression of the Cr2N precipitation in the weld root, and increase of primary austenite content with higher PREN than the ferrite and secondary austenite. Secondary austenite are prone to selective corrosion because of lower PREN compared with ferrite and primary austenite. Cr2N precipitation in the pure Ar shielding weld root and heat affected zone caused the pitting corrosion within the ferrite and the intergranular corrosion at the ferrite boundary. In addition, sigma and M23C6 precipitation resulted in the intergranular corrosion at the ferrite boundary.

  13. Recognition and Analysis of Corrosion Failure Mechanisms

    Directory of Open Access Journals (Sweden)

    Steven Suess

    2006-02-01

    Full Text Available Corrosion has a vast impact on the global and domestic economy, and currently incurs losses of nearly $300 billion annually to the U.S. economy alone. Because of the huge impact of corrosion, it is imperative to have a systematic approach to recognizing and mitigating corrosion problems as soon as possible after they become apparent. A proper failure analysis includes collection of pertinent background data and service history, followed by visual inspection, photographic documentation, material evaluation, data review and conclusion procurement. In analyzing corrosion failures, one must recognize the wide range of common corrosion mechanisms. The features of any corrosion failure give strong clues as to the most likely cause of the corrosion. This article details a proven approach to properly determining the root cause of a failure, and includes pictographic illustrations of the most common corrosion mechanisms, including general corrosion, pitting, galvanic corrosion, dealloying, crevice corrosion, microbiologically-influenced corrosion (MIC, corrosion fatigue, stress corrosion cracking (SCC, intergranular corrosion, fretting, erosion corrosion and hydrogen damage.

  14. Effects of Ultrasonic Nanocrystal Surface Modification on the Residual Stress, Microstructure, and Corrosion Resistance of 304 Stainless Steel Welds

    Science.gov (United States)

    Ye, Chang; Telang, Abhishek; Gill, Amrinder; Wen, Xingshuo; Mannava, Seetha R.; Qian, Dong; Vasudevan, Vijay K.

    2018-03-01

    In this study, ultrasonic nanocrystal surface modification (UNSM) of 304 stainless steel welds was carried out. UNSM effectively eliminates the tensile stress generated during welding and imparts beneficial compressive residual stresses. In addition, UNSM can effectively refine the grains and increase hardness in the near-surface region. Corrosion tests in boiling MgCl2 solution demonstrate that UNSM can significantly improve the corrosion resistance due to the compressive residual stresses and changes in the near-surface microstructure.

  15. Coatings and Corrosion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Coatings and Corrosion Laboratory is to develop and analyze the effectiveness of innovative coatings test procedures while evaluating the...

  16. Effect of boric acid on intergranular corrosion in tube support plate crevices

    International Nuclear Information System (INIS)

    Brunet, J.P.; Campan, J.L.

    1993-10-01

    Intergranular attack on steam generator tubing is one important phenomenon involved in availability of Pressurized Water Reactors. Boric acid appears to be a possible candidate for inhibiting the corrosion process. The program performed in Cadarache was supposed to give statistical informations on the boric acid effect. It was based on a large number of samples initially attacked during a program performed by BABCOCK ampersand WILCOX. These samples were sleeved onto Alloy 690 tubes, in order to prevent premature cracking. Unfortunately it was not possible to find chemical conditions able to produce significant additional corrosion; we postulated mainly due to a drastic reduction of the thermal flux resulting from the increase of the tube wall thickness under the tube support plates (TSP). The tests demonstrate that such sleeve could be a possible remedy of the corrosion when introduced under the TSP. The tests show indications of a possible beneficial effect of the boric acid, a large variability of the heats sensitivity to the IGA and a predominant effect of Na 2 CO 3 on IGA production

  17. Study of Rust Effect on the Corrosion Behavior of Reinforcement Steel Using Impedance Spectroscopy

    Science.gov (United States)

    Bensabra, Hakim; Azzouz, Noureddine

    2013-12-01

    Most studies on corrosion of steel reinforcement in concrete are conducted on steel samples with polished surface (free of all oxides) in order to reproduce the same experimental conditions. However, before embedding in concrete, the steel bars are often covered with natural oxides (rust), which are formed during exposure to the atmosphere. The presence of this rust may affect the electrochemical behavior of steel rebar in concrete. In order to understand the effect of rust on the corrosion behavior of reinforcement steel, potentiodynamic and electrochemical impedance spectroscopy (EIS) tests were carried out in a simulated concrete pore solution using steel samples with two different surface conditions: polished and rusted samples. The obtained results have shown that the presence of rust on the steel bar has a negative effect on its corrosion behavior, with or without the presence of chlorides. This detrimental effect can be explained by the fact that the rust provokes a decrease of the electrolyte resistance at the metal-concrete interface and reduces the repassivating ability. In addition, the rust layer acts as a barrier against the hydroxyl ion diffusion, which prevents the realkalinization phenomenon.

  18. Examination of Hybrid Metal Coatings for Mitigation of Fission Product Release and Corrosion Protection of LWR SiC/SiC

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Caen K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burns, Joseph R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    There is a need to increase the safety margins of current and future light water reactors (LWRs) due to the unfortunate events at Fukushima Daiichi Nuclear Plant. Safety is crucial to restore public confidence in nuclear energy, acknowledged as an economical, high-­density energy solution to climate change. The development of accident-­tolerant fuel (ATF) concepts is crucial to this endeavor. The objective of ATF is to delay the consequences of accident progression, being inset in high temperature steam and maintaining high thermomechanical strength for radionuclide retention. The use of advanced SiCf-­SiC composite as a substitute for zircaloy-­based cladding is being considered. However, at normal operations, SiC is vulnerable to the reactor coolant and may corrode at an unacceptable rate. As a ceramic-­matrix composite material, it is likely to undergo microcracking operation, which may compromise the ability to contain gaseous fission products. A proposed solution to both issues is the application of mitigation coatings for use in normal operations. At Oak Ridge National Laboratory (ORNL), three coating technologies have been investigated with industry collaborators and vendors. These are electrochemical deposition, cathodic arc physical vapor deposition (PVD hereafter) and vacuum plasma spray (VPS). The objective of this document is to summarize these processing technologies, the resultant as-­processed microstructures and properties of the coatings. In all processes, substrate constraint resulted in substantial tensile stresses within the coating layer. Each technology must mitigate this tensile stress. Electrochemical coatings use chromium as the coolant facing material, and are deposited on a nickel or carbon “bond coat”. This is economical but suffers microcracking in the chromium layer. PVD-­based coatings use chromium and titanium in both metallic form and nitrides, and can be deposited defense-­in-­depth as multilayers. This vapor method

  19. A study of the effect of clinical washing decontamination process on corrosion resistance of Martensitic Stainless Steel 420.

    Science.gov (United States)

    Xu, Yunwei; Huang, Zhihong; Corner, George

    2016-09-28

    Corrosion of surgical instruments provides a seat for contamination and prevents proper sterilisation, placing both patients and medical staff at risk of infection. Corrosion can also compromise the structural integrity of instruments and lead to mechanical failure in use. It is essential to understand the various factors affecting corrosion resistance of surgical instruments and how it can be minimised.This paper investigates the effect on corrosion resistance from the clinical washing decontamination (WD) process, specifically by studying the changes in surface roughness and Cr/Fe ratio. Results indicate that the WD process provides a positive effect on smooth polished samples, while a lesser positive effect was observed on rough reflection reduced samples.

  20. EFFECT OF INTERMETALLIC PHASES ON CORROSION BEHAVIOR AND MECHANICAL PROPERTIES OF DUPLEX STAINLESS STEEL AND SUPER-DUPLEX STAINLESS STEEL

    Directory of Open Access Journals (Sweden)

    Prabhu Paulraj

    2015-08-01

    Full Text Available Duplex Stainless Steels (DSS and Super Duplex Stainless Steel (SDSS have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic phases and their effects on corrosion and mechanical properties. First the effect of various alloying elements on DSS and SDSS has been discussed followed by formation of various intermetallic phases. The intermetallic phases affect impact toughness and corrosion resistance significantly. Their deleterious effect on weldments has also been reviewed.

  1. Temperature and humidity effects on the corrosion of aluminium-base reactor fuel cladding materials during dry storage

    International Nuclear Information System (INIS)

    Peacock, H.B.; Sindelar, R.L.; Lam, P.S.

    2004-01-01

    The effect of temperature and relative humidity on the high temperature (up to 200 deg. C) corrosion of aluminum cladding alloys was investigated for dry storage of spent nuclear fuels. A dependency on alloy type and temperature was determined for saturated water vapor conditions. Models were developed to allow prediction of cladding behaviour of 1100, 5052, and 6061 aluminum alloys for up to 50+ years at 100% relative humidity. Calculations show that for a closed system, corrosion stops after all moisture and oxygen is used up during corrosion reactions with aluminum alloys. (author)

  2. Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel - Part 1

    International Nuclear Information System (INIS)

    Kim, Soon-Tae; Jeon, Soon-Hyeok; Lee, In-Sung; Park, Yong-Soo

    2010-01-01

    To elucidate the effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel, a metallographic examination, potentiodynamic and potentiostatic polarization tests, a SEM-EDS and a SAM analysis of inclusion, austenite phase and ferrite phase were conducted. The addition of rare earth metals to the base alloy led to the formation of (Mn, Cr, Si, Al, Ce) oxides and (Mn, Cr, Si, Ce) oxides, which improved the resistance to pitting corrosion and caused a decrease in the preferential interface areas for the initiation of the pitting corrosion.

  3. Effect of aging on the general corrosion and stress corrosion cracking of uranium--6 wt % niobium alloy

    International Nuclear Information System (INIS)

    Koger, J.W.; Ammons, A.M.; Ferguson, J.E.

    1975-11-01

    Mechanical properties of the uranium-6 wt percent niobium alloy change with aging time and temperature. In general, the ultimate tensile strength and hardness reach a peak, while elongation becomes a minimum at aging temperatures between 400 and 500 0 C. The first optical evidence of a second phase was in the 400 0 C-aged alloy, while complete transformation to a two-phase structure was seen in the 600 0 C-aged alloy. The maximum-strength conditions correlate with the minimum stress corrosion cracking (SCC) resistance. The maximum SCC resistance is found in the as-quenched and 150, 200, and 600 0 C-aged specimens. The as-quenched and 300 0 C-aged specimens had the greatest resistance to general corrosion in aqueous chloride solutions; the 600 0 C-aged specimen had the least resistance

  4. Bullwhip effect phenomenon and mitigation in logistic firm's supply chain: Adaptive approach by Transborder Agency, Canada

    OpenAIRE

    Faizan, Riffat; Haque, Adnan ul

    2015-01-01

    This case study explores the bullwhip effect phenomenon and mitigation in supply chain process at Transborder Logistic Canada. Despite being one of the largest logistic chains of Canada, for two years it was facing challenges and problem in shape of bullwhip effects. The theoretical framework for present case study is based on the theory of Lee (1977) to overcome the problems in the supply chain process. "Realism" is the research philosophy undertaken to develop a cross-sectional research...

  5. Results and recommendations from the reactor chemistry and corrosion tasks of the reactor materials program

    International Nuclear Information System (INIS)

    Baumann, E.W.; Ondrejcin, R.S.

    1990-11-01

    Within the general context of extended service life, the Reactor Materials Program was initiated in 1984. This comprehensive program addressed material performance in SRS reactor tanks and the primary coolant or Process Water System (PWS) piping. Three of the eleven tasks concerned moderator quality and corrosion mitigation. Definition and control of the stainless steel aqueous environment is a key factor in corrosion mitigation. The Reactor Materials Program systematically investigated the SRS environment and its effect on crack initiation and propagation in stainless steel, with the objective of improving this environment. The purpose of this report is to summarize the contributions of Tasks 6, 7 and 10 of the Reactor Materials Program to the understanding and control of moderator quality and its relationship to mitigation of stress corrosion cracking

  6. Effect of alternating voltage treatment on corrosion resistance of AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, Harbin (China); Zhang, T.; Shao, Y.; Meng, G.; Wang, F. [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, Harbin (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China)

    2012-06-15

    AZ91D magnesium alloy was treated by the alternating voltage (AV) treatment technique. The optimal AV-treatment parameters of the alloy were determined by orthogonal experiments. Polarization curve, electrochemical impedance spectroscopy (EIS), and scanning electrochemical microscopy (SECM) were used to understand the effect of AV-treatment on the corrosion resistance of the alloy. AFM, contact angle, and XPS were employed to investigate further the influence of AV-treatment on the properties of the surface film formed on the alloy after AV-treatment. The results showed that a uniform and stable film was formed and the corrosion resistance of AZ91D magnesium alloy was significantly improved after AV-treatment. This was caused by the noticeable change of the chemical structure and semi-conducting properties of the surface film after AV-treatment. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Effect of Tryptophan on the corrosion behavior of low alloy steel in sulfamic acid

    Directory of Open Access Journals (Sweden)

    Hesham T.M. Abdel-Fatah

    2016-11-01

    Full Text Available Sulfamic acid is widely used in various industrial acid cleaning applications. In the present work, the inhibition effect of Tryptophan (Tryp on the corrosion of low alloy steel in sulfamic acid solutions at four different temperatures was studied. The investigations involved electrochemical methods (electrochemical impedance spectroscopy; EIS and the new technique electrochemical frequency modulation; EFM as well as gravimetric measurements. The inhibition efficiency and the apparent activation energy have been calculated in the presence and in the absence of Tryp. It is most probable that the inhibition property of Tryp was due to the electrostatic adsorption of the protonated form of Tryp on the steel surface. Adsorption of the inhibitor molecule, onto the steel surface followed the Temkin adsorption isotherm. The thermodynamic parameters of adsorption were determined and discussed. All of the obtained data from the three techniques were in close agreement, which confirmed that EFM technique can be used efficiently for monitoring the corrosion inhibition under the studied conditions.

  8. Effect of Zinc Phosphate on the Corrosion Behavior of Waterborne Acrylic Coating/Metal Interface.

    Science.gov (United States)

    Wan, Hongxia; Song, Dongdong; Li, Xiaogang; Zhang, Dawei; Gao, Jin; Du, Cuiwei

    2017-06-14

    Waterborne coating has recently been paid much attention. However, it cannot be used widely due to its performance limitations. Under the specified conditions of the selected resin, selecting the function pigment is key to improving the anticorrosive properties of the coating. Zinc phosphate is an environmentally protective and efficient anticorrosion pigment. In this work, zinc phosphate was used in modifying waterborne acrylic coatings. Moreover, the disbonding resistance of the coating was studied. Results showed that adding zinc phosphate can effectively inhibit the anode process of metal corrosion and enhance the wet adhesion of the coating, and consequently prevent the horizontal diffusion of the corrosive medium into the coating/metal interface and slow down the disbonding of the coating.

  9. Intramolecular synergistic effect of glutamic acid, cysteine and glycine against copper corrosion in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Zhang Daquan; Xie Bin; Gao Lixin; Cai Qirui; Joo, Hyung Goun; Lee, Kang Yong

    2011-01-01

    The corrosion protection of copper by glutamic acid, cysteine, glycine and their derivative (glutathione) in 0.5 M hydrochloric acid solution has been studied by the electrochemical impedance spectroscopy and cyclic voltammetry. The inhibition efficiency of the organic inhibitors on copper corrosion increases in the order: glutathione > cysteine > cysteine + glutamic acid + glycine > glutamic acid > glycine. Maximum inhibition efficiency for cysteine reaches about 92.9% at 15 mM concentration level. The glutathione can give 96.4% inhibition efficiency at a concentration of 10 mM. The molecular structure parameters were obtained by PM3 (Parametric Method 3) semi-empirical calculation. The intramolecular synergistic effect of glutamic acid, cysteine and glycine moieties in glutathione is attributed to the lower energy of the lowest unoccupied molecular orbital (E LUMO ) level and to the excess hetero-atom adsorption centers and the bigger coverage on the copper surface.

  10. Effect of Iron-Containing Intermetallic Particles on the Corrosion Behaviour of Aluminium

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2006-01-01

    The effect of heat treatment on the corrosion behaviour of binary Al-Fe alloys containing iron at levels between 0.04 and 0.42 wt.% was investigated by electrochemical measurements in both acidic and alkaline chloride solutions. Comparing solution heat-treated and quenched materials with samples...... with {100} facets, and are observed to contain numerous intermetallic particles. Fine facetted filaments also radiate out from the periphery of pits. The results demonstrate that the corrosion of "pure" 99.96% Al is thus dominated by the role of iron, which is the main impurity, and its electrochemical...... that had been subsequently annealed to promote precipitation of Al3Fe intermetallic particles, it was found that annealing increases both the cathodic and anodic reactivity. The increased cathodic reactivity is believed to be directly related to the increased available surface area of the iron...

  11. Activation of aluminum as an effective reducing agent by pitting corrosion for wet-chemical synthesis.

    Science.gov (United States)

    Li, Wei; Cochell, Thomas; Manthiram, Arumugam

    2013-01-01

    Metallic aluminum (Al) is of interest as a reducing agent because of its low standard reduction potential. However, its surface is invariably covered with a dense aluminum oxide film, which prevents its effective use as a reducing agent in wet-chemical synthesis. Pitting corrosion, known as an undesired reaction destroying Al and is enhanced by anions such as F⁻, Cl⁻, and Br⁻ in aqueous solutions, is applied here for the first time to activate Al as a reducing agent for wet-chemical synthesis of a diverse array of metals and alloys. Specifically, we demonstrate the synthesis of highly dispersed palladium nanoparticles on carbon black with stabilizers and the intermetallic Cu₂Sb/C, which are promising candidates, respectively, for fuel cell catalysts and lithium-ion battery anodes. Atomic hydrogen, an intermediate during the pitting corrosion of Al in protonic solvents (e.g., water and ethylene glycol), is validated as the actual reducing agent.

  12. Effects of heat input on pitting corrosion in super duplex stainless steel weld metals

    Science.gov (United States)

    Shin, Yong taek; Shin, Hak soo; Lee, Hae woo

    2012-12-01

    Due to the difference in reheating effects depending on the heat input of subsequent weld passes, the microstructure of the weld metal varies between acicular type austenite and a mixture of polygonal type and grain boundary mixed austenite. These microstructural changes may affect the corrosion properties of duplex stainless steel welds. This result indicates that the pitting resistance of the weld can be strongly influenced by the morphology of the secondary austenite phase. In particular, the ferrite phase adjacent to the acicular type austenite phase shows a lower Pitting Resistance Equivalent (PRE) value of 25.3, due to its lower chromium and molybdenum contents, whereas the secondary austenite phase maintains a higher PRE value of more than 38. Therefore, it can be inferred that the pitting corrosion is mainly due to the formation of ferrite phase with a much lower PRE value.

  13. 3DII implantation effect on corrosion properties of the AISI/SAE 1020 steel

    Energy Technology Data Exchange (ETDEWEB)

    Dulce M., H.J.; Rueda V., Alejandro [Universidad Francisco de Paula Santander, A.A. 1055, Cucuta (Colombia); Dougar-Jabon, Valeri [Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia)

    2005-08-01

    The three dimensional ion implantation technology (3DII) is one of the methods of improving the tribological characteristics and resistance to hydrogen embrittlement processes in metals. In this report, some results concerning the resistance effect of nitrogen ion implantation to oxidation of the sample, made of AISI/SAE 1020 steel, are given. The nitrogen ions were implanted in the discharge chamber of the JUPITER reactor. Both the treated and untreated samples were tested through potential-static measurements, which permitted to determine the corrosion current, the slopes that characterise the braking level of anode and cathode reactions. The polarization resistance near the corrosion potential is calculated. The results of the study encourage to consider the nitrogen ion implantation in high voltage and low pressure discharges as one of the methods of anticorrosive protection which do not change the geometric configuration of the treated steel pieces. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Parental care mitigates carry-over effects of poor early conditions on offspring growth

    Science.gov (United States)

    Auer, Sonya K.; Martin, Thomas E.

    2017-01-01

    Poor developmental conditions can have long-lasting negative effects on offspring phenotypes, but impacts often differ among species. Contrasting responses may reflect disparities in experimental protocols among single-species studies or inherent differences among species in their sensitivity to early conditions and/or ability to mitigate negative impacts. We used a common experimental protocol to assess and compare the role of parental care in mitigating effects of poor early conditions on offspring among 4 sympatric bird species in the wild. We experimentally induced low incubation temperatures and examined effects on embryonic developmental rates, hatching success, nestling growth rates, and parental responses. We examined the generality of these effects across 4 species that differ in their phylogenetic history, breeding ecology, and life histories. We found that cooling led to delayed hatching in all species, but carry-over effects on offspring differed among species. Parents of some but not all species increased their offspring provisioning rates in response to experimental cooling with critical benefits for offspring growth rates. Our study shows for the first time that species exhibit clear differences in the degree to which they are affected by poor early conditions. Observed differences among species demonstrate that parental care is a critical mechanism for mitigating potential negative effects on offspring and suggest that parental responses may be constrained to varying degrees by ecology and life histories.

  15. Coal mine subsidence: effects of mitigation on crop yields. [USA - Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Darmody, R.G.; Hetzler, R.T.; Simmons, F.W. (Illinois Univ., Urbana, IL (USA). Dept. of Agronomy)

    1992-01-01

    Subsidence from longwall underground coal mining adversely impacts agricultural land by creating wet or ponded areas. While most subsided areas show little impact, some localized places, usually less than 1.5 ha in size, may experience total crop failure. Coal companies mitigate subsidence damaged cropland by installing drainage waterways or by adding fill material to raise the grade. The objective of this study was to test the effectiveness of mitigation in restoring corn and soybean yields to pre-mined levels. Fourteen sites in southern Illinois were selected for study. Corn ([ital Zea mays] L.) and soybean ([ital Glycine max] L.) yields from mitigated and nearby undisturbed areas were compared for four years. Results varied due to differing weather and site conditions. Mean corn yields overall, however were significantly ([alpha]0.05) lower on mitigated areas. There was no significant difference in overall mean soybean yields. Soil fertility levels were similar and did not account for yield differences. 14 refs., 1 fig., 7 tabs.

  16. Modeling the Effects of Harvest Alternatives on Mitigating Oak Decline in a Central Hardwood Forest Landscape.

    Directory of Open Access Journals (Sweden)

    Wen J Wang

    Full Text Available Oak decline is a process induced by complex interactions of predisposing factors, inciting factors, and contributing factors operating at tree, stand, and landscape scales. It has greatly altered species composition and stand structure in affected areas. Thinning, clearcutting, and group selection are widely adopted harvest alternatives for reducing forest vulnerability to oak decline by removing susceptible species and declining trees. However, the long-term, landscape-scale effects of these different harvest alternatives are not well studied because of the limited availability of experimental data. In this study, we applied a forest landscape model in combination with field studies to evaluate the effects of the three harvest alternatives on mitigating oak decline in a Central Hardwood Forest landscape. Results showed that the potential oak decline in high risk sites decreased strongly in the next five decades irrespective of harvest alternatives. This is because oak decline is a natural process and forest succession (e.g., high tree mortality resulting from intense competition would eventually lead to the decrease in oak decline in this area. However, forest harvesting did play a role in mitigating oak decline and the effectiveness varied among the three harvest alternatives. The group selection and clearcutting alternatives were most effective in mitigating oak decline in the short and medium terms, respectively. The long-term effects of the three harvest alternatives on mitigating oak decline became less discernible as the role of succession increased. The thinning alternative had the highest biomass retention over time, followed by the group selection and clearcutting alternatives. The group selection alternative that balanced treatment effects and retaining biomass was the most viable alternative for managing oak decline. Insights from this study may be useful in developing effective and informed forest harvesting plans for managing oak

  17. Effect of aging time on intergranular corrosion behavior of a newly developed LDX 2404 lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hui [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Zhang, Ziying, E-mail: zzying@sues.edu.cn [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Zhang, Huizhen [School of Management, University of Shanghai for Science and Technology, Shanghai 200093 (China); Hu, Jun [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Li, Jin [Department of Materials Science, Fudan University, Shanghai 200433 (China)

    2016-07-05

    The effect of aging at 700 °C for various times on the intergranular corrosion behavior of LDX 2404 duplex stainless steel is investigated by morphological observation and electrochemical detection. Scanning electronic microscopy and transmission electronic microscopy analysis reveal that Cr{sub 2}N, M{sub 23}C{sub 6} and the sigma and chi phases nucleate simultaneously at the initial stages of aging. The granular particles of sigma phase grow larger but fewer with the increase of aging time. The electrochemical detection results show that intergranular corrosion become more severe and the corrosion type evolves from intergranular corrosion into general corrosion as the holding time extends to 48 h. - Highlights: • The IGC behavior of aged LDX 2404 is investigated. • Cr{sub 2}N, M{sub 23}C{sub 6} and the σ and χ phases nucleate simultaneously at the initial stages of aging. • IGC resistance decreases with the increase of aging time. • The corrosion type evolves from IGC into general corrosion for longer aging times.

  18. Effects of metallurgical factors on stress corrosion cracking of Ni-base alloys in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, T.; Sasaguri, N.; Onimura, K.

    1988-01-01

    Nickel-base Alloy 600 is the principal material used for the steam generator tubes of PWRs. Generally, this alloy has been proven to be satisfactory for this application, however when it is subjected to extremely high stress level in PWR primary water, it may suffer from stress corrosion cracking. The authors have systematically studied the effects of test temperature and such metallurgical factors as cold working, chemical composition and heat treatment on the stress corrosion cracking of Alloy 600 in high temperature water, and also on that of Alloy 690 which is a promising material for the tubes and may provide improved crrosion resistance for steam generators. The test materials, the stress corrosion cracking test and the test results are reported. When the test temperature was raise, the stress corrosion cracking of the nickel-base alloys was accelerated. The time of stress corrosion cracking occurrence decreased with increasing applied stress, and it occurred at the stress level higher than the 0.2 % offset proof stress of Alloy 600. In Alloy 690, stress corrosion cracking was not observed at such stress level. Cold worked Alloy 600 showed higher resistance to stress corrosion cracking than the annealed alloy. (Kako, I.)

  19. The Effect of pH on Slurry Erosion-Corrosion of Tungsten Carbide Overlays Alloyed with Ru

    Science.gov (United States)

    Nelwalani, Ndivhuwo B.; van der Merwe, Josias W.

    2018-02-01

    The aim of the study was to determine the effect of Ru additions to WC-Fe overlays when exposed to low pH slurry erosion conditions. These overlays were applied through Plasma Transferred Arc, and the original bulk Ru powder concentrations varied from 0.5 to 5 wt.%. A slurry jet impingement erosion-corrosion test rig was used to evaluate wear, and electrochemical measurements were performed to characterize the corrosion properties. The slurry mixtures contained silica sand and synthetic mine water. The pH was varied between 3 and 6.5 for the slurry erosion tests and lowered further for the corrosion characterization. Samples were examined optically and with a scanning electron microscope using energy-dispersive x-ray spectroscopy. X-ray diffraction analysis was used to determine the phases present. For the slurry erosion-corrosion results at the pH of 6.5, addition of Ru did not show a decrease in erosion-corrosion rates. However, when the pH was decreased to 3, by the addition of HCl, Ru improved the resistance. From the electrochemistry, it was also clear that Ru additions improved the corrosion resistance, but more than 1 wt.% Ru was required. At very low pH levels, the presence of Ru was not able to prevent corrosion.

  20. Effect of cerium conversion of A3xx.x/SiCp composites surfaces on salt fog corrosion behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A.; Merino, M.C.; Arrabal, R.; Viejo, F.; Carboneras, M.; Coy, A.E. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040, Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, 28691, Villanueva de la Canada, Madrid (Spain)

    2004-07-01

    A study of the effect of cerium conversion treatment on surface of four composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) on their salt fog corrosion behaviour was performed. The conversion treatment was carried out using thermal activated full immersion in Ce(III) aqueous solutions. The matrix of A360/SiC/xxp composites is virtually free of Cu while the A380/SiC/xxp matrix contains 1.39-1.44 wt.%Ni and 3.13-3.45 wt.%Cu. Conversion performance was evaluated in neutral salt fog environment according to ASTM B117. The kinetics of the corrosion process were studied on the basis of gravimetric tests. The influence of SiCp proportion and matrix composition was evaluated and the nature of corrosion products was analysed by SEM and low angle XRD before and after accelerated testing to determine the influence of microstructural changes on corrosion behaviour during exposure to the corrosive environment. The Ce(III) precipitates on the cathodic sites, mainly on the intermetallic compounds, decreased both the cathodic current density and the corrosion rate of the composites tested. The presence of Cu in the matrix composition increased the corrosion rate, due to the galvanic couple Al/Cu. (authors)

  1. Effect of postreatment on the corrosion behaviour of tartaric-sulphuric anodic films

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Rubio, M. [Departamento de Quimica-Fisica Aplicada, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Department of Surface Technologies, Engineering of Materials and Processes, Airbus Spain, Av. John Lennon s/n 28906 Getafe (Spain); Lara, M.P. de [Departamento de Quimica-Fisica Aplicada, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Ocon, P. [Departamento de Quimica-Fisica Aplicada, Universidad Autonoma de Madrid, 28049 Madrid (Spain)], E-mail: pilar.ocon@uam.es; Diekhoff, S. [Fraunhofer-IFAM, Lesumer Heerstrasse 36, 28717 Bremen (Germany); Beneke, M. [Department of Surface Technologies, Engineering of Materials and Processes, Airbus Deutschland, GmbH Hunefeldstr. 1-5, 28199 Bremen (Germany); Lavia, A.; Garcia, I. [Department of Surface Technologies, Engineering of Materials and Processes, Airbus Spain, Av. John Lennon s/n 28906 Getafe (Spain)

    2009-08-30

    Unclad and clad AA2024 T3 specimens were anodised in a chromium-free tartaric-sulphuric acid bath (TSA) and subsequently postreated by different processes including impregnation in a cold, concentrated chromate solution, Cr-free hot-water sealing, and dichromate hot-water sealing. The purpose of this work is to evaluate the effectiveness of the classical postreatments used in the aircraft industry on the TSA-anodic films and their corrosion resistance behaviour. TSA-anodic films were characterised by scanning electron microscopy (SEM) and their thicknesses were measured by SEM and the eddy current method. Electrochemical impedance spectroscopy (EIS) was used to characterise the barrier and porous layers, and jointly with potentiodynamic polarisation allowed the evaluation of corrosion resistance parameters with immersion time in NaCl solution for anodised and postreated specimens. In all cases the postreatments increased the resistance of the barrier layer against degradation. However, the NaCl electrolyte easily penetrated TSA-anodised porous layers when they were not postreated, while penetration was slightly more difficult in cold-postreated specimens. The effective pore plugging was observed in the sealed TSA specimens resulting in an improved corrosion resistance. On the other hand, unsealed clad AA2024 specimens showed a self-sealing process of the TSA-anodic layer, which was slower for the cold chromate solution-postreated specimens.

  2. Effect of postreatment on the corrosion behaviour of tartaric-sulphuric anodic films

    International Nuclear Information System (INIS)

    Garcia-Rubio, M.; Lara, M.P. de; Ocon, P.; Diekhoff, S.; Beneke, M.; Lavia, A.; Garcia, I.

    2009-01-01

    Unclad and clad AA2024 T3 specimens were anodised in a chromium-free tartaric-sulphuric acid bath (TSA) and subsequently postreated by different processes including impregnation in a cold, concentrated chromate solution, Cr-free hot-water sealing, and dichromate hot-water sealing. The purpose of this work is to evaluate the effectiveness of the classical postreatments used in the aircraft industry on the TSA-anodic films and their corrosion resistance behaviour. TSA-anodic films were characterised by scanning electron microscopy (SEM) and their thicknesses were measured by SEM and the eddy current method. Electrochemical impedance spectroscopy (EIS) was used to characterise the barrier and porous layers, and jointly with potentiodynamic polarisation allowed the evaluation of corrosion resistance parameters with immersion time in NaCl solution for anodised and postreated specimens. In all cases the postreatments increased the resistance of the barrier layer against degradation. However, the NaCl electrolyte easily penetrated TSA-anodised porous layers when they were not postreated, while penetration was slightly more difficult in cold-postreated specimens. The effective pore plugging was observed in the sealed TSA specimens resulting in an improved corrosion resistance. On the other hand, unsealed clad AA2024 specimens showed a self-sealing process of the TSA-anodic layer, which was slower for the cold chromate solution-postreated specimens.

  3. The effect of second-phase particles on the corrosion and struture of Zircaloy-4

    International Nuclear Information System (INIS)

    Cortie, M.B.

    1982-10-01

    The effect of heat treatment and second-phase particles on the corrosion resistance and microstructure of Zircaloy-4 has been examined. In particular the effect of precipitates on the rate and mechanism of high-temperature, high-pressure water or steam corrosion is discussed. Measurements of corrosion rate are presented for specimens which have received various heat treatments. The heat treatments studied included a fast cool from the beta field, prolonged annealing at temperatures ranging from 500 degrees Celsius to 1 100 degrees Celsius as well as combinations of the above. The fabrication of a small quantity of Zircaloy-4 strip was undertaken and the methods used and observations made are recorded. The wide range of microstructures produced in Zircaloy-4 by the heat treatments and fabrication procedures utilized are described and discussed with optical or electron microscope photographs showing the important features. Qualitative and semi-quantitative chemical analyses of the second-phase particles were carried out by both the scanning electron microscope and Auger spectroscopy. Evidence for the existence of a tin-rich precipitate in Zircaloy-4 is presented and discussed

  4. Effect of composition on corrosion resistance of high-alloy austenitic stainless steel weld metals

    International Nuclear Information System (INIS)

    Marshall, P.I.; Gooch, T.G.

    1993-01-01

    The corrosion resistance of stainless steel weld metal in the ranges of 17 to 28% chromium (Cr), 6 to 60% nickel (Ni), 0 to 9% molybdenum (Mo), and 0.0 to 0.37% nitrogen (N) was examined. Critical pitting temperatures were determined in ferric chloride (FeCl 3 ). Passive film breakdown potentials were assessed from potentiodynamic scans in 3% sodium chloride (NaCl) at 50 C. Potentiodynamic and potentiostatic tests were carried out in 30% sulfuric acid (H 2 SO 4 ) ar 25 C, which was representative of chloride-free acid media of low redox potential. Metallographic examination and microanalysis were conducted on the test welds. Because of segregation of alloying elements, weld metal pitting resistance always was lower than that of matching composition base steel. The difference increased with higher Cr, Mo, and N contents. Segregation also reduced resistance to general corrosion in H 2 SO 4 , but the effect relative to the base steel was less marked than with chloride pitting. Segregation of Cr, Mo, and N in fully austenitic deposits decreased as the Ni' eq- Cr' eq ratio increased. Over the compositional range studied, weld metal pitting resistance was dependent mainly on Mo content and segregation. N had less effect than in wrought alloys. Both Mo and N enhanced weld metal corrosion resistance in H 2 SO 4

  5. The effectiveness of sucralfate against stricture formation in experimental corrosive esophageal burns.

    Science.gov (United States)

    Temir, Z Günyüz; Karkiner, Aytaç; Karaca, Irfan; Ortaç, Ragip; Ozdamar, Aykut

    2005-01-01

    In this study, the effectiveness of sucralfate against stricture formation in experimental corrosive esophageal burn is reported. Sixty-four Swiss albino adult male rats were divided into three groups, group A (control; n, 7), group B (esophageal burn induced but not treated; n, 25), and group C (esophageal burn induced and treated with sucralfate, n, 32). Groups B and C were further subdivided into subgroups for evaluation on days 2, 7, and 28. A standard esophageal burn was performed by the method of Gehanno, using 50% NaOH. Oral sucralfate treatment was given to group C at a dosage of 50 mg/100 g twice daily. The rats were then killed after 2, 7, or 28 days. Levels of tissue hydroxyproline were measured in excised abdominal esophageal segments, and a histopathological evaluation was performed with hematoxylin-eosin and Masson's trichrome staining. The tissue hydroxyproline levels were significantly lower in group C than in group B (P = 0.017). There was a significant difference in the stenosis index between groups B and C (P = 0.016). When compared with group B, the collagen deposition in the submucosa and tunica muscularis was significantly lower in group C (P = 0.02). Sucralfate has an inhibitory effect on stricture formation in experimental corrosive burns and can be used in the treatment of corrosive esophageal burns to enhance mucosal healing and suppress stricture formation.

  6. Effect of surface modification on the corrosion resistivity in supercritical water

    International Nuclear Information System (INIS)

    Penttila, S.; Horvath, A.; Toivonen, A.; Zolnai, Z.

    2011-01-01

    This paper summarizes the results of high temperature corrosion studies of the candidate austenitic alloys at relevant operating conditions for SCWR. The high temperature and pressure above the thermodynamic critical point of water result in higher oxidation rate which might be critical for thin-wall components like fuel cladding. The goal of this work was to study the effect of surface preparation on the oxidation rate on Ti-stabilized austenitic alloy 1.4970. Surfaces were prepared with ion implantation using He"+- and N"+-ions. Samples were immersed in supercritical water at 650"oC/25 MPa, for up to 2000 hours. Added to this, conventional surface treatments were conducted for austenitic alloy 316L tube samples in order to study the effect of cold work in sample surface on corrosion resistance. The corrosion rate was evaluated by measuring the weight change of the samples. The compositions of the oxide layers were analyzed using scanning electron microscope (SEM) in conjunction with Energy Dispersive Spectroscopy (EDS). (author)

  7. Effect of composition on the corrosion behavior of 316 stainless steel in flowing sodium

    International Nuclear Information System (INIS)

    Bates, J.F.; Brehm, W.F.

    1976-03-01

    Type 316 stainless steel specimens irradiated and non-irradiated, with minor variations in C, N, Cr, Ni, Si, and Mn content, were exposed to flowing sodium in the Source Term Control Loop-1 facility. Test conditions of 604 0 C, a sodium velocity of 6.7 m/s, and an oxygen content of 0.5 and 2.5 ppM were used to ascertain the effect of these compositional variations on the corrosion rate and on the 54 Mn release rate. Variations in C, N, and Mn had no significant effect on the corrosion rate. The corrosion rate increased somewhat as the Ni and Si content of the steel was increased, and decreased with an increase in Cr content. Microprobe examination showed preferential leaching of Mn, Si, Cr, and Ni to depths of up to 10 μm (0.4 mil) after exposure times ranging from 5000 to 8000 hours. Variations in natural ( 55 Mn) content did not affect release rates of 54 Mn generated by 54 Fe(n,p) 54 Mn. 10 fig, 4 tables

  8. Parents' experience of unintended childbearing: A qualitative study of factors that mitigate or exacerbate effects.

    Science.gov (United States)

    Kavanaugh, Megan L; Kost, Kathryn; Frohwirth, Lori; Maddow-Zimet, Isaac; Gor, Vivian

    2017-02-01

    Births resulting from an unintended pregnancy affect individuals differentially, and some may experience more negative consequences than others. In this study, we sought to describe the mechanisms through which the severity of effects may be mitigated or exacerbated. We conducted in-depth interviews with 35 women and 30 men, all with a youngest child born resulting from an unintended pregnancy, in two urban sites in the United States. Respondents described both negative and positive effects of the child's birth in the areas of school; work and finances; partner relationships; personal health and outlook on life trajectories. Mechanisms through which unintended pregnancies mitigated or exacerbated certain effects fell at the individual (e.g. lifestyle modification), interpersonal (e.g. partner support) and structural (e.g. workplace flexibility) levels. These qualitative findings deepen understanding of the impact of unintended childbearing on the lives of women, men and families. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Evaluation of strategies for promoting effective radon mitigation. Risk communication and economic research series. Final report

    International Nuclear Information System (INIS)

    Doyle, J.K.; McClelland, G.H.; Schulze, W.D.; Locke, P.A.; Elliott, S.R.

    1990-03-01

    The Environmental Protection Agency has estimated that as many as 20,000 lung cancer deaths per year in the United States can be attributed to exposure to radon gas. The report evaluates alternative strategies for motivating people to test for radon gas in their homes and to mitigate if necessary. Specifically, two separate radon information and awareness programs were evaluated, one targeted to the general population in the Washington, D.C. area and the other to home buyers in the Boulder, Colorado area. The results suggest that a home buyer program is likely to be far more effective in terms of effective remediation to reduce home radon levels than a program aimed at the general population. The report discusses the empirical findings and develops a recommendation for increasing the effectiveness of radon awareness and mitigation programs

  10. Effect of surface nanocrystallization on the microstructural and corrosion characteristics of AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Laleh, M., E-mail: laleh.m.1992@gmail.com [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Kargar, Farzad, E-mail: farzad.kargar@gmail.com [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)

    2011-09-15

    Highlights: > Nanostructured surface layers were produced on AZ91D magnesium alloy by using SMAT. > Thickness of the deformed layer increased with increasing of the balls size. > Top surface microhardness for all of the SMATed samples increased significantly. > SMAT increased the surface roughness; increase in balls diameter increased the roughness. > SMAT using 2 mm balls increased the corrosion resistance significantly. - Abstract: Surface distinct deformed layers with thicknesses up to 150 {mu}m, with grain size in the top most surface is in the nanometer scale, were produced on AZ91D magnesium alloy using surface mechanical attrition treatment (SMAT). Effects of different ball size on the properties of the SMATed samples were investigated. The microstructural, grain size, hardness and roughness features of the treated surfaces were characterized using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-indenter and digital roughness meter, respectively. Corrosion behavior of the samples was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. It is found that the ball diameter does not have a significant effect on the top surface grain size, but the thickness of the deformed layer increases with increase of ball size, from 50 {mu}m for 2 mm balls to 150 {mu}m for 5 mm balls. For all of the SMATed samples, the top surface microhardness value increased significantly and did not show any obvious change for samples treated with different balls. Corrosion studies show that the corrosion resistance of the sample treated with 2 mm balls is higher than that of those treated with 3 mm and 5 mm balls. This can be mainly attributed to the surface roughness and defects density of the samples, which are higher for the SMATed samples with 3 mm and 5 mm balls compared with that of sample SMATed with 2 mm balls.

  11. Effect of surface nanocrystallization on the microstructural and corrosion characteristics of AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Laleh, M.; Kargar, Farzad

    2011-01-01

    Highlights: → Nanostructured surface layers were produced on AZ91D magnesium alloy by using SMAT. → Thickness of the deformed layer increased with increasing of the balls size. → Top surface microhardness for all of the SMATed samples increased significantly. → SMAT increased the surface roughness; increase in balls diameter increased the roughness. → SMAT using 2 mm balls increased the corrosion resistance significantly. - Abstract: Surface distinct deformed layers with thicknesses up to 150 μm, with grain size in the top most surface is in the nanometer scale, were produced on AZ91D magnesium alloy using surface mechanical attrition treatment (SMAT). Effects of different ball size on the properties of the SMATed samples were investigated. The microstructural, grain size, hardness and roughness features of the treated surfaces were characterized using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-indenter and digital roughness meter, respectively. Corrosion behavior of the samples was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. It is found that the ball diameter does not have a significant effect on the top surface grain size, but the thickness of the deformed layer increases with increase of ball size, from 50 μm for 2 mm balls to 150 μm for 5 mm balls. For all of the SMATed samples, the top surface microhardness value increased significantly and did not show any obvious change for samples treated with different balls. Corrosion studies show that the corrosion resistance of the sample treated with 2 mm balls is higher than that of those treated with 3 mm and 5 mm balls. This can be mainly attributed to the surface roughness and defects density of the samples, which are higher for the SMATed samples with 3 mm and 5 mm balls compared with that of sample SMATed with 2 mm balls.

  12. Inhibiting effects of imidazole on copper corrosion in 1 M HNO3 solution

    International Nuclear Information System (INIS)

    Lee, Woo-Jin

    2003-01-01

    The present work deals with the inhibiting effects of imidazole on the pure copper (Cu) corrosion in 1 M HNO 3 solution analysing potentiodynamic polarisation curves, potentiostatic anodic current transient, AC impedance spectra and X-ray photoelectron spectra (XPS). By adding imidazole to HNO 3 solution, the polarisation curves showed decrease in the corrosion current and the cathodic current, suggesting that imidazole acts as an effective cathodic inhibitor to Cu corrosion. From the measured anodic current transients, it is inferred that the protective Cu-imidazole complex film is simultaneously formed with the Cu oxide in the presence of imidazole during the early stage of the anodic polarisation. Analysis of the AC impedance spectra revealed that the values of the charge transfer resistance R ct obtained in imidazole-containing HNO 3 solution were greater than that value in imidazole-free one and at the same time steadily increased with immersion time to the constant value. Contrarily, the capacitance value was abruptly lowered from the double layer capacitance C dl to the complex film capacitance C cf in the progress of immersion time. Furthermore, the Warburg coefficient σ value for the ion diffusion through the complex film was observed to increase with immersion time. This means that the Cu(N-OH) complex film becomes thicker during immersion in the HNO 3 solution with imidazole through the inward growth of the N-rich outer layer to the O-rich inner layer, as well validated by XPS. Based upon the experimental results, it is suggested that the Cu corrosion in 1 M HNO 3 solution is efficiently inhibited with the addition of imidazole by retarding both the charge transfer on cathodic sites of the Cu surface in the early stage of immersion time and the subsequent ion diffusion through the steadily growing complex film

  13. Effect of heat treatment and composition on stress corrosion cracking of steam generation tubing materials

    International Nuclear Information System (INIS)

    Kim, H. P.; Hwang, S. S.; Kuk, I. H.; Kim, J. S.; Oh, C. Y.

    1998-01-01

    Effects of heat treatment and alloy composition on stress corrosion cracking (SCC) of steam generator tubing materials have been studied in 40% NaOH at 315.deg.C at potential of +200mV above corrosion potential using C-ring specimen and reverse U bend specimen. The tubing materials used were commercial Alloy 600, Alloy 690 and laboratory alloys, Ni-χCr-10Fe. Commercial Alloy 600, Alloy 690 were mill annealed or thermally treated.Laboratory alloy Ni-χCr-10Fe, and some of Alloy 600 and Alloy 690 were solution annealed. Polarization curves were measured to find out any relationship between SCC susceptibility and electrochemical behaviour. The variation in thermal treatment of Alloy 600 and Alloy 690 had no effect on polarization behaviour probably due to small area fraction of carbide and Cr depletion zone near grain boundary. In anodic polarization curves, the first and second anodic peaks at about 170mV and about at 260mV, respectively, above corrosion potential were independent of Cr content, whereas the third peak at 750mV above corrosion potential and passive current density in-creased with Cr content. SCC susceptibility decreased with Cr content and thermal treatment producing semicontinuous grain boundary decoration. Examination of cross sectional area of C-ring specimen showed deep SCC cracks for the alloys with less than 17%Cr and many shallow attacks for alloy 690. The role of Cr content in steam generator tubing materials and grain boundary carbide on SCC were discussed

  14. Nuclear corrosion science and engineering

    CERN Document Server

    2012-01-01

    Understanding corrosion mechanisms, the systems and materials they affect, and the methods necessary for accurately measuring their incidence is of critical importance to the nuclear industry for the safe, economic and competitive running of its plants. This book reviews the fundamentals of nuclear corrosion. Corrosion of nuclear materials, i.e. the interaction between these materials and their environments, is a major issue for plant safety as well as for operation and economic competitiveness. Understanding these corrosion mechanisms, the systems and materials they affect, and the methods to accurately measure their incidence is of critical importance to the nuclear industry. Combining assessment techniques and analytical models into this understanding allows operators to predict the service life of corrosion-affected nuclear plant materials, and to apply the most appropriate maintenance and mitigation options to ensure safe long term operation. This book critically reviews the fundamental corrosion mechani...

  15. Cost-effective and robust mitigation of space debris in low earth orbit

    Science.gov (United States)

    Walker, R.; Martin, C.

    It is predicted that the space debris population in low Earth orbit (LEO) will continue to grow and in an exponential manner in the long-term due to an increasing rate of collisions between large objects, unless internationally-accepted space debris mitigation measures are adopted soon. Such measures are aimed at avoiding the future generation of space debris objects and primarily need to be effective in preventing significant long-term growth in the debris population, even in the potential scenario of an increase in future space activity. It is also important that mitigation measures can limit future debris population levels, and therefore the underlying collision risk to space missions, to the lowest extent possible. However, for their wide acceptance, the cost of implementation associated with mitigation measures needs to be minimised as far as possible. Generally, a lower collision risk will cost more to achieve and vice versa, so it is necessary to strike a balance between cost and risk in order to find a cost-effective set of mitigation measures. In this paper, clear criteria are established in order to assess the cost-effectiveness of space debris mitigation measures. A full cost-risk-benefit trade-off analysis of numerous mitigation scenarios is presented. These scenarios consider explosion prevention and post-mission disposal of space systems, including de-orbiting to limited lifetime orbits and re-orbiting above the LEO region. The ESA DELTA model is used to provide long-term debris environment projections for these scenarios as input to the benefit and risk parts of the trade-off analysis. Manoeuvre requirements for the different post-mission disposal scenarios were also calculated in order to define the cost-related element. A 25-year post-mission lifetime de-orbit policy, combined with explosion prevention and mission-related object limitation, was found to be the most cost-effective solution to the space debris problem in LEO. This package would also

  16. Electrochemical corrosion of grinding media and effect of anions present in industrial waters; Corrosion electroquimica de medios de molienda y efecto de aniones presentes en aguas industriales

    Energy Technology Data Exchange (ETDEWEB)

    Magne, L.; Navarro, P.; Vargas, C.; Carrasco, S.

    2001-07-01

    The steel used in the minerals processing as grinding media (balls or bars), is an important input in terms of cost of the process. Considering the importance of the steel consumption in these processes, this work is guided to evaluate to laboratory scale the effect of the anions present in the industrial waters on the electrochemical corrosion of grinding media. Tests in electrochemical cell, were accomplished measuring potential and corrosion current to four electrodes that were manufactured using sufficiently pure sample of chalcopyrite, bornite, enargite and steel ball. The ions used in the tests were chlorides, sulfates, nitrates and carbonates in concentrations from 1 to 180 ppm in individual form or in mixtures, according to the levels measurement of these in industrial waters. (Author) 10 refs.

  17. Inhibition effect of phosphorus-based chemicals on corrosion of carbon steel in secondary-treated municipal wastewater.

    Science.gov (United States)

    Shen, Zhanhui; Ren, Hongqiang; Xu, Ke; Geng, Jinju; Ding, Lili

    2013-01-01

    Secondary-treated municipal wastewater (MWW) could supply a viable alternative water resource for cooling water systems. Inorganic salts in the concentrated cooling water pose a great challenge to corrosion control chemicals. In this study, the inhibition effect of 1-hydroxy ethylidene-1,1-diphosphonic acid (HEDP), trimethylene phosphonic acid (ATMP) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) on corrosion of carbon steel in secondary-treated MWW was investigated by the means of potentiodynamic polarization and electrochemical impedance spectroscopy. The inhibition effect increased with increasing concentration of inhibitors. The corrosion rates of carbon steel were 1.5, 0.8, 0.2 and 0.5 mm a(-1) for blank, HEDP, ATMP and PBTCA samples at 50 mg L(-1), respectively. The phosphorus-based chemicals could adsorb onto the surface of the carbon steel electrode, form a coat of protective film and then protect the carbon steel from corrosion in the test solution.